Relations and Functions

1.3 EXERCISE

■ SHORT ANSWER TYPE QUESTIONS

Q1. Let $A = \{a, b, c\}$ and the relation R be defined on A as follows:

$$R = \{(a, a), (b, c), (a, b)\}$$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

Sol. Here, $R = \{(a, a), (b, c), (a, b)\}$ for reflexivity; (b, b), (c, c) and for transitivity; (a, c)

Hence, the required ordered pairs are (b, b), (c, c) and (a, c)

- **Q2.** Let D be the domain of the real valued function f defined by $f(x) = \sqrt{25 x^2}$. Then write D.
- Sol. Here, $f(x) = \sqrt{25 x^2}$ For real value of f(x), $25 - x^2 \ge 0$ $\Rightarrow -x^2 \ge -25 \Rightarrow x^2 \le 25 \Rightarrow -5 \le x \le 5$ Hence, $D \in -5 \le x \le 5$ or [-5, 5]
- **Q3.** Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x + 1 and $g(x) = x^2 2 \ \forall x \in \mathbb{R}$, respectively. Then find $g \circ f$.
- Sol. Here, f(x) = 2x + 1 and $g(x) = x^2 2$ g(x) = g[f(x)] $= [2x + 1]^2 - 2 = 4x^2 + 4x + 1 - 2 = 4x^2 + 4x - 1$ Hence, $g(x) = x^2 - 2$
- **Q4.** Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = 2x 3 \ \forall \ x \in \mathbb{R}$. Write f^{-1} .
- Sol. Here, f(x) = 2x 3Let f(x) = y = 2x 3 $\Rightarrow y + 3 = 2x \Rightarrow x = \frac{y + 3}{2}$ $\therefore f^{-1}(y) = \frac{y + 3}{2} \text{ or } f^{-1}(x) = \frac{x + 3}{2}$
- **Q5.** If $A = \{a, b, c, d\}$ and the function $f = \{(a, b), (b, d), (c, a), (d, c)\}$, write f^{-1} .
- Sol. Let y = f(x) : $x = f^{-1}(y)$:. If $f = \{(a, b), (b, d), (c, a), (d, c)\}$ then $f^{-1} = \{(b, a), (d, b), (a, c), (c, d)\}$

Q6. If
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = x^2 - 3x + 2$, write $f[f(x)]$.

Sol. Here,
$$f(x) = x^2 - 3x + 2$$

$$f[f(x)] = [f(x)]^2 - 3f(x) + 2$$

$$= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$$

$$= x^4 + 9x^2 + 4 - 6x^3 + 4x^2 - 12x - 3x^2 + 9x - 6 + 2$$

$$= x^4 - 6x^3 + 10x^2 - 3x$$

Hence, $f[f(x)] = x^4 - 6x^3 + 10x^2 - 3x$

Q7. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by $g(x) = \alpha x + \beta$, then what value should be assigned to α and β ?

Sol. Yes,
$$g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$$
 is a function.
Here, $g(x) = \alpha x + \beta$
For $(1, 1)$, $g(1) = \alpha ... + \beta$
 $1 = \alpha + \beta$...(1)

For (2, 3),
$$g(2) = \alpha . 2 + \beta$$

 $3 = 2\alpha + \beta$...(2)

Solving eqs. (1) and (2) we get, $\alpha = 2$, $\beta = -1$

- Q8. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
 - (i) $\{(x, y) : x \text{ is a person, } y \text{ is the mother of } x\}$
 - (ii) $\{(a, b) : a \text{ is a person, } b \text{ is an ancestor of } a\}$
- Sol. (i) It represents a function. The image of distinct elements of x under f are not distinct. So, it is not injective but it is surjective.
 - (ii) It does not represent a function as every domain under mapping does not have a unique image.
- **Q9.** If the mapping f and g are given by

$$f = \{(1, 2), (3, 5), (4, 1)\}$$
 and $g = \{(2, 3), (5, 1), (1, 3)\}$ write fog.

Sol. $f \circ g = f[g(x)]$ = f[g(2)] = f(3) = 5= f[g(5)] = f(1) = 2= f[g(1)] = f(3) = 5Hence, $fog = \{(2, 5), (5, 2), (1, 5)\}$

Q10. Let C be the set of complex numbers. Prove that the mapping $f: C \to R$ given by f(z) = |z|, $\forall z \in C$, is neither one-one nor onto.

Sol. Here,
$$f(z) = |z| \quad \forall z \in \mathbb{C}$$

 $f(1) = |1| = 1$
 $f(-1) = |-1| = 1$
 $f(1) = f(-1)$
But $1 \neq -1$

 $1 \neq -1$

Therefore, it is not one-one.

Now, let f(z) = y = |z|. Here, there is no pre-image of negative numbers. Hence, it is not onto.

Q11. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \cos x$, $\forall x \in \mathbb{R}$. Show that f is neither one-one nor onto.

Sol. Here,
$$f(x) = \cos x \ \forall \ x \in \mathbb{R}$$
Let
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \in f(x)$$

$$f\left(-\frac{\pi}{2} \right) = \cos\left(-\frac{\pi}{2} \right) = \cos\frac{\pi}{2} = 0$$

$$\cos\left(\frac{\pi}{2} \right) = \cos\frac{\pi}{2} = 0$$

$$f\left(-\frac{\pi}{2} \right) = f\left(\frac{\pi}{2} \right) = 0$$
But
$$-\frac{\pi}{2} \neq \frac{\pi}{2}$$

Therefore, the given function is not one-one. Also it is not onto function as no pre-image of any real number belongs to the range of $\cos x$ i.e., [-1, 1].

Q12. Let $X = \{1, 2, 3\}$ and $Y = \{4, 5\}$. Find whether the following subsets of $X \times Y$ are functions from X to Y or not.

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$

(ii)
$$g = \{(1, 4), (2, 4), (3, 4)\}$$

(iii)
$$h = \{(1, 4), (2, 5), (3, 5)\}$$

(iv)
$$k = \{(1, 4), (2, 5)\}$$

Sol. Here, given that $X = \{1, 2, 3\}, Y = \{4, 5\}$

$$X \times Y = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$$

(i)
$$f = \{(1, 4), (1, 5), (2, 4), (3, 5)\}$$

f is not a function because there is no unique image of each element of domain under f.

(ii)
$$g = \{(1, 4), (2, 4), (3, 4)\}$$

Yes, g is a function because each element of its domain has a unique image.

(iii)
$$h = \{(1, 4), (2, 5), (3, 5)\}$$

Yes, it is a function because each element of its domain has a unique image.

(iv)
$$k = \{(1, 4), (2, 5)\}$$

Clearly k is also a function.

- **Q13.** If function $f: A \to B$ and $g: B \to A$ satisfy $g \circ f = I_A$, then show that f is one-one and g is onto.
- **Sol.** Let $x_1, x_2 \in gof$

$$gof \{f(x_1)\} = gof \{f(x_2)\}$$

$$\Rightarrow \qquad g(x_1) = g(x_2) \qquad [\because gof = I_A]$$

$$\therefore \qquad x_1 = x_2$$

Hence, *f* is one-one. But *g* is not onto as there is no pre-image of A in B under *g*.

- **Q14.** Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{2 \cos x}$, $\forall x \in \mathbb{R}$. Then, find the range of f.
- **Sol.** Given function is $f(x) = \frac{1}{2 \cos x}$, $\forall x \in \mathbb{R}$.

Range of $\cos x$ is [-1, 1]

Let
$$f(x) = y = \frac{1}{2 - \cos x}$$

$$\Rightarrow 2y - y \cos x = 1 \Rightarrow y \cos x = 2y - 1$$

$$\Rightarrow \cos x = \frac{2y - 1}{y} = 2 - \frac{1}{y}$$
Now $-1 \le \cos x \le 1$

$$\Rightarrow -1 \le 2 - \frac{1}{y} \le 1 \Rightarrow -1 - 2 \le -\frac{1}{y} \le 1 - 2$$

$$\Rightarrow -3 \le -\frac{1}{y} \le -1 \Rightarrow 3 \ge \frac{1}{y} \ge 1 \Rightarrow \frac{1}{3} \le y \le 1$$
Hence, the range of $f = \left[\frac{1}{3}, 1\right]$.

- **Q15.** Let n be a fixed positive integer. Define a relation R in Z as follows $\forall a, b \in \mathbb{Z}$, $a \in \mathbb{R}$ b if and only if a b is divisible by n. Show that R is an equivalence relation.
- **Sol.** Here, $\forall a, b \in \mathbb{Z}$ and $a \in \mathbb{R}$ if and only if a b is divisible by n. The given relation is an equivalence relation if it is reflexive, symmetric and transitive.
 - (i) Reflexive: $a R a \implies (a-a) = 0$ divisible by nSo, R is reflexive.
 - (ii) Symmetric: $a R b = b R a \quad \forall a, b \in \mathbb{Z}$ a - b is divisible by n (Given) $\Rightarrow -(b - a)$ is divisible by n

- $\Rightarrow b a$ is divisible by n
- $\Rightarrow b R a$

Hence, R is symmetric.

- (iii) Transitive:
 - a R b and $b R c \Leftrightarrow a R c \forall a, b, c \in \mathbb{Z}$
 - a b is divisible by n
 - b-c is also divisible by n
 - \Rightarrow (a-b)+(b-c) is divisible by n
 - \Rightarrow (a-c) is divisible by n

Hence, R is transitive.

So, R is an equivalence relation.

LONG ANSWER TYPE QUESTIONS

- Q16. If A = {1, 2, 3, 4}, define relations on A which have properties of being.
 - (a) reflexive, transitive but not symmetric.
 - (b) symmetric but neither reflexive nor transitive
 - (c) reflexive, symmetric and transitive.
- **Sol.** Given that $A = \{1, 2, 3, 4\}$
 - $ARA = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)\}$
 - (a) Let $R_1 = \{(1, 1), (2, 2), (1, 2), (2, 3), (1, 3)\}$ So, R_1 is reflexive and transitive but not symmetric.
 - (b) Let $\hat{R}_2 = \{(2, 3), (3, 2)\}$
 - So, R₂ is only symmetric.
 - (c) Let $R_3 = \{(1, 1), (1, 2), (2, 1), (2, 4), (1, 4)\}$ So, R_3 is reflexive, symmetric and transitive.
- Q17. Let R be relation defined on the set of natural number N as follows:

 $R = \{(x, y) : x \in \mathbb{N}, y \in \mathbb{N}, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

- **Sol.** Given that $x \in \mathbb{N}$, $y \in \mathbb{N}$ and 2x + y = 41
 - \therefore Domain of R = {1, 2, 3, 4, 5, ..., 20}

and Range = {39, 37, 35, 33, 31, ..., 1}

Here, $(3, 3) \notin \mathbb{R}$ as $2 \times 3 + 3 \neq 41$

as $2 \times 3 + 3 \neq 4$

So, R is not reflexive.

R is not symmetric as $(2, 37) \in R$ but $(37, 2) \notin R$

R is not transitive as $(11, 19) \in R$ and $(19, 3) \in R$

but (11, 3) ∉ R. 🐩

Hence, Ris neither reflexive, nor symmetric and nor transitive.

- **Q18.** Given $A = \{2, 3, 4\}$, $B = \{2, 5, 6, 7\}$, construct an example of each of the following:
 - (i) an injective mapping from A to B.
 - (ii) a mapping from A to B which is not injective
 - (iii) a mapping from B to A.
 - **Sol.** Here, $A = \{2, 3, 4\}$ and $B = \{2, 5, 6, 7\}$
 - (i) Let $f: A \rightarrow B$ be the mapping from A to B $f = \{(x, y) : y = x + 3\}$:. $f = \{(2, 5), (3, 6), (4, 7)\}$ which is an injective mapping.
 - (ii) Let $g: A \rightarrow B$ be the mapping from $A \rightarrow B$ such that $g = \{(2, 5), (3, 5), (4, 2)\}$ which is not an injective mapping.
 - (iii) Let $h: B \to A$ be the mapping from B to A $h = \{(y, x) : x = y - 2\}$ $h = \{(5, 3), (6, 4), (7, 3)\}$ which is the mapping from B to A.
- Q19. Give an example of a map
 - (i) which is one-one but not onto.
 - (ii) which is not one-one but onto.
 - (iii) which is neither one-one nor onto.
- **Sol.** (i) Let $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^2$

Let
$$x_1, x_2 \in N$$
 then $f(x_1) = x_1^2$ and $f(x_2) = x_2^2$

Now,
$$f(x_1) = f(x_2) \Rightarrow x_1^2 = x_2^2 \Rightarrow x_1^2 - x_2^2 = 0$$

 $\Rightarrow (x_1 + x_2) (x_1 - x_2) = 0$
Since $x_1, x_2 \in \mathbb{N}$, so $x_1 + x_2 = 0$ is not possible.
 $\therefore x_1 - x_2 = 0 \Rightarrow x_1 = x_2$
 $\therefore f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
So, $f(x)$ is one to one function.

$$\therefore x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

$$\therefore f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Now, Let $f(x) = 5 \in \mathbb{N}$

then
$$x^2 = 5 \implies x = \pm \sqrt{5} \notin \mathbb{N}$$

So, f is not onto.

Hence, $f(x) = x^2$ is one-one but not onto.

(ii) Let
$$f: N \times N$$
, defined by $f(n) = \begin{cases} \frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}$

Since f(1) = f(2) but $1 \neq 2$,

So, f is not one-one.

Now, let $y \in N$ be any element.

Then f(n) = y

$$\Rightarrow \frac{\frac{n+1}{2} \text{ if } n \text{ is odd}}{\frac{n}{2} \text{ if } n \text{ is even}} = y$$

⇒
$$n = 2y - 1$$
 if y is even
 $n = 2y$ if y is odd or even
⇒ $n = \begin{cases} 2y - 1 \text{ if } y \text{ is even} \\ 2y \text{ if } y \text{ is odd or even} \end{cases} \in \mathbb{N} \ \forall \ y \in \mathbb{N}$

 \therefore Every $y \in N$ has pre-image

$$n = \begin{cases} 2y - 1 & \text{if } y \text{ is even} \\ 2y & \text{if } y \text{ is odd or even} \end{cases} \in \mathbb{N}$$

 \therefore f is onto.

Hence, f is not one-one but onto.

(iii) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^2$

Let $x_1 = 2$ and $x_2 = -2$

$$f(x_1) = x_1^2 = (2)^2 = 4$$

$$f(x_2) = x_2^2 = (-2)^2 = 4$$

$$f(2) = f(-2) \text{ but } 2 \neq -2$$

So, it is not one-one function.

Let
$$f(x) = -2 \implies x^2 = -2$$
 : $x = \pm \sqrt{-2} \notin \mathbb{R}$
Which is not possible, so f is not onto.

Hence, f is neither one-one nor onto.

Q20. Let
$$A = R - \{3\}$$
, $B = R - \{1\}$. Let $f : A \to B$ be defined by $f(x) = \frac{x-2}{x-3}$, $\forall x \in A$. Then, show that f is bijective.

Sol. Here, $A \in R - \{3\}$, $B = R - \{1\}$

Given that $f: A \to B$ defined by $f(x) = \frac{x-2}{x-3} \ \forall \ x \in A$.

Let $x_1, x_2 \in f(x)$

$$\Rightarrow x_1 x_2 - 3x_1 - 2x_2 + 6 = x_1 x_2 - 3x_2 - 2x_1 + 6$$

$$\Rightarrow \qquad -x_1 = -x_2 \Rightarrow x_1 = x_2$$

So, it is injective function.

Now, Let
$$y = \frac{x-2}{x-3}$$

 $\Rightarrow xy-3y = x-2 \Rightarrow xy-x=3y-2$
 $\Rightarrow x(y-1) = 3y-2 \Rightarrow x = \frac{3y-2}{y-1}$

$$f(x) = \frac{x-2}{x-3} = \frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} \implies \frac{3y-2-2y+2}{3y-2-3y+3} \implies y$$

So, f(x) is surjective function.

Hence, f(x) is a bijective function.

Q21. Let A = [-1, 1], then discuss whether the following functions defined on A are one-one, onto or bijective.

(i)
$$f(x) = \frac{x}{2}$$
 (ii) $g(x) = |x|$ (iii) $h(x) = x |x|$ (iv) $k(x) = x^2$

Sol. (i) Given that $-1 \le x \le 1$

Let
$$x_1, x_2 \in f(x)$$

$$f(x_1) = \frac{1}{x_1} \quad \text{and} \quad f(x_2) = \frac{1}{x_2}$$

$$f(x_1) = f(x_2) \quad \Rightarrow \quad \frac{1}{x_1} = \frac{1}{x_2} \quad \Rightarrow \quad x_1 = x_2$$
So, $f(x)$ is one-one function.

Let
$$f(x) = y = \frac{x}{2} \implies x = 2y$$

For y = 1, $x = 2 \notin [-1, 1]$

So, f(x) is not onto. Hence, f(x) is not bijective function.

g(x) = |x|(ii) Here, $g(x_1) = g(x_2) \implies |x_1| = |x_2| \implies x_1 = \pm x_2$

So, g(x) is not one-one function.

Let $g(x) = y = |x| \implies x = \pm y \notin A \forall y \in A$

So, g(x) is not onto function.

Hence, g(x) is not bijective function.

h(x) = x|x|(iii) Here, $h(x_1) = h f(x_2)$ $x_1 | x_1 | = x_2 | x_2 | \implies x_1 = x_2$

So, h(x) is one-one function.

Now, let
$$h(x) = y = x |x| = x^2 \text{ or } -x^2$$

 $\Rightarrow x = \pm \sqrt{-y} \notin A \forall y \in A$

 $\therefore h(x)$ is not onto function.

Hence, h(x) is not bijective function.

 $k(x) = x^2$ (iv) Here, $k(x_1) = k(x_2)$ $\bar{x_1^2} = x_2^2 \implies x_1 = \pm x_2$

So, k(x) is not one-one function.

Now, let
$$k(x) = y = x^2 \implies x = \pm \sqrt{y}$$

If
$$y = -1 \implies x = \pm \sqrt{-1} \notin A \ \forall \ y \in A$$

 $\therefore k(x)$ is not onto function.

Hence, k(x) is not a bijective function.

Q22. Each of the following defines a relation of N

- (i) x is greater than $y, x, y \in \mathbb{N}$
- (ii) $x + y = 10, x, y \in \mathbb{N}$
- (iii) xy is square of an integer $x, y \in \mathbb{N}$
- (iv) $x + 4y = 10, x, y \in N$.

Determine which of the above relations are reflexive, symmetric and transitive.

Sol. (i) x is greater than y, x, $y \in \mathbb{N}$

For reflexivity $x > x \forall x \in \mathbb{N}$ which is not true

So, it is not reflexive relation.

Now, x > y but $y \not = x \ \forall x, y \in \mathbb{N}$

 $\Rightarrow x R y \text{ but } y \not R x$

So, it is not symmetric relation.

 $x R y, y R z \Rightarrow x R z \forall x, y, z \in N$ For transitivity, $\Rightarrow x > y, y > z \Rightarrow x > z$

So, it is transitive relation.

 $R = \{(x, y) : x + y = 10 \ \forall \ x, y \in N\}$ (ii) Here,

 $R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}$

For reflexive: 5+5=10, $5 R 5 \Rightarrow (x, x) \in R$

So, R is reflexive.

For symmetric: $(1, 9) \in \mathbb{R}$ and $(9, 1) \in \mathbb{R}$

So, R is symmetric.

For transitive: $(3, 7) \in \mathbb{R}$, $(7, 3) \in \mathbb{R}$ but $(3, 3) \notin \mathbb{R}$

So, R is not transitive.

(iii) Here, $R = \{(x, y) : xy \text{ is a square of an integer, } x, y \in N\}$

For reflexive: $x R x = x \cdot x = x^2$ is an integer

[: Square of an integer is also an integer]

So, R is reflexive.

For symmetric: $x R y = y R x \forall x, y \in N$

xy = yx(integer)

So, it is symmetric.

For transitive: x R y and $y R z \Rightarrow x R z$

Let

$$xy = k^2$$
 and $yz = m^2$
 $x = \frac{k^2}{y}$ and $z = \frac{m^2}{y}$

 $\therefore xz = \frac{k^2m^2}{y^2} \text{ which is again a square of an integer.}$ So, R is transitive.

(iv) Here,
$$R = \{(x, y) : x + 4y = 10, x, y \in N\}$$

 $R = \{(2, 2), (6, 1)\}$

For reflexivity: $(2, 2) \in \mathbb{R}$

So, R is reflexive.

For symmetric: $(x, y) \in \mathbb{R}$ but $(y, x) \notin \mathbb{R}$ $(6, 1) \in \mathbb{R}$ but $(1, 6) \notin \mathbb{R}$

So, R is not symmetric.

For transitive: $(x, y) \in R$ but $(y, z) \notin R$ and $(x, z) \in R$ So. R is not transitive.

- **Q23.** Let $A = \{1, 2, 3, ..., 9\}$ and R be the relation in $A \times A$ defined by (a, b) R(c, d) if a + d = b + c for (a, b), (c, d) in $A \times A$. Prove that R is an equivalence relation and also obtain equivalent class [(2, 5)].
- Sol. Here, $A = \{1, 2, 3, ..., 9\}$ and $R \to A \times A$ defined by $(a, b) R (c, d) \Rightarrow a + d = b + c$ $\forall (a, b), (c, d) \in A \times A$

For reflexive: $(a, b) R (a, b) = a + b = b + a \quad \forall a, b \in A$ which is true. So, R is reflexive.

For symmetric: (a, b) R (c, d) = (c, d) R (a, b)

L.H.S.
$$a + d = b + c$$

R.H.S. $c + b = d + a$

L.H.S. = R.H.S. So, R is symmetric.

For transitive: (a, b) R (c, d) and $(c, d) R (e, f) \Leftrightarrow (a, b) R (e, f)$

$$\Rightarrow a+d=b+c \text{ and } c+f=d+e$$

$$\Rightarrow a+d=b+c \text{ and } d+e=c+f$$

$$\Rightarrow (a+d)-(d+e)=(b+c)-(c+f)$$

$$\Rightarrow a-e=b-f$$

$$\Rightarrow$$
 $a+f=b+e$

$$\Rightarrow \qquad (a, b) R (e, f)$$

So, R is transitive.

Hence, R is an equivalence relation.

Equivalent class of {(2, 5)} is {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}

- **Q24.** Using the definition, prove that the function $f: A \to B$ is invertible if and only if f is both one-one and onto.
- **Sol.** A function $f: X \to Y$ is said to be invertible if there exists a function $g: Y \to X$ such that $gof = I_X$ and $fog = I_Y$ and then the inverse of f is denoted by f^{-1} .

A function $f: X \to Y$ is said to be invertible iff f is a bijective function.

Q25. Function f, $g: \mathbb{R} \to \mathbb{R}$ are defined, respectively, by $f(x) = x^2 + 3x + 1$, g(x) = 2x - 3, find

(i) fog (ii) gof (iii) fof (iv) gog
Sol. (i)
$$f \circ g \Rightarrow f[g(x)] = [g(x)]^2 + 3[g(x)] + 1$$

$$= (2x-3)^2 + 3(2x-3) + 1$$

$$= 4x^2 + 9 - 12x + 6x - 9 + 1 = 4x^2 - 6x + 1$$
(ii) $gof \Rightarrow g[f(x)] = 2[x^2 + 3x + 1] - 3$

$$= 2x^2 + 6x + 2 - 3 = 2x^2 + 6x - 1$$
(iii) $fof \Rightarrow f[f(x)] = [f(x)]^2 + 3[f(x)] + 1$

$$= (x^2 + 3x + 1)^2 + 3(x^2 + 3x + 1) + 1$$

$$= x^4 + 9x^2 + 1 + 6x^3 + 6x + 2x^2 + 3x^2 + 9x + 3 + 1$$

$$= x^4 + 6x^3 + 14x^2 + 15x + 5$$
(iv) $gog \Rightarrow g[g(x)] = 2[g(x)] - 3 = 2(2x - 3) - 3 = 4x - 6 - 3 = 4x - 9$
Q26. Let * be the binary operation defined on Q. Find which of the following binary operations are commutative.
(i) $a * b = a - b \forall a, b \in Q$
(iii) $a * b = a^2 + b^2 \forall a, b \in Q$
(iii) $a * b = a + ab \forall a, b \in Q$
(iii) $a * b = a + ab \forall a, b \in Q$
(iii) $a * b = a - b \Rightarrow Q$
(iii) $a * b = a - b \Rightarrow Q$
(iv) $a * b = (a - b)^2 \forall a, b \in Q$
So, * is binary operation.
$$a * b = a - b \Rightarrow Q$$
So, * is not commutative.
(ii) $a * b = a^2 + b^2 \in Q$ so * is a binary operation.
$$a * b = b * a$$

$$\Rightarrow a^2 + b^2 = b^2 + a^2 \forall a, b \in Q$$
Which is true. So, * is commutative.
(iii) $a * b = a + ab \Rightarrow Q$, so * is a binary operation.
$$a * b = a + ab \Rightarrow Q$$
So, * is not commutative.
(iv) $a * b = (a - b)^2 \in Q$, so * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is not commutative.
(iv) $a * b = (a - b)^2 \Rightarrow Q$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b = (a - b)^2 \Rightarrow Q$$
So, * is binary operation.
$$a * b \Rightarrow (a - b) \Rightarrow (a - b) \Rightarrow (a - b) \Rightarrow (a - b) \Rightarrow$$

Sol. (i): Given that $a*b=1+ab \quad \forall \ a,b\in \mathbb{R}$ and $b*a=1+ba \quad \forall \ a,b\in \mathbb{R}$ a*b=b*a=1+ab

So, * is commutative.

Now a * (b * c) = (a * b) * c

 $\forall a, b, c \in \mathbb{R}$

L.H.S.
$$a * (b * c) = a * (1 + bc) = 1 + a(1 + bc) = 1 + a + abc$$

R.H.S. $(a * b) * c = (1 + ab) * c = 1 + (1 + ab) \cdot c = 1 + c + abc$
L.H.S. \neq R.H.S.

So, * is not associative.

Hence, * is commutative but not associative.

■ OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 28 to 47 (M.C.Q.)

- **Q28.** Let T be the set of all triangles in the Euclidean plane and let a relation R on T be defined as a R b, if a is congruent to b, $\forall a$, $b \in T$. Then R is
 - (a) Reflexive but not transitive
 - (b) Transitive but not symmetric
 - (c) Equivalence
 - (d) None of these
 - **Sol.** If $a \cong b \ \forall a, b \in T$

then $a R a \Rightarrow a \cong a$ which is true for all $a \in T$

So, R is reflexive.

Now, a R b and b R a.

i.e., $a \equiv b$ and $b \equiv a$ which is true for all $a, b \in T$

So, R is symmetric.

Let a R b and b R c.

 $\Rightarrow a \cong b$ and $b \cong a \Rightarrow a \cong c \ \forall \ a, b, c \in T$

So, R is transitive.

Hence, R is equivalence relation.

So, the correct answer is (c).

- **Q29.** Consider the non-empty set consisting of children in a family and a relation R defined as a R b, if a is brother of b. Then R is
 - (a) symmetric but not transitive
 - (b) transitive but not symmetric
 - (c) neither symmetric nor transitive
 - (d) both symmetric and transitive
 - **Sol.** Here, $a R b \Rightarrow a$ is a brother of b.

 $a R a \Rightarrow a$ is a brother of a which is not true.

So, R is not reflexive.

 $a R b \Rightarrow a$ is a brother of b.

 $b R a \Rightarrow$ which is not true because b may be sister of a.

 $\Rightarrow a R b \neq b R a$

So, R is not symmetric.

Now, a R b, $b R c \Rightarrow a R c$

 \Rightarrow a is the brother of b and b is the brother of c.

 \therefore a is also the brother of c.

So, R is transitive. Hence, correct answer is (b). Q30. The maximum number of equivalence relations on the set $A = \{1, 2, 3\}$ are (a) 1 (b) 2 (c) 3 (d)5Sol. Here. $A = \{1, 2, 3\}$ The number of equivalence relations are as follows: $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 3), (1, 3)\}$ $R_2 = \{(2, 2), (1, 3), (3, 1), (3, 2), (1, 2)\}$ $R_3 = \{(3, 3), (1, 2), (2, 3), (1, 3), (3, 2)\}$ Hence, correct answer is (d) Q31. If a relation R on the set $\{1, 2, 3\}$ be defined by $R = \{(1, 2)\}$, then R is (a) reflexive (b) transitive (c) symmetric (d) None of these **Sol.** Given that: $R = \{(1, 2)\}$ $a \times a$, so it is not reflexive. a R b but b K a, so it is not symmetric. a R b and $b R c \Rightarrow a R c$ which is true. So. R is transitive. Hence, correct answer is (b). Q32. Let us define a relation R in R as a R b if $a \ge b$. Then R is (a) an equivalence relation (b) reflexive, transitive but not symmetric (c) symmetric, transitive but not reflexive (d) neither transitive nor reflexive but symmetric. **Sol.** Here, a R b if $a \ge b$ \Rightarrow a R a \Rightarrow a \geq a which is true, so it is reflexive. Let $a R b \Rightarrow a \ge b$, but $b \not\ge a$, so $b \not K a$ R is not symmetric. Now, $a \ge b$, $b \ge c \Rightarrow a \ge c$ which is true. So, R is transitive. Hence, correct answer is (b). Q33. Let $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\},$ then R is (a) reflexive but not symmetric

Sol. Given that: $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$

(b) reflexive but not transitive(c) symmetric and transitive

(d) neither symmetric nor transitive.

Here, 1 R 1, 2 R 2 and 3 R 3, so R is reflexive.

1R2 but 2K1 or 2R3 but 3K2, so, R is not symmetric.

1 R 1 and 1 R 2 \Rightarrow 1 R 3, so, R is transitive.

Hence, the correct answer is (a).

Q34. The identity element for the binary operation * defined on

$$Q \sim \{0\} \text{ as } a * b = \frac{ab}{2} \quad \forall \ a, b \in Q \sim \{0\} \text{ is}$$
(a) 1 (b) 0 (c) 2

(c) 2 (d) None of these

Sol. Given that: $a * b = \frac{ab}{2} \forall a, b \in Q - \{0\}$

Let e be the identity element

$$\therefore \qquad a*e = \frac{ae}{2} = a \Rightarrow e = 2$$

Hence, the correct answer is (c).

Q35. If the set A contains 5 elements and set B contains 6 elements, then the number of one-one and onto mapping from A to B is

(a) 720

(b) 120

(c) 0

(d) None of these

Sol. If A and B sets have m and n elements respectively, then the number of one-one and onto mapping from A to B is

$$n!$$
 if $m = n$

and 0 if $m \neq n$

Here.

$$m = 5$$
 and $n = 6$
 $5 \neq 6$

So, number of mapping = 0

Hence, the correct answer is (c).

Q36. Let $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$. Then the number of surjections from A to B is

(a) $^{n}P_{2}$

(b) $2^n - 2$

(c) $2^n - 1$

(d) None of these

Sol. Here, $A = \{1, 2, 3, ..., n\}$ and $B = \{a, b\}$

Let m be the number of elements of set A and n be the number of elements of set B

.. Number of surjections from A to B is

 ${}^{n}C_{m} \times m!$ as $n \ge m$

Here, m = 2 (given)

:. Number of surjections from A to $B = {}^{n}C_{2} \times 2!$

$$=\frac{n!}{2!(n-2)!}\times 2! = \frac{n(n-1)(n-2)!}{2!(n-2)!}\times 2 = n(n-1) = n^2-n$$

Hence, the correct answer is (d)

Q37. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{1}{x}$, $\forall x \in \mathbb{R}$ then f is

(a) one-one

(b) onto

(d) f is not defined

Sol. Given that
$$f(x) = \frac{1}{x}$$

Put
$$x = 0$$
 : $f(x) = \frac{1}{0} = \infty$

So, f(x) is not defined.

Hence, the correct answer is (d).

Q38. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = 3x^2 - 5$ and $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \frac{x}{x^2 + 1}$$
, then gof is

(a)
$$\frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$
 (b) $\frac{3x^2 - 5}{9x^4 - 6x^2 + 26}$
(c) $\frac{3x^2}{x^4 + 2x^2 - 4}$ (d) $\frac{3x^2}{9x^4 + 30x^2 - 2}$

(c)
$$\frac{3x^2}{x^4 + 2x^2 - 4}$$
 (d) $\frac{3x^2}{9x^4 + 3}$

Sol. Here,
$$f(x) = 3x^2 - 5$$
 and $g(x) = \frac{x}{x^2 + 1}$

$$\therefore gof = gof(x) = g[3x^2 - 5]$$

$$= \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 + 25 - 30x^2 + 1}$$

$$\therefore gof = \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$$

Hence, the correct answer is (a).

Q39. Which of the following functions from Z to Z are bijections?

$$(a) \ f(x) = x^3$$

$$(b) f(x) = x + 2$$

(a)
$$f(x) = x^3$$

(c) $f(x) = 2x + 1$

$$(d) f(x) = x^2 + 1$$

Sol. Given that
$$f: Z \to Z$$

Let
$$x_1, x_2 \in f(x) \Rightarrow f(x_1) = x_1 + 2, f(x_2) = x_2 + 2$$

 $f(x_1) = f(x_2) \Rightarrow x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$

$$f(x_1) = f(x_2) \Rightarrow x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$$

So, f(x) is one-one function.

Now, let y = x + 2 : $x = y - 2 \in Z \ \forall y \in Z$

So, f(x) is onto function.

 \therefore f(x) is bijective function.

Hence, the correct answer is (b).

Q40. Let $f: \mathbb{R} \to \mathbb{R}$ be the functions defined by $f(x) = x^3 + 5$. Then $f^{-1}(x)$ is

(a)
$$(x+5)^{1/3}$$
 (b) $(x-5)^{1/3}$ (c) $(5-x)^{1/3}$ (d) $5-x$

Sol. Given that $f(x) = x^3 + 5$

Let
$$y = x^3 + 5 \implies x^3 = y - 5$$

 $\therefore x = (y - 5)^{1/3} \implies f^{-1}(x) = (x - 5)^{1/3}$

Hence, the correct answer is (b).

Q41. Let
$$f: A \to B$$
 and $g: B \to C$ be the bijective functions. Then $(gof)^{-1}$ is

(a) $f^{-1}og^{-1}$ (b) fog (c) $g^{-1}of^{-1}$ (d) gof

Sol. Here, $f: A \to B$ and $g: B \to C$
 \therefore $(gof)^{-1} = f^{-1}og^{-1}$
Hence, the correct answer is (a).

Q42. Let $f: R - \left\{\frac{3}{5}\right\} \to R$ be defined by $f(x) = \frac{3x + 2}{5x - 3}$, then

(a) $f^{-1}(x) = f(x)$ (b) $f^{-1}(x) = -f(x)$

(c) $(fof)x = -x$ (d) $f^{-1}(x) = \frac{1}{19}f(x)$

Sol. Given that $f(x) = \frac{3x + 2}{5x - 3} \ \forall x \neq \frac{3}{5}$

Let $y = \frac{3x + 2}{5x - 3}$
 $\Rightarrow y(5x - 3) = 3x + 2$
 $\Rightarrow 5xy - 3y = 3x + 2$
 $\Rightarrow 5xy - 3y = 3x + 2$
 $\Rightarrow 5xy - 3x = 3y + 2$
 $\Rightarrow x(5y - 3) =$

Hence, the correct answer is (a).

Q43. Let $f: [0, 1] \rightarrow [0, 1]$ be defined by $f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 1 - x, & \text{if } x \text{ is irrational} \end{cases}$ Then (fof)x is

(a) constant

(b) 1 + x

(c) x

(d) None of these

Sol. Given that $f:[0,1] \rightarrow [0,1]$

$$f = f^{-1}$$
So, $(f \circ f) x = x$ (identity element)

Hence, correct answer is (c).

Q44. Let $f: [2, \infty) \to \mathbb{R}$ be the function defined by $f(x) = x^2 - 4x + 5$, then the range of f is

(d) [5, ∞)

(a) R (b) $[1, \infty)$ (c) $[4, \infty)$ Sol. Given that $f(x) = x^2 - 4x + 5$

Let
$$y = x^2 - 4x + 5$$

 $\Rightarrow x^2 - 4x + 5 - y = 0$
 $\Rightarrow x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 1 \times (5 - y)}}{2 \times 1}$
 $= \frac{4 \pm \sqrt{16 - 20 + 4y}}{2}$
 $= \frac{4 \pm \sqrt{4y - 4}}{2} = \frac{4 \pm 2\sqrt{y - 1}}{2} = 2 \pm \sqrt{y - 1}$
 \therefore For real value of $x, y - 1 \ge 0 \Rightarrow y \ge 1$.
So, the range is $\{1, \infty\}$

So, the range is $[1, \infty)$.

Hence, the correct answer is (b).

Q45. Let $f: \mathbb{N} \to \mathbb{R}$ be the function defined by $f(x) = \frac{2x-1}{2}$ and $g: Q \to R$ be another function defined by g(x) = x + 2 then, $gof\left(\frac{3}{2}\right)$ is

(a) 1 (b) -1 (c)
$$\frac{7}{2}$$
 (d) None of these Sol. Here, $f(x) = \frac{2x-1}{2}$ and $g(x) = x+2$

$$gof(x) = g[f(x)]$$

$$= f(x) + 2$$

$$= \frac{2x-1}{2} + 2 = \frac{2x+3}{2}$$

$$gof\left(\frac{3}{2}\right) = \frac{2 \times \frac{3}{2} + 3}{2} = 3$$
Hence, the correct answer is (d).

Q46. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$
then $f(-1) + f(2) + f(4)$ is

(a) 9

(c) 5 (d) None of these

Sol. Given that:

$$f(x) = \begin{cases} 2x : x > 3 \\ x^2 : 1 < x \le 3 \\ 3x : x \le 1 \end{cases}$$

 $f(-1) + f(2) + f(4) = 3(-1) + (2)^2 + 2(4) = -3 + 4 + 8 = 9$ Hence, the correct answer is (a).

Q47. If
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = \tan x$, then $f^{-1}(1)$ is

(a)
$$\frac{\pi}{4}$$
 (b) $\left\{n\pi + \frac{\pi}{4} : n \in \mathbb{Z}\right\}$

(c) does not exist (d) None of these

Sol. Given that
$$f(x) = \tan x$$

Let
$$f(x) = y = \tan x \Rightarrow x = \tan^{-1} y$$

$$\Rightarrow \qquad f^{-1}(x) = \tan^{-1} (x)$$

$$\Rightarrow \qquad f^{-1}(1) = \tan^{-1} \left[\tan \left(\frac{\pi}{4} \right) \right] = \frac{\pi}{4}$$

Hence, the correct answer is (a).

Fill in the Blanks in Each of the Exercises 48 to 52.

Q48. Let the relation R be defined in N by a R b if 2a + 3b = 30. Then R =

Sol. Given that
$$a R b: 2a + 3b = 30$$

$$\Rightarrow 3b = 30 - 2a$$

$$\Rightarrow b = \frac{30 - 2a}{3}$$
for $a = 3, b = 8$

$$a = 6, b = 6$$

 $a = 9, b = 4$
 $a = 12, b = 2$

Hence,
$$R = \{(3, 8), (6, 6), (9, 4), (12, 2)\}$$

Q49. Let the relation R be defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 8\}$. Then R is given by

Sol. Given that A = {1, 2, 3, 4, 5} and R = {(a, b):
$$|a^2 - b^2| < 8$$
}
So, clearly, R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (4, 3) (3, 4), (4, 4), (5, 5)}

Q50. Let $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$. Then $gof = \dots$ and $fog = \dots$

Sol. Here,
$$f = \{(1, 2), (3, 5), (4, 1)\}$$
 and $g = \{(2, 3), (5, 1), (1, 3)\}$
 $gof(1) = g[f(1)] = g(2) = 3$
 $gof(3) = g[f(3)] = g(5) = 1$

$$gof(4) = g[f(4)] = g(1) = 3$$

$$gof = \{(1, 3), (3, 1), (4, 3)\}$$

$$fog(2) = f[g(2)] = f(3) = 5$$

$$fog(5) = f[g(5)] = f(1) = 2$$

$$fog(1) = f[g(1)] = f(3) = 5$$

$$fog = \{(2, 5), (5, 2), (1, 5)\}$$
Q51. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{\sqrt{1 + x^2}}$, then
$$(fofof)(x) = \dots$$
Sol. Here, $f(x) = \frac{x}{\sqrt{1 + x^2}} \forall x \in \mathbb{R}$

$$fofof(x) = fof[f(x)] = f[f\{f(x)\}]$$

$$= f\left[\frac{x}{\sqrt{1 + x^2}}\right] = f\left[\frac{x}{\sqrt{1 + x^2}}\right]$$

$$= f\left[\frac{x}{\sqrt{1 + x^2}}\right] = f\left[\frac{x}{\sqrt{1 + 2x^2}}\right]$$

$$= \left[\frac{x}{\sqrt{1 + 2x^2}}\right] = \left[\frac{x}{\sqrt{1 + 2x^2}}\right]$$
Hence, $fofof(x) = \frac{x}{\sqrt{3x^2 + 1}}$
Q52. If $f(x) = [4 - (x - 7)^3]$, then $f^{-1}(x) = \dots$

Sol. Given that, $f(x) = [4 - (x - 7)^3]$ Let $y = [4 - (x - 7)^3]$ $\Rightarrow (x - 7)^3 = 4 - y$ $\Rightarrow x - 7 = (4 - y)^{1/3} \Rightarrow x = 7 + (4 - y)^{1/3}$ Hence, $f^{-1}(x) = 7 + (4 - x)^{1/3}$ State True or False for the Statements in each of the Exercises 53 to 62.

Q53. Let $R = \{(3, 1), (1, 3), (3, 3)\}$ be a relation defined on the set $A = \{1, 2, 3\}$. Then R is symmetric, transitive but not reflexive.

Sol. Here, $R = \{(3, 1), (1, 3), (3, 3)\}$

 $(3,3) \in \mathbb{R}$, so \mathbb{R} is reflexive.

 $(3, 1) \in R$ and $(1, 3) \in R$, so R is symmetric.

Now, $(3, 1) \in R$ and $(1, 3) \in R$ but $(1, 1) \notin R$

So, R is not transitive.

Hence, the statement is 'False'.

Q54. Let $f: R \to R$ be the function defined by $f(x) = \sin(3x + 2) \ \forall \ x \in R$, then f is invertible.

Sol. Given that: $f(x) = \sin(3x + 2) \forall x \in \mathbb{R}$, f(x) is not one-one.

Hence, the statement is 'False'.

Q55. Every relation which is symmetric and transitive is also reflexive.

Sol. Let R be any relation defined on $A = \{1, 2, 3\}$

$$R = \{(1, 2), (2, 1), (2, 3), (1, 3)\}$$

Here, $(1, 2) \in \mathbb{R}$ and $(2, 1) \in \mathbb{R}$, so \mathbb{R} is symmetric.

 $(1, 2) \in \mathbb{R}$, $(2, 3) \in \mathbb{R} \Rightarrow (1, 3) \in \mathbb{R}$, so \mathbb{R} is transitive.

But $(1, 1) \notin R$, $(2, 2) \notin R$ and $(3, 3) \notin R$.

Hence, the statement is 'False'.

Q56. An integer m is said to be related to another integer n if m is an integral multiple of n. This relation in Z is reflexive, symmetric and transitive.

Sol. Here,

m = kn

(where k is an integer)

If k = 1 m = n, so z is reflexive.

Clearly z is not symmetric but z is transitive.

Hence, the statement is 'False'.

Q57. Let $A = \{0, 1\}$ and N be the set of natural numbers then the mapping $f: N \to A$ defined by f(2n - 1) = 0, f(2n) = 1, $\forall n \in N$ is onto.

Sol. Given that A = [0, 1]

f(2n-1)=0 and $f(2n)=1 \forall n \in \mathbb{N}$

So, $f: \mathbb{N} \to \mathbb{A}$ is a onto function.

Hence, the statement is 'True'.

Q58. The relation R on the set $A = \{1, 2, 3\}$ defined as

 $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$ is reflexive, symmetric and transitive.

Sol. Here, $R = \{(1, 1), (1, 2), (2, 1), (3, 3)\}$

Here, $(1, 1) \in \mathbb{R}$, so R is Reflexive.

 $(1, 2) \in R$ and $(2, 1) \in R$, so R is Symmetric.

 $(1, 2) \in R$ but $(2, 3) \notin R$

So, R is not transitive.

Hence, the statement is 'False'.

Q59. The composition of functions is commutative.

Sol. Let
$$f(x) = x^2$$
 and $g(x) = 2x + 3$
 $f \circ g(x) = f[g(x)] = (2x + 3)^2 = 4x^2 + 9 + 12x$
 $g \circ f(x) = g[f(x)] = 2x^2 + 3$
So, $f \circ g(x) \neq g \circ f(x)$

Hence, the statement is 'False'.

Q60. The composition of functions is associative.

Sol. Let
$$f(x) = 2x$$
, $g(x) = x - 1$ and $h(x) = 2x + 3$

$$fo\{goh(x)\} = fo\{g(2x + 3)\}$$

$$= f(2x + 3 - 1) = f(2x + 2) = 2(2x + 2) = 4x + 4.$$
and $(fog)oh(x) = (fog)\{h(x)\}$

$$= fog(2x + 3)$$

$$= f(2x + 3 - 1) = f(2x + 2) = 2(2x + 2) = 4x + 4$$
So, $fo\{goh(x)\} = \{(fog)oh(x)\} = 4x + 4$

Hence, the statement is 'True'.

- Q61. Every function is invertible.
 - Sol. Only bijective functions are invertible. Hence, the statement is 'False'.
- Q62. A binary operation on a set has always the identity element.
- Sol. '+' is a binary operation on the set N but it has no identity element.

Hence, the statement is 'False'.

