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About Richard Feynman

Born in 1918 in New York City, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important part in the
Manhattan Project at Los Alamos during World War II. Subsequently, he taught
at Cornell and at the California Institute of Technology. In 1965 he received the
Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger, for
his work in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such
as beta decay. In later years Feynman played a key role in the development of
quark theory by putting forward his parton model of high energy proton collision
processes.

Beyond these achievements, Dr. Feynman introduced basic new computa-
tional techniques and notations into physics—above all, the ubiquitous Feynman
diagrams that, perhaps more than any other formalism in recent scientific history,
have changed the way in which basic physical processes are conceptualized and
calculated.

Feynman was a remarkably effective educator. Of all his numerous awards,
he was especially proud of the Oersted Medal for Teaching, which he won in
1972. The Feynman Lectures on Physics, originally published in 1963, were
described by a reviewer in Scientific American as “tough, but nourishing and full
of flavor. After 25 years it is the guide for teachers and for the best of beginning
students.” In order to increase the understanding of physics among the lay public,
Dr. Feynman wrote The Character of Physical Law and QED: The Strange
Theory of Light and Matter. He also authored a number of advanced publications
that have become classic references and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility
of the O-rings to cold, an elegant experiment which required nothing more than
a glass of ice water and a C-clamp. Less well known were Dr. Feynman’s efforts
on the California State Curriculum Committee in the 1960s, where he protested
the mediocrity of textbooks.
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A recital of Richard Feynman’s myriad scientific and educational accomplish-
ments cannot adequately capture the essence of the man. As any reader of
even his most technical publications knows, Feynman’s lively and multi-sided
personality shines through all his work. Besides being a physicist, he was at
various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo
player, and even a decipherer of Mayan Hieroglyphics. Perpetually curious about
his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.

iv



Preface to the New Millennium Edition

Nearly fifty years have passed since Richard Feynman taught the introductory
physics course at Caltech that gave rise to these three volumes, The Feynman
Lectures on Physics. In those fifty years our understanding of the physical
world has changed greatly, but The Feynman Lectures on Physics has endured.
Feynman’s lectures are as powerful today as when first published, thanks to
Feynman’s unique physics insights and pedagogy. They have been studied
worldwide by novices and mature physicists alike; they have been translated
into at least a dozen languages with more than 1.5 millions copies printed in the
English language alone. Perhaps no other set of physics books has had such wide
impact, for so long.

This New Millennium Edition ushers in a new era for The Feynman Lectures
on Physics (FLP): the twenty-first century era of electronic publishing. FLP
has been converted to eFLP, with the text and equations expressed in the LATEX
electronic typesetting language, and all figures redone using modern drawing
software.

The consequences for the print version of this edition are not startling; it
looks almost the same as the original red books that physics students have known
and loved for decades. The main differences are an expanded and improved index,
the correction of 885 errata found by readers over the five years since the first
printing of the previous edition, and the ease of correcting errata that future
readers may find. To this I shall return below.

The eBook Version of this edition, and the Enhanced Electronic Version are
electronic innovations. By contrast with most eBook versions of 20th century tech-
nical books, whose equations, figures and sometimes even text become pixellated
when one tries to enlarge them, the LATEX manuscript of the New Millennium
Edition makes it possible to create eBooks of the highest quality, in which all
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features on the page (except photographs) can be enlarged without bound and
retain their precise shapes and sharpness. And the Enhanced Electronic Version,
with its audio and blackboard photos from Feynman’s original lectures, and its
links to other resources, is an innovation that would have given Feynman great
pleasure.

Memories of Feynman’s Lectures

These three volumes are a self-contained pedagogical treatise. They are also a
historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
required of all Caltech freshmen and sophomores regardless of their majors.

Readers may wonder, as I have, how Feynman’s lectures impacted the students
who attended them. Feynman, in his Preface to these volumes, offered a somewhat
negative view. “I don’t think I did very well by the students,” he wrote. Matthew
Sands, in his memoir in Feynman’s Tips on Physics expressed a far more positive
view. Out of curiosity, in spring 2005 I emailed or talked to a quasi-random set
of 17 students (out of about 150) from Feynman’s 1961–63 class—some who had
great difficulty with the class, and some who mastered it with ease; majors in
biology, chemistry, engineering, geology, mathematics and astronomy, as well as
in physics.

The intervening years might have glazed their memories with a euphoric tint,
but about 80 percent recall Feynman’s lectures as highlights of their college years.
“It was like going to church.” The lectures were “a transformational experience,”
“the experience of a lifetime, probably the most important thing I got from
Caltech.” “I was a biology major but Feynman’s lectures stand out as a high
point in my undergraduate experience . . . though I must admit I couldn’t do
the homework at the time and I hardly turned any of it in.” “I was among the
least promising of students in this course, and I never missed a lecture. . . . I
remember and can still feel Feynman’s joy of discovery. . . . His lectures had an
. . . emotional impact that was probably lost in the printed Lectures.”

By contrast, several of the students have negative memories due largely to two
issues: (i) “You couldn’t learn to work the homework problems by attending the
lectures. Feynman was too slick—he knew tricks and what approximations could
be made, and had intuition based on experience and genius that a beginning
student does not possess.” Feynman and colleagues, aware of this flaw in the
course, addressed it in part with materials that have been incorporated into
Feynman’s Tips on Physics: three problem-solving lectures by Feynman, and
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a set of exercises and answers assembled by Robert B. Leighton and Rochus
Vogt. (ii) “The insecurity of not knowing what was likely to be discussed in
the next lecture, the lack of a text book or reference with any connection to
the lecture material, and consequent inability for us to read ahead, were very
frustrating. . . . I found the lectures exciting and understandable in the hall, but
they were Sanskrit outside [when I tried to reconstruct the details].” This problem,
of course, was solved by these three volumes, the printed version of The Feynman
Lectures on Physics. They became the textbook from which Caltech students
studied for many years thereafter, and they live on today as one of Feynman’s
greatest legacies.

A History of Errata

The Feynman Lectures on Physics was produced very quickly by Feynman
and his co-authors, Robert B. Leighton and Matthew Sands, working from
and expanding on tape recordings and blackboard photos of Feynman’s course
lectures* (both of which are incorporated into the Enhanced Electronic Version
of this New Millennium Edition). Given the high speed at which Feynman,
Leighton and Sands worked, it was inevitable that many errors crept into the first
edition. Feynman accumulated long lists of claimed errata over the subsequent
years—errata found by students and faculty at Caltech and by readers around
the world. In the 1960’s and early 70’s, Feynman made time in his intense life
to check most but not all of the claimed errata for Volumes I and II, and insert
corrections into subsequent printings. But Feynman’s sense of duty never rose
high enough above the excitement of discovering new things to make him deal
with the errata in Volume III.† After his untimely death in 1988, lists of errata
for all three volumes were deposited in the Caltech Archives, and there they lay
forgotten.

In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
Feynman) informed me of the old errata and a new long list compiled by Ralph’s

* For descriptions of the genesis of Feynman’s lectures and of these volumes, see Feynman’s
Preface and the Forewords to each of the three volumes, and also Matt Sands’ Memoir in
Feynman’s Tips on Physics, and the Special Preface to the Commemorative Edition of FLP,
written in 1989 by David Goodstein and Gerry Neugebauer, which also appears in the 2005
Definitive Edition.

† In 1975, he started checking errata for Volume III but got distracted by other things and
never finished the task, so no corrections were made.
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friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition
of The Feynman Lectures with all errata corrected, and publish it alongside a new
volume of auxiliary material, Feynman’s Tips on Physics, which he and Gottlieb
were preparing.

Feynman was my hero and a close personal friend. When I saw the lists of
errata and the content of the proposed new volume, I quickly agreed to oversee
this project on behalf of Caltech (Feynman’s long-time academic home, to which
he, Leighton and Sands had entrusted all rights and responsibilities for The
Feynman Lectures). After a year and a half of meticulous work by Gottlieb, and
careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who vetted
all errata plus the new volume), the 2005 Definitive Edition of The Feynman
Lectures on Physics was born, with about 200 errata corrected and accompanied
by Feynman’s Tips on Physics by Feynman, Gottlieb and Leighton.

I thought that edition was going to be “Definitive”. What I did not antic-
ipate was the enthusiastic response of readers around the world to an appeal
from Gottlieb to identify further errata, and submit them via a website that
Gottlieb created and continues to maintain, The Feynman Lectures Website,
www.feynmanlectures.info. In the five years since then, 965 new errata have
been submitted and survived the meticulous scrutiny of Gottlieb, Hartl, and Nate
Bode (an outstanding Caltech physics graduate student, who succeeded Hartl
as Caltech’s vetter of errata). Of these, 965 vetted errata, 80 were corrected in
the fourth printing of the Definitive Edition (August 2006) and the remaining
885 are corrected in the first printing of this New Millennium Edition (332 in
volume I, 263 in volume II, and 200 in volume III). For details of the errata, see
www.feynmanlectures.info.

Clearly, making The Feynman Lectures on Physics error-free has become a
world-wide community enterprise. On behalf of Caltech I thank the 50 readers
who have contributed since 2005 and the many more who may contribute over the
coming years. The names of all contributors are posted at www.feynmanlectures.
info/flp_errata.html.

Almost all the errata have been of three types: (i) typographical errors
in prose; (ii) typographical and mathematical errors in equations, tables and
figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and missing
subscripts, summation signs, parentheses and terms in equations; (iii) incorrect
cross references to chapters, tables and figures. These kinds of errors, though
not terribly serious to a mature physicist, can be frustrating and confusing to
Feynman’s primary audience: students.

viii

www.feynmanlectures.info
www.feynmanlectures.info
www.feynmanlectures.info/flp_errata.html
www.feynmanlectures.info/flp_errata.html


It is remarkable that among the 1165 errata corrected under my auspices,
only several do I regard as true errors in physics. An example is Volume II,
page 5-9, which now says “. . . no static distribution of charges inside a closed
grounded conductor can produce any [electric] fields outside” (the word grounded
was omitted in previous editions). This error was pointed out to Feynman by a
number of readers, including Beulah Elizabeth Cox, a student at The College of
William and Mary, who had relied on Feynman’s erroneous passage in an exam.
To Ms. Cox, Feynman wrote in 1975,* “Your instructor was right not to give
you any points, for your answer was wrong, as he demonstrated using Gauss’s
law. You should, in science, believe logic and arguments, carefully drawn, and
not authorities. You also read the book correctly and understood it. I made a
mistake, so the book is wrong. I probably was thinking of a grounded conducting
sphere, or else of the fact that moving the charges around in different places
inside does not affect things on the outside. I am not sure how I did it, but I
goofed. And you goofed, too, for believing me.”

How this New Millennium Edition Came to Be

Between November 2005 and July 2006, 340 errata were submitted to The
Feynman Lectures Website www.feynmanlectures.info. Remarkably, the bulk
of these came from one person: Dr. Rudolf Pfeiffer, then a physics postdoctoral
fellow at the University of Vienna, Austria. The publisher, Addison Wesley, fixed
80 errata, but balked at fixing more because of cost: the books were being printed
by a photo-offset process, working from photographic images of the pages from
the 1960s. Correcting an error involved re-typesetting the entire page, and to
ensure no new errors crept in, the page was re-typeset twice by two different
people, then compared and proofread by several other people—a very costly
process indeed, when hundreds of errata are involved.

Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
formulated a plan aimed at facilitating the repair of all errata, and also aimed
at producing eBook and enhanced electronic versions of The Feynman Lectures
on Physics. They proposed their plan to me, as Caltech’s representative, in
2007. I was enthusiastic but cautious. After seeing further details, including a
one-chapter demonstration of the Enhanced Electronic Version, I recommended

* Pages 288–289 of Perfectly Reasonable Deviations from the Beaten Track, The Letters of
Richard P. Feynman, ed. Michelle Feynman (Basic Books, New York, 2005).
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that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the execution of
their plan. The plan was approved by three successive chairs of Caltech’s Division
of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew Lange, and
Tom Soifer—and the complex legal and contractual details were worked out by
Caltech’s Intellectual Property Counsel, Adam Cochran. With the publication of
this New Millennium Edition, the plan has been executed successfully, despite
its complexity. Specifically:

Pfeiffer and Gottlieb have converted into LATEX all three volumes of FLP
(and also more than 1000 exercises from the Feynman course for incorporation
into Feynman’s Tips on Physics). The FLP figures were redrawn in modern
electronic form in India, under guidance of the FLP German translator, Henning
Heinze, for use in the German edition. Gottlieb and Pfeiffer traded non-exclusive
use of their LATEX equations in the German edition (published by Oldenbourg)
for non-exclusive use of Heinze’s figures in this New Millennium English edition.
Pfeiffer and Gottlieb have meticulously checked all the LATEX text and equations
and all the redrawn figures, and made corrections as needed. Nate Bode and
I, on behalf of Caltech, have done spot checks of text, equations, and figures;
and remarkably, we have found no errors. Pfeiffer and Gottlieb are unbelievably
meticulous and accurate. Gottlieb and Pfeiffer arranged for John Sullivan at the
Huntington Library to digitize the photos of Feynman’s 1962–64 blackboards,
and for George Blood Audio to digitize the lecture tapes—with financial support
and encouragement from Caltech Professor Carver Mead, logistical support from
Caltech Archivist Shelley Erwin, and legal support from Cochran.

The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
rights to publish the print edition, and in the 1990s, rights to distribute the audio
of Feynman’s lectures and a variant of an electronic edition. In the 2000s, through
a sequence of acquisitions of those licenses, the print rights were transferred to
the Pearson publishing group, while rights to the audio and the electronic version
were transferred to the Perseus publishing group. Cochran, with the aid of Ike
Williams, an attorney who specializes in publishing, succeeded in uniting all of
these rights with Perseus (Basic Books), making possible this New Millennium
Edition.
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Feynman’s Preface

These are the lectures in physics that I gave last year and the year before
to the freshman and sophomore classes at Caltech. The lectures are, of course,
not verbatim—they have been edited, sometimes extensively and sometimes less
so. The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain
the interest of the very enthusiastic and rather smart students coming out of
the high schools and into Caltech. They have heard a lot about how interesting
and exciting physics is—the theory of relativity, quantum mechanics, and other
modern ideas. By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new, modern ideas
presented to them. They were made to study inclined planes, electrostatics, and
so forth, and after two years it was quite stultifying. The problem was whether
or not we could make a course which would save the more advanced and excited
student by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of
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applications of the ideas and concepts in various directions outside the main line
of attack. For this reason, though, I tried very hard to make all the statements
as accurate as possible, to point out in every case where the equations and ideas
fitted into the body of physics, and how—when they learned more—things would
be modified. I also felt that for such students it is important to indicate what
it is that they should—if they are sufficiently clever—be able to understand by
deduction from what has been said before, and what is being put in as something
new. When new ideas came in, I would try either to deduce them if they were
deducible, or to explain that it was a new idea which hadn’t any basis in terms of
things they had already learned and which was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew something
when they came out of high school—such things as geometrical optics, simple
chemistry ideas, and so on. I also didn’t see that there was any reason to make the
lectures in a definite order, in the sense that I would not be allowed to mention
something until I was ready to discuss it in detail. There was a great deal of
mention of things to come, without complete discussions. These more complete
discussions would come later when the preparation became more advanced.
Examples are the discussions of inductance, and of energy levels, which are at
first brought in in a very qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material
in the lecture at all. For such students I wanted there to be at least a central
core or backbone of material which he could get. Even if he didn’t understand
everything in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to
understand everything, but only the central and most direct features. It takes,
of course, a certain intelligence on his part to see which are the central theorems
and central ideas, and which are the more advanced side issues and applications
which he may understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty, and
I don’t know how good the lectures really are. The whole thing was essentially
an experiment. And if I did it again I wouldn’t do it the same way—I hope I
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.
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In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on
the properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I would go back
to that original idea. But since it was not planned that I would be giving these
lectures again, it was suggested that it might be a good idea to try to give an
introduction to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until
their third year for quantum mechanics. On the other hand, the argument was
made that many of the students in our course study physics as a background for
their primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—
especially in its more complex applications, such as in electrical engineering
and chemistry—the full machinery of the differential equation approach is not
actually used. So I tried to describe the principles of quantum mechanics in
a way which wouldn’t require that one first know the mathematics of partial
differential equations. Even for a physicist I think that is an interesting thing
to try to do—to present quantum mechanics in this reverse fashion—for several
reasons which may be apparent in the lectures themselves. However, I think that
the experiment in the quantum mechanics part was not completely successful—in
large part because I really did not have enough time at the end (I should, for
instance, have had three or four more lectures in order to deal more completely
with such matters as energy bands and the spatial dependence of amplitudes).
Also, I had never presented the subject this way before, so the lack of feedback was
particularly serious. I now believe the quantum mechanics should be given at a
later time. Maybe I’ll have a chance to do it again someday. Then I’ll do it right.

The reason there are no lectures on how to solve problems is because there
were recitation sections. Although I did put in three lectures in the first year on
how to solve problems, they are not included here. Also there was a lecture on
inertial guidance which certainly belongs after the lecture on rotating systems,
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but which was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by
the students. When I look at the way the majority of the students handled the
problems on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen students who—very
surprisingly—understood almost everything in all of the lectures, and who were
quite active in working with the material and worrying about the many points
in an excited and interested way. These people have now, I believe, a first-rate
background in physics—and they are, after all, the ones I was trying to get at.
But then, “The power of instruction is seldom of much efficacy except in those
happy dispositions where it is almost superfluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a
direct individual relationship between a student and a good teacher—a situation
in which the student discusses the ideas, thinks about the things, and talks about
the things. It’s impossible to learn very much by simply sitting in a lecture, or
even by simply doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find some substitute for
the ideal. Perhaps my lectures can make some contribution. Perhaps in some
small place where there are individual teachers and students, they may get some
inspiration or some ideas from the lectures. Perhaps they will have fun thinking
them through—or going on to develop some of the ideas further.

Richard P. Feynman
June, 1963
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Foreword

This book is based upon a course of lectures in introductory physics given
by Prof. R. P. Feynman at the California Institute of Technology during the
academic year 1961–62; it covers the first year of the two-year introductory course
taken by all Caltech freshmen and sophomores, and was followed in 1962–63 by
a similar series covering the second year. The lectures constitute a major part of
a fundamental revision of the introductory course, carried out over a four-year
period.

The need for a basic revision arose both from the rapid development of physics
in recent decades and from the fact that entering freshmen have shown a steady
increase in mathematical ability as a result of improvements in high school mathe-
matics course content. We hoped to take advantage of this improved mathematical
background, and also to introduce enough modern subject matter to make the
course challenging, interesting, and more representative of present-day physics.

In order to generate a variety of ideas on what material to include and how to
present it, a substantial number of the physics faculty were encouraged to offer
their ideas in the form of topical outlines for a revised course. Several of these were
presented and were thoroughly and critically discussed. It was agreed almost at
once that a basic revision of the course could not be accomplished either by merely
adopting a different textbook, or even by writing one ab initio, but that the new
course should be centered about a set of lectures, to be presented at the rate of
two or three per week; the appropriate text material would then be produced as a
secondary operation as the course developed, and suitable laboratory experiments
would also be arranged to fit the lecture material. Accordingly, a rough outline of
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the course was established, but this was recognized as being incomplete, tentative,
and subject to considerable modification by whoever was to bear the responsibility
for actually preparing the lectures.

Concerning the mechanism by which the course would finally be brought
to life, several plans were considered. These plans were mostly rather similar,
involving a cooperative effort by N staff members who would share the total
burden symmetrically and equally: each man would take responsibility for 1/N of
the material, deliver the lectures, and write text material for his part. However,
the unavailability of sufficient staff, and the difficulty of maintaining a uniform
point of view because of differences in personality and philosophy of individual
participants, made such plans seem unworkable.

The realization that we actually possessed the means to create not just a
new and different physics course, but possibly a unique one, came as a happy
inspiration to Professor Sands. He suggested that Professor R. P. Feynman pre-
pare and deliver the lectures, and that these be tape-recorded. When transcribed
and edited, they would then become the textbook for the new course. This is
essentially the plan that was adopted.

It was expected that the necessary editing would be minor, mainly consisting
of supplying figures, and checking punctuation and grammar; it was to be done by
one or two graduate students on a part-time basis. Unfortunately, this expectation
was short-lived. It was, in fact, a major editorial operation to transform the
verbatim transcript into readable form, even without the reorganization or revision
of the subject matter that was sometimes required. Furthermore, it was not a job
for a technical editor or for a graduate student, but one that required the close
attention of a professional physicist for from ten to twenty hours per lecture!

The difficulty of the editorial task, together with the need to place the material
in the hands of the students as soon as possible, set a strict limit upon the amount
of “polishing” of the material that could be accomplished, and thus we were
forced to aim toward a preliminary but technically correct product that could
be used immediately, rather than one that might be considered final or finished.
Because of an urgent need for more copies for our students, and a heartening
interest on the part of instructors and students at several other institutions, we
decided to publish the material in its preliminary form rather than wait for a
further major revision which might never occur. We have no illusions as to the
completeness, smoothness, or logical organization of the material; in fact, we
plan several minor modifications in the course in the immediate future, and we
hope that it will not become static in form or content.
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In addition to the lectures, which constitute a centrally important part of the
course, it was necessary also to provide suitable exercises to develop the students’
experience and ability, and suitable experiments to provide first-hand contact
with the lecture material in the laboratory. Neither of these aspects is in as
advanced a state as the lecture material, but considerable progress has been made.
Some exercises were made up as the lectures progressed, and these were expanded
and amplified for use in the following year. However, because we are not yet
satisfied that the exercises provide sufficient variety and depth of application of
the lecture material to make the student fully aware of the tremendous power
being placed at his disposal, the exercises are published separately in a less
permanent form in order to encourage frequent revision.

A number of new experiments for the new course have been devised by
Professor H. V. Neher. Among these are several which utilize the extremely
low friction exhibited by a gas bearing: a novel linear air trough, with which
quantitative measurements of one-dimensional motion, impacts, and harmonic
motion can be made, and an air-supported, air-driven Maxwell top, with which
accelerated rotational motion and gyroscopic precession and nutation can be
studied. The development of new laboratory experiments is expected to continue
for a considerable period of time.

The revision program was under the direction of Professors R. B. Leighton,
H. V. Neher, and M. Sands. Officially participating in the program were Professors
R. P. Feynman, G. Neugebauer, R. M. Sutton, H. P. Stabler,* F. Strong, and R.
Vogt, from the division of Physics, Mathematics and Astronomy, and Professors
T. Caughey, M. Plesset, and C. H. Wilts from the division of Engineering Science.
The valuable assistance of all those contributing to the revision program is
gratefully acknowledged. We are particularly indebted to the Ford Foundation,
without whose financial assistance this program could not have been carried out.

Robert B. Leighton
July, 1963

* 1961–62, while on leave from Williams College, Williamstown, Mass.
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1

Atoms in Motion

1-1 Introduction

This two-year course in physics is presented from the point of view that you,
the reader, are going to be a physicist. This is not necessarily the case of course,
but that is what every professor in every subject assumes! If you are going to be
a physicist, you will have a lot to study: two hundred years of the most rapidly
developing field of knowledge that there is. So much knowledge, in fact, that you
might think that you cannot learn all of it in four years, and truly you cannot;
you will have to go to graduate school too!

Surprisingly enough, in spite of the tremendous amount of work that has been
done for all this time it is possible to condense the enormous mass of results to
a large extent—that is, to find laws which summarize all our knowledge. Even
so, the laws are so hard to grasp that it is unfair to you to start exploring this
tremendous subject without some kind of map or outline of the relationship of one
part of the subject of science to another. Following these preliminary remarks,
the first three chapters will therefore outline the relation of physics to the rest
of the sciences, the relations of the sciences to each other, and the meaning of
science, to help us develop a “feel” for the subject.

You might ask why we cannot teach physics by just giving the basic laws on
page one and then showing how they work in all possible circumstances, as we
do in Euclidean geometry, where we state the axioms and then make all sorts of
deductions. (So, not satisfied to learn physics in four years, you want to learn it
in four minutes?) We cannot do it in this way for two reasons. First, we do not
yet know all the basic laws: there is an expanding frontier of ignorance. Second,
the correct statement of the laws of physics involves some very unfamiliar ideas
which require advanced mathematics for their description. Therefore, one needs a
considerable amount of preparatory training even to learn what the words mean.
No, it is not possible to do it that way. We can only do it piece by piece.
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Each piece, or part, of the whole of nature is always merely an approximation
to the complete truth, or the complete truth so far as we know it. In fact,
everything we know is only some kind of approximation, because we know that
we do not know all the laws as yet. Therefore, things must be learned only to be
unlearned again or, more likely, to be corrected.

The principle of science, the definition, almost, is the following: The test of
all knowledge is experiment. Experiment is the sole judge of scientific “truth.”
But what is the source of knowledge? Where do the laws that are to be tested
come from? Experiment, itself, helps to produce these laws, in the sense that it
gives us hints. But also needed is imagination to create from these hints the great
generalizations—to guess at the wonderful, simple, but very strange patterns
beneath them all, and then to experiment to check again whether we have made
the right guess. This imagining process is so difficult that there is a division of
labor in physics: there are theoretical physicists who imagine, deduce, and guess
at new laws, but do not experiment; and then there are experimental physicists
who experiment, imagine, deduce, and guess.

We said that the laws of nature are approximate: that we first find the “wrong”
ones, and then we find the “right” ones. Now, how can an experiment be “wrong”?
First, in a trivial way: if something is wrong with the apparatus that you did
not notice. But these things are easily fixed, and checked back and forth. So
without snatching at such minor things, how can the results of an experiment
be wrong? Only by being inaccurate. For example, the mass of an object never
seems to change: a spinning top has the same weight as a still one. So a “law”
was invented: mass is constant, independent of speed. That “law” is now found
to be incorrect. Mass is found to increase with velocity, but appreciable increases
require velocities near that of light. A true law is: if an object moves with a
speed of less than one hundred miles a second the mass is constant to within one
part in a million. In some such approximate form this is a correct law. So in
practice one might think that the new law makes no significant difference. Well,
yes and no. For ordinary speeds we can certainly forget it and use the simple
constant-mass law as a good approximation. But for high speeds we are wrong,
and the higher the speed, the more wrong we are.

Finally, and most interesting, philosophically we are completely wrong with
the approximate law. Our entire picture of the world has to be altered even
though the mass changes only by a little bit. This is a very peculiar thing about
the philosophy, or the ideas, behind the laws. Even a very small effect sometimes
requires profound changes in our ideas.
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Now, what should we teach first? Should we teach the correct but unfamiliar
law with its strange and difficult conceptual ideas, for example the theory of
relativity, four-dimensional space-time, and so on? Or should we first teach the
simple “constant-mass” law, which is only approximate, but does not involve such
difficult ideas? The first is more exciting, more wonderful, and more fun, but
the second is easier to get at first, and is a first step to a real understanding of
the first idea. This point arises again and again in teaching physics. At different
times we shall have to resolve it in different ways, but at each stage it is worth
learning what is now known, how accurate it is, how it fits into everything else,
and how it may be changed when we learn more.

Let us now proceed with our outline, or general map, of our understanding of
science today (in particular, physics, but also of other sciences on the periphery),
so that when we later concentrate on some particular point we will have some
idea of the background, why that particular point is interesting, and how it fits
into the big structure. So, what is our over-all picture of the world?

1-2 Matter is made of atoms

If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all
things are made of atoms—little particles that move around in perpetual motion,
attracting each other when they are a little distance apart, but repelling upon
being squeezed into one another. In that one sentence, you will see, there is an
enormous amount of information about the world, if just a little imagination and
thinking are applied.

To illustrate the power of the atomic idea, suppose that we have a drop
of water a quarter of an inch on the side. If we look at it very closely we see
nothing but water—smooth, continuous water. Even if we magnify it with the
best optical microscope available—roughly two thousand times—then the water
drop will be roughly forty feet across, about as big as a large room, and if we
looked rather closely, we would still see relatively smooth water—but here and
there small football-shaped things swimming back and forth. Very interesting.
These are paramecia. You may stop at this point and get so curious about the
paramecia with their wiggling cilia and twisting bodies that you go no further,
except perhaps to magnify the paramecia still more and see inside. This, of
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WATER MAGNIFIED ONE BILLION TIMES

Figure 1-1

course, is a subject for biology, but for the present we pass on and look still
more closely at the water material itself, magnifying it two thousand times again.
Now the drop of water extends about fifteen miles across, and if we look very
closely at it we see a kind of teeming, something which no longer has a smooth
appearance—it looks something like a crowd at a football game as seen from a
very great distance. In order to see what this teeming is about, we will magnify
it another two hundred and fifty times and we will see something similar to what
is shown in Fig. 1-1. This is a picture of water magnified a billion times, but
idealized in several ways. In the first place, the particles are drawn in a simple
manner with sharp edges, which is inaccurate. Secondly, for simplicity, they are
sketched almost schematically in a two-dimensional arrangement, but of course
they are moving around in three dimensions. Notice that there are two kinds of
“blobs” or circles to represent the atoms of oxygen (black) and hydrogen (white),
and that each oxygen has two hydrogens tied to it. (Each little group of an
oxygen with its two hydrogens is called a molecule.) The picture is idealized
further in that the real particles in nature are continually jiggling and bouncing,
turning and twisting around one another. You will have to imagine this as a
dynamic rather than a static picture. Another thing that cannot be illustrated in
a drawing is the fact that the particles are “stuck together”—that they attract
each other, this one pulled by that one, etc. The whole group is “glued together,”
so to speak. On the other hand, the particles do not squeeze through each other.
If you try to squeeze two of them too close together, they repel.

The atoms are 1 or 2×10−8 cm in radius. Now 10−8 cm is called an angstrom
(just as another name), so we say they are 1 or 2 angstroms (Å) in radius. Another
way to remember their size is this: if an apple is magnified to the size of the earth,
then the atoms in the apple are approximately the size of the original apple.

1-4



Now imagine this great drop of water with all of these jiggling particles stuck
together and tagging along with each other. The water keeps its volume; it does
not fall apart, because of the attraction of the molecules for each other. If the
drop is on a slope, where it can move from one place to another, the water will
flow, but it does not just disappear—things do not just fly apart—because of the
molecular attraction. Now the jiggling motion is what we represent as heat: when
we increase the temperature, we increase the motion. If we heat the water, the
jiggling increases and the volume between the atoms increases, and if the heating
continues there comes a time when the pull between the molecules is not enough
to hold them together and they do fly apart and become separated from one
another. Of course, this is how we manufacture steam out of water—by increasing
the temperature; the particles fly apart because of the increased motion.

STEAM

Figure 1-2

In Fig. 1-2 we have a picture of steam. This picture of steam fails in one
respect: at ordinary atmospheric pressure there certainly would not be as many
as three water molecules in this figure. Most squares this size would contain
none—but we accidentally have two and a half or three in the picture (just
so it would not be completely blank). Now in the case of steam we see the
characteristic molecules more clearly than in the case of water. For simplicity, the
molecules are drawn so that there is a 120◦ angle between the hydrogen atoms. In
actual fact the angle is 105◦3′, and the distance between the center of a hydrogen
and the center of the oxygen is 0.957 Å, so we know this molecule very well.

Let us see what some of the properties of steam vapor or any other gas are.
The molecules, being separated from one another, will bounce against the walls.
Imagine a room with a number of tennis balls (a hundred or so) bouncing around
in perpetual motion. When they bombard the wall, this pushes the wall away.
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Figure 1-3

(Of course we would have to push the wall back.) This means that the gas exerts
a jittery force which our coarse senses (not being ourselves magnified a billion
times) feel only as an average push. In order to confine a gas we must apply
a pressure. Figure 1-3 shows a standard vessel for holding gases (used in all
textbooks), a cylinder with a piston in it. Now, it makes no difference what the
shapes of water molecules are, so for simplicity we shall draw them as tennis balls
or little dots. These things are in perpetual motion in all directions. So many of
them are hitting the top piston all the time that to keep it from being patiently
knocked out of the tank by this continuous banging, we shall have to hold the
piston down by a certain force, which we call the pressure (really, the pressure
times the area is the force). Clearly, the force is proportional to the area, for if
we increase the area but keep the number of molecules per cubic centimeter the
same, we increase the number of collisions with the piston in the same proportion
as the area was increased.

Now let us put twice as many molecules in this tank, so as to double the
density, and let them have the same speed, i.e., the same temperature. Then, to
a close approximation, the number of collisions will be doubled, and since each
will be just as “energetic” as before, the pressure is proportional to the density.
If we consider the true nature of the forces between the atoms, we would expect
a slight decrease in pressure because of the attraction between the atoms, and
a slight increase because of the finite volume they occupy. Nevertheless, to an
excellent approximation, if the density is low enough that there are not many
atoms, the pressure is proportional to the density.

We can also see something else: If we increase the temperature without
changing the density of the gas, i.e., if we increase the speed of the atoms, what
is going to happen to the pressure? Well, the atoms hit harder because they are
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moving faster, and in addition they hit more often, so the pressure increases.
You see how simple the ideas of atomic theory are.

Let us consider another situation. Suppose that the piston moves inward, so
that the atoms are slowly compressed into a smaller space. What happens when
an atom hits the moving piston? Evidently it picks up speed from the collision.
You can try it by bouncing a ping-pong ball from a forward-moving paddle, for
example, and you will find that it comes off with more speed than that with
which it struck. (Special example: if an atom happens to be standing still and
the piston hits it, it will certainly move.) So the atoms are “hotter” when they
come away from the piston than they were before they struck it. Therefore all
the atoms which are in the vessel will have picked up speed. This means that
when we compress a gas slowly, the temperature of the gas increases. So, under
slow compression, a gas will increase in temperature, and under slow expansion
it will decrease in temperature.

We now return to our drop of water and look in another direction. Suppose
that we decrease the temperature of our drop of water. Suppose that the jiggling
of the molecules of the atoms in the water is steadily decreasing. We know that
there are forces of attraction between the atoms, so that after a while they will
not be able to jiggle so well. What will happen at very low temperatures is
indicated in Fig. 1-4: the molecules lock into a new pattern which is ice. This
particular schematic diagram of ice is wrong because it is in two dimensions, but
it is right qualitatively. The interesting point is that the material has a definite
place for every atom, and you can easily appreciate that if somehow or other
we were to hold all the atoms at one end of the drop in a certain arrangement,
each atom in a certain place, then because of the structure of interconnections,
which is rigid, the other end miles away (at our magnified scale) will have a

ICE

Figure 1-4
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definite location. So if we hold a needle of ice at one end, the other end resists
our pushing it aside, unlike the case of water, in which the structure is broken
down because of the increased jiggling so that the atoms all move around in
different ways. The difference between solids and liquids is, then, that in a solid
the atoms are arranged in some kind of an array, called a crystalline array, and
they do not have a random position at long distances; the position of the atoms
on one side of the crystal is determined by that of other atoms millions of atoms
away on the other side of the crystal. Figure 1-4 is an invented arrangement for
ice, and although it contains many of the correct features of ice, it is not the true
arrangement. One of the correct features is that there is a part of the symmetry
that is hexagonal. You can see that if we turn the picture around an axis by 60◦,
the picture returns to itself. So there is a symmetry in the ice which accounts for
the six-sided appearance of snowflakes. Another thing we can see from Fig. 1-4 is
why ice shrinks when it melts. The particular crystal pattern of ice shown here
has many “holes” in it, as does the true ice structure. When the organization
breaks down, these holes can be occupied by molecules. Most simple substances,
with the exception of water and type metal, expand upon melting, because the
atoms are closely packed in the solid crystal and upon melting need more room
to jiggle around, but an open structure collapses, as in the case of water.

Now although ice has a “rigid” crystalline form, its temperature can change—
ice has heat. If we wish, we can change the amount of heat. What is the heat in
the case of ice? The atoms are not standing still. They are jiggling and vibrating.
So even though there is a definite order to the crystal—a definite structure—all of
the atoms are vibrating “in place.” As we increase the temperature, they vibrate
with greater and greater amplitude, until they shake themselves out of place. We
call this melting. As we decrease the temperature, the vibration decreases and
decreases until, at absolute zero, there is a minimum amount of vibration that
the atoms can have, but not zero. This minimum amount of motion that atoms
can have is not enough to melt a substance, with one exception: helium. Helium
merely decreases the atomic motions as much as it can, but even at absolute zero
there is still enough motion to keep it from freezing. Helium, even at absolute
zero, does not freeze, unless the pressure is made so great as to make the atoms
squash together. If we increase the pressure, we can make it solidify.

1-3 Atomic processes
So much for the description of solids, liquids, and gases from the atomic point

of view. However, the atomic hypothesis also describes processes, and so we shall
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WATER EVAPORATING IN AIR

OXYGEN HYDROGEN NITROGEN

Figure 1-5

now look at a number of processes from an atomic standpoint. The first process
that we shall look at is associated with the surface of the water. What happens at
the surface of the water? We shall now make the picture more complicated—and
more realistic—by imagining that the surface is in air. Figure 1-5 shows the
surface of water in air. We see the water molecules as before, forming a body of
liquid water, but now we also see the surface of the water. Above the surface
we find a number of things: First of all there are water molecules, as in steam.
This is water vapor, which is always found above liquid water. (There is an
equilibrium between the steam vapor and the water which will be described later.)
In addition we find some other molecules—here two oxygen atoms stuck together
by themselves, forming an oxygen molecule, there two nitrogen atoms also stuck
together to make a nitrogen molecule. Air consists almost entirely of nitrogen,
oxygen, some water vapor, and lesser amounts of carbon dioxide, argon, and
other things. So above the water surface is the air, a gas, containing some water
vapor. Now what is happening in this picture? The molecules in the water are
always jiggling around. From time to time, one on the surface happens to be hit a
little harder than usual, and gets knocked away. It is hard to see that happening
in the picture because it is a still picture. But we can imagine that one molecule
near the surface has just been hit and is flying out, or perhaps another one has
been hit and is flying out. Thus, molecule by molecule, the water disappears—it
evaporates. But if we close the vessel above, after a while we shall find a large
number of molecules of water amongst the air molecules. From time to time, one
of these vapor molecules comes flying down to the water and gets stuck again.
So we see that what looks like a dead, uninteresting thing—a glass of water with
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a cover, that has been sitting there for perhaps twenty years—really contains
a dynamic and interesting phenomenon which is going on all the time. To our
eyes, our crude eyes, nothing is changing, but if we could see it a billion times
magnified, we would see that from its own point of view it is always changing:
molecules are leaving the surface, molecules are coming back.

Why do we see no change? Because just as many molecules are leaving as are
coming back! In the long run “nothing happens.” If we then take the top of the
vessel off and blow the moist air away, replacing it with dry air, then the number
of molecules leaving is just the same as it was before, because this depends on
the jiggling of the water, but the number coming back is greatly reduced because
there are so many fewer water molecules above the water. Therefore there are
more going out than coming in, and the water evaporates. Hence, if you wish to
evaporate water turn on the fan!

Here is something else: Which molecules leave? When a molecule leaves it
is due to an accidental, extra accumulation of a little bit more than ordinary
energy, which it needs if it is to break away from the attractions of its neighbors.
Therefore, since those that leave have more energy than the average, the ones that
are left have less average motion than they had before. So the liquid gradually
cools if it evaporates. Of course, when a molecule of vapor comes from the air to
the water below there is a sudden great attraction as the molecule approaches the
surface. This speeds up the incoming molecule and results in generation of heat.
So when they leave they take away heat; when they come back they generate
heat. Of course when there is no net evaporation the result is nothing—the
water is not changing temperature. If we blow on the water so as to maintain a
continuous preponderance in the number evaporating, then the water is cooled.
Hence, blow on soup to cool it!

Of course you should realize that the processes just described are more
complicated than we have indicated. Not only does the water go into the air, but
also, from time to time, one of the oxygen or nitrogen molecules will come in and
“get lost” in the mass of water molecules, and work its way into the water. Thus
the air dissolves in the water; oxygen and nitrogen molecules will work their way
into the water and the water will contain air. If we suddenly take the air away
from the vessel, then the air molecules will leave more rapidly than they come in,
and in doing so will make bubbles. This is very bad for divers, as you may know.

Now we go on to another process. In Fig. 1-6 we see, from an atomic point of
view, a solid dissolving in water. If we put a crystal of salt in the water, what
will happen? Salt is a solid, a crystal, an organized arrangement of “salt atoms.”
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SALT DISSOLVING IN WATER

CHLORINE SODIUM

Figure 1-6

Figure 1-7 is an illustration of the three-dimensional structure of common salt,
sodium chloride. Strictly speaking, the crystal is not made of atoms, but of what
we call ions. An ion is an atom which either has a few extra electrons or has lost
a few electrons. In a salt crystal we find chlorine ions (chlorine atoms with an
extra electron) and sodium ions (sodium atoms with one electron missing). The
ions all stick together by electrical attraction in the solid salt, but when we put
them in the water we find, because of the attractions of the negative oxygen and
positive hydrogen for the ions, that some of the ions jiggle loose. In Fig. 1-6 we
see a chlorine ion getting loose, and other atoms floating in the water in the form
of ions. This picture was made with some care. Notice, for example, that the
hydrogen ends of the water molecules are more likely to be near the chlorine ion,
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Figure 1-7
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while near the sodium ion we are more likely to find the oxygen end, because the
sodium is positive and the oxygen end of the water is negative, and they attract
electrically. Can we tell from this picture whether the salt is dissolving in water
or crystallizing out of water? Of course we cannot tell, because while some of
the atoms are leaving the crystal other atoms are rejoining it. The process is a
dynamic one, just as in the case of evaporation, and it depends on whether there
is more or less salt in the water than the amount needed for equilibrium. By
equilibrium we mean that situation in which the rate at which atoms are leaving
just matches the rate at which they are coming back. If there is almost no salt in
the water, more atoms leave than return, and the salt dissolves. If, on the other
hand, there are too many “salt atoms,” more return than leave, and the salt is
crystallizing.

In passing, we mention that the concept of a molecule of a substance is only
approximate and exists only for a certain class of substances. It is clear in the
case of water that the three atoms are actually stuck together. It is not so clear in
the case of sodium chloride in the solid. There is just an arrangement of sodium
and chlorine ions in a cubic pattern. There is no natural way to group them as
“molecules of salt.”

Returning to our discussion of solution and precipitation, if we increase the
temperature of the salt solution, then the rate at which atoms are taken away
is increased, and so is the rate at which atoms are brought back. It turns out
to be very difficult, in general, to predict which way it is going to go, whether
more or less of the solid will dissolve. Most substances dissolve more, but some
substances dissolve less, as the temperature increases.

1-4 Chemical reactions

In all of the processes which have been described so far, the atoms and the
ions have not changed partners, but of course there are circumstances in which
the atoms do change combinations, forming new molecules. This is illustrated in
Fig. 1-8. A process in which the rearrangement of the atomic partners occurs is
what we call a chemical reaction. The other processes so far described are called
physical processes, but there is no sharp distinction between the two. (Nature
does not care what we call it, she just keeps on doing it.) This figure is supposed
to represent carbon burning in oxygen. In the case of oxygen, two oxygen atoms
stick together very strongly. (Why do not three or even four stick together? That
is one of the very peculiar characteristics of such atomic processes. Atoms are
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CARBON BURNING IN OXYGEN

Figure 1-8

very special: they like certain particular partners, certain particular directions,
and so on. It is the job of physics to analyze why each one wants what it wants.
At any rate, two oxygen atoms form, saturated and happy, a molecule.)

The carbon atoms are supposed to be in a solid crystal (which could be
graphite or diamond*). Now, for example, one of the oxygen molecules can come
over to the carbon, and each atom can pick up a carbon atom and go flying off
in a new combination—“carbon-oxygen”—which is a molecule of the gas called
carbon monoxide. It is given the chemical name CO. It is very simple: the letters
“CO” are practically a picture of that molecule. But carbon attracts oxygen
much more than oxygen attracts oxygen or carbon attracts carbon. Therefore
in this process the oxygen may arrive with only a little energy, but the oxygen
and carbon will snap together with a tremendous vengeance and commotion, and
everything near them will pick up the energy. A large amount of motion energy,
kinetic energy, is thus generated. This of course is burning; we are getting heat
from the combination of oxygen and carbon. The heat is ordinarily in the form
of the molecular motion of the hot gas, but in certain circumstances it can be so
enormous that it generates light. That is how one gets flames.

In addition, the carbon monoxide is not quite satisfied. It is possible for it to
attach another oxygen, so that we might have a much more complicated reaction
in which the oxygen is combining with the carbon, while at the same time there
happens to be a collision with a carbon monoxide molecule. One oxygen atom
could attach itself to the CO and ultimately form a molecule, composed of one
carbon and two oxygens, which is designated CO2 and called carbon dioxide. If
we burn the carbon with very little oxygen in a very rapid reaction (for example,
in an automobile engine, where the explosion is so fast that there is not time

* One can burn a diamond in air.
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for it to make carbon dioxide) a considerable amount of carbon monoxide is
formed. In many such rearrangements, a very large amount of energy is released,
forming explosions, flames, etc., depending on the reactions. Chemists have
studied these arrangements of the atoms, and found that every substance is some
type of arrangement of atoms.

To illustrate this idea, let us consider another example. If we go into a field
of small violets, we know what “that smell” is. It is some kind of molecule, or
arrangement of atoms, that has worked its way into our noses. First of all, how
did it work its way in? That is rather easy. If the smell is some kind of molecule
in the air, jiggling around and being knocked every which way, it might have
accidentally worked its way into the nose. Certainly it has no particular desire to
get into our nose. It is merely one helpless part of a jostling crowd of molecules,
and in its aimless wanderings this particular chunk of matter happens to find
itself in the nose.

Now chemists can take special molecules like the odor of violets, and analyze
them and tell us the exact arrangement of the atoms in space. We know that
the carbon dioxide molecule is straight and symmetrical: O—C—O. (That can
be determined easily, too, by physical methods.) However, even for the vastly
more complicated arrangements of atoms that there are in chemistry, one can,
by a long, remarkable process of detective work, find the arrangements of the
atoms. Figure 1-9 is a picture of the air in the neighborhood of a violet; again
we find nitrogen and oxygen in the air, and water vapor. (Why is there water
vapor? Because the violet is wet. All plants transpire.) However, we also see
a “monster” composed of carbon atoms, hydrogen atoms, and oxygen atoms,
which have picked a certain particular pattern in which to be arranged. It is
a much more complicated arrangement than that of carbon dioxide; in fact, it

ODOR OF VIOLETS

Figure 1-9
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Fig. 1-10. The substance pictured is α-irone.

is an enormously complicated arrangement. Unfortunately, we cannot picture
all that is really known about it chemically, because the precise arrangement
of all the atoms is actually known in three dimensions, while our picture is in
only two dimensions. The six carbons which form a ring do not form a flat ring,
but a kind of “puckered” ring. All of the angles and distances are known. So a
chemical formula is merely a picture of such a molecule. When the chemist writes
such a thing on the blackboard, he is trying to “draw,” roughly speaking, in two
dimensions. For example, we see a “ring” of six carbons, and a “chain” of carbons
hanging on the end, with an oxygen second from the end, three hydrogens tied
to that carbon, two carbons and three hydrogens sticking up here, etc.

How does the chemist find what the arrangement is? He mixes bottles full of
stuff together, and if it turns red, it tells him that it consists of one hydrogen
and two carbons tied on here; if it turns blue, on the other hand, that is not
the way it is at all. This is one of the most fantastic pieces of detective work
that has ever been done—organic chemistry. To discover the arrangement of the
atoms in these enormously complicated arrays the chemist looks at what happens
when he mixes two different substances together. The physicist could never quite
believe that the chemist knew what he was talking about when he described
the arrangement of the atoms. For about twenty years it has been possible, in
some cases, to look at such molecules (not quite as complicated as this one, but
some which contain parts of it) by a physical method, and it has been possible
to locate every atom, not by looking at colors, but by measuring where they are.
And lo and behold!, the chemists are almost always correct.

It turns out, in fact, that in the odor of violets there are three slightly different
molecules, which differ only in the arrangement of the hydrogen atoms.

One problem of chemistry is to name a substance, so that we will know what
it is. Find a name for this shape! Not only must the name tell the shape, but
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it must also tell that here is an oxygen atom, there a hydrogen—exactly what
and where each atom is. So we can appreciate that the chemical names must
be complex in order to be complete. You see that the name of this thing in
the more complete form that will tell you the structure of it is 4-(2, 2, 3, 6
tetramethyl-5-cyclohexenyl)-3-buten-2-one, and that tells you that this is the
arrangement. We can appreciate the difficulties that the chemists have, and also
appreciate the reason for such long names. It is not that they wish to be obscure,
but they have an extremely difficult problem in trying to describe the molecules
in words!

How do we know that there are atoms? By one of the tricks mentioned earlier:
we make the hypothesis that there are atoms, and one after the other results come
out the way we predict, as they ought to if things are made of atoms. There is
also somewhat more direct evidence, a good example of which is the following:
The atoms are so small that you cannot see them with a light microscope—in
fact, not even with an electron microscope. (With a light microscope you can
only see things which are much bigger.) Now if the atoms are always in motion,
say in water, and we put a big ball of something in the water, a ball much bigger
than the atoms, the ball will jiggle around—much as in a push ball game, where
a great big ball is pushed around by a lot of people. The people are pushing in
various directions, and the ball moves around the field in an irregular fashion.
So, in the same way, the “large ball” will move because of the inequalities of the
collisions on one side to the other, from one moment to the next. Therefore, if we
look at very tiny particles (colloids) in water through an excellent microscope, we
see a perpetual jiggling of the particles, which is the result of the bombardment
of the atoms. This is called the Brownian motion.

We can see further evidence for atoms in the structure of crystals. In many
cases the structures deduced by x-ray analysis agree in their spatial “shapes”
with the forms actually exhibited by crystals as they occur in nature. The angles
between the various “faces” of a crystal agree, within seconds of arc, with angles
deduced on the assumption that a crystal is made of many “layers” of atoms.

Everything is made of atoms. That is the key hypothesis. The most important
hypothesis in all of biology, for example, is that everything that animals do, atoms
do. In other words, there is nothing that living things do that cannot be understood
from the point of view that they are made of atoms acting according to the laws
of physics. This was not known from the beginning: it took some experimenting
and theorizing to suggest this hypothesis, but now it is accepted, and it is the
most useful theory for producing new ideas in the field of biology.
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If a piece of steel or a piece of salt, consisting of atoms one next to the other,
can have such interesting properties; if water—which is nothing but these little
blobs, mile upon mile of the same thing over the earth—can form waves and
foam, and make rushing noises and strange patterns as it runs over cement; if all
of this, all the life of a stream of water, can be nothing but a pile of atoms, how
much more is possible? If instead of arranging the atoms in some definite pattern,
again and again repeated, on and on, or even forming little lumps of complexity
like the odor of violets, we make an arrangement which is always different from
place to place, with different kinds of atoms arranged in many ways, continually
changing, not repeating, how much more marvelously is it possible that this thing
might behave? Is it possible that that “thing” walking back and forth in front of
you, talking to you, is a great glob of these atoms in a very complex arrangement,
such that the sheer complexity of it staggers the imagination as to what it can
do? When we say we are a pile of atoms, we do not mean we are merely a pile
of atoms, because a pile of atoms which is not repeated from one to the other
might well have the possibilities which you see before you in the mirror.
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2

Basic Physics

2-1 Introduction

In this chapter, we shall examine the most fundamental ideas that we have
about physics—the nature of things as we see them at the present time. We shall
not discuss the history of how we know that all these ideas are true; you will
learn these details in due time.

The things with which we concern ourselves in science appear in myriad forms,
and with a multitude of attributes. For example, if we stand on the shore and
look at the sea, we see the water, the waves breaking, the foam, the sloshing
motion of the water, the sound, the air, the winds and the clouds, the sun and
the blue sky, and light; there is sand and there are rocks of various hardness
and permanence, color and texture. There are animals and seaweed, hunger and
disease, and the observer on the beach; there may be even happiness and thought.
Any other spot in nature has a similar variety of things and influences. It is always
as complicated as that, no matter where it is. Curiosity demands that we ask
questions, that we try to put things together and try to understand this multitude
of aspects as perhaps resulting from the action of a relatively small number of
elemental things and forces acting in an infinite variety of combinations.

For example: Is the sand other than the rocks? That is, is the sand perhaps
nothing but a great number of very tiny stones? Is the moon a great rock? If
we understood rocks, would we also understand the sand and the moon? Is the
wind a sloshing of the air analogous to the sloshing motion of the water in the
sea? What common features do different movements have? What is common to
different kinds of sound? How many different colors are there? And so on. In
this way we try gradually to analyze all things, to put together things which at
first sight look different, with the hope that we may be able to reduce the number
of different things and thereby understand them better.
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A few hundred years ago, a method was devised to find partial answers to
such questions. Observation, reason, and experiment make up what we call the
scientific method. We shall have to limit ourselves to a bare description of our
basic view of what is sometimes called fundamental physics, or fundamental ideas
which have arisen from the application of the scientific method.

What do we mean by “understanding” something? We can imagine that this
complicated array of moving things which constitutes “the world” is something
like a great chess game being played by the gods, and we are observers of the
game. We do not know what the rules of the game are; all we are allowed to do
is to watch the playing. Of course, if we watch long enough, we may eventually
catch on to a few of the rules. The rules of the game are what we mean by
fundamental physics. Even if we knew every rule, however, we might not be able
to understand why a particular move is made in the game, merely because it is
too complicated and our minds are limited. If you play chess you must know
that it is easy to learn all the rules, and yet it is often very hard to select the
best move or to understand why a player moves as he does. So it is in nature,
only much more so; but we may be able at least to find all the rules. Actually,
we do not have all the rules now. (Every once in a while something like castling
is going on that we still do not understand.) Aside from not knowing all of the
rules, what we really can explain in terms of those rules is very limited, because
almost all situations are so enormously complicated that we cannot follow the
plays of the game using the rules, much less tell what is going to happen next.
We must, therefore, limit ourselves to the more basic question of the rules of the
game. If we know the rules, we consider that we “understand” the world.

How can we tell whether the rules which we “guess” at are really right if we
cannot analyze the game very well? There are, roughly speaking, three ways.
First, there may be situations where nature has arranged, or we arrange nature,
to be simple and to have so few parts that we can predict exactly what will
happen, and thus we can check how our rules work. (In one corner of the board
there may be only a few chess pieces at work, and that we can figure out exactly.)

A second good way to check rules is in terms of less specific rules derived from
them. For example, the rule on the move of a bishop on a chessboard is that it
moves only on the diagonal. One can deduce, no matter how many moves may
be made, that a certain bishop will always be on a red square. So, without being
able to follow the details, we can always check our idea about the bishop’s motion
by finding out whether it is always on a red square. Of course it will be, for a long
time, until all of a sudden we find that it is on a black square (what happened of
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course, is that in the meantime it was captured, another pawn crossed for queening,
and it turned into a bishop on a black square). That is the way it is in physics.
For a long time we will have a rule that works excellently in an over-all way, even
when we cannot follow the details, and then some time we may discover a new
rule. From the point of view of basic physics, the most interesting phenomena
are of course in the new places, the places where the rules do not work—not the
places where they do work! That is the way in which we discover new rules.

The third way to tell whether our ideas are right is relatively crude but
probably the most powerful of them all. That is, by rough approximation. While
we may not be able to tell why Alekhine moves this particular piece, perhaps we
can roughly understand that he is gathering his pieces around the king to protect
it, more or less, since that is the sensible thing to do in the circumstances. In
the same way, we can often understand nature, more or less, without being able
to see what every little piece is doing, in terms of our understanding of the game.

At first the phenomena of nature were roughly divided into classes, like heat,
electricity, mechanics, magnetism, properties of substances, chemical phenomena,
light or optics, x-rays, nuclear physics, gravitation, meson phenomena, etc.
However, the aim is to see complete nature as different aspects of one set of
phenomena. That is the problem in basic theoretical physics, today—to find
the laws behind experiment; to amalgamate these classes. Historically, we have
always been able to amalgamate them, but as time goes on new things are found.
We were amalgamating very well, when all of a sudden x-rays were found. Then
we amalgamated some more, and mesons were found. Therefore, at any stage
of the game, it always looks rather messy. A great deal is amalgamated, but
there are always many wires or threads hanging out in all directions. That is the
situation today, which we shall try to describe.

Some historic examples of amalgamation are the following. First, take heat
and mechanics. When atoms are in motion, the more motion, the more heat the
system contains, and so heat and all temperature effects can be represented by
the laws of mechanics. Another tremendous amalgamation was the discovery of
the relation between electricity, magnetism, and light, which were found to be
different aspects of the same thing, which we call today the electromagnetic field.
Another amalgamation is the unification of chemical phenomena, the various
properties of various substances, and the behavior of atomic particles, which is
in the quantum mechanics of chemistry.

The question is, of course, is it going to be possible to amalgamate everything,
and merely discover that this world represents different aspects of one thing?
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Nobody knows. All we know is that as we go along, we find that we can amalga-
mate pieces, and then we find some pieces that do not fit, and we keep trying to
put the jigsaw puzzle together. Whether there are a finite number of pieces, and
whether there is even a border to the puzzle, is of course unknown. It will never
be known until we finish the picture, if ever. What we wish to do here is to see
to what extent this amalgamation process has gone on, and what the situation
is at present, in understanding basic phenomena in terms of the smallest set of
principles. To express it in a simple manner, what are things made of and how
few elements are there?

2-2 Physics before 1920

It is a little difficult to begin at once with the present view, so we shall first
see how things looked in about 1920 and then take a few things out of that
picture. Before 1920, our world picture was something like this: The “stage” on
which the universe goes is the three-dimensional space of geometry, as described
by Euclid, and things change in a medium called time. The elements on the
stage are particles, for example the atoms, which have some properties. First, the
property of inertia: if a particle is moving it keeps on going in the same direction
unless forces act upon it. The second element, then, is forces, which were then
thought to be of two varieties: First, an enormously complicated, detailed kind
of interaction force which held the various atoms in different combinations in a
complicated way, which determined whether salt would dissolve faster or slower
when we raise the temperature. The other force that was known was a long-range
interaction—a smooth and quiet attraction—which varied inversely as the square
of the distance, and was called gravitation. This law was known and was very
simple. Why things remain in motion when they are moving, or why there is a
law of gravitation was, of course, not known.

A description of nature is what we are concerned with here. From this point
of view, then, a gas, and indeed all matter, is a myriad of moving particles. Thus
many of the things we saw while standing at the seashore can immediately be
connected. First the pressure: this comes from the collisions of the atoms with the
walls or whatever; the drift of the atoms, if they are all moving in one direction
on the average, is wind; the random internal motions are the heat. There are
waves of excess density, where too many particles have collected, and so as they
rush off they push up piles of particles farther out, and so on. This wave of excess
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density is sound. It is a tremendous achievement to be able to understand so
much. Some of these things were described in the previous chapter.

What kinds of particles are there? There were considered to be 92 at that
time: 92 different kinds of atoms were ultimately discovered. They had different
names associated with their chemical properties.

The next part of the problem was, what are the short-range forces? Why does
carbon attract one oxygen or perhaps two oxygens, but not three oxygens? What
is the machinery of interaction between atoms? Is it gravitation? The answer
is no. Gravity is entirely too weak. But imagine a force analogous to gravity,
varying inversely with the square of the distance, but enormously more powerful
and having one difference. In gravity everything attracts everything else, but
now imagine that there are two kinds of “things,” and that this new force (which
is the electrical force, of course) has the property that likes repel but unlikes
attract. The “thing” that carries this strong interaction is called charge.

Then what do we have? Suppose that we have two unlikes that attract each
other, a plus and a minus, and that they stick very close together. Suppose we
have another charge some distance away. Would it feel any attraction? It would
feel practically none, because if the first two are equal in size, the attraction for
the one and the repulsion for the other balance out. Therefore there is very little
force at any appreciable distance. On the other hand, if we get very close with
the extra charge, attraction arises, because the repulsion of likes and attraction
of unlikes will tend to bring unlikes closer together and push likes farther apart.
Then the repulsion will be less than the attraction. This is the reason why the
atoms, which are constituted out of plus and minus electric charges, feel very
little force when they are separated by appreciable distance (aside from gravity).
When they come close together, they can “see inside” each other and rearrange
their charges, with the result that they have a very strong interaction. The
ultimate basis of an interaction between the atoms is electrical. Since this force
is so enormous, all the plusses and all minuses will normally come together in
as intimate a combination as they can. All things, even ourselves, are made of
fine-grained, enormously strongly interacting plus and minus parts, all neatly
balanced out. Once in a while, by accident, we may rub off a few minuses or a
few plusses (usually it is easier to rub off minuses), and in those circumstances
we find the force of electricity unbalanced, and we can then see the effects of these
electrical attractions.

To give an idea of how much stronger electricity is than gravitation, consider
two grains of sand, a millimeter across, thirty meters apart. If the force between
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them were not balanced, if everything attracted everything else instead of likes
repelling, so that there were no cancellation, how much force would there be?
There would be a force of three million tons between the two! You see, there is
very, very little excess or deficit of the number of negative or positive charges
necessary to produce appreciable electrical effects. This is, of course, the reason
why you cannot see the difference between an electrically charged or uncharged
thing—so few particles are involved that they hardly make a difference in the
weight or size of an object.

With this picture the atoms were easier to understand. They were thought
to have a “nucleus” at the center, which is positively electrically charged and
very massive, and the nucleus is surrounded by a certain number of “electrons”
which are very light and negatively charged. Now we go a little ahead in our
story to remark that in the nucleus itself there were found two kinds of particles,
protons and neutrons, almost of the same weight and very heavy. The protons
are electrically charged and the neutrons are neutral. If we have an atom with six
protons inside its nucleus, and this is surrounded by six electrons (the negative
particles in the ordinary world of matter are all electrons, and these are very
light compared with the protons and neutrons which make nuclei), this would be
atom number six in the chemical table, and it is called carbon. Atom number
eight is called oxygen, etc., because the chemical properties depend upon the
electrons on the outside, and in fact only upon how many electrons there are. So
the chemical properties of a substance depend only on a number, the number
of electrons. (The whole list of elements of the chemists really could have been
called 1, 2, 3, 4, 5, etc. Instead of saying “carbon,” we could say “element six,”
meaning six electrons, but of course, when the elements were first discovered, it
was not known that they could be numbered that way, and secondly, it would
make everything look rather complicated. It is better to have names and symbols
for these things, rather than to call everything by number.)

More was discovered about the electrical force. The natural interpretation of
electrical interaction is that two objects simply attract each other: plus against
minus. However, this was discovered to be an inadequate idea to represent it.
A more adequate representation of the situation is to say that the existence of
the positive charge, in some sense, distorts, or creates a “condition” in space,
so that when we put the negative charge in, it feels a force. This potentiality
for producing a force is called an electric field. When we put an electron in an
electric field, we say it is “pulled.” We then have two rules: (a) charges make a
field, and (b) charges in fields have forces on them and move. The reason for
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this will become clear when we discuss the following phenomena: If we were
to charge a body, say a comb, electrically, and then place a charged piece of
paper at a distance and move the comb back and forth, the paper will respond by
always pointing to the comb. If we shake it faster, it will be discovered that the
paper is a little behind, there is a delay in the action. (At the first stage, when
we move the comb rather slowly, we find a complication which is magnetism.
Magnetic influences have to do with charges in relative motion, so magnetic
forces and electric forces can really be attributed to one field, as two different
aspects of exactly the same thing. A changing electric field cannot exist without
magnetism.) If we move the charged paper farther out, the delay is greater. Then
an interesting thing is observed. Although the forces between two charged objects
should go inversely as the square of the distance, it is found, when we shake a
charge, that the influence extends very much farther out than we would guess at
first sight. That is, the effect falls off more slowly than the inverse square.

Here is an analogy: If we are in a pool of water and there is a floating cork
very close by, we can move it “directly” by pushing the water with another
cork. If you looked only at the two corks, all you would see would be that one
moved immediately in response to the motion of the other—there is some kind of
“interaction” between them. Of course, what we really do is to disturb the water ;
the water then disturbs the other cork. We could make up a “law” that if you
pushed the water a little bit, an object close by in the water would move. If it
were farther away, of course, the second cork would scarcely move, for we move
the water locally. On the other hand, if we jiggle the cork a new phenomenon
is involved, in which the motion of the water moves the water there, etc., and
waves travel away, so that by jiggling, there is an influence very much farther out,
an oscillatory influence, that cannot be understood from the direct interaction.
Therefore the idea of direct interaction must be replaced with the existence of
the water, or in the electrical case, with what we call the electromagnetic field.

The electromagnetic field can carry waves; some of these waves are light,
others are used in radio broadcasts, but the general name is electromagnetic
waves. These oscillatory waves can have various frequencies. The only thing that
is really different from one wave to another is the frequency of oscillation. If we
shake a charge back and forth more and more rapidly, and look at the effects, we
get a whole series of different kinds of effects, which are all unified by specifying
but one number, the number of oscillations per second. The usual “pickup” that
we get from electric currents in the circuits in the walls of a building have a
frequency of about one hundred cycles per second. If we increase the frequency to
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Table 2-1

The Electromagnetic Spectrum

Frequency in Rough
oscillations/sec Name behavior

102 Electrical disturbance Field

5× 105 – 106 Radio broadcast
Waves

108 FM—TV
1010 Radar

5× 1014 – 1015 Light

1018 X-rays
Particle

1021 γ-rays, nuclear
1024 γ-rays, “artificial”
1027 γ-rays, in cosmic rays

500 or 1000 kilocycles (1 kilocycle = 1000 cycles) per second, we are “on the air,”
for this is the frequency range which is used for radio broadcasts. (Of course it
has nothing to do with the air! We can have radio broadcasts without any air.) If
we again increase the frequency, we come into the range that is used for FM and
TV. Going still further, we use certain short waves, for example for radar. Still
higher, and we do not need an instrument to “see” the stuff, we can see it with
the human eye. In the range of frequency from 5× 1014 to 1015 cycles per second
our eyes would see the oscillation of the charged comb, if we could shake it that
fast, as red, blue, or violet light, depending on the frequency. Frequencies below
this range are called infrared, and above it, ultraviolet. The fact that we can see
in a particular frequency range makes that part of the electromagnetic spectrum
no more impressive than the other parts from a physicist’s standpoint, but from
a human standpoint, of course, it is more interesting. If we go up even higher in
frequency, we get x-rays. X-rays are nothing but very high-frequency light. If we
go still higher, we get gamma rays. These two terms, x-rays and gamma rays,
are used almost synonymously. Usually electromagnetic rays coming from nuclei
are called gamma rays, while those of high energy from atoms are called x-rays,
but at the same frequency they are indistinguishable physically, no matter what
their source. If we go to still higher frequencies, say to 1024 cycles per second, we
find that we can make those waves artificially, for example with the synchrotron
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here at Caltech. We can find electromagnetic waves with stupendously high
frequencies—with even a thousand times more rapid oscillation—in the waves
found in cosmic rays. These waves cannot be controlled by us.

2-3 Quantum physics

Having described the idea of the electromagnetic field, and that this field
can carry waves, we soon learn that these waves actually behave in a strange
way which seems very unwavelike. At higher frequencies they behave much
more like particles! It is quantum mechanics, discovered just after 1920, which
explains this strange behavior. In the years before 1920, the picture of space
as a three-dimensional space, and of time as a separate thing, was changed by
Einstein, first into a combination which we call space-time, and then still further
into a curved space-time to represent gravitation. So the “stage” is changed
into space-time, and gravitation is presumably a modification of space-time.
Then it was also found that the rules for the motions of particles were incorrect.
The mechanical rules of “inertia” and “forces” are wrong—Newton’s laws are
wrong—in the world of atoms. Instead, it was discovered that things on a small
scale behave nothing like things on a large scale. That is what makes physics
difficult—and very interesting. It is hard because the way things behave on a
small scale is so “unnatural”; we have no direct experience with it. Here things
behave like nothing we know of, so that it is impossible to describe this behavior
in any other than analytic ways. It is difficult, and takes a lot of imagination.

Quantum mechanics has many aspects. In the first place, the idea that a
particle has a definite location and a definite speed is no longer allowed; that is
wrong. To give an example of how wrong classical physics is, there is a rule in
quantum mechanics that says that one cannot know both where something is and
how fast it is moving. The uncertainty of the momentum and the uncertainty
of the position are complementary, and the product of the two is bounded by
a small constant. We can write the law like this: ∆x∆p ≥ ~/2, but we shall
explain it in more detail later. This rule is the explanation of a very mysterious
paradox: if the atoms are made out of plus and minus charges, why don’t the
minus charges simply sit on top of the plus charges (they attract each other) and
get so close as to completely cancel them out? Why are atoms so big? Why is the
nucleus at the center with the electrons around it? It was first thought that this
was because the nucleus was so big; but no, the nucleus is very small. An atom
has a diameter of about 10−8 cm. The nucleus has a diameter of about 10−13 cm.
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If we had an atom and wished to see the nucleus, we would have to magnify it
until the whole atom was the size of a large room, and then the nucleus would
be a bare speck which you could just about make out with the eye, but very
nearly all the weight of the atom is in that infinitesimal nucleus. What keeps the
electrons from simply falling in? This principle: If they were in the nucleus, we
would know their position precisely, and the uncertainty principle would then
require that they have a very large (but uncertain) momentum, i.e., a very large
kinetic energy. With this energy they would break away from the nucleus. They
make a compromise: they leave themselves a little room for this uncertainty and
then jiggle with a certain amount of minimum motion in accordance with this
rule. (Remember that when a crystal is cooled to absolute zero, we said that the
atoms do not stop moving, they still jiggle. Why? If they stopped moving, we
would know where they were and that they had zero motion, and that is against
the uncertainty principle. We cannot know where they are and how fast they are
moving, so they must be continually wiggling in there!)

Another most interesting change in the ideas and philosophy of science brought
about by quantum mechanics is this: it is not possible to predict exactly what will
happen in any circumstance. For example, it is possible to arrange an atom which
is ready to emit light, and we can measure when it has emitted light by picking up
a photon particle, which we shall describe shortly. We cannot, however, predict
when it is going to emit the light or, with several atoms, which one is going to.
You may say that this is because there are some internal “wheels” which we have
not looked at closely enough. No, there are no internal wheels; nature, as we
understand it today, behaves in such a way that it is fundamentally impossible
to make a precise prediction of exactly what will happen in a given experiment.
This is a horrible thing; in fact, philosophers have said before that one of the
fundamental requisites of science is that whenever you set up the same conditions,
the same thing must happen. This is simply not true, it is not a fundamental
condition of science. The fact is that the same thing does not happen, that we
can find only an average, statistically, as to what happens. Nevertheless, science
has not completely collapsed. Philosophers, incidentally, say a great deal about
what is absolutely necessary for science, and it is always, so far as one can see,
rather naive, and probably wrong. For example, some philosopher or other said
it is fundamental to the scientific effort that if an experiment is performed in, say,
Stockholm, and then the same experiment is done in, say, Quito, the same results
must occur. That is quite false. It is not necessary that science do that; it may be
a fact of experience, but it is not necessary. For example, if one of the experiments
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is to look out at the sky and see the aurora borealis in Stockholm, you do not see it
in Quito; that is a different phenomenon. “But,” you say, “that is something that
has to do with the outside; can you close yourself up in a box in Stockholm and
pull down the shade and get any difference?” Surely. If we take a pendulum on
a universal joint, and pull it out and let go, then the pendulum will swing almost
in a plane, but not quite. Slowly the plane keeps changing in Stockholm, but not
in Quito. The blinds are down, too. The fact that this happened does not bring
on the destruction of science. What is the fundamental hypothesis of science,
the fundamental philosophy? We stated it in the first chapter: the sole test of
the validity of any idea is experiment. If it turns out that most experiments work
out the same in Quito as they do in Stockholm, then those “most experiments”
will be used to formulate some general law, and those experiments which do not
come out the same we will say were a result of the environment near Stockholm.
We will invent some way to summarize the results of the experiment, and we do
not have to be told ahead of time what this way will look like. If we are told that
the same experiment will always produce the same result, that is all very well,
but if when we try it, it does not, then it does not. We just have to take what we
see, and then formulate all the rest of our ideas in terms of our actual experience.

Returning again to quantum mechanics and fundamental physics, we cannot go
into details of the quantum-mechanical principles at this time, of course, because
these are rather difficult to understand. We shall assume that they are there, and
go on to describe what some of the consequences are. One of the consequences is
that things which we used to consider as waves also behave like particles, and
particles behave like waves; in fact everything behaves the same way. There is
no distinction between a wave and a particle. So quantum mechanics unifies the
idea of the field and its waves, and the particles, all into one. Now it is true that
when the frequency is low, the field aspect of the phenomenon is more evident, or
more useful as an approximate description in terms of everyday experiences. But
as the frequency increases, the particle aspects of the phenomenon become more
evident with the equipment with which we usually make the measurements. In
fact, although we mentioned many frequencies, no phenomenon directly involving
a frequency has yet been detected above approximately 1012 cycles per second.
We only deduce the higher frequencies from the energy of the particles, by a rule
which assumes that the particle-wave idea of quantum mechanics is valid.

Thus we have a new view of electromagnetic interaction. We have a new kind
of particle to add to the electron, the proton, and the neutron. That new particle
is called a photon. The new view of the interaction of electrons and photons that
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is electromagnetic theory, but with everything quantum-mechanically correct, is
called quantum electrodynamics. This fundamental theory of the interaction of
light and matter, or electric field and charges, is our greatest success so far in
physics. In this one theory we have the basic rules for all ordinary phenomena
except for gravitation and nuclear processes. For example, out of quantum
electrodynamics come all known electrical, mechanical, and chemical laws: the
laws for the collision of billiard balls, the motions of wires in magnetic fields,
the specific heat of carbon monoxide, the color of neon signs, the density of salt,
and the reactions of hydrogen and oxygen to make water are all consequences
of this one law. All these details can be worked out if the situation is simple
enough for us to make an approximation, which is almost never, but often we can
understand more or less what is happening. At the present time no exceptions
are found to the quantum-electrodynamic laws outside the nucleus, and there we
do not know whether there is an exception because we simply do not know what
is going on in the nucleus.

In principle, then, quantum electrodynamics is the theory of all chemistry,
and of life, if life is ultimately reduced to chemistry and therefore just to physics
because chemistry is already reduced (the part of physics which is involved in
chemistry being already known). Furthermore, the same quantum electrodynam-
ics, this great thing, predicts a lot of new things. In the first place, it tells the
properties of very high-energy photons, gamma rays, etc. It predicted another
very remarkable thing: besides the electron, there should be another particle of
the same mass, but of opposite charge, called a positron, and these two, coming
together, could annihilate each other with the emission of light or gamma rays.
(After all, light and gamma rays are all the same, they are just different points
on a frequency scale.) The generalization of this, that for each particle there is an
antiparticle, turns out to be true. In the case of electrons, the antiparticle has an-
other name—it is called a positron, but for most other particles, it is called anti-so-
and-so, like antiproton or antineutron. In quantum electrodynamics, two numbers
are put in and most of the other numbers in the world are supposed to come out.
The two numbers that are put in are called the mass of the electron and the charge
of the electron. Actually, that is not quite true, for we have a whole set of numbers
for chemistry which tells how heavy the nuclei are. That leads us to the next part.

2-4 Nuclei and particles
What are the nuclei made of, and how are they held together? It is found

that the nuclei are held together by enormous forces. When these are released,
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the energy released is tremendous compared with chemical energy, in the same
ratio as the atomic bomb explosion is to a TNT explosion, because, of course,
the atomic bomb has to do with changes inside the nucleus, while the explosion
of TNT has to do with the changes of the electrons on the outside of the atoms.
The question is, what are the forces which hold the protons and neutrons together
in the nucleus? Just as the electrical interaction can be connected to a particle,
a photon, Yukawa suggested that the forces between neutrons and protons also
have a field of some kind, and that when this field jiggles it behaves like a
particle. Thus there could be some other particles in the world besides protons
and neutrons, and he was able to deduce the properties of these particles from
the already known characteristics of nuclear forces. For example, he predicted
they should have a mass of two or three hundred times that of an electron; and lo
and behold, in cosmic rays there was discovered a particle of the right mass! But
it later turned out to be the wrong particle. It was called a µ-meson, or muon.

However, a little while later, in 1947 or 1948, another particle was found, the
π-meson, or pion, which satisfied Yukawa’s criterion. Besides the proton and
the neutron, then, in order to get nuclear forces we must add the pion. Now,
you say, “Oh great!, with this theory we make quantum nucleodynamics using
the pions just like Yukawa wanted to do, and see if it works, and everything will
be explained.” Bad luck. It turns out that the calculations that are involved in
this theory are so difficult that no one has ever been able to figure out what the
consequences of the theory are, or to check it against experiment, and this has
been going on now for almost twenty years!

So we are stuck with a theory, and we do not know whether it is right or
wrong, but we do know that it is a little wrong, or at least incomplete. While we
have been dawdling around theoretically, trying to calculate the consequences of
this theory, the experimentalists have been discovering some things. For example,
they had already discovered this µ-meson or muon, and we do not yet know where
it fits. Also, in cosmic rays, a large number of other “extra” particles were found.
It turns out that today we have approximately thirty particles, and it is very
difficult to understand the relationships of all these particles, and what nature
wants them for, or what the connections are from one to another. We do not
today understand these various particles as different aspects of the same thing,
and the fact that we have so many unconnected particles is a representation of
the fact that we have so much unconnected information without a good theory.
After the great successes of quantum electrodynamics, there is a certain amount
of knowledge of nuclear physics which is rough knowledge, sort of half experience
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and half theory, assuming a type of force between protons and neutrons and seeing
what will happen, but not really understanding where the force comes from. Aside
from that, we have made very little progress. We have collected an enormous
number of chemical elements. In the chemical case, there suddenly appeared a
relationship among these elements which was unexpected, and which is embodied
in the periodic table of Mendeleev. For example, sodium and potassium are
about the same in their chemical properties and are found in the same column
in the Mendeleev chart. We have been seeking a Mendeleev-type chart for the
new particles. One such chart of the new particles was made independently by
Gell-Mann in the U.S.A. and Nishijima in Japan. The basis of their classification
is a new number, like the electric charge, which can be assigned to each particle,
called its “strangeness,” S. This number is conserved, like the electric charge, in
reactions which take place by nuclear forces.

In Table 2-2 are listed all the particles. We cannot discuss them much at this
stage, but the table will at least show you how much we do not know. Underneath
each particle its mass is given in a certain unit, called the MeV. One MeV is
equal to 1.783× 10−27 gram. The reason this unit was chosen is historical, and
we shall not go into it now. More massive particles are put higher up on the
chart; we see that a neutron and a proton have almost the same mass. In vertical
columns we have put the particles with the same electrical charge, all neutral
objects in one column, all positively charged ones to the right of this one, and all
negatively charged objects to the left.

Particles are shown with a solid line and “resonances” with a dashed one.
Several particles have been omitted from the table. These include the important
zero-mass, zero-charge particles, the photon and the graviton, which do not fall
into the baryon-meson-lepton classification scheme, and also some of the newer
resonances (K∗, φ, η). The antiparticles of the mesons are listed in the table, but
the antiparticles of the leptons and baryons would have to be listed in another
table which would look exactly like this one reflected on the zero-charge column.
Although all of the particles except the electron, neutrino, photon, graviton, and
proton are unstable, decay products have been shown only for the resonances.
Strangeness assignments are not applicable for leptons, since they do not interact
strongly with nuclei.

All particles which are together with the neutrons and protons are called
baryons, and the following ones exist: There is a “lambda,” with a mass of
1115 MeV, and three others, called sigmas, minus, neutral, and plus, with several
masses almost the same. There are groups or multiplets with almost the same
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Table 2-2

Elementary Particles

MASS
in MeV −e

CHARGE
0 +e

GROUPING &
STRANGENESS

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

e−

0.51

µ−

105.6

π−

139.6

K−

494

ρ−→π+π

Σ−

1196

Ξ−

1319

Y−1→Λ0+π−

ν0

0

π0

135.0

K0K0

ρ0→π+π

ω0→π+π+π

498

n
939

Λ0

1115

Σ0

1191

Ξ0

1311

Y0
1→Λ0+π0

π+
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K+

494

ρ+→π+π

p
938

Σ+

1189

Y+
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1395

S=0
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S=0

S=0

S=0
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mass, within one or two percent. Each particle in a multiplet has the same
strangeness. The first multiplet is the proton-neutron doublet, and then there is
a singlet (the lambda) then the sigma triplet, and finally the xi doublet. Very
recently, in 1961, even a few more particles were found. Or are they particles?
They live so short a time, they disintegrate almost instantaneously, as soon as
they are formed, that we do not know whether they should be considered as new
particles, or some kind of “resonance” interaction of a certain definite energy
between the Λ and π products into which they disintegrate.

In addition to the baryons the other particles which are involved in the nuclear
interaction are called mesons. There are first the pions, which come in three
varieties, positive, negative, and neutral; they form another multiplet. We have
also found some new things called K-mesons, and they occur as a doublet, K+

and K0. Also, every particle has its antiparticle, unless a particle is its own
antiparticle. For example, the π− and the π+ are antiparticles, but the π0 is
its own antiparticle. The K− and K+ are antiparticles, and the K0 and K0.
In addition, in 1961 we also found some more mesons or maybe mesons which
disintegrate almost immediately. A thing called ω which goes into three pions
has a mass 780 on this scale, and somewhat less certain is an object which
disintegrates into two pions. These particles, called mesons and baryons, and
the antiparticles of the mesons are on the same chart, but the antiparticles of
the baryons must be put on another chart, “reflected” through the charge-zero
column.

Just as Mendeleev’s chart was very good, except for the fact that there were
a number of rare earth elements which were hanging out loose from it, so we have
a number of things hanging out loose from this chart—particles which do not
interact strongly in nuclei, have nothing to do with a nuclear interaction, and do
not have a strong interaction (I mean the powerful kind of interaction of nuclear
energy). These are called leptons, and they are the following: there is the electron,
which has a very small mass on this scale, only 0.510 MeV. Then there is that
other, the µ-meson, the muon, which has a mass much higher, 206 times as heavy
as an electron. So far as we can tell, by all experiments so far, the difference
between the electron and the muon is nothing but the mass. Everything works
exactly the same for the muon as for the electron, except that one is heavier than
the other. Why is there another one heavier; what is the use for it? We do not
know. In addition, there is a lepton which is neutral, called a neutrino, and this
particle has zero mass. In fact, it is now known that there are two different kinds
of neutrinos, one related to electrons and the other related to muons.

2-16



Finally, we have two other particles which do not interact strongly with the
nuclear ones: one is a photon, and perhaps, if the field of gravity also has a
quantum-mechanical analog (a quantum theory of gravitation has not yet been
worked out), then there will be a particle, a graviton, which will have zero mass.

What is this “zero mass”? The masses given here are the masses of the
particles at rest. The fact that a particle has zero mass means, in a way, that it
cannot be at rest. A photon is never at rest, it is always moving at 186,000 miles
a second. We will understand more what mass means when we understand the
theory of relativity, which will come in due time.

Thus we are confronted with a large number of particles, which together seem
to be the fundamental constituents of matter. Fortunately, these particles are
not all different in their interactions with one another. In fact, there seem to be
just four kinds of interaction between particles which, in the order of decreasing
strength, are the nuclear force, electrical interactions, the beta-decay interaction,
and gravity. The photon is coupled to all charged particles and the strength of the
interaction is measured by some number, which is 1/137. The detailed law of this
coupling is known, that is quantum electrodynamics. Gravity is coupled to all
energy, but its coupling is extremely weak, much weaker than that of electricity.
This law is also known. Then there are the so-called weak decays—beta decay,
which causes the neutron to disintegrate into proton, electron, and neutrino,
relatively slowly. This law is only partly known. The so-called strong interaction,
the meson-baryon interaction, has a strength of 1 in this scale, and the law is
completely unknown, although there are a number of known rules, such as that
the number of baryons does not change in any reaction.

Table 2-3. Elementary Interactions

Coupling Strength* Law

Photon to charged particles ∼ 10−2 Law known

Gravity to all energy ∼ 10−40 Law known

Weak decays ∼ 10−5 Law partly known

Mesons to baryons ∼ 1 Law unknown (some rules known)
* The “strength” is a dimensionless measure of the coupling constant involved
in each interaction (∼ means “of the order”).
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This then, is the horrible condition of our physics today. To summarize it,
I would say this: outside the nucleus, we seem to know all; inside it, quantum
mechanics is valid—the principles of quantum mechanics have not been found to
fail. The stage on which we put all of our knowledge, we would say, is relativistic
space-time; perhaps gravity is involved in space-time. We do not know how the
universe got started, and we have never made experiments which check our ideas
of space and time accurately, below some tiny distance, so we only know that our
ideas work above that distance. We should also add that the rules of the game
are the quantum-mechanical principles, and those principles apply, so far as we
can tell, to the new particles as well as to the old. The origin of the forces in
nuclei leads us to new particles, but unfortunately they appear in great profusion
and we lack a complete understanding of their interrelationship, although we
already know that there are some very surprising relationships among them. We
seem gradually to be groping toward an understanding of the world of subatomic
particles, but we really do not know how far we have yet to go in this task.
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3

The Relation of Physics to Other Sciences

3-1 Introduction

Physics is the most fundamental and all-inclusive of the sciences, and has had
a profound effect on all scientific development. In fact, physics is the present-day
equivalent of what used to be called natural philosophy, from which most of our
modern sciences arose. Students of many fields find themselves studying physics
because of the basic role it plays in all phenomena. In this chapter we shall
try to explain what the fundamental problems in the other sciences are, but of
course it is impossible in so small a space really to deal with the complex, subtle,
beautiful matters in these other fields. Lack of space also prevents our discussing
the relation of physics to engineering, industry, society, and war, or even the
most remarkable relationship between mathematics and physics. (Mathematics is
not a science from our point of view, in the sense that it is not a natural science.
The test of its validity is not experiment.) We must, incidentally, make it clear
from the beginning that if a thing is not a science, it is not necessarily bad. For
example, love is not a science. So, if something is said not to be a science, it does
not mean that there is something wrong with it; it just means that it is not a
science.

3-2 Chemistry

The science which is perhaps the most deeply affected by physics is chemistry.
Historically, the early days of chemistry dealt almost entirely with what we now
call inorganic chemistry, the chemistry of substances which are not associated
with living things. Considerable analysis was required to discover the existence of
the many elements and their relationships—how they make the various relatively
simple compounds found in rocks, earth, etc. This early chemistry was very
important for physics. The interaction between the two sciences was very great
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because the theory of atoms was substantiated to a large extent by experiments
in chemistry. The theory of chemistry, i.e., of the reactions themselves, was
summarized to a large extent in the periodic chart of Mendeleev, which brings out
many strange relationships among the various elements, and it was the collection
of rules as to which substance is combined with which, and how, that constituted
inorganic chemistry. All these rules were ultimately explained in principle by
quantum mechanics, so that theoretical chemistry is in fact physics. On the
other hand, it must be emphasized that this explanation is in principle. We have
already discussed the difference between knowing the rules of the game of chess,
and being able to play. So it is that we may know the rules, but we cannot play
very well. It turns out to be very difficult to predict precisely what will happen in
a given chemical reaction; nevertheless, the deepest part of theoretical chemistry
must end up in quantum mechanics.

There is also a branch of physics and chemistry which was developed by
both sciences together, and which is extremely important. This is the method
of statistics applied in a situation in which there are mechanical laws, which is
aptly called statistical mechanics. In any chemical situation a large number of
atoms are involved, and we have seen that the atoms are all jiggling around in
a very random and complicated way. If we could analyze each collision, and be
able to follow in detail the motion of each molecule, we might hope to figure out
what would happen, but the many numbers needed to keep track of all these
molecules exceeds so enormously the capacity of any computer, and certainly
the capacity of the mind, that it was important to develop a method for dealing
with such complicated situations. Statistical mechanics, then, is the science of
the phenomena of heat, or thermodynamics. Inorganic chemistry is, as a science,
now reduced essentially to what are called physical chemistry and quantum
chemistry; physical chemistry to study the rates at which reactions occur and
what is happening in detail (How do the molecules hit? Which pieces fly off first?,
etc.), and quantum chemistry to help us understand what happens in terms of
the physical laws.

The other branch of chemistry is organic chemistry, the chemistry of the
substances which are associated with living things. For a time it was believed that
the substances which are associated with living things were so marvelous that
they could not be made by hand, from inorganic materials. This is not at all true—
they are just the same as the substances made in inorganic chemistry, but more
complicated arrangements of atoms are involved. Organic chemistry obviously
has a very close relationship to the biology which supplies its substances, and
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to industry, and furthermore, much physical chemistry and quantum mechanics
can be applied to organic as well as to inorganic compounds. However, the main
problems of organic chemistry are not in these aspects, but rather in the analysis
and synthesis of the substances which are formed in biological systems, in living
things. This leads imperceptibly, in steps, toward biochemistry, and then into
biology itself, or molecular biology.

3-3 Biology

Thus we come to the science of biology, which is the study of living things. In
the early days of biology, the biologists had to deal with the purely descriptive
problem of finding out what living things there were, and so they just had to
count such things as the hairs of the limbs of fleas. After these matters were
worked out with a great deal of interest, the biologists went into the machinery
inside the living bodies, first from a gross standpoint, naturally, because it takes
some effort to get into the finer details.

There was an interesting early relationship between physics and biology in
which biology helped physics in the discovery of the conservation of energy, which
was first demonstrated by Mayer in connection with the amount of heat taken in
and given out by a living creature.

If we look at the processes of biology of living animals more closely, we see
many physical phenomena: the circulation of blood, pumps, pressure, etc. There
are nerves: we know what is happening when we step on a sharp stone, and
that somehow or other the information goes from the leg up. It is interesting
how that happens. In their study of nerves, the biologists have come to the
conclusion that nerves are very fine tubes with a complex wall which is very
thin; through this wall the cell pumps ions, so that there are positive ions on the
outside and negative ions on the inside, like a capacitor. Now this membrane has
an interesting property; if it “discharges” in one place, i.e., if some of the ions
were able to move through one place, so that the electric voltage is reduced there,
that electrical influence makes itself felt on the ions in the neighborhood, and it
affects the membrane in such a way that it lets the ions through at neighboring
points also. This in turn affects it farther along, etc., and so there is a wave of
“penetrability” of the membrane which runs down the fiber when it is “excited”
at one end by stepping on the sharp stone. This wave is somewhat analogous
to a long sequence of vertical dominoes; if the end one is pushed over, that one
pushes the next, etc. Of course this will transmit only one message unless the
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dominoes are set up again; and similarly in the nerve cell, there are processes
which pump the ions slowly out again, to get the nerve ready for the next impulse.
So it is that we know what we are doing (or at least where we are). Of course
the electrical effects associated with this nerve impulse can be picked up with
electrical instruments, and because there are electrical effects, obviously the
physics of electrical effects has had a great deal of influence on understanding
the phenomenon.

The opposite effect is that, from somewhere in the brain, a message is sent
out along a nerve. What happens at the end of the nerve? There the nerve
branches out into fine little things, connected to a structure near a muscle, called
an endplate. For reasons which are not exactly understood, when the impulse
reaches the end of the nerve, little packets of a chemical called acetylcholine are
shot off (five or ten molecules at a time) and they affect the muscle fiber and make
it contract—how simple! What makes a muscle contract? A muscle is a very
large number of fibers close together, containing two different substances, myosin
and actomyosin, but the machinery by which the chemical reaction induced by
acetylcholine can modify the dimensions of the muscle is not yet known. Thus
the fundamental processes in the muscle that make mechanical motions are not
known.

Biology is such an enormously wide field that there are hosts of other problems
that we cannot mention at all—problems on how vision works (what the light
does in the eye), how hearing works, etc. (The way in which thinking works we
shall discuss later under psychology.) Now, these things concerning biology which
we have just discussed are, from a biological standpoint, really not fundamental,
at the bottom of life, in the sense that even if we understood them we still would
not understand life itself. To illustrate: the men who study nerves feel their work
is very important, because after all you cannot have animals without nerves. But
you can have life without nerves. Plants have neither nerves nor muscles, but
they are working, they are alive, just the same. So for the fundamental problems
of biology we must look deeper; when we do, we discover that all living things
have a great many characteristics in common. The most common feature is that
they are made of cells, within each of which is complex machinery for doing
things chemically. In plant cells, for example, there is machinery for picking up
light and generating glucose, which is consumed in the dark to keep the plant
alive. When the plant is eaten the glucose itself generates in the animal a series
of chemical reactions very closely related to photosynthesis (and its opposite
effect in the dark) in plants.
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In the cells of living systems there are many elaborate chemical reactions,
in which one compound is changed into another and another. To give some
impression of the enormous efforts that have gone into the study of biochemistry,
the chart in Fig. 3-1 summarizes our knowledge to date on just one small part of
the many series of reactions which occur in cells, perhaps a percent or so of it.

Here we see a whole series of molecules which change from one to another in a
sequence or cycle of rather small steps. It is called the Krebs cycle, the respiratory
cycle. Each of the chemicals and each of the steps is fairly simple, in terms of
what change is made in the molecule, but—and this is a centrally important
discovery in biochemistry—these changes are relatively difficult to accomplish
in a laboratory. If we have one substance and another very similar substance,
the one does not just turn into the other, because the two forms are usually
separated by an energy barrier or “hill.” Consider this analogy: If we wanted
to take an object from one place to another, at the same level but on the other
side of a hill, we could push it over the top, but to do so requires the addition of
some energy. Thus most chemical reactions do not occur, because there is what
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is called an activation energy in the way. In order to add an extra atom to our
chemical requires that we get it close enough that some rearrangement can occur;
then it will stick. But if we cannot give it enough energy to get it close enough,
it will not go to completion, it will just go part way up the “hill” and back down
again. However, if we could literally take the molecules in our hands and push
and pull the atoms around in such a way as to open a hole to let the new atom
in, and then let it snap back, we would have found another way, around the hill,
which would not require extra energy, and the reaction would go easily. Now
there actually are, in the cells, very large molecules, much larger than the ones
whose changes we have been describing, which in some complicated way hold
the smaller molecules just right, so that the reaction can occur easily. These
very large and complicated things are called enzymes. (They were first called
ferments, because they were originally discovered in the fermentation of sugar.
In fact, some of the first reactions in the cycle were discovered there.) In the
presence of an enzyme the reaction will go.

An enzyme is made of another substance called protein. Enzymes are very
big and complicated, and each one is different, each being built to control a
certain special reaction. The names of the enzymes are written in Fig. 3-1 at each
reaction. (Sometimes the same enzyme may control two reactions.) We emphasize
that the enzymes themselves are not involved in the reaction directly. They do
not change; they merely let an atom go from one place to another. Having done
so, the enzyme is ready to do it to the next molecule, like a machine in a factory.
Of course, there must be a supply of certain atoms and a way of disposing of
other atoms. Take hydrogen, for example: there are enzymes which have special
units on them which carry the hydrogen for all chemical reactions. For example,
there are three or four hydrogen-reducing enzymes which are used all over our
cycle in different places. It is interesting that the machinery which liberates some
hydrogen at one place will take that hydrogen and use it somewhere else.

The most important feature of the cycle of Fig. 3-1 is the transformation
from GDP to GTP (guanosine-di-phosphate to guanosine-tri-phosphate) because
the one substance has much more energy in it than the other. Just as there
is a “box” in certain enzymes for carrying hydrogen atoms around, there are
special energy-carrying “boxes” which involve the triphosphate group. So, GTP
has more energy than GDP and if the cycle is going one way, we are producing
molecules which have extra energy and which can go drive some other cycle
which requires energy, for example the contraction of muscle. The muscle will
not contract unless there is GTP. We can take muscle fiber, put it in water, and
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add GTP, and the fibers contract, changing GTP to GDP if the right enzymes
are present. So the real system is in the GDP-GTP transformation; in the dark
the GTP which has been stored up during the day is used to run the whole cycle
around the other way. An enzyme, you see, does not care in which direction the
reaction goes, for if it did it would violate one of the laws of physics.

Physics is of great importance in biology and other sciences for still another
reason, that has to do with experimental techniques. In fact, if it were not for
the great development of experimental physics, these biochemistry charts would
not be known today. The reason is that the most useful tool of all for analyzing
this fantastically complex system is to label the atoms which are used in the
reactions. Thus, if we could introduce into the cycle some carbon dioxide which
has a “green mark” on it, and then measure after three seconds where the green
mark is, and again measure after ten seconds, etc., we could trace out the course
of the reactions. What are the “green marks”? They are different isotopes. We
recall that the chemical properties of atoms are determined by the number of
electrons, not by the mass of the nucleus. But there can be, for example in
carbon, six neutrons or seven neutrons, together with the six protons which all
carbon nuclei have. Chemically, the two atoms C12 and C13 are the same, but
they differ in weight and they have different nuclear properties, and so they are
distinguishable. By using these isotopes of different weights, or even radioactive
isotopes like C14, which provide a more sensitive means for tracing very small
quantities, it is possible to trace the reactions.

Now, we return to the description of enzymes and proteins. All proteins are
not enzymes, but all enzymes are proteins. There are many proteins, such as the
proteins in muscle, the structural proteins which are, for example, in cartilage
and hair, skin, etc., that are not themselves enzymes. However, proteins are a
very characteristic substance of life: first of all they make up all the enzymes, and
second, they make up much of the rest of living material. Proteins have a very
interesting and simple structure. They are a series, or chain, of different amino
acids. There are twenty different amino acids, and they all can combine with each
other to form chains in which the backbone is CO-NH, etc. Proteins are nothing
but chains of various ones of these twenty amino acids. Each of the amino acids
probably serves some special purpose. Some, for example, have a sulfur atom
at a certain place; when two sulfur atoms are in the same protein, they form a
bond, that is, they tie the chain together at two points and form a loop. Another
has extra oxygen atoms which make it an acidic substance, another has a basic
characteristic. Some of them have big groups hanging out to one side, so that
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they take up a lot of space. One of the amino acids, called proline, is not really an
amino acid, but imino acid. There is a slight difference, with the result that when
proline is in the chain, there is a kink in the chain. If we wished to manufacture
a particular protein, we would give these instructions: put one of those sulfur
hooks here; next, add something to take up space; then attach something to
put a kink in the chain. In this way, we will get a complicated-looking chain,
hooked together and having some complex structure; this is presumably just the
manner in which all the various enzymes are made. One of the great triumphs
in recent times (since 1960), was at last to discover the exact spatial atomic
arrangement of certain proteins, which involve some fifty-six or sixty amino acids
in a row. Over a thousand atoms (more nearly two thousand, if we count the
hydrogen atoms) have been located in a complex pattern in two proteins. The
first was hemoglobin. One of the sad aspects of this discovery is that we cannot
see anything from the pattern; we do not understand why it works the way it
does. Of course, that is the next problem to be attacked.

Another problem is how do the enzymes know what to be? A red-eyed fly
makes a red-eyed fly baby, and so the information for the whole pattern of
enzymes to make red pigment must be passed from one fly to the next. This is
done by a substance in the nucleus of the cell, not a protein, called DNA (short
for des-oxyribose nucleic acid). This is the key substance which is passed from one
cell to another (for instance sperm cells consist mostly of DNA) and carries the
information as to how to make the enzymes. DNA is the “blueprint.” What does
the blueprint look like and how does it work? First, the blueprint must be able
to reproduce itself. Secondly, it must be able to instruct the protein. Concerning
the reproduction, we might think that this proceeds like cell reproduction. Cells
simply grow bigger and then divide in half. Must it be thus with DNA molecules,
then, that they too grow bigger and divide in half? Every atom certainly does
not grow bigger and divide in half! No, it is impossible to reproduce a molecule
except by some more clever way.

The structure of the substance DNA was studied for a long time, first chemi-
cally to find the composition, and then with x-rays to find the pattern in space.
The result was the following remarkable discovery: The DNA molecule is a pair
of chains, twisted upon each other. The backbone of each of these chains, which
are analogous to the chains of proteins but chemically quite different, is a series
of sugar and phosphate groups, as shown in Fig. 3-2. Now we see how the chain
can contain instructions, for if we could split this chain down the middle, we
would have a series BAADC . . . and every living thing could have a different
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Fig. 3-2. Schematic diagram of DNA.

series. Thus perhaps, in some way, the specific instructions for the manufacture
of proteins are contained in the specific series of the DNA.

Attached to each sugar along the line, and linking the two chains together,
are certain pairs of cross-links. However, they are not all of the same kind; there
are four kinds, called adenine, thymine, cytosine, and guanine, but let us call
them A, B, C, and D. The interesting thing is that only certain pairs can sit
opposite each other, for example A with B and C with D. These pairs are put on
the two chains in such a way that they “fit together,” and have a strong energy
of interaction. However, C will not fit with A, and B will not fit with C; they
will only fit in pairs, A against B and C against D. Therefore if one is C, the
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other must be D, etc. Whatever the letters may be in one chain, each one must
have its specific complementary letter on the other chain.

What then about reproduction? Suppose we split this chain in two. How can
we make another one just like it? If, in the substances of the cells, there is a
manufacturing department which brings up phosphate, sugar, and A, B, C, D
units not connected in a chain, the only ones which will attach to our split chain
will be the correct ones, the complements of BAADC . . ., namely, ABBCD . . .
Thus what happens is that the chain splits down the middle during cell division,
one half ultimately to go with one cell, the other half to end up in the other cell;
when separated, a new complementary chain is made by each half-chain.

Next comes the question, precisely how does the order of the A, B, C, D units
determine the arrangement of the amino acids in the protein? This is the central
unsolved problem in biology today. The first clues, or pieces of information,
however, are these: There are in the cell tiny particles called ribosomes, and it is
now known that that is the place where proteins are made. But the ribosomes
are not in the nucleus, where the DNA and its instructions are. Something seems
to be the matter. However, it is also known that little molecule pieces come off
the DNA—not as long as the big DNA molecule that carries all the information
itself, but like a small section of it. This is called RNA, but that is not essential.
It is a kind of copy of the DNA, a short copy. The RNA, which somehow carries
a message as to what kind of protein to make goes over to the ribosome; that is
known. When it gets there, protein is synthesized at the ribosome. That is also
known. However, the details of how the amino acids come in and are arranged in
accordance with a code that is on the RNA are, as yet, still unknown. We do
not know how to read it. If we knew, for example, the “lineup” A, B, C, C, A,
we could not tell you what protein is to be made.

Certainly no subject or field is making more progress on so many fronts at
the present moment, than biology, and if we were to name the most powerful
assumption of all, which leads one on and on in an attempt to understand life, it
is that all things are made of atoms, and that everything that living things do
can be understood in terms of the jigglings and wigglings of atoms.

3-4 Astronomy

In this rapid-fire explanation of the whole world, we must now turn to astron-
omy. Astronomy is older than physics. In fact, it got physics started by showing
the beautiful simplicity of the motion of the stars and planets, the understanding
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of which was the beginning of physics. But the most remarkable discovery in all
of astronomy is that the stars are made of atoms of the same kind as those on the
earth.* How was this done? Atoms liberate light which has definite frequencies,
something like the timbre of a musical instrument, which has definite pitches or
frequencies of sound. When we are listening to several different tones we can tell
them apart, but when we look with our eyes at a mixture of colors we cannot tell
the parts from which it was made, because the eye is nowhere near as discerning
as the ear in this connection. However, with a spectroscope we can analyze the fre-
quencies of the light waves and in this way we can see the very tunes of the atoms
that are in the different stars. As a matter of fact, two of the chemical elements
were discovered on a star before they were discovered on the earth. Helium was
discovered on the sun, whence its name, and technetium was discovered in certain
cool stars. This, of course, permits us to make headway in understanding the
stars, because they are made of the same kinds of atoms which are on the earth.
Now we know a great deal about the atoms, especially concerning their behavior
under conditions of high temperature but not very great density, so that we
can analyze by statistical mechanics the behavior of the stellar substance. Even
though we cannot reproduce the conditions on the earth, using the basic physical
laws we often can tell precisely, or very closely, what will happen. So it is that
physics aids astronomy. Strange as it may seem, we understand the distribution of
matter in the interior of the sun far better than we understand the interior of the
earth. What goes on inside a star is better understood than one might guess from
the difficulty of having to look at a little dot of light through a telescope, because
we can calculate what the atoms in the stars should do in most circumstances.

One of the most impressive discoveries was the origin of the energy of the
stars, that makes them continue to burn. One of the men who discovered this

* How I’m rushing through this! How much each sentence in this brief story contains. “The
stars are made of the same atoms as the earth.” I usually pick one small topic like this to give a
lecture on. Poets say science takes away from the beauty of the stars—mere globs of gas atoms.
Nothing is “mere.” I too can see the stars on a desert night, and feel them. But do I see less
or more? The vastness of the heavens stretches my imagination—stuck on this carousel my
little eye can catch one-million-year-old light. A vast pattern—of which I am a part—perhaps
my stuff was belched from some forgotten star, as one is belching there. Or see them with the
greater eye of Palomar, rushing all apart from some common starting point when they were
perhaps all together. What is the pattern, or the meaning, or the why? It does not do harm to
the mystery to know a little about it. For far more marvelous is the truth than any artists of
the past imagined! Why do the poets of the present not speak of it? What men are poets who
can speak of Jupiter if he were like a man, but if he is an immense spinning sphere of methane
and ammonia must be silent?
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was out with his girl friend the night after he realized that nuclear reactions
must be going on in the stars in order to make them shine. She said “Look at
how pretty the stars shine!” He said “Yes, and right now I am the only man in
the world who knows why they shine.” She merely laughed at him. She was not
impressed with being out with the only man who, at that moment, knew why
stars shine. Well, it is sad to be alone, but that is the way it is in this world.

It is the nuclear “burning” of hydrogen which supplies the energy of the sun;
the hydrogen is converted into helium. Furthermore, ultimately, the manufacture
of various chemical elements proceeds in the centers of the stars, from hydrogen.
The stuff of which we are made, was “cooked” once, in a star, and spit out. How
do we know? Because there is a clue. The proportion of the different isotopes—
how much C12, how much C13, etc., is something which is never changed by
chemical reactions, because the chemical reactions are so much the same for the
two. The proportions are purely the result of nuclear reactions. By looking
at the proportions of the isotopes in the cold, dead ember which we are, we
can discover what the furnace was like in which the stuff of which we are made
was formed. That furnace was like the stars, and so it is very likely that our
elements were “made” in the stars and spit out in the explosions which we call
novae and supernovae. Astronomy is so close to physics that we shall study many
astronomical things as we go along.

3-5 Geology

We turn now to what are called earth sciences, or geology. First, meteorology
and the weather. Of course the instruments of meteorology are physical instru-
ments, and the development of experimental physics made these instruments
possible, as was explained before. However, the theory of meteorology has never
been satisfactorily worked out by the physicist. “Well,” you say, “there is nothing
but air, and we know the equations of the motions of air.” Yes we do. “So if we
know the condition of air today, why can’t we figure out the condition of the air
tomorrow?” First, we do not really know what the condition is today, because
the air is swirling and twisting everywhere. It turns out to be very sensitive, and
even unstable. If you have ever seen water run smoothly over a dam, and then
turn into a large number of blobs and drops as it falls, you will understand what
I mean by unstable. You know the condition of the water before it goes over the
spillway; it is perfectly smooth; but the moment it begins to fall, where do the
drops begin? What determines how big the lumps are going to be and where
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they will be? That is not known, because the water is unstable. Even a smooth
moving mass of air, in going over a mountain turns into complex whirlpools and
eddies. In many fields we find this situation of turbulent flow that we cannot
analyze today. Quickly we leave the subject of weather, and discuss geology!

The question basic to geology is, what makes the earth the way it is? The
most obvious processes are in front of your very eyes, the erosion processes of
the rivers, the winds, etc. It is easy enough to understand these, but for every
bit of erosion there is an equal amount of something else going on. Mountains
are no lower today, on the average, than they were in the past. There must
be mountain-forming processes. You will find, if you study geology, that there
are mountain-forming processes and volcanism, which nobody understands but
which is half of geology. The phenomenon of volcanoes is really not understood.
What makes an earthquake is, ultimately, not understood. It is understood
that if something is pushing something else, it snaps and will slide—that is all
right. But what pushes, and why? The theory is that there are currents inside
the earth—circulating currents, due to the difference in temperature inside and
outside—which, in their motion, push the surface slightly. Thus if there are two
opposite circulations next to each other, the matter will collect in the region
where they meet and make belts of mountains which are in unhappy stressed
conditions, and so produce volcanoes and earthquakes.

What about the inside of the earth? A great deal is known about the speed of
earthquake waves through the earth and the density of distribution of the earth.
However, physicists have been unable to get a good theory as to how dense a
substance should be at the pressures that would be expected at the center of the
earth. In other words, we cannot figure out the properties of matter very well in
these circumstances. We do much less well with the earth than we do with the
conditions of matter in the stars. The mathematics involved seems a little too
difficult, so far, but perhaps it will not be too long before someone realizes that
it is an important problem, and really works it out. The other aspect, of course,
is that even if we did know the density, we cannot figure out the circulating
currents. Nor can we really work out the properties of rocks at high pressure.
We cannot tell how fast the rocks should “give”; that must all be worked out by
experiment.

3-6 Psychology
Next, we consider the science of psychology. Incidentally, psychoanalysis

is not a science: it is at best a medical process, and perhaps even more like
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witch-doctoring. It has a theory as to what causes disease—lots of different
“spirits,” etc. The witch doctor has a theory that a disease like malaria is caused
by a spirit which comes into the air; it is not cured by shaking a snake over it,
but quinine does help malaria. So, if you are sick, I would advise that you go to
the witch doctor because he is the man in the tribe who knows the most about
the disease; on the other hand, his knowledge is not science. Psychoanalysis has
not been checked carefully by experiment, and there is no way to find a list of
the number of cases in which it works, the number of cases in which it does not
work, etc.

The other branches of psychology, which involve things like the physiology
of sensation—what happens in the eye, and what happens in the brain—are, if
you wish, less interesting. But some small but real progress has been made in
studying them. One of the most interesting technical problems may or may not
be called psychology. The central problem of the mind, if you will, or the nervous
system, is this: when an animal learns something, it can do something different
than it could before, and its brain cell must have changed too, if it is made out
of atoms. In what way is it different? We do not know where to look, or what
to look for, when something is memorized. We do not know what it means, or
what change there is in the nervous system, when a fact is learned. This is a
very important problem which has not been solved at all. Assuming, however,
that there is some kind of memory thing, the brain is such an enormous mass
of interconnecting wires and nerves that it probably cannot be analyzed in a
straightforward manner. There is an analog of this to computing machines and
computing elements, in that they also have a lot of lines, and they have some
kind of element, analogous, perhaps, to the synapse, or connection of one nerve
to another. This is a very interesting subject which we have not the time to
discuss further—the relationship between thinking and computing machines. It
must be appreciated, of course, that this subject will tell us very little about the
real complexities of ordinary human behavior. All human beings are so different.
It will be a long time before we get there. We must start much further back. If
we could even figure out how a dog works, we would have gone pretty far. Dogs
are easier to understand, but nobody yet knows how dogs work.

3-7 How did it get that way?

In order for physics to be useful to other sciences in a theoretical way, other
than in the invention of instruments, the science in question must supply to the
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physicist a description of the object in a physicist’s language. They can say “why
does a frog jump?,” and the physicist cannot answer. If they tell him what a frog
is, that there are so many molecules, there is a nerve here, etc., that is different.
If they will tell us, more or less, what the earth or the stars are like, then we
can figure it out. In order for physical theory to be of any use, we must know
where the atoms are located. In order to understand the chemistry, we must
know exactly what atoms are present, for otherwise we cannot analyze it. That
is but one limitation, of course.

There is another kind of problem in the sister sciences which does not exist in
physics; we might call it, for lack of a better term, the historical question. How
did it get that way? If we understand all about biology, we will want to know how
all the things which are on the earth got there. There is the theory of evolution,
an important part of biology. In geology, we not only want to know how the
mountains are forming, but how the entire earth was formed in the beginning,
the origin of the solar system, etc. That, of course, leads us to want to know
what kind of matter there was in the world. How did the stars evolve? What
were the initial conditions? That is the problem of astronomical history. A great
deal has been found out about the formation of stars, the formation of elements
from which we were made, and even a little about the origin of the universe.

There is no historical question being studied in physics at the present time.
We do not have a question, “Here are the laws of physics, how did they get that
way?” We do not imagine, at the moment, that the laws of physics are somehow
changing with time, that they were different in the past than they are at present.
Of course they may be, and the moment we find they are, the historical question
of physics will be wrapped up with the rest of the history of the universe, and then
the physicist will be talking about the same problems as astronomers, geologists,
and biologists.

Finally, there is a physical problem that is common to many fields, that is very
old, and that has not been solved. It is not the problem of finding new fundamental
particles, but something left over from a long time ago—over a hundred years.
Nobody in physics has really been able to analyze it mathematically satisfactorily
in spite of its importance to the sister sciences. It is the analysis of circulating or
turbulent fluids. If we watch the evolution of a star, there comes a point where we
can deduce that it is going to start convection, and thereafter we can no longer
deduce what should happen. A few million years later the star explodes, but we
cannot figure out the reason. We cannot analyze the weather. We do not know
the patterns of motions that there should be inside the earth. The simplest form
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of the problem is to take a pipe that is very long and push water through it at
high speed. We ask: to push a given amount of water through that pipe, how
much pressure is needed? No one can analyze it from first principles and the
properties of water. If the water flows very slowly, or if we use a thick goo like
honey, then we can do it nicely. You will find that in your textbook. What we
really cannot do is deal with actual, wet water running through a pipe. That is
the central problem which we ought to solve some day, and we have not.

A poet once said, “The whole universe is in a glass of wine.” We will probably
never know in what sense he meant that, for poets do not write to be understood.
But it is true that if we look at a glass of wine closely enough we see the
entire universe. There are the things of physics: the twisting liquid which
evaporates depending on the wind and weather, the reflections in the glass, and
our imagination adds the atoms. The glass is a distillation of the earth’s rocks,
and in its composition we see the secrets of the universe’s age, and the evolution
of stars. What strange array of chemicals are in the wine? How did they come
to be? There are the ferments, the enzymes, the substrates, and the products.
There in wine is found the great generalization: all life is fermentation. Nobody
can discover the chemistry of wine without discovering, as did Louis Pasteur, the
cause of much disease. How vivid is the claret, pressing its existence into the
consciousness that watches it! If our small minds, for some convenience, divide
this glass of wine, this universe, into parts—physics, biology, geology, astronomy,
psychology, and so on—remember that nature does not know it! So let us put
it all back together, not forgetting ultimately what it is for. Let it give us one
more final pleasure: drink it and forget it all!
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4

Conservation of Energy

4-1 What is energy?

In this chapter, we begin our more detailed study of the different aspects of
physics, having finished our description of things in general. To illustrate the
ideas and the kind of reasoning that might be used in theoretical physics, we shall
now examine one of the most basic laws of physics, the conservation of energy.

There is a fact, or if you wish, a law, governing all natural phenomena that
are known to date. There is no known exception to this law—it is exact so far as
we know. The law is called the conservation of energy. It states that there is
a certain quantity, which we call energy, that does not change in the manifold
changes which nature undergoes. That is a most abstract idea, because it is a
mathematical principle; it says that there is a numerical quantity which does
not change when something happens. It is not a description of a mechanism, or
anything concrete; it is just a strange fact that we can calculate some number and
when we finish watching nature go through her tricks and calculate the number
again, it is the same. (Something like the bishop on a red square, and after a
number of moves—details unknown—it is still on some red square. It is a law of
this nature.) Since it is an abstract idea, we shall illustrate the meaning of it by
an analogy.

Imagine a child, perhaps “Dennis the Menace,” who has blocks which are
absolutely indestructible, and cannot be divided into pieces. Each is the same
as the other. Let us suppose that he has 28 blocks. His mother puts him with
his 28 blocks into a room at the beginning of the day. At the end of the day,
being curious, she counts the blocks very carefully, and discovers a phenomenal
law—no matter what he does with the blocks, there are always 28 remaining!
This continues for a number of days, until one day there are only 27 blocks,
but a little investigating shows that there is one under the rug—she must look
everywhere to be sure that the number of blocks has not changed. One day,
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however, the number appears to change—there are only 26 blocks. Careful
investigation indicates that the window was open, and upon looking outside, the
other two blocks are found. Another day, careful count indicates that there are
30 blocks! This causes considerable consternation, until it is realized that Bruce
came to visit, bringing his blocks with him, and he left a few at Dennis’ house.
After she has disposed of the extra blocks, she closes the window, does not let
Bruce in, and then everything is going along all right, until one time she counts
and finds only 25 blocks. However, there is a box in the room, a toy box, and
the mother goes to open the toy box, but the boy says “No, do not open my toy
box,” and screams. Mother is not allowed to open the toy box. Being extremely
curious, and somewhat ingenious, she invents a scheme! She knows that a block
weighs three ounces, so she weighs the box at a time when she sees 28 blocks,
and it weighs 16 ounces. The next time she wishes to check, she weighs the box
again, subtracts sixteen ounces and divides by three. She discovers the following:(

number of
blocks seen

)
+ (weight of box)− 16 ounces

3 ounces = constant. (4.1)

There then appear to be some new deviations, but careful study indicates that
the dirty water in the bathtub is changing its level. The child is throwing blocks
into the water, and she cannot see them because it is so dirty, but she can find
out how many blocks are in the water by adding another term to her formula.
Since the original height of the water was 6 inches and each block raises the water
a quarter of an inch, this new formula would be:(

number of
blocks seen

)
+ (weight of box)− 16 ounces

3 ounces

+ (height of water)− 6 inches
1/4 inch = constant. (4.2)

In the gradual increase in the complexity of her world, she finds a whole series
of terms representing ways of calculating how many blocks are in places where
she is not allowed to look. As a result, she finds a complex formula, a quantity
which has to be computed, which always stays the same in her situation.

What is the analogy of this to the conservation of energy? The most remark-
able aspect that must be abstracted from this picture is that there are no blocks.
Take away the first terms in (4.1) and (4.2) and we find ourselves calculating
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more or less abstract things. The analogy has the following points. First, when
we are calculating the energy, sometimes some of it leaves the system and goes
away, or sometimes some comes in. In order to verify the conservation of energy,
we must be careful that we have not put any in or taken any out. Second, the
energy has a large number of different forms, and there is a formula for each
one. These are: gravitational energy, kinetic energy, heat energy, elastic energy,
electrical energy, chemical energy, radiant energy, nuclear energy, mass energy.
If we total up the formulas for each of these contributions, it will not change
except for energy going in and out.

It is important to realize that in physics today, we have no knowledge of what
energy is. We do not have a picture that energy comes in little blobs of a definite
amount. It is not that way. However, there are formulas for calculating some
numerical quantity, and when we add it all together it gives “28”—always the
same number. It is an abstract thing in that it does not tell us the mechanism
or the reasons for the various formulas.

4-2 Gravitational potential energy

Conservation of energy can be understood only if we have the formula for
all of its forms. I wish to discuss the formula for gravitational energy near the
surface of the Earth, and I wish to derive this formula in a way which has nothing
to do with history but is simply a line of reasoning invented for this particular
lecture to give you an illustration of the remarkable fact that a great deal about
nature can be extracted from a few facts and close reasoning. It is an illustration
of the kind of work theoretical physicists become involved in. It is patterned after
a most excellent argument by Mr. Carnot on the efficiency of steam engines.*

Consider weight-lifting machines—machines which have the property that
they lift one weight by lowering another. Let us also make a hypothesis: that
there is no such thing as perpetual motion with these weight-lifting machines. (In
fact, that there is no perpetual motion at all is a general statement of the law of
conservation of energy.) We must be careful to define perpetual motion. First,
let us do it for weight-lifting machines. If, when we have lifted and lowered a lot
of weights and restored the machine to the original condition, we find that the
net result is to have lifted a weight, then we have a perpetual motion machine
because we can use that lifted weight to run something else. That is, provided the

* Our point here is not so much the result, (4.3), which in fact you may already know, as
the possibility of arriving at it by theoretical reasoning.
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Fig. 4-1. Simple weight-lifting machine.

machine which lifted the weight is brought back to its exact original condition,
and furthermore that it is completely self-contained—that it has not received
the energy to lift that weight from some external source—like Bruce’s blocks.

A very simple weight-lifting machine is shown in Fig. 4-1. This machine lifts
weights three units “strong.” We place three units on one balance pan, and one
unit on the other. However, in order to get it actually to work, we must lift a
little weight off the left pan. On the other hand, we could lift a one-unit weight
by lowering the three-unit weight, if we cheat a little by lifting a little weight
off the other pan. Of course, we realize that with any actual lifting machine, we
must add a little extra to get it to run. This we disregard, temporarily. Ideal
machines, although they do not exist, do not require anything extra. A machine
that we actually use can be, in a sense, almost reversible: that is, if it will lift
the weight of three by lowering a weight of one, then it will also lift nearly the
weight of one the same amount by lowering the weight of three.

We imagine that there are two classes of machines, those that are not reversible,
which includes all real machines, and those that are reversible, which of course
are actually not attainable no matter how careful we may be in our design
of bearings, levers, etc. We suppose, however, that there is such a thing—a
reversible machine—which lowers one unit of weight (a pound or any other unit)
by one unit of distance, and at the same time lifts a three-unit weight. Call this
reversible machine, Machine A. Suppose this particular reversible machine lifts
the three-unit weight a distance X. Then suppose we have another machine,
Machine B, which is not necessarily reversible, which also lowers a unit weight a
unit distance, but which lifts three units a distance Y . We can now prove that
Y is not higher than X; that is, it is impossible to build a machine that will lift
a weight any higher than it will be lifted by a reversible machine. Let us see
why. Let us suppose that Y were higher than X. We take a one-unit weight and
lower it one unit height with Machine B, and that lifts the three-unit weight up
a distance Y . Then we could lower the weight from Y to X, obtaining free power,
and use the reversible Machine A, running backwards, to lower the three-unit
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weight a distance X and lift the one-unit weight by one unit height. This will
put the one-unit weight back where it was before, and leave both machines ready
to be used again! We would therefore have perpetual motion if Y were higher
than X, which we assumed was impossible. With those assumptions, we thus
deduce that Y is not higher than X, so that of all machines that can be designed,
the reversible machine is the best.

We can also see that all reversible machines must lift to exactly the same
height. Suppose that B were really reversible also. The argument that Y is not
higher than X is, of course, just as good as it was before, but we can also make
our argument the other way around, using the machines in the opposite order, and
prove that X is not higher than Y . This, then, is a very remarkable observation
because it permits us to analyze the height to which different machines are
going to lift something without looking at the interior mechanism. We know at
once that if somebody makes an enormously elaborate series of levers that lift
three units a certain distance by lowering one unit by one unit distance, and we
compare it with a simple lever which does the same thing and is fundamentally
reversible, his machine will lift it no higher, but perhaps less high. If his machine
is reversible, we also know exactly how high it will lift. To summarize: every
reversible machine, no matter how it operates, which drops one pound one foot
and lifts a three-pound weight always lifts it the same distance, X. This is clearly
a universal law of great utility. The next question is, of course, what is X?

Suppose we have a reversible machine which is going to lift this distance X,
three for one. We set up three balls in a rack which does not move, as shown
in Fig. 4-2. One ball is held on a stage at a distance one foot above the ground.
The machine can lift three balls, lowering one by a distance 1. Now, we have
arranged that the platform which holds three balls has a floor and two shelves,
exactly spaced at distance X, and further, that the rack which holds the balls
is spaced at distance X, (a). First we roll the balls horizontally from the rack
to the shelves, (b), and we suppose that this takes no energy because we do not
change the height. The reversible machine then operates: it lowers the single
ball to the floor, and it lifts the rack a distance X, (c). Now we have ingeniously
arranged the rack so that these balls are again even with the platforms. Thus we
unload the balls onto the rack, (d); having unloaded the balls, we can restore the
machine to its original condition. Now we have three balls on the upper three
shelves and one at the bottom. But the strange thing is that, in a certain way
of speaking, we have not lifted two of them at all because, after all, there were
balls on shelves 2 and 3 before. The resulting effect has been to lift one ball a
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(a) START (b) LOAD BALLS

(c) 1 lb. LIFTS 3 lb. A
DISTANCE X

(d) UNLOAD BALLS

(e) REARRANGE (f) END

X

X

3X

1 ft.

3X

1 ft.

Fig. 4-2. A reversible machine.

distance 3X. Now, if 3X exceeds one foot, then we can lower the ball to return
the machine to the initial condition, (f), and we can run the apparatus again.
Therefore 3X cannot exceed one foot, for if 3X exceeds one foot we can make
perpetual motion. Likewise, we can prove that one foot cannot exceed 3X, by
making the whole machine run the opposite way, since it is a reversible machine.
Therefore 3X is neither greater nor less than a foot, and we discover then, by
argument alone, the law that X = 1

3 foot. The generalization is clear: one pound
falls a certain distance in operating a reversible machine; then the machine can
lift p pounds this distance divided by p. Another way of putting the result is
that three pounds times the height lifted, which in our problem was X, is equal
to one pound times the distance lowered, which is one foot in this case. If we
take all the weights and multiply them by the heights at which they are now,
above the floor, let the machine operate, and then multiply all the weights by all
the heights again, there will be no change. (We have to generalize the example
where we moved only one weight to the case where when we lower one we lift
several different ones—but that is easy.)
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We call the sum of the weights times the heights gravitational potential energy—
the energy which an object has because of its relationship in space, relative to
the earth. The formula for gravitational energy, then, so long as we are not too
far from the earth (the force weakens as we go higher) isgravitational

potential energy
for one object

 = (weight)× (height). (4.3)

It is a very beautiful line of reasoning. The only problem is that perhaps it is
not true. (After all, nature does not have to go along with our reasoning.) For
example, perhaps perpetual motion is, in fact, possible. Some of the assumptions
may be wrong, or we may have made a mistake in reasoning, so it is always
necessary to check. It turns out experimentally, in fact, to be true.

The general name of energy which has to do with location relative to something
else is called potential energy. In this particular case, of course, we call it
gravitational potential energy. If it is a question of electrical forces against which
we are working, instead of gravitational forces, if we are “lifting” charges away
from other charges with a lot of levers, then the energy content is called electrical
potential energy. The general principle is that the change in the energy is the
force times the distance that the force is pushed, and that this is a change in
energy in general:(

change in
energy

)
= (force)×

(
distance force
acts through

)
. (4.4)

We will return to many of these other kinds of energy as we continue the course.
The principle of the conservation of energy is very useful for deducing what

will happen in a number of circumstances. In high school we learned a lot of
laws about pulleys and levers used in different ways. We can now see that these
“laws” are all the same thing, and that we did not have to memorize 75 rules to
figure it out. A simple example is a smooth inclined plane which is, happily, a
three-four-five triangle (Fig. 4-3). We hang a one-pound weight on the inclined
plane with a pulley, and on the other side of the pulley, a weight W . We want
to know how heavy W must be to balance the one pound on the plane. How
can we figure that out? If we say it is just balanced, it is reversible and so can
move up and down, and we can consider the following situation. In the initial
circumstance, (a), the one pound weight is at the bottom and weight W is at
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(a) (b)

Fig. 4-3. Inclined plane.

the top. When W has slipped down in a reversible way, we have a one-pound
weight at the top and the weight W the slant distance, (b), or five feet, from the
plane in which it was before. We lifted the one-pound weight only three feet and
we lowered W pounds by five feet. Therefore W = 3

5 of a pound. Note that we
deduced this from the conservation of energy, and not from force components.
Cleverness, however, is relative. It can be deduced in a way which is even more
brilliant, discovered by Stevinus and inscribed on his tombstone. Figure 4-4
explains that it has to be 3

5 of a pound, because the chain does not go around.
It is evident that the lower part of the chain is balanced by itself, so that the
pull of the five weights on one side must balance the pull of three weights on the
other, or whatever the ratio of the legs. You see, by looking at this diagram, that
W must be 3

5 of a pound. (If you get an epitaph like that on your gravestone,
you are doing fine.)

Let us now illustrate the energy principle with a more complicated problem,
the screw jack shown in Fig. 4-5. A handle 20 inches long is used to turn the

Fig. 4-4. The epitaph of Stevinus.
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1 TON

10 THREADS/
INCH

20′′

Fig. 4-5. A screw jack.

screw, which has 10 threads to the inch. We would like to know how much force
would be needed at the handle to lift one ton (2000 pounds). If we want to lift
the ton one inch, say, then we must turn the handle around ten times. When it
goes around once it goes approximately 126 inches. The handle must thus travel
1260 inches, and if we used various pulleys, etc., we would be lifting our one ton
with an unknown smaller weight W applied to the end of the handle. So we find
out that W is about 1.6 pounds. This is a result of the conservation of energy.

60 100

W

2′
4′

8′

Fig. 4-6. Weighted rod supported on one end.

Take now the somewhat more complicated example shown in Fig. 4-6. A rod
or bar, 8 feet long, is supported at one end. In the middle of the bar is a weight
of 60 pounds, and at a distance of two feet from the support there is a weight of
100 pounds. How hard do we have to lift the end of the bar in order to keep it
balanced, disregarding the weight of the bar? Suppose we put a pulley at one end
and hang a weight on the pulley. How big would the weightW have to be in order
for it to balance? We imagine that the weight falls any arbitrary distance—to
make it easy for ourselves suppose it goes down 4 inches—how high would the
two load weights rise? The center rises 2 inches, and the point a quarter of the
way from the fixed end lifts 1 inch. Therefore, the principle that the sum of
the heights times the weights does not change tells us that the weight W times
4 inches down, plus 60 pounds times 2 inches up, plus 100 pounds times 1 inch
has to add up to nothing:

− 4W + (2)(60) + (1)(100) = 0, W = 55 lb. (4.5)
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Thus we must have a 55-pound weight to balance the bar. In this way we can
work out the laws of “balance”—the statics of complicated bridge arrangements,
and so on. This approach is called the principle of virtual work, because in order
to apply this argument we had to imagine that the structure moves a little—even
though it is not really moving or even movable. We use the very small imagined
motion to apply the principle of conservation of energy.

4-3 Kinetic energy

To illustrate another type of energy we consider a pendulum (Fig. 4-7). If we
pull the mass aside and release it, it swings back and forth. In its motion, it loses
height in going from either end to the center. Where does the potential energy
go? Gravitational energy disappears when it is down at the bottom; nevertheless,
it will climb up again. The gravitational energy must have gone into another
form. Evidently it is by virtue of its motion that it is able to climb up again,
so we have the conversion of gravitational energy into some other form when it
reaches the bottom.

Fig. 4-7. Pendulum.

We must get a formula for the energy of motion. Now, recalling our arguments
about reversible machines, we can easily see that in the motion at the bottom
must be a quantity of energy which permits it to rise a certain height, and which
has nothing to do with the machinery by which it comes up or the path by which
it comes up. So we have an equivalence formula something like the one we wrote
for the child’s blocks. We have another form to represent the energy. It is easy
to say what it is. The kinetic energy at the bottom equals the weight times the
height that it could go, corresponding to its velocity: K.E. = WH. What we
need is the formula which tells us the height by some rule that has to do with the
motion of objects. If we start something out with a certain velocity, say straight
up, it will reach a certain height; we do not know what it is yet, but it depends
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on the velocity—there is a formula for that. Then to find the formula for kinetic
energy for an object moving with velocity V , we must calculate the height that
it could reach, and multiply by the weight. We shall soon find that we can write
it this way:

K.E. = WV 2/2g. (4.6)

Of course, the fact that motion has energy has nothing to do with the fact that
we are in a gravitational field. It makes no difference where the motion came
from. This is a general formula for various velocities. Both (4.3) and (4.6) are
approximate formulas, the first because it is incorrect when the heights are great,
i.e., when the heights are so high that gravity is weakening; the second, because
of the relativistic correction at high speeds. However, when we do finally get the
exact formula for the energy, then the law of conservation of energy is correct.

4-4 Other forms of energy

We can continue in this way to illustrate the existence of energy in other forms.
First, consider elastic energy. If we pull down on a spring, we must do some work,
for when we have it down, we can lift weights with it. Therefore in its stretched
condition it has a possibility of doing some work. If we were to evaluate the sums
of weights times heights, it would not check out—we must add something else
to account for the fact that the spring is under tension. Elastic energy is the
formula for a spring when it is stretched. How much energy is it? If we let go, the
elastic energy, as the spring passes through the equilibrium point, is converted
to kinetic energy and it goes back and forth between compressing or stretching
the spring and kinetic energy of motion. (There is also some gravitational energy
going in and out, but we can do this experiment “sideways” if we like.) It keeps
going until the losses—Aha! We have cheated all the way through by putting
on little weights to move things or saying that the machines are reversible, or
that they go on forever, but we can see that things do stop, eventually. Where is
the energy when the spring has finished moving up and down? This brings in
another form of energy: heat energy.

Inside a spring or a lever there are crystals which are made up of lots of atoms,
and with great care and delicacy in the arrangement of the parts one can try to
adjust things so that as something rolls on something else, none of the atoms do
any jiggling at all. But one must be very careful. Ordinarily when things roll,
there is bumping and jiggling because of the irregularities of the material, and
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the atoms start to wiggle inside. So we lose track of that energy; we find the
atoms are wiggling inside in a random and confused manner after the motion
slows down. There is still kinetic energy, all right, but it is not associated with
visible motion. What a dream! How do we know there is still kinetic energy? It
turns out that with thermometers you can find out that, in fact, the spring or
the lever is warmer, and that there is really an increase of kinetic energy by a
definite amount. We call this form of energy heat energy, but we know that it
is not really a new form, it is just kinetic energy—internal motion. (One of the
difficulties with all these experiments with matter that we do on a large scale
is that we cannot really demonstrate the conservation of energy and we cannot
really make our reversible machines, because every time we move a large clump of
stuff, the atoms do not remain absolutely undisturbed, and so a certain amount
of random motion goes into the atomic system. We cannot see it, but we can
measure it with thermometers, etc.)

There are many other forms of energy, and of course we cannot describe
them in any more detail just now. There is electrical energy, which has to
do with pushing and pulling by electric charges. There is radiant energy, the
energy of light, which we know is a form of electrical energy because light can be
represented as wigglings in the electromagnetic field. There is chemical energy,
the energy which is released in chemical reactions. Actually, elastic energy is,
to a certain extent, like chemical energy, because chemical energy is the energy
of the attraction of the atoms, one for the other, and so is elastic energy. Our
modern understanding is the following: chemical energy has two parts, kinetic
energy of the electrons inside the atoms, so part of it is kinetic, and electrical
energy of interaction of the electrons and the protons—the rest of it, therefore,
is electrical. Next we come to nuclear energy, the energy which is involved with
the arrangement of particles inside the nucleus, and we have formulas for that,
but we do not have the fundamental laws. We know that it is not electrical, not
gravitational, and not purely chemical, but we do not know what it is. It seems
to be an additional form of energy. Finally, associated with the relativity theory,
there is a modification of the laws of kinetic energy, or whatever you wish to call
it, so that kinetic energy is combined with another thing called mass energy. An
object has energy from its sheer existence. If I have a positron and an electron,
standing still doing nothing—never mind gravity, never mind anything—and
they come together and disappear, radiant energy will be liberated, in a definite
amount, and the amount can be calculated. All we need know is the mass of the
object. It does not depend on what it is—we make two things disappear, and
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we get a certain amount of energy. The formula was first found by Einstein; it
is E = mc2.

It is obvious from our discussion that the law of conservation of energy is
enormously useful in making analyses, as we have illustrated in a few examples
without knowing all the formulas. If we had all the formulas for all kinds of
energy, we could analyze how many processes should work without having to go
into the details. Therefore conservation laws are very interesting. The question
naturally arises as to what other conservation laws there are in physics. There
are two other conservation laws which are analogous to the conservation of energy.
One is called the conservation of linear momentum. The other is called the
conservation of angular momentum. We will find out more about these later.
In the last analysis, we do not understand the conservation laws deeply. We do
not understand the conservation of energy. We do not understand energy as a
certain number of little blobs. You may have heard that photons come out in
blobs and that the energy of a photon is Planck’s constant times the frequency.
That is true, but since the frequency of light can be anything, there is no law
that says that energy has to be a certain definite amount. Unlike Dennis’ blocks,
there can be any amount of energy, at least as presently understood. So we do
not understand this energy as counting something at the moment, but just as a
mathematical quantity, which is an abstract and rather peculiar circumstance.
In quantum mechanics it turns out that the conservation of energy is very closely
related to another important property of the world, things do not depend on
the absolute time. We can set up an experiment at a given moment and try it
out, and then do the same experiment at a later moment, and it will behave in
exactly the same way. Whether this is strictly true or not, we do not know. If
we assume that it is true, and add the principles of quantum mechanics, then we
can deduce the principle of the conservation of energy. It is a rather subtle and
interesting thing, and it is not easy to explain. The other conservation laws are
also linked together. The conservation of momentum is associated in quantum
mechanics with the proposition that it makes no difference where you do the
experiment, the results will always be the same. As independence in space has
to do with the conservation of momentum, independence of time has to do with
the conservation of energy, and finally, if we turn our apparatus, this too makes
no difference, and so the invariance of the world to angular orientation is related
to the conservation of angular momentum. Besides these, there are three other
conservation laws, that are exact so far as we can tell today, which are much
simpler to understand because they are in the nature of counting blocks.
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The first of the three is the conservation of charge, and that merely means
that you count how many positive, minus how many negative electrical charges
you have, and the number is never changed. You may get rid of a positive with a
negative, but you do not create any net excess of positives over negatives. Two
other laws are analogous to this one—one is called the conservation of baryons.
There are a number of strange particles, a neutron and a proton are examples,
which are called baryons. In any reaction whatever in nature, if we count how
many baryons are coming into a process, the number of baryons* which come
out will be exactly the same. There is another law, the conservation of leptons.
We can say that the group of particles called leptons are: electron, mu meson,
and neutrino. There is an antielectron which is a positron, that is, a −1 lepton.
Counting the total number of leptons in a reaction reveals that the number in
and out never changes, at least so far as we know at present.

These are the six conservation laws, three of them subtle, involving space and
time, and three of them simple, in the sense of counting something.

With regard to the conservation of energy, we should note that available
energy is another matter—there is a lot of jiggling around in the atoms of the
water of the sea, because the sea has a certain temperature, but it is impossible
to get them herded into a definite motion without taking energy from somewhere
else. That is, although we know for a fact that energy is conserved, the energy
available for human utility is not conserved so easily. The laws which govern how
much energy is available are called the laws of thermodynamics and involve a
concept called entropy for irreversible thermodynamic processes.

Finally, we remark on the question of where we can get our supplies of energy
today. Our supplies of energy are from the sun, rain, coal, uranium, and hydrogen.
The sun makes the rain, and the coal also, so that all these are from the sun.
Although energy is conserved, nature does not seem to be interested in it; she
liberates a lot of energy from the sun, but only one part in two billion falls on the
earth. Nature has conservation of energy, but does not really care; she spends a
lot of it in all directions. We have already obtained energy from uranium; we can
also get energy from hydrogen, but at present only in an explosive and dangerous
condition. If it can be controlled in thermonuclear reactions, it turns out that
the energy that can be obtained from 10 quarts of water per second is equal to
all of the electrical power generated in the United States. With 150 gallons of
running water a minute, you have enough fuel to supply all the energy which is

* Counting antibaryons as −1 baryon.
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used in the United States today! Therefore it is up to the physicist to figure out
how to liberate us from the need for having energy. It can be done.
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5

Time and Distance

5-1 Motion

In this chapter we shall consider some aspects of the concepts of time and
distance. It has been emphasized earlier that physics, as do all the sciences,
depends on observation. One might also say that the development of the physical
sciences to their present form has depended to a large extent on the emphasis
which has been placed on the making of quantitative observations. Only with
quantitative observations can one arrive at quantitative relationships, which are
the heart of physics.

Many people would like to place the beginnings of physics with the work done
350 years ago by Galileo, and to call him the first physicist. Until that time, the
study of motion had been a philosophical one based on arguments that could be
thought up in one’s head. Most of the arguments had been presented by Aristotle
and other Greek philosophers, and were taken as “proven.” Galileo was skeptical,
and did an experiment on motion which was essentially this: He allowed a ball
to roll down an inclined trough and observed the motion. He did not, however,
just look; he measured how far the ball went in how long a time.

The way to measure a distance was well known long before Galileo, but there
were no accurate ways of measuring time, particularly short times. Although
he later devised more satisfactory clocks (though not like the ones we know),
Galileo’s first experiments on motion were done by using his pulse to count off
equal intervals of time. Let us do the same.

We may count off beats of a pulse as the ball rolls down the track: “one . . .
two . . . three . . . four . . . five . . . six . . . seven . . . eight . . . ” We ask a friend to
make a small mark at the location of the ball at each count; we can then measure
the distance the ball travelled from the point of release in one, or two, or three,
etc., equal intervals of time. Galileo expressed the result of his observations in
this way: if the location of the ball is marked at 1, 2, 3, 4, . . . units of time
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Fig. 5-1. A ball rolls down an inclined track.

from the instant of its release, those marks are distant from the starting point in
proportion to the numbers 1, 4, 9, 16, . . . Today we would say the distance is
proportional to the square of the time:

D ∝ t2.

The study of motion, which is basic to all of physics, treats with the questions:
where? and when?

5-2 Time

Let us consider first what we mean by time. What is time? It would be nice
if we could find a good definition of time. Webster defines “a time” as “a period,”
and the latter as “a time,” which doesn’t seem to be very useful. Perhaps we
should say: “Time is what happens when nothing else happens.” Which also
doesn’t get us very far. Maybe it is just as well if we face the fact that time is
one of the things we probably cannot define (in the dictionary sense), and just
say that it is what we already know it to be: it is how long we wait!

What really matters anyway is not how we define time, but how we measure
it. One way of measuring time is to utilize something which happens over and
over again in a regular fashion—something which is periodic. For example, a day.
A day seems to happen over and over again. But when you begin to think about
it, you might well ask: “Are days periodic; are they regular? Are all days the
same length?” One certainly has the impression that days in summer are longer
than days in winter. Of course, some of the days in winter seem to get awfully
long if one is very bored. You have certainly heard someone say, “My, but this
has been a long day!”

It does seem, however, that days are about the same length on the average.
Is there any way we can test whether the days are the same length—either from
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one day to the next, or at least on the average? One way is to make a comparison
with some other periodic phenomenon. Let us see how such a comparison might
be made with an hour glass. With an hour glass, we can “create” a periodic
occurrence if we have someone standing by it day and night to turn it over
whenever the last grain of sand runs out.

We could then count the turnings of the glass from each morning to the next.
We would find, this time, that the number of “hours” (i.e., turnings of the glass)
was not the same each “day.” We should distrust the sun, or the glass, or both.
After some thought, it might occur to us to count the “hours” from noon to noon.
(Noon is here defined not as 12:00 o’clock, but that instant when the sun is at its
highest point.) We would find, this time, that the number of “hours” each day is
the same.

We now have some confidence that both the “hour” and the “day” have a
regular periodicity, i.e., mark off successive equal intervals of time, although we
have not proved that either one is “really” periodic. Someone might question
whether there might not be some omnipotent being who would slow down the
flow of sand every night and speed it up during the day. Our experiment does
not, of course, give us an answer to this sort of question. All we can say is that
we find that a regularity of one kind fits together with a regularity of another
kind. We can just say that we base our definition of time on the repetition of
some apparently periodic event.

5-3 Short times

We should now notice that in the process of checking on the reproducibility
of the day, we have received an important by-product. We have found a way of
measuring, more accurately, fractions of a day. We have found a way of counting
time in smaller pieces. Can we carry the process further, and learn to measure
even smaller intervals of time?

Galileo decided that a given pendulum always swings back and forth in equal
intervals of time so long as the size of the swing is kept small. A test comparing
the number of swings of a pendulum in one “hour” shows that such is indeed
the case. We can in this way mark fractions of an hour. If we use a mechanical
device to count the swings—and to keep them going—we have the pendulum
clock of our grandfathers.

Let us agree that if our pendulum oscillates 3600 times in one hour (and if
there are 24 such hours in a day), we shall call each period of the pendulum
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one “second.” We have then divided our original unit of time into approximately
105 parts. We can apply the same principles to divide the second into smaller
and smaller intervals. It is, you will realize, not practical to make mechanical
pendulums which go arbitrarily fast, but we can now make electrical pendulums,
called oscillators, which can provide a periodic occurrence with a very short
period of swing. In these electronic oscillators it is an electrical current which
swings to and fro, in a manner analogous to the swinging of the bob of the
pendulum.

We can make a series of such electronic oscillators, each with a period 10 times
shorter than the previous one. We may “calibrate” each oscillator against the next
slower one by counting the number of swings it makes for one swing of the slower
oscillator. When the period of oscillation of our clock is shorter than a fraction
of a second, we cannot count the oscillations without the help of some device
which extends our powers of observation. One such device is the electron-beam
oscilloscope, which acts as a sort of microscope for short times. This device plots
on a fluorescent screen a graph of electrical current (or voltage) versus time. By
connecting the oscilloscope to two of our oscillators in sequence, so that it plots a
graph first of the current in one of our oscillators and then of the current in the
other, we get two graphs like those shown in Fig. 5-2. We can readily determine
the number of periods of the faster oscillator in one period of the slower oscillator.

With modern electronic techniques, oscillators have been built with periods
as short as about 10−12 second, and they have been calibrated (by comparison
methods such as we have described) in terms of our standard unit of time, the
second. With the invention and perfection of the “laser,” or light amplifier, in the
past few years, it has become possible to make oscillators with even shorter periods
than 10−12 second, but it has not yet been possible to calibrate them by the
methods which have been described, although it will no doubt soon be possible.

Times shorter than 10−12 second have been measured, but by a different
technique. In effect, a different definition of “time” has been used. One way has
been to observe the distance between two happenings on a moving object. If, for
example, the headlights of a moving automobile are turned on and then off, we
can figure out how long the lights were on if we know where they were turned on
and off and how fast the car was moving. The time is the distance over which
the lights were on divided by the speed.

Within the past few years, just such a technique was used to measure the
lifetime of the π0-meson. By observing in a microscope the minute tracks left in
a photographic emulsion in which π0-mesons had been created one saw that a
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Fig. 5-2. Two views of an oscilloscope screen. In (a) the oscilloscope
is connected to one oscillator, in (b) it is connected to an oscillator with
a period one-tenth as long.

π0-meson (known to be travelling at a certain speed nearly that of light) went
a distance of about 10−7 meter, on the average, before disintegrating. It lived
for only about 10−16 sec. It should be emphasized that we have here used a
somewhat different definition of “time” than before. So long as there are no
inconsistencies in our understanding, however, we feel fairly confident that our
definitions are sufficiently equivalent.
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By extending our techniques—and if necessary our definitions—still further
we can infer the time duration of still faster physical events. We can speak of
the period of a nuclear vibration. We can speak of the lifetime of the newly
discovered strange resonances (particles) mentioned in Chapter 2. Their complete
life occupies a time span of only 10−24 second, approximately the time it would
take light (which moves at the fastest known speed) to cross the nucleus of
hydrogen (the smallest known object).

What about still smaller times? Does “time” exist on a still smaller scale?
Does it make any sense to speak of smaller times if we cannot measure—or
perhaps even think sensibly about—something which happens in a shorter time?
Perhaps not. These are some of the open questions which you will be asking and
perhaps answering in the next twenty or thirty years.

5-4 Long times

Let us now consider times longer than one day. Measurement of longer times
is easy; we just count the days—so long as there is someone around to do the
counting. First we find that there is another natural periodicity: the year, about
365 days. We have also discovered that nature has sometimes provided a counter
for the years, in the form of tree rings or river-bottom sediments. In some cases
we can use these natural time markers to determine the time which has passed
since some early event.

When we cannot count the years for the measurement of long times, we
must look for other ways to measure. One of the most successful is the use of
radioactive material as a “clock.” In this case we do not have a periodic occurrence,
as for the day or the pendulum, but a new kind of “regularity.” We find that the
radioactivity of a particular sample of material decreases by the same fraction
for successive equal increases in its age. If we plot a graph of the radioactivity
observed as a function of time (say in days), we obtain a curve like that shown
in Fig. 5-3. We observe that if the radioactivity decreases to one-half in T days
(called the “half-life”), then it decreases to one-quarter in another T days, and so
on. In an arbitrary time interval t there are t/T “half-lives,” and the fraction
left after this time t is ( 1

2 )t/T .
If we knew that a piece of material, say a piece of wood, had contained an

amount A of radioactive material when it was formed, and we found out by a
direct measurement that it now contains the amount B, we could compute the
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Fig. 5-3. The decrease with time of radioactivity. The activity de-
creases by one-half in each “half-life,” T .

age of the object, t, by solving the equation

( 1
2 )t/T = B/A.

There are, fortunately, cases in which we can know the amount of radioactivity
that was in an object when it was formed. We know, for example, that the carbon
dioxide in the air contains a certain small fraction of the radioactive carbon
isotope C14 (replenished continuously by the action of cosmic rays). If we measure
the total carbon content of an object, we know that a certain fraction of that
amount was originally the radioactive C14; we know, therefore, the starting
amount A to use in the formula above. Carbon-14 has a half-life of 5000 years.
By careful measurements we can measure the amount left after 20 half-lives or
so and can therefore “date” organic objects which grew as long as 100,000 years
ago.

We would like to know, and we think we do know, the life of still older things.
Much of our knowledge is based on the measurements of other radioactive isotopes
which have different half-lives. If we make measurements with an isotope with a
longer half-life, then we are able to measure longer times. Uranium, for example,
has an isotope whose half-life is about 109 years, so that if some material was
formed with uranium in it 109 years ago, only half the uranium would remain
today. When the uranium disintegrates, it changes into lead. Consider a piece of
rock which was formed a long time ago in some chemical process. Lead, being of
a chemical nature different from uranium, would appear in one part of the rock
and uranium would appear in another part of the rock. The uranium and lead
would be separate. If we look at that piece of rock today, where there should only
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be uranium we will now find a certain fraction of uranium and a certain fraction
of lead. By comparing these fractions, we can tell what percent of the uranium
disappeared and changed into lead. By this method, the age of certain rocks has
been determined to be several billion years. An extension of this method, not
using particular rocks but looking at the uranium and lead in the oceans and
using averages over the earth, has been used to determine (within the past few
years) that the age of the earth itself is approximately 4.5 billion years.

It is encouraging that the age of the earth is found to be the same as the age
of the meteorites which land on the earth, as determined by the uranium method.
It appears that the earth was formed out of rocks floating in space, and that the
meteorites are, quite likely, some of that material left over. At some time more
than five billion years ago, the universe started. It is now believed that at least
our part of the universe had its beginning about ten or twelve billion years ago.
We do not know what happened before then. In fact, we may well ask again:
Does the question make any sense? Does an earlier time have any meaning?

5-5 Units and standards of time

We have implied that it is convenient if we start with some standard unit of
time, say a day or a second, and refer all other times to some multiple or fraction
of this unit. What shall we take as our basic standard of time? Shall we take the
human pulse? If we compare pulses, we find that they seem to vary a lot. On
comparing two clocks, one finds they do not vary so much. You might then say,
well, let us take a clock. But whose clock? There is a story of a Swiss boy who
wanted all of the clocks in his town to ring noon at the same time. So he went
around trying to convince everyone of the value of this. Everyone thought it was
a marvelous idea so long as all of the other clocks rang noon when his did! It is
rather difficult to decide whose clock we should take as a standard. Fortunately,
we all share one clock—the earth. For a long time the rotational period of the
earth has been taken as the basic standard of time. As measurements have been
made more and more precise, however, it has been found that the rotation of the
earth is not exactly periodic, when measured in terms of the best clocks. These
“best” clocks are those which we have reason to believe are accurate because they
agree with each other. We now believe that, for various reasons, some days are
longer than others, some days are shorter, and on the average the period of the
earth becomes a little longer as the centuries pass.
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Until very recently we had found nothing much better than the earth’s period,
so all clocks have been related to the length of the day, and the second has been
defined as 1/86,400 of an average day. Recently we have been gaining experience
with some natural oscillators which we now believe would provide a more constant
time reference than the earth, and which are also based on a natural phenomenon
available to everyone. These are the so-called “atomic clocks.” Their basic internal
period is that of an atomic vibration which is very insensitive to the temperature
or any other external effects. These clocks keep time to an accuracy of one part
in 109 or better. Within the past two years an improved atomic clock which
operates on the vibration of the hydrogen atom has been designed and built by
Professor Norman Ramsey at Harvard University. He believes that this clock
might be 100 times more accurate still. Measurements now in progress will show
whether this is true or not.

We may expect that since it has been possible to build clocks much more
accurate than astronomical time, there will soon be an agreement among scientists
to define the unit of time in terms of one of the atomic clock standards.

5-6 Large distances

Let us now turn to the question of distance. How far, or how big, are things?
Everybody knows that the way you measure distance is to start with a stick and
count. Or start with a thumb and count. You begin with a unit and count. How
does one measure smaller things? How does one subdivide distance? In the same
way that we subdivided time: we take a smaller unit and count the number of
such units it takes to make up the longer unit. So we can measure smaller and
smaller lengths.

But we do not always mean by distance what one gets by counting off with
a meter stick. It would be difficult to measure the horizontal distance between
two mountain tops using only a meter stick. We have found by experience that
distance can be measured in another fashion: by triangulation. Although this
means that we are really using a different definition of distance, when they can
both be used they agree with each other. Space is more or less what Euclid
thought it was, so the two types of definitions of distance agree. Since they do
agree on the earth it gives us some confidence in using triangulation for still larger
distances. For example, we were able to use triangulation to measure the height
of the first Sputnik. We found that it was roughly 5× 105 meters high. By more
careful measurements the distance to the moon can be measured in the same
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Fig. 5-4. The height of a Sputnik is determined by triangulation.

way. Two telescopes at different places on the earth can give us the two angles
we need. It has been found in this way that the moon is 4× 108 meters away.

We cannot do the same with the sun, or at least no one has been able to yet.
The accuracy with which one can focus on a given point on the sun and with which
one can measure angles is not good enough to permit us to measure the distance
to the sun. Then how can we measure the distance to the sun? We must invent an
extension of the idea of triangulation. We measure the relative distances of all the
planets by astronomical observations of where the planets appear to be, and we
get a picture of the solar system with the proper relative distances of everything,
but with no absolute distance. One absolute measurement is then required, which
has been obtained in a number of ways. One of the ways, which was believed
until recently to be the most accurate, was to measure the distance from the
earth to Eros, one of the small planetoids which passes near the earth every now
and then. By triangulation on this little object, one could get the one required
scale measurement. Knowing the relative distances of the rest, we can then tell
the distance, for example, from the earth to the sun, or from the earth to Pluto.

Within the past year there has been a big improvement in our knowledge of
the scale of the solar system. At the Jet Propulsion Laboratory the distance from
the earth to Venus was measured quite accurately by a direct radar observation.
This, of course, is a still different type of inferred distance. We say we know the
speed at which light travels (and therefore, at which radar waves travel), and we
assume that it is the same speed everywhere between the earth and Venus. We
send the radio wave out, and count the time until the reflected wave comes back.
From the time we infer a distance, assuming we know the speed. We have really
another definition of a measurement of distance.

How do we measure the distance to a star, which is much farther away?
Fortunately, we can go back to our triangulation method, because the earth
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Fig. 5-5. The distance of nearby stars can be measured by triangula-
tion, using the diameter of the earth’s orbit as a baseline.

moving around the sun gives us a large baseline for measurements of objects
outside the solar system. If we focus a telescope on a star in summer and in
winter, we might hope to determine these two angles accurately enough to be
able to measure the distance to a star.

What if the stars are too far away for us to use triangulation? Astronomers
are always inventing new ways of measuring distance. They find, for example,
that they can estimate the size and brightness of a star by its color. The color and
brightness of many nearby stars—whose distances are known by triangulation—
have been measured, and it is found that there is a smooth relationship between the
color and the intrinsic brightness of stars (in most cases). If one now measures the
color of a distant star, one may use the color-brightness relationship to determine
the intrinsic brightness of the star. By measuring how bright the star appears to
us at the earth (or perhaps we should say how dim it appears), we can compute
how far away it is. (For a given intrinsic brightness, the apparent brightness
decreases with the square of the distance.) A nice confirmation of the correctness
of this method of measuring stellar distances is given by the results obtained for
groups of stars known as globular clusters. A photograph of such a group is shown
in Fig. 5-6. Just from looking at the photograph one is convinced that these
stars are all together. The same result is obtained from distance measurements
by the color-brightness method.

A study of many globular clusters gives another important bit of information.
It is found that there is a high concentration of such clusters in a certain part of
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Fig. 5-6. A cluster of stars near the center of our galaxy. Their
distance from the earth is 30,000 light-years, or about 3× 1020 meters.

the sky and that most of them are about the same distance from us. Coupling
this information with other evidence, we conclude that this concentration of
clusters marks the center of our galaxy. We then know the distance to the center
of the galaxy—about 1020 meters.

Knowing the size of our own galaxy, we have a key to the measurement of
still larger distances—the distances to other galaxies. Figure 5-7 is a photograph
of a galaxy, which has much the same shape as our own. Probably it is the
same size, too. (Other evidence supports the idea that galaxies are all about the
same size.) If it is the same size as ours, we can tell its distance. We measure
the angle it subtends in the sky; we know its diameter, and we compute its
distance—triangulation again!

Photographs of exceedingly distant galaxies have recently been obtained with
the giant Palomar telescope. One is shown in Fig. 5-8. It is now believed that
some of these galaxies are about halfway to the limit of the universe—1026 meters
away—the largest distance we can contemplate!
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Fig. 5-7. A spiral galaxy like our own. Presuming that its diameter
is similar to that of our own galaxy, we may compute its distance from
its apparent size. It is 30 million light-years (3× 1023 meters) from the
earth.

5-7 Short distances

Now let’s think about smaller distances. Subdividing the meter is easy.
Without much difficulty we can mark off one thousand equal spaces which add up
to one meter. With somewhat more difficulty, but in a similar way (using a good
microscope), we can mark off a thousand equal subdivisions of the millimeter
to make a scale of microns (millionths of a meter). It is difficult to continue to
smaller scales, because we cannot “see” objects smaller than the wavelength of
visible light (about 5× 10−7 meter).

We need not stop, however, at what we can see. With an electron microscope,
we can continue the process by making photographs on a still smaller scale,
say down to 10−8 meter (Fig. 5-9). By indirect measurements—by a kind of
triangulation on a microscopic scale—we can continue to measure to smaller and
smaller scales. First, from an observation of the way light of short wavelength (x-
radiation) is reflected from a pattern of marks of known separation, we determine
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Fig. 5-8. The most distant object, 3C295 in BOOTES (indicated by
the arrow), measured by the 200-inch telescope to date (1960).

the wavelength of the light vibrations. Then, from the pattern of the scattering
of the same light from a crystal, we can determine the relative location of the
atoms in the crystal, obtaining results which agree with the atomic spacings also
determined by chemical means. We find in this way that atoms have a diameter
of about 10−10 meter.

There is a large “gap” in physical sizes between the typical atomic dimension
of about 10−10 meter and the nuclear dimensions 10−15 meter, 10−5 times smaller.
For nuclear sizes, a different way of measuring size becomes convenient. We
measure the apparent area, σ, called the effective cross section. If we wish the
radius, we can obtain it from σ = πr2, since nuclei are nearly spherical.

Measurement of a nuclear cross section can be made by passing a beam of
high-energy particles through a thin slab of material and observing the number
of particles which do not get through. These high-energy particles will plow right
through the thin cloud of electrons and will be stopped or deflected only if they
hit the concentrated weight of a nucleus. Suppose we have a piece of material
1 centimeter thick. There will be about 108 atomic layers. But the nuclei are
so small that there is little chance that any nucleus will lie behind another. We
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Fig. 5-9. Electron micrograph of some virus molecules. The “large”
sphere is for calibration and is known to have a diameter of 2×10−7 meter
(2000 Å).

might imagine that a highly magnified view of the situation—looking along the
particle beam—would look like Fig. 5-10.

Fig. 5-10. Imagined view through a block of carbon 1 cm thick if only
the nuclei were observed.

The chance that a very small particle will hit a nucleus on the trip through is
just the total area covered by the profiles of the nuclei divided by the total area
in the picture. Suppose that we know that in an area A of our slab of material
there are N atoms (each with one nucleus, of course). Then the fraction of the
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area “covered” by the nuclei is Nσ/A. Now let the number of particles of our
beam which arrive at the slab be n1 and the number which come out the other
side be n2. The fraction which do not get through is (n1 − n2)/n1, which should
just equal the fraction of the area covered. We can obtain the radius of the
nucleus from the equation*

πr2 = σ = A

N

n1 − n2

n1
.

From such an experiment we find that the radii of the nuclei are from about
1 to 6 times 10−15 meter. The length unit 10−15 meter is called the fermi, in
honor of Enrico Fermi (1901–1954).

What do we find if we go to smaller distances? Can we measure smaller
distances? Such questions are not yet answerable. It has been suggested that
the still unsolved mystery of nuclear forces may be unravelled only by some
modification of our idea of space, or measurement, at such small distances.

It might be thought that it would be a good idea to use some natural length as
our unit of length—say the radius of the earth or some fraction of it. The meter
was originally intended to be such a unit and was defined to be (π/2)×10−7 times
the earth’s radius. It is neither convenient nor very accurate to determine the
unit of length in this way. For a long time it has been agreed internationally that
the meter would be defined as the distance between two scratches on a bar kept
in a special laboratory in France. More recently, it has been realized that this
definition is neither as precise as would be useful, nor as permanent or universal as
one would like. It is currently being considered that a new definition be adopted,
an agreed-upon (arbitrary) number of wavelengths of a chosen spectral line.

Measurements of distance and of time give results which depend on the
observer. Two observers moving with respect to each other will not measure
the same distances and times when measuring what appear to be the same
things. Distances and time intervals have different magnitudes, depending on the
coordinate system (or “frame of reference”) used for making the measurements.
We shall study this subject in more detail in a later chapter.

* This equation is right only if the area covered by the nuclei is a small fraction of the total,
i.e., if (n1 − n2)/n1 is much less than 1. Otherwise we must make a correction for the fact that
some nuclei will be partly obscured by the nuclei in front of them.
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Perfectly precise measurements of distances or times are not permitted by
the laws of nature. We have mentioned earlier that the errors in a measurement
of the position of an object must be at least as large as

∆x ≥ ~/2∆p,

where ~ is a small fundamental physical constant called the reduced Planck
constant and ∆p is the error in our knowledge of the momentum (mass times
velocity) of the object whose position we are measuring. It was also mentioned
that the uncertainty in position measurements is related to the wave nature of
particles.

The relativity of space and time implies that time measurements have also a
minimum error, given in fact by

∆t ≥ ~/2∆E,

where ∆E is the error in our knowledge of the energy of the process whose time
period we are measuring. If we wish to know more precisely when something
happened we must know less about what happened, because our knowledge of
the energy involved will be less. The time uncertainty is also related to the wave
nature of matter.
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6

Probability

“The true logic of this world is in the calculus of probabilities.”
—James Clerk Maxwell

6-1 Chance and likelihood

“Chance” is a word which is in common use in everyday living. The radio
reports speaking of tomorrow’s weather may say: “There is a sixty percent chance
of rain.” You might say: “There is a small chance that I shall live to be one
hundred years old.” Scientists also use the word chance. A seismologist may be
interested in the question: “What is the chance that there will be an earthquake
of a certain size in Southern California next year?” A physicist might ask the
question: “What is the chance that a particular geiger counter will register twenty
counts in the next ten seconds?” A politician or statesman might be interested
in the question: “What is the chance that there will be a nuclear war within
the next ten years?” You may be interested in the chance that you will learn
something from this chapter.

By chance, we mean something like a guess. Why do we make guesses? We
make guesses when we wish to make a judgment but have incomplete information
or uncertain knowledge. We want to make a guess as to what things are, or what
things are likely to happen. Often we wish to make a guess because we have to
make a decision. For example: Shall I take my raincoat with me tomorrow? For
what earth movement should I design a new building? Shall I build myself a
fallout shelter? Shall I change my stand in international negotiations? Shall I go
to class today?

Sometimes we make guesses because we wish, with our limited knowledge,
to say as much as we can about some situation. Really, any generalization is
in the nature of a guess. Any physical theory is a kind of guesswork. There
are good guesses and there are bad guesses. The theory of probability is a

6-1



system for making better guesses. The language of probability allows us to speak
quantitatively about some situation which may be highly variable, but which
does have some consistent average behavior.

Let us consider the flipping of a coin. If the toss—and the coin—are “honest,”
we have no way of knowing what to expect for the outcome of any particular toss.
Yet we would feel that in a large number of tosses there should be about equal
numbers of heads and tails. We say: “The probability that a toss will land heads
is 0.5.”

We speak of probability only for observations that we contemplate being made
in the future. By the “probability” of a particular outcome of an observation we
mean our estimate for the most likely fraction of a number of repeated observations
that will yield that particular outcome. If we imagine repeating an observation—
such as looking at a freshly tossed coin—N times, and if we call NA our estimate
of the most likely number of our observations that will give some specified result A,
say the result “heads,” then by P (A), the probability of observing A, we mean

P (A) = NA/N. (6.1)

Our definition requires several comments. First of all, we may speak of a
probability of something happening only if the occurrence is a possible outcome
of some repeatable observation. It is not clear that it would make any sense to
ask: “What is the probability that there is a ghost in that house?”

You may object that no situation is exactly repeatable. That is right. Every
different observation must at least be at a different time or place. All we can say
is that the “repeated” observations should, for our intended purposes, appear
to be equivalent. We should assume, at least, that each observation was made
from an equivalently prepared situation, and especially with the same degree of
ignorance at the start. (If we sneak a look at an opponent’s hand in a card game,
our estimate of our chances of winning are different than if we do not!)

We should emphasize that N and NA in Eq. (6.1) are not intended to rep-
resent numbers based on actual observations. NA is our best estimate of what
would occur in N imagined observations. Probability depends, therefore, on our
knowledge and on our ability to make estimates. In effect, on our common sense!
Fortunately, there is a certain amount of agreement in the common sense of many
things, so that different people will make the same estimate. Probabilities need
not, however, be “absolute” numbers. Since they depend on our ignorance, they
may become different if our knowledge changes.
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You may have noticed another rather “subjective” aspect of our definition of
probability. We have referred to NA as “our estimate of the most likely number
. . . ” We do not mean that we expect to observe exactly NA, but that we expect
a number near NA, and that the number NA is more likely than any other
number in the vicinity. If we toss a coin, say, 30 times, we should expect that the
number of heads would not be very likely to be exactly 15, but rather only some
number near to 15, say 12, 13, 14, 15, 16, or 17. However, if we must choose,
we would decide that 15 heads is more likely than any other number. We would
write P (heads) = 0.5.

Why did we choose 15 as more likely than any other number? We must have
argued with ourselves in the following manner: If the most likely number of heads
is NH in a total number of tosses N , then the most likely number of tails NT
is (N −NH). (We are assuming that every toss gives either heads or tails, and
no “other” result!) But if the coin is “honest,” there is no preference for heads or
tails. Until we have some reason to think the coin (or toss) is dishonest, we must
give equal likelihoods for heads and tails. So we must set NT = NH . It follows
that NT = NH = N/2, or P (H) = P (T ) = 0.5.

We can generalize our reasoning to any situation in which there arem different
but “equivalent” (that is, equally likely) possible results of an observation. If
an observation can yield m different results, and we have reason to believe that
any one of them is as likely as any other, then the probability of a particular
outcome A is P (A) = 1/m.

If there are seven different-colored balls in an opaque box and we pick one
out “at random” (that is, without looking), the probability of getting a ball
of a particular color is 1

7 . The probability that a “blind draw” from a shuffled
deck of 52 cards will show the ten of hearts is 1

52 . The probability of throwing a
double-one with dice is 1

36 .

In Chapter 5 we described the size of a nucleus in terms of its apparent area, or
“cross section.” When we did so we were really talking about probabilities. When we
shoot a high-energy particle at a thin slab of material, there is some chance that it will
pass right through and some chance that it will hit a nucleus. (Since the nucleus is so
small that we cannot see it, we cannot aim right at a nucleus. We must “shoot blind.”)
If there are n atoms in our slab and the nucleus of each atom has a cross-sectional
area σ, then the total area “shadowed” by the nuclei is nσ. In a large number N of
random shots, we expect that the number of hits NC of some nucleus will be in the
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ratio to N as the shadowed area is to the total area of the slab:

NC/N = nσ/A. (6.2)

We may say, therefore, that the probability that any one projectile particle will suffer a
collision in passing through the slab is

PC = n

A
σ, (6.3)

where n/A is the number of atoms per unit area in our slab.

6-2 Fluctuations

We would like now to use our ideas about probability to consider in some
greater detail the question: “How many heads do I really expect to get if I toss a
coin N times?” Before answering the question, however, let us look at what does
happen in such an “experiment.” Figure 6-1 shows the results obtained in the first
three “runs” of such an experiment in which N = 30. The sequences of “heads”
and “tails” are shown just as they were obtained. The first game gave 11 heads;
the second also 11; the third 16. In three trials we did not once get 15 heads.
Should we begin to suspect the coin? Or were we wrong in thinking that the
most likely number of “heads” in such a game is 15? Ninety-seven more runs
were made to obtain a total of 100 experiments of 30 tosses each. The results of
the experiments are given in Table 6-1.*

H

T

H

T

H

T

11

19

11

19

16

14

x x x xxx x xx x x
xx x x xxxxxxxxx xx xx x x

x x x x xxx x x x x
xxxx xxxx x x xxxx xx x xx

x xxx xx x xxx xx x xx x
x xx x xx xx xx x x x x

Fig. 6-1. Observed sequences of heads and tails in three games of
30 tosses each.

* After the first three games, the experiment was actually done by shaking 30 pennies
violently in a box and then counting the number of heads that showed.

6-4



Table 6-1

Number of heads in successive trials of 30 tosses of a coin.

11 16 17 15 17 16 19 18 15 13

100 trials

11 17 17 12 20 23 11 16 17 14
16 12 15 10 18 17 13 15 14 15
16 12 11 22 12 20 12 15 16 12
16 10 15 13 14 16 15 16 13 18
14 14 13 16 15 19 21 14 12 15
16 11 16 14 17 14 11 16 17 16
19 15 14 12 18 15 14 21 11 16
17 17 12 13 14 17 9 13 19 13
14 12 15 17 14 10 17 17 12 11

PROBABLE NUMBER

OBSERVED IN THIS
EXPERIMENT

k = NUMBER OF HEADS

0 5 10
15

20 25 30
0

5

10

15

NUMBER OF
GAMES IN
WHICH THE
SCORE WAS
OBTAINED

Fig. 6-2. Summary of the results of 100 games of 30 tosses each.
The vertical bars show the number of games in which a score of k heads
was obtained. The dashed curve shows the expected numbers of games
with the score k obtained by a probability computation.
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Looking at the numbers in Table 6-1, we see that most of the results are
“near” 15, in that they are between 12 and 18. We can get a better feeling for
the details of these results if we plot a graph of the distribution of the results.
We count the number of games in which a score of k was obtained, and plot this
number for each k. Such a graph is shown in Fig. 6-2. A score of 15 heads was
obtained in 13 games. A score of 14 heads was also obtained 13 times. Scores of
16 and 17 were each obtained more than 13 times. Are we to conclude that there
is some bias toward heads? Was our “best estimate” not good enough? Should
we conclude now that the “most likely” score for a run of 30 tosses is really
16 heads? But wait! In all the games taken together, there were 3000 tosses.
And the total number of heads obtained was 1493. The fraction of tosses that
gave heads is 0.498, very nearly, but slightly less than half. We should certainly
not assume that the probability of throwing heads is greater than 0.5! The fact
that one particular set of observations gave 16 heads most often, is a fluctuation.
We still expect that the most likely number of heads is 15.

We may ask the question: “What is the probability that a game of 30 tosses
will yield 15 heads—or 16, or any other number?” We have said that in a game
of one toss, the probability of obtaining one head is 0.5, and the probability of
obtaining no head is 0.5. In a game of two tosses there are four possible outcomes:
HH, HT , TH, TT . Since each of these sequences is equally likely, we conclude
that (a) the probability of a score of two heads is 1

4 , (b) the probability of a score
of one head is 2

4 , (c) the probability of a zero score is 1
4 . There are two ways of

obtaining one head, but only one of obtaining either zero or two heads.
Consider now a game of 3 tosses. The third toss is equally likely to be heads

or tails. There is only one way to obtain 3 heads: we must have obtained 2 heads
on the first two tosses, and then heads on the last. There are, however, three
ways of obtaining 2 heads. We could throw tails after having thrown two heads
(one way) or we could throw heads after throwing only one head in the first two
tosses (two ways). So for scores of 3-H, 2-H, 1-H, 0-H we have that the number
of equally likely ways is 1, 3, 3, 1, with a total of 8 different possible sequences.
The probabilities are 1

8 ,
3
8 ,

3
8 ,

1
8 .

The argument we have been making can be summarized by a diagram like
that in Fig. 6-3. It is clear how the diagram should be continued for games with
a larger number of tosses. Figure 6-4 shows such a diagram for a game of 6 tosses.
The number of “ways” to any point on the diagram is just the number of different
“paths” (sequences of heads and tails) which can be taken from the starting point.
The vertical position gives us the total number of heads thrown. The set of
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FIRST
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Fig. 6-3. A diagram for showing the number of ways a score of 0, 1,
2, or 3 heads can be obtained in a game of 3 tosses.
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1

1

6

15

20

15

6
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5

4

3
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1
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Fig. 6-4. A diagram like that of Fig. 6-3, for a game of 6 tosses.

numbers which appears in such a diagram is known as Pascal’s triangle. The
numbers are also known as the binomial coefficients, because they also appear in
the expansion of (a+ b)n. If we call n the number of tosses and k the number of
heads thrown, then the numbers in the diagram are usually designated by the
symbol

(
n
k

)
. We may remark in passing that the binomial coefficients can also be

computed from (
n

k

)
= n!
k!(n− k)! , (6.4)

where n!, called “n-factorial,” represents the product (n)(n−1)(n−2) · · · (3)(2)(1).
We are now ready to compute the probability P (k, n) of throwing k heads in

n tosses, using our definition Eq. (6.1). The total number of possible sequences
is 2n (since there are 2 outcomes for each toss), and the number of ways of
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obtaining k heads is
(
n
k

)
, all equally likely, so we have

P (k, n) =
(
n
k

)
2n . (6.5)

Since P (k, n) is the fraction of games which we expect to yield k heads, then
in 100 games we should expect to find k heads 100 · P (k, n) times. The dashed
curve in Fig. 6-2 passes through the points computed from 100 · P (k, 30). We
see that we expect to obtain a score of 15 heads in 14 or 15 games, whereas this
score was observed in 13 games. We expect a score of 16 in 13 or 14 games, but
we obtained that score in 16 games. Such fluctuations are “part of the game.”

The method we have just used can be applied to the most general situation
in which there are only two possible outcomes of a single observation. Let us
designate the two outcomes by W (for “win”) and L (for “lose”). In the general
case, the probability of W or L in a single event need not be equal. Let p
be the probability of obtaining the result W . Then q, the probability of L, is
necessarily (1− p). In a set of n trials, the probability P (k, n) that W will be
obtained k times is

P (k, n) =
(
n
k

)
pkqn−k. (6.6)

This probability function is called the Bernoulli or, also, the binomial probability.

6-3 The random walk

There is another interesting problem in which the idea of probability is
required. It is the problem of the “random walk.” In its simplest version, we
imagine a “game” in which a “player” starts at the point x = 0 and at each “move”
is required to take a step either forward (toward +x) or backward (toward −x).
The choice is to be made randomly, determined, for example, by the toss of a coin.
How shall we describe the resulting motion? In its general form the problem is
related to the motion of atoms (or other particles) in a gas—called Brownian
motion—and also to the combination of errors in measurements. You will see
that the random-walk problem is closely related to the coin-tossing problem we
have already discussed.

First, let us look at a few examples of a random walk. We may characterize
the walker’s progress by the net distance DN traveled in N steps. We show in
the graph of Fig. 6-5 three examples of the path of a random walker. (We have
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−10

−5

0

5

Fig. 6-5. The progress made in a random walk. The horizontal coor-
dinate N is the total number of steps taken; the vertical coordinate DN

is the net distance moved from the starting position.

used for the random sequence of choices the results of the coin tosses shown in
Fig. 6-1.)

What can we say about such a motion? We might first ask: “How far does he
get on the average?” We must expect that his average progress will be zero, since
he is equally likely to go either forward or backward. But we have the feeling
that as N increases, he is more likely to have strayed farther from the starting
point. We might, therefore, ask what is his average distance travelled in absolute
value, that is, what is the average of |D|. It is, however, more convenient to deal
with another measure of “progress,” the square of the distance: D2 is positive
for either positive or negative motion, and is therefore a reasonable measure of
such random wandering.

We can show that the expected value of D2
N is just N , the number of steps

taken. By “expected value” we mean the probable value (our best guess), which
we can think of as the expected average behavior in many repeated sequences. We
represent such an expected value by 〈D2

N 〉, and may refer to it also as the “mean
square distance.” After one step, D2 is always +1, so we have certainly 〈D2

1〉 = 1.
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(All distances will be measured in terms of a unit of one step. We shall not
continue to write the units of distance.)

The expected value of D2
N for N > 1 can be obtained from DN−1. If, after

(N − 1) steps, we have DN−1, then after N steps we have DN = DN−1 + 1
or DN = DN−1 − 1. For the squares,

D2
N =


D2
N−1 + 2DN−1 + 1,

or

D2
N−1 − 2DN−1 + 1.

(6.7)

In a number of independent sequences, we expect to obtain each value one-half
of the time, so our average expectation is just the average of the two possible
values. The expected value of D2

N is then D2
N−1 + 1. In general, we should expect

for D2
N−1 its “expected value” 〈D2

N−1〉 (by definition!). So

〈D2
N 〉 = 〈D2

N−1〉+ 1. (6.8)

We have already shown that 〈D2
1〉 = 1; it follows then that

〈D2
N 〉 = N, (6.9)

a particularly simple result!
If we wish a number like a distance, rather than a distance squared, to

represent the “progress made away from the origin” in a random walk, we can
use the “root-mean-square distance” Drms:

Drms =
√
〈D2〉 =

√
N. (6.10)

We have pointed out that the random walk is closely similar in its mathematics
to the coin-tossing game we considered at the beginning of the chapter. If we
imagine the direction of each step to be in correspondence with the appearance of
heads or tails in a coin toss, then D is just NH−NT , the difference in the number
of heads and tails. Since NH +NT = N , the total number of steps (and tosses),
we have D = 2NH −N . We have derived earlier an expression for the expected
distribution of NH (also called k) and obtained the result of Eq. (6.5). Since N
is just a constant, we have the corresponding distribution for D. (Since for every
head more than N/2 there is a tail “missing,” we have the factor of 2 between
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NH and D.) The graph of Fig. 6-2 represents the distribution of distances we
might get in 30 random steps (where k = 15 is to be read D = 0; k = 16, D = 2;
etc.).

The variation of NH from its expected value N/2 is

NH −
N

2 = D

2 . (6.11)

The rms deviation is (
NH −

N

2

)
rms

= 1
2

√
N. (6.12)

According to our result for Drms, we expect that the “typical” distance in
30 steps ought to be

√
30 = 5.5, or a typical k should be about 5.5/2 = 2.8 units

from 15. We see that the “width” of the curve in Fig. 6-2, measured from the
center, is just about 3 units, in agreement with this result.

We are now in a position to consider a question we have avoided until now.
How shall we tell whether a coin is “honest” or “loaded”? We can give now at
least a partial answer. For an honest coin, we expect the fraction of the times
heads appears to be 0.5, that is,

〈NH〉
N

= 0.5. (6.13)

We also expect an actual NH to deviate from N/2 by about
√
N/2, or the fraction

to deviate by
1
N

√
N

2 = 1
2
√
N
.

The larger N is, the closer we expect the fraction NH/N to be to one-half.
In Fig. 6-6 we have plotted the fraction NH/N for the coin tosses reported ear-

lier in this chapter. We see the tendency for the fraction of heads to approach 0.5
for large N . Unfortunately, for any given run or combination of runs there is no
guarantee that the observed deviation will be even near the expected deviation.
There is always the finite chance that a large fluctuation—a long string of heads
or tails—will give an arbitrarily large deviation. All we can say is that if the
deviation is near the expected 1/2

√
N (say within a factor of 2 or 3), we have

no reason to suspect the honesty of the coin. If it is much larger, we may be
suspicious, but cannot prove, that the coin is loaded (or that the tosser is clever!).
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Fig. 6-6. The fraction of the tosses that gave heads in a particular
sequence of N tosses of a penny.

We have also not considered how we should treat the case of a “coin” or
some similar “chancy” object (say a stone that always lands in either of two
positions) that we have good reason to believe should have a different probability
for heads and tails. We have defined P (H) = 〈NH〉/N . How shall we know what
to expect for NH? In some cases, the best we can do is to observe the number
of heads obtained in large numbers of tosses. For want of anything better, we
must set 〈NH〉 = NH(observed). (How could we expect anything else?) We must
understand, however, that in such a case a different experiment, or a different
observer, might conclude that P (H) was different. We would expect, however,
that the various answers should agree within the deviation 1/2

√
N [if P (H) is

near one-half]. An experimental physicist usually says that an “experimentally
determined” probability has an “error,” and writes

P (H) = NH
N
± 1

2
√
N
. (6.14)

There is an implication in such an expression that there is a “true” or “correct”
probability which could be computed if we knew enough, and that the observation
may be in “error” due to a fluctuation. There is, however, no way to make such
thinking logically consistent. It is probably better to realize that the probability
concept is in a sense subjective, that it is always based on uncertain knowledge,
and that its quantitative evaluation is subject to change as we obtain more
information.
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6-4 A probability distribution

Let us return now to the random walk and consider a modification of it.
Suppose that in addition to a random choice of the direction (+ or −) of each
step, the length of each step also varied in some unpredictable way, the only
condition being that on the average the step length was one unit. This case is
more representative of something like the thermal motion of a molecule in a gas.
If we call the length of a step S, then S may have any value at all, but most often
will be “near” 1. To be specific, we shall let 〈S2〉 = 1 or, equivalently, Srms = 1.
Our derivation for 〈D2〉 would proceed as before except that Eq. (6.8) would be
changed now to read

〈D2
N 〉 = 〈D2

N−1〉+ 〈S2〉 = 〈D2
N−1〉+ 1. (6.15)

We have, as before, that
〈D2

N 〉 = N. (6.16)

What would we expect now for the distribution of distances D? What is, for
example, the probability that D = 0 after 30 steps? The answer is zero! The
probability is zero that D will be any particular value, since there is no chance at
all that the sum of the backward steps (of varying lengths) would exactly equal
the sum of forward steps. We cannot plot a graph like that of Fig. 6-2.

We can, however, obtain a representation similar to that of Fig. 6-2, if we ask,
not what is the probability of obtaining D exactly equal to 0, 1, or 2, but instead
what is the probability of obtaining D near 0, 1, or 2. Let us define P (x,∆x)
as the probability that D will lie in the interval ∆x located at x (say from x
to x+ ∆x). We expect that for small ∆x the chance of D landing in the interval
is proportional to ∆x, the width of the interval. So we can write

P (x,∆x) = p(x) ∆x. (6.17)

The function p(x) is called the probability density.
The form of p(x) will depend on N , the number of steps taken, and also on the

distribution of individual step lengths. We cannot demonstrate the proofs here,
but for large N , p(x) is the same for all reasonable distributions in individual
step lengths, and depends only on N . We plot p(x) for three values of N in
Fig. 6-7. You will notice that the “half-widths” (typical spread from x = 0) of
these curves is

√
N , as we have shown it should be.
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Fig. 6-7. The probability density for ending up at the distance D from
the starting place in a random walk of N steps. (D is measured in units
of the rms step length.)

You may notice also that the value of p(x) near zero is inversely proportional
to
√
N . This comes about because the curves are all of a similar shape and their

areas under the curves must all be equal. Since p(x) ∆x is the probability of
finding D in ∆x when ∆x is small, we can determine the chance of finding D
somewhere inside an arbitrary interval from x1 to x2, by cutting the interval in
a number of small increments ∆x and evaluating the sum of the terms p(x) ∆x
for each increment. The probability that D lands somewhere between x1 and x2,
which we may write P (x1 < D < x2), is equal to the shaded area in Fig. 6-8.
The smaller we take the increments ∆x, the more correct is our result. We can
write, therefore,

P (x1 < D < x2) =
∑

p(x) ∆x =
∫ x2

x1

p(x) dx. (6.18)

The area under the whole curve is the probability that D lands somewhere
(that is, has some value between x = −∞ and x = +∞). That probability is
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xx1 x2

∆x

p(x)

Fig. 6-8. The probability that the distance D traveled in a random
walk is between x1 and x2 is the area under the curve of p(x) from x1
to x2.

surely 1. We must have that ∫ +∞

−∞
p(x) dx = 1. (6.19)

Since the curves in Fig. 6-7 get wider in proportion to
√
N , their heights must

be proportional to 1/
√
N to maintain the total area equal to 1.

The probability density function we have been describing is one that is
encountered most commonly. It is known as the normal or gaussian probability
density. It has the mathematical form

p(x) = 1
σ
√

2π
e−x

2/2σ2
, (6.20)

where σ is called the standard deviation and is given, in our case, by σ =
√
N or,

if the rms step size is different from 1, by σ =
√
NSrms.

We remarked earlier that the motion of a molecule, or of any particle, in a
gas is like a random walk. Suppose we open a bottle of an organic compound
and let some of its vapor escape into the air. If there are air currents, so that
the air is circulating, the currents will also carry the vapor with them. But even
in perfectly still air, the vapor will gradually spread out—will diffuse—until it
has penetrated throughout the room. We might detect it by its color or odor.
The individual molecules of the organic vapor spread out in still air because of
the molecular motions caused by collisions with other molecules. If we know the
average “step” size, and the number of steps taken per second, we can find the
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probability that one, or several, molecules will be found at some distance from
their starting point after any particular passage of time. As time passes, more
steps are taken and the gas spreads out as in the successive curves of Fig. 6-7.
In a later chapter, we shall find out how the step sizes and step frequencies are
related to the temperature and pressure of a gas.

Earlier, we said that the pressure of a gas is due to the molecules bouncing
against the walls of the container. When we come later to make a more quanti-
tative description, we will wish to know how fast the molecules are going when
they bounce, since the impact they make will depend on that speed. We cannot,
however, speak of the speed of the molecules. It is necessary to use a probability
description. A molecule may have any speed, but some speeds are more likely
than others. We describe what is going on by saying that the probability that
any particular molecule will have a speed between v and v + ∆v is p(v) ∆v,
where p(v), a probability density, is a given function of the speed v. We shall see
later how Maxwell, using common sense and the ideas of probability, was able to
find a mathematical expression for p(v). The form* of the function p(v) is shown
in Fig. 6-9. Velocities may have any value, but are most likely to be near the
most probable value vp.

vvp v1 v2

p(v)

or

N · p(v)

Fig. 6-9. The distribution of velocities of the molecules in a gas.

We often think of the curve of Fig. 6-9 in a somewhat different way. If
we consider the molecules in a typical container (with a volume of, say, one
liter), then there are a very large number N of molecules present (N ≈ 1022).
Since p(v) ∆v is the probability that one molecule will have its velocity in ∆v,

* Maxwell’s expression is p(v) = Cv2e−av
2 , where a is a constant related to the temperature

and C is chosen so that the total probability is one.
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by our definition of probability we mean that the expected number 〈∆N〉 to be
found with a velocity in the interval ∆v is given by

〈∆N〉 = N p(v) ∆v. (6.21)

We call N p(v) the “distribution in velocity.” The area under the curve between
two velocities v1 and v2, for example the shaded area in Fig. 6-9, represents [for
the curve N p(v)] the expected number of molecules with velocities between v1
and v2. Since with a gas we are usually dealing with large numbers of molecules,
we expect the deviations from the expected numbers to be small (like 1/

√
N), so

we often neglect to say the “expected” number, and say instead: “The number of
molecules with velocities between v1 and v2 is the area under the curve.” We should
remember, however, that such statements are always about probable numbers.

6-5 The uncertainty principle

The ideas of probability are certainly useful in describing the behavior of
the 1022 or so molecules in a sample of a gas, for it is clearly impractical even to
attempt to write down the position or velocity of each molecule. When probability
was first applied to such problems, it was considered to be a convenience—a
way of dealing with very complex situations. We now believe that the ideas of
probability are essential to a description of atomic happenings. According to
quantum mechanics, the mathematical theory of particles, there is always some
uncertainty in the specification of positions and velocities. We can, at best, say
that there is a certain probability that any particle will have a position near some
coordinate x.

We can give a probability density p1(x), such that p1(x) ∆x is the probability
that the particle will be found between x and x+∆x. If the particle is reasonably
well localized, say near x0, the function p1(x) might be given by the graph of
Fig. 6-10(a). Similarly, we must specify the velocity of the particle by means of
a probability density p2(v), with p2(v) ∆v the probability that the velocity will
be found between v and v + ∆v.

It is one of the fundamental results of quantum mechanics that the two
functions p1(x) and p2(v) cannot be chosen independently and, in particular,
cannot both be made arbitrarily narrow. If we call the typical “width” of the
p1(x) curve [∆x], and that of the p2(v) curve [∆v] (as shown in the figure),
nature demands that the product of the two widths be at least as big as the
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[∆v ]

Fig. 6-10. Probability densities for observation of the position and
velocity of a particle.

number ~/2m, where m is the mass of the particle. We may write this basic
relationship as

[∆x] · [∆v] ≥ ~/2m. (6.22)

This equation is a statement of the Heisenberg uncertainty principle that we
mentioned earlier.

Since the right-hand side of Eq. (6.22) is a constant, this equation says that
if we try to “pin down” a particle by forcing it to be at a particular place, it
ends up by having a high speed. Or if we try to force it to go very slowly, or at a
precise velocity, it “spreads out” so that we do not know very well just where it
is. Particles behave in a funny way!

The uncertainty principle describes an inherent fuzziness that must exist in
any attempt to describe nature. Our most precise description of nature must
be in terms of probabilities. There are some people who do not like this way of
describing nature. They feel somehow that if they could only tell what is really
going on with a particle, they could know its speed and position simultaneously.
In the early days of the development of quantum mechanics, Einstein was quite
worried about this problem. He used to shake his head and say, “But, surely God
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Fig. 6-11. A way of visualizing a hydrogen atom. The density (white-
ness) of the cloud represents the probability density for observing the
electron.

does not throw dice in determining how electrons should go!” He worried about
that problem for a long time and he probably never really reconciled himself to
the fact that this is the best description of nature that one can give. There are
still one or two physicists who are working on the problem who have an intuitive
conviction that it is possible somehow to describe the world in a different way
and that all of this uncertainty about the way things are can be removed. No
one has yet been successful.

The necessary uncertainty in our specification of the position of a particle
becomes most important when we wish to describe the structure of atoms. In the
hydrogen atom, which has a nucleus of one proton with one electron outside of
the nucleus, the uncertainty in the position of the electron is as large as the atom
itself! We cannot, therefore, properly speak of the electron moving in some “orbit”
around the proton. The most we can say is that there is a certain chance p(r) ∆V ,
of observing the electron in an element of volume ∆V at the distance r from
the proton. The probability density p(r) is given by quantum mechanics. For
an undisturbed hydrogen atom p(r) = Ae−2r/a. The number a is the “typical”
radius, where the function is decreasing rapidly. Since there is a small probability
of finding the electron at distances from the nucleus much greater than a, we
may think of a as “the radius of the atom,” about 10−10 meter.

We can form an image of the hydrogen atom by imagining a “cloud” whose
density is proportional to the probability density for observing the electron. A
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sample of such a cloud is shown in Fig. 6-11. Thus our best “picture” of a
hydrogen atom is a nucleus surrounded by an “electron cloud” (although we
really mean a “probability cloud”). The electron is there somewhere, but nature
permits us to know only the chance of finding it at any particular place.

In its efforts to learn as much as possible about nature, modern physics has
found that certain things can never be “known” with certainty. Much of our
knowledge must always remain uncertain. The most we can know is in terms of
probabilities.
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7

The Theory of Gravitation

7-1 Planetary motions

In this chapter we shall discuss one of the most far-reaching generalizations of
the human mind. While we are admiring the human mind, we should take some
time off to stand in awe of a nature that could follow with such completeness
and generality such an elegantly simple principle as the law of gravitation. What
is this law of gravitation? It is that every object in the universe attracts every
other object with a force which for any two bodies is proportional to the mass
of each and varies inversely as the square of the distance between them. This
statement can be expressed mathematically by the equation

F = G
mm′

r2 .

If to this we add the fact that an object responds to a force by accelerating in
the direction of the force by an amount that is inversely proportional to the mass
of the object, we shall have said everything required, for a sufficiently talented
mathematician could then deduce all the consequences of these two principles.
However, since you are not assumed to be sufficiently talented yet, we shall
discuss the consequences in more detail, and not just leave you with only these
two bare principles. We shall briefly relate the story of the discovery of the
law of gravitation and discuss some of its consequences, its effects on history,
the mysteries that such a law entails, and some refinements of the law made
by Einstein; we shall also discuss the relationships of the law to the other laws
of physics. All this cannot be done in one chapter, but these subjects will be
treated in due time in subsequent chapters.

The story begins with the ancients observing the motions of planets among
the stars, and finally deducing that they went around the sun, a fact that was
rediscovered later by Copernicus. Exactly how the planets went around the sun,
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with exactly what motion, took a little more work to discover. In the beginning
of the fifteenth century there were great debates as to whether they really went
around the sun or not. Tycho Brahe had an idea that was different from anything
proposed by the ancients: his idea was that these debates about the nature of the
motions of the planets would best be resolved if the actual positions of the planets
in the sky were measured sufficiently accurately. If measurement showed exactly
how the planets moved, then perhaps it would be possible to establish one or
another viewpoint. This was a tremendous idea—that to find something out, it is
better to perform some careful experiments than to carry on deep philosophical
arguments. Pursuing this idea, Tycho Brahe studied the positions of the planets
for many years in his observatory on the island of Hven, near Copenhagen. He
made voluminous tables, which were then studied by the mathematician Kepler,
after Tycho’s death. Kepler discovered from the data some very beautiful and
remarkable, but simple, laws regarding planetary motion.

7-2 Kepler’s laws

First of all, Kepler found that each planet goes around the sun in a curve
called an ellipse, with the sun at a focus of the ellipse. An ellipse is not just an
oval, but is a very specific and precise curve that can be obtained by using two
tacks, one at each focus, a loop of string, and a pencil; more mathematically, it
is the locus of all points the sum of whose distances from two fixed points (the
foci) is a constant. Or, if you will, it is a foreshortened circle (Fig. 7-1).

2b

2a

r1 r2

r1 + r2 / 2a

Fig. 7-1. An ellipse.

Kepler’s second observation was that the planets do not go around the sun at
a uniform speed, but move faster when they are nearer the sun and more slowly
when they are farther from the sun, in precisely this way: Suppose a planet
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∆t

∆t

Fig. 7-2. Kepler’s law of areas.

is observed at any two successive times, let us say a week apart, and that the
radius vector* is drawn to the planet for each observed position. The orbital arc
traversed by the planet during the week, and the two radius vectors, bound a
certain plane area, the shaded area shown in Fig. 7-2. If two similar observations
are made a week apart, at a part of the orbit farther from the sun (where the
planet moves more slowly), the similarly bounded area is exactly the same as in
the first case. So, in accordance with the second law, the orbital speed of each
planet is such that the radius “sweeps out” equal areas in equal times.

Finally, a third law was discovered by Kepler much later; this law is of a
different category from the other two, because it deals not with only a single
planet, but relates one planet to another. This law says that when the orbital
period and orbit size of any two planets are compared, the periods are proportional
to the 3/2 power of the orbit size. In this statement the period is the time interval
it takes a planet to go completely around its orbit, and the size is measured by
the length of the greatest diameter of the elliptical orbit, technically known as
the major axis. More simply, if the planets went in circles, as they nearly do, the
time required to go around the circle would be proportional to the 3/2 power of
the diameter (or radius). Thus Kepler’s three laws are:

I. Each planet moves around the sun in an ellipse, with the sun at one focus.
II. The radius vector from the sun to the planet sweeps out equal areas in

equal intervals of time.
III. The squares of the periods of any two planets are proportional to the cubes

of the semimajor axes of their respective orbits: T ∝ a3/2.

* A radius vector is a line drawn from the sun to any point in a planet’s orbit.
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7-3 Development of dynamics

While Kepler was discovering these laws, Galileo was studying the laws of
motion. The problem was, what makes the planets go around? (In those days,
one of the theories proposed was that the planets went around because behind
them were invisible angels, beating their wings and driving the planets forward.
You will see that this theory is now modified! It turns out that in order to keep the
planets going around, the invisible angels must fly in a different direction and they
have no wings. Otherwise, it is a somewhat similar theory!) Galileo discovered a
very remarkable fact about motion, which was essential for understanding these
laws. That is the principle of inertia—if something is moving, with nothing
touching it and completely undisturbed, it will go on forever, coasting at a
uniform speed in a straight line. (Why does it keep on coasting? We do not
know, but that is the way it is.)

Newton modified this idea, saying that the only way to change the motion
of a body is to use force. If the body speeds up, a force has been applied in
the direction of motion. On the other hand, if its motion is changed to a new
direction, a force has been applied sideways. Newton thus added the idea that
a force is needed to change the speed or the direction of motion of a body. For
example, if a stone is attached to a string and is whirling around in a circle, it
takes a force to keep it in the circle. We have to pull on the string. In fact, the
law is that the acceleration produced by the force is inversely proportional to the
mass, or the force is proportional to the mass times the acceleration. The more
massive a thing is, the stronger the force required to produce a given acceleration.
(The mass can be measured by putting other stones on the end of the same string
and making them go around the same circle at the same speed. In this way it
is found that more or less force is required, the more massive object requiring
more force.) The brilliant idea resulting from these considerations is that no
tangential force is needed to keep a planet in its orbit (the angels do not have to
fly tangentially) because the planet would coast in that direction anyway. If there
were nothing at all to disturb it, the planet would go off in a straight line. But
the actual motion deviates from the line on which the body would have gone if
there were no force, the deviation being essentially at right angles to the motion,
not in the direction of the motion. In other words, because of the principle of
inertia, the force needed to control the motion of a planet around the sun is not
a force around the sun but toward the sun. (If there is a force toward the sun,
the sun might be the angel, of course!)
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7-4 Newton’s law of gravitation

From his better understanding of the theory of motion, Newton appreciated
that the sun could be the seat or organization of forces that govern the motion of
the planets. Newton proved to himself (and perhaps we shall be able to prove it
soon) that the very fact that equal areas are swept out in equal times is a precise
sign post of the proposition that all deviations are precisely radial—that the law
of areas is a direct consequence of the idea that all of the forces are directed
exactly toward the sun.

Next, by analyzing Kepler’s third law it is possible to show that the farther
away the planet, the weaker the forces. If two planets at different distances
from the sun are compared, the analysis shows that the forces are inversely
proportional to the squares of the respective distances. With the combination
of the two laws, Newton concluded that there must be a force, inversely as the
square of the distance, directed in a line between the two objects.

Being a man of considerable feeling for generalities, Newton supposed, of
course, that this relationship applied more generally than just to the sun holding
the planets. It was already known, for example, that the planet Jupiter had
moons going around it as the moon of the earth goes around the earth, and
Newton felt certain that each planet held its moons with a force. He already knew
of the force holding us on the earth, so he proposed that this was a universal
force—that everything pulls everything else.

The next problem was whether the pull of the earth on its people was the
“same” as its pull on the moon, i.e., inversely as the square of the distance. If
an object on the surface of the earth falls 16 feet in the first second after it is
released from rest, how far does the moon fall in the same time? We might say
that the moon does not fall at all. But if there were no force on the moon, it
would go off in a straight line, whereas it goes in a circle instead, so it really
falls in from where it would have been if there were no force at all. We can
calculate from the radius of the moon’s orbit (which is about 240,000 miles) and
how long it takes to go around the earth (approximately 29 days), how far the
moon moves in its orbit in 1 second, and can then calculate how far it falls in
one second.* This distance turns out to be roughly 1/20 of an inch in a second.
That fits very well with the inverse square law, because the earth’s radius is
4000 miles, and if something which is 4000 miles from the center of the earth

* That is, how far the circle of the moon’s orbit falls below the straight line tangent to it at
the point where the moon was one second before.
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falls 16 feet in a second, something 240,000 miles, or 60 times as far away, should
fall only 1/3600 of 16 feet, which also is roughly 1/20 of an inch. Wishing to
put this theory of gravitation to a test by similar calculations, Newton made his
calculations very carefully and found a discrepancy so large that he regarded the
theory as contradicted by facts, and did not publish his results. Six years later
a new measurement of the size of the earth showed that the astronomers had
been using an incorrect distance to the moon. When Newton heard of this, he
made the calculation again, with the corrected figures, and obtained beautiful
agreement.

This idea that the moon “falls” is somewhat confusing, because, as you see,
it does not come any closer. The idea is sufficiently interesting to merit further
explanation: the moon falls in the sense that it falls away from the straight line
that it would pursue if there were no forces. Let us take an example on the surface
of the earth. An object released near the earth’s surface will fall 16 feet in the
first second. An object shot out horizontally will also fall 16 feet; even though it
is moving horizontally, it still falls the same 16 feet in the same time. Figure 7-3
shows an apparatus which demonstrates this. On the horizontal track is a ball
which is going to be driven forward a little distance away. At the same height is
a ball which is going to fall vertically, and there is an electrical switch arranged
so that at the moment the first ball leaves the track, the second ball is released.
That they come to the same depth at the same time is witnessed by the fact
that they collide in midair. An object like a bullet, shot horizontally, might go
a long way in one second—perhaps 2000 feet—but it will still fall 16 feet if it
is aimed horizontally. What happens if we shoot a bullet faster and faster? Do
not forget that the earth’s surface is curved. If we shoot it fast enough, then

ELECTROMAGNET

COLLISION!
h1

h2

h1 = h2

Fig. 7-3. Apparatus for showing the independence of vertical and
horizontal motions.
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Fig. 7-4. Acceleration toward the center of a circular path. From
plane geometry, x/S = (2R − S)/x ≈ 2R/x , where R is the radius of
the earth, 4000 miles; x is the distance “travelled horizontally” in one
second; and S is the distance “fallen” in one second (16 feet).

when it falls 16 feet it may be at just the same height above the ground as it
was before. How can that be? It still falls, but the earth curves away, so it falls
“around” the earth. The question is, how far does it have to go in one second so
that the earth is 16 feet below the horizon? In Fig. 7-4 we see the earth with
its 4000-mile radius, and the tangential, straight line path that the bullet would
take if there were no force. Now, if we use one of those wonderful theorems in
geometry, which says that our tangent is the mean proportional between the two
parts of the diameter cut by an equal chord, we see that the horizontal distance
travelled is the mean proportional between the 16 feet fallen and the 8000-mile
diameter of the earth. The square root of (16/5280)× 8000 comes out very close
to 5 miles. Thus we see that if the bullet moves at 5 miles a second, it then will
continue to fall toward the earth at the same rate of 16 feet each second, but will
never get any closer because the earth keeps curving away from it. Thus it was
that Mr. Gagarin maintained himself in space while going 25,000 miles around
the earth at approximately 5 miles per second. (He took a little longer because
he was a little higher.)

Any great discovery of a new law is useful only if we can take more out than
we put in. Now, Newton used the second and third of Kepler’s laws to deduce
his law of gravitation. What did he predict? First, his analysis of the moon’s
motion was a prediction because it connected the falling of objects on the earth’s
surface with that of the moon. Second, the question is, is the orbit an ellipse?
We shall see in a later chapter how it is possible to calculate the motion exactly,
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and indeed one can prove that it should be an ellipse,* so no extra fact is needed
to explain Kepler’s first law. Thus Newton made his first powerful prediction.

The law of gravitation explains many phenomena not previously understood.
For example, the pull of the moon on the earth causes the tides, hitherto mys-
terious. The moon pulls the water up under it and makes the tides—people
had thought of that before, but they were not as clever as Newton, and so they
thought there ought to be only one tide during the day. The reasoning was that
the moon pulls the water up under it, making a high tide and a low tide, and since
the earth spins underneath, that makes the tide at one station go up and down
every 24 hours. Actually the tide goes up and down in 12 hours. Another school
of thought claimed that the high tide should be on the other side of the earth
because, so they argued, the moon pulls the earth away from the water! Both of
these theories are wrong. It actually works like this: the pull of the moon for the
earth and for the water is “balanced” at the center. But the water which is closer
to the moon is pulled more than the average and the water which is farther away
from it is pulled less than the average. Furthermore, the water can flow while the
more rigid earth cannot. The true picture is a combination of these two things.

What do we mean by “balanced”? What balances? If the moon pulls the
whole earth toward it, why doesn’t the earth fall right “up” to the moon? Because
the earth does the same trick as the moon, it goes in a circle around a point
which is inside the earth but not at its center. The moon does not just go around
the earth, the earth and the moon both go around a central position, each falling
toward this common position, as shown in Fig. 7-5. This motion around the

MOON

EARTH

H2O

A

B

C POINT AROUND WHICH
EARTH & MOON ROTATE

Fig. 7-5. The earth-moon system, with tides.

* The proof is not given in this course.
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common center is what balances the fall of each. So the earth is not going in a
straight line either; it travels in a circle. The water on the far side is “unbalanced”
because the moon’s attraction there is weaker than it is at the center of the
earth, where it just balances the “centrifugal force.” The result of this imbalance
is that the water rises up, away from the center of the earth. On the near side,
the attraction from the moon is stronger, and the imbalance is in the opposite
direction in space, but again away from the center of the earth. The net result is
that we get two tidal bulges.

7-5 Universal gravitation

What else can we understand when we understand gravity? Everyone knows
the earth is round. Why is the earth round? That is easy; it is due to gravitation.
The earth can be understood to be round merely because everything attracts
everything else and so it has attracted itself together as far as it can! If we go
even further, the earth is not exactly a sphere because it is rotating, and this
brings in centrifugal effects which tend to oppose gravity near the equator. It
turns out that the earth should be elliptical, and we even get the right shape for
the ellipse. We can thus deduce that the sun, the moon, and the earth should be
(nearly) spheres, just from the law of gravitation.

What else can you do with the law of gravitation? If we look at the moons
of Jupiter we can understand everything about the way they move around that
planet. Incidentally, there was once a certain difficulty with the moons of Jupiter
that is worth remarking on. These satellites were studied very carefully by
Roemer, who noticed that the moons sometimes seemed to be ahead of schedule,
and sometimes behind. (One can find their schedules by waiting a very long time
and finding out how long it takes on the average for the moons to go around.)
Now they were ahead when Jupiter was particularly close to the earth and they
were behind when Jupiter was farther from the earth. This would have been
a very difficult thing to explain according to the law of gravitation—it would
have been, in fact, the death of this wonderful theory if there were no other
explanation. If a law does not work even in one place where it ought to, it is
just wrong. But the reason for this discrepancy was very simple and beautiful: it
takes a little while to see the moons of Jupiter because of the time it takes light
to travel from Jupiter to the earth. When Jupiter is closer to the earth the time
is a little less, and when it is farther from the earth, the time is more. This is why
moons appear to be, on the average, a little ahead or a little behind, depending
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on whether they are closer to or farther from the earth. This phenomenon showed
that light does not travel instantaneously, and furnished the first estimate of the
speed of light. This was done in 1656.

If all of the planets push and pull on each other, the force which controls,
let us say, Jupiter in going around the sun is not just the force from the sun;
there is also a pull from, say, Saturn. This force is not really strong, since the
sun is much more massive than Saturn, but there is some pull, so the orbit
of Jupiter should not be a perfect ellipse, and it is not; it is slightly off, and
“wobbles” around the correct elliptical orbit. Such a motion is a little more
complicated. Attempts were made to analyze the motions of Jupiter, Saturn,
and Uranus on the basis of the law of gravitation. The effects of each of these
planets on each other were calculated to see whether or not the tiny deviations
and irregularities in these motions could be completely understood from this
one law. Lo and behold, for Jupiter and Saturn, all was well, but Uranus was
“weird.” It behaved in a very peculiar manner. It was not travelling in an exact
ellipse, but that was understandable, because of the attractions of Jupiter and
Saturn. But even if allowance were made for these attractions, Uranus still was
not going right, so the laws of gravitation were in danger of being overturned,
a possibility that could not be ruled out. Two men, Adams and Le Verrier, in
England and France, independently, arrived at another possibility: perhaps there
is another planet, dark and invisible, which men had not seen. This planet, N ,
could pull on Uranus. They calculated where such a planet would have to be in
order to cause the observed perturbations. They sent messages to the respective
observatories, saying, “Gentlemen, point your telescope to such and such a place,
and you will see a new planet.” It often depends on with whom you are working
as to whether they pay any attention to you or not. They did pay attention to
Le Verrier; they looked, and there planet N was! The other observatory then
also looked very quickly in the next few days and saw it too.

This discovery shows that Newton’s laws are absolutely right in the solar
system; but do they extend beyond the relatively small distances of the nearest
planets? The first test lies in the question, do stars attract each other as well as
planets? We have definite evidence that they do in the double stars. Figure 7-6
shows a double star—two stars very close together (there is also a third star in
the picture so that we will know that the photograph was not turned). The stars
are also shown as they appeared several years later. We see that, relative to the
“fixed” star, the axis of the pair has rotated, i.e., the two stars are going around
each other. Do they rotate according to Newton’s laws? Careful measurements
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Fig. 7-6. A double-star system.
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of the relative positions of one such double star system are shown in Fig. 7-7.
There we see a beautiful ellipse, the measures starting in 1862 and going all the
way around to 1904 (by now it must have gone around once more). Everything
coincides with Newton’s laws, except that the star Sirius A is not at the focus.
Why should that be? Because the plane of the ellipse is not in the “plane of the
sky.” We are not looking at right angles to the orbit plane, and when an ellipse is
viewed at a tilt, it remains an ellipse but the focus is no longer at the same place.
Thus we can analyze double stars, moving about each other, according to the
requirements of the gravitational law.

Fig. 7-8. A globular star cluster.

That the law of gravitation is true at even bigger distances is indicated in
Fig. 7-8. If one cannot see gravitation acting here, he has no soul. This figure
shows one of the most beautiful things in the sky—a globular star cluster. All
of the dots are stars. Although they look as if they are packed solid toward the
center, that is due to the fallibility of our instruments. Actually, the distances
between even the centermost stars are very great and they very rarely collide.
There are more stars in the interior than farther out, and as we move outward
there are fewer and fewer. It is obvious that there is an attraction among these
stars. It is clear that gravitation exists at these enormous dimensions, perhaps
100,000 times the size of the solar system. Let us now go further, and look at an
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Fig. 7-9. A galaxy.

entire galaxy, shown in Fig. 7-9. The shape of this galaxy indicates an obvious
tendency for its matter to agglomerate. Of course we cannot prove that the
law here is precisely inverse square, only that there is still an attraction, at this
enormous dimension, that holds the whole thing together. One may say, “Well,
that is all very clever but why is it not just a ball?” Because it is spinning and
has angular momentum which it cannot give up as it contracts; it must contract
mostly in a plane. (Incidentally, if you are looking for a good problem, the
exact details of how the arms are formed and what determines the shapes of
these galaxies has not been worked out.) It is, however, clear that the shape of
the galaxy is due to gravitation even though the complexities of its structure
have not yet allowed us to analyze it completely. In a galaxy we have a scale
of perhaps 50,000 to 100,000 light years. The earth’s distance from the sun is
8 1

3 light minutes, so you can see how large these dimensions are.
Gravity appears to exist at even bigger dimensions, as indicated by Fig. 7-10,

which shows many “little” things clustered together. This is a cluster of galaxies,
just like a star cluster. Thus galaxies attract each other at such distances that
they too are agglomerated into clusters. Perhaps gravitation exists even over
distances of tens of millions of light years; so far as we now know, gravity seems
to go out forever inversely as the square of the distance.

7-13



Fig. 7-10. A cluster of galaxies.

Fig. 7-11. An interstellar dust cloud.
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Fig. 7-12. The formation of new stars?

Not only can we understand the nebulae, but from the law of gravitation we
can even get some ideas about the origin of the stars. If we have a big cloud of
dust and gas, as indicated in Fig. 7-11, the gravitational attractions of the pieces
of dust for one another might make them form little lumps. Barely visible in the
figure are “little” black spots which may be the beginning of the accumulations
of dust and gases which, due to their gravitation, begin to form stars. Whether
we have ever seen a star form or not is still debatable. Figure 7-12 shows the one
piece of evidence which suggests that we have. At the left is a picture of a region
of gas with some stars in it taken in 1947, and at the right is another picture,
taken only 7 years later, which shows two new bright spots. Has gas accumulated,
has gravity acted hard enough and collected it into a ball big enough that the
stellar nuclear reaction starts in the interior and turns it into a star? Perhaps,
and perhaps not. It is unreasonable that in only seven years we should be so
lucky as to see a star change itself into visible form; it is much less probable that
we should see two!

7-6 Cavendish’s experiment

Gravitation, therefore, extends over enormous distances. But if there is a
force between any pair of objects, we ought to be able to measure the force
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between our own objects. Instead of having to watch the stars go around each
other, why can we not take a ball of lead and a marble and watch the marble go
toward the ball of lead? The difficulty of this experiment when done in such a
simple manner is the very weakness or delicacy of the force. It must be done with
extreme care, which means covering the apparatus to keep the air out, making
sure it is not electrically charged, and so on; then the force can be measured.
It was first measured by Cavendish with an apparatus which is schematically
indicated in Fig. 7-13. This first demonstrated the direct force between two large,
fixed balls of lead and two smaller balls of lead on the ends of an arm supported
by a very fine fiber, called a torsion fiber. By measuring how much the fiber
gets twisted, one can measure the strength of the force, verify that it is inversely
proportional to the square of the distance, and determine how strong it is. Thus,
one may accurately determine the coefficient G in the formula

F = G
mm′

r2 .

All the masses and distances are known. You say, “We knew it already for
the earth.” Yes, but we did not know the mass of the earth. By knowing G
from this experiment and by knowing how strongly the earth attracts, we can
indirectly learn how great is the mass of the earth! This experiment has been
called “weighing the earth” by some people, and it can be used to determine the
coefficient G of the gravity law. This is the only way in which the mass of the

M
M

Fig. 7-13. A simplified diagram of the apparatus used by Cavendish to
verify the law of universal gravitation for small objects and to measure
the gravitational constant G.
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earth can be determined. G turns out to be

6.670× 10−11 newton ·m2/kg2.

It is hard to exaggerate the importance of the effect on the history of science
produced by this great success of the theory of gravitation. Compare the confusion,
the lack of confidence, the incomplete knowledge that prevailed in the earlier ages,
when there were endless debates and paradoxes, with the clarity and simplicity
of this law—this fact that all the moons and planets and stars have such a simple
rule to govern them, and further that man could understand it and deduce how
the planets should move! This is the reason for the success of the sciences in
following years, for it gave hope that the other phenomena of the world might
also have such beautifully simple laws.

7-7 What is gravity?

But is this such a simple law? What about the machinery of it? All we have
done is to describe how the earth moves around the sun, but we have not said
what makes it go. Newton made no hypotheses about this; he was satisfied to find
what it did without getting into the machinery of it. No one has since given any
machinery. It is characteristic of the physical laws that they have this abstract
character. The law of conservation of energy is a theorem concerning quantities
that have to be calculated and added together, with no mention of the machinery,
and likewise the great laws of mechanics are quantitative mathematical laws for
which no machinery is available. Why can we use mathematics to describe nature
without a mechanism behind it? No one knows. We have to keep going because
we find out more that way.

Many mechanisms for gravitation have been suggested. It is interesting to
consider one of these, which many people have thought of from time to time. At
first, one is quite excited and happy when he “discovers” it, but he soon finds
that it is not correct. It was first discovered about 1750. Suppose there were
many particles moving in space at a very high speed in all directions and being
only slightly absorbed in going through matter. When they are absorbed, they
give an impulse to the earth. However, since there are as many going one way
as another, the impulses all balance. But when the sun is nearby, the particles
coming toward the earth through the sun are partially absorbed, so fewer of them
are coming from the sun than are coming from the other side. Therefore, the
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earth feels a net impulse toward the sun and it does not take one long to see
that it is inversely as the square of the distance—because of the variation of the
solid angle that the sun subtends as we vary the distance. What is wrong with
that machinery? It involves some new consequences which are not true. This
particular idea has the following trouble: the earth, in moving around the sun,
would impinge on more particles which are coming from its forward side than
from its hind side (when you run in the rain, the rain in your face is stronger
than that on the back of your head!). Therefore there would be more impulse
given the earth from the front, and the earth would feel a resistance to motion
and would be slowing up in its orbit. One can calculate how long it would take
for the earth to stop as a result of this resistance, and it would not take long
enough for the earth to still be in its orbit, so this mechanism does not work. No
machinery has ever been invented that “explains” gravity without also predicting
some other phenomenon that does not exist.

Next we shall discuss the possible relation of gravitation to other forces. There
is no explanation of gravitation in terms of other forces at the present time. It
is not an aspect of electricity or anything like that, so we have no explanation.
However, gravitation and other forces are very similar, and it is interesting to
note analogies. For example, the force of electricity between two charged objects
looks just like the law of gravitation: the force of electricity is a constant, with a
minus sign, times the product of the charges, and varies inversely as the square
of the distance. It is in the opposite direction—likes repel. But is it still not very
remarkable that the two laws involve the same function of distance? Perhaps
gravitation and electricity are much more closely related than we think. Many
attempts have been made to unify them; the so-called unified field theory is only
a very elegant attempt to combine electricity and gravitation; but, in comparing
gravitation and electricity, the most interesting thing is the relative strengths of
the forces. Any theory that contains them both must also deduce how strong the
gravity is.

If we take, in some natural units, the repulsion of two electrons (nature’s
universal charge) due to electricity, and the attraction of two electrons due to
their masses, we can measure the ratio of electrical repulsion to the gravitational
attraction. The ratio is independent of the distance and is a fundamental constant
of nature. The ratio is shown in Fig. 7-14. The gravitational attraction relative
to the electrical repulsion between two electrons is 1 divided by 4.17× 1042! The
question is, where does such a large number come from? It is not accidental, like
the ratio of the volume of the earth to the volume of a flea. We have considered
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Fig. 7-14. The relative strengths of electrical and gravitational inter-
actions between two electrons.

two natural aspects of the same thing, an electron. This fantastic number is a
natural constant, so it involves something deep in nature. Where could such
a tremendous number come from? Some say that we shall one day find the
“universal equation,” and in it, one of the roots will be this number. It is very
difficult to find an equation for which such a fantastic number is a natural root.
Other possibilities have been thought of; one is to relate it to the age of the
universe. Clearly, we have to find another large number somewhere. But do
we mean the age of the universe in years? No, because years are not “natural”;
they were devised by men. As an example of something natural, let us consider
the time it takes light to go across a proton, 10−24 second. If we compare this
time with the age of the universe, 2 × 1010 years, the answer is 10−42. It has
about the same number of zeros going off it, so it has been proposed that the
gravitational constant is related to the age of the universe. If that were the case,
the gravitational constant would change with time, because as the universe got
older the ratio of the age of the universe to the time which it takes for light to go
across a proton would be gradually increasing. Is it possible that the gravitational
constant is changing with time? Of course the changes would be so small that it
is quite difficult to be sure.

One test which we can think of is to determine what would have been the
effect of the change during the past 109 years, which is approximately the age
from the earliest life on the earth to now, and one-tenth of the age of the universe.
In this time, the gravity constant would have increased by about 10 percent.
It turns out that if we consider the structure of the sun—the balance between
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the weight of its material and the rate at which radiant energy is generated
inside it—we can deduce that if the gravity were 10 percent stronger, the sun
would be much more than 10 percent brighter—by the sixth power of the gravity
constant! If we calculate what happens to the orbit of the earth when the gravity
is changing, we find that the earth was then closer in. Altogether, the earth
would be about 100 degrees centigrade hotter, and all of the water would not
have been in the sea, but vapor in the air, so life would not have started in the
sea. So we do not now believe that the gravity constant is changing with the age
of the universe. But such arguments as the one we have just given are not very
convincing, and the subject is not completely closed.

It is a fact that the force of gravitation is proportional to the mass, the
quantity which is fundamentally a measure of inertia—of how hard it is to hold
something which is going around in a circle. Therefore two objects, one heavy
and one light, going around a larger object in the same circle at the same speed
because of gravity, will stay together because to go in a circle requires a force
which is stronger for a bigger mass. That is, the gravity is stronger for a given
mass in just the right proportion so that the two objects will go around together.
If one object were inside the other it would stay inside; it is a perfect balance.
Therefore, Gagarin or Titov would find things “weightless” inside a space ship; if
they happened to let go of a piece of chalk, for example, it would go around the
earth in exactly the same way as the whole space ship, and so it would appear
to remain suspended before them in space. It is very interesting that this force
is exactly proportional to the mass with great precision, because if it were not
exactly proportional there would be some effect by which inertia and weight
would differ. The absence of such an effect has been checked with great accuracy
by an experiment done first by Eötvös in 1909 and more recently by Dicke. For
all substances tried, the masses and weights are exactly proportional within 1
part in 1,000,000,000, or less. This is a remarkable experiment.

7-8 Gravity and relativity

Another topic deserving discussion is Einstein’s modification of Newton’s law
of gravitation. In spite of all the excitement it created, Newton’s law of gravitation
is not correct! It was modified by Einstein to take into account the theory of
relativity. According to Newton, the gravitational effect is instantaneous, that
is, if we were to move a mass, we would at once feel a new force because of the
new position of that mass; by such means we could send signals at infinite speed.
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Einstein advanced arguments which suggest that we cannot send signals faster
than the speed of light, so the law of gravitation must be wrong. By correcting
it to take the delays into account, we have a new law, called Einstein’s law of
gravitation. One feature of this new law which is quite easy to understand is this:
In the Einstein relativity theory, anything which has energy has mass—mass in
the sense that it is attracted gravitationally. Even light, which has an energy,
has a “mass.” When a light beam, which has energy in it, comes past the sun
there is an attraction on it by the sun. Thus the light does not go straight, but is
deflected. During the eclipse of the sun, for example, the stars which are around
the sun should appear displaced from where they would be if the sun were not
there, and this has been observed.

Finally, let us compare gravitation with other theories. In recent years we have
discovered that all mass is made of tiny particles and that there are several kinds
of interactions, such as nuclear forces, etc. None of these nuclear or electrical
forces has yet been found to explain gravitation. The quantum-mechanical aspects
of nature have not yet been carried over to gravitation. When the scale is so
small that we need the quantum effects, the gravitational effects are so weak
that the need for a quantum theory of gravitation has not yet developed. On
the other hand, for consistency in our physical theories it would be important to
see whether Newton’s law modified to Einstein’s law can be further modified to
be consistent with the uncertainty principle. This last modification has not yet
been completed.
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8

Motion

8-1 Description of motion

In order to find the laws governing the various changes that take place in
bodies as time goes on, we must be able to describe the changes and have some
way to record them. The simplest change to observe in a body is the apparent
change in its position with time, which we call motion. Let us consider some solid
object with a permanent mark, which we shall call a point, that we can observe.
We shall discuss the motion of the little marker, which might be the radiator cap
of an automobile or the center of a falling ball, and shall try to describe the fact
that it moves and how it moves.

These examples may sound trivial, but many subtleties enter into the descrip-
tion of change. Some changes are more difficult to describe than the motion of a
point on a solid object, for example the speed of drift of a cloud that is drifting
very slowly, but rapidly forming or evaporating, or the change of a woman’s mind.
We do not know a simple way to analyze a change of mind, but since the cloud
can be represented or described by many molecules, perhaps we can describe the
motion of the cloud in principle by describing the motion of all its individual
molecules. Likewise, perhaps even the changes in the mind may have a parallel
in changes of the atoms inside the brain, but we have no such knowledge yet.

At any rate, that is why we begin with the motion of points; perhaps we
should think of them as atom, but it is probably better to be more rough in
the beginning and simply to think of some kind of small objects—small, that
is, compared with the distance moved. For instance, in describing the motion
of a car that is going a hundred miles, we do not have to distinguish between
the front and the back of the car. To be sure, there are slight differences, but
for rough purposes we say “the car,” and likewise it does not matter that our
points are not absolute points; for our present purposes it is not necessary to be
extremely precise. Also, while we take a first look at this subject we are going
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Table 8-1

t (min) s (ft)
0 0
1 1200
2 4000
3 9000
4 9500
5 9600
6 13000
7 18000
8 23500
9 24000
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Fig. 8-1. Graph of distance versus time for the car.

to forget about the three dimensions of the world. We shall just concentrate
on moving in one direction, as in a car on one road. We shall return to three
dimensions after we see how to describe motion in one dimension. Now, you may
say, “This is all some kind of trivia,” and indeed it is. How can we describe such a
one-dimensional motion—let us say, of a car? Nothing could be simpler. Among
many possible ways, one would be the following. To determine the position of
the car at different times, we measure its distance from the starting point and
record all the observations. In Table 8-1, s represents the distance of the car, in
feet, from the starting point, and t represents the time in minutes. The first line
in the table represents zero distance and zero time—the car has not started yet.
After one minute it has started and has gone 1200 feet. Then in two minutes, it
goes farther—notice that it picked up more distance in the second minute—it
has accelerated; but something happened between 3 and 4 and even more so
at 5—it stopped at a light perhaps? Then it speeds up again and goes 13,000 feet
by the end of 6 minutes, 18,000 feet at the end of 7 minutes, and 23,500 feet in
8 minutes; at 9 minutes it has advanced to only 24,000 feet, because in the last
minute it was stopped by a cop.

That is one way to describe the motion. Another way is by means of a
graph. If we plot the time horizontally and the distance vertically, we obtain a
curve something like that shown in Fig. 8-1. As the time increases, the distance
increases, at first very slowly and then more rapidly, and very slowly again for a
little while at 4 minutes; then it increases again for a few minutes and finally,
at 9 minutes, appears to have stopped increasing. These observations can be
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Table 8-2

t (sec) s (ft)
0 0
1 16
2 64
3 144
4 256
5 400
6 576
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Fig. 8-2. Graph of distance versus time for a falling
body.

made from the graph, without a table. Obviously, for a complete description
one would have to know where the car is at the half-minute marks, too, but we
suppose that the graph means something, that the car has some position at all
the intermediate times.

The motion of a car is complicated. For another example we take something
that moves in a simpler manner, following more simple laws: a falling ball.
Table 8-2 gives the time in seconds and the distance in feet for a falling body.
At zero seconds the ball starts out at zero feet, and at the end of 1 second it
has fallen 16 feet. At the end of 2 seconds, it has fallen 64 feet, at the end of
3 seconds, 144 feet, and so on; if the tabulated numbers are plotted, we get the
nice parabolic curve shown in Fig. 8-2. The formula for this curve can be written
as

s = 16t2. (8.1)

This formula enables us to calculate the distances at any time. You might say
there ought to be a formula for the first graph too. Actually, one may write such
a formula abstractly, as

s = f(t), (8.2)

meaning that s is some quantity depending on t or, in mathematical phraseology,
s is a function of t. Since we do not know what the function is, there is no way
we can write it in definite algebraic form.

We have now seen two examples of motion, adequately described with very
simple ideas, no subtleties. However, there are subtleties—several of them. In
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the first place, what do we mean by time and space? It turns out that these deep
philosophical questions have to be analyzed very carefully in physics, and this
is not so easy to do. The theory of relativity shows that our ideas of space and
time are not as simple as one might think at first sight. However, for our present
purposes, for the accuracy that we need at first, we need not be very careful
about defining things precisely. Perhaps you say, “That’s a terrible thing—I
learned that in science we have to define everything precisely.” We cannot define
anything precisely! If we attempt to, we get into that paralysis of thought that
comes to philosophers, who sit opposite each other, one saying to the other, “You
don’t know what you are talking about!” The second one says, “What do you
mean by know? What do you mean by talking? What do you mean by you?,”
and so on. In order to be able to talk constructively, we just have to agree that
we are talking about roughly the same thing. You know as much about time as
we need for the present, but remember that there are some subtleties that have
to be discussed; we shall discuss them later.

Another subtlety involved, and already mentioned, is that it should be possible
to imagine that the moving point we are observing is always located somewhere.
(Of course when we are looking at it, there it is, but maybe when we look away it
isn’t there.) It turns out that in the motion of atoms, that idea also is false—we
cannot find a marker on an atom and watch it move. That subtlety we shall
have to get around in quantum mechanics. But we are first going to learn what
the problems are before introducing the complications, and then we shall be in a
better position to make corrections, in the light of the more recent knowledge
of the subject. We shall, therefore, take a simple point of view about time and
space. We know what these concepts are in a rough way, and those who have
driven a car know what speed means.

8-2 Speed

Even though we know roughly what “speed” means, there are still some
rather deep subtleties; consider that the learned Greeks were never able to
adequately describe problems involving velocity. The subtlety comes when we try
to comprehend exactly what is meant by “speed.” The Greeks got very confused
about this, and a new branch of mathematics had to be discovered beyond the
geometry and algebra of the Greeks, Arabs, and Babylonians. As an illustration
of the difficulty, try to solve this problem by sheer algebra: A balloon is being
inflated so that the volume of the balloon is increasing at the rate of 100 cm3
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per second; at what speed is the radius increasing when the volume is 1000 cm3?
The Greeks were somewhat confused by such problems, being helped, of course,
by some very confusing Greeks. To show that there were difficulties in reasoning
about speed at the time, Zeno produced a large number of paradoxes, of which
we shall mention one to illustrate his point that there are obvious difficulties in
thinking about motion. “Listen,” he says, “to the following argument: Achilles
runs 10 times as fast as a tortoise, nevertheless he can never catch the tortoise.
For, suppose that they start in a race where the tortoise is 100 meters ahead
of Achilles; then when Achilles has run the 100 meters to the place where the
tortoise was, the tortoise has proceeded 10 meters, having run one-tenth as fast.
Now, Achilles has to run another 10 meters to catch up with the tortoise, but on
arriving at the end of that run, he finds that the tortoise is still 1 meter ahead
of him; running another meter, he finds the tortoise 10 centimeters ahead, and
so on, ad infinitum. Therefore, at any moment the tortoise is always ahead of
Achilles and Achilles can never catch, up with the tortoise.” What is wrong with
that? It is that a finite amount of time can be divided into an infinite number of
pieces, just as a length of line can be divided into an infinite number of pieces
by dividing repeatedly by two. And so, although there are an infinite number
of steps (in the argument) to the point at which Achilles reaches the tortoise,
it doesn’t mean that there is an infinite amount of time. We can see from this
example that there are indeed some subtleties in reasoning about speed.

In order to get to the subtleties in a clearer fashion, we remind you of a
joke which you surely must have heard. At the point where the lady in the car
is caught by a cop, the cop comes up to her and says, “Lady, you were going
60 miles an hour!” She says, “That’s impossible, sir, I was travelling for only
seven minutes. It is ridiculous—how can I go 60 miles an hour when I wasn’t
going an hour?” How would you answer her if you were the cop? Of course, if
you were really the cop, then no subtleties are involved; it is very simple: you say,
“Tell that to the judge!” But let us suppose that we do not have that escape and
we make a more honest, intellectual attack on the problem, and try to explain to
this lady what we mean by the idea that she was going 60 miles an hour. Just
what do we mean? We say, “What we mean, lady, is this: if you kept on going
the same way as you are going now, in the next hour you would go 60 miles.” She
could say, “Well, my foot was off the accelerator and the car was slowing down,
so if I kept on going that way it would not go 60 miles.” Or consider the falling
ball and suppose we want to know its speed at the time three seconds if the ball
kept on going the way it is going. What does that mean—kept on accelerating,
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going faster? No—kept on going with the same velocity. But that is what we are
trying to define! For if the ball keeps on going the way it is going, it will just
keep on going the way it is going. Thus we need to define the velocity better.
What has to be kept the same? The lady can also argue this way: “If I kept on
going the way I’m going for one more hour, I would run into that wall at the end
of the street!” It is not so easy to say what we mean.

Many physicists think that measurement is the only definition of anything.
Obviously, then, we should use the instrument that measures the speed—the
speedometer—and say, “Look, lady, your speedometer reads 60.” So she says,
“My speedometer is broken and didn’t read at all.” Does that mean the car is
standing still? We believe that there is something to measure before we build
the speedometer. Only then can we say, for example, “The speedometer isn’t
working right,” or “the speedometer is broken.” That would be a meaningless
sentence if the velocity had no meaning independent of the speedometer. So we
have in our minds, obviously, an idea that is independent of the speedometer,
and the speedometer is meant only to measure this idea. So let us see if we can
get a better definition of the idea. We say, “Yes, of course, before you went an
hour, you would hit that wall, but if you went one second, you would go 88 feet;
lady, you were going 88 feet per second, and if you kept on going, the next second
it would be 88 feet, and the wall down there is farther away than that.” She says,
“Yes, but there’s no law against going 88 feet per second! There is only a law
against going 60 miles an hour.” “But,” we reply, “it’s the same thing.” If it is
the same thing, it should not be necessary to go into this circumlocution about
88 feet per second. In fact, the falling ball could not keep going the same way
even one second because it would be changing speed, and we shall have to define
speed somehow.

Now we seem to be getting on the right track; it goes something like this: If
the lady kept on going for another 1/1000 of an hour, she would go 1/1000 of
60 miles. In other words, she does not have to keep on going for the whole hour;
the point is that for a moment she is going at that speed. Now what that means
is that if she went just a little bit more in time, the extra distance she goes would
be the same as that of a car that goes at a steady speed of 60 miles an hour.
Perhaps the idea of the 88 feet per second is right; we see how far she went in
the last second, divide by 88 feet, and if it comes out 1 the speed was 60 miles
an hour. In other words, we can find the speed in this way: We ask, how far
do we go in a very short time? We divide that distance by the time, and that
gives the speed. But the time should be made as short as possible, the shorter
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the better, because some change could take place during that time. If we take
the time of a falling body as an hour, the idea is ridiculous. If we take it as a
second, the result is pretty good for a car, because there is not much change in
speed, but not for a falling body; so in order to get the speed more and more
accurately, we should take a smaller and smaller time interval. What we should
do is take a millionth of a second, and divide that distance by a millionth of a
second. The result gives the distance per second, which is what we mean by the
velocity, so we can define it that way. That is a successful answer for the lady, or
rather, that is the definition that we are going to use.

The foregoing definition involves a new idea, an idea that was not available to
the Greeks in a general form. That idea was to take an infinitesimal distance and
the corresponding infinitesimal time, form the ratio, and watch what happens
to that ratio as the time that we use gets smaller and smaller and smaller. In
other words, take a limit of the distance travelled divided by the time required,
as the time taken gets smaller and smaller, ad infinitum. This idea was invented
by Newton and by Leibniz, independently, and is the beginning of a new branch
of mathematics, called the differential calculus. Calculus was invented in order
to describe motion, and its first application was to the problem of defining what
is meant by going “60 miles an hour.”

Let us try to define velocity a little better. Suppose that in a short time, ε,
the car or other body goes a short distance x; then the velocity, v, is defined as

v = x/ε,

an approximation that becomes better and better as the ε is taken smaller and
smaller. If a mathematical expression is desired, we can say that the velocity
equals the limit as the ε is made to go smaller and smaller in the expression x/ε,
or

v = lim
ε→0

x

ε
. (8.3)

We cannot do the same thing with the lady in the car, because the table is
incomplete. We know only where she was at intervals of one minute; we can
get a rough idea that she was going 5000 ft/min during the 7th minute, but we
do not know, at exactly the moment 7 minutes, whether she had been speeding
up and the speed was 4900 ft/min at the beginning of the 6th minute, and is
now 5100 ft/min, or something else, because we do not have the exact details in
between. So only if the table were completed with an infinite number of entries
could we really calculate the velocity from such a table. On the other hand,
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when we have a complete mathematical formula, as in the case of a falling body
(Eq. 8.1), then it is possible to calculate the velocity, because we can calculate
the position at any time whatsoever.

Let us take as an example the problem of determining the velocity of the
falling ball at the particular time 5 seconds. One way to do this is to see from
Table 8-2 what it did in the 5th second; it went 400− 256 = 144 ft, so it is going
144 ft/sec; however, that is wrong, because the speed is changing; on the average
it is 144 ft/sec during this interval, but the ball is speeding up and is really going
faster than 144 ft/sec. We want to find out exactly how fast. The technique
involved in this process is the following: We know where the ball was at 5 sec.
At 5.1 sec, the distance that it has gone all together is 16(5.1)2 = 416.16 ft (see
Eq. 8.1). At 5 sec it had already fallen 400 ft; in the last tenth of a second it
fell 416.16− 400 = 16.16 ft. Since 16.16 ft in 0.1 sec is the same as 161.6 ft/sec,
that is the speed more or less, but it is not exactly correct. Is that the speed
at 5, or at 5.1, or halfway between at 5.05 sec, or when is that the speed? Never
mind—the problem was to find the speed at 5 seconds, and we do not have exactly
that; we have to do a better job. So, we take one-thousandth of a second more
than 5 sec, or 5.001 sec, and calculate the total fall as

s = 16(5.001)2 = 16(25.010001) = 400.160016 ft.

In the last 0.001 sec the ball fell 0.160016 ft, and if we divide this number by
0.001 sec we obtain the speed as 160.016 ft/sec. That is closer, very close, but it is
still not exact. It should now be evident what we must do to find the speed exactly.
To perform the mathematics we state the problem a little more abstractly: to
find the velocity at a special time, t0, which in the original problem was 5 sec.
Now the distance at t0, which we call s0, is 16t20, or 400 ft in this case. In order
to find the velocity, we ask, “At the time t0 + (a little bit), or t0 + ε, where is
the body?” The new position is 16(t0 + ε)2 = 16t20 + 32t0ε+ 16ε2. So it is farther
along than it was before, because before it was only 16t20. This distance we shall
call s0 + (a little bit more), or s0 + x (if x is the extra bit). Now if we subtract
the distance at t0 from the distance at t0 + ε, we get x, the extra distance gone,
as x = 32t0 · ε+ 16ε2. Our first approximation to the velocity is

v = x

ε
= 32t0 + 16ε. (8.4)

The true velocity is the value of this ratio, x/ε, when ε becomes vanishingly small.
In other words, after forming the ratio, we take the limit as ε gets smaller and
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smaller, that is, approaches 0. The equation reduces to,

v (at time t0) = 32t0.

In our problem, t0 = 5 sec, so the solution is v = 32× 5 = 160 ft/sec. A few lines
above, where we took ε as 0.1 and 0.001 sec successively, the value we got for v
was a little more than this, but now we see that the actual velocity is precisely
160 ft/sec.

8-3 Speed as a derivative

The procedure we have just carried out is performed so often in mathematics
that for convenience special notations have been assigned to our quantities ε
and x. In this notation, the ε used above becomes ∆t and x becomes ∆s. This
∆t means “an extra bit of t,” and carries an implication that it can be made
smaller. The prefix ∆ is not a multiplier, any more than sin θ means s · i · n · θ—it
simply defines a time increment, and reminds us of its special character. ∆s has
an analogous meaning for the distance s. Since ∆ is not a factor, it cannot be
cancelled in the ratio ∆s/∆t to give s/t, any more than the ratio sin θ/ sin 2θ
can be reduced to 1/2 by cancellation. In this notation, velocity is equal to the
limit of ∆s/∆t when ∆t gets smaller, or

v = lim
∆t→0

∆s
∆t . (8.5)

This is really the same as our previous expression (8.3) with ε and x, but it has
the advantage of showing that something is changing, and it keeps track of what
is changing.

Incidentally, to a good approximation we have another law, which says that
the change in distance of a moving point is the velocity times the time interval,
or ∆s = v∆t. This statement is true only if the velocity is not changing during
that time interval, and this condition is true only in the limit as ∆t goes to 0.
Physicists like to write it ds = v dt, because by dt they mean ∆t in circumstances
in which it is very small; with this understanding, the expression is valid to a close
approximation. If ∆t is too long, the velocity might change during the interval,
and the approximation would become less accurate. For a time dt, approaching
zero, ds = v dt precisely. In this notation we can write (8.5) as

v = lim
∆t→0

∆s
∆t = ds

dt
.
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The quantity ds/dt which we found above is called the “derivative of s with
respect to t” (this language helps to keep track of what was changed), and the
complicated process of finding it is called finding a derivative, or differentiating.
The ds’s and dt’s which appear separately are called differentials. To familiarize
you with the words, we say we found the derivative of the function 16t2, or the
derivative (with respect to t) of 16t2 is 32t. When we get used to the words, the
ideas are more easily understood. For practice, let us find the derivative of a more
complicated function. We shall consider the formula s = At3 +Bt+ C, which
might describe the motion of a point. The letters A, B, and C represent constant
numbers, as in the familiar general form of a quadratic equation. Starting from
the formula for the motion, we wish to find the velocity at any time. To find the
velocity in the more elegant manner, we change t to t+ ∆t and note that s is
then changed to s+ some ∆s; then we find the ∆s in terms of ∆t. That is to say,

s+ ∆s = A(t+ ∆t)3 +B(t+ ∆t) + C

= At3 +Bt+ C + 3At2 ∆t+B∆t+ 3At(∆t)2 +A(∆t)3,

but since
s = At3 +Bt+ C,

we find that
∆s = 3At2 ∆t+B∆t+ 3At(∆t)2 +A(∆t)3.

But we do not want ∆s—we want ∆s divided by ∆t. We divide the preceding
equation by ∆t, getting

∆s
∆t = 3At2 +B + 3At(∆t) +A(∆t)2.

As ∆t goes toward 0 the limit of ∆s/∆t is ds/dt and is equal to
ds

dt
= 3At2 +B.

This is the fundamental process of calculus, differentiating functions. The process
is even more simple than it appears. Observe that when these expansions contain
any term with a square or a cube or any higher power of ∆t, such terms may be
dropped at once, since they will go to 0 when the limit is taken. After a little
practice the process gets easier because one knows what to leave out. There are
many rules or formulas for differentiating various types of functions. These can
be memorized, or can be found in tables. A short list is found in Table 8-3.
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Table 8-3. A Short Table of Derivatives

s, u, v, w are arbitrary functions of t; a, b, c, and n are arbitrary constants

Function Derivative

s = tn
ds

dt
= ntn−1

s = cu
ds

dt
= c

du

dt

s = u+ v + w + · · · ds

dt
= du

dt
+ dv

dt
+ dw

dt
+ · · ·

s = c
ds

dt
= 0

s = uavbwc · · · ds

dt
= s

(
a

u

du

dt
+ b

v

dv

dt
+ c

w

dw

dt
+ · · ·

)

8-4 Distance as an integral

Now we have to discuss the inverse problem. Suppose that instead of a table of
distances, we have a table of speeds at different times, starting from zero. For the
falling ball, such speeds and times are shown in Table 8-4. A similar table could
be constructed for the velocity of the car, by recording the speedometer reading
every minute or half-minute. If we know how fast the car is going at any time,
can we determine how far it goes? This problem is just the inverse of the one
solved above; we are given the velocity and asked to find the distance. How can
we find the distance if we know the speed? If the speed of the car is not constant,
and the lady goes sixty miles an hour for a moment, then slows down, speeds up,

Table 8-4

Velocity of a Falling Ball

t (sec) v (ft/sec)
0 0
1 32
2 64
3 96
4 128
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and so on, how can we determine how far she has gone? That is easy. We use
the same idea, and express the distance in terms of infinitesimals. Let us say, “In
the first second her speed was such and such, and from the formula ∆s = v∆t
we can calculate how far the car went the first second at that speed.” Now in the
next second her speed is nearly the same, but slightly different; we can calculate
how far she went in the next second by taking the new speed times the time.
We proceed similarly for each second, to the end of the run. We now have a
number of little distances, and the total distance will be the sum of all these little
pieces. That is, the distance will be the sum of the velocities times the times,
or s =

∑
v∆t, where the Greek letter

∑
(sigma) is used to denote addition. To

be more precise, it is the sum of the velocity at a certain time, let us say the
i-th time, multiplied by ∆t.

s =
∑
i

v(ti) ∆t. (8.6)

The rule for the times is that ti+1 = ti + ∆t. However, the distance we obtain by
this method will not be correct, because the velocity changes during the time
interval ∆t. If we take the times short enough, the sum is precise, so we take
them smaller and smaller until we obtain the desired accuracy. The true s is

s = lim
∆t→0

∑
i

v(ti) ∆t. (8.7)

The mathematicians have invented a symbol for this limit, analogous to the
symbol for the differential. The ∆ turns into a d to remind us that the time is as
small as it can be; the velocity is then called v at the time t, and the addition is
written as a sum with a great “s,”

∫
(from the Latin summa), which has become

distorted and is now unfortunately just called an integral sign. Thus we write

s =
∫
v(t) dt. (8.8)

This process of adding all these terms together is called integration, and it is
the opposite process to differentiation. The derivative of this integral is v, so
one operator (d) undoes the other (

∫
). One can get formulas for integrals by

taking the formulas for derivatives and running them backwards, because they are
related to each other inversely. Thus one can work out his own table of integrals
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by differentiating all sorts of functions. For every formula with a differential, we
get an integral formula if we turn it around.

Every function can be differentiated analytically, i.e., the process can be
carried out algebraically, and leads to a definite function. But it is not possible
in a simple manner to write an analytical value for any integral at will. You can
calculate it, for instance, by doing the above sum, and then doing it again with a
finer interval ∆t and again with a finer interval until you have it nearly right. In
general, given some particular function, it is not possible to find, analytically, what
the integral is. One may always try to find a function which, when differentiated,
gives some desired function; but one may not find it, and it may not exist, in
the sense of being expressible in terms of functions that have already been given
names.

8-5 Acceleration

The next step in developing the equations of motion is to introduce another
idea which goes beyond the concept of velocity to that of change of velocity,
and we now ask, “How does the velocity change?” In previous chapters we have
discussed cases in which forces produce changes in velocity. You may have heard
with great excitement about some car that can get from rest to 60 miles an hour
in ten seconds flat. From such a performance we can see how fast the speed
changes, but only on the average. What we shall now discuss is the next level of
complexity, which is how fast the velocity is changing. In other words, by how
many feet per second does the velocity change in a second, that is, how many
feet per second, per second? We previously derived the formula for the velocity
of a falling body as v = 32t, which is charted in Table 8-4, and now we want to
find out how much the velocity changes per second; this quantity is called the
acceleration.

Acceleration is defined as the time rate of change of velocity. From the
preceding discussion we know enough already to write the acceleration as the
derivative dv/dt, in the same way that the velocity is the derivative of the distance.
If we now differentiate the formula v = 32t we obtain, for a falling body,

a = dv

dt
= 32. (8.9)

[To differentiate the term 32t we can utilize the result obtained in a previous
problem, where we found that the derivative of Bt is simply B (a constant). So
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by letting B = 32, we have at once that the derivative of 32t is 32.] This means
that the velocity of a falling body is changing by 32 feet per second, per second
always. We also see from Table 8-4 that the velocity increases by 32 ft/sec in each
second. This is a very simple case, for accelerations are usually not constant. The
reason the acceleration is constant here is that the force on the falling body is
constant, and Newton’s law says that the acceleration is proportional to the force.

As a further example, let us find the acceleration in the problem we have
already solved for the velocity. Starting with

s = At3 +Bt+ C

we obtained, for v = ds/dt,
v = 3At2 +B.

Since acceleration is the derivative of the velocity with respect to the time, we
need to differentiate the last expression above. Recall the rule that the derivative
of the two terms on the right equals the sum of the derivatives of the individual
terms. To differentiate the first of these terms, instead of going through the
fundamental process again we note that we have already differentiated a quadratic
term when we differentiated 16t2, and the effect was to double the numerical
coefficient and change the t2 to t; let us assume that the same thing will happen
this time, and you can check the result yourself. The derivative of 3At2 will
then be 6At. Next we differentiate B, a constant term; but by a rule stated
previously, the derivative of B is zero; hence this term contributes nothing to
the acceleration. The final result, therefore, is a = dv/dt = 6At.

For reference, we state two very useful formulas, which can be obtained by
integration. If a body starts from rest and moves with a constant acceleration, g,
its velocity v at any time t is given by

v = gt.

The distance it covers in the same time is
s = 1

2gt
2.

Various mathematical notations are used in writing derivatives. Since velocity
is ds/dt and acceleration is the time derivative of the velocity, we can also write

a = d

dt

(
ds

dt

)
= d2s

dt2
, (8.10)

which are common ways of writing a second derivative.
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We have another law that the velocity is equal to the integral of the acceleration.
This is just the opposite of a = dv/dt; we have already seen that distance is
the integral of the velocity, so distance can be found by twice integrating the
acceleration.

In the foregoing discussion the motion was in only one dimension, and
space permits only a brief discussion of motion in three dimensions. Consider a
particle P which moves in three dimensions in any manner whatsoever. At the
beginning of this chapter, we opened our discussion of the one-dimensional case
of a moving car by observing the distance of the car from its starting point at
various times. We then discussed velocity in terms of changes of these distances
with time, and acceleration in terms of changes in velocity. We can treat three-
dimensional motion analogously. It will be simpler to illustrate the motion on a
two-dimensional diagram, and then extend the ideas to three dimensions. We
establish a pair of axes at right angles to each other, and determine the position
of the particle at any moment by measuring how far it is from each of the two
axes. Thus each position is given in terms of an x-distance and a y-distance, and
the motion can be described by constructing a table in which both these distances
are given as functions of time. (Extension of this process to three dimensions
requires only another axis, at right angles to the first two, and measuring a third
distance, the z-distance. The distances are now measured from coordinate planes
instead of lines.) Having constructed a table with x- and y-distances, how can
we determine the velocity? We first find the components of velocity in each
direction. The horizontal part of the velocity, or x-component, is the derivative
of the x-distance with respect to the time, or

vx = dx/dt. (8.11)

Similarly, the vertical part of the velocity, or y-component, is

vy = dy/dt. (8.12)
In the third dimension,

vz = dz/dt. (8.13)

Now, given the components of velocity, how can we find the velocity along
the actual path of motion? In the two-dimensional case, consider two successive
positions of the particle, separated by a short distance ∆s and a short time
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x

y
∆s ≈

√
(∆x)2 + (∆y)2

t1

t2∆y ≈ vy ∆t

∆x ≈ vx ∆t

Fig. 8-3. Description of the motion of a body in two dimensions and
the computation of its velocity.

interval t2 − t1 = ∆t. In the time ∆t the particle moves horizontally a dis-
tance ∆x ≈ vx ∆t, and vertically a distance ∆y ≈ vy ∆t. (The symbol “≈” is
read “is approximately.”) The actual distance moved is approximately

∆s ≈
√

(∆x)2 + (∆y)2, (8.14)

as shown in Fig. 8-3. The approximate velocity during this interval can be
obtained by dividing by ∆t and by letting ∆t go to 0, as at the beginning of the
chapter. We then get the velocity as

v = ds

dt
=
√

(dx/dt)2 + (dy/dt)2 =
√
v2
x + v2

y. (8.15)

For three dimensions the result is

v =
√
v2
x + v2

y + v2
z . (8.16)

In the same way as we defined velocities, we can define accelerations: we have
an x-component of acceleration ax, which is the derivative of vx, the x-component
of the velocity (that is, ax = d2x/dt2, the second derivative of x with respect
to t), and so on.

Let us consider one nice example of compound motion in a plane. We shall
take a motion in which a ball moves horizontally with a constant velocity u, and
at the same time goes vertically downward with a constant acceleration −g; what
is the motion? We can say dx/dt = vx = u. Since the velocity vx is constant,

x = ut, (8.17)
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and since the downward acceleration −g is constant, the distance y the object
falls can be written as

y = − 1
2gt

2. (8.18)

What is the curve of its path, i.e., what is the relation between y and x? We can
eliminate t from Eq. (8.18), since t = x/u. When we make this substitution we
find that

y = − g

2u2 x
2. (8.19)

This relation between y and x may be considered as the equation of the path of
the moving ball. When this equation is plotted we obtain a curve that is called a
parabola; any freely falling body that is shot out in any direction will travel in a
parabola, as shown in Fig. 8-4.

x
y

Fig. 8-4. The parabola described by a falling body with an initial
horizontal velocity.
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9

Newton’s Laws of Dynamics

9-1 Momentum and force

The discovery of the laws of dynamics, or the laws of motion, was a dramatic
moment in the history of science. Before Newton’s time, the motions of things like
the planets were a mystery, but after Newton there was complete understanding.
Even the slight deviations from Kepler’s laws, due to the perturbations of the
planets, were computable. The motions of pendulums, oscillators with springs
and weights in them, and so on, could all be analyzed completely after Newton’s
laws were enunciated. So it is with this chapter: before this chapter we could
not calculate how a mass on a spring would move; much less could we calculate
the perturbations on the planet Uranus due to Jupiter and Saturn. After this
chapter we will be able to compute not only the motion of the oscillating mass,
but also the perturbations on the planet Uranus produced by Jupiter and Saturn!

Galileo made a great advance in the understanding of motion when he dis-
covered the principle of inertia: if an object is left alone, is not disturbed, it
continues to move with a constant velocity in a straight line if it was originally
moving, or it continues to stand still if it was just standing still. Of course this
never appears to be the case in nature, for if we slide a block across a table it
stops, but that is because it is not left to itself—it is rubbing against the table.
It required a certain imagination to find the right rule, and that imagination was
supplied by Galileo.

Of course, the next thing which is needed is a rule for finding how an object
changes its speed if something is affecting it. That is, the contribution of Newton.
Newton wrote down three laws: The First Law was a mere restatement of the
Galilean principle of inertia just described. The Second Law gave a specific way
of determining how the velocity changes under different influences called forces.
The Third Law describes the forces to some extent, and we shall discuss that
at another time. Here we shall discuss only the Second Law, which asserts that
the motion of an object is changed by forces in this way: the time-rate-of-change
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of a quantity called momentum is proportional to the force. We shall state this
mathematically shortly, but let us first explain the idea.

Momentum is not the same as velocity. A lot of words are used in physics,
and they all have precise meanings in physics, although they may not have such
precise meanings in everyday language. Momentum is an example, and we must
define it precisely. If we exert a certain push with our arms on an object that
is light, it moves easily; if we push just as hard on another object that is much
heavier in the usual sense, then it moves much less rapidly. Actually, we must
change the words from “light” and “heavy” to less massive and more massive,
because there is a difference to be understood between the weight of an object
and its inertia. (How hard it is to get it going is one thing, and how much it
weighs is something else.) Weight and inertia are proportional, and on the earth’s
surface are often taken to be numerically equal, which causes a certain confusion
to the student. On Mars, weights would be different but the amount of force
needed to overcome inertia would be the same.

We use the term mass as a quantitative measure of inertia, and we may
measure mass, for example, by swinging an object in a circle at a certain speed
and measuring how much force we need to keep it in the circle. In this way we
find a certain quantity of mass for every object. Now the momentum of an object
is a product of two parts: its mass and its velocity. Thus Newton’s Second Law
may be written mathematically this way:

F = d

dt
(mv). (9.1)

Now there are several points to be considered. In writing down any law such as
this, we use many intuitive ideas, implications, and assumptions which are at
first combined approximately into our “law.” Later we may have to come back
and study in greater detail exactly what each term means, but if we try to do this
too soon we shall get confused. Thus at the beginning we take several things for
granted. First, that the mass of an object is constant; it isn’t really, but we shall
start out with the Newtonian approximation that mass is constant, the same all
the time, and that, further, when we put two objects together, their masses add.
These ideas were of course implied by Newton when he wrote his equation, for
otherwise it is meaningless. For example, suppose the mass varied inversely as
the velocity; then the momentum would never change in any circumstance, so
the law means nothing unless you know how the mass changes with velocity. At
first we say, it does not change.
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Then there are some implications concerning force. As a rough approximation
we think of force as a kind of push or pull that we make with our muscles, but
we can define it more accurately now that we have this law of motion. The most
important thing to realize is that this relationship involves not only changes in
the magnitude of the momentum or of the velocity but also in their direction. If
the mass is constant, then Eq. (9.1) can also be written as

F = m
dv

dt
= ma. (9.2)

The acceleration a is the rate of change of the velocity, and Newton’s Second
Law says more than that the effect of a given force varies inversely as the mass;
it says also that the direction of the change in the velocity and the direction of
the force are the same. Thus we must understand that a change in a velocity, or
an acceleration, has a wider meaning than in common language: The velocity
of a moving object can change by its speeding up, slowing down (when it slows
down, we say it accelerates with a negative acceleration), or changing its direction
of motion. An acceleration at right angles to the velocity was discussed in
Chapter 7. There we saw that an object moving in a circle of radius R with a
certain speed v along the circle falls away from a straightline path by a distance
equal to 1

2 (v2/R)t2 if t is very small. Thus the formula for acceleration at right
angles to the motion is

a = v2/R, (9.3)

and a force at right angles to the velocity will cause an object to move in a curved
path whose radius of curvature can be found by dividing the force by the mass
to get the acceleration, and then using (9.3).

9-2 Speed and velocity

In order to make our language more precise, we shall make one further
definition in our use of the words speed and velocity. Ordinarily we think of speed
and velocity as being the same, and in ordinary language they are the same. But
in physics we have taken advantage of the fact that there are two words and have
chosen to use them to distinguish two ideas. We carefully distinguish velocity,
which has both magnitude and direction, from speed, which we choose to mean
the magnitude of the velocity, but which does not include the direction. We can
formulate this more precisely by describing how the x-, y-, and z-coordinates
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Fig. 9-1. A small displacement of an object.

of an object change with time. Suppose, for example, that at a certain instant
an object is moving as shown in Fig. 9-1. In a given small interval of time ∆t
it will move a certain distance ∆x in the x-direction, ∆y in the y-direction,
and ∆z in the z-direction. The total effect of these three coordinate changes is a
displacement ∆s along the diagonal of a parallelepiped whose sides are ∆x, ∆y,
and ∆z. In terms of the velocity, the displacement ∆x is the x-component of the
velocity times ∆t, and similarly for ∆y and ∆z:

∆x = vx ∆t, ∆y = vy ∆t, ∆z = vz ∆t. (9.4)

9-3 Components of velocity, acceleration, and force

In Eq. (9.4) we have resolved the velocity into components by telling how fast
the object is moving in the x-direction, the y-direction, and the z-direction. The
velocity is completely specified, both as to magnitude and direction, if we give
the numerical values of its three rectangular components:

vx = dx/dt, vy = dy/dt, vz = dz/dt. (9.5)

On the other hand, the speed of the object is

ds/dt = |v| =
√
v2
x + v2

y + v2
z . (9.6)

Next, suppose that, because of the action of a force, the velocity changes
to some other direction and a different magnitude, as shown in Fig. 9-2. We
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Fig. 9-2. A change in velocity in which both the magnitude and
direction change.

can analyze this apparently complex situation rather simply if we evaluate the
changes in the x-, y-, and z-components of velocity. The change in the component
of the velocity in the x-direction in a time ∆t is ∆vx = ax ∆t, where ax is what
we call the x-component of the acceleration. Similarly, we see that ∆vy = ay ∆t
and ∆vz = az ∆t. In these terms, we see that Newton’s Second Law, in saying
that the force is in the same direction as the acceleration, is really three laws, in
the sense that the component of the force in the x-, y-, or z-direction is equal to
the mass times the rate of change of the corresponding component of velocity:

Fx = m(dvx/dt) = m(d2x/dt2) = max,

Fy = m(dvy/dt) = m(d2y/dt2) = may ,

Fz = m(dvz/dt) = m(d2z/dt2) = maz .

(9.7)

Just as the velocity and acceleration have been resolved into components by
projecting a line segment representing the quantity, and its direction onto three
coordinate axes, so, in the same way, a force in a given direction is represented
by certain components in the x-, y-, and z-directions:

Fx = F cos (x, F ),
Fy = F cos (y, F ),
Fz = F cos (z, F ),

(9.8)
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where F is the magnitude of the force and (x, F ) represents the angle between
the x-axis and the direction of F , etc.

Newton’s Second Law is given in complete form in Eq. (9.7). If we know
the forces on an object and resolve them into x-, y-, and z-components, then
we can find the motion of the object from these equations. Let us consider a
simple example. Suppose there are no forces in the y- and z-directions, the only
force being in the x-direction, say vertically. Equation (9.7) tells us that there
would be changes in the velocity in the vertical direction, but no changes in
the horizontal direction. This was demonstrated with a special apparatus in
Chapter 7 (see Fig. 7-3). A falling body moves horizontally without any change
in horizontal motion, while it moves vertically the same way as it would move
if the horizontal motion were zero. In other words, motions in the x-, y-, and
z-directions are independent if the forces are not connected.

9-4 What is the force?

In order to use Newton’s laws, we have to have some formula for the force;
these laws say pay attention to the forces. If an object is accelerating, some
agency is at work; find it. Our program for the future of dynamics must be to
find the laws for the force. Newton himself went on to give some examples. In the
case of gravity he gave a specific formula for the force. In the case of other forces
he gave some part of the information in his Third Law, which we will study in
the next chapter, having to do with the equality of action and reaction.

Extending our previous example, what are the forces on objects near the
earth’s surface? Near the earth’s surface, the force in the vertical direction due to
gravity is proportional to the mass of the object and is nearly independent of height
for heights small compared with the earth’s radius R: F = GmM/R2 = mg,
where g = GM/R2 is called the acceleration of gravity. Thus the law of gravity
tells us that weight is proportional to mass; the force is in the vertical direction
and is the mass times g. Again we find that the motion in the horizontal direction
is at constant velocity. The interesting motion is in the vertical direction, and
Newton’s Second Law tells us

mg = m(d2x/dt2). (9.9)

Cancelling the m’s, we find that the acceleration in the x-direction is constant
and equal to g. This is of course the well known law of free fall under gravity,
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which leads to the equations

vx = v0 + gt,

x = x0 + v0t+ 1
2gt

2. (9.10)

As another example, let us suppose that we have been able to build a gad-
get (Fig. 9-3) which applies a force proportional to the distance and directed
oppositely—a spring. If we forget about gravity, which is of course balanced out
by the initial stretch of the spring, and talk only about excess forces, we see that
if we pull the mass down, the spring pulls up, while if we push it up the spring
pulls down. This machine has been designed carefully so that the force is greater,
the more we pull it up, in exact proportion to the displacement from the balanced
condition, and the force upward is similarly proportional to how far we pull down.
If we watch the dynamics of this machine, we see a rather beautiful motion—up,
down, up, down, . . . The question is, will Newton’s equations correctly describe
this motion? Let us see whether we can exactly calculate how it moves with this
periodic oscillation, by applying Newton’s law (9.7). In the present instance, the
equation is

− kx = m(dvx/dt). (9.11)

Here we have a situation where the velocity in the x-direction changes at a rate
proportional to x. Nothing will be gained by retaining numerous constants, so
we shall imagine either that the scale of time has changed or that there is an
accident in the units, so that we happen to have k/m = 1. Thus we shall try to
solve the equation

dvx/dt = −x. (9.12)

To proceed, we must know what vx is, but of course we know that the velocity is
the rate of change of the position.
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9-5 Meaning of the dynamical equations

Now let us try to analyze just what Eq. (9.12) means. Suppose that at a given
time t the object has a certain velocity vx and position x. What is the velocity
and what is the position at a slightly later time t + ε? If we can answer this
question our problem is solved, for then we can start with the given condition and
compute how it changes for the first instant, the next instant, the next instant,
and so on, and in this way we gradually evolve the motion. To be specific, let us
suppose that at the time t = 0 we are given that x = 1 and vx = 0. Why does
the object move at all? Because there is a force on it when it is at any position
except x = 0. If x > 0, that force is upward. Therefore the velocity which is
zero starts to change, because of the law of motion. Once it starts to build up
some velocity the object starts to move up, and so on. Now at any time t, if ε is
very small, we may express the position at time t+ ε in terms of the position at
time t and the velocity at time t to a very good approximation as

x(t+ ε) = x(t) + εvx(t). (9.13)

The smaller the ε, the more accurate this expression is, but it is still usefully
accurate even if ε is not vanishingly small. Now what about the velocity? In
order to get the velocity later, the velocity at the time t+ ε, we need to know
how the velocity changes, the acceleration. And how are we going to find the
acceleration? That is where the law of dynamics comes in. The law of dynamics
tells us what the acceleration is. It says the acceleration is −x.

vx(t+ ε) = vx(t) + εax(t) (9.14)
= vx(t)− εx(t). (9.15)

Equation (9.14) is merely kinematics; it says that a velocity changes because of
the presence of acceleration. But Eq. (9.15) is dynamics, because it relates the
acceleration to the force; it says that at this particular time for this particular
problem, you can replace the acceleration by −x(t). Therefore, if we know both
the x and v at a given time, we know the acceleration, which tells us the new
velocity, and we know the new position—this is how the machinery works. The
velocity changes a little bit because of the force, and the position changes a little
bit because of the velocity.
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9-6 Numerical solution of the equations

Now let us really solve the problem. Suppose that we take ε = 0.100 sec. After
we do all the work if we find that this is not small enough we may have to go back
and do it again with ε = 0.010 sec. Starting with our initial value x(0) = 1.00,
what is x(0.1)? It is the old position x(0) plus the velocity (which is zero) times
0.10 sec. Thus x(0.1) is still 1.00 because it has not yet started to move. But
the new velocity at 0.10 sec will be the old velocity v(0) = 0 plus ε times the
acceleration. The acceleration is −x(0) = −1.00. Thus

v(0.1) = 0.00− 0.10× 1.00 = −0.10.
Now at 0.20 sec

x(0.2) = x(0.1) + εv(0.1)
= 1.00− 0.10× 0.10 = 0.99

and
v(0.2) = v(0.1) + εa(0.1)

= −0.10− 0.10× 1.00 = −0.20.

And so, on and on and on, we can calculate the rest of the motion, and that is just
what we shall do. However, for practical purposes there are some little tricks by
which we can increase the accuracy. If we continued this calculation as we have
started it, we would find the motion only rather crudely because ε = 0.100 sec
is rather crude, and we would have to go to a very small interval, say ε = 0.01.
Then to go through a reasonable total time interval would take a lot of cycles
of computation. So we shall organize the work in a way that will increase the
precision of our calculations, using the same coarse interval ε = 0.10 sec. This
can be done if we make a subtle improvement in the technique of the analysis.

Notice that the new position is the old position plus the time interval ε times
the velocity. But the velocity when? The velocity at the beginning of the time
interval is one velocity and the velocity at the end of the time interval is another
velocity. Our improvement is to use the velocity halfway between. If we know
the speed now, but the speed is changing, then we are not going to get the right
answer by going at the same speed as now. We should use some speed between
the “now” speed and the “then” speed at the end of the interval. The same
considerations also apply to the velocity: to compute the velocity changes, we
should use the acceleration midway between the two times at which the velocity
is to be found. Thus the equations that we shall actually use will be something
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Table 9-1

Solution of dvx/dt = −x
Interval: ε = 0.10 sec

t x vx ax
0.0 1.000 0.000 −1.000

−0.050
0.1 0.995 −0.995

−0.150
0.2 0.980 −0.980

−0.248
0.3 0.955 −0.955

−0.343
0.4 0.921 −0.921

−0.435
0.5 0.877 −0.877

−0.523
0.6 0.825 −0.825

−0.605
0.7 0.764 −0.764

−0.682
0.8 0.696 −0.696

−0.751
0.9 0.621 −0.621

−0.814
1.0 0.540 −0.540

−0.868
1.1 0.453 −0.453

−0.913
1.2 0.362 −0.362

−0.949
1.3 0.267 −0.267

−0.976
1.4 0.169 −0.169

−0.993
1.5 0.070 −0.070

−1.000
1.6 −0.030 +0.030
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like this: the position later is equal to the position before plus ε times the velocity
at the time in the middle of the interval. Similarly, the velocity at this halfway
point is the velocity at a time ε before (which is in the middle of the previous
interval) plus ε times the acceleration at the time t. That is, we use the equations

x(t+ ε) = x(t) + εv(t+ ε/2),
v(t+ ε/2) = v(t− ε/2) + εa(t),

a(t) = −x(t).
(9.16)

There remains only one slight problem: what is v(ε/2)? At the start, we are
given v(0), not v(−ε/2). To get our calculation started, we shall use a special
equation, namely, v(ε/2) = v(0) + (ε/2)a(0).

Now we are ready to carry through our calculation. For convenience, we
may arrange the work in the form of a table, with columns for the time, the
position, the velocity, and the acceleration, and the in-between lines for the
velocity, as shown in Table 9-1. Such a table is, of course, just a convenient way
of representing the numerical values obtained from the set of equations (9.16),
and in fact the equations themselves need never be written. We just fill in the
various spaces in the table one by one. This table now gives us a very good idea
of the motion: it starts from rest, first picks up a little upward (negative) velocity
and it loses some of its distance. The acceleration is then a little bit less but
it is still gaining speed. But as it goes on it gains speed more and more slowly,
until as it passes x = 0 at about t = 1.50 sec we can confidently predict that it
will keep going, but now it will be on the other side; the position x will become
negative, the acceleration therefore positive. Thus the speed decreases. It is
interesting to compare these numbers with the function x = cos t, which is done
in Fig. 9-4. The agreement is within the three significant figure accuracy of our
calculation! We shall see later that x = cos t is the exact mathematical solution
of our equation of motion, but it is an impressive illustration of the power of
numerical analysis that such an easy calculation should give such precise results.

9-7 Planetary motions

The above analysis is very nice for the motion of an oscillating spring, but can
we analyze the motion of a planet around the sun? Let us see whether we can
arrive at an approximation to an ellipse for the orbit. We shall suppose that the
sun is infinitely heavy, in the sense that we shall not include its motion. Suppose

9-11



0

0.5

1.0

x

0.5 1.0 1.5 t (sec)

Fig. 9-4. Graph of the motion of a mass on a spring.

a planet starts at a certain place and is moving with a certain velocity; it goes
around the sun in some curve, and we shall try to analyze, by Newton’s laws of
motion and his law of gravitation, what the curve is. How? At a given moment it
is at some position in space. If the radial distance from the sun to this position
is called r, then we know that there is a force directed inward which, according
to the law of gravity, is equal to a constant times the product of the sun’s mass
and the planet’s mass divided by the square of the distance. To analyze this
further we must find out what acceleration will be produced by this force. We
shall need the components of the acceleration along two directions, which we call
x and y. Thus if we specify the position of the planet at a given moment by
giving x and y (we shall suppose that z is always zero because there is no force
in the z-direction and, if there is no initial velocity vz, there will be nothing to
make z other than zero), the force is directed along the line joining the planet to
the sun, as shown in Fig. 9-5.

SUN x

y
Fx PLANET (x, y)

FyF

Fig. 9-5. The force of gravity on a planet.
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From this figure we see that the horizontal component of the force is related
to the complete force in the same manner as the horizontal distance x is to the
complete hypotenuse r, because the two triangles are similar. Also, if x is positive,
Fx is negative. That is, Fx/|F | = −x/r, or Fx = −|F |x/r = −GMmx/r3. Now
we use the dynamical law to find that this force component is equal to the mass
of the planet times the rate of change of its velocity in the x-direction. Thus we
find the following laws:

m(dvx/dt) = −GMmx/r3,

m(dvy/dt) = −GMmy/r3,

r =
√
x2 + y2.

(9.17)

This, then, is the set of equations we must solve. Again, in order to simplify
the numerical work, we shall suppose that the unit of time, or the mass of the
sun, has been so adjusted (or luck is with us) that GM ≡ 1. For our specific
example we shall suppose that the initial position of the planet is at x = 0.500
and y = 0.000, and that the velocity is all in the, y-direction at the start, and
is of magnitude 1.630. Now how do we make the calculation? We again make
a table with columns for the time, the x-position, the x-velocity vx, and the
x-acceleration ax; then, separated by a double line, three columns for position,
velocity, and acceleration in the y-direction. In order to get the accelerations we
are going to need Eq. (9.17); it tells us that the acceleration in the x-direction
is −x/r3, and the acceleration in the y-direction is −y/r3, and that r is the
square root of x2 +y2. Thus, given x and y, we must do a little calculating on the
side, taking the square root of the sum of the squares to find r and then, to get
ready to calculate the two accelerations, it is useful also to evaluate 1/r3. This
work can be done rather easily by using a table of squares, cubes, and reciprocals:
then we need only multiply x by 1/r3, which we do on a slide rule.

Our calculation thus proceeds by the following steps, using time intervals ε =
0.100: Initial values at t = 0:

x(0) = 0.500 y(0) = 0.000
vx(0) = 0.000 vy(0) = +1.630

From these we find:

r(0) = 0.500 1/r3(0) = 8.000
ax = −4.000 ay = 0.000
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Thus we may calculate the velocities vx(0.05) and vy(0.05):

vx(0.05) = 0.000− 4.000× 0.050 = −0.200;
vy(0.05) = 1.630 + 0.000× 0.050 = 1.630.

Now our main calculations begin:

x(0.1) = 0.500− 0.20× 0.1 = 0.480
y(0.1) = 0.0 + 1.63× 0.1 = 0.163

r =
√

0.4802 + 0.1632 = 0.507
1/r3 = 7.677

ax(0.1) = −0.480× 7.677 = −3.685
ay(0.1) = −0.163× 7.677 = −1.250
vx(0.15) = −0.200− 3.685× 0.1 = −0.568
vy(0.15) = 1.630− 1.250× 0.1 = 1.505
x(0.2) = 0.480− 0.568× 0.1 = 0.423
y(0.2) = 0.163 + 1.505× 0.1 = 0.313

etc.

In this way we obtain the values given in Table 9-2, and in 20 steps or so we
have chased the planet halfway around the sun! In Fig. 9-6 are plotted the x-
and y-coordinates given in Table 9-2. The dots represent the positions at the
succession of times a tenth of a unit apart; we see that at the start the planet
moves rapidly and at the end it moves slowly, and so the shape of the curve is
determined. Thus we see that we really do know how to calculate the motion of
planets!

Table 9-2

Solution of dvx/dt = −x/r3, dvy/dt = −y/r3, r =
√
x2 + y2.

Interval: ε = 0.100
Orbit vy = 1.63 vx = 0 x = 0.5 y = 0 at t = 0

t x vx ax y vy ay r 1/r3

0.0 0.500 −4.000 0.000 0.000 0.500 8.000
−0.200 1.630
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Table 9-2

t x vx ax y vy ay r 1/r3

0.1 0.480 −3.685 0.163 −1.251 0.507 7.677
−0.568 1.505

0.2 0.423 −2.897 0.313 −2.146 0.527 6.847
−0.858 1.290

0.3 0.337 −1.958 0.443 −2.569 0.556 5.805
−1.054 1.033

0.4 0.232 −1.112 0.546 −2.617 0.593 4.794
−1.165 0.772

0.5 0.115 −0.454 0.623 −2.449 0.634 3.931
−1.211 0.527

0.6 −0.006 +0.018 0.676 −2.190 0.676 3.241
−1.209 0.308

0.7 −0.127 +0.342 0.706 −1.911 0.718 2.705
−1.175 0.117

0.8 −0.244 +0.559 0.718 −1.646 0.758 2.292
−1.119 −0.048

0.9 −0.356 +0.702 0.713 −1.408 0.797 1.974
−1.048 −0.189

1.0 −0.461 +0.796 0.694 −1.200 0.833 1.728
−0.969 −0.309

1.1 −0.558 +0.856 0.664 −1.019 0.867 1.536
−0.883 −0.411

1.2 −0.646 +0.895 0.623 −0.862 0.897 1.385
−0.794 −0.497

1.3 −0.725 +0.919 0.573 −0.726 0.924 1.267
−0.702 −0.569

1.4 −0.795 +0.933 0.516 −0.605 0.948 1.174
−0.608 −0.630

1.5 −0.856 +0.942 0.453 −0.498 0.969 1.100
−0.514 −0.680

1.6 −0.908 +0.947 0.385 −0.402 0.986 1.043
−0.420 −0.720

1.7 −0.950 +0.950 0.313 −0.313 1.000 1.000
−0.325 −0.751

1.8 −0.982 +0.952 0.238 −0.230 1.010 0.969
−0.229 −0.774

1.9 −1.005 +0.953 0.160 −0.152 1.018 0.949
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Table 9-2

t x vx ax y vy ay r 1/r3

−0.134 −0.790
2.0 −1.018 +0.955 0.081 −0.076 1.022 0.938

−0.038 −0.797
2.1 −1.022 +0.957 0.002 −0.002 1.022 0.936

+0.057 −0.797
2.2 −1.017 +0.959 −0.078 +0.074 1.020 0.944

−0.790
2.3

Crossed x-axis at 2.101 sec, ∴ period = 4.20 sec.
vx = 0 at 2.086 sec.
Cross x at −1.022, ∴ semimajor axis = 1.022 + 0.500

2 = 0.761.
vy = 0.797.

Predicted time π(0.761)3/2 = π(0.663) = 2.082.

SUN−1.0 −0.5 0.5 x

0.5

y

t = 0

t = 0.5
t = 1.0

t = 1.5

t = 2.0

Fig. 9-6. The calculated motion of a planet around the sun.

Now let us see how we can calculate the motion of Neptune, Jupiter, Uranus,
or any other planet. If we have a great many planets, and let the sun move
too, can we do the same thing? Of course we can. We calculate the force on
a particular planet, let us say planet number i, which has a position xi, yi, zi
(i = 1 may represent the sun, i = 2 Mercury, i = 3 Venus, and so on). We must
know the positions of all the planets. The force acting on one is due to all the
other bodies which are located, let us say, at positions xj , yj , zj . Therefore the
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equations are

mi
dvix
dt

=
N∑
j=1
−Gmimj(xi − xj)

r3
ij

,

mi
dviy
dt

=
N∑
j=1
−Gmimj(yi − yj )

r3
ij

, (9.18)

mi
dviz
dt

=
N∑
j=1
−Gmimj(zi − zj )

r3
ij

.

Further, we define rij as the distance between the two planets i and j; this is
equal to

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (9.19)

Also,
∑

means a sum over all values of j—all other bodies—except, of course,
for j = i. Thus all we have to do is to make more columns, lots more columns.
We need nine columns for the motions of Jupiter, nine for the motions of Saturn,
and so on. Then when we have all initial positions and velocities we can calculate
all the accelerations from Eq. (9.18) by first calculating all the distances, using
Eq. (9.19). How long will it take to do it? If you do it at home, it will take a
very long time! But in modern times we have machines which do arithmetic
very rapidly; a very good computing machine may take 1 microsecond, that is, a
millionth of a second, to do an addition. To do a multiplication takes longer, say
10 microseconds. It may be that in one cycle of calculation, depending on the
problem, we may have 30 multiplications, or something like that, so one cycle will
take 300 microseconds. That means that we can do 3000 cycles of computation
per second. In order to get an accuracy, of, say, one part in a billion, we would
need 4× 105 cycles to correspond to one revolution of a planet around the sun.
That corresponds to a computation time of 130 seconds or about two minutes.
Thus it take only two minutes to follow Jupiter around the sun, with all the
perturbations of all the planets correct to one part in a billion, by this method!
(It turns out that the error varies about as the square of the interval ε. If we
make the interval a thousand times smaller, it is a million times more accurate.
So, let us make the interval 10,000 times smaller.)

So, as we said, we began this chapter not knowing how to calculate even
the motion of a mass on a spring. Now, armed with the tremendous power of
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Newton’s laws, we can not only calculate such simple motions but also, given
only a machine to handle the arithmetic, even the tremendously complex motions
of the planets, to as high a degree of precision as we wish!
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10

Conservation of Momentum

10-1 Newton’s Third Law

On the basis of Newton’s second law of motion, which gives the relation
between the acceleration of any body and the force acting on it, any problem in
mechanics can be solved in principle. For example, to determine the motion of
a few particles, one can use the numerical method developed in the preceding
chapter. But there are good reasons to make a further study of Newton’s laws.
First, there are quite simple cases of motion which can be analyzed not only
by numerical methods, but also by direct mathematical analysis. For example,
although we know that the acceleration of a falling body is 32 ft/sec2, and
from this fact could calculate the motion by numerical methods, it is much
easier and more satisfactory to analyze the motion and find the general solution,
s = s0 + v0t+ 16t2. In the same way, although we can work out the positions of a
harmonic oscillator by numerical methods, it is also possible to show analytically
that the general solution is a simple cosine function of t, and so it is unnecessary
to go to all that arithmetical trouble when there is a simple and more accurate
way to get the result. In the same manner, although the motion of one body
around the sun, determined by gravitation, can be calculated point by point by
the numerical methods of Chapter 9, which show the general shape of the orbit,
it is nice also to get the exact shape, which analysis reveals as a perfect ellipse.

Unfortunately, there are really very few problems which can be solved exactly
by analysis. In the case of the harmonic oscillator, for example, if the spring
force is not proportional to the displacement, but is something more complicated,
one must fall back on the numerical method. Or if there are two bodies going
around the sun, so that the total number of bodies is three, then analysis cannot
produce a simple formula for the motion, and in practice the problem must
be done numerically. That is the famous three-body problem, which so long
challenged human powers of analysis; it is very interesting how long it took
people to appreciate the fact that perhaps the powers of mathematical analysis
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were limited and it might be necessary to use the numerical methods. Today an
enormous number of problems that cannot be done analytically are solved by
numerical methods, and the old three-body problem, which was supposed to be
so difficult, is solved as a matter of routine in exactly the same manner that was
described in the preceding chapter, namely, by doing enough arithmetic. However,
there are also situations where both methods fail: the simple problems we can
do by analysis, and the moderately difficult problems by numerical, arithmetical
methods, but the very complicated problems we cannot do by either method. A
complicated problem is, for example, the collision of two automobiles, or even
the motion of the molecules of a gas. There are countless particles in a cubic
millimeter of gas, and it would be ridiculous to try to make calculations with
so many variables (about 1017—a hundred million billion). Anything like the
motion of the molecules or atoms of a gas or a block or iron, or the motion of
the stars in a globular cluster, instead of just two or three planets going around
the sun—such problems we cannot do directly, so we have to seek other means.

In the situations in which we cannot follow details, we need to know some
general properties, that is, general theorems or principles which are consequences
of Newton’s laws. One of these is the principle of conservation of energy, which
was discussed in Chapter 4. Another is the principle of conservation of momentum,
the subject of this chapter. Another reason for studying mechanics further is
that there are certain patterns of motion that are repeated in many different
circumstances, so it is good to study these patterns in one particular circumstance.
For example, we shall study collisions; different kinds of collisions have much
in common. In the flow of fluids, it does not make much difference what the
fluid is, the laws of the flow are similar. Other problems that we shall study
are vibrations and oscillations and, in particular, the peculiar phenomena of
mechanical waves—sound, vibrations of rods, and so on.

In our discussion of Newton’s laws it was explained that these laws are a kind
of program that says “Pay attention to the forces,” and that Newton told us only
two things about the nature of forces. In the case of gravitation, he gave us the
complete law of the force. In the case of the very complicated forces between
atoms, he was not aware of the right laws for the forces; however, he discovered
one rule, one general property of forces, which is expressed in his Third Law, and
that is the total knowledge that Newton had about the nature of forces—the law
of gravitation and this principle, but no other details.

This principle is that action equals reaction.
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What is meant is something of this kind: Suppose we have two small bodies,
say particles, and suppose that the first one exerts a force on the second one,
pushing it with a certain force. Then, simultaneously, according to Newton’s
Third Law, the second particle will push on the first with an equal force, in
the opposite direction; furthermore, these forces effectively act in the same line.
This is the hypothesis, or law, that Newton proposed, and it seems to be quite
accurate, though not exact (we shall discuss the errors later). For the moment
we shall take it to be true that action equals reaction. Of course, if there is a
third particle, not on the same line as the other two, the law does not mean that
the total force on the first one is equal to the total force on the second, since
the third particle, for instance, exerts its own push on each of the other two.
The result is that the total effect on the first two is in some other direction, and
the forces on the first two particles are, in general, neither equal nor opposite.
However, the forces on each particle can be resolved into parts, there being one
contribution or part due to each other interacting particle. Then each pair of
particles has corresponding components of mutual interaction that are equal in
magnitude and opposite in direction.

10-2 Conservation of momentum

Now what are the interesting consequences of the above relationship? Suppose,
for simplicity, that we have just two interacting particles, possibly of different
mass, and numbered 1 and 2. The forces between them are equal and opposite;
what are the consequences? According to Newton’s Second Law, force is the
time rate of change of the momentum, so we conclude that the rate of change of
momentum p1 of particle 1 is equal to minus the rate of change of momentum p2
of particle 2, or

dp1/dt = −dp2/dt. (10.1)
Now if the rate of change is always equal and opposite, it follows that the total
change in the momentum of particle 1 is equal and opposite to the total change
in the momentum of particle 2; this means that if we add the momentum of
particle 1 to the momentum of particle 2, the rate of change of the sum of these,
due to the mutual forces (called internal forces) between particles, is zero; that is

d(p1 + p2)/dt = 0. (10.2)

There is assumed to be no other force in the problem. If the rate of change of this
sum is always zero, that is just another way of saying that the quantity (p1 + p2)
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does not change. (This quantity is also written m1v1 +m2v2, and is called the
total momentum of the two particles.) We have now obtained the result that the
total momentum of the two particles does not change because of any mutual
interactions between them. This statement expresses the law of conservation of
momentum in that particular example. We conclude that if there is any kind
of force, no matter how complicated, between two particles, and we measure or
calculate m1v1 +m2v2, that is, the sum of the two momenta, both before and
after the forces act, the results should be equal, i.e., the total momentum is a
constant.

If we extend the argument to three or more interacting particles in more
complicated circumstances, it is evident that so far as internal forces are concerned,
the total momentum of all the particles stays constant, since an increase in
momentum of one, due to another, is exactly compensated by the decrease of
the second, due to the first. That is, all the internal forces will balance out, and
therefore cannot change the total momentum of the particles. Then if there are
no forces from the outside (external forces), there are no forces that can change
the total momentum; hence the total momentum is a constant.

It is worth describing what happens if there are forces that do not come from
the mutual actions of the particles in question: suppose we isolate the interacting
particles. If there are only mutual forces, then, as before, the total momentum
of the particles does not change, no matter how complicated the forces. On the
other hand, suppose there are also forces coming from the particles outside the
isolated group. Any force exerted by outside bodies on inside bodies, we call an
external force. We shall later demonstrate that the sum of all external forces
equals the rate of change of the total momentum of all the particles inside, a
very useful theorem.

The conservation of the total momentum of a number of interacting particles
can be expressed as

m1v1 +m2v2 +m3v3 + · · · = a constant, (10.3)

if there are no net external forces. Here the masses and corresponding velocities
of the particles are numbered 1, 2, 3, 4, . . . The general statement of Newton’s
Second Law for each particle,

F = d

dt
(mv), (10.4)

is true specifically for the components of force and momentum in any given
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direction; thus the x-component of the force on a particle is equal to the x-
component of the rate of change of momentum of that particle, or

Fx = d

dt
(mvx), (10.5)

and similarly for the y- and z-directions. Therefore Eq. (10.3) is really three
equations, one for each direction.

In addition to the law of conservation of momentum, there is another interest-
ing consequence of Newton’s Second Law, to be proved later, but merely stated
now. This principle is that the laws of physics will look the same whether we are
standing still or moving with a uniform speed in a straight line. For example,
a child bouncing a ball in an airplane finds that the ball bounces the same as
though he were bouncing it on the ground. Even though the airplane is moving
with a very high velocity, unless it changes its velocity, the laws look the same
to the child as they do when the airplane is standing still. This is the so-called
relativity principle. As we use it here we shall call it “Galilean relativity” to
distinguish it from the more careful analysis made by Einstein, which we shall
study later.

We have just derived the law of conservation of momentum from Newton’s
laws, and we could go on from here to find the special laws that describe impacts
and collisions. But for the sake of variety, and also as an illustration of a kind of
reasoning that can be used in physics in other circumstances where, for example,
one might not know Newton’s laws and might take a different approach, we shall
discuss the laws of impacts and collisions from a completely different point of
view. We shall base our discussion on the principle of Galilean relativity, stated
above, and shall end up with the law of conservation of momentum.

We shall start by assuming that nature would look the same if we run along at
a certain speed and watch it as it would if we were standing still. Before discussing
collisions in which two bodies collide and stick together, or come together and
bounce apart, we shall first consider two bodies that are held together by a spring
or something else, and are then suddenly released and pushed by the spring or
perhaps by a little explosion. Further, we shall consider motion in only one
direction. First, let us suppose that the two objects are exactly the same, are nice
symmetrical objects, and then we have a little explosion between them. After the
explosion, one of the bodies will be moving, let us say toward the right, with a
velocity v. Then it appears reasonable that the other body is moving toward the
left with a velocity v, because if the objects are alike there is no reason for right
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or left to be preferred and so the bodies would do something that is symmetrical.
This is an illustration of a kind of thinking that is very useful in many problems
but would not be brought out if we just started with the formulas.

The first result from our experiment is that equal objects will have equal
speed, but now suppose that we have two objects made of different materials, say
copper and aluminum, and we make the two masses equal. We shall now suppose
that if we do the experiment with two masses that are equal, even though the
objects are not identical, the velocities will be equal. Someone might object:
“But you know, you could do it backwards, you did not have to suppose that. You
could define equal masses to mean two masses that acquire equal velocities in
this experiment.” We follow that suggestion and make a little explosion between
the copper and a very large piece of aluminum, so heavy that the copper flies out
and the aluminum hardly budges. That is too much aluminum, so we reduce the
amount until there is just a very tiny piece, then when we make the explosion the
aluminum goes flying away, and the copper hardly budges. That is not enough
aluminum. Evidently there is some right amount in between; so we keep adjusting
the amount until the velocities come out equal. Very well then—let us turn it
around, and say that when the velocities are equal, the masses are equal. This
appears to be just a definition, and it seems remarkable that we can transform
physical laws into mere definitions. Nevertheless, there are some physical laws
involved, and if we accept this definition of equal masses, we immediately find
one of the laws, as follows.

Suppose we know from the foregoing experiment that two pieces of matter,
A and B (of copper and aluminum), have equal masses, and we compare a
third body, say a piece of gold, with the copper in the same manner as above,
making sure that its mass is equal to the mass of the copper. If we now make
the experiment between the aluminum and the gold, there is nothing in logic
that says these masses must be equal; however, the experiment shows that they
actually are. So now, by experiment, we have found a new law. A statement of
this law might be: If two masses are each equal to a third mass (as determined
by equal velocities in this experiment), then they are equal to each other. (This
statement does not follow at all from a similar statement used as a postulate
regarding mathematical quantities.) From this example we can see how quickly we
start to infer things if we are careless. It is not just a definition to say the masses
are equal when the velocities are equal, because to say the masses are equal is to
imply the mathematical laws of equality, which in turn makes a prediction about
an experiment.
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As a second example, suppose that A and B are found to be equal by doing
the experiment with one strength of explosion, which gives a certain velocity; if
we then use a stronger explosion, will it be true or not true that the velocities
now obtained are equal? Again, in logic there is nothing that can decide this
question, but experiment shows that it is true. So, here is another law, which
might be stated: If two bodies have equal masses, as measured by equal velocities
at one velocity, they will have equal masses when measured at another velocity.
From these examples we see that what appeared to be only a definition really
involved some laws of physics.

In the development that follows we shall assume it is true that equal masses
have equal and opposite velocities when an explosion occurs between them. We
shall make another assumption in the inverse case: If two identical objects,
moving in opposite directions with equal velocities, collide and stick together by
some kind of glue, then which way will they be moving after the collision? This
is again a symmetrical situation, with no preference between right and left, so
we assume that they stand still. We shall also suppose that any two objects of
equal mass, even if the objects are made of different materials, which collide and
stick together, when moving with the same velocity in opposite directions will
come to rest after the collision.

10-3 Momentum is conserved!

We can verify the above assumptions experimentally: first, that if two sta-
tionary objects of equal mass are separated by an explosion they will move apart
with the same speed, and second, if two objects of equal mass, coming together
with the same speed, collide and stick together they will stop. This we can
do by means of a marvelous invention called an air trough,* which gets rid of
friction, the thing which continually bothered Galileo (Fig. 10-1). He could not

GLIDER SMALL HOLES
(JETS)

COMPRESSED
AIR SUPPLY

Fig. 10-1. End view of linear air trough.

* H. V. Neher and R. B. Leighton, Amer. Jour. of Phys. 31, 255 (1963).
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BUMPER SPRING TOY PISTOL CAP

SPARK ELECTRODE

CYLINDER PISTON BUMPER SPRING

Fig. 10-2. Sectional view of gliders with explosive interaction cylinder
attachment.

do experiments by sliding things because they do not slide freely, but, by adding
a magic touch, we can today get rid of friction. Our objects will slide without
difficulty, on and on at a constant velocity, as advertised by Galileo. This is
done by supporting the objects on air. Because air has very low friction, an
object glides along with practically constant velocity when there is no applied
force. First, we use two glide blocks which have been made carefully to have
the same weight, or mass (their weight was measured really, but we know that
this weight is proportional to the mass), and we place a small explosive cap in
a closed cylinder between the two blocks (Fig. 10-2). We shall start the blocks
from rest at the center point of the track and force them apart by exploding the
cap with an electric spark. What should happen? If the speeds are equal when
they fly apart, they should arrive at the ends of the trough at the same time. On
reaching the ends they will both bounce back with practically opposite velocity,
and will come together and stop at the center where they started. It is a good
test; when it is actually done the result is just as we have described (Fig. 10-3).

(a)

(b)

(c)

(d)

(e)

v = 0

−v v

v −v

v = 0

Fig. 10-3. Schematic view of action-reaction experiment with equal
masses.
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BEFORE COLLISION

AFTER COLLISION

VIEW FROM
CENTER OF MASS

VIEW FROM
MOVING CAR

(CAR VELOCITY = −v)

m m m m

m m m m

v −v 2v 0

v = 0 v

Fig. 10-4. Two views of an inelastic collision between equal masses.

Now the next thing we would like to figure out is what happens in a less
simple situation. Suppose we have two equal masses, one moving with velocity v
and the other standing still, and they collide and stick; what is going to happen?
There is a mass 2m altogether when we are finished, drifting with an unknown
velocity. What velocity? That is the problem. To find the answer, we make the
assumption that if we ride along in a car, physics will look the same as if we
are standing still. We start with the knowledge that two equal masses, moving
in opposite directions with equal speeds v, will stop dead when they collide.
Now suppose that while this happens, we are riding by in an automobile, at a
velocity −v. Then what does it look like? Since we are riding along with one
of the two masses which are coming together, that one appears to us to have
zero velocity. The other mass, however, going the other way with velocity v, will
appear to be coming toward us at a velocity 2v (Fig. 10-4). Finally, the combined
masses after collision will seem to be passing by with velocity v. We therefore
conclude that an object with velocity 2v, hitting an equal one at rest, will end
up with velocity v, or what is mathematically exactly the same, an object with
velocity v hitting and sticking to one at rest will produce an object moving with
velocity v/2. Note that if we multiply the mass and the velocity beforehand and
add them together, mv + 0, we get the same answer as when we multiply the
mass and the velocity of everything afterwards, 2m times v/2. So that tells us
what happens when a mass of velocity v hits one standing still.

In exactly the same manner we can deduce what happens when equal objects
having any two velocities hit each other.

Suppose we have two equal bodies with velocities v1 and v2, respectively,
which collide and stick together. What is their velocity v after the collision?
Again we ride by in an automobile, say at velocity v2, so that one body appears
to be at rest. The other then appears to have a velocity v1 − v2, and we have
the same case that we had before. When it is all finished they will be moving
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BEFORE COLLISION

AFTER COLLISION

VIEW FROM “LAB” VIEW FROM CAR

m m m m

m m m m

v1 v2 v1 − v2 0

v 1/2(v1 − v2)

Fig. 10-5. Two views of another inelastic collision between equal
masses.

at 1
2 (v1 − v2) with respect to the car. What then is the actual speed on the

ground?
It is v = 1

2 (v1 − v2) + v2 or 1
2 (v1 + v2) (Fig. 10-5). Again we note that

mv1 +mv2 = 2m(v1 + v2)/2. (10.6)

Thus, using this principle, we can analyze any kind of collision in which two
bodies of equal mass hit each other and stick. In fact, although we have worked
only in one dimension, we can find out a great deal about much more complicated
collisions by imagining that we are riding by in a car in some oblique direction.
The principle is the same, but the details get somewhat complicated.

In order to test experimentally whether an object moving with velocity v,
colliding with an equal one at rest, forms an object moving with velocity v/2,
we may perform the following experiment with our air-trough apparatus. We
place in the trough three equally massive objects, two of which are initially joined
together with our explosive cylinder device, the third being very near to but
slightly separated from these and provided with a sticky bumper so that it will
stick to another object which hits it. Now, a moment after the explosion, we have
two objects of mass m moving with equal and opposite velocities v. A moment
after that, one of these collides with the third object and makes an object of
mass 2m moving, so we believe, with velocity v/2. How do we test whether it
is really v/2? By arranging the initial positions of the masses on the trough so
that the distances to the ends are not equal, but are in the ratio 2 : 1. Thus our
first mass, which continues to move with velocity v, should cover twice as much
distance in a given time as the two which are stuck together (allowing for the
small distance travelled by the second object before it collided with the third).
The mass m and the mass 2m should reach the ends at the same time, and when
we try it, we find that they do (Fig. 10-6).
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m m m

m m m

m 2m

−v v 0

−v v ′

Fig. 10-6. An experiment to verify that a mass m with velocity v
striking a mass m with zero velocity gives 2m with velocity v/2.

The next problem that we want to work out is what happens if we have two
different masses. Let us take a mass m and a mass 2m and apply our explosive
interaction. What will happen then? If, as a result of the explosion, m moves
with velocity v, with what velocity does 2m move? The experiment we have
just done may be repeated with zero separation between the second and third
masses, and when we try it we get the same result, namely, the reacting masses
m and 2m attain velocities −v and v/2. Thus the direct reaction between m
and 2m gives the same result as the symmetrical reaction between m and m,
followed by a collision between m and a third mass m in which they stick together.
Furthermore, we find that the masses m and 2m returning from the ends of the
trough, with their velocities (nearly) exactly reversed, stop dead if they stick
together.

Now the next question we may ask is this. What will happen if a mass m
with velocity v, say, hits and sticks to another mass 2m at rest? This is very
easy to answer using our principle of Galilean relativity, for we simply watch
the collision which we have just described from a car moving with velocity −v/2
(Fig. 10-7). From the car, the velocities are

v′1 = v − v(car) = v + v/2 = 3v/2
and

v′2 = −v/2− v(car) = −v/2 + v/2 = 0.

After the collision, the mass 3m appears to us to be moving with velocity v/2.
Thus we have the answer, i.e., the ratio of velocities before and after collision
is 3 to 1: if an object of mass m collides with a stationary object of mass 2m,
then the whole thing moves off, stuck together, with a velocity 1/3 as much. The
general rule again is that the sum of the products of the masses and the velocities
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BEFORE COLLISION

AFTER COLLISION

VIEW FROM
CM SYSTEM

VIEW FROM
CAR

m 2m m 2m

3m 3m

v −v/2 3v/2 0

0 v/2

Fig. 10-7. Two views of an inelastic collision between m and 2m.

stays the same: mv + 0 equals 3m times v/3, so we are gradually building up
the theorem of the conservation of momentum, piece by piece.

Now we have one against two. Using the same arguments, we can predict the
result of one against three, two against three, etc. The case of two against three,
starting from rest, is shown in Fig. 10-8.

0 0 0 0 0
m m m m m

0 −v v 0 0
m m m m m

−v/2 v/2 0

m m m m m

−v/2 v/3

m m m m m

Fig. 10-8. Action and reaction between 2m and 3m.

In every case we find that the mass of the first object times its velocity, plus
the mass of the second object times its velocity, is equal to the total mass of the
final object times its velocity. These are all examples, then, of the conservation
of momentum. Starting from simple, symmetrical cases, we have demonstrated
the law for more complex cases. We could, in fact, do it for any rational mass
ratio, and since every ratio is exceedingly close to a rational ratio, we can handle
every ratio as precisely as we wish.

10-4 Momentum and energy

All the foregoing examples are simple cases where the bodies collide and stick
together, or were initially stuck together and later separated by an explosion.
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However, there are situations in which the bodies do not cohere, as, for example,
two bodies of equal mass which collide with equal speeds and then rebound. For
a brief moment they are in contact and both are compressed. At the instant of
maximum compression they both have zero velocity and energy is stored in the
elastic bodies, as in a compressed spring. This energy is derived from the kinetic
energy the bodies had before the collision, which becomes zero at the instant
their velocity is zero. The loss of kinetic energy is only momentary, however. The
compressed condition is analogous to the cap that releases energy in an explosion.
The bodies are immediately decompressed in a kind of explosion, and fly apart
again; but we already know that case—the bodies fly apart with equal speeds.
However, this speed of rebound is less, in general, than the initial speed, because
not all the energy is available for the explosion, depending on the material. If
the material is putty no kinetic energy is recovered, but if it is something more
rigid, some kinetic energy is usually regained. In the collision the rest of the
kinetic energy is transformed into heat and vibrational energy—the bodies are
hot and vibrating. The vibrational energy also is soon transformed into heat. It
is possible to make the colliding bodies from highly elastic materials, such as
steel, with carefully designed spring bumpers, so that the collision generates very
little heat and vibration. In these circumstances the velocities of rebound are
practically equal to the initial velocities; such a collision is called elastic.

That the speeds before and after an elastic collision are equal is not a matter of
conservation of momentum, but a matter of conservation of kinetic energy. That
the velocities of the bodies rebounding after a symmetrical collision are equal to
and opposite each other, however, is a matter of conservation of momentum.

We might similarly analyze collisions between bodies of different masses,
different initial velocities, and various degrees of elasticity, and determine the
final velocities and the loss of kinetic energy, but we shall not go into the details
of these processes.

Elastic collisions are especially interesting for systems that have no internal
“gears, wheels, or parts.” Then when there is a collision there is nowhere for the
energy to be impounded, because the objects that move apart are in the same
condition as when they collided. Therefore, between very elementary objects,
the collisions are always elastic or very nearly elastic. For instance, the collisions
between atoms or molecules in a gas are said to be perfectly elastic. Although
this is an excellent approximation, even such collisions are not perfectly elastic;
otherwise one could not understand how energy in the form of light or heat
radiation could come out of a gas. Once in a while, in a gas collision, a low-energy
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infrared ray is emitted, but this occurrence is very rare and the energy emitted is
very small. So, for most purposes, collisions of molecules in gases are considered
to be perfectly elastic.

As an interesting example, let us consider an elastic collision between two
objects of equal mass. If they come together with the same speed, they would
come apart at that same speed, by symmetry. But now look at this in another
circumstance, in which one of them is moving with velocity v and the other one
is at rest. What happens? We have been through this before. We watch the
symmetrical collision from a car moving along with one of the objects, and we
find that if a stationary body is struck elastically by another body of exactly the
same mass, the moving body stops, and the one that was standing still now moves
away with the same speed that the other one had; the bodies simply exchange
velocities. This behavior can easily be demonstrated with a suitable impact
apparatus. More generally, if both bodies are moving, with different velocities,
they simply exchange velocity at impact.

Another example of an almost elastic interaction is magnetism. If we arrange
a pair of U-shaped magnets in our glide blocks, so that they repel each other,
when one drifts quietly up to the other, it pushes it away and stands perfectly
still, and now the other goes along, frictionlessly.

The principle of conservation of momentum is very useful, because it enables
us to solve many problems without knowing the details. We did not know the
details of the gas motions in the cap explosion, yet we could predict the velocities
with which the bodies came apart, for example. Another interesting example is
rocket propulsion. A rocket of large mass, M , ejects a small piece, of mass m,
with a terrific velocity V relative to the rocket. After this the rocket, if it were
originally standing still, will be moving with a small velocity, v. Using the
principle of conservation of momentum, we can calculate this velocity to be

v = m

M
· V.

So long as material is being ejected, the rocket continues to pick up speed. Rocket
propulsion is essentially the same as the recoil of a gun: there is no need for any
air to push against.

10-5 Relativistic momentum

In modern times the law of conservation of momentum has undergone certain
modifications. However, the law is still true today, the modifications being mainly
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in the definitions of things. In the theory of relativity it turns out that we do have
conservation of momentum; the particles have mass and the momentum is still
given by mv, the mass times the velocity, but the mass changes with the velocity,
hence the momentum also changes. The mass varies with velocity according to
the law

m = m0√
1− v2/c2

, (10.7)

where m0 is the mass of the body at rest and c is the speed of light. It is easy to
see from the formula that there is negligible difference between m and m0 unless
v is very large, and that for ordinary velocities the expression for momentum
reduces to the old formula.

The components of momentum for a single particle are written as

px = m0vx√
1− v2/c2

, py = m0vy√
1− v2/c2

, pz = m0vz√
1− v2/c2

, (10.8)

where v2 = v2
x+v2

y +v2
z . If the x-components are summed over all the interacting

particles, both before and after a collision, the sums are equal; that is, momentum
is conserved in the x-direction. The same holds true in any direction.

In Chapter 4 we saw that the law of conservation of energy is not valid unless
we recognize that energy appears in different forms, electrical energy, mechanical
energy, radiant energy, heat energy, and so on. In some of these cases, heat
energy for example, the energy might be said to be “hidden.” This example
might suggest the question, “Are there also hidden forms of momentum—perhaps
heat momentum?” The answer is that it is very hard to hide momentum for the
following reasons.

The random motions of the atoms of a body furnish a measure of heat energy,
if the squares of the velocities are summed. This sum will be a positive result,
having no directional character. The heat is there, whether or not the body moves
as a whole, and conservation of energy in the form of heat is not very obvious.
On the other hand, if one sums the velocities, which have direction, and finds a
result that is not zero, that means that there is a drift of the entire body in some
particular direction, and such a gross momentum is readily observed. Thus there
is no random internal lost momentum, because the body has net momentum only
when it moves as a whole. Therefore momentum, as a mechanical quantity, is
difficult to hide. Nevertheless, momentum can be hidden—in the electromagnetic
field, for example. This case is another effect of relativity.
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One of the propositions of Newton was that interactions at a distance are
instantaneous. It turns out that such is not the case; in situations involving elec-
trical forces, for instance, if an electrical charge at one location is suddenly moved,
the effects on another charge, at another place, do not appear instantaneously—
there is a little delay. In those circumstances, even if the forces are equal the
momentum will not check out; there will be a short time during which there will
be trouble, because for a while the first charge will feel a certain reaction force,
say, and will pick up some momentum, but the second charge has felt nothing
and has not yet changed its momentum. It takes time for the influence to cross
the intervening distance, which it does at 186,000 miles a second. In that tiny
time the momentum of the particles is not conserved. Of course after the second
charge has felt the effect of the first one and all is quieted down, the momentum
equation will check out all right, but during that small interval momentum is not
conserved. We represent this by saying that during this interval there is another
kind of momentum besides that of the particle, mv, and that is momentum in
the electromagnetic field. If we add the field momentum to the momentum of
the particles, then momentum is conserved at any moment all the time. The
fact that the electromagnetic field can possess momentum and energy makes that
field very real, and so, for better understanding, the original idea that there are
just the forces between particles has to be modified to the idea that a particle
makes a field, and a field acts on another particle, and the field itself has such
familiar properties as energy content and momentum, just as particles can have.
To take another example: an electromagnetic field has waves, which we call light;
it turns out that light also carries momentum with it, so when light impinges
on an object it carries in a certain amount of momentum per second; this is
equivalent to a force, because if the illuminated object is picking up a certain
amount of momentum per second, its momentum is changing and the situation
is exactly the same as if there were a force on it. Light can exert pressure by
bombarding an object; this pressure is very small, but with sufficiently delicate
apparatus it is measurable.

Now in quantum mechanics it turns out that momentum is a different thing—
it is no longer mv. It is hard to define exactly what is meant by the velocity of a
particle, but momentum still exists. In quantum mechanics the difference is that
when the particles are represented as particles, the momentum is still mv, but
when the particles are represented as waves, the momentum is measured by the
number of waves per centimeter: the greater this number of waves, the greater
the momentum. In spite of the differences, the law of conservation of momentum
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holds also in quantum mechanics. Even though the law F = ma is false, and
all the derivations of Newton were wrong for the conservation of momentum, in
quantum mechanics, nevertheless, in the end, that particular law maintains itself!
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11

Vectors

11-1 Symmetry in physics

In this chapter we introduce a subject that is technically known in physics
as symmetry in physical law. The word “symmetry” is used here with a special
meaning, and therefore needs to be defined. When is a thing symmetrical—how
can we define it? When we have a picture that is symmetrical, one side is
somehow the same as the other side. Professor Hermann Weyl has given this
definition of symmetry: a thing is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation. For instance, if
we look at a silhouette of a vase that is left-and-right symmetrical, then turn it
180◦ around the vertical axis, it looks the same. We shall adopt the definition
of symmetry in Weyl’s more general form, and in that form we shall discuss
symmetry of physical laws.

Suppose we build a complex machine in a certain place, with a lot of compli-
cated interactions, and balls bouncing around with forces between them, and so
on. Now suppose we build exactly the same kind of equipment at some other
place, matching part by part, with the same dimensions and the same orientation,
everything the same only displaced laterally by some distance. Then, if we start
the two machines in the same initial circumstances, in exact correspondence, we
ask: will one machine behave exactly the same as the other? Will it follow all the
motions in exact parallelism? Of course the answer may well be no, because if we
choose the wrong place for our machine it might be inside a wall and interferences
from the wall would make the machine not work.

All of our ideas in physics require a certain amount of common sense in their
application; they are not purely mathematical or abstract ideas. We have to
understand what we mean when we say that the phenomena are the same when
we move the apparatus to a new position. We mean that we move everything
that we believe is relevant; if the phenomenon is not the same, we suggest that
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something relevant has not been moved, and we proceed to look for it. If we
never find it, then we claim that the laws of physics do not have this symmetry.
On the other hand, we may find it—we expect to find it—if the laws of physics
do have this symmetry; looking around, we may discover, for instance, that the
wall is pushing on the apparatus. The basic question is, if we define things well
enough, if all the essential forces are included inside the apparatus, if all the
relevant parts are moved from one place to another, will the laws be the same?
Will the machinery work the same way?

It is clear that what we want to do is to move all the equipment and essential
influences, but not everything in the world—planets, stars, and all—for if we
do that, we have the same phenomenon again for the trivial reason that we are
right back where we started. No, we cannot move everything. But it turns out
in practice that with a certain amount of intelligence about what to move, the
machinery will work. In other words, if we do not go inside a wall, if we know
the origin of the outside forces, and arrange that those are moved too, then the
machinery will work the same in one location as in another.

11-2 Translations

We shall limit our analysis to just mechanics, for which we now have sufficient
knowledge. In previous chapters we have seen that the laws of mechanics can be
summarized by a set of three equations for each particle:

m(d2x/dt2) = Fx, m(d2y/dt2) = Fy, m(d2z/dt2) = Fz. (11.1)

Now this means that there exists a way to measure x, y, and z on three perpen-
dicular axes, and the forces along those directions, such that these laws are true.
These must be measured from some origin, but where do we put the origin? All
that Newton would tell us at first is that there is some place that we can measure
from, perhaps the center of the universe, such that these laws are correct. But we
can show immediately that we can never find the center, because if we use some
other origin it would make no difference. In other words, suppose that there are
two people—Joe, who has an origin in one place, and Moe, who has a parallel
system whose origin is somewhere else (Fig. 11-1). Now when Joe measures the
location of the point in space, he finds it at x, y, and z (we shall usually leave z
out because it is too confusing to draw in a picture). Moe, on the other hand,
when measuring the same point, will obtain a different x (in order to distinguish
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Fig. 11-1. Two parallel coordinate systems.

it, we will call it x′), and in principle a different y, although in our example they
are numerically equal. So we have

x′ = x− a, y′ = y, z′ = z. (11.2)

Now in order to complete our analysis we must know what Moe would obtain for
the forces. The force is supposed to act along some line, and by the force in the
x-direction we mean the part of the total which is in the x-direction, which is
the magnitude of the force times this cosine of its angle with the x-axis. Now
we see that Moe would use exactly the same projection as Joe would use, so we
have a set of equations

Fx′ = Fx, Fy′ = Fy, Fz′ = Fz. (11.3)

These would be the relationships between quantities as seen by Joe and Moe.
The question is, if Joe knows Newton’s laws, and if Moe tries to write

down Newton’s laws, will they also be correct for him? Does it make any
difference from which origin we measure the points? In other words, assuming
that equations (11.1) are true, and the Eqs. (11.2) and (11.3) give the relationship
of the measurements, is it or is it not true that

(a) m(d2x′/dt2) = Fx′ ,

(b) m(d2y′/dt2) = Fy′ ,

(c) m(d2z′/dt2) = Fz′ ?
(11.4)

In order to test these equations we shall differentiate the formula for x′ twice.
First of all

dx′

dt
= d

dt
(x− a) = dx

dt
− da

dt
.
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Now we shall assume that Moe’s origin is fixed (not moving) relative to Joe’s;
therefore a is a constant and da/dt = 0, so we find that

dx′/dt = dx/dt

and therefore
d2x′/dt2 = d2x/dt2;

therefore we know that Eq. (11.4a) becomes

m(d2x/dt2) = Fx′ .

(We also suppose that the masses measured by Joe and Moe are equal.) Thus
the acceleration times the mass is the same as the other fellow’s. We have also
found the formula for Fx′ , for, substituting from Eq. (11.1), we find that

Fx′ = Fx.

Therefore the laws as seen by Moe appear the same; he can write Newton’s
laws too, with different coordinates, and they will still be right. That means that
there is no unique way to define the origin of the world, because the laws will
appear the same, from whatever position they are observed.

This is also true: if there is a piece of equipment in one place with a certain
kind of machinery in it, the same equipment in another place will behave in the
same way. Why? Because one machine, when analyzed by Moe, has exactly the
same equations as the other one, analyzed by Joe. Since the equations are the
same, the phenomena appear the same. So the proof that an apparatus in a new
position behaves the same as it did in the old position is the same as the proof
that the equations when displaced in space reproduce themselves. Therefore
we say that the laws of physics are symmetrical for translational displacements,
symmetrical in the sense that the laws do not change when we make a translation
of our coordinates. Of course it is quite obvious intuitively that this is true, but
it is interesting and entertaining to discuss the mathematics of it.

11-3 Rotations

The above is the first of a series of ever more complicated propositions
concerning the symmetry of a physical law. The next proposition is that it should
make no difference in which direction we choose the axes. In other words, if we
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build a piece of equipment in some place and watch it operate, and nearby we
build the same kind of apparatus but put it up on an angle, will it operate in the
same way? Obviously it will not if it is a Grandfather clock, for example! If a
pendulum clock stands upright, it works fine, but if it is tilted the pendulum falls
against the side of the case and nothing happens. The theorem is then false in
the case of the pendulum clock, unless we include the earth, which is pulling on
the pendulum. Therefore we can make a prediction about pendulum clocks if we
believe in the symmetry of physical law for rotation: something else is involved in
the operation of a pendulum clock besides the machinery of the clock, something
outside it that we should look for. We may also predict that pendulum clocks will
not work the same way when located in different places relative to this mysterious
source of asymmetry, perhaps the earth. Indeed, we know that a pendulum clock
up in an artificial satellite, for example, would not tick either, because there is no
effective force, and on Mars it would go at a different rate. Pendulum clocks do
involve something more than just the machinery inside, they involve something
on the outside. Once we recognize this factor, we see that we must turn the earth
along with the apparatus. Of course we do not have to worry about that, it is easy
to do; one simply waits a moment or two and the earth turns; then the pendulum
clock ticks again in the new position the same as it did before. While we are
rotating in space our angles are always changing, absolutely; this change does not
seem to bother us very much, for in the new position we seem to be in the same
condition as in the old. This has a certain tendency to confuse one, because it
is true that in the new turned position the laws are the same as in the unturned
position, but it is not true that as we turn a thing it follows the same laws as it
does when we are not turning it. If we perform sufficiently delicate experiments,
we can tell that the earth is rotating, but not that it had rotated. In other words,
we cannot locate its angular position, but we can tell that it is changing.

Now we may discuss the effects of angular orientation upon physical laws.
Let us find out whether the same game with Joe and Moe works again. This
time, to avoid needless complication, we shall suppose that Joe and Moe use the
same origin (we have already shown that the axes can be moved by translation
to another place). Assume that Moe’s axes have rotated relative to Joe’s by an
angle θ. The two coordinate systems are shown in Fig. 11-2, which is restricted
to two dimensions. Consider any point P having coordinates (x, y) in Joe’s
system and (x′, y′) in Moe’s system. We shall begin, as in the previous case, by
expressing the coordinates x′ and y′ in terms of x, y, and θ. To do so, we first
drop perpendiculars from P to all four axes and draw AB perpendicular to PQ.
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Fig. 11-2. Two coordinate systems having different angular orienta-
tions.

Inspection of the figure shows that x′ can be written as the sum of two lengths
along the x′-axis, and y′ as the difference of two lengths along AB. All these
lengths are expressed in terms of x, y, and θ in equations (11.5), to which we
have added an equation for the third dimension.

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(11.5)

The next step is to analyze the relationship of forces as seen by the two observers,
following the same general method as before. Let us assume that a force F , which
has already been analyzed as having components Fx and Fy (as seen by Joe), is
acting on a particle of mass m, located at point P in Fig. 11-2. For simplicity,
let us move both sets of axes so that the origin is at P , as shown in Fig. 11-3.
Moe sees the components of F along his axes as Fx′ and Fy′ . Fx has components
along both the x′- and y′-axes, and Fy likewise has components along both these
axes. To express Fx′ in terms of Fx and Fy, we sum these components along the
x′-axis, and in a like manner we can express Fy′ in terms of Fx and Fy. The
results are

Fx′ = Fx cos θ + Fy sin θ,
Fy′ = Fy cos θ − Fx sin θ,
Fz′ = Fz .

(11.6)

It is interesting to note an accident of sorts, which is of extreme importance: the
formulas (11.5) and (11.6), for coordinates of P and components of F , respectively,
are of identical form.
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Fig. 11-3. Components of a force in the two systems.

As before, Newton’s laws are assumed to be true in Joe’s system, and are
expressed by equations (11.1). The question, again, is whether Moe can apply
Newton’s laws—will the results be correct for his system of rotated axes? In
other words, if we assume that Eqs. (11.5) and (11.6) give the relationship of the
measurements, is it true or not true that

m(d2x′/dt2) = Fx′ ,

m(d2y′/dt2) = Fy′ ,

m(d2z′/dt2) = Fz′?
(11.7)

To test these equations, we calculate the left and right sides independently, and
compare the results. To calculate the left sides, we multiply equations (11.5)
by m, and differentiate twice with respect to time, assuming the angle θ to be
constant. This gives

m(d2x′/dt2) = m(d2x/dt2) cos θ +m(d2y/dt2) sin θ,
m(d2y′/dt2) = m(d2y/dt2) cos θ −m(d2x/dt2) sin θ,
m(d2z′/dt2) = m(d2z/dt2).

(11.8)

We calculate the right sides of equations (11.7) by substituting equations (11.1)
into equations (11.6). This gives

Fx′ = m(d2x/dt2) cos θ +m(d2y/dt2) sin θ,
Fy′ = m(d2y/dt2) cos θ −m(d2x/dt2) sin θ,
Fz′ = m(d2z/dt2).

(11.9)
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Behold! The right sides of Eqs. (11.8) and (11.9) are identical, so we conclude
that if Newton’s laws are correct on one set of axes, they are also valid on
any other set of axes. This result, which has now been established for both
translation and rotation of axes, has certain consequences: first, no one can
claim his particular axes are unique, but of course they can be more convenient
for certain particular problems. For example, it is handy to have gravity along
one axis, but this is not physically necessary. Second, it means that any piece
of equipment which is completely self-contained, with all the force-generating
equipment completely inside the apparatus, would work the same when turned
at an angle.

11-4 Vectors

Not only Newton’s laws, but also the other laws of physics, so far as we know
today, have the two properties which we call invariance (or symmetry) under
translation of axes and rotation of axes. These properties are so important that a
mathematical technique has been developed to take advantage of them in writing
and using physical laws.

The foregoing analysis involved considerable tedious mathematical work. To
reduce the details to a minimum in the analysis of such questions, a very powerful
mathematical machinery has been devised. This system, called vector analysis,
supplies the title of this chapter; strictly speaking, however, this is a chapter on
the symmetry of physical laws. By the methods of the preceding analysis we
were able to do everything required for obtaining the results that we sought, but
in practice we should like to do things more easily and rapidly, so we employ the
vector technique.

We began by noting some characteristics of two kinds of quantities that are
important in physics. (Actually there are more than two, but let us start out
with two.) One of them, like the number of potatoes in a sack, we call an ordinary
quantity, or an undirected quantity, or a scalar . Temperature is an example of
such a quantity. Other quantities that are important in physics do have direction,
for instance velocity: we have to keep track of which way a body is going, not
just its speed. Momentum and force also have direction, as does displacement:
when someone steps from one place to another in space, we can keep track of
how far he went, but if we wish also to know where he went, we have to specify a
direction.

All quantities that have a direction, like a step in space, are called vectors.
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A vector is three numbers. In order to represent a step in space, say from the
origin to some particular point P whose location is (x, y, z), we really need three
numbers, but we are going to invent a single mathematical symbol, r, which is
unlike any other mathematical symbols we have so far used.* It is not a single
number, it represents three numbers: x, y, and z. It means three numbers, but not
really only those three numbers, because if we were to use a different coordinate
system, the three numbers would be changed to x′, y′, and z′. However, we want
to keep our mathematics simple and so we are going to use the same mark to
represent the three numbers (x, y, z) and the three numbers (x′, y′, z′). That
is, we use the same mark to represent the first set of three numbers for one
coordinate system, but the second set of three numbers if we are using the other
coordinate system. This has the advantage that when we change the coordinate
system, we do not have to change the letters of our equations. If we write an
equation in terms of x, y, z, and then use another system, we have to change to
x′, y′, z′, but we shall just write r, with the convention that it represents (x, y, z)
if we use one set of axes, or (x′, y′, z′) if we use another set of axes, and so on.
The three numbers which describe the quantity in a given coordinate system are
called the components of the vector in the direction of the coordinate axes of that
system. That is, we use the same symbol for the three letters that correspond
to the same object, as seen from different axes. The very fact that we can say
“the same object” implies a physical intuition about the reality of a step in space,
that is independent of the components in terms of which we measure it. So the
symbol r will represent the same thing no matter how we turn the axes.

Now suppose there is another directed physical quantity, any other quantity,
which also has three numbers associated with it, like force, and these three
numbers change to three other numbers by a certain mathematical rule, if we
change the axes. It must be the same rule that changes (x, y, z) into (x′, y′, z′). In
other words, any physical quantity associated with three numbers which transform
as do the components of a step in space is a vector. An equation like

F = r

would thus be true in any coordinate system if it were true in one. This equation,
of course, stands for the three equations

Fx = x, Fy = y, Fz = z,

* In type, vectors are represented by boldface; in handwritten form an arrow is used: ~r.
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or, alternatively, for
Fx′ = x′, Fy′ = y′, Fz′ = z′.

The fact that a physical relationship can be expressed as a vector equation assures
us the relationship is unchanged by a mere rotation of the coordinate system.
That is the reason why vectors are so useful in physics.

Now let us examine some of the properties of vectors. As examples of vectors
we may mention velocity, momentum, force, and acceleration. For many purposes
it is convenient to represent a vector quantity by an arrow that indicates the
direction in which it is acting. Why can we represent force, say, by an arrow?
Because it has the same mathematical transformation properties as a “step in
space.” We thus represent it in a diagram as if it were a step, using a scale such
that one unit of force, or one newton, corresponds to a certain convenient length.
Once we have done this, all forces can be represented as lengths, because an
equation like

F = kr,

where k is some constant, is a perfectly legitimate equation. Thus we can always
represent forces by lines, which is very convenient, because once we have drawn
the line we no longer need the axes. Of course, we can quickly calculate the
three components as they change upon turning the axes, because that is just a
geometric problem.

11-5 Vector algebra

Now we must describe the laws, or rules, for combining vectors in various ways.
The first such combination is the addition of two vectors: suppose that a is a vector
which in some particular coordinate system has the three components (ax, ay, az),
and that b is another vector which has the three components (bx, by, bz). Now
let us invent three new numbers (ax + bx, ay + by, az + bz). Do these form a
vector? “Well,” we might say, “they are three numbers, and every three numbers
form a vector.” No, not every three numbers form a vector! In order for it to be
a vector, not only must there be three numbers, but these must be associated
with a coordinate system in such a way that if we turn the coordinate system,
the three numbers “revolve” on each other, get “mixed up” in each other, by
the precise laws we have already described. So the question is, if we now rotate
the coordinate system so that (ax, ay, az) become (ax′ , ay′ , az′) and (bx, by, bz)
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become (bx′ , by′ , bz′), what do (ax+ bx, ay + by, az + bz) become? Do they become
(ax′ + bx′ , ay′ + by′ , az′ + bz′) or not? The answer is, of course, yes, because
the prototype transformations of Eq. (11.5) constitute what we call a linear
transformation. If we apply those transformations to ax and bx to get ax′ + bx′ ,
we find that the transformed ax + bx is indeed the same as ax′ + bx′ . When a
and b are “added together” in this sense, they will form a vector which we may
call c. We would write this as

c = a+ b.

Now c has the interesting property

c = b+ a,

as we can immediately see from its components. Thus also,

a+ (b+ c) = (a+ b) + c.

We can add vectors in any order.
What is the geometric significance of a + b? Suppose that a and b were

represented by lines on a piece of paper, what would c look like? This is shown
in Fig. 11-4. We see that we can add the components of b to those of a most
conveniently if we place the rectangle representing the components of b next to
that representing the components of a in the manner indicated. Since b just
“fits” into its rectangle, as does a into its rectangle, this is the same as putting
the “tail” of b on the “head” of a, the arrow from the “tail” of a to the “head”
of b being the vector c. Of course, if we added a to b the other way around, we

a

b

c

x

y

Fig. 11-4. The addition of vectors.
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would put the “tail” of a on the “head” of b, and by the geometrical properties
of parallelograms we would get the same result for c. Note that vectors can be
added in this way without reference to any coordinate axes.

Suppose we multiply a vector by a number α, what does this mean? We
define it to mean a new vector whose components are αax, αay, and αaz. We
leave it as a problem for the student to prove that it is a vector.

Now let us consider vector subtraction. We may define subtraction in the
same way as addition, but instead of adding, we subtract the components. Or
we might define subtraction by defining a negative vector, −b = −1b, and then
we would add the components. It comes to the same thing. The result is shown
in Fig. 11-5. This figure shows d = a − b = a + (−b); we also note that the
difference a− b can be found very easily from a and b by using the equivalent
relation a = b+ d. Thus the difference is even easier to find than the sum: we
just draw the vector from b to a, to get a− b!

a
b

d

−b

d / a − b

Fig. 11-5. The subtraction of vectors.

Next we discuss velocity. Why is velocity a vector? If position is given
by the three coordinates (x, y, z), what is the velocity? The velocity is given
by dx/dt, dy/dt, and dz/dt. Is that a vector, or not? We can find out by
differentiating the expressions in Eq. (11.5) to find out whether dx′/dt transforms
in the right way. We see that the components dx/dt and dy/dt do transform
according to the same law as x and y, and therefore the time derivative is a
vector. So the velocity is a vector. We can write the velocity in an interesting
way as

v = dr/dt.

What the velocity is, and why it is a vector, can also be understood more
pictorially: How far does a particle move in a short time ∆t? Answer: ∆r, so if
a particle is “here” at one instant and “there” at another instant, then the vector
difference of the positions ∆r = r2 − r1, which is in the direction of motion
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shown in Fig. 11-6, divided by the time interval ∆t = t2 − t1, is the “average
velocity” vector.

O

1

2

r1

r2

∆r = r2 − r1

Fig. 11-6. The displacement of a particle in a short time interval ∆t =

t2 − t1.

In other words, by vector velocity we mean the limit, as ∆t goes to 0, of the
difference between the radius vectors at the time t+ ∆t and the time t, divided
by ∆t:

v = lim
∆t→0

(∆r/∆t) = dr/dt. (11.10)

Thus velocity is a vector because it is the difference of two vectors. It is also the
right definition of velocity because its components are dx/dt, dy/dt, and dz/dt.
In fact, we see from this argument that if we differentiate any vector with respect
to time we produce a new vector. So we have several ways of producing new
vectors: (1) multiply by a constant, (2) differentiate with respect to time, (3) add
or subtract two vectors.

11-6 Newton’s laws in vector notation

In order to write Newton’s laws in vector form, we have to go just one step
further, and define the acceleration vector. This is the time derivative of the
velocity vector, and it is easy to demonstrate that its components are the second
derivatives of x, y, and z with respect to t:

a = dv

dt
=
(
d

dt

)(
dr

dt

)
= d2r

dt2
, (11.11)

ax = dvx
dt

= d2x

dt2
, ay = dvy

dt
= d2y

dt2
, az = dvz

dt
= d2z

dt2
. (11.12)
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With this definition, then, Newton’s laws can be written in this way:

ma = F (11.13)
or

m(d2r/dt2) = F . (11.14)

Now the problem of proving the invariance of Newton’s laws under rotation
of coordinates is this: prove that a is a vector; this we have just done. Prove
that F is a vector; we suppose it is. So if force is a vector, then, since we know
acceleration is a vector, Eq. (11.13) will look the same in any coordinate system.
Writing it in a form which does not explicitly contain x’s, y’s, and z’s has the
advantage that from now on we need not write three laws every time we write
Newton’s equations or other laws of physics. We write what looks like one law,
but really, of course, it is the three laws for any particular set of axes, because
any vector equation involves the statement that each of the components is equal.

O
∆θ

r1
r2

v1

v2

∆v
s

R

Fig. 11-7. A curved trajectory.

The fact that the acceleration is the rate of change of the vector velocity
helps us to calculate the acceleration in some rather complicated circumstances.
Suppose, for instance, that a particle is moving on some complicated curve
(Fig. 11-7) and that, at a given instant t, it had a certain velocity v1, but that
when we go to another instant t2 a little later, it has a different velocity v2. What
is the acceleration? Answer: Acceleration is the difference in the velocity divided
by the small time interval, so we need the difference of the two velocities. How
do we get the difference of the velocities? To subtract two vectors, we put the
vector across the ends of v2 and v1; that is, we draw ∆v as the difference of the
two vectors, right? No! That only works when the tails of the vectors are in the
same place! It has no meaning if we move the vector somewhere else and then

11-14



∆θ

v1

v2

∆v∆v⊥

∆vk

Fig. 11-8. Diagram for calculating the acceleration.

draw a line across, so watch out! We have to draw a new diagram to subtract
the vectors. In Fig. 11-8, v1 and v2 are both drawn parallel and equal to their
counterparts in Fig. 11-7, and now we can discuss the acceleration. Of course the
acceleration is simply ∆v/∆t. It is interesting to note that we can compose the
velocity difference out of two parts; we can think of acceleration as having two
components, ∆v‖, in the direction tangent to the path and ∆v⊥ at right angles
to the path, as indicated in Fig. 11-8. The acceleration tangent to the path is, of
course, just the change in the length of the vector, i.e., the change in the speed v:

a‖ = dv/dt. (11.15)

The other component of acceleration, at right angles to the curve, is easy to
calculate, using Figs. 11-7 and 11-8. In the short time ∆t let the change in angle
between v1 and v2 be the small angle ∆θ. If the magnitude of the velocity is
called v, then of course

∆v⊥ = v∆θ
and the acceleration a will be

a⊥ = v (∆θ/∆t).

Now we need to know ∆θ/∆t, which can be found this way: If, at the given
moment, the curve is approximated as a circle of a certain radius R, then in a
time ∆t the distance s is, of course, v∆t, where v is the speed.

∆θ = (v∆t)/R, or ∆θ/∆t = v/R.

Therefore, we find
a⊥ = v2/R, (11.16)

as we have seen before.

11-7 Scalar product of vectors

Now let us examine a little further the properties of vectors. It is easy to see
that the length of a step in space would be the same in any coordinate system.
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That is, if a particular step r is represented by x, y, z, in one coordinate system,
and by x′, y′, z′ in another coordinate system, surely the distance r = |r| would
be the same in both. Now

r =
√
x2 + y2 + z2

and also
r′ =

√
x′2 + y′2 + z′2.

So what we wish to verify is that these two quantities are equal. It is much more
convenient not to bother to take the square root, so let us talk about the square
of the distance; that is, let us find out whether

x2 + y2 + z2 = x′2 + y′2 + z′2. (11.17)

It had better be—and if we substitute Eq. (11.5) we do indeed find that it is.
So we see that there are other kinds of equations which are true for any two
coordinate systems.

Something new is involved. We can produce a new quantity, a function of
x, y, and z, called a scalar function, a quantity which has no direction but which
is the same in both systems. Out of a vector we can make a scalar. We have to
find a general rule for that. It is clear what the rule is for the case just considered:
add the squares of the components. Let us now define a new thing, which we
call a · a. This is not a vector, but a scalar; it is a number that is the same in all
coordinate systems, and it is defined to be the sum of the squares of the three
components of the vector:

a · a = a2
x + a2

y + a2
z. (11.18)

Now you say, “But with what axes?” It does not depend on the axes, the answer is
the same in every set of axes. So we have a new kind of quantity, a new invariant
or scalar produced by one vector “squared.” If we now define the following quantity
for any two vectors a and b:

a · b = axbx + ayby + azbz, (11.19)

we find that this quantity, calculated in the primed and unprimed systems, also
stays the same. To prove it we note that it is true of a · a, b · b, and c · c, where
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c = a+ b. Therefore the sum of the squares (ax + bx)2 + (ay + by)2 + (az + bz)2

will be invariant:

(ax + bx)2 + (ay + by)2 + (az + bz)2 = (ax′ + bx′)2

+ (ay′ + by′)2 + (az′ + bz′)2. (11.20)

If both sides of this equation are expanded, there will be cross products of just the
type appearing in Eq. (11.19), as well as the sums of squares of the components
of a and b. The invariance of terms of the form of Eq. (11.18) then leaves the
cross product terms (11.19) invariant also.

The quantity a · b is called the scalar product of two vectors, a and b, and it
has many interesting and useful properties. For instance, it is easily proved that

a · (b+ c) = a · b+ a · c. (11.21)

Also, there is a simple geometrical way to calculate a · b, without having to
calculate the components of a and b: a · b is the product of the length of a and
the length of b times the cosine of the angle between them. Why? Suppose
that we choose a special coordinate system in which the x-axis lies along a; in
those circumstances, the only component of a that will be there is ax, which is
of course the whole length of a. Thus Eq. (11.19) reduces to a · b = axbx for this
case, and this is the length of a times the component of b in the direction of a,
that is, b cos θ:

a · b = ab cos θ.
Therefore, in that special coordinate system, we have proved that a · b is the
length of a times the length of b times cos θ. But if it is true in one coordinate
system, it is true in all, because a · b is independent of the coordinate system;
that is our argument.

What good is the dot product? Are there any cases in physics where we
need it? Yes, we need it all the time. For instance, in Chapter 4 the kinetic
energy was called 1

2mv
2, but if the object is moving in space it should be the

velocity squared in the x-direction, the y-direction, and the z-direction, and so
the formula for kinetic energy according to vector analysis is

K.E. = 1
2m(v · v) = 1

2m(v2
x + v2

y + v2
z). (11.22)

Energy does not have direction. Momentum has direction; it is a vector, and it
is the mass times the velocity vector.
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Another example of a dot product is the work done by a force when something
is pushed from one place to the other. We have not yet defined work, but it is
equivalent to the energy change, the weights lifted, when a force F acts through
a distance s:

Work = F · s. (11.23)

It is sometimes very convenient to talk about the component of a vector in
a certain direction (say the vertical direction because that is the direction of
gravity). For such purposes, it is useful to invent what we call a unit vector in
the direction that we want to study. By a unit vector we mean one whose dot
product with itself is equal to unity. Let us call this unit vector i; then i · i = 1.
Then, if we want the component of some vector in the direction of i, we see that
the dot product a · i will be a cos θ, i.e., the component of a in the direction
of i. This is a nice way to get the component; in fact, it permits us to get all
the components and to write a rather amusing formula. Suppose that in a given
system of coordinates, x, y, and z, we invent three vectors: i, a unit vector in
the direction x; j, a unit vector in the direction y; and k, a unit vector in the
direction z. Note first that i · i = 1. What is i · j? When two vectors are at right
angles, their dot product is zero. Thus

i · i = 1
i · j = 0 j · j = 1
i · k = 0 j · k = 0 k · k = 1 (11.24)

Now with these definitions, any vector whatsoever can be written this way:

a = axi+ ayj + azk. (11.25)

By this means we can go from the components of a vector to the vector itself.
This discussion of vectors is by no means complete. However, rather than try

to go more deeply into the subject now, we shall first learn to use in physical
situations some of the ideas so far discussed. Then, when we have properly
mastered this basic material, we shall find it easier to penetrate more deeply into
the subject without getting too confused. We shall later find that it is useful
to define another kind of product of two vectors, called the vector product, and
written as a× b. However, we shall undertake a discussion of such matters in a
later chapter.
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12

Characteristics of Force

12-1 What is a force?

Although it is interesting and worth while to study the physical laws simply
because they help us to understand and to use nature, one ought to stop every
once in a while and think, “What do they really mean?” The meaning of any
statement is a subject that has interested and troubled philosophers from time
immemorial, and the meaning of physical laws is even more interesting, because
it is generally believed that these laws represent some kind of real knowledge.
The meaning of knowledge is a deep problem in philosophy, and it is always
important to ask, “What does it mean?”

Let us ask, “What is the meaning of the physical laws of Newton, which we
write as F = ma? What is the meaning of force, mass, and acceleration?” Well,
we can intuitively sense the meaning of mass, and we can define acceleration if
we know the meaning of position and time. We shall not discuss those meanings,
but shall concentrate on the new concept of force. The answer is equally simple:
“If a body is accelerating, then there is a force on it.” That is what Newton’s laws
say, so the most precise and beautiful definition of force imaginable might simply
be to say that force is the mass of an object times the acceleration. Suppose we
have a law which says that the conservation of momentum is valid if the sum
of all the external forces is zero; then the question arises, “What does it mean,
that the sum of all the external forces is zero?” A pleasant way to define that
statement would be: “When the total momentum is a constant, then the sum of
the external forces is zero.” There must be something wrong with that, because it
is just not saying anything new. If we have discovered a fundamental law, which
asserts that the force is equal to the mass times the acceleration, and then define
the force to be the mass times the acceleration, we have found out nothing. We
could also define force to mean that a moving object with no force acting on it
continues to move with constant velocity in a straight line. If we then observe an
object not moving in a straight line with a constant velocity, we might say that
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there is a force on it. Now such things certainly cannot be the content of physics,
because they are definitions going in a circle. The Newtonian statement above,
however, seems to be a most precise definition of force, and one that appeals to
the mathematician; nevertheless, it is completely useless, because no prediction
whatsoever can be made from a definition. One might sit in an armchair all
day long and define words at will, but to find out what happens when two balls
push against each other, or when a weight is hung on a spring, is another matter
altogether, because the way the bodies behave is something completely outside
any choice of definitions.

For example, if we were to choose to say that an object left to itself keeps its
position and does not move, then when we see something drifting, we could say
that must be due to a “gorce”—a gorce is the rate of change of position. Now we
have a wonderful new law, everything stands still except when a gorce is acting.
You see, that would be analogous to the above definition of force, and it would
contain no information. The real content of Newton’s laws is this: that the force
is supposed to have some independent properties, in addition to the law F = ma;
but the specific independent properties that the force has were not completely
described by Newton or by anybody else, and therefore the physical law F = ma is
an incomplete law. It implies that if we study the mass times the acceleration and
call the product the force, i.e., if we study the characteristics of force as a program
of interest, then we shall find that forces have some simplicity; the law is a good
program for analyzing nature, it is a suggestion that the forces will be simple.

Now the first example of such forces was the complete law of gravitation,
which was given by Newton, and in stating the law he answered the question,
“What is the force?” If there were nothing but gravitation, then the combination
of this law and the force law (second law of motion) would be a complete theory,
but there is much more than gravitation, and we want to use Newton’s laws in
many different situations. Therefore in order to proceed we have to tell something
about the properties of force.

For example, in dealing with force the tacit assumption is always made that
the force is equal to zero unless some physical body is present, that if we find a
force that is not equal to zero we also find something in the neighborhood that is
a source of the force. This assumption is entirely different from the case of the
“gorce” that we introduced above. One of the most important characteristics of
force is that it has a material origin, and this is not just a definition.

Newton also gave one rule about the force: that the forces between interacting
bodies are equal and opposite—action equals reaction; that rule, it turns out,
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is not exactly true. In fact, the law F = ma is not exactly true; if it were a
definition we should have to say that it is always exactly true; but it is not.

The student may object, “I do not like this imprecision, I should like to have
everything defined exactly; in fact, it says in some books that any science is
an exact subject, in which everything is defined.” If you insist upon a precise
definition of force, you will never get it! First, because Newton’s Second Law is
not exact, and second, because in order to understand physical laws you must
understand that they are all some kind of approximation.

Any simple idea is approximate; as an illustration, consider an object, . . . what
is an object? Philosophers are always saying, “Well, just take a chair for example.”
The moment they say that, you know that they do not know what they are talking
about any more. What is a chair? Well, a chair is a certain thing over there . . .
certain?, how certain? The atoms are evaporating from it from time to time—not
many atoms, but a few—dirt falls on it and gets dissolved in the paint; so to
define a chair precisely, to say exactly which atoms are chair, and which atoms are
air, or which atoms are dirt, or which atoms are paint that belongs to the chair is
impossible. So the mass of a chair can be defined only approximately. In the same
way, to define the mass of a single object is impossible, because there are not any
single, left-alone objects in the world—every object is a mixture of a lot of things,
so we can deal with it only as a series of approximations and idealizations.

The trick is the idealizations. To an excellent approximation of perhaps one
part in 1010, the number of atoms in the chair does not change in a minute, and
if we are not too precise we may idealize the chair as a definite thing; in the same
way we shall learn about the characteristics of force, in an ideal fashion, if we
are not too precise. One may be dissatisfied with the approximate view of nature
that physics tries to obtain (the attempt is always to increase the accuracy of the
approximation), and may prefer a mathematical definition; but mathematical
definitions can never work in the real world. A mathematical definition will be
good for mathematics, in which all the logic can be followed out completely, but
the physical world is complex, as we have indicated in a number of examples, such
as those of the ocean waves and a glass of wine. When we try to isolate pieces of it,
to talk about one mass, the wine and the glass, how can we know which is which,
when one dissolves in the other? The forces on a single thing already involve
approximation, and if we have a system of discourse about the real world, then that
system, at least for the present day, must involve approximations of some kind.

This system is quite unlike the case of mathematics, in which everything can
be defined, and then we do not know what we are talking about. In fact, the glory
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of mathematics is that we do not have to say what we are talking about. The glory
is that the laws, the arguments, and the logic are independent of what “it” is. If
we have any other set of objects that obey the same system of axioms as Euclid’s
geometry, then if we make new definitions and follow them out with correct logic,
all the consequences will be correct, and it makes no difference what the subject
was. In nature, however, when we draw a line or establish a line by using a light
beam and a theodolite, as we do in surveying, are we measuring a line in the sense
of Euclid? No, we are making an approximation; the cross hair has some width,
but a geometrical line has no width, and so, whether Euclidean geometry can be
used for surveying or not is a physical question, not a mathematical question.
However, from an experimental standpoint, not a mathematical standpoint, we
need to know whether the laws of Euclid apply to the kind of geometry that we
use in measuring land; so we make a hypothesis that it does, and it works pretty
well; but it is not precise, because our surveying lines are not really geometrical
lines. Whether or not those lines of Euclid, which are really abstract, apply to
the lines of experience is a question for experience; it is not a question that can
be answered by sheer reason.

In the same way, we cannot just call F = ma a definition, deduce everything
purely mathematically, and make mechanics a mathematical theory, when me-
chanics is a description of nature. By establishing suitable postulates it is always
possible to make a system of mathematics, just as Euclid did, but we cannot make
a mathematics of the world, because sooner or later we have to find out whether
the axioms are valid for the objects of nature. Thus we immediately get involved
with these complicated and “dirty” objects of nature, but with approximations
ever increasing in accuracy.

12-2 Friction

The foregoing considerations show that a true understanding of Newton’s laws
requires a discussion of forces, and it is the purpose of this chapter to introduce
such a discussion, as a kind of completion of Newton’s laws. We have already
studied the definitions of acceleration and related ideas, but now we have to
study the properties of force, and this chapter, unlike the previous chapters, will
not be very precise, because forces are quite complicated.

To begin with a particular force, let us consider the drag on an airplane flying
through the air. What is the law for that force? (Surely there is a law for every
force, we must have a law!) One can hardly think that the law for that force will
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be simple. Try to imagine what makes a drag on an airplane flying through the
air—the air rushing over the wings, the swirling in the back, the changes going
on around the fuselage, and many other complications, and you see that there is
not going to be a simple law. On the other hand, it is a remarkable fact that the
drag force on an airplane is approximately a constant times the square of the
velocity, or F ≈ cv2.

Now what is the status of such a law, is it analogous to F = ma? Not at
all, because in the first place this law is an empirical thing that is obtained
roughly by tests in a wind tunnel. You say, “Well F = ma might be empirical
too.” That is not the reason that there is a difference. The difference is not that
it is empirical, but that, as we understand nature, this law is the result of an
enormous complexity of events and is not, fundamentally, a simple thing. If
we continue to study it more and more, measuring more and more accurately,
the law will continue to become more complicated, not less. In other words, as
we study this law of the drag on an airplane more and more closely, we find
out that it is “falser” and “falser,” and the more deeply we study it, and the
more accurately we measure, the more complicated the truth becomes; so in that
sense we consider it not to result from a simple, fundamental process, which
agrees with our original surmise. For example, if the velocity is extremely low,
so low that an ordinary airplane is not flying, as when the airplane is dragged
slowly through the air, then the law changes, and the drag friction depends more
nearly linearly on the velocity. To take another example, the frictional drag on
a ball or a bubble or anything that is moving slowly through a viscous liquid
like honey, is proportional to the velocity, but for motion so fast that the fluid
swirls around (honey does not but water and air do) then the drag becomes more
nearly proportional to the square of the velocity (F = cv2), and if the velocity
continues to increase, then even this law begins to fail. People who say, “Well
the coefficient changes slightly,” are dodging the issue. Second, there are other
great complications: can this force on the airplane be divided or analyzed as a
force on the wings, a force on the front, and so on? Indeed, this can be done,
if we are concerned about the torques here and there, but then we have to get
special laws for the force on the wings, and so on. It is an amazing fact that
the force on a wing depends upon the other wing: in other words, if we take
the airplane apart and put just one wing in the air, then the force is not the
same as if the rest of the plane were there. The reason, of course, is that some
of the wind that hits the front goes around to the wings and changes the force
on the wings. It seems a miracle that there is such a simple, rough, empirical

12-5



law that can be used in the design of airplanes, but this law is not in the same
class as the basic laws of physics, and further study of it will only make it more
and more complicated. A study of how the coefficient c depends on the shape
of the front of the airplane is, to put it mildly, frustrating. There just is no
simple law for determining the coefficient in terms of the shape of the airplane.
In contrast, the law of gravitation is simple, and further study only indicates its
greater simplicity.

We have just discussed two cases of friction, resulting from fast movement in
air and slow movement in honey. There is another kind of friction, called dry
friction or sliding friction, which occurs when one solid body slides on another.
In this case a force is needed to maintain motion. This is called a frictional force,
and its origin, also, is a very complicated matter. Both surfaces of contact are
irregular, on an atomic level. There are many points of contact where the atoms
seem to cling together, and then, as the sliding body is pulled along, the atoms
snap apart and vibration ensues; something like that has to happen. Formerly
the mechanism of this friction was thought to be very simple, that the surfaces
were merely full of irregularities and the friction originated in lifting the slider
over the bumps; but this cannot be, for there is no loss of energy in that process,
whereas power is in fact consumed. The mechanism of power loss is that as
the slider snaps over the bumps, the bumps deform and then generate waves
and atomic motions and, after a while, heat, in the two bodies. Now it is very
remarkable that again, empirically, this friction can be described approximately
by a simple law. This law is that the force needed to overcome friction and to
drag one object over another depends upon the normal force (i.e., perpendicular
to the surface) between the two surfaces that are in contact. Actually, to a fairly
good approximation, the frictional force is proportional to this normal force, and
has a more or less constant coefficient; that is,

F = µN, (12.1)

where µ is called the coefficient of friction (Fig. 12-1). Although this coefficient
is not exactly constant, the formula is a good empirical rule for judging approxi-
mately the amount of force that will be needed in certain practical or engineering
circumstances. If the normal force or the speed of motion gets too big, the law
fails because of the excessive heat generated. It is important to realize that each
of these empirical laws has its limitations, beyond which it does not really work.

That the formula F = µN is approximately correct can be demonstrated by
a simple experiment. We set up a plane, inclined at a small angle θ, and place a
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Fig. 12-1. The relation between frictional force and the normal force
for sliding contact.

block of weight W on the plane. We then tilt the plane at a steeper angle, until
the block just begins to slide from its own weight. The component of the weight
downward along the plane is W sin θ, and this must equal the frictional force F
when the block is sliding uniformly. The component of the weight normal to the
plane is W cos θ, and this is the normal force N . With these values, the formula
becomes W sin θ = µW cos θ, from which we get µ = sin θ/ cos θ = tan θ. If this
law were exactly true, an object would start to slide at some definite inclination.
If the same block is loaded by putting extra weight on it, then, although W is
increased, all the forces in the formula are increased in the same proportion,
and W cancels out. If µ stays constant, the loaded block will slide again at the
same slope. When the angle θ is determined by trial with the original weight, it
is found that with the greater weight the block will slide at about the same angle.
This will be true even when one weight is many times as great as the other, and
so we conclude that the coefficient of friction is independent of the weight.

In performing this experiment it is noticeable that when the plane is tilted
at about the correct angle θ, the block does not slide steadily but in a halting
fashion. At one place it may stop, at another it may move with acceleration. This
behavior indicates that the coefficient of friction is only roughly a constant, and
varies from place to place along the plane. The same erratic behavior is observed
whether the block is loaded or not. Such variations are caused by different degrees
of smoothness or hardness of the plane, and perhaps dirt, oxides, or other foreign
matter. The tables that list purported values of µ for “steel on steel,” “copper
on copper,” and the like, are all false, because they ignore the factors mentioned
above, which really determine µ. The friction is never due to “copper on copper,”
etc., but to the impurities clinging to the copper.

In experiments of the type described above, the friction is nearly independent
of the velocity. Many people believe that the friction to be overcome to get
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something started (static friction) exceeds the force required to keep it sliding
(sliding friction), but with dry metals it is very hard to show any difference. The
opinion probably arises from experiences where small bits of oil or lubricant are
present, or where blocks, for example, are supported by springs or other flexible
supports so that they appear to bind.

It is quite difficult to do accurate quantitative experiments in friction, and
the laws of friction are still not analyzed very well, in spite of the enormous
engineering value of an accurate analysis. Although the law F = µN is fairly
accurate once the surfaces are standardized, the reason for this form of the law
is not really understood. To show that the coefficient µ is nearly independent of
velocity requires some delicate experimentation, because the apparent friction is
much reduced if the lower surface vibrates very fast. When the experiment is done
at very high speed, care must be taken that the objects do not vibrate relative
to one another, since apparent decreases of the friction at high speed are often
due to vibrations. At any rate, this friction law is another of those semiempirical
laws that are not thoroughly understood, and in view of all the work that has
been done it is surprising that more understanding of this phenomenon has not
come about. At the present time, in fact, it is impossible even to estimate the
coefficient of friction between two substances.

It was pointed out above that attempts to measure µ by sliding pure substances
such as copper on copper will lead to spurious results, because the surfaces in
contact are not pure copper, but are mixtures of oxides and other impurities. If
we try to get absolutely pure copper, if we clean and polish the surfaces, outgas
the materials in a vacuum, and take every conceivable precaution, we still do
not get µ. For if we tilt the apparatus even to a vertical position, the slider will
not fall off—the two pieces of copper stick together! The coefficient µ, which is
ordinarily less than unity for reasonably hard surfaces, becomes several times
unity! The reason for this unexpected behavior is that when the atoms in contact
are all of the same kind, there is no way for the atoms to “know” that they are in
different pieces of copper. When there are other atoms, in the oxides and greases
and more complicated thin surface layers of contaminants in between, the atoms
“know” when they are not on the same part. When we consider that it is forces
between atoms that hold the copper together as a solid, it should become clear
that it is impossible to get the right coefficient of friction for pure metals.

The same phenomenon can be observed in a simple home-made experiment
with a flat glass plate and a glass tumbler. If the tumbler is placed on the plate
and pulled along with a loop of string, it slides fairly well and one can feel the
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coefficient of friction; it is a little irregular, but it is a coefficient. If we now wet
the glass plate and the bottom of the tumbler and pull again, we find that it
binds, and if we look closely we shall find scratches, because the water is able
to lift the grease and the other contaminants off the surface, and then we really
have a glass-to-glass contact; this contact is so good that it holds tight and resists
separation so much that the glass is torn apart; that is, it makes scratches.

12-3 Molecular forces

We shall next discuss the characteristics of molecular forces. These are forces
between the atoms, and are the ultimate origin of friction. Molecular forces have
never been satisfactorily explained on a basis of classical physics; it takes quantum
mechanics to understand them fully. Empirically, however, the force between
atoms is illustrated schematically in Fig. 12-2, where the force F between two
atoms is plotted as a function of the distance r between them. There are different
cases: in the water molecule, for example, the negative charges sit more on the
oxygen, and the mean positions of the negative charges and of the positive charges
are not at the same point; consequently, another molecule nearby feels a relatively
large force, which is called a dipole-dipole force. However, for many systems the
charges are very much better balanced, in particular for oxygen gas, which is
perfectly symmetrical. In this case, although the minus charges and the plus
charges are dispersed over the molecule, the distribution is such that the center
of the minus charges and the center of the plus charges coincide. A molecule
where the centers do not coincide is called a polar molecule, and charge times
the separation between centers is called the dipole moment. A nonpolar molecule

F

r
0

F = k/r7

d

REPULSION

ATTRACTION

Fig. 12-2. The force between two atoms as a function of their distance
of separation.
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is one in which the centers of the charges coincide. For all nonpolar molecules, in
which all the electrical forces are neutralized, it nevertheless turns out that the
force at very large distances is an attraction and varies inversely as the seventh
power of the distance, or F = k/r7, where k is a constant that depends on the
molecules. Why this is we shall learn only when we learn quantum mechanics.
When there are dipoles the forces are greater. When atoms or molecules get too
close they repel with a very large repulsion; that is what keeps us from falling
through the floor!

These molecular forces can be demonstrated in a fairly direct way: one of
these is the friction experiment with a sliding glass tumbler; another is to take
two very carefully ground and lapped surfaces which are very accurately flat,
so that the surfaces can be brought very close together. An example of such
surfaces is the Johansson blocks that are used in machine shops as standards for
making accurate length measurements. If one such block is slid over another very
carefully and the upper one is lifted, the other one will adhere and also be lifted
by the molecular forces, exemplifying the direct attraction between the atoms on
one block for the atoms on the other block.

Nevertheless these molecular forces of attraction are still not fundamental in
the sense that gravitation is fundamental; they are due to the vastly complex
interactions of all the electrons and nuclei in one molecule with all the electrons
and nuclei in another. Any simple-looking formula we get represents a summation
of complications, so we still have not got the fundamental phenomena.

Since the molecular forces attract at large distances and repel at short distances,
as shown in Fig. 12-2, we can make up solids in which all the atoms are held
together by their attractions and held apart by the repulsion that sets in when
they are too close together. At a certain distance d (where the graph in Fig. 12-2
crosses the axis) the forces are zero, which means that they are all balanced, so
that the molecules stay that distance apart from one another. If the molecules are
pushed closer together than the distance d they all show a repulsion, represented
by the portion of the graph above the r-axis. To push the molecules only slightly
closer together requires a great force, because the molecular repulsion rapidly
becomes very great at distances less than d. If the molecules are pulled slightly
apart there is a slight attraction, which increases as the separation increases. If
they are pulled sufficiently hard, they will separate permanently—the bond is
broken.

If the molecules are pushed only a very small distance closer, or pulled only
a very small distance farther than d, the corresponding distance along the curve
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of Fig. 12-2 is also very small, and can then be approximated by a straight line.
Therefore, in many circumstances, if the displacement is not too great the force
is proportional to the displacement. This principle is known as Hooke’s law, or
the law of elasticity, which says that the force in a body which tries to restore the
body to its original condition when it is distorted is proportional to the distortion.
This law, of course, holds true only if the distortion is relatively small; when it
gets too large the body will be torn apart or crushed, depending on the kind of
distortion. The amount of force for which Hooke’s law is valid depends upon
the material; for instance, for dough or putty the force is very small, but for
steel it is relatively large. Hooke’s law can be nicely demonstrated with a long
coil spring, made of steel and suspended vertically. A suitable weight hung on
the lower end of the spring produces a tiny twist throughout the length of the
wire, which results in a small vertical deflection in each turn and adds up to a
large displacement if there are many turns. If the total elongation produced,
say, by a 100-gram weight, is measured, it is found that additional weights of
100 grams will each produce an additional elongation that is very nearly equal
to the stretch that was measured for the first 100 grams. This constant ratio
of force to displacement begins to change when the spring is overloaded, i.e.,
Hooke’s law no longer holds.

12-4 Fundamental forces. Fields

We shall now discuss the only remaining forces that are fundamental. We
call them fundamental in the sense that their laws are fundamentally simple. We
shall first discuss electrical force. Objects carry electrical charges which consist
simply of electrons or protons. If any two bodies are electrically charged, there
is an electrical force between them, and if the magnitudes of the charges are
q1 and q2, respectively, the force varies inversely as the square of the distance
between the charges, or F = (const)q1q2/r

2. For unlike charges, this law is like
the law of gravitation, but for like charges the force is repulsive and the sign
(direction) is reversed. The charges q1 and q2 can be intrinsically either positive
or negative, and in any specific application of the formula the direction of the
force will come out right if the q’s are given the proper plus or minus sign; the
force is directed along the line between the two charges. The constant in the
formula depends, of course, upon what units are used for the force, the charge,
and the distance. In current practice the charge is measured in coulombs, the
distance in meters, and the force in newtons. Then, in order to get the force
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to come out properly in newtons, the constant (which for historical reasons is
written 1/4πε0) takes the numerical value

ε0 = 8.854× 10−12 coul2/newton ·m2

or
1/4πε0 = 8.99× 109 N ·m2/coul2.

Thus the force law for static charges is

F = q1q2r/4πε0r3. (12.2)

In nature, the most important charge of all is the charge on a single elec-
tron, which is 1.60× 10−19 coulomb. In working with electrical forces between
fundamental particles rather than with large charges, many people prefer the
combination (qel)2/4πε0, in which qel is defined as the charge on an electron. This
combination occurs frequently, and to simplify calculations it has been defined
by the symbol e2; its numerical value in the mks system of units turns out to
be (1.52× 10−14)2. The advantage of using the constant in this form is that the
force between two electrons in newtons can then be written simply as e2/r2, with
r in meters, without all the individual constants. Electrical forces are much more
complicated than this simple formula indicates, since the formula gives the force
between two objects only when the objects are standing still. We shall consider
the more general case shortly.

In the analysis of forces of the more fundamental kinds (not such forces as
friction, but the electrical force or the gravitational force), an interesting and very
important concept has been developed. Since at first sight the forces are very
much more complicated than is indicated by the inverse-square laws and these
laws hold true only when the interacting bodies are standing still, an improved
method is needed to deal with the very complex forces that ensue when the bodies
start to move in a complicated way. Experience has shown that an approach
known as the concept of a “field” is of great utility for the analysis of forces of
this type. To illustrate the idea for, say, electrical force, suppose we have two
electrical charges, q1 and q2, located at points P and R respectively. Then the
force between the charges is given by

F = q1q2r/4πε0r3. (12.3)

To analyze this force by means of the field concept, we say that the charge q1
at P produces a “condition” at R, such that when the charge q2 is placed at R
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it “feels” the force. This is one way, strange perhaps, of describing it; we say
that the force F on q2 at R can be written in two parts. It is q2 multiplied by a
quantity E that would be there whether q2 were there or not (provided we keep
all the other charges in their right places). E is the “condition” produced by q1,
we say, and F is the response of q2 to E. E is called an electric field, and it is a
vector. The formula for the electric field E that is produced at R by a charge q1
at P is the charge q1 times the constant 1/4πε0 divided by r2 (r is the distance
from P to R), and it is acting in the direction of the radius vector (the radius
vector r divided by its own length). The expression for E is thus

E = q1r/4πε0r3. (12.4)
We then write

F = q2E, (12.5)

which expresses the force, the field, and the charge in the field. What is the point
of all this? The point is to divide the analysis into two parts. One part says that
something produces a field. The other part says that something is acted on by
the field. By allowing us to look at the two parts independently, this separation
of the analysis simplifies the calculation of a problem in many situations. If many
charges are present, we first work out the total electric field produced at R by all
the charges, and then, knowing the charge that is placed at R, we find the force
on it.

In the case of gravitation, we can do exactly the same thing. In this case,
where the force F = −Gm1m2r/r

3, we can make an analogous analysis, as
follows: the force on a body in a gravitational field is the mass of that body
times the field C. The force on m2 is the mass m2 times the field C produced
by m1; that is, F = m2C. Then the field C produced by a body of mass m1
is C = −Gm1r/r

3 and it is directed radially, as in the electrical case.
In spite of how it might at first seem, this separation of one part from another

is not a triviality. It would be trivial, just another way of writing the same
thing, if the laws of force were simple, but the laws of force are so complicated
that it turns out that the fields have a reality that is almost independent of
the objects which create them. One can do something like shake a charge and
produce an effect, a field, at a distance; if one then stops moving the charge, the
field keeps track of all the past, because the interaction between two particles is
not instantaneous. It is desirable to have some way to remember what happened
previously. If the force upon some charge depends upon where another charge
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was yesterday, which it does, then we need machinery to keep track of what went
on yesterday, and that is the character of a field. So when the forces get more
complicated, the field becomes more and more real, and this technique becomes
less and less of an artificial separation.

In analyzing forces by the use of fields, we need two kinds of laws pertaining
to fields. The first is the response to a field, and that gives the equations of
motion. For example, the law of response of a mass to a gravitational field is
that the force is equal to the mass times the gravitational field; or, if there is
also a charge on the body, the response of the charge to the electric field equals
the charge times the electric field. The second part of the analysis of nature in
these situations is to formulate the laws which determine the strength of the
field and how it is produced. These laws are sometimes called the field equations.
We shall learn more about them in due time, but shall write down a few things
about them now.

First, the most remarkable fact of all, which is true exactly and which can be
easily understood, is that the total electric field produced by a number of sources
is the vector sum of the electric fields produced by the first source, the second
source, and so on. In other words, if we have numerous charges making a field,
and if all by itself one of them would make the field E1, another would make the
field E2, and so on, then we merely add the vectors to get the total field. This
principle can be expressed as

E = E1 +E2 +E3 + · · · (12.6)

or, in view of the definition given above,

E =
∑
i

qiri
4πε0r3

i

. (12.7)

Can the same methods be applied to gravitation? The force between two
masses m1 and m2 was expressed by Newton as F = −Gm1m2r/r

3. But
according to the field concept, we may say that m1 creates a field C in all the
surrounding space, such that the force on m2 is given by

F = m2C. (12.8)

By complete analogy with the electrical case,

Ci = −Gmiri/r
3
i (12.9)
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and the gravitational field produced by several masses is

C = C1 +C2 +C3 + · · · (12.10)

In Chapter 9, in working out a case of planetary motion, we used this principle
in essence. We simply added all the force vectors to get the resultant force on a
planet. If we divide out the mass of the planet in question, we get Eq. (12.10).

Equations (12.6) and (12.10) express what is known as the principle of
superposition of fields. This principle states that the total field due to all the
sources is the sum of the fields due to each source. So far as we know today,
for electricity this is an absolutely guaranteed law, which is true even when
the force law is complicated because of the motions of the charges. There are
apparent violations, but more careful analysis has always shown these to be due
to the overlooking of certain moving charges. However, although the principle of
superposition applies exactly for electrical forces, it is not exact for gravity if the
field is too strong, and Newton’s equation (12.10) is only approximate, according
to Einstein’s gravitational theory.

Closely related to electrical force is another kind, called magnetic force, and
this too is analyzed in terms of a field. Some of the qualitative relations between
electrical and magnetic forces can be illustrated by an experiment with an electron-
ray tube (Fig. 12-3). At one end of such a tube is a source that emits a stream
of electrons. Within the tube are arrangements for accelerating the electrons to
a high speed and sending some of them in a narrow beam to a fluorescent screen
at the other end of the tube. A spot of light glows in the center of the screen
where the electrons strike, and this enables us to trace the electron path. On the
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Fig. 12-3. An electron-beam tube.
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way to the screen the electron beam passes through a narrow space between a
pair of parallel metal plates, which are arranged, say, horizontally. A voltage can
be applied across the plates, so that either plate can be made negative at will.
When such a voltage is present, there is an electric field between the plates.

The first part of the experiment is to apply a negative voltage to the lower
plate, which means that extra electrons have been placed on the lower plate.
Since like charges repel, the light spot on the screen instantly shifts upward.
(We could also say this in another way—that the electrons “felt” the field, and
responded by deflecting upward.) We next reverse the voltage, making the upper
plate negative. The light spot on the screen now jumps below the center, showing
that the electrons in the beam were repelled by those in the plate above them.
(Or we could say again that the electrons had “responded” to the field, which is
now in the reverse direction.)

The second part of the experiment is to disconnect the voltage from the plates
and test the effect of a magnetic field on the electron beam. This is done by means
of a horseshoe magnet, whose poles are far enough apart to more or less straddle
the tube. Suppose we hold the magnet below the tube in the same orientation
as the letter U, with its poles up and part of the tube in between. We note that
the light spot is deflected, say, upward, as the magnet approaches the tube from
below. So it appears that the magnet repels the electron beam. However, it is not
that simple, for if we invert the magnet without reversing the poles side-for-side,
and now approach the tube from above, the spot still moves upward, so the
electron beam is not repelled; instead, it appears to be attracted this time. Now
we start again, restoring the magnet to its original U orientation and holding
it below the tube, as before. Yes, the spot is still deflected upward; but now turn
the magnet 180 degrees around a vertical axis, so that it is still in the U position
but the poles are reversed side-for-side. Behold, the spot now jumps downward,
and stays down, even if we invert the magnet and approach from above, as before.

To understand this peculiar behavior, we have to have a new combination of
forces. We explain it thus: Across the magnet from one pole to the other there is a
magnetic field. This field has a direction which is always away from one particular
pole (which we could mark) and toward the other. Inverting the magnet did
not change the direction of the field, but reversing the poles side-for-side did
reverse its direction. For example, if the electron velocity were horizontal in the
x-direction and the magnetic field were also horizontal but in the y-direction, the
magnetic force on the moving electrons would be in the z-direction, i.e., up or
down, depending on whether the field was in the positive or negative y-direction.
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Although we shall not at the present time give the correct law of force between
charges moving in an arbitrary manner, one relative to the other, because it is
too complicated, we shall give one aspect of it: the complete law of the forces
if the fields are known. The force on a charged object depends upon its motion;
if, when the object is standing still at a given place, there is some force, this
is taken to be proportional to the charge, the coefficient being what we call
the electric field. When the object moves the force may be different, and the
correction, the new “piece” of force, turns out to be dependent exactly linearly
on the velocity, but at right angles to v and to another vector quantity which we
call the magnetic induction B. If the components of the electric field E and the
magnetic induction B are, respectively, (Ex, Ey, Ez) and (Bx, By, Bz), and if the
velocity v has the components (vx, vy, vz), then the total electric and magnetic
force on a moving charge q has the components

Fx = q(Ex + vyBz − vzBy),
Fy = q(Ey + vzBx − vxBz ),
Fz = q(Ez + vxBy − vyBx).

(12.11)

If, for instance, the only component of the magnetic field were By and the only
component of the velocity were vx, then the only term left in the magnetic force
would be a force in the z-direction, at right angles to both B and v.

12-5 Pseudo forces

The next kind of force we shall discuss might be called a pseudo force. In
Chapter 11 we discussed the relationship between two people, Joe and Moe, who
use different coordinate systems. Let us suppose that the positions of a particle
as measured by Joe are x and by Moe are x′; then the laws are as follows:

x = x′ + s, y = y′, z = z′,

where s is the displacement of Moe’s system relative to Joe’s. If we suppose that
the laws of motion are correct for Joe, how do they look for Moe? We find first,
that

dx/dt = dx′/dt+ ds/dt.

Previously, we considered the case where s was constant, and we found that s
made no difference in the laws of motion, since ds/dt = 0; ultimately, therefore,
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the laws of physics were the same in both systems. But another case we can
take is that s = ut, where u is a uniform velocity in a straight line. Then
s is not constant, and ds/dt is not zero, but is u, a constant. However, the
acceleration d2x/dt2 is still the same as d2x′/dt2, because du/dt = 0. This proves
the law that we used in Chapter 10, namely, that if we move in a straight line
with uniform velocity the laws of physics will look the same to us as when we are
standing still. That is the Galilean transformation. But we wish to discuss the
interesting case where s is still more complicated, say s = at2/2. Then ds/dt = at
and d2s/dt2 = a, a uniform acceleration; or in a still more complicated case, the
acceleration might be a function of time. This means that although the laws of
motion from the point of view of Joe would look like

m
d2x

dt2
= Fx,

the laws of motion as looked upon by Moe would appear as

m
d2x′

dt2
= Fx′ = Fx −ma.

That is, since Moe’s coordinate system is accelerating with respect to Joe’s, the
extra term ma comes in, and Moe will have to correct his forces by that amount
in order to get Newton’s laws to work. In other words, here is an apparent,
mysterious new force of unknown origin which arises, of course, because Moe
has the wrong coordinate system. This is an example of a pseudo force; other
examples occur in coordinate systems that are rotating.

Another example of pseudo force is what is often called “centrifugal force.”
An observer in a rotating coordinate system, e.g., in a rotating box, will find
mysterious forces, not accounted for by any known origin of force, throwing
things outward toward the walls. These forces are due merely to the fact that
the observer does not have Newton’s coordinate system, which is the simplest
coordinate system.

Pseudo force can be illustrated by an interesting experiment in which we
push a jar of water along a table, with acceleration. Gravity, of course, acts
downward on the water, but because of the horizontal acceleration there is also a
pseudo force acting horizontally and in a direction opposite to the acceleration.
The resultant of gravity and pseudo force makes an angle with the vertical, and
during the acceleration the surface of the water will be perpendicular to the
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resultant force, i.e., inclined at an angle with the table, with the water standing
higher in the rearward side of the jar. When the push on the jar stops and the
jar decelerates because of friction, the pseudo force is reversed, and the water
stands higher in the forward side of the jar (Fig. 12-4).

a a

g g

Fig. 12-4. Illustration of a pseudo force.

One very important feature of pseudo forces is that they are always propor-
tional to the masses; the same is true of gravity. The possibility exists, therefore,
that gravity itself is a pseudo force. Is it not possible that perhaps gravitation is
due simply to the fact that we do not have the right coordinate system? After
all, we can always get a force proportional to the mass if we imagine that a
body is accelerating. For instance, a man shut up in a box that is standing
still on the earth finds himself held to the floor of the box with a certain force
that is proportional to his mass. But if there were no earth at all and the box
were standing still, the man inside would float in space. On the other hand, if
there were no earth at all and something were pulling the box along with an
acceleration g, then the man in the box, analyzing physics, would find a pseudo
force which would pull him to the floor, just as gravity does.

Einstein put forward the famous hypothesis that accelerations give an imitation
of gravitation, that the forces of acceleration (the pseudo forces) cannot be
distinguished from those of gravity; it is not possible to tell how much of a given
force is gravity and how much is pseudo force.

It might seem all right to consider gravity to be a pseudo force, to say that we
are all held down because we are accelerating upward, but how about the people
in Madagascar, on the other side of the earth—are they accelerating too? Einstein
found that gravity could be considered a pseudo force only at one point at a time,
and was led by his considerations to suggest that the geometry of the world is
more complicated than ordinary Euclidean geometry. The present discussion is
only qualitative, and does not pretend to convey anything more than the general
idea. To give a rough idea of how gravitation could be the result of pseudo forces,
we present an illustration which is purely geometrical and does not represent the
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real situation. Suppose that we all lived in two dimensions, and knew nothing of
a third. We think we are on a plane, but suppose we are really on the surface of a
sphere. And suppose that we shoot an object along the ground, with no forces on
it. Where will it go? It will appear to go in a straight line, but it has to remain
on the surface of a sphere, where the shortest distance between two points is
along a great circle; so it goes along a great circle. If we shoot another object
similarly, but in another direction, it goes along another great circle. Because
we think we are on a plane, we expect that these two bodies will continue to
diverge linearly with time, but careful observation will show that if they go far
enough they move closer together again, as though they were attracting each
other. But they are not attracting each other—there is just something “weird”
about this geometry. This particular illustration does not describe correctly the
way in which Einstein’s geometry is “weird,” but it illustrates that if we distort
the geometry sufficiently it is possible that all gravitation is related in some way
to pseudo forces; that is the general idea of the Einsteinian theory of gravitation.

12-6 Nuclear forces

We conclude this chapter with a brief discussion of the only other known
forces, which are called nuclear forces. These forces are within the nuclei of
atoms, and although they are much discussed, no one has ever calculated the
force between two nuclei, and indeed at present there is no known law for nuclear
forces. These forces have a very tiny range which is just about the same as
the size of the nucleus, perhaps 10−13 centimeter. With particles so small and
at such a tiny distance, only the quantum-mechanical laws are valid, not the
Newtonian laws. In nuclear analysis we no longer think in terms of forces, and in
fact we can replace the force concept with a concept of the energy of interaction
of two particles, a subject that will be discussed later. Any formula that can
be written for nuclear forces is a rather crude approximation which omits many
complications; one might be somewhat as follows: forces within a nucleus do
not vary inversely as the square of the distance, but die off exponentially over a
certain distance r, as expressed by F = (1/r2) exp(−r/r0), where the distance r0
is of the order of 10−13 centimeter. In other words, the forces disappear as soon
as the particles are any great distance apart, although they are very strong
within the 10−13 centimeter range. So far as they are understood today, the laws
of nuclear force are very complex; we do not understand them in any simple
way, and the whole problem of analyzing the fundamental machinery behind
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nuclear forces is unsolved. Attempts at a solution have led to the discovery of
numerous strange particles, the π-mesons, for example, but the origin of these
forces remains obscure.
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13

Work and Potential Energy (A)

13-1 Energy of a falling body

In Chapter 4 we discussed the conservation of energy. In that discussion, we
did not use Newton’s laws, but it is, of course, of great interest to see how it
comes about that energy is in fact conserved in accordance with these laws. For
clarity we shall start with the simplest possible example, and then develop harder
and harder examples.

The simplest example of the conservation of energy is a vertically falling
object, one that moves only in a vertical direction. An object which changes its
height under the influence of gravity alone has a kinetic energy T (or K.E.) due
to its motion during the fall, and a potential energy mgh, abbreviated U (or
P.E.), whose sum is constant:

1
2mv

2

K.E.
+mgh

P.E.
= const,

or
T + U = const. (13.1)

Now we would like to show that this statement is true. What do we mean, show it
is true? From Newton’s Second Law we can easily tell how the object moves, and
it is easy to find out how the velocity varies with time, namely, that it increases
proportionally with the time, and that the height varies as the square of the time.
So if we measure the height from a zero point where the object is stationary, it
is no miracle that the height turns out to be equal to the square of the velocity
times a number of constants. However, let us look at it a little more closely.

Let us find out directly from Newton’s Second Law how the kinetic energy
should change, by taking the derivative of the kinetic energy with respect to time
and then using Newton’s laws. When we differentiate 1

2mv
2 with respect to time,

we obtain
dT

dt
= d

dt
( 1

2mv
2) = 1

2m2v dv
dt

= mv
dv

dt
, (13.2)
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since m is assumed constant. But from Newton’s Second Law, m(dv/dt) = F , so
that

dT/dt = Fv. (13.3)

In general, it will come out to be F · v, but in our one-dimensional case let us
leave it as the force times the velocity.

Now in our simple example the force is constant, equal to −mg, a vertical
force (the minus sign means that it acts downward), and the velocity, of course,
is the rate of change of the vertical position, or height h, with time. Thus the
rate of change of the kinetic energy is −mg(dh/dt), which quantity, miracle of
miracles, is minus the rate of change of something else! It is minus the time rate
of change of mgh! Therefore, as time goes on, the changes in kinetic energy and
in the quantity mgh are equal and opposite, so that the sum of the two quantities
remains constant. Q.E.D.

We have shown, from Newton’s second law of motion, that energy is con-
served for constant forces when we add the potential energy mgh to the kinetic
energy 1

2mv
2. Now let us look into this further and see whether it can be gener-

alized, and thus advance our understanding. Does it work only for a freely falling
body, or is it more general? We expect from our discussion of the conservation
of energy that it would work for an object moving from one point to another
in some kind of frictionless curve, under the influence of gravity (Fig. 13-1). If
the object reaches a certain height h from the original height H, then the same
formula should again be right, even though the velocity is now in some direction
other than the vertical. We would like to understand why the law is still correct.
Let us follow the same analysis, finding the time rate of change of the kinetic
energy. This will again be mv(dv/dt), but m(dv/dt) is the rate of change of
the magnitude of the momentum, i.e., the force in the direction of motion—the

x

h

θ dh/dtv

Fig. 13-1. An object moving on a frictionless curve under the influence
of gravity.
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tangential force Ft. Thus

dT

dt
= mv

dv

dt
= Ftv.

Now the speed is the rate of change of distance along the curve, ds/dt, and
the tangential force Ft is not −mg but is weaker by the ratio of the vertical
distance dh to the distance ds along the path. In other words,

Ft = −mg sin θ = −mg dh
ds
,

so that

Ft
ds

dt
= −mg

(
dh

ds

)(
ds

dt

)
= −mg dh

dt
,

since the ds’s cancel. Thus we get −mg(dh/dt), which is equal to the rate of
change of −mgh, as before.

In order to understand exactly how the conservation of energy works in general
in mechanics, we shall now discuss a number of concepts which will help us to
analyze it.

First, we discuss the rate of change of kinetic energy in general in three
dimensions. The kinetic energy in three dimensions is

T = 1
2m(v2

x + v2
y + v2

z).

When we differentiate this with respect to time, we get three terrifying terms:

dT

dt
= m

(
vx
dvx
dt

+ vy
dvy
dt

+ vz
dvz
dt

)
. (13.4)

But m(dvx/dt) is the force Fx acting on the object in the x-direction. Thus the
right side of Eq. (13.4) is Fxvx + Fyvy + Fzvz. We recall our vector analysis and
recognize this as F · v; therefore

dT/dt = F · v. (13.5)

This result can be derived more quickly as follows: if a and b are two vectors,
both of which may depend upon the time, the derivative of a · b is, in general,

d(a · b)/dt = a · (db/dt) + (da/dt) · b. (13.6)
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We then use this in the form a = b = v:
d( 1

2mv
2)

dt
=
d( 1

2mv · v)
dt

= m
dv

dt
· v = F · v = F · ds

dt
. (13.7)

Because the concepts of kinetic energy, and energy in general, are so important,
various names have been given to the important terms in equations such as these.
1
2mv

2 is, as we know, called kinetic energy. F ·v is called power : the force acting
on an object times the velocity of the object (vector “dot” product) is the power
being delivered to the object by that force. We thus have a marvelous theorem:
the rate of change of kinetic energy of an object is equal to the power expended
by the forces acting on it.

However, to study the conservation of energy, we want to analyze this still
more closely. Let us evaluate the change in kinetic energy in a very short time dt.
If we multiply both sides of Eq. (13.7) by dt, we find that the differential change
in the kinetic energy is the force “dot” the differential distance moved:

dT = F · ds. (13.8)

If we now integrate, we get

∆T =
∫ 2

1
F · ds. (13.9)

What does this mean? It means that if an object is moving in any way under
the influence of a force, moving in some kind of curved path, then the change
in K.E. when it goes from one point to another along the curve is equal to the
integral of the component of the force along the curve times the differential
displacement ds, the integral being carried out from one point to the other. This
integral also has a name; it is called the work done by the force on the object. We
see immediately that power equals work done per second. We also see that it is
only a component of force in the direction of motion that contributes to the work
done. In our simple example the forces were only vertical, and had only a single
component, say Fz, equal to −mg. No matter how the object moves in those
circumstances, falling in a parabola for example, F · s, which can be written
as Fx dx+ Fy dy + Fz dz, has nothing left of it but Fz dz = −mg dz, because the
other components of force are zero. Therefore, in our simple case,∫ 2

1
F · ds =

∫ z2

z1

−mg dz = −mg(z2 − z1), (13.10)
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so again we find that it is only the vertical height from which the object falls
that counts toward the potential energy.

A word about units. Since forces are measured in newtons, and we multiply
by a distance in order to obtain work, work is measured in newton ·meters (N ·m),
but people do not like to say newton-meters, they prefer to say joules (J). A
newton-meter is called a joule; work is measured in joules. Power, then, is joules
per second, and that is also called a watt (W). If we multiply watts by time, the
result is the work done. The work done by the electrical company in our houses,
technically, is equal to the watts times the time. That is where we get things like
kilowatt hours, 1000 watts times 3600 seconds, or 3.6× 106 joules.

Now we take another example of the law of conservation of energy. Consider
an object which initially has kinetic energy and is moving very fast, and which
slides against the floor with friction. It stops. At the start the kinetic energy
is not zero, but at the end it is zero; there is work done by the forces, because
whenever there is friction there is always a component of force in a direction
opposite to that of the motion, and so energy is steadily lost. But now let us
take a mass on the end of a pivot swinging in a vertical plane in a gravitational
field with no friction. What happens here is different, because when the mass is
going up the force is downward, and when it is coming down, the force is also
downward. Thus F · ds has one sign going up and another sign coming down. At
each corresponding point of the downward and upward paths the values of F · ds
are exactly equal in size but of opposite sign, so the net result of the integral
will be zero for this case. Thus the kinetic energy with which the mass comes
back to the bottom is the same as it had when it left; that is the principle of the
conservation of energy. (Note that when there are friction forces the conservation
of energy seems at first sight to be invalid. We have to find another form of
energy. It turns out, in fact, that heat is generated in an object when it rubs
another with friction, but at the moment we supposedly do not know that.)

13-2 Work done by gravity

The next problem to be discussed is much more difficult than the above; it
has to do with the case when the forces are not constant, or simply vertical, as
they were in the cases we have worked out. We want to consider a planet, for
example, moving around the sun, or a satellite in the space around the earth.

We shall first consider the motion of an object which starts at some point 1
and falls, say, directly toward the sun or toward the earth (Fig. 13-2). Will there
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M m

12

Fig. 13-2. A small mass m falls under the influence of gravity toward
a large mass M .

be a law of conservation of energy in these circumstances? The only difference is
that in this case, the force is changing as we go along, it is not just a constant.
As we know, the force is −GM/r2 times the mass m, where m is the mass that
moves. Now certainly when a body falls toward the earth, the kinetic energy
increases as the distance fallen increases, just as it does when we do not worry
about the variation of force with height. The question is whether it is possible to
find another formula for potential energy different from mgh, a different function
of distance away from the earth, so that conservation of energy will still be true.

This one-dimensional case is easy to treat because we know that the change
in the kinetic energy is equal to the integral, from one end of the motion to the
other, of −GMm/r2 times the displacement dr:

T2 − T1 = −
∫ 2

1
GMm

dr

r2 . (13.11)

There are no cosines needed for this case because the force and the displacement
are in the same direction. It is easy to integrate dr/r2; the result is −1/r, so
Eq. (13.11) becomes

T2 − T1 = +GMm

(
1
r2
− 1
r1

)
. (13.12)

Thus we have a different formula for potential energy. Equation (13.12) tells us
that the quantity ( 1

2mv
2 −GMm/r) calculated at point 1, at point 2, or at any

other place, has a constant value.
We now have the formula for the potential energy in a gravitational field for

vertical motion. Now we have an interesting problem. Can we make perpetual
motion in a gravitational field? The gravitational field varies; in different places
it is in different directions and has different strengths. Could we do something
like this, using a fixed, frictionless track: start at some point and lift an object
out to some other point, then move it around an arc to a third point, then lower
it a certain distance, then move it in at a certain slope and pull it out some other
way, so that when we bring it back to the starting point, a certain amount of work
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has been done by the gravitational force, and the kinetic energy of the object
is increased? Can we design the curve so that it comes back moving a little bit
faster than it did before, so that it goes around and around and around, and gives
us perpetual motion? Since perpetual motion is impossible, we ought to find
out that this is also impossible. We ought to discover the following proposition:
since there is no friction the object should come back with neither higher nor
lower velocity—it should be able to keep going around and around any closed
path. Stated in another way, the total work done in going around a complete
cycle should be zero for gravity forces, because if it is not zero we can get energy
out by going around. (If the work turns out to be less than zero, so that we
get less speed when we go around one way, then we merely go around the other
way, because the forces, of course, depend only upon the position, not upon the
direction; if one way is plus, the other way would be minus, so unless it is zero
we will get perpetual motion by going around either way.)

M

m

1

2

3
4

5 6

7

8

Fig. 13-3. A closed path in a gravitational field.

Is the work really zero? Let us try to demonstrate that it is. First we shall
explain more or less why it is zero, and then we shall examine it a little better
mathematically. Suppose that we use a simple path such as that shown in
Fig. 13-3, in which a small mass is carried from point 1 to point 2, and then is
made to go around a circle to 3, back to 4, then to 5, 6, 7, and 8, and finally
back to 1. All of the lines are either purely radial or circular, with M as the
center. How much work is done in carrying m around this path? Between points
1 and 2, it is GMm times the difference of 1/r between these two points:

W12 =
∫ 2

1
F · ds =

∫ 2

1
−GMm

dr

r2 = GMm

(
1
r2
− 1
r1

)
.

From 2 to 3 the force is exactly at right angles to the curve, so that W23 ≡ 0.
The work from 3 to 4 is

W34 =
∫ 4

3
F · ds = GMm

(
1
r4
− 1
r3

)
.
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In the same fashion, we find that W45 = 0, W56 = GMm(1/r6 − 1/r5), W67 = 0,
W78 = GMm(1/r8 − 1/r7), and W81 = 0. Thus

W = GMm

(
1
r2
− 1
r1

+ 1
r4
− 1
r3

+ 1
r6
− 1
r5

+ 1
r8
− 1
r7

)
.

But we note that r2 = r3, r4 = r5, r6 = r7, and r8 = r1. Therefore W = 0.

M

a

bc θ

y

x

sF

Fig. 13-4. A “smooth” closed path, showing a magnified segment of
it approximated by a series of radial and circumferential steps, and an
enlarged view of one step.

Of course we may wonder whether this is too trivial a curve. What if we use
a real curve? Let us try it on a real curve. First of all, we might like to assert
that a real curve could always be imitated sufficiently well by a series of sawtooth
jiggles like those of Fig. 13-4, and that therefore, etc., Q.E.D., but without a
little analysis, it is not obvious at first that the work done going around even a
small triangle is zero. Let us magnify one of the triangles, as shown in Fig. 13-4.
Is the work done in going from a to b and b to c on a triangle the same as the
work done in going directly from a to c? Suppose that the force is acting in a
certain direction; let us take the triangle such that the side bc is in this direction,
just as an example. We also suppose that the triangle is so small that the force
is essentially constant over the entire triangle. What is the work done in going
from a to c? It is

Wac =
∫ c

a

F · ds = Fs cos θ,

since the force is constant. Now let us calculate the work done in going around the
other two sides of the triangle. On the vertical side ab the force is perpendicular
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to ds, so that here the work is zero. On the horizontal side bc,

Wbc =
∫ c

b

F · ds = Fx.

Thus we see that the work done in going along the sides of a small triangle is
the same as that done going on a slant, because s cos θ is equal to x. We have
proved previously that the answer is zero for any path composed of a series of
notches like those of Fig. 13-3, and also that we do the same work if we cut across
the corners instead of going along the notches (so long as the notches are fine
enough, and we can always make them very fine); therefore, the work done in
going around any path in a gravitational field is zero.

This is a very remarkable result. It tells us something we did not previously
know about planetary motion. It tells us that when a planet moves around the
sun (without any other objects around, no other forces) it moves in such a manner
that the square of the speed at any point minus some constants divided by the
radius at that point is always the same at every point on the orbit. For example,
the closer the planet is to the sun, the faster it is going, but by how much? By
the following amount: if instead of letting the planet go around the sun, we were
to change the direction (but not the magnitude) of its velocity and make it move
radially, and then we let it fall from some special radius to the radius of interest,
the new speed would be the same as the speed it had in the actual orbit, because
this is just another example of a complicated path. So long as we come back to
the same distance, the kinetic energy will be the same. So, whether the motion is
the real, undisturbed one, or is changed in direction by channels, by frictionless
constraints, the kinetic energy with which the planet arrives at a point will be
the same.

Thus, when we make a numerical analysis of the motion of the planet in its
orbit, as we did earlier, we can check whether or not we are making appreciable
errors by calculating this constant quantity, the energy, at every step, and it
should not change. For the orbit of Table 9-2 the energy does change,* it changes
by some 1.5 percent from the beginning to the end. Why? Either because for
the numerical method we use finite intervals, or else because we made a slight
mistake somewhere in arithmetic.

Let us consider the energy in another case: the problem of a mass on a spring.
When we displace the mass from its balanced position, the restoring force is

* The energy per unit mass is 1
2 (v2

x + v2
y) − 1/r in the units of Table 9-2.

13-9



proportional to the displacement. In those circumstances, can we work out a law
for conservation of energy? Yes, because the work done by such a force is

W =
∫ x

0
F dx =

∫ x

0
−kx dx = − 1

2kx
2. (13.13)

Therefore, for a mass on a spring we have that the kinetic energy of the oscillating
mass plus 1

2kx
2 is a constant. Let us see how this works. We pull the mass down;

it is standing still and so its speed is zero. But x is not zero, x is at its maximum,
so there is some energy, the potential energy, of course. Now we release the mass
and things begin to happen (the details not to be discussed), but at any instant
the kinetic plus potential energy must be a constant. For example, after the mass
is on its way past the original equilibrium point, the position x equals zero, but
that is when it has its biggest v2, and as it gets more x2 it gets less v2, and so
on. So the balance of x2 and v2 is maintained as the mass goes up and down.
Thus we have another rule now, that the potential energy for a spring is 1

2kx
2, if

the force is −kx.

13-3 Summation of energy

Now we go on to the more general consideration of what happens when there
are large numbers of objects. Suppose we have the complicated problem of many
objects, which we label i = 1, 2, 3, . . . , all exerting gravitational pulls on each
other. What happens then? We shall prove that if we add the kinetic energies
of all the particles, and add to this the sum, over all pairs of particles, of their
mutual gravitational potential energy, −GMm/rij , the total is a constant:∑

i

1
2miv

2
i +

∑
(pairs ij)

−Gmimj

rij
= const. (13.14)

How do we prove it? We differentiate each side with respect to time and get
zero. When we differentiate 1

2miv
2
i , we find derivatives of the velocity that are

the forces, just as in Eq. (13.5). We replace these forces by the law of force that
we know from Newton’s law of gravity and then we notice that what is left is
minus the time derivative of ∑

pairs
−Gmimj

rij
.
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The time derivative of the kinetic energy is
d

dt

∑
i

1
2miv

2
i =

∑
i

mi
dvi
dt
· vi

=
∑
i

F i · vi

=
∑
i

(∑
j

−Gmimjrij
r3
ij

)
· vi.

(13.15)

The time derivative of the potential energy is

d

dt

∑
pairs
−Gmimj

rij
=
∑
pairs

(
+Gmimj

r2
ij

)(
drij
dt

)
.

But
rij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2,

so that
drij
dt

= 1
2rij

[
2(xi − xj)

(
dxi
dt
− dxj

dt

)
+ 2(yi − yj )

(
dyi
dt
− dyj

dt

)
+ 2(zi − zj )

(
dzi
dt
− dzj

dt

)]
= rij ·

vi − vj
rij

= rij ·
vi
rij

+ rji ·
vj
rji
,

since rij = −rji, while rij = rji. Thus

d

dt

∑
pairs
−Gmimj

rij
=
∑
pairs

[
Gmimjrij

r3
ij

· vi + Gmjmirji
r3
ji

· vj
]
. (13.16)

Now we must note carefully what
∑
i

{
∑
j

} and
∑
pairs

mean. In Eq. (13.15),
∑
i

{
∑
j

}

means that i takes on all values i = 1, 2, 3, . . . in turn, and for each value of i,
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the index j takes on all values except i. Thus if i = 3, j takes on the values 1, 2,
4, . . .

In Eq. (13.16), on the other hand,
∑
pairs

means that given values of i and j

occur only once. Thus the particle pair 1 and 3 contributes only one term to the
sum. To keep track of this, we might agree to let i range over all values 1, 2,
3, . . . , and for each i let j range only over values greater than i. Thus if i = 3, j
could only have values 4, 5, 6, . . . But we notice that for each i, j value there are
two contributions to the sum, one involving vi, and the other vj , and that these
terms have the same appearance as those of Eq. (13.15), where all values of i
and j (except i = j) are included in the sum. Therefore, by matching the terms
one by one, we see that Eqs. (13.16) and (13.15) are precisely the same, but of
opposite sign, so that the time derivative of the kinetic plus potential energy is
indeed zero. Thus we see that, for many objects, the kinetic energy is the sum
of the contributions from each individual object, and that the potential energy
is also simple, it being also just a sum of contributions, the energies between
all the pairs. We can understand why it should be the energy of every pair this
way: Suppose that we want to find the total amount of work that must be done
to bring the objects to certain distances from each other. We may do this in
several steps, bringing them in from infinity where there is no force, one by one.
First we bring in number one, which requires no work, since no other objects
are yet present to exert force on it. Next we bring in number two, which does
take some work, namely W12 = −Gm1m2/r12. Now, and this is an important
point, suppose we bring in the next object to position three. At any moment the
force on number 3 can be written as the sum of two forces—the force exerted by
number 1 and that exerted by number 2. Therefore the work done is the sum of
the works done by each, because if F 3 can be resolved into the sum of two forces,

F 3 = F 13 + F 23,

then the work is∫
F 3 · ds =

∫
F 13 · ds+

∫
F 23 · ds = W13 +W23.

That is, the work done is the sum of the work done against the first force and the
second force, as if each acted independently. Proceeding in this way, we see that
the total work required to assemble the given configuration of objects is precisely
the value given in Eq. (13.14) as the potential energy. It is because gravity obeys
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the principle of superposition of forces that we can write the potential energy as
a sum over each pair of particles.

13-4 Gravitational field of large objects

Now we shall calculate the fields which are met in a few physical circumstances
involving distributions of mass. We have not so far considered distributions of
mass, only particles, so it is interesting to calculate the forces when they are
produced by more than just one particle. First we shall find the gravitational
force on a mass that is produced by a plane sheet of material, infinite in extent.
The force on a unit mass at a given point P , produced by this sheet of material
(Fig. 13-5), will of course be directed toward the sheet. Let the distance of the
point from the sheet be a, and let the amount of mass per unit area of this huge
sheet be µ. We shall suppose µ to be constant; it is a uniform sheet of material.
Now, what small field dC is produced by the mass dm lying between ρ and ρ+dρ
from the point O of the sheet nearest point P ? Answer: dC = −G(dm r/r3). But
this field is directed along r, and we know that only the x-component of it will
remain when we add all the little vector dC’s to produce C. The x-component
of dC is

dCx = −G dmrx
r3 = −G dma

r3 .

Now all masses dm which are at the same distance r from P will yield the
same dCx, so we may at once write for dm the total mass in the ring between ρ
and ρ+ dρ, namely dm = µ2πρ dρ (2πρ dρ is the area of a ring of radius ρ and
width dρ, if dρ� ρ). Thus

dCx = −Gµ2πρ dρ a
r3 .

dρ ρ O

dm
C

dCx

a

P

x

r

dC

Fig. 13-5. The gravitational field C at a mass point produced by an
infinite plane sheet of matter.
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Then, since r2 = ρ2 + a2, ρ dρ = r dr. Therefore,

Cx = −2πGµa
∫ ∞
a

dr

r2 = −2πGµa
(1
a
− 1
∞

)
= −2πGµ. (13.17)

Thus the force is independent of distance a! Why? Have we made a mistake?
One might think that the farther away we go, the weaker the force would be. But
no! If we are close, most of the matter is pulling at an unfavorable angle; if we
are far away, more of the matter is situated more favorably to exert a pull toward
the plane. At any distance, the matter which is most effective lies in a certain
cone. When we are farther away the force is smaller by the inverse square, but
in the same cone, in the same angle, there is much more matter, larger by just
the square of the distance! This analysis can be made rigorous by just noticing
that the differential contribution in any given cone is in fact independent of the
distance, because of the reciprocal variation of the strength of the force from a
given mass, and the amount of mass included in the cone, with changing distance.
The force is not really constant of course, because when we go on the other side
of the sheet it is reversed in sign.

We have also, in effect, solved an electrical problem: if we have an electrically
charged plate, with an amount σ of charge per unit area, then the electric field
at a point outside the sheet is equal to σ/2ε0, and is in the outward direction if
the sheet is positively charged, and inward if the sheet is negatively charged. To
prove this, we merely note that −G, for gravity, plays the same role as 1/4πε0
for electricity.

Now suppose that we have two plates, with a positive charge +σ on one and
a negative charge −σ on another at a distance D from the first. What is the
field? Outside the two plates it is zero. Why? Because one attracts and the other
repels, the force being independent of distance, so that the two balance out! Also,
the field between the two plates is clearly twice as great as that from one plate,
namely E = σ/ε0, and is directed from the positive plate to the negative one.

Now we come to a most interesting and important problem, whose solution
we have been assuming all the time, namely, that the force produced by the earth
at a point on the surface or outside it is the same as if all the mass of the earth
were located at its center. The validity of this assumption is not obvious, because
when we are close, some of the mass is very close to us, and some is farther away,
and so on. When we add the effects all together, it seems a miracle that the net
force is exactly the same as we would get if we put all the mass in the middle!
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ya
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Fig. 13-6. A thin spherical shell of mass or charge.

We now demonstrate the correctness of this miracle. In order to do so,
however, we shall consider a thin uniform hollow shell instead of the whole earth.
Let the total mass of the shell be m, and let us calculate the potential energy of
a particle of mass m′ a distance R away from the center of the sphere (Fig. 13-6)
and show that the potential energy is the same as it would be if the mass m were
a point at the center. (The potential energy is easier to work with than is the
field because we do not have to worry about angles, we merely add the potential
energies of all the pieces of mass.) If we call x the distance of a certain plane
section from the center, then all the mass that is in a slice dx is at the same
distance r from P , and the potential energy due to this ring is −Gm′ dm/r. How
much mass is in the small slice dx? An amount

dm = 2πyµ ds = 2πyµ dx
sin θ = 2πyµ dx a

y
= 2πaµ dx,

where µ = m/4πa2 is the surface density of mass on the spherical shell. (It is a
general rule that the area of a zone of a sphere is proportional to its axial width.)
Therefore the potential energy due to dm is

dW = −Gm
′ dm

r
= −Gm

′2πaµ dx
r

.

But we see that
r2 = y2 + (R− x)2 = y2 + x2 +R2 − 2Rx

= a2 +R2 − 2Rx.
Thus

2r dr = −2Rdx
or

dx

r
= −dr

R
.
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Therefore,

dW = Gm′2πaµ dr
R

,

and so
W = Gm′2πaµ

R

∫ R−a

R+a
dr

= −Gm
′2πaµ
R

2a = −Gm
′(4πa2µ)
R

= −Gm
′m

R
. (13.18)

Thus, for a thin spherical shell, the potential energy of a mass m′, external to
the shell, is the same as though the mass of the shell were concentrated at its
center. The earth can be imagined as a series of spherical shells, each one of
which contributes an energy which depends only on its mass and the distance
from its center to the particle; adding them all together we get the total mass,
and therefore the earth acts as though all the material were at the center!

But notice what happens if our point is on the inside of the shell. Making
the same calculation, but with P on the inside, we still get the difference of the
two r’s, but now in the form a−R− (a+R) = −2R, or minus twice the distance
from the center. In other words, W comes out to be W = −Gm′m/a, which is
independent of R and independent of position, i.e., the same energy no matter
where we are inside. Therefore no force; no work is done when we move about
inside. If the potential energy is the same no matter where an object is placed
inside the sphere, there can be no force on it. So there is no force inside, there is
only a force outside, and the force outside is the same as though the mass were
all at the center.
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14

Work and Potential Energy (conclusion)

14-1 Work

In the preceding chapter we have presented a great many new ideas and
results that play a central role in physics. These ideas are so important that it
seems worth while to devote a whole chapter to a closer examination of them.
In the present chapter we shall not repeat the “proofs” or the specific tricks by
which the results were obtained, but shall concentrate instead upon a discussion
of the ideas themselves.

In learning any subject of a technical nature where mathematics plays a role,
one is confronted with the task of understanding and storing away in the memory
a huge body of facts and ideas, held together by certain relationships which can
be “proved” or “shown” to exist between them. It is easy to confuse the proof
itself with the relationship which it establishes. Clearly, the important thing
to learn and to remember is the relationship, not the proof. In any particular
circumstance we can either say “it can be shown that” such and such is true, or
we can show it. In almost all cases, the particular proof that is used is concocted,
first of all, in such form that it can be written quickly and easily on the chalkboard
or on paper, and so that it will be as smooth-looking as possible. Consequently,
the proof may look deceptively simple, when in fact, the author might have
worked for hours trying different ways of calculating the same thing until he has
found the neatest way, so as to be able to show that it can be shown in the
shortest amount of time! The thing to be remembered, when seeing a proof, is
not the proof itself, but rather that it can be shown that such and such is true.
Of course, if the proof involves some mathematical procedures or “tricks” that
one has not seen before, attention should be given not to the trick exactly, but
to the mathematical idea involved.

It is certain that in all the demonstrations that are made in a course such
as this, not one has been remembered from the time when the author studied
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freshman physics. Quite the contrary: he merely remembers that such and such
is true, and to explain how it can be shown he invents a demonstration at the
moment it is needed. Anyone who has really learned a subject should be able
to follow a similar procedure, but it is no use remembering the proofs. That is
why, in this chapter, we shall avoid the proofs of the various statements made
previously, and merely summarize the results.

The first idea that has to be digested is work done by a force. The physical
word “work” is not the word in the ordinary sense of “Workers of the world
unite!,” but is a different idea. Physical work is expressed as

∫
F · ds, called “the

line integral of F dot ds,” which means that if the force, for instance, is in one
direction and the object on which the force is working is displaced in a certain
direction, then only the component of force in the direction of the displacement
does any work. If, for instance, the force were constant and the displacement
were a finite distance ∆s, then the work done in moving the object through that
distance is only the component of force along ∆s times ∆s. The rule is “force
times distance,” but we really mean only the component of force in the direction
of the displacement times ∆s or, equivalently, the component of displacement in
the direction of force times F . It is evident that no work whatsoever is done by
a force which is at right angles to the displacement.

Now if the vector displacement ∆s is resolved into components, in other
words, if the actual displacement is ∆s and we want to consider it effectively
as a component of displacement ∆x in the x-direction, ∆y in the y-direction,
and ∆z in the z-direction, then the work done in carrying an object from one
place to another can be calculated in three parts, by calculating the work done
along x, along y, and along z. The work done in going along x involves only that
component of force, namely Fx, and so on, so the work is Fx ∆x+Fy ∆y+Fz ∆z.
When the force is not constant, and we have a complicated curved motion, then
we must resolve the path into a lot of little ∆s’s, add the work done in carrying
the object along each ∆s, and take the limit as ∆s goes to zero. This is the
meaning of the “line integral.”

Everything we have just said is contained in the formula W =
∫
F · ds. It

is all very well to say that it is a marvelous formula, but it is another thing to
understand what it means, or what some of the consequences are.

The word “work” in physics has a meaning so different from that of the word
as it is used in ordinary circumstances that it must be observed carefully that
there are some peculiar circumstances in which it appears not to be the same.
For example, according to the physical definition of work, if one holds a hundred-
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pound weight off the ground for a while, he is doing no work. Nevertheless,
everyone knows that he begins to sweat, shake, and breathe harder, as if he were
running up a flight of stairs. Yet running upstairs is considered as doing work
(in running downstairs, one gets work out of the world, according to physics),
but in simply holding an object in a fixed position, no work is done. Clearly, the
physical definition of work differs from the physiological definition, for reasons
we shall briefly explore.

It is a fact that when one holds a weight he has to do “physiological” work.
Why should he sweat? Why should he need to consume food to hold the weight
up? Why is the machinery inside him operating at full throttle, just to hold
the weight up? Actually, the weight could be held up with no effort by just
placing it on a table; then the table, quietly and calmly, without any supply of
energy, is able to maintain the same weight at the same height! The physiological
situation is something like the following. There are two kinds of muscles in the
human body and in other animals: one kind, called striated or skeletal muscle, is
the type of muscle we have in our arms, for example, which is under voluntary
control; the other kind, called smooth muscle, is like the muscle in the intestines
or, in the clam, the greater adductor muscle that closes the shell. The smooth
muscles work very slowly, but they can hold a “set”; that is to say, if the clam
tries to close its shell in a certain position, it will hold that position, even if there
is a very great force trying to change it. It will hold a position under load for
hours and hours without getting tired because it is very much like a table holding
up a weight, it “sets” into a certain position, and the molecules just lock there
temporarily with no work being done, no effort being generated by the clam.
The fact that we have to generate effort to hold up a weight is simply due to the
design of striated muscle. What happens is that when a nerve impulse reaches a
muscle fiber, the fiber gives a little twitch and then relaxes, so that when we hold
something up, enormous volleys of nerve impulses are coming in to the muscle,
large numbers of twitches are maintaining the weight, while the other fibers relax.
We can see this, of course: when we hold a heavy weight and get tired, we begin
to shake. The reason is that the volleys are coming irregularly, and the muscle
is tired and not reacting fast enough. Why such an inefficient scheme? We do
not know exactly why, but evolution has not been able to develop fast smooth
muscle. Smooth muscle would be much more effective for holding up weights
because you could just stand there and it would lock in; there would be no work
involved and no energy would be required. However, it has the disadvantage that
it is very slow-operating.
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Returning now to physics, we may ask why we want to calculate the work
done. The answer is that it is interesting and useful to do so, since the work done
on a particle by the resultant of all the forces acting on it is exactly equal to the
change in kinetic energy of that particle. That is, if an object is being pushed, it
picks up speed, and

∆(v2) = 2
m
F ·∆s.

14-2 Constrained motion

Another interesting feature of forces and work is this: suppose that we have
a sloping or a curved track, and a particle that must move along the track, but
without friction. Or we may have a pendulum with a string and a weight; the
string constrains the weight to move in a circle about the pivot point. The pivot
point may be changed by having the string hit a peg, so that the path of the
weight is along two circles of different radii. These are examples of what we call
fixed, frictionless constraints.

In motion with a fixed frictionless constraint, no work is done by the constraint
because the forces of constraint are always at right angles to the motion. By
the “forces of constraint” we mean those forces which are applied to the object
directly by the constraint itself—the contact force with the track, or the tension
in the string.

The forces involved in the motion of a particle on a slope moving under the
influence of gravity are quite complicated, since there is a constraint force, a
gravitational force, and so on. However, if we base our calculation of the motion
on conservation of energy and the gravitational force alone, we get the right result.
This seems rather strange, because it is not strictly the right way to do it—we
should use the resultant force. Nevertheless, the work done by the gravitational
force alone will turn out to be the change in the kinetic energy, because the work
done by the constraint part of the force is zero (Fig. 14-1).

FORCE OF
CONSTRAINT FORCE OF

GRAVITY

DIRECTION OF MOTION

Fig. 14-1. Forces acting on a sliding body (no friction).
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The important feature here is that if a force can be analyzed as the sum of
two or more “pieces” then the work done by the resultant force in going along a
certain curve is the sum of the works done by the various “component” forces into
which the force is analyzed. Thus if we analyze the force as being the vector sum
of several effects, gravitational plus constraint forces, etc., or the x-component of
all forces and the y-component of all forces, or any other way that we wish to
split it up, then the work done by the net force is equal to the sum of the works
done by all the parts into which we have divided the force in making the analysis.

14-3 Conservative forces

In nature there are certain forces, that of gravity, for example, which have a
very remarkable property which we call “conservative” (no political ideas involved,
it is again one of those “crazy words”). If we calculate how much work is done
by a force in moving an object from one point to another along some curved
path, in general the work depends upon the curve, but in special cases it does
not. If it does not depend upon the curve, we say that the force is a conservative
force. In other words, if the integral of the force times the distance in going from
position 1 to position 2 in Fig. 14-2 is calculated along curve A and then along B,
we get the same number of joules, and if this is true for this pair of points on
every curve, and if the same proposition works no matter which pair of points
we use, then we say the force is conservative. In such circumstances, the work
integral going from 1 to 2 can be evaluated in a simple manner, and we can give
a formula for the result. Ordinarily it is not this easy, because we also have to
specify the curve, but when we have a case where the work does not depend on
the curve, then, of course, the work depends only upon the positions of 1 and 2.

P

1

2

A

B

Fig. 14-2. Possible paths between two points in a field of force.

To demonstrate this idea, consider the following. We take a “standard”
point P , at an arbitrary location (Fig. 14-2). Then, the work line-integral from 1
to 2, which we want to calculate, can be evaluated as the work done in going
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from 1 to P plus the work done in going from P to 2, because the forces are
conservative and the work does not depend upon the curve. Now, the work done
in going from position P to a particular position in space is a function of that
position in space. Of course it really depends on P also, but we hold the arbitrary
point P fixed permanently for the analysis. If that is done, then the work done
in going from point P to point 2 is some function of the final position of 2. It
depends upon where 2 is; if we go to some other point we get a different answer.

We shall call this function of position −U(x, y, z), and when we wish to refer
to some particular point 2 whose coordinates are (x2, y2, z2), we shall write U(2),
as an abbreviation for U(x2, y2, z2). The work done in going from point 1 to
point P can be written also by going the other way along the integral, reversing
all the ds’s. That is, the work done in going from 1 to P is minus the work done
in going from the point P to 1:∫ P

1
F · ds =

∫ 1

P

F · (−ds) = −
∫ 1

P

F · ds.

Thus the work done in going from P to 1 is −U(1), and from P to 2 the work
is −U(2). Therefore the integral from 1 to 2 is equal to −U(2) plus [−U(1)
backwards], or +U(1)− U(2):

U(1) = −
∫ 1

P

F · ds, U(2) = −
∫ 2

P

F · ds,∫ 2

1
F · ds = U(1)− U(2). (14.1)

The quantity U(1) − U(2) is called the change in the potential energy, and
we call U the potential energy. We shall say that when the object is located
at position 2, it has potential energy U(2) and at position 1 it has potential
energy U(1). If it is located at position P , it has zero potential energy. If we had
used any other point, say Q, instead of P , it would turn out (and we shall leave it
to you to demonstrate) that the potential energy is changed only by the addition
of a constant. Since the conservation of energy depends only upon changes, it
does not matter if we add a constant to the potential energy. Thus the point P
is arbitrary.

Now, we have the following two propositions: (1) that the work done by a force
is equal to the change in kinetic energy of the particle, but (2) mathematically,
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for a conservative force, the work done is minus the change in a function U which
we call the potential energy. As a consequence of these two, we arrive at the
proposition that if only conservative forces act, the kinetic energy T plus the
potential energy U remains constant:

T + U = constant. (14.2)

Let us now discuss the formulas for the potential energy for a number of cases.
If we have a gravitational field that is uniform, if we are not going to heights
comparable with the radius of the earth, then the force is a constant vertical
force and the work done is simply the force times the vertical distance. Thus

U(z) = mgz, (14.3)

and the point P which corresponds to zero potential energy happens to be any
point in the plane z = 0. We could also have said that the potential energy
is mg(z− 6) if we had wanted to—all the results would, of course, be the same in
our analysis except that the value of the potential energy at z = 0 would be −mg6.
It makes no difference, because only differences in potential energy count.

The energy needed to compress a linear spring a distance x from an equilibrium
point is

U(x) = 1
2kx

2, (14.4)

and the zero of potential energy is at the point x = 0, the equilibrium position of
the spring. Again we could add any constant we wish.

The potential energy of gravitation for point masses M and m, a distance r
apart, is

U(r) = −GMm/r. (14.5)

The constant has been chosen here so that the potential is zero at infinity. Of
course the same formula applies to electrical charges, because it is the same law:

U(r) = q1q2/4πε0r. (14.6)

Now let us actually use one of these formulas, to see whether we understand
what it means. Question: How fast do we have to shoot a rocket away from the
earth in order for it to leave? Solution: The kinetic plus potential energy must
be a constant; when it “leaves,” it will be millions of miles away, and if it is just
barely able to leave, we may suppose that it is moving with zero speed out there,
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just barely going. Let a be the radius of the earth, and M its mass. The kinetic
plus potential energy is then initially given by 1

2mv
2 −GmM/a. At the end of

the motion the two energies must be equal. The kinetic energy is taken to be zero
at the end of the motion, because it is supposed to be just barely drifting away
at essentially zero speed, and the potential energy is GmM divided by infinity,
which is zero. So everything is zero on one side and that tells us that the square
of the velocity must be 2GM/a. But GM/a2 is what we call the acceleration of
gravity, g. Thus

v2 = 2ga.

At what speed must a satellite travel in order to keep going around the earth?
We worked this out long ago and found that v2 = GM/a. Therefore to go away
from the earth, we need

√
2 times the velocity we need to just go around the

earth near its surface. We need, in other words, twice as much energy (because
energy goes as the square of the velocity) to leave the earth as we do to go around
it. Therefore the first thing that was done historically with satellites was to get
one to go around the earth, which requires a speed of five miles per second. The
next thing was to send a satellite away from the earth permanently; this required
twice the energy, or about seven miles per second.

Now, continuing our discussion of the characteristics of potential energy, let
us consider the interaction of two molecules, or two atoms, two oxygen atoms
for instance. When they are very far apart, the force is one of attraction, which
varies as the inverse seventh power of the distance, and when they are very close
the force is a very large repulsion. If we integrate the inverse seventh power to
find the work done, we find that the potential energy U , which is a function of
the radial distance between the two oxygen atoms, varies as the inverse sixth
power of the distance for large distances.

If we sketch the curve of the potential energy U(r) as in Fig. 14-3, we thus
start out at large r with an inverse sixth power, but if we come in sufficiently
near we reach a point d where there is a minimum of potential energy. The
minimum of potential energy at r = d means this: if we start at d and move
a small distance, a very small distance, the work done, which is the change in
potential energy when we move this distance, is nearly zero, because there is
very little change in potential energy at the bottom of the curve. Thus there is
no force at this point, and so it is the equilibrium point. Another way to see
that it is the equilibrium point is that it takes work to move away from d in
either direction. When the two oxygen atoms have settled down, so that no more
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r

U(r)

d

U(r) ∝ 1/r6
(IF r � d)

Fig. 14-3. The potential energy between two atoms as a function of
the distance between them.

energy can be liberated from the force between them, they are in the lowest
energy state, and they will be at this separation d. This is the way an oxygen
molecule looks when it is cold. When we heat it up, the atoms shake and move
farther apart, and we can in fact break them apart, but to do so takes a certain
amount of work or energy, which is the potential energy difference between r = d
and r =∞. When we try to push the atoms very close together the energy goes
up very rapidly, because they repel each other.

The reason we bring this out is that the idea of force is not particularly
suitable for quantum mechanics; there the idea of energy is most natural. We find
that although forces and velocities “dissolve” and disappear when we consider
the more advanced forces between nuclear matter and between molecules and so
on, the energy concept remains. Therefore we find curves of potential energy in
quantum mechanics books, but very rarely do we ever see a curve for the force
between two molecules, because by that time people who are doing analyses are
thinking in terms of energy rather than of force.

Next we note that if several conservative forces are acting on an object at the
same time, then the potential energy of the object is the sum of the potential
energies from each of the separate forces. This is the same proposition that we
mentioned before, because if the force can be represented as a vector sum of
forces, then the work done by the total force is the sum of the works done by
the partial forces, and it can therefore be analyzed as changes in the potential
energies of each of them separately. Thus the total potential energy is the sum
of all the little pieces.

We could generalize this to the case of a system of many objects interacting
with one another, like Jupiter, Saturn, Uranus, etc., or oxygen, nitrogen, carbon,
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etc., which are acting with respect to one another in pairs due to forces all of
which are conservative. In these circumstances the kinetic energy in the entire
system is simply the sum of the kinetic energies of all of the particular atoms or
planets or whatever, and the potential energy of the system is the sum, over the
pairs of particles, of the potential energy of mutual interaction of a single pair,
as though the others were not there. (This is really not true for molecular forces,
and the formula is somewhat more complicated; it certainly is true for Newtonian
gravitation, and it is true as an approximation for molecular forces. For molecular
forces there is a potential energy, but it is sometimes a more complicated function
of the positions of the atoms than simply a sum of terms from pairs.) In the
special case of gravity, therefore, the potential energy is the sum, over all the
pairs i and j, of −Gmimj/rij , as was indicated in Eq. (13.14). Equation (13.14)
expressed mathematically the following proposition: that the total kinetic energy
plus the total potential energy does not change with time. As the various planets
wheel about, and turn and twist and so on, if we calculate the total kinetic energy
and the total potential energy we find that the total remains constant.

14-4 Nonconservative forces

We have spent a considerable time discussing conservative forces; what about
nonconservative forces? We shall take a deeper view of this than is usual, and state
that there are no nonconservative forces! As a matter of fact, all the fundamental
forces in nature appear to be conservative. This is not a consequence of Newton’s
laws. In fact, so far as Newton himself knew, the forces could be nonconservative,
as friction apparently is. When we say friction apparently is, we are taking a
modern view, in which it has been discovered that all the deep forces, the forces
between the particles at the most fundamental level, are conservative.

If, for example, we analyze a system like that great globular star cluster that
we saw a picture of, with the thousands of stars all interacting, then the formula
for the total potential energy is simply one term plus another term, etc., summed
over all pairs of stars, and the kinetic energy is the sum of the kinetic energies of
all the individual stars. But the globular cluster as a whole is drifting in space
too, and, if we were far enough away from it and did not see the details, could
be thought of as a single object. Then if forces were applied to it, some of those
forces might end up driving it forward as a whole, and we would see the center
of the whole thing moving. On the other hand, some of the forces can be, so to
speak, “wasted” in increasing the kinetic or potential energy of the “particles”
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inside. Let us suppose, for instance, that the action of these forces expands the
whole cluster and makes the particles move faster. The total energy of the whole
thing is really conserved, but seen from the outside with our crude eyes which
cannot see the confusion of motions inside, and just thinking of the kinetic energy
of the motion of the whole object as though it were a single particle, it would
appear that energy is not conserved, but this is due to a lack of appreciation of
what it is that we see. And that, it turns out, is the case: the total energy of the
world, kinetic plus potential, is a constant when we look closely enough.

When we study matter in the finest detail at the atomic level, it is not always
easy to separate the total energy of a thing into two parts, kinetic energy and
potential energy, and such separation is not always necessary. It is almost always
possible to do it, so let us say that it is always possible, and that the potential-
plus-kinetic energy of the world is constant. Thus the total potential-plus-kinetic
energy inside the whole world is constant, and if the “world” is a piece of isolated
material, the energy is constant if there are no external forces. But as we have
seen, some of the kinetic and potential energy of a thing may be internal, for
instance the internal molecular motions, in the sense that we do not notice it.
We know that in a glass of water everything is jiggling around, all the parts are
moving all the time, so there is a certain kinetic energy inside, which we ordinarily
may not pay any attention to. We do not notice the motion of the atoms, which
produces heat, and so we do not call it kinetic energy, but heat is primarily
kinetic energy. Internal potential energy may also be in the form, for instance, of
chemical energy: when we burn gasoline energy is liberated because the potential
energies of the atoms in the new atomic arrangement are lower than in the old
arrangement. It is not strictly possible to treat heat as being pure kinetic energy,
for a little of the potential gets in, and vice versa for chemical energy, so we
put the two together and say that the total kinetic and potential energy inside
an object is partly heat, partly chemical energy, and so on. Anyway, all these
different forms of internal energy are sometimes considered as “lost” energy in the
sense described above; this will be made clearer when we study thermodynamics.

As another example, when friction is present it is not true that kinetic energy
is lost, even though a sliding object stops and the kinetic energy seems to be lost.
The kinetic energy is not lost because, of course, the atoms inside are jiggling
with a greater amount of kinetic energy than before, and although we cannot
see that, we can measure it by determining the temperature. Of course if we
disregard the heat energy, then the conservation of energy theorem will appear
to be false.
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Another situation in which energy conservation appears to be false is when
we study only part of a system. Naturally, the conservation of energy theorem
will appear not to be true if something is interacting with something else on the
outside and we neglect to take that interaction into account.

In classical physics potential energy involved only gravitation and electricity,
but now we have nuclear energy and other energies also. Light, for example,
would involve a new form of energy in the classical theory, but we can also, if we
want to, imagine that the energy of light is the kinetic energy of a photon, and
then our formula (14.2) would still be right.

14-5 Potentials and fields

We shall now discuss a few of the ideas associated with potential energy and
with the idea of a field. Suppose we have two large objects A and B and a
third very small one which is attracted gravitationally by the two, with some
resultant force F . We have already noted in Chapter 12 that the gravitational
force on a particle can be written as its mass, m, times another vector, C, which
is dependent only upon the position of the particle:

F = mC.

We can analyze gravitation, then, by imagining that there is a certain vector C
at every position in space which “acts” upon a mass which we may place there,
but which is there itself whether we actually supply a mass for it to “act” on
or not. C has three components, and each of those components is a function
of (x, y, z), a function of position in space. Such a thing we call a field, and we
say that the objects A and B generate the field, i.e., they “make” the vector C.
When an object is put in a field, the force on it is equal to its mass times the
value of the field vector at the point where the object is put.

We can also do the same with the potential energy. Since the potential
energy, the integral of (−force) · (ds) can be written as m times the integral of
(−field) · (ds), a mere change of scale, we see that the potential energy U(x, y, z)
of an object located at a point (x, y, z) in space can be written as m times another
function which we may call the potential Ψ. The integral

∫
C · ds = −Ψ, just

as
∫
F · ds = −U ; there is only a scale factor between the two:

U = −
∫
F · ds = −m

∫
C · ds = mΨ. (14.7)
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By having this function Ψ(x, y, z) at every point in space, we can immedi-
ately calculate the potential energy of an object at any point in space, namely,
U(x, y, z) = mΨ(x, y, z)—rather a trivial business, it seems. But it is not really
trivial, because it is sometimes much nicer to describe the field by giving the
value of Ψ everywhere in space instead of having to give C. Instead of having to
write three complicated components of a vector function, we can give instead the
scalar function Ψ. Furthermore, it is much easier to calculate Ψ than any given
component of C when the field is produced by a number of masses, for since
the potential is a scalar we merely add, without worrying about direction. Also,
the field C can be recovered easily from Ψ, as we shall shortly see. Suppose we
have point masses m1, m2, . . . at the points 1, 2, . . . and we wish to know the
potential Ψ at some arbitrary point p. This is simply the sum of the potentials
at p due to the individual masses taken one by one:

Ψ(p) =
∑
i

−Gmi

rip
, i = 1, 2, . . . (14.8)

In the last chapter we used this formula, that the potential is the sum of
the potentials from all the different objects, to calculate the potential due to a
spherical shell of matter by adding the contributions to the potential at a point
from all parts of the shell. The result of this calculation is shown graphically
in Fig. 14-4. It is negative, having the value zero at r =∞ and varying as 1/r
down to the radius a, and then is constant inside the shell. Outside the shell
the potential is −Gm/r, where m is the mass of the shell, which is exactly the
same as it would have been if all the mass were located at the center. But it is
not everywhere exactly the same, for inside the shell the potential turns out to
be −Gm/a, and is a constant! When the potential is constant, there is no field,
or when the potential energy is constant there is no force, because if we move an

φ(r) = CONSTANT = −Gm/a

φ(r) = −Gm/r

a
φ

r

Fig. 14-4. Potential due to a spherical shell of radius a.
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object from one place to another anywhere inside the sphere the work done by
the force is exactly zero. Why? Because the work done in moving the object from
one place to the other is equal to minus the change in the potential energy (or,
the corresponding field integral is the change of the potential). But the potential
energy is the same at any two points inside, so there is zero change in potential
energy, and therefore no work is done in going between any two points inside the
shell. The only way the work can be zero for all directions of displacement is
that there is no force at all.

This gives us a clue as to how we can obtain the force or the field, given the
potential energy. Let us suppose that the potential energy of an object is known
at the position (x, y, z) and we want to know what the force on the object is.
It will not do to know the potential at only this one point, as we shall see; it
requires knowledge of the potential at neighboring points as well. Why? How
can we calculate the x-component of the force? (If we can do this, of course, we
can also find the y- and z-components, and we will then know the whole force.)
Now, if we were to move the object a small distance ∆x, the work done by the
force on the object would be the x-component of the force times ∆x, if ∆x is
sufficiently small, and this should equal the change in potential energy in going
from one point to the other:

∆W = −∆U = Fx ∆x. (14.9)

We have merely used the formula
∫
F · ds = −∆U , but for a very short path.

Now we divide by ∆x and so find that the force is

Fx = −∆U/∆x. (14.10)

Of course this is not exact. What we really want is the limit of (14.10)
as ∆x gets smaller and smaller, because it is only exactly right in the limit of
infinitesimal ∆x. This we recognize as the derivative of U with respect to x,
and we would be inclined, therefore, to write −dU/dx. But U depends on x, y,
and z, and the mathematicians have invented a different symbol to remind us to
be very careful when we are differentiating such a function, so as to remember
that we are considering that only x varies, and y and z do not vary. Instead
of a d they simply make a “backwards 6,” or ∂. (A ∂ should have been used
in the beginning of calculus because we always want to cancel that d, but we
never want to cancel a ∂!) So they write ∂U/∂x, and furthermore, in moments of
duress, if they want to be very careful, they put a line beside it with a little yz
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at the bottom (∂U/∂x|yz), which means “Take the derivative of U with respect
to x, keeping y and z constant.” Most often we leave out the remark about what
is kept constant because it is usually evident from the context, so we usually do
not use the line with the y and z. However, always use a ∂ instead of a d as a
warning that it is a derivative with some other variables kept constant. This is
called a partial derivative; it is a derivative in which we vary only x.

Therefore, we find that the force in the x-direction is minus the partial
derivative of U with respect to x:

Fx = −∂U/∂x. (14.11)

In a similar way, the force in the y-direction can be found by differentiating U
with respect to y, keeping x and z constant, and the third component, of course,
is the derivative with respect to z, keeping y and x constant:

Fy = −∂U/∂y, Fz = −∂U/∂z. (14.12)

This is the way to get from the potential energy to the force. We get the field
from the potential in exactly the same way:

Cx = −∂Ψ/∂x, Cy = −∂Ψ/∂y, Cz = −∂Ψ/∂z. (14.13)

Incidentally, we shall mention here another notation, which we shall not
actually use for quite a while: SinceC is a vector and has x-, y-, and z-components,
the symbolized ∂/∂x, ∂/∂y, and ∂/∂z which produce the x-, y-, and z-components
are something like vectors. The mathematicians have invented a glorious new
symbol, ∇, called “grad” or “gradient”, which is not a quantity but an operator
that makes a vector from a scalar. It has the following “components”: The x-
component of this “grad” is ∂/∂x the y-component is ∂/∂y, and the z-component
is ∂/∂z, and then we have the fun of writing our formulas this way:

F = −∇U, C = −∇Ψ. (14.14)

Using ∇ gives us a quick way of testing whether we have a real vector equation
or not, but actually Eqs. (14.14) mean precisely the same as Eqs. (14.11), (14.12)
and (14.13); it is just another way of writing them, and since we do not want to
write three equations every time, we just write ∇U instead.

One more example of fields and potentials has to do with the electrical case.
In the case of electricity the force on a stationary object is the charge times the
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electric field: F = qE. (In general, of course, the x-component of force in an
electrical problem has also a part which depends on the magnetic field. It is easy
to show from Eq. (12.11) that the force on a particle due to magnetic fields is
always at right angles to its velocity, and also at right angles to the field. Since
the force due to magnetism on a moving charge is at right angles to the velocity,
no work is done by the magnetism on the moving charge because the motion is at
right angles to the force. Therefore, in calculating theorems of kinetic energy in
electric and magnetic fields we can disregard the contribution from the magnetic
field, since it does not change the kinetic energy.) We suppose that there is only
an electric field. Then we can calculate the energy, or work done, in the same way
as for gravity, and calculate a quantity φ which is minus the integral of E · ds,
from the arbitrary fixed point to the point where we make the calculation, and
then the potential energy in an electric field is just charge times this quantity φ:

φ(r) = −
∫
E · ds,

U = qφ.

Let us take, as an example, the case of two parallel metal plates, each with a
surface charge of ±σ per unit area. This is called a parallel-plate capacitor. We
found previously that there is zero force outside the plates and that there is a
constant electric field between them, directed from + to − and of magnitude σ/ε0
(Fig. 14-5). We would like to know how much work would be done in carrying a
charge from one plate to the other. The work would be the (force) · (ds) integral,
which can be written as charge times the potential value at plate 1 minus that at
plate 2:

W =
∫ 2

1
F · ds = q(φ1 − φ2).

We can actually work out the integral because the force is constant, and if we

+ + + + + + +

− − − − − − −

1

2

dE

Fig. 14-5. Field between parallel plates.
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call the separation of the plates d, then the integral is easy:∫ 2

1
F · ds = qσ

ε0

∫ 2

1
dx = qσd

ε0
.

The difference in potential, ∆φ = σd/ε0, is called the voltage difference, and φ is
measured in volts. When we say a pair of plates is charged to a certain voltage,
what we mean is that the difference in electrical potential of the two plates is
so-and-so many volts. For a capacitor made of two parallel plates carrying a
surface charge ±σ, the voltage, or difference in potential, of the pair of plates
is σd/ε0.
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15

The Special Theory of Relativity

15-1 The principle of relativity

For over 200 years the equations of motion enunciated by Newton were believed
to describe nature correctly, and the first time that an error in these laws was
discovered, the way to correct it was also discovered. Both the error and its
correction were discovered by Einstein in 1905.

Newton’s Second Law, which we have expressed by the equation

F = d(mv)/dt,

was stated with the tacit assumption that m is a constant, but we now know
that this is not true, and that the mass of a body increases with velocity. In
Einstein’s corrected formula m has the value

m = m0√
1− v2/c2

, (15.1)

where the “rest mass” m0 represents the mass of a body that is not moving and c
is the speed of light, which is about 3× 105 km · sec−1 or about 186,000 mi · sec−1.

For those who want to learn just enough about it so they can solve problems,
that is all there is to the theory of relativity—it just changes Newton’s laws by
introducing a correction factor to the mass. From the formula itself it is easy
to see that this mass increase is very small in ordinary circumstances. If the
velocity is even as great as that of a satellite, which goes around the earth at
5 mi/sec, then v/c = 5/186,000: putting this value into the formula shows that
the correction to the mass is only one part in two to three billion, which is nearly
impossible to observe. Actually, the correctness of the formula has been amply
confirmed by the observation of many kinds of particles, moving at speeds ranging
up to practically the speed of light. However, because the effect is ordinarily
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so small, it seems remarkable that it was discovered theoretically before it was
discovered experimentally. Empirically, at a sufficiently high velocity, the effect
is very large, but it was not discovered that way. Therefore it is interesting to see
how a law that involved so delicate a modification (at the time when it was first
discovered) was brought to light by a combination of experiments and physical
reasoning. Contributions to the discovery were made by a number of people, the
final result of whose work was Einstein’s discovery.

There are really two Einstein theories of relativity. This chapter is concerned
with the Special Theory of Relativity, which dates from 1905. In 1915 Einstein
published an additional theory, called the General Theory of Relativity. This
latter theory deals with the extension of the Special Theory to the case of the
law of gravitation; we shall not discuss the General Theory here.

The principle of relativity was first stated by Newton, in one of his corollaries
to the laws of motion: “The motions of bodies included in a given space are
the same among themselves, whether that space is at rest or moves uniformly
forward in a straight line.” This means, for example, that if a space ship is drifting
along at a uniform speed, all experiments performed in the space ship and all the
phenomena in the space ship will appear the same as if the ship were not moving,
provided, of course, that one does not look outside. That is the meaning of the
principle of relativity. This is a simple enough idea, and the only question is
whether it is true that in all experiments performed inside a moving system the
laws of physics will appear the same as they would if the system were standing
still. Let us first investigate whether Newton’s laws appear the same in the
moving system.

Suppose that Moe is moving in the x-direction with a uniform velocity u, and
he measures the position of a certain point, shown in Fig. 15-1. He designates
the “x-distance” of the point in his coordinate system as x′. Joe is at rest, and

y y ′

x x ′

ut

JOE MOE (x ′, y ′, z ′)
P or
(x, y , z)

u

Fig. 15-1. Two coordinate systems in uniform relative motion along
their x-axes.
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measures the position of the same point, designating its x-coordinate in his
system as x. The relationship of the coordinates in the two systems is clear from
the diagram. After time t Moe’s origin has moved a distance ut, and if the two
systems originally coincided,

x′ = x− ut,
y′ = y,

z′ = z,

t′ = t.

(15.2)

If we substitute this transformation of coordinates into Newton’s laws we find
that these laws transform to the same laws in the primed system; that is, the laws
of Newton are of the same form in a moving system as in a stationary system,
and therefore it is impossible to tell, by making mechanical experiments, whether
the system is moving or not.

The principle of relativity has been used in mechanics for a long time. It
was employed by various people, in particular Huygens, to obtain the rules for
the collision of billiard balls, in much the same way as we used it in Chapter 10
to discuss the conservation of momentum. In the 19th century interest in it
was heightened as the result of investigations into the phenomena of electricity,
magnetism, and light. A long series of careful studies of these phenomena by
many people culminated in Maxwell’s equations of the electromagnetic field,
which describe electricity, magnetism, and light in one uniform system. However,
the Maxwell equations did not seem to obey the principle of relativity. That
is, if we transform Maxwell’s equations by the substitution of equations (15.2),
their form does not remain the same; therefore, in a moving space ship the
electrical and optical phenomena should be different from those in a stationary
ship. Thus one could use these optical phenomena to determine the speed of
the ship; in particular, one could determine the absolute speed of the ship by
making suitable optical or electrical measurements. One of the consequences of
Maxwell’s equations is that if there is a disturbance in the field such that light is
generated, these electromagnetic waves go out in all directions equally and at
the same speed c, or 186,000 mi/sec. Another consequence of the equations is
that if the source of the disturbance is moving, the light emitted goes through
space at the same speed c. This is analogous to the case of sound, the speed of
sound waves being likewise independent of the motion of the source.

This independence of the motion of the source, in the case of light, brings up
an interesting problem:
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Suppose we are riding in a car that is going at a speed u, and light from the
rear is going past the car with speed c. Differentiating the first equation in (15.2)
gives

dx′/dt = dx/dt− u,
which means that according to the Galilean transformation the apparent speed
of the passing light, as we measure it in the car, should not be c but should
be c − u. For instance, if the car is going 100,000 mi/sec, and the light is
going 186,000 mi/sec, then apparently the light going past the car should go
86,000 mi/sec. In any case, by measuring the speed of the light going past the car
(if the Galilean transformation is correct for light), one could determine the speed
of the car. A number of experiments based on this general idea were performed to
determine the velocity of the earth, but they all failed—they gave no velocity at
all. We shall discuss one of these experiments in detail, to show exactly what was
done and what was the matter; something was the matter, of course, something
was wrong with the equations of physics. What could it be?

15-2 The Lorentz transformation

When the failure of the equations of physics in the above case came to light,
the first thought that occurred was that the trouble must lie in the new Maxwell
equations of electrodynamics, which were only 20 years old at the time. It seemed
almost obvious that these equations must be wrong, so the thing to do was to
change them in such a way that under the Galilean transformation the principle
of relativity would be satisfied. When this was tried, the new terms that had to
be put into the equations led to predictions of new electrical phenomena that did
not exist at all when tested experimentally, so this attempt had to be abandoned.
Then it gradually became apparent that Maxwell’s laws of electrodynamics were
correct, and the trouble must be sought elsewhere.

In the meantime, H. A. Lorentz noticed a remarkable and curious thing when
he made the following substitutions in the Maxwell equations:

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

,

(15.3)
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namely, Maxwell’s equations remain in the same form when this transformation
is applied to them! Equations (15.3) are known as a Lorentz transformation.
Einstein, following a suggestion originally made by Poincaré, then proposed that
all the physical laws should be of such a kind that they remain unchanged under
a Lorentz transformation. In other words, we should change, not the laws of
electrodynamics, but the laws of mechanics. How shall we change Newton’s laws
so that they will remain unchanged by the Lorentz transformation? If this goal is
set, we then have to rewrite Newton’s equations in such a way that the conditions
we have imposed are satisfied. As it turned out, the only requirement is that the
mass m in Newton’s equations must be replaced by the form shown in Eq. (15.1).
When this change is made, Newton’s laws and the laws of electrodynamics will
harmonize. Then if we use the Lorentz transformation in comparing Moe’s
measurements with Joe’s, we shall never be able to detect whether either is
moving, because the form of all the equations will be the same in both coordinate
systems!

It is interesting to discuss what it means that we replace the old transformation
between the coordinates and time with a new one, because the old one (Galilean)
seems to be self-evident, and the new one (Lorentz) looks peculiar. We wish
to know whether it is logically and experimentally possible that the new, and
not the old, transformation can be correct. To find that out, it is not enough
to study the laws of mechanics but, as Einstein did, we too must analyze our
ideas of space and time in order to understand this transformation. We shall
have to discuss these ideas and their implications for mechanics at some length,
so we say in advance that the effort will be justified, since the results agree with
experiment.

15-3 The Michelson-Morley experiment

As mentioned above, attempts were made to determine the absolute velocity
of the earth through the hypothetical “ether” that was supposed to pervade all
space. The most famous of these experiments is one performed by Michelson and
Morley in 1887. It was 18 years later before the negative results of the experiment
were finally explained, by Einstein.

The Michelson-Morley experiment was performed with an apparatus like that
shown schematically in Fig. 15-2. This apparatus is essentially comprised of a
light source A, a partially silvered glass plate B, and two mirrors C and E, all
mounted on a rigid base. The mirrors are placed at equal distances L from B.
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Fig. 15-2. Schematic diagram of the Michelson-Morley experiment.

The plate B splits an oncoming beam of light, and the two resulting beams
continue in mutually perpendicular directions to the mirrors, where they are
reflected back to B. On arriving back at B, the two beams are recombined as
two superposed beams, D and F . If the time taken for the light to go from B
to E and back is the same as the time from B to C and back, the emerging
beams D and F will be in phase and will reinforce each other, but if the two
times differ slightly, the beams will be slightly out of phase and interference will
result. If the apparatus is “at rest” in the ether, the times should be precisely
equal, but if it is moving toward the right with a velocity u, there should be a
difference in the times. Let us see why.

First, let us calculate the time required for the light to go from B to E and
back. Let us say that the time for light to go from plate B to mirror E is t1,
and the time for the return is t2. Now, while the light is on its way from B
to the mirror, the apparatus moves a distance ut1, so the light must traverse a
distance L+ ut1, at the speed c. We can also express this distance as ct1, so we
have

ct1 = L+ ut1, or t1 = L/(c− u).

(This result is also obvious from the point of view that the velocity of light relative
to the apparatus is c− u, so the time is the length L divided by c− u.) In a like
manner, the time t2 can be calculated. During this time the plate B advances a
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distance ut2, so the return distance of the light is L− ut2. Then we have

ct2 = L− ut2, or t2 = L/(c+ u).

Then the total time is
t1 + t2 = 2Lc/(c2 − u2).

For convenience in later comparison of times we write this as

t1 + t2 = 2L/c
1− u2/c2

. (15.4)

Our second calculation will be of the time t3 for the light to go from B to
the mirror C. As before, during time t3 the mirror C moves to the right a
distance ut3 to the position C ′; in the same time, the light travels a distance ct3
along the hypotenuse of a triangle, which is BC ′. For this right triangle we have

(ct3)2 = L2 + (ut3)2

or
L2 = c2t23 − u2t23 = (c2 − u2)t23,

from which we get
t3 = L/

√
c2 − u2.

For the return trip from C ′ the distance is the same, as can be seen from the
symmetry of the figure; therefore the return time is also the same, and the total
time is 2t3. With a little rearrangement of the form we can write

2t3 = 2L√
c2 − u2

= 2L/c√
1− u2/c2

. (15.5)

We are now able to compare the times taken by the two beams of light. In
expressions (15.4) and (15.5) the numerators are identical, and represent the
time that would be taken if the apparatus were at rest. In the denominators, the
term u2/c2 will be small, unless u is comparable in size to c. The denominators
represent the modifications in the times caused by the motion of the apparatus.
And behold, these modifications are not the same—the time to go to C and
back is a little less than the time to E and back, even though the mirrors are
equidistant from B, and all we have to do is to measure that difference with
precision.
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Here a minor technical point arises—suppose the two lengths L are not exactly
equal? In fact, we surely cannot make them exactly equal. In that case we simply
turn the apparatus 90 degrees, so that BC is in the line of motion and BE
is perpendicular to the motion. Any small difference in length then becomes
unimportant, and what we look for is a shift in the interference fringes when we
rotate the apparatus.

In carrying out the experiment, Michelson and Morley oriented the apparatus
so that the line BE was nearly parallel to the earth’s motion in its orbit (at
certain times of the day and night). This orbital speed is about 18 miles per
second, and any “ether drift” should be at least that much at some time of the day
or night and at some time during the year. The apparatus was amply sensitive
to observe such an effect, but no time difference was found—the velocity of the
earth through the ether could not be detected. The result of the experiment was
null.

The result of the Michelson-Morley experiment was very puzzling and most
disturbing. The first fruitful idea for finding a way out of the impasse came from
Lorentz. He suggested that material bodies contract when they are moving, and
that this foreshortening is only in the direction of the motion, and also, that if
the length is L0 when a body is at rest, then when it moves with speed u parallel
to its length, the new length, which we call L‖ (L-parallel), is given by

L‖ = L0
√

1− u2/c2. (15.6)

When this modification is applied to the Michelson-Morley interferometer appa-
ratus the distance from B to C does not change, but the distance from B to E
is shortened to L

√
1− u2/c2. Therefore Eq. (15.5) is not changed, but the L of

Eq. (15.4) must be changed in accordance with Eq. (15.6). When this is done we
obtain

t1 + t2 = (2L/c)
√

1− u2/c2

1− u2/c2
= 2L/c√

1− u2/c2
. (15.7)

Comparing this result with Eq. (15.5), we see that t1+t2 = 2t3. So if the apparatus
shrinks in the manner just described, we have a way of understanding why the
Michelson-Morley experiment gives no effect at all. Although the contraction
hypothesis successfully accounted for the negative result of the experiment, it was
open to the objection that it was invented for the express purpose of explaining
away the difficulty, and was too artificial. However, in many other experiments
to discover an ether wind, similar difficulties arose, until it appeared that nature
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was in a “conspiracy” to thwart man by introducing some new phenomenon to
undo every phenomenon that he thought would permit a measurement of u.

It was ultimately recognized, as Poincaré pointed out, that a complete con-
spiracy is itself a law of nature! Poincaré then proposed that there is such a law
of nature, that it is not possible to discover an ether wind by any experiment;
that is, there is no way to determine an absolute velocity.

15-4 Transformation of time

In checking out whether the contraction idea is in harmony with the facts
in other experiments, it turns out that everything is correct provided that the
times are also modified, in the manner expressed in the fourth equation of the
set (15.3). That is because the time t3, calculated for the trip from B to C and
back, is not the same when calculated by a man performing the experiment in a
moving space ship as when calculated by a stationary observer who is watching
the space ship. To the man in the ship the time is simply 2L/c, but to the other
observer it is (2L/c)/

√
1− u2/c2 (Eq. 15.5). In other words, when the outsider

sees the man in the space ship lighting a cigar, all the actions appear to be
slower than normal, while to the man inside, everything moves at a normal rate.
So not only must the lengths shorten, but also the time-measuring instruments
(“clocks”) must apparently slow down. That is, when the clock in the space ship
records 1 second elapsed, as seen by the man in the ship, it shows 1/

√
1− u2/c2

second to the man outside.
This slowing of the clocks in a moving system is a very peculiar phenomenon,

and is worth an explanation. In order to understand this, we have to watch the
machinery of the clock and see what happens when it is moving. Since that is
rather difficult, we shall take a very simple kind of clock. The one we choose is
rather a silly kind of clock, but it will work in principle: it is a rod (meter stick)
with a mirror at each end, and when we start a light signal between the mirrors,
the light keeps going up and down, making a click every time it comes down,
like a standard ticking clock. We build two such clocks, with exactly the same
lengths, and synchronize them by starting them together; then they agree always
thereafter, because they are the same in length, and light always travels with
speed c. We give one of these clocks to the man to take along in his space ship,
and he mounts the rod perpendicular to the direction of motion of the ship; then
the length of the rod will not change. How do we know that perpendicular lengths
do not change? The men can agree to make marks on each other’s y-meter stick
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as they pass each other. By symmetry, the two marks must come at the same y-
and y′-coordinates, since otherwise, when they get together to compare results,
one mark will be above or below the other, and so we could tell who was really
moving.

Now let us see what happens to the moving clock. Before the man took it
aboard, he agreed that it was a nice, standard clock, and when he goes along in
the space ship he will not see anything peculiar. If he did, he would know he
was moving—if anything at all changed because of the motion, he could tell he
was moving. But the principle of relativity says this is impossible in a uniformly
moving system, so nothing has changed. On the other hand, when the external
observer looks at the clock going by, he sees that the light, in going from mirror
to mirror, is “really” taking a zigzag path, since the rod is moving sidewise all
the while. We have already analyzed such a zigzag motion in connection with
the Michelson-Morley experiment. If in a given time the rod moves forward
a distance proportional to u in Fig. 15-3, the distance the light travels in the
same time is proportional to c, and the vertical distance is therefore proportional
to
√
c2 − u2.

That is, it takes a longer time for light to go from end to end in the moving
clock than in the stationary clock. Therefore the apparent time between clicks is
longer for the moving clock, in the same proportion as shown in the hypotenuse
of the triangle (that is the source of the square root expressions in our equations).
From the figure it is also apparent that the greater u is, the more slowly the
moving clock appears to run. Not only does this particular kind of clock run
more slowly, but if the theory of relativity is correct, any other clock, operating
on any principle whatsoever, would also appear to run slower, and in the same
proportion—we can say this without further analysis. Why is this so?

To answer the above question, suppose we had two other clocks made exactly
alike with wheels and gears, or perhaps based on radioactive decay, or something
else. Then we adjust these clocks so they both run in precise synchronism with
our first clocks. When light goes up and back in the first clocks and announces
its arrival with a click, the new models also complete some sort of cycle, which
they simultaneously announce by some doubly coincident flash, or bong, or other
signal. One of these clocks is taken into the space ship, along with the first kind.
Perhaps this clock will not run slower, but will continue to keep the same time
as its stationary counterpart, and thus disagree with the other moving clock. Ah
no, if that should happen, the man in the ship could use this mismatch between
his two clocks to determine the speed of his ship, which we have been supposing
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is impossible. We need not know anything about the machinery of the new clock
that might cause the effect—we simply know that whatever the reason, it will
appear to run slow, just like the first one.

Now if all moving clocks run slower, if no way of measuring time gives anything
but a slower rate, we shall just have to say, in a certain sense, that time itself
appears to be slower in a space ship. All the phenomena there—the man’s
pulse rate, his thought processes, the time he takes to light a cigar, how long it
takes to grow up and get old—all these things must be slowed down in the same
proportion, because he cannot tell he is moving. The biologists and medical men
sometimes say it is not quite certain that the time it takes for a cancer to develop
will be longer in a space ship, but from the viewpoint of a modern physicist
it is nearly certain; otherwise one could use the rate of cancer development to
determine the speed of the ship!

A very interesting example of the slowing of time with motion is furnished by
mu-mesons (muons), which are particles that disintegrate spontaneously after an
average lifetime of 2.2× 10−6 sec. They come to the earth in cosmic rays, and
can also be produced artificially in the laboratory. Some of them disintegrate
in midair, but the remainder disintegrate only after they encounter a piece of
material and stop. It is clear that in its short lifetime a muon cannot travel,
even at the speed of light, much more than 600 meters. But although the muons
are created at the top of the atmosphere, some 10 kilometers up, yet they are
actually found in a laboratory down here, in cosmic rays. How can that be?
The answer is that different muons move at various speeds, some of which are
very close to the speed of light. While from their own point of view they live
only about 2 µsec, from our point of view they live considerably longer—enough
longer that they may reach the earth. The factor by which the time is increased
has already been given as 1/

√
1− u2/c2. The average life has been measured

quite accurately for muons of different velocities, and the values agree closely
with the formula.

We do not know why the meson disintegrates or what its machinery is, but
we do know its behavior satisfies the principle of relativity. That is the utility of
the principle of relativity—it permits us to make predictions, even about things
that otherwise we do not know much about. For example, before we have any
idea at all about what makes the meson disintegrate, we can still predict that
when it is moving at nine-tenths of the speed of light, the apparent length of time
that it lasts is (2.2× 10−6)/

√
1− 92/102 sec; and our prediction works—that is

the good thing about it.
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15-5 The Lorentz contraction

Now let us return to the Lorentz transformation (15.3) and try to get a better
understanding of the relationship between the (x, y, z, t) and the (x′, y′, z′, t′)
coordinate systems, which we shall call the S and S′ systems, or Joe and Moe
systems, respectively. We have already noted that the first equation is based on
the Lorentz suggestion of contraction along the x-direction; how can we prove
that a contraction takes place? In the Michelson-Morley experiment, we now
appreciate that the transverse arm BC cannot change length, by the principle
of relativity; yet the null result of the experiment demands that the times must
be equal. So, in order for the experiment to give a null result, the longitudinal
arm BE must appear shorter, by the square root

√
1− u2/c2. What does this

contraction mean, in terms of measurements made by Joe and Moe? Suppose
that Moe, moving with the S′ system in the x-direction, is measuring the x′-
coordinate of some point with a meter stick. He lays the stick down x′ times, so
he thinks the distance is x′ meters. From the viewpoint of Joe in the S system,
however, Moe is using a foreshortened ruler, so the “real” distance measured is
x′
√

1− u2/c2 meters. Then if the S′ system has travelled a distance ut away
from the S system, the S observer would say that the same point, measured in
his coordinates, is at a distance x = x′

√
1− u2/c2 + ut, or

x′ = x− ut√
1− u2/c2

,

which is the first equation of the Lorentz transformation.

15-6 Simultaneity

In an analogous way, because of the difference in time scales, the denominator
expression is introduced into the fourth equation of the Lorentz transformation.
The most interesting term in that equation is the ux/c2 in the numerator, because
that is quite new and unexpected. Now what does that mean? If we look at the
situation carefully we see that events that occur at two separated places at the
same time, as seen by Moe in S′, do not happen at the same time as viewed by
Joe in S. If one event occurs at point x1 at time t0 and the other event at x2
and t0 (the same time), we find that the two corresponding times t′1 and t′2 differ
by an amount

t′2 − t′1 = u(x1 − x2)/c2√
1− u2/c2

.
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This circumstance is called “failure of simultaneity at a distance,” and to make
the idea a little clearer let us consider the following experiment.

Suppose that a man moving in a space ship (system S′) has placed a clock at
each end of the ship and is interested in making sure that the two clocks are in
synchronism. How can the clocks be synchronized? There are many ways. One
way, involving very little calculation, would be first to locate exactly the midpoint
between the clocks. Then from this station we send out a light signal which will
go both ways at the same speed and will arrive at both clocks, clearly, at the
same time. This simultaneous arrival of the signals can be used to synchronize
the clocks. Let us then suppose that the man in S′ synchronizes his clocks by
this particular method. Let us see whether an observer in system S would agree
that the two clocks are synchronous. The man in S′ has a right to believe they
are, because he does not know that he is moving. But the man in S reasons that
since the ship is moving forward, the clock in the front end was running away
from the light signal, hence the light had to go more than halfway in order to
catch up; the rear clock, however, was advancing to meet the light signal, so this
distance was shorter. Therefore the signal reached the rear clock first, although
the man in S′ thought that the signals arrived simultaneously. We thus see that
when a man in a space ship thinks the times at two locations are simultaneous,
equal values of t′ in his coordinate system must correspond to different values
of t in the other coordinate system!

15-7 Four-vectors

Let us see what else we can discover in the Lorentz transformation. It is
interesting to note that the transformation between the x’s and t’s is analogous
in form to the transformation of the x’s and y’s that we studied in Chapter 11
for a rotation of coordinates. We then had

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,

(15.8)

in which the new x′ mixes the old x and y, and the new y′ also mixes the old
x and y; similarly, in the Lorentz transformation we find a new x′ which is a
mixture of x and t, and a new t′ which is a mixture of t and x. So the Lorentz
transformation is analogous to a rotation, only it is a “rotation” in space and
time, which appears to be a strange concept. A check of the analogy to rotation
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can be made by calculating the quantity

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2. (15.9)

In this equation the first three terms on each side represent, in three-dimensional
geometry, the square of the distance between a point and the origin (surface
of a sphere) which remains unchanged (invariant) regardless of rotation of the
coordinate axes. Similarly, Eq. (15.9) shows that there is a certain combination
which includes time, that is invariant to a Lorentz transformation. Thus, the
analogy to a rotation is complete, and is of such a kind that vectors, i.e., quantities
involving “components” which transform the same way as the coordinates and
time, are also useful in connection with relativity.

Thus we contemplate an extension of the idea of vectors, which we have so far
considered to have only space components, to include a time component. That
is, we expect that there will be vectors with four components, three of which are
like the components of an ordinary vector, and with these will be associated a
fourth component, which is the analog of the time part.

This concept will be analyzed further in the next chapters, where we shall
find that if the ideas of the preceding paragraph are applied to momentum,
the transformation gives three space parts that are like ordinary momentum
components, and a fourth component, the time part, which is the energy.

15-8 Relativistic dynamics

We are now ready to investigate, more generally, what form the laws of
mechanics take under the Lorentz transformation. [We have thus far explained
how length and time change, but not how we get the modified formula for m
(Eq. 15.1). We shall do this in the next chapter.] To see the consequences
of Einstein’s modification of m for Newtonian mechanics, we start with the
Newtonian law that force is the rate of change of momentum, or

F = d(mv)/dt.

Momentum is still given by mv, but when we use the new m this becomes

p = mv = m0v√
1− v2/c2

. (15.10)
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This is Einstein’s modification of Newton’s laws. Under this modification, if
action and reaction are still equal (which they may not be in detail, but are in
the long run), there will be conservation of momentum in the same way as before,
but the quantity that is being conserved is not the old mv with its constant mass,
but instead is the quantity shown in (15.10), which has the modified mass. When
this change is made in the formula for momentum, conservation of momentum
still works.

Now let us see how momentum varies with speed. In Newtonian mechanics it
is proportional to the speed and, according (15.10), over a considerable range of
speed, but small compared with c, it is nearly the same in relativistic mechanics,
because the square-root expression differs only slightly from 1. But when v is
almost equal to c, the square-root expression approaches zero, and the momentum
therefore goes toward infinity.

What happens if a constant force acts on a body for a long time? In Newtonian
mechanics the body keeps picking up speed until it goes faster than light. But
this is impossible in relativistic mechanics. In relativity, the body keeps picking
up, not speed, but momentum, which can continually increase because the mass
is increasing. After a while there is practically no acceleration in the sense of a
change of velocity, but the momentum continues to increase. Of course, whenever
a force produces very little change in the velocity of a body, we say that the body
has a great deal of inertia, and that is exactly what our formula for relativistic
mass says (see Eq. 15.10)—it says that the inertia is very great when v is nearly
as great as c. As an example of this effect, to deflect the high-speed electrons
in the synchrotron that is used here at Caltech, we need a magnetic field that
is 2000 times stronger than would be expected on the basis of Newton’s laws.
In other words, the mass of the electrons in the synchrotron is 2000 times as
great as their normal mass, and is as great as that of a proton! That m should
be 2000 times m0 means that 1 − v2/c2 must be 1/4,000,000, and that means
that v differs from c by one part in 8,000,000, so the electrons are getting pretty
close to the speed of light. If the electrons and light were both to start from
the synchrotron (estimated as 700 feet away) and rush out to Bridge Lab, which
would arrive first? The light, of course, because light always travels faster.* How
much earlier? That is too hard to tell—instead, we tell by what distance the
light is ahead: it is about 1/1000 of an inch, or 1

4 the thickness of a piece of

* The electrons would actually win the race versus visible light because of the index of
refraction of air. A gamma ray would make out better.
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paper! When the electrons are going that fast their masses are enormous, but
their speed cannot exceed the speed of light.

Now let us look at some further consequences of relativistic change of mass.
Consider the motion of the molecules in a small tank of gas. When the gas
is heated, the speed of the molecules is increased, and therefore the mass is
also increased and the gas is heavier. An approximate formula to express the
increase of mass, for the case when the velocity is small, can be found by
expanding m0/

√
1− v2/c2 = m0(1 − v2/c2)−1/2 in a power series, using the

binomial theorem. We get

m0(1− v2/c2)−1/2 = m0(1 + 1
2v

2/c2 + 3
8v

4/c4 + · · · ).

We see clearly from the formula that the series converges rapidly when v is small,
and the terms after the first two or three are negligible. So we can write

m ∼= m0 + 1
2m0v

2
(

1
c2

)
(15.11)

in which the second term on the right expresses the increase of mass due to
molecular velocity. When the temperature increases the v2 increases proportion-
ately, so we can say that the increase in mass is proportional to the increase
in temperature. But since 1

2m0v
2 is the kinetic energy in the old-fashioned

Newtonian sense, we can also say that the increase in mass of all this body of gas
is equal to the increase in kinetic energy divided by c2, or ∆m = ∆(K.E.)/c2.

15-9 Equivalence of mass and energy

The above observation led Einstein to the suggestion that the mass of a body
can be expressed more simply than by the formula (15.1), if we say that the mass
is equal to the total energy content divided by c2. If Eq. (15.11) is multiplied
by c2 the result is

mc2 = m0c
2 + 1

2m0v
2 + · · · (15.12)

Here, the term on the left expresses the total energy of a body, and we recognize
the last term as the ordinary kinetic energy. Einstein interpreted the large
constant term, m0c

2, to be part of the total energy of the body, an intrinsic
energy known as the “rest energy.”

Let us follow out the consequences of assuming, with Einstein, that the
energy of a body always equals mc2. As an interesting result, we shall find the
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formula (15.1) for the variation of mass with speed, which we have merely assumed
up to now. We start with the body at rest, when its energy is m0c

2. Then we
apply a force to the body, which starts it moving and gives it kinetic energy;
therefore, since the energy has increased, the mass has increased—this is implicit
in the original assumption. So long as the force continues, the energy and the
mass both continue to increase. We have already seen (Chapter 13) that the rate
of change of energy with time equals the force times the velocity, or

dE

dt
= F · v. (15.13)

We also have (Chapter 9, Eq. 9.1) that F = d(mv)/dt. When these relations are
put together with the definition of E, Eq. (15.13) becomes

d(mc2)
dt

= v · d(mv)
dt

. (15.14)

We wish to solve this equation for m. To do this we first use the mathematical
trick of multiplying both sides by 2m, which changes the equation to

c2(2m) dm
dt

= 2mv · d(mv)
dt

. (15.15)

We need to get rid of the derivatives, which can be accomplished by integrating
both sides. The quantity (2m) dm/dt can be recognized as the time derivative
of m2, and (2mv) · d(mv)/dt is the time derivative of (mv)2. So, Eq. (15.15) is
the same as

c2
d(m2)
dt

= d(m2v2)
dt

. (15.16)

If the derivatives of two quantities are equal, the quantities themselves differ at
most by a constant, say C. This permits us to write

m2c2 = m2v2 + C. (15.17)

We need to define the constant C more explicitly. Since Eq. (15.17) must be true
for all velocities, we can choose a special case where v = 0, and say that in this
case the mass is m0. Substituting these values into Eq. (15.17) gives

m2
0c

2 = 0 + C.
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We can now use this value of C in Eq. (15.17), which becomes

m2c2 = m2v2 +m2
0c

2. (15.18)

Dividing by c2 and rearranging terms gives

m2(1− v2/c2) = m2
0,

from which we get
m = m0/

√
1− v2/c2. (15.19)

This is the formula (15.1), and is exactly what is necessary for the agreement
between mass and energy in Eq. (15.12).

Ordinarily these energy changes represent extremely slight changes in mass,
because most of the time we cannot generate much energy from a given amount
of material; but in an atomic bomb of explosive energy equivalent to 20 kilotons
of TNT, for example, it can be shown that the dirt after the explosion is lighter
by 1 gram than the initial mass of the reacting material, because of the energy
that was released, i.e., the released energy had a mass of 1 gram, according to
the relationship ∆E = ∆(mc2). This theory of equivalence of mass and energy
has been beautifully verified by experiments in which matter is annihilated—
converted totally to energy: An electron and a positron come together at rest,
each with a rest mass m0. When they come together they disintegrate and two
gamma rays emerge, each with the measured energy of m0c

2. This experiment
furnishes a direct determination of the energy associated with the existence of
the rest mass of a particle.
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16

Relativistic Energy and Momentum

16-1 Relativity and the philosophers

In this chapter we shall continue to discuss the principle of relativity of
Einstein and Poincaré, as it affects our ideas of physics and other branches of
human thought.

Poincaré made the following statement of the principle of relativity: “Ac-
cording to the principle of relativity, the laws of physical phenomena must be
the same for a fixed observer as for an observer who has a uniform motion of
translation relative to him, so that we have not, nor can we possibly have, any
means of discerning whether or not we are carried along in such a motion.”

When this idea descended upon the world, it caused a great stir among
philosophers, particularly the “cocktail-party philosophers,” who say, “Oh, it is
very simple: Einstein’s theory says all is relative!” In fact, a surprisingly large
number of philosophers, not only those found at cocktail parties (but rather than
embarrass them, we shall just call them “cocktail-party philosophers”), will say,
“That all is relative is a consequence of Einstein, and it has profound influences
on our ideas.” In addition, they say “It has been demonstrated in physics that
phenomena depend upon your frame of reference.” We hear that a great deal,
but it is difficult to find out what it means. Probably the frames of reference
that were originally referred to were the coordinate systems which we use in the
analysis of the theory of relativity. So the fact that “things depend upon your
frame of reference” is supposed to have had a profound effect on modern thought.
One might well wonder why, because, after all, that things depend upon one’s
point of view is so simple an idea that it certainly cannot have been necessary to
go to all the trouble of the physical relativity theory in order to discover it. That
what one sees depends upon his frame of reference is certainly known to anybody
who walks around, because he sees an approaching pedestrian first from the
front and then from the back; there is nothing deeper in most of the philosophy
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which is said to have come from the theory of relativity than the remark that “A
person looks different from the front than from the back.” The old story about
the elephant that several blind men describe in different ways is another example,
perhaps, of the theory of relativity from the philosopher’s point of view.

But certainly there must be deeper things in the theory of relativity than
just this simple remark that “A person looks different from the front than from
the back.” Of course relativity is deeper than this, because we can make definite
predictions with it. It certainly would be rather remarkable if we could predict
the behavior of nature from such a simple observation alone.

There is another school of philosophers who feel very uncomfortable about the
theory of relativity, which asserts that we cannot determine our absolute velocity
without looking at something outside, and who would say, “It is obvious that
one cannot measure his velocity without looking outside. It is self-evident that it
is meaningless to talk about the velocity of a thing without looking outside; the
physicists are rather stupid for having thought otherwise, but it has just dawned on
them that this is the case. If only we philosophers had realized what the problems
were that the physicists had, we could have decided immediately by brainwork
that it is impossible to tell how fast one is moving without looking outside, and
we could have made an enormous contribution to physics.” These philosophers
are always with us, struggling in the periphery to try to tell us something, but
they never really understand the subtleties and depths of the problem.

Our inability to detect absolute motion is a result of experiment and not a
result of plain thought, as we can easily illustrate. In the first place, Newton
believed that it was true that one could not tell how fast he is going if he is
moving with uniform velocity in a straight line. In fact, Newton first stated
the principle of relativity, and one quotation made in the last chapter was a
statement of Newton’s. Why then did the philosophers not make all this fuss
about “all is relative,” or whatever, in Newton’s time? Because it was not until
Maxwell’s theory of electrodynamics was developed that there were physical laws
that suggested that one could measure his velocity without looking outside; soon
it was found experimentally that one could not.

Now, is it absolutely, definitely, philosophically necessary that one should
not be able to tell how fast he is moving without looking outside? One of the
consequences of relativity was the development of a philosophy which said, “You
can only define what you can measure! Since it is self-evident that one cannot
measure a velocity without seeing what he is measuring it relative to, therefore
it is clear that there is no meaning to absolute velocity. The physicists should
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have realized that they can talk only about what they can measure.” But that
is the whole problem: whether or not one can define absolute velocity is the
same as the problem of whether or not one can detect in an experiment, without
looking outside, whether he is moving. In other words, whether or not a thing
is measurable is not something to be decided a priori by thought alone, but
something that can be decided only by experiment. Given the fact that the
velocity of light is 186,000 mi/sec, one will find few philosophers who will calmly
state that it is self-evident that if light goes 186,000 mi/sec inside a car, and
the car is going 100,000 mi/sec, that the light also goes 186,000 mi/sec past an
observer on the ground. That is a shocking fact to them; the very ones who claim
it is obvious find, when you give them a specific fact, that it is not obvious.

Finally, there is even a philosophy which says that one cannot detect any
motion except by looking outside. It is simply not true in physics. True, one
cannot perceive a uniform motion in a straight line, but if the whole room were
rotating we would certainly know it, for everybody would be thrown to the wall—
there would be all kinds of “centrifugal” effects. That the earth is turning on its
axis can be determined without looking at the stars, by means of the so-called
Foucault pendulum, for example. Therefore it is not true that “all is relative”; it
is only uniform velocity that cannot be detected without looking outside. Uniform
rotation about a fixed axis can be. When this is told to a philosopher, he is very
upset that he did not really understand it, because to him it seems impossible
that one should be able to determine rotation about an axis without looking
outside. If the philosopher is good enough, after some time he may come back
and say, “I understand. We really do not have such a thing as absolute rotation;
we are really rotating relative to the stars, you see. And so some influence exerted
by the stars on the object must cause the centrifugal force.”

Now, for all we know, that is true; we have no way, at the present time, of
telling whether there would have been centrifugal force if there were no stars and
nebulae around. We have not been able to do the experiment of removing all the
nebulae and then measuring our rotation, so we simply do not know. We must
admit that the philosopher may be right. He comes back, therefore, in delight and
says, “It is absolutely necessary that the world ultimately turn out to be this way:
absolute rotation means nothing; it is only relative to the nebulae.” Then we say to
him, “Now, my friend, is it or is it not obvious that uniform velocity in a straight
line, relative to the nebulae should produce no effects inside a car?” Now that the
motion is no longer absolute, but is a motion relative to the nebulae, it becomes
a mysterious question, and a question that can be answered only by experiment.
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What, then, are the philosophic influences of the theory of relativity? If we
limit ourselves to influences in the sense of what kind of new ideas and suggestions
are made to the physicist by the principle of relativity, we could describe some of
them as follows. The first discovery is, essentially, that even those ideas which
have been held for a very long time and which have been very accurately verified
might be wrong. It was a shocking discovery, of course, that Newton’s laws are
wrong, after all the years in which they seemed to be accurate. Of course it is
clear, not that the experiments were wrong, but that they were done over only a
limited range of velocities, so small that the relativistic effects would not have
been evident. But nevertheless, we now have a much more humble point of view
of our physical laws—everything can be wrong!

Secondly, if we have a set of “strange” ideas, such as that time goes slower
when one moves, and so forth, whether we like them or do not like them is an
irrelevant question. The only relevant question is whether the ideas are consistent
with what is found experimentally. In other words, the “strange ideas” need only
agree with experiment, and the only reason that we have to discuss the behavior
of clocks and so forth is to demonstrate that although the notion of the time
dilation is strange, it is consistent with the way we measure time.

Finally, there is a third suggestion which is a little more technical but which
has turned out to be of enormous utility in our study of other physical laws,
and that is to look at the symmetry of the laws or, more specifically, to look for
the ways in which the laws can be transformed and leave their form the same.
When we discussed the theory of vectors, we noted that the fundamental laws
of motion are not changed when we rotate the coordinate system, and now we
learn that they are not changed when we change the space and time variables in
a particular way, given by the Lorentz transformation. So this idea of studying
the patterns or operations under which the fundamental laws are not changed
has proved to be a very useful one.

16-2 The twin paradox

To continue our discussion of the Lorentz transformation and relativistic
effects, we consider a famous so-called “paradox” of Peter and Paul, who are
supposed to be twins, born at the same time. When they are old enough to
drive a space ship, Paul flies away at very high speed. Because Peter, who is left
on the ground, sees Paul going so fast, all of Paul’s clocks appear to go slower,
his heart beats go slower, his thoughts go slower, everything goes slower, from
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Peter’s point of view. Of course, Paul notices nothing unusual, but if he travels
around and about for a while and then comes back, he will be younger than Peter,
the man on the ground! That is actually right; it is one of the consequences
of the theory of relativity which has been clearly demonstrated. Just as the
mu-mesons last longer when they are moving, so also will Paul last longer when
he is moving. This is called a “paradox” only by the people who believe that the
principle of relativity means that all motion is relative; they say, “Heh, heh, heh,
from the point of view of Paul, can’t we say that Peter was moving and should
therefore appear to age more slowly? By symmetry, the only possible result is
that both should be the same age when they meet.” But in order for them to
come back together and make the comparison, Paul must either stop at the end
of the trip and make a comparison of clocks or, more simply, he has to come
back, and the one who comes back must be the man who was moving, and he
knows this, because he had to turn around. When he turned around, all kinds of
unusual things happened in his space ship—the rockets went off, things jammed
up against one wall, and so on—while Peter felt nothing.

So the way to state the rule is to say that the man who has felt the accelerations,
who has seen things fall against the walls, and so on, is the one who would be
the younger; that is the difference between them in an “absolute” sense, and it
is certainly correct. When we discussed the fact that moving mu-mesons live
longer, we used as an example their straight-line motion in the atmosphere. But
we can also make mu-mesons in a laboratory and cause them to go in a curve
with a magnet, and even under this accelerated motion, they last exactly as much
longer as they do when they are moving in a straight line. Although no one has
arranged an experiment explicitly so that we can get rid of the paradox, one
could compare a mu-meson which is left standing with one that had gone around
a complete circle, and it would surely be found that the one that went around
the circle lasted longer. Although we have not actually carried out an experiment
using a complete circle, it is really not necessary, of course, because everything
fits together all right. This may not satisfy those who insist that every single fact
be demonstrated directly, but we confidently predict the result of the experiment
in which Paul goes in a complete circle.

16-3 Transformation of velocities

The main difference between the relativity of Einstein and the relativity of
Newton is that the laws of transformation connecting the coordinates and times
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between relatively moving systems are different. The correct transformation law,
that of Lorentz, is

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

.

(16.1)

These equations correspond to the relatively simple case in which the relative
motion of the two observers is along their common x-axes. Of course other
directions of motion are possible, but the most general Lorentz transformation is
rather complicated, with all four quantities mixed up together. We shall continue
to use this simpler form, since it contains all the essential features of relativity.

Let us now discuss more of the consequences of this transformation. First, it
is interesting to solve these equations in reverse. That is, here is a set of linear
equations, four equations with four unknowns, and they can be solved in reverse,
for x, y, z, t in terms of x′, y′, z′, t′. The result is very interesting, since it tells us
how a system of coordinates “at rest” looks from the point of view of one that is
“moving.” Of course, since the motions are relative and of uniform velocity, the
man who is “moving” can say, if he wishes, that it is really the other fellow who
is moving and he himself who is at rest. And since he is moving in the opposite
direction, he should get the same transformation, but with the opposite sign of
velocity. That is precisely what we find by manipulation, so that is consistent. If
it did not come out that way, we would have real cause to worry!

x = x′ + ut′√
1− u2/c2

,

y = y′,

z = z′,

t = t′ + ux′/c2√
1− u2/c2

.

(16.2)

Next we discuss the interesting problem of the addition of velocities in relativity.
We recall that one of the original puzzles was that light travels at 186,000 mi/sec
in all systems, even when they are in relative motion. This is a special case of
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the more general problem exemplified by the following. Suppose that an object
inside a space ship is going at 100,000 mi/sec and the space ship itself is going at
100,000 mi/sec; how fast is the object inside the space ship moving from the point
of view of an observer outside? We might want to say 200,000 mi/sec, which is
faster than the speed of light. This is very unnerving, because it is not supposed
to be going faster than the speed of light! The general problem is as follows.

Let us suppose that the object inside the ship, from the point of view of
the man inside, is moving with velocity v, and that the space ship itself has a
velocity u with respect to the ground. We want to know with what velocity vx
this object is moving from the point of view of the man on the ground. This is,
of course, still but a special case in which the motion is in the x-direction. There
will also be a transformation for velocities in the y-direction, or for any angle;
these can be worked out as needed. Inside the space ship the velocity is vx′ ,
which means that the displacement x′ is equal to the velocity times the time:

x′ = vx′t′. (16.3)

Now we have only to calculate what the position and time are from the point of
view of the outside observer for an object which has the relation (16.2) between
x′ and t′. So we simply substitute (16.3) into (16.2), and obtain

x = vx′t′ + ut′√
1− u2/c2

. (16.4)

But here we find x expressed in terms of t′. In order to get the velocity as seen
by the man on the outside, we must divide his distance by his time, not by the
other man’s time! So we must also calculate the time as seen from the outside,
which is

t = t′ + u(vx′t′)/c2√
1− u2/c2

. (16.5)

Now we must find the ratio of x to t, which is

vx = x

t
= u+ vx′

1 + uvx′/c2
, (16.6)

the square roots having cancelled. This is the law that we seek: the resultant
velocity, the “summing” of two velocities, is not just the algebraic sum of two

16-7



velocities (we know that it cannot be or we get in trouble), but is “corrected”
by 1 + uv/c2.

Now let us see what happens. Suppose that you are moving inside the space
ship at half the speed of light, and that the space ship itself is going at half the
speed of light. Thus u is 1

2c and v is 1
2c, but in the denominator uv is one-fourth,

so that
v =

1
2c+ 1

2c

1 + 1
4

= 4c
5 .

So, in relativity, “half” and “half” does not make “one,” it makes only “4/5.” Of
course low velocities can be added quite easily in the familiar way, because so
long as the velocities are small compared with the speed of light we can forget
about the (1 + uv/c2) factor; but things are quite different and quite interesting
at high velocity.

Let us take a limiting case. Just for fun, suppose that inside the space ship
the man was observing light itself. In other words, v = c, and yet the space ship
is moving. How will it look to the man on the ground? The answer will be

v = u+ c

1 + uc/c2
= c

u+ c

u+ c
= c.

Therefore, if something is moving at the speed of light inside the ship, it will
appear to be moving at the speed of light from the point of view of the man
on the ground too! This is good, for it is, in fact, what the Einstein theory of
relativity was designed to do in the first place—so it had better work!

Of course, there are cases in which the motion is not in the direction of the
uniform translation. For example, there may be an object inside the ship which
is just moving “upward” with the velocity vy′ with respect to the ship, and the
ship is moving “horizontally.” Now, we simply go through the same thing, only
using y’s instead of x’s, with the result

y = y′ = vy′t′,

so that if vx′ = 0,
vy = y

t
= vy′

√
1− u2/c2. (16.7)

Thus a sidewise velocity is no longer vy′ , but vy′
√

1− u2/c2. We found this
result by substituting and combining the transformation equations, but we can
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Fig. 16-1. Trajectories described by a light ray and particle inside a
moving clock.

also see the result directly from the principle of relativity for the following reason
(it is always good to look again to see whether we can see the reason). We have
already (Fig. 15-3) seen how a possible clock might work when it is moving; the
light appears to travel at an angle at the speed c in the fixed system, while it
simply goes vertically with the same speed in the moving system. We found that
the vertical component of the velocity in the fixed system is less than that of
light by the factor

√
1− u2/c2 (see Eq. 15.3). But now suppose that we let a

material particle go back and forth in this same “clock,” but at some integral
fraction 1/n of the speed of light (Fig. 16-1). Then when the particle has gone
back and forth once, the light will have gone exactly n times. That is, each “click”
of the “particle” clock will coincide with each nth “click” of the light clock. This
fact must still be true when the whole system is moving, because the physical
phenomenon of coincidence will be a coincidence in any frame. Therefore, since
the speed cy is less than the speed of light, the speed vy of the particle must be
slower than the corresponding speed by the same square-root ratio! That is why
the square root appears in any vertical velocity.

16-4 Relativistic mass

We learned in the last chapter that the mass of an object increases with
velocity, but no demonstration of this was given, in the sense that we made no
arguments analogous to those about the way clocks have to behave. However,
we can show that, as a consequence of relativity plus a few other reasonable
assumptions, the mass must vary in this way. (We have to say “a few other
assumptions” because we cannot prove anything unless we have some laws which
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we assume to be true, if we expect to make meaningful deductions.) To avoid
the need to study the transformation laws of force, we shall analyze a collision,
where we need know nothing about the laws of force, except that we shall assume
the conservation of momentum and energy. Also, we shall assume that the
momentum of a particle which is moving is a vector and is always directed in the
direction of the velocity. However, we shall not assume that the momentum is a
constant times the velocity, as Newton did, but only that it is some function of
velocity. We thus write the momentum vector as a certain coefficient times the
vector velocity:

p = mvv. (16.8)

We put a subscript v on the coefficient to remind us that it is a function of
velocity, and we shall agree to call this coefficient mv the “mass.” Of course,
when the velocity is small, it is the same mass that we would measure in the
slow-moving experiments that we are used to. Now we shall try to demonstrate
that the formula for mv must be m0/

√
1− v2/c2, by arguing from the principle

of relativity that the laws of physics must be the same in every coordinate system.

(a)

1

1

2

2

θ

θ

(b)

x

z

1 1

2 2

θ/2 θ/2

θ/2 θ/2

Fig. 16-2. Two views of an elastic collision between equal objects
moving at the same speed in opposite directions.

Suppose that we have two particles, like two protons, that are absolutely equal,
and they are moving toward each other with exactly equal velocities. Their total
momentum is zero. Now what can happen? After the collision, their directions
of motion must be exactly opposite to each other, because if they are not exactly
opposite, there will be a nonzero total vector momentum, and momentum would
not have been conserved. Also they must have the same speeds, since they are
exactly similar objects; in fact, they must have the same speed they started with,
since we suppose that the energy is conserved in these collisions. So the diagram
of an elastic collision, a reversible collision, will look like Fig. 16-2(a): all the
arrows are the same length, all the speeds are equal. We shall suppose that such
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collisions can always be arranged, that any angle θ can occur, and that any speed
could be used in such a collision. Next, we notice that this same collision can be
viewed differently by turning the axes, and just for convenience we shall turn
the axes, so that the horizontal splits it evenly, as in Fig. 16-2(b). It is the same
collision redrawn, only with the axes turned.

(a)

x ′

z ′

1 1

2 2

w

w

u u
α α
v v

(b)

x ′′

z ′′

1 1

2 2
w

w

u u
α α
v v

Fig. 16-3. Two more views of the collision, from moving cars.

Now here is the real trick: let us look at this collision from the point of view of
someone riding along in a car that is moving with a speed equal to the horizontal
component of the velocity of one particle. Then how does the collision look?
It looks as though particle 1 is just going straight up, because it has lost its
horizontal component, and it comes straight down again, also because it does
not have that component. That is, the collision appears as shown in Fig. 16-3(a).
Particle 2, however, was going the other way, and as we ride past it appears to
fly by at some terrific speed and at a smaller angle, but we can appreciate that
the angles before and after the collision are the same. Let us denote by u the
horizontal component of the velocity of particle 2, and by w the vertical velocity
of particle 1.

Now the question is, what is the vertical velocity u tanα? If we knew that, we
could get the correct expression for the momentum, using the law of conservation
of momentum in the vertical direction. Clearly, the horizontal component of the
momentum is conserved: it is the same before and after the collision for both
particles, and is zero for particle 1. So we need use the conservation law only
for the upward velocity u tanα. But we can get the upward velocity, simply by
looking at the same collision going the other way! If we look at the collision of
Fig. 16-3(a) from a car moving to the left with speed u, we see the same collision,
except “turned over,” as shown in Fig. 16-3(b). Now particle 2 is the one that goes
up and down with speed w, and particle 1 has picked up the horizontal speed u.
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Of course, now we know what the velocity u tanα is: it is w
√

1− u2/c2 (see
Eq. 16.7). We know that the change in the vertical momentum of the vertically
moving particle is

∆p = 2mww

(2, because it moves up and back down). The obliquely moving particle has a
certain velocity v whose components we have found to be u and w

√
1− u2/c2,

and whose mass is mv. The change in vertical momentum of this particle is
therefore ∆p′ = 2mvw

√
1− u2/c2 because, in accordance with our assumed

law (16.8), the momentum component is always the mass corresponding to the
magnitude of the velocity times the component of the velocity in the direction of
interest. Thus in order for the total momentum to be zero the vertical momenta
must cancel and the ratio of the mass moving with speed v and the mass moving
with speed w must therefore be

mw

mv
=
√

1− u2/c2. (16.9)

Let us take the limiting case that w is infinitesimal. If w is very tiny indeed, it
is clear that v and u are practically equal. In this case, mw → m0 and mv → mu.
The grand result is

mu = m0√
1− u2/c2

. (16.10)

It is an interesting exercise now to check whether or not Eq. (16.9) is indeed true
for arbitrary values of w, assuming that Eq. (16.10) is the right formula for the
mass. Note that the velocity v needed in Eq. (16.9) can be calculated from the
right-angle triangle:

v2 = u2 + w2(1− u2/c2).

It will be found to check out automatically, although we used it only in the limit
of small w.

Now, let us accept that momentum is conserved and that the mass depends
upon the velocity according to (16.10) and go on to find what else we can conclude.
Let us consider what is commonly called an inelastic collision. For simplicity, we
shall suppose that two objects of the same kind, moving oppositely with equal
speeds w, hit each other and stick together, to become some new, stationary
object, as shown in Fig. 16-4(a). The mass m of each corresponds to w, which, as
we know, is m0/

√
1− w2/c2. If we assume the conservation of momentum and
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Fig. 16-4. Two views of an inelastic collision between equally massive
objects.

the principle of relativity, we can demonstrate an interesting fact about the mass
of the new object which has been formed. We imagine an infinitesimal velocity u
at right angles to w (we can do the same with finite values of u, but it is easier to
understand with an infinitesimal velocity), then look at this same collision as we
ride by in an elevator at the velocity −u. What we see is shown in Fig. 16-4(b).
The composite object has an unknown mass M . Now object 1 moves with an
upward component of velocity u and a horizontal component which is practically
equal to w, and so also does object 2. After the collision we have the mass M
moving upward with velocity u, considered very small compared with the speed
of light, and also small compared with w. Momentum must be conserved, so let
us estimate the momentum in the upward direction before and after the collision.
Before the collision we have p ≈ 2mwu, and after the collision the momentum is
evidently p′ = Muu, but Mu is essentially the same as M0 because u is so small.
These momenta must be equal because of the conservation of momentum, and
therefore

M0 = 2mw. (16.11)

The mass of the object which is formed when two equal objects collide must be
twice the mass of the objects which come together. You might say, “Yes, of course,
that is the conservation of mass.” But not “Yes, of course,” so easily, because
these masses have been enhanced over the masses that they would be if they were
standing still, yet they still contribute, to the total M , not the mass they have
when standing still, but more. Astonishing as that may seem, in order for the
conservation of momentum to work when two objects come together, the mass
that they form must be greater than the rest masses of the objects, even though
the objects are at rest after the collision!

16-5 Relativistic energy

In the last chapter we demonstrated that as a result of the dependence of
the mass on velocity and Newton’s laws, the changes in the kinetic energy of an
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object resulting from the total work done by the forces on it always comes out to
be

∆T = (mu −m0)c2 = m0c
2√

1− u2/c2
−m0c

2. (16.12)

We even went further, and guessed that the total energy is the total mass times c2.
Now we continue this discussion.

Suppose that our two equally massive objects that collide can still be “seen”
inside M . For instance, a proton and a neutron are “stuck together,” but are still
moving about inside ofM . Then, although we might at first expect the massM to
be 2m0, we have found that it is not 2m0, but 2mw. Since 2mw is what is put in,
but 2m0 are the rest masses of the things inside, the excess mass of the composite
object is equal to the kinetic energy brought in. This means, of course, that energy
has inertia. In the last chapter we discussed the heating of a gas, and showed that
because the gas molecules are moving and moving things are heavier, when we put
energy into the gas its molecules move faster and so the gas gets heavier. But in
fact the argument is completely general, and our discussion of the inelastic collision
shows that the mass is there whether or not it is kinetic energy. In other words, if
two particles come together and produce potential or any other form of energy; if
the pieces are slowed down by climbing hills, doing work against internal forces, or
whatever; then it is still true that the mass is the total energy that has been put in.
So we see that the conservation of mass which we have deduced above is equivalent
to the conservation of energy, and therefore there is no place in the theory of
relativity for strictly inelastic collisions, as there was in Newtonian mechanics.
According to Newtonian mechanics it is all right for two things to collide and so
form an object of mass 2m0 which is in no way distinct from the one that would
result from putting them together slowly. Of course we know from the law of
conservation of energy that there is more kinetic energy inside, but that does not
affect the mass, according to Newton’s laws. But now we see that this is impossible;
because of the kinetic energy involved in the collision, the resulting object will
be heavier; therefore, it will be a different object. When we put the objects
together gently they make something whose mass is 2m0; when we put them
together forcefully, they make something whose mass is greater. When the mass is
different, we can tell that it is different. So, necessarily, the conservation of energy
must go along with the conservation of momentum in the theory of relativity.

This has interesting consequences. For example, suppose that we have an
object whose massM is measured, and suppose something happens so that it flies
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into two equal pieces moving with speed w, so that they each have a mass mw.
Now suppose that these pieces encounter enough material to slow them up until
they stop; then they will have mass m0. How much energy will they have given
to the material when they have stopped? Each will give an amount (mw−m0)c2,
by the theorem that we proved before. This much energy is left in the material
in some form, as heat, potential energy, or whatever. Now 2mw = M , so the
liberated energy is E = (M − 2m0)c2. This equation was used to estimate how
much energy would be liberated under fission in the atomic bomb, for example.
(Although the fragments are not exactly equal, they are nearly equal.) The mass
of the uranium atom was known—it had been measured ahead of time—and the
atoms into which it split, iodine, xenon, and so on, all were of known mass. By
masses, we do not mean the masses while the atoms are moving, we mean the
masses when the atoms are at rest. In other words, both M and m0 are known.
So by subtracting the two numbers one can calculate how much energy will be
released if M can be made to split in “half.” For this reason poor old Einstein
was called the “father” of the atomic bomb in all the newspapers. Of course, all
that meant was that he could tell us ahead of time how much energy would be
released if we told him what process would occur. The energy that should be
liberated when an atom of uranium undergoes fission was estimated about six
months before the first direct test, and as soon as the energy was in fact liberated,
someone measured it directly (and if Einstein’s formula had not worked, they
would have measured it anyway), and the moment they measured it they no
longer needed the formula. Of course, we should not belittle Einstein, but rather
should criticize the newspapers and many popular descriptions of what causes
what in the history of physics and technology. The problem of how to get the
thing to occur in an effective and rapid manner is a completely different matter.

The result is just as significant in chemistry. For instance, if we were to weigh
the carbon dioxide molecule and compare its mass with that of the carbon and
the oxygen, we could find out how much energy would be liberated when carbon
and oxygen form carbon dioxide. The only trouble here is that the differences in
masses are so small that it is technically very difficult to do.

Now let us turn to the question of whether we should add m0c
2 to the kinetic

energy and say from now on that the total energy of an object is mc2. First, if we
can still see the component pieces of rest mass m0 inside M , then we could say
that some of the mass M of the compound object is the mechanical rest mass of
the parts, part of it is kinetic energy of the parts, and part of it is potential energy
of the parts. But we have discovered, in nature, particles of various kinds which
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undergo reactions just like the one we have treated above, in which with all the
study in the world, we cannot see the parts inside. For instance, when a K-meson
disintegrates into two pions it does so according to the law (16.11), but the idea
that a K is made out of 2 π’s is a useless idea, because it also disintegrates into
3 π’s!

Therefore we have a new idea: we do not have to know what things are made
of inside; we cannot and need not identify, inside a particle, which of the energy is
rest energy of the parts into which it is going to disintegrate. It is not convenient
and often not possible to separate the total mc2 energy of an object into rest
energy of the inside pieces, kinetic energy of the pieces, and potential energy of
the pieces; instead, we simply speak of the total energy of the particle. We “shift
the origin” of energy by adding a constant m0c

2 to everything, and say that the
total energy of a particle is the mass in motion times c2, and when the object is
standing still, the energy is the mass at rest times c2.

Finally, we find that the velocity v, momentum P , and total energy E are
related in a rather simple way. That the mass in motion at speed v is the mass m0
at rest divided by

√
1− v2/c2, surprisingly enough, is rarely used. Instead, the

following relations are easily proved, and turn out to be very useful:

E2 − P 2c2 = m2
0c

4 (16.13)
and

Pc = Ev/c. (16.14)
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17

Space-Time

17-1 The geometry of space-time

The theory of relativity shows us that the relationships of positions and
times as measured in one coordinate system and another are not what we would
have expected on the basis of our intuitive ideas. It is very important that we
thoroughly understand the relations of space and time implied by the Lorentz
transformation, and therefore we shall consider this matter more deeply in this
chapter.

The Lorentz transformation between the positions and times (x, y, z, t) as
measured by an observer “standing still,” and the corresponding coordinates and
time (x′, y′, z′, t′) measured inside a “moving” space ship, moving with velocity u
are

x′ = x− ut√
1− u2/c2

,

y′ = y,

z′ = z,

t′ = t− ux/c2√
1− u2/c2

.

(17.1)

Let us compare these equations with Eq. (11.5), which also relates measurements
in two systems, one of which in this instance is rotated relative to the other:

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(17.2)

In this particular case, Moe and Joe are measuring with axes having an angle θ
between the x′- and x-axes. In each case, we note that the “primed” quantities
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are “mixtures” of the “unprimed” ones: the new x′ is a mixture of x and y, and
the new y′ is also a mixture of x and y.

An analogy is useful: When we look at an object, there is an obvious thing we
might call the “apparent width,” and another we might call the “depth.” But the
two ideas, width and depth, are not fundamental properties of the object, because
if we step aside and look at the same thing from a different angle, we get a different
width and a different depth, and we may develop some formulas for computing the
new ones from the old ones and the angles involved. Equations (17.2) are these
formulas. One might say that a given depth is a kind of “mixture” of all depth
and all width. If it were impossible ever to move, and we always saw a given
object from the same position, then this whole business would be irrelevant—we
would always see the “true” width and the “true” depth, and they would appear
to have quite different qualities, because one appears as a subtended optical angle
and the other involves some focusing of the eyes or even intuition; they would
seem to be very different things and would never get mixed up. It is because we
can walk around that we realize that depth and width are, somehow or other,
just two different aspects of the same thing.

Can we not look at the Lorentz transformations in the same way? Here also
we have a mixture—of positions and the time. A difference between a space
measurement and a time measurement produces a new space measurement. In
other words, in the space measurements of one man there is mixed in a little bit
of the time, as seen by the other. Our analogy permits us to generate this idea:
The “reality” of an object that we are looking at is somehow greater (speaking
crudely and intuitively) than its “width” and its “depth” because they depend
upon how we look at it; when we move to a new position, our brain immediately
recalculates the width and the depth. But our brain does not immediately
recalculate coordinates and time when we move at high speed, because we have
had no effective experience of going nearly as fast as light to appreciate the
fact that time and space are also of the same nature. It is as though we were
always stuck in the position of having to look at just the width of something,
not being able to move our heads appreciably one way or the other; if we could,
we understand now, we would see some of the other man’s time—we would see
“behind,” so to speak, a little bit.

Thus we shall try to think of objects in a new kind of world, of space and time
mixed together, in the same sense that the objects in our ordinary space-world are
real, and can be looked at from different directions. We shall then consider that
objects occupying space and lasting for a certain length of time occupy a kind of
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Fig. 17-1. Three particle paths in space-time: (a) a particle at rest
at x = x0; (b) a particle which starts at x = x0 and moves with constant
speed; (c) a particle which starts at high speed but slows down; (d) a
light path.

a “blob” in a new kind of world, and that we look at this “blob” from different
points of view when we are moving at different velocities. This new world, this
geometrical entity in which the “blobs” exist by occupying position and taking
up a certain amount of time, is called space-time. A given point (x, y, z, t) in
space-time is called an event. Imagine, for example, that we plot the x-positions
horizontally, y and z in two other directions, both mutually at “right angles” and
at “right angles” to the paper (!), and time, vertically. Now, how does a moving
particle, say, look on such a diagram? If the particle is standing still, then it has
a certain x, and as time goes on, it has the same x, the same x, the same x; so
its “path” is a line that runs parallel to the t-axis (Fig. 17-1 a). On the other
hand, if it drifts outward, then as the time goes on x increases (Fig. 17-1 b).
So a particle, for example, which starts to drift out and then slows up should
have a motion something like that shown in Fig. 17-1(c). A particle, in other
words, which is permanent and does not disintegrate is represented by a line in
space-time. A particle which disintegrates would be represented by a forked line,
because it would turn into two other things which would start from that point.

What about light? Light travels at the speed c, and that would be represented
by a line having a certain fixed slope (Fig. 17-1 d).

Now according to our new idea, if a given event occurs to a particle, say if
it suddenly disintegrates at a certain space-time point into two new ones which
follow some new tracks, and this interesting event occurred at a certain value
of x and a certain value of t, then we would expect that, if this makes any sense,
we just have to take a new pair of axes and turn them, and that will give us the
new t and the new x in our new system, as shown in Fig. 17-2(a). But this is
wrong, because Eq. (17.1) is not exactly the same mathematical transformation
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Fig. 17-2. Two views of a disintegrating particle.

as Eq. (17.2). Note, for example, the difference in sign between the two, and the
fact that one is written in terms of cos θ and sin θ, while the other is written with
algebraic quantities. (Of course, it is not impossible that the algebraic quantities
could be written as cosine and sine, but actually they cannot.) But still, the two
expressions are very similar. As we shall see, it is not really possible to think
of space-time as a real, ordinary geometry because of that difference in sign. In
fact, although we shall not emphasize this point, it turns out that a man who is
moving has to use a set of axes which are inclined equally to the light ray, using
a special kind of projection parallel to the x′- and t′-axes, for his x′ and t′, as
shown in Fig. 17-2(b). We shall not deal with the geometry, since it does not
help much; it is easier to work with the equations.

17-2 Space-time intervals

Although the geometry of space-time is not Euclidean in the ordinary sense,
there is a geometry which is very similar, but peculiar in certain respects. If
this idea of geometry is right, there ought to be some functions of coordinates
and time which are independent of the coordinate system. For example, under
ordinary rotations, if we take two points, one at the origin, for simplicity, and
the other one somewhere else, both systems would have the same origin, and
the distance from here to the other point is the same in both. That is one
property that is independent of the particular way of measuring it. The square
of the distance is x2 + y2 + z2. Now what about space-time? It is not hard to
demonstrate that we have here, also, something which stays the same, namely, the
combination c2t2 − x2 − y2 − z2 is the same before and after the transformation:

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2. (17.3)

This quantity is therefore something which, like the distance, is “real” in some
sense; it is called the interval between the two space-time points, one of which is,
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in this case, at the origin. (Actually, of course, it is the interval squared, just
as x2 + y2 + z2 is the distance squared.) We give it a different name because it
is in a different geometry, but the interesting thing is only that some signs are
reversed and there is a c in it.

Let us get rid of the c; that is an absurdity if we are going to have a wonderful
space with x’s and y’s that can be interchanged. One of the confusions that could
be caused by someone with no experience would be to measure widths, say, by the
angle subtended at the eye, and measure depth in a different way, like the strain
on the muscles needed to focus them, so that the depths would be measured in
feet and the widths in meters. Then one would get an enormously complicated
mess of equations in making transformations such as (17.2), and would not be
able to see the clarity and simplicity of the thing for a very simple technical
reason, that the same thing is being measured in two different units. Now in Eqs.
(17.1) and (17.3) nature is telling us that time and space are equivalent; time
becomes space; they should be measured in the same units. What distance is a
“second”? It is easy to figure out from (17.3) what it is. It is 3× 108 meters, the
distance that light would go in one second. In other words, if we were to measure
all distances and times in the same units, seconds, then our unit of distance
would be 3× 108 meters, and the equations would be simpler. Or another way
that we could make the units equal is to measure time in meters. What is a
meter of time? A meter of time is the time it takes for light to go one meter,
and is therefore 1/3× 10−8 sec, or 3.3 billionths of a second! We would like, in
other words, to put all our equations in a system of units in which c = 1. If time
and space are measured in the same units, as suggested, then the equations are
obviously much simplified. They are

x′ = x− ut√
1− u2

,

y′ = y,

z′ = z,

t′ = t− ux√
1− u2

.

(17.4)

t′2 − x′2 − y′2 − z′2 = t2 − x2 − y2 − z2. (17.5)

If we are ever unsure or “frightened” that after we have this system with c = 1
we shall never be able to get our equations right again, the answer is quite the
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opposite. It is much easier to remember them without the c’s in them, and it is
always easy to put the c’s back, by looking after the dimensions. For instance,
in
√

1− u2, we know that we cannot subtract a velocity squared, which has units,
from the pure number 1, so we know that we must divide u2 by c2 in order to
make that unitless, and that is the way it goes.

The difference between space-time and ordinary space, and the character of an
interval as related to the distance, is very interesting. According to formula (17.5),
if we consider a point which in a given coordinate system had zero time, and
only space, then the interval squared would be negative and we would have an
imaginary interval, the square root of a negative number. Intervals can be either
real or imaginary in the theory. The square of an interval may be either positive
or negative, unlike distance, which has a positive square. When an interval is
imaginary, we say that the two points have a space-like interval between them
(instead of imaginary), because the interval is more like space than like time. On
the other hand, if two objects are at the same place in a given coordinate system,
but differ only in time, then the square of the time is positive and the distances
are zero and the interval squared is positive; this is called a time-like interval. In
our diagram of space-time, therefore, we would have a representation something
like this: at 45◦ there are two lines (actually, in four dimensions these will be
“cones,” called light cones and points on these lines are all at zero interval from
the origin. Where light goes from a given point is always separated from it by a
zero interval, as we see from Eq. (17.5). Incidentally, we have just proved that
if light travels with speed c in one system, it travels with speed c in another,
for if the interval is the same in both systems, i.e., zero in one and zero in the
other, then to state that the propagation speed of light is invariant is the same
as saying that the interval is zero.

17-3 Past, present, and future

The space-time region surrounding a given space-time point can be separated
into three regions, as shown in Fig. 17-3. In one region we have space-like
intervals, and in two regions, time-like intervals. Physically, these three regions
into which space-time around a given point is divided have an interesting physical
relationship to that point: a physical object or a signal can get from a point in
region 2 to the event O by moving along at a speed less than the speed of light.
Therefore events in this region can affect the point O, can have an influence
on it from the past. In fact, of course, an object at P on the negative t-axis is
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Fig. 17-3. The space-time region surrounding a point at the origin.

precisely in the “past” with respect to O; it is the same space-point as O, only
earlier. What happened there then, affects O now. (Unfortunately, that is the
way life is.) Another object at Q can get to O by moving with a certain speed
less than c, so if this object were in a space ship and moving, it would be, again,
the past of the same space-point. That is, in another coordinate system, the axis
of time might go through both O and Q. So all points of region 2 are in the
“past” of O, and anything that happens in this region can affect O. Therefore
region 2 is sometimes called the affective past, or affecting past; it is the locus of
all events which can affect point O in any way.

Region 3, on the other hand, is a region which we can affect from O, we can
“hit” things by shooting “bullets” out at speeds less than c. So this is the world
whose future can be affected by us, and we may call that the affective future.
Now the interesting thing about all the rest of space-time, i.e., region 1, is that we
can neither affect it now from O, nor can it affect us now at O, because nothing
can go faster than the speed of light. Of course, what happens at R can affect us
later ; that is, if the sun is exploding “right now,” it takes eight minutes before
we know about it, and it cannot possibly affect us before then.

What we mean by “right now” is a mysterious thing which we cannot define
and we cannot affect, but it can affect us later, or we could have affected it if
we had done something far enough in the past. When we look at the star Alpha
Centauri, we see it as it was four years ago; we might wonder what it is like
“now.” “Now” means at the same time from our special coordinate system. We
can only see Alpha Centauri by the light that has come from our past, up to four
years ago, but we do not know what it is doing “now”; it will take four years
before what it is doing “now” can affect us. Alpha Centauri “now” is an idea
or concept of our mind; it is not something that is really definable physically
at the moment, because we have to wait to observe it; we cannot even define it
right “now.” Furthermore, the “now” depends on the coordinate system. If, for
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example, Alpha Centauri were moving, an observer there would not agree with
us because he would put his axes at an angle, and his “now” would be a different
time. We have already talked about the fact that simultaneity is not a unique
thing.

There are fortune tellers, or people who tell us they can know the future, and
there are many wonderful stories about the man who suddenly discovers that
he has knowledge about the affective future. Well, there are lots of paradoxes
produced by that because if we know something is going to happen, then we can
make sure we will avoid it by doing the right thing at the right time, and so on.
But actually there is no fortune teller who can even tell us the present! There
is no one who can tell us what is really happening right now, at any reasonable
distance, because that is unobservable. We might ask ourselves this question,
which we leave to the student to try to answer: Would any paradox be produced
if it were suddenly to become possible to know things that are in the space-like
intervals of region 1?

17-4 More about four-vectors

Let us now return to our consideration of the analogy of the Lorentz transfor-
mation and rotations of the space axes. We have learned the utility of collecting
together other quantities which have the same transformation properties as the
coordinates, to form what we call vectors, directed lines. In the case of ordinary
rotations, there are many quantities that transform the same way as x, y, and z
under rotation: for example, the velocity has three components, an x, y, and z-
component; when seen in a different coordinate system, none of the components
is the same, instead they are all transformed to new values. But, somehow or
other, the velocity “itself” has a greater reality than do any of its particular
components, and we represent it by a directed line.

We therefore ask: Is it or is it not true that there are quantities which
transform, or which are related, in a moving system and in a nonmoving system,
in the same way as x, y, z, and t? From our experience with vectors, we know that
three of the quantities, like x, y, z, would constitute the three components of an
ordinary space-vector, but the fourth quantity would look like an ordinary scalar
under space rotation, because it does not change so long as we do not go into
a moving coordinate system. Is it possible, then, to associate with some of our
known “three-vectors” a fourth object, that we could call the “time component,”
in such a manner that the four objects together would “rotate” the same way
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as position and time in space-time? We shall now show that there is, indeed, at
least one such thing (there are many of them, in fact): the three components of
momentum, and the energy as the time component, transform together to make
what we call a “four-vector.” In demonstrating this, since it is quite inconvenient
to have to write c’s everywhere, we shall use the same trick concerning units of
the energy, the mass, and the momentum, that we used in Eq. (17.4). Energy
and mass, for example, differ only by a factor c2 which is merely a question of
units, so we can say energy is the mass. Instead of having to write the c2, we
put E = m, and then, of course, if there were any trouble we would put in the
right amounts of c so that the units would straighten out in the last equation,
but not in the intermediate ones.

Thus our equations for energy and momentum are

E = m = m0/
√

1− v2,

p = mv = m0v/
√

1− v2.
(17.6)

Also in these units, we have
E2 − p2 = m2

0. (17.7)

For example, if we measure energy in electron volts, what does a mass of 1 electron
volt mean? It means the mass whose rest energy is 1 electron volt, that is, m0c

2

is one electron volt. For example, the rest mass of an electron is 0.511× 106 eV.
Now what would the momentum and energy look like in a new coordinate

system? To find out, we shall have to transform Eq. (17.6), which we can do
because we know how the velocity transforms. Suppose that, as we measure it,
an object has a velocity v, but we look upon the same object from the point of
view of a space ship which itself is moving with a velocity u, and in that system
we use a prime to designate the corresponding thing. In order to simplify things
at first, we shall take the case that the velocity v is in the direction of u. (Later,
we can do the more general case.) What is v′, the velocity as seen from the space
ship? It is the composite velocity, the “difference” between v and u. By the law
which we worked out before,

v′ = v − u
1− uv . (17.8)

Now let us calculate the new energy E′, the energy as the fellow in the space
ship would see it. He would use the same rest mass, of course, but he would
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use v′ for the velocity. What we have to do is square v′, subtract it from one,
take the square root, and take the reciprocal:

v′2 = v2 − 2uv + u2

1− 2uv + u2v2 ,

1− v′2 = 1− 2uv + u2v2 − v2 + 2uv − u2

1− 2uv + u2v2 ,

= 1− v2 − u2 + u2v2

1− 2uv + u2v2 ,

= (1− v2)(1− u2)
(1− uv)2 .

Therefore
1√

1− v′2
= 1− uv√

1− v2
√

1− u2
. (17.9)

The energy E′ is then simply m0 times the above expression. But we want
to express the energy in terms of the unprimed energy and momentum, and we
note that

E′ = m0 −m0uv√
1− v2

√
1− u2

= (m0/
√

1− v2)− (m0v/
√

1− v2)u√
1− u2

,

or
E′ = E − upx√

1− u2
, (17.10)

which we recognize as being exactly of the same form as

t′ = t− ux√
1− u2

.

Next we must find the new momentum p′x. This is just the energy E′ times v′,
and is also simply expressed in terms of E and p:

p′x = E′v′ = m0(1− uv)√
1− v2

√
1− u2

· v − u
(1− uv) = m0v −m0u√

1− v2
√

1− u2
.

Thus
p′x = px − uE√

1− u2
, (17.11)
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which we recognize as being of precisely the same form as

x′ = x− ut√
1− u2

.

Thus the transformations for the new energy and momentum in terms of the
old energy and momentum are exactly the same as the transformations for t′ in
terms of t and x, and x′ in terms of x and t: all we have to do is, every time we
see t in (17.4) substitute E, and every time we see x substitute px, and then the
equations (17.4) will become the same as Eqs. (17.10) and (17.11). This would
imply, if everything works right, an additional rule that p′y = py and that p′z = pz.
To prove this would require our going back and studying the case of motion up
and down. Actually, we did study the case of motion up and down in the last
chapter. We analyzed a complicated collision and we noticed that, in fact, the
transverse momentum is not changed when viewed from a moving system; so we
have already verified that p′y = py and p′z = pz. The complete transformation,
then, is

p′x = px − uE√
1− u2

,

p′y = py,

p′z = pz,

E′ = E − upx√
1− u2

.

(17.12)

In these transformations, therefore, we have discovered four quantities which
transform like x, y, z, and t, and which we call the four-vector momentum. Since
the momentum is a four-vector, it can be represented on a space-time diagram
of a moving particle as an “arrow” tangent to the path, as shown in Fig. 17-4.
This arrow has a time component equal to the energy, and its space components

x

t

pµ

Fig. 17-4. The four-vector momentum of a particle.
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represent its three-vector momentum; this arrow is more “real” than either the
energy or the momentum, because those just depend on how we look at the
diagram.

17-5 Four-vector algebra

The notation for four-vectors is different than it is for three-vectors. In
the case of three-vectors, if we were to talk about the ordinary three-vector
momentum we would write it p. If we wanted to be more specific, we could say
it has three components which are, for the axes in question, px, py, and pz, or
we could simply refer to a general component as pi, and say that i could either
be x, y, or z, and that these are the three components; that is, imagine that i is
any one of three directions, x, y, or z. The notation that we use for four-vectors
is analogous to this: we write pµ for the four-vector, and µ stands for the four
possible directions t, x, y, or z.

We could, of course, use any notation we want; do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations. The whole idea of a four-vector, in fact, is an
improvement in notation so that the transformations can be remembered easily.
Aµ, then, is a general four-vector, but for the special case of momentum, the pt
is identified as the energy, px is the momentum in the x-direction, py is that in
the y-direction, and pz is that in the z-direction. To add four-vectors, we add
the corresponding components.

If there is an equation among four-vectors, then the equation is true for each
component. For instance, if the law of conservation of three-vector momentum is
to be true in particle collisions, i.e., if the sum of the momenta for a large number
of interacting or colliding particles is to be a constant, that must mean that the
sums of all momenta in the x-direction, in the y-direction, and in the z-direction,
for all the particles, must each be constant. This law alone would be impossible
in relativity because it is incomplete; it is like talking about only two of the
components of a three-vector. It is incomplete because if we rotate the axes, we
mix the various components, so we must include all three components in our law.
Thus, in relativity, we must complete the law of conservation of momentum by
extending it to include the time component. This is absolutely necessary to go
with the other three, or there cannot be relativistic invariance. The conservation
of energy is the fourth equation which goes with the conservation of momentum
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to make a valid four-vector relationship in the geometry of space and time. Thus
the law of conservation of energy and momentum in four-dimensional notation is∑

particles
in

pµ =
∑

particles
out

pµ (17.13)

or, in a slightly different notation∑
i

piµ =
∑
j

pjµ, (17.14)

where i = 1, 2, . . . refers to the particles going into the collision, j = 1, 2, . . .
refers to the particles coming out of the collision, and µ = x, y, z, or t. You say,
“In which axes?” It makes no difference. The law is true for each component,
using any axes.

In vector analysis we discussed one other thing, the dot product of two vectors.
Let us now consider the corresponding thing in space-time. In ordinary rotation
we discovered there was an unchanged quantity x2 + y2 + z2. In four dimensions,
we find that the corresponding quantity is t2 − x2 − y2 − z2 (Eq. 17.3). How can
we write that? One way would be to write some kind of four-dimensional thing
with a square dot between, like Aµ �Bµ; one of the notations which is actually
used is ∑′

µ

AµAµ = A2
t −A2

x −A2
y −A2

z. (17.15)

The prime on
∑

means that the first term, the “time” term, is positive, but the
other three terms have minus signs. This quantity, then, will be the same in any
coordinate system, and we may call it the square of the length of the four-vector.
For instance, what is the square of the length of the four-vector momentum of
a single particle? This will be equal to p2

t − p2
x − p2

y − p2
z or, in other words,

E2 − p2, because we know that pt is E. What is E2 − p2? It must be something
which is the same in every coordinate system. In particular, it must be the same
for a coordinate system which is moving right along with the particle, in which
the particle is standing still. If the particle is standing still, it would have no
momentum. So in that coordinate system, it is purely its energy, which is the
same as its rest mass. Thus E2 − p2 = m2

0. So we see that the square of the
length of this vector, the four-vector momentum, is equal to m2

0.
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From the square of a vector, we can go on to invent the “dot product,” or the
product which is a scalar: if aµ is one four-vector and bµ is another four-vector,
then the scalar product is∑′

aµbµ = atbt − axbx − ayby − azbz. (17.16)

It is the same in all coordinate systems.
Finally, we shall mention certain things whose rest mass m0 is zero. A photon

of light, for example. A photon is like a particle, in that it carries an energy
and a momentum. The energy of a photon is a certain constant, called Planck’s
constant, times the frequency of the photon: E = hν. Such a photon also carries
a momentum, and the momentum of a photon (or of any other particle, in fact)
is h divided by the wavelength: p = h/λ. But, for a photon, there is a definite
relationship between the frequency and the wavelength: ν = c/λ. (The number
of waves per second, times the wavelength of each, is the distance that the light
goes in one second, which, of course, is c.) Thus we see immediately that the
energy of a photon must be the momentum times c, or if c = 1, the energy and
momentum are equal. That is to say, the rest mass is zero. Let us look at that
again; that is quite curious. If it is a particle of zero rest mass, what happens
when it stops? It never stops! It always goes at the speed c. The usual formula
for energy is m0/

√
1− v2. Now can we say that m0 = 0 and v = 1, so the energy

is 0? We cannot say that it is zero; the photon really can (and does) have energy
even though it has no rest mass, but this it possesses by perpetually going at the
speed of light!

We also know that the momentum of any particle is equal to its total energy
times its velocity: if c = 1, p = vE or, in ordinary units, p = vE/c2. For any
particle moving at the speed of light, p = E if c = 1. The formulas for the energy
of a photon as seen from a moving system are, of course, given by Eq. (17.12),
but for the momentum we must substitute the energy times c (or times 1 in this
case). The different energies after transformation means that there are different
frequencies. This is called the Doppler effect, and one can calculate it easily from
Eq. (17.12), using also E = p and E = hν.

As Minkowski said, “Space of itself, and time of itself will sink into mere
shadows, and only a kind of union between them shall survive.”
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18

Rotation in Two Dimensions

18-1 The center of mass

In the previous chapters we have been studying the mechanics of points, or
small particles whose internal structure does not concern us. For the next few
chapters we shall study the application of Newton’s laws to more complicated
things. When the world becomes more complicated, it also becomes more
interesting, and we shall find that the phenomena associated with the mechanics
of a more complex object than just a point are really quite striking. Of course
these phenomena involve nothing but combinations of Newton’s laws, but it is
sometimes hard to believe that only F = ma is at work.

The more complicated objects we deal with can be of several kinds: water
flowing, galaxies whirling, and so on. The simplest “complicated” object to
analyze, at the start, is what we call a rigid body, a solid object that is turning
as it moves about. However, even such a simple object may have a most complex
motion, and we shall therefore first consider the simplest aspects of such motion,
in which an extended body rotates about a fixed axis. A given point on such a
body then moves in a plane perpendicular to this axis. Such rotation of a body
about a fixed axis is called plane rotation or rotation in two dimensions. We
shall later generalize the results to three dimensions, but in doing so we shall
find that, unlike the case of ordinary particle mechanics, rotations are subtle and
hard to understand unless we first get a solid grounding in two dimensions.

The first interesting theorem concerning the motion of complicated objects
can be observed at work if we throw an object made of a lot of blocks and spokes,
held together by strings, into the air. Of course we know it goes in a parabola,
because we studied that for a particle. But now our object is not a particle; it
wobbles and it jiggles, and so on. It does go in a parabola though; one can see
that. What goes in a parabola? Certainly not the point on the corner of the
block, because that is jiggling about; neither is it the end of the wooden stick,
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or the middle of the wooden stick, or the middle of the block. But something
goes in a parabola, there is an effective “center” which moves in a parabola. So
our first theorem about complicated objects is to demonstrate that there is a
mean position which is mathematically definable, but not necessarily a point of
the material itself, which goes in a parabola. That is called the theorem of the
center of the mass, and the proof of it is as follows.

We may consider any object as being made of lots of little particles, the atoms,
with various forces among them. Let i represent an index which defines one of
the particles. (There are millions of them, so i goes to 1023, or something.) Then
the force on the ith particle is, of course, the mass times the acceleration of that
particle:

F i = mi(d2ri/dt
2). (18.1)

In the next few chapters our moving objects will be ones in which all the
parts are moving at speeds very much slower than the speed of light, and we shall
use the nonrelativistic approximation for all quantities. In these circumstances
the mass is constant, so that

F i = d2(miri)/dt2. (18.2)

If we now add the force on all the particles, that is, if we take the sum of all
the F i’s for all the different indexes, we get the total force, F . On the other
side of the equation, we get the same thing as though we added before the
differentiation: ∑

i

F i = F = d2(
∑
imiri)
dt2

. (18.3)

Therefore the total force is the second derivative of the masses times their
positions, added together.

Now the total force on all the particles is the same as the external force. Why?
Although there are all kinds of forces on the particles because of the strings, the
wigglings, the pullings and pushings, and the atomic forces, and who knows what,
and we have to add all these together, we are rescued by Newton’s Third Law.
Between any two particles the action and reaction are equal, so that when we
add all the equations together, if any two particles have forces between them it
cancels out in the sum; therefore the net result is only those forces which arise
from other particles which are not included in whatever object we decide to sum
over. So if Eq. (18.3) is the sum over a certain number of the particles, which
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together are called “the object,” then the external force on the total object is
equal to the sum of all the forces on all its constituent particles.

Now it would be nice if we could write Eq. (18.3) as the total mass times
some acceleration. We can. Let us say M is the sum of all the masses, i.e., the
total mass. Then if we define a certain vector R to be

R =
∑
i

miri/M, (18.4)

Eq. (18.3) will be simply

F = d2(MR)/dt2 = M(d2R/dt2), (18.5)

since M is a constant. Thus we find that the external force is the total mass
times the acceleration of an imaginary point whose location is R. This point is
called the center of mass of the body. It is a point somewhere in the “middle”
of the object, a kind of average r in which the different ri’s have weights or
importances proportional to the masses.

We shall discuss this important theorem in more detail in a later chapter, and
we shall therefore limit our remarks to two points: First, if the external forces are
zero, if the object were floating in empty space, it might whirl, and jiggle, and
twist, and do all kinds of things. But the center of mass, this artificially invented,
calculated position, somewhere in the middle, will move with a constant velocity.
In particular, if it is initially at rest, it will stay at rest. So if we have some kind
of a box, perhaps a space ship, with people in it, and we calculate the location
of the center of mass and find it is standing still, then the center of mass will
continue to stand still if no external forces are acting on the box. Of course, the
space ship may move a little in space, but that is because the people are walking
back and forth inside; when one walks toward the front, the ship goes toward
the back so as to keep the average position of all the masses in exactly the same
place.

Is rocket propulsion therefore absolutely impossible because one cannot move
the center of mass? No; but of course we find that to propel an interesting part
of the rocket, an uninteresting part must be thrown away. In other words, if we
start with a rocket at zero velocity and we spit some gas out the back end, then
this little blob of gas goes one way as the rocket ship goes the other, but the
center of mass is still exactly where it was before. So we simply move the part
that we are interested in against the part we are not interested in.
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The second point concerning the center of mass, which is the reason we
introduced it into our discussion at this time, is that it may be treated separately
from the “internal” motions of an object, and may therefore be ignored in our
discussion of rotation.

18-2 Rotation of a rigid body

Now let us discuss rotations. Of course an ordinary object does not simply
rotate, it wobbles, shakes, and bends, so to simplify matters we shall discuss the
motion of a nonexistent ideal object which we call a rigid body. This means an
object in which the forces between the atoms are so strong, and of such character,
that the little forces that are needed to move it do not bend it. Its shape stays
essentially the same as it moves about. If we wish to study the motion of such a
body, and agree to ignore the motion of its center of mass, there is only one thing
left for it to do, and that is to turn. We have to describe that. How? Suppose
there is some line in the body which stays put (perhaps it includes the center of
mass and perhaps not), and the body is rotating about this particular line as
an axis. How do we define the rotation? That is easy enough, for if we mark a
point somewhere on the object, anywhere except on the axis, we can always tell
exactly where the object is, if we only know where this point has gone to. The
only thing needed to describe the position of that point is an angle. So rotation
consists of a study of the variations of the angle with time.

In order to study rotation, we observe the angle through which a body has
turned. Of course, we are not referring to any particular angle inside the object
itself; it is not that we draw some angle on the object. We are talking about the
angular change of the position of the whole thing, from one time to another.

First, let us study the kinematics of rotations. The angle will change with
time, and just as we talked about position and velocity in one dimension, we
may talk about angular position and angular velocity in plane rotation. In fact,
there is a very interesting relationship between rotation in two dimensions and
one-dimensional displacement, in which almost every quantity has its analog.
First, we have the angle θ which defines how far the body has gone around; this
replaces the distance y, which defines how far it has gone along. In the same
manner, we have a velocity of turning, ω = dθ/dt, which tells us how much the
angle changes in a second, just as v = ds/dt describes how fast a thing moves,
or how far it moves in a second. If the angle is measured in radians, then the
angular velocity ω will be so and so many radians per second. The greater the
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angular velocity, the faster the object is turning, the faster the angle changes.
We can go on: we can differentiate the angular velocity with respect to time, and
we can call α = dω/dt = d2θ/dt2 the angular acceleration. That would be the
analog of the ordinary acceleration.

x

y

x

y

θ

∆θ r

O

P (x, y)

Q θ

vx

vyv

Fig. 18-1. Kinematics of two-dimensional rotation.

Now of course we shall have to relate the dynamics of rotation to the laws of
dynamics of the particles of which the object is made, so we must find out how
a particular particle moves when the angular velocity is such and such. To do
this, let us take a certain particle which is located at a distance r from the axis
and say it is in a certain location P (x, y) at a given instant, in the usual manner
(Fig. 18-1). If at a moment ∆t later the angle of the whole object has turned
through ∆θ, then this particle is carried with it. It is at the same radius away
from O as it was before, but is carried to Q. The first thing we would like to know
is how much the distance x changes and how much the distance y changes. If OP
is called r, then the length PQ is r∆θ, because of the way angles are defined.
The change in x, then, is simply the projection of r∆θ in the x-direction:

∆x = −PQ sin θ = −r∆θ · (y/r) = −y∆θ. (18.6)
Similarly,

∆y = +x∆θ. (18.7)

If the object is turning with a given angular velocity ω, we find, by dividing both
sides of (18.6) and (18.7) by ∆t, that the velocity of the particle is

vx = −ωy and vy = +ωx. (18.8)

Of course if we want to find the magnitude of the velocity, we just write

v =
√
v2
x + v2

y =
√
ω2y2 + ω2x2 = ω

√
x2 + y2 = ωr. (18.9)
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It should not be mysterious that the value of the magnitude of this velocity is ωr;
in fact, it should be self-evident, because the distance that it moves is r∆θ and
the distance it moves per second is r∆θ/∆t, or rω.

Let us now move on to consider the dynamics of rotation. Here a new concept,
force, must be introduced. Let us inquire whether we can invent something which
we shall call the torque (L. torquere, to twist) which bears the same relationship to
rotation as force does to linear movement. A force is the thing that is needed to
make linear motion, and the thing that makes something rotate is a “rotary force”
or a “twisting force,” i.e., a torque. Qualitatively, a torque is a “twist”; what is a
torque quantitatively? We shall get to the theory of torques quantitatively by
studying the work done in turning an object, for one very nice way of defining a
force is to say how much work it does when it acts through a given displacement.
We are going to try to maintain the analogy between linear and angular quantities
by equating the work that we do when we turn something a little bit when there
are forces acting on it, to the torque times the angle it turns through. In other
words, the definition of the torque is going to be so arranged that the theorem of
work has an absolute analog: force times distance is work, and torque times angle
is going to be work. That tells us what torque is. Consider, for instance, a rigid
body of some kind with various forces acting on it, and an axis about which the
body rotates. Let us at first concentrate on one force and suppose that this force
is applied at a certain point (x, y). How much work would be done if we were to
turn the object through a very small angle? That is easy. The work done is

∆W = Fx ∆x+ Fy ∆y. (18.10)

We need only to substitute Eqs. (18.6) and (18.7) for ∆x and ∆y to obtain

∆W = (xFy − yFx)∆θ. (18.11)

That is, the amount of work that we have done is, in fact, equal to the angle
through which we have turned the object, multiplied by a strange-looking combi-
nation of the force and the distance. This “strange combination” is what we call
the torque. So, defining the change in work as the torque times the angle, we
now have the formula for torque in terms of the forces. (Obviously, torque is not
a completely new idea independent of Newtonian mechanics—torque must have
a definite definition in terms of the force.)

When there are several forces acting, the work that is done is, of course, the
sum of the works done by all the forces, so that ∆W will be a whole lot of terms,
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all added together, for all the forces, each of which is proportional, however,
to ∆θ. We can take the ∆θ outside and therefore can say that the change in the
work is equal to the sum of all the torques due to all the different forces that are
acting, times ∆θ. This sum we might call the total torque, τ . Thus torques add
by the ordinary laws of algebra, but we shall later see that this is only because
we are working in a plane. It is like one-dimensional kinematics, where the forces
simply add algebraically, but only because they are all in the same direction. It
is more complicated in three dimensions. Thus, for two-dimensional rotation,

τi = xiFyi − yiFxi (18.12)
and

τ =
∑

τi. (18.13)

It must be emphasized that the torque is about a given axis. If a different axis is
chosen, so that all the xi and yi are changed, the value of the torque is (usually)
changed too.

Now we pause briefly to note that our foregoing introduction of torque, through
the idea of work, gives us a most important result for an object in equilibrium: if
all the forces on an object are in balance both for translation and rotation, not
only is the net force zero, but the total of all the torques is also zero, because if an
object is in equilibrium, no work is done by the forces for a small displacement.
Therefore, since ∆W = τ ∆θ = 0, the sum of all the torques must be zero. So
there are two conditions for equilibrium: that the sum of the forces is zero, and
that the sum of the torques is zero. Prove that it suffices to be sure that the sum
of torques about any one axis (in two dimensions) is zero.

Now let us consider a single force, and try to figure out, geometrically, what
this strange thing xFy − yFx amounts to. In Fig. 18-2 we see a force F acting at
a point r. When the object has rotated through a small angle ∆θ, the work done,
of course, is the component of force in the direction of the displacement times the

O

P
S

α
α

∆θrr0

r ∆θ

Ft

Fr

F

Fig. 18-2. The torque produced by a force.
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displacement. In other words, it is only the tangential component of the force
that counts, and this must be multiplied by the distance r∆θ. Therefore we see
that the torque is also equal to the tangential component of force (perpendicular
to the radius) times the radius. That makes sense in terms of our ordinary idea
of the torque, because if the force were completely radial, it would not put any
“twist” on the body; it is evident that the twisting effect should involve only the
part of the force which is not pulling out from the center, and that means the
tangential component. Furthermore, it is clear that a given force is more effective
on a long arm than near the axis. In fact, if we take the case where we push right
on the axis, we are not twisting at all! So it makes sense that the amount of
twist, or torque, is proportional both to the radial distance and to the tangential
component of the force.

There is still a third formula for the torque which is very interesting. We
have just seen that the torque is the force times the radius times the sine of the
angle α, in Fig. 18-2. But if we extend the line of action of the force and draw
the line OS, the perpendicular distance to the line of action of the force (the
lever arm of the force) we notice that this lever arm is shorter than r in just the
same proportion as the tangential part of the force is less than the total force.
Therefore the formula for the torque can also be written as the magnitude of the
force times the length of the lever arm.

The torque is also often called the moment of the force. The origin of this
term is obscure, but it may be related to the fact that “moment” is derived from
the Latin movimentum, and that the capability of a force to move an object
(using the force on a lever or crowbar) increases with the length of the lever arm.
In mathematics “moment” means weighted by how far away it is from an axis.

18-3 Angular momentum

Although we have so far considered only the special case of a rigid body,
the properties of torques and their mathematical relationships are interesting
also even when an object is not rigid. In fact, we can prove a very remarkable
theorem: just as external force is the rate of change of a quantity p, which we
call the total momentum of a collection of particles, so the external torque is the
rate of change of a quantity L which we call the angular momentum of the group
of particles.

To prove this, we shall suppose that there is a system of particles on which
there are some forces acting and find out what happens to the system as a result
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Fig. 18-3. A particle moves about an axis O.

of the torques due to these forces. First, of course, we should consider just one
particle. In Fig. 18-3 is one particle of mass m, and an axis O; the particle is not
necessarily rotating in a circle about O, it may be moving in an ellipse, like a
planet going around the sun, or in some other curve. It is moving somehow, and
there are forces on it, and it accelerates according to the usual formula that the
x-component of force is the mass times the x-component of acceleration, etc. But
let us see what the torque does. The torque equals xFy − yFx, and the force in
the x- or y-direction is the mass times the acceleration in the x- or y-direction:

τ = xFy − yFx =
= xm(d2y/dt2)− ym(d2x/dt2). (18.14)

Now, although this does not appear to be the derivative of any simple quantity,
it is in fact the derivative of the quantity xm(dy/dt)− ym(dx/dt):

d

dt

[
xm

(
dy

dt

)
− ym

(
dx

dt

)]
= xm

(
d2y

dt2

)
+
(
dx

dt

)
m

(
dy

dt

)
−ym

(
d2x

dt2

)
−
(
dy

dt

)
m

(
dx

dt

)
= xm

(
d2y

dt2

)
− ym

(
d2x

dt2

)
.

(18.15)

So it is true that the torque is the rate of change of something with time! So we
pay attention to the “something,” we give it a name: we call it L, the angular
momentum:

L = xm(dy/dt)− ym(dx/dt)
= xpy − ypx. (18.16)

Although our present discussion is nonrelativistic, the second form for L given
above is relativistically correct. So we have found that there is also a rotational
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analog for the momentum, and that this analog, the angular momentum, is given
by an expression in terms of the components of linear momentum that is just
like the formula for torque in terms of the force components! Thus, if we want
to know the angular momentum of a particle about an axis, we take only the
component of the momentum that is tangential, and multiply it by the radius. In
other words, what counts for angular momentum is not how fast it is going away
from the origin, but how much it is going around the origin. Only the tangential
part of the momentum counts for angular momentum. Furthermore, the farther
out the line of the momentum extends, the greater the angular momentum. And
also, because the geometrical facts are the same whether the quantity is labeled
p or F , it is true that there is a lever arm (not the same as the lever arm of the
force on the particle!) which is obtained by extending the line of the momentum
and finding the perpendicular distance to the axis. Thus the angular momentum
is the magnitude of the momentum times the momentum lever arm. So we have
three formulas for angular momentum, just as we have three formulas for the
torque:

L = xpy − ypx
= rptang

= p · lever arm. (18.17)

Like torque, angular momentum depends upon the position of the axis about
which it is to be calculated.

Before proceeding to a treatment of more than one particle, let us apply the
above results to a planet going around the sun. In which direction is the force?
The force is toward the sun. What, then, is the torque on the object? Of course,
this depends upon where we take the axis, but we get a very simple result if
we take it at the sun itself, for the torque is the force times the lever arm, or
the component of force perpendicular to r, times r. But there is no tangential
force, so there is no torque about an axis at the sun! Therefore, the angular
momentum of the planet going around the sun must remain constant. Let us see
what that means. The tangential component of velocity, times the mass, times
the radius, will be constant, because that is the angular momentum, and the
rate of change of the angular momentum is the torque, and, in this problem,
the torque is zero. Of course since the mass is also a constant, this means that
the tangential velocity times the radius is a constant. But this is something we
already knew for the motion of a planet. Suppose we consider a small amount of
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time ∆t. How far will the planet move when it moves from P to Q (Fig. 18-3)?
How much area will it sweep through? Disregarding the very tiny area QQ′P
compared with the much larger area OPQ, it is simply half the base PQ times
the height, OR. In other words, the area that is swept through in unit time will
be equal to the velocity times the lever arm of the velocity (times one-half). Thus
the rate of change of area is proportional to the angular momentum, which is
constant. So Kepler’s law about equal areas in equal times is a word description
of the statement of the law of conservation of angular momentum, when there is
no torque produced by the force.

18-4 Conservation of angular momentum

Now we shall go on to consider what happens when there is a large number
of particles, when an object is made of many pieces with many forces acting
between them and on them from the outside. Of course, we already know that,
about any given fixed axis, the torque on the ith particle (which is the force on
the ith particle times the lever arm of that force) is equal to the rate of change of
the angular momentum of that particle, and that the angular momentum of the
ith particle is its momentum times its momentum lever arm. Now suppose we
add the torques τi for all the particles and call it the total torque τ . Then this will
be the rate of change of the sum of the angular momenta of all the particles Li,
and that defines a new quantity which we call the total angular momentum L.
Just as the total momentum of an object is the sum of the momenta of all the
parts, so the angular momentum is the sum of the angular momenta of all the
parts. Then the rate of change of the total L is the total torque:

τ =
∑

τi =
∑ dLi

dt
= dL

dt
. (18.18)

Now it might seem that the total torque is a complicated thing. There are all
those internal forces and all the outside forces to be considered. But, if we
take Newton’s law of action and reaction to say, not simply that the action
and reaction are equal, but also that they are directed exactly oppositely along
the same line (Newton may or may not actually have said this, but he tacitly
assumed it), then the two torques on the reacting objects, due to their mutual
interaction, will be equal and opposite because the lever arms for any axis are
equal. Therefore the internal torques balance out pair by pair, and so we have
the remarkable theorem that the rate of change of the total angular momentum
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about any axis is equal to the external torque about that axis!

τ =
∑

τi = τext = dL/dt. (18.19)

Thus we have a very powerful theorem concerning the motion of large collections
of particles, which permits us to study the over-all motion without having to
look at the detailed machinery inside. This theorem is true for any collection of
objects, whether they form a rigid body or not.

One extremely important case of the above theorem is the law of conservation
of angular momentum: if no external torques act upon a system of particles, the
angular momentum remains constant.

A special case of great importance is that of a rigid body, that is, an object
of a definite shape that is just turning around. Consider an object that is fixed
in its geometrical dimensions, and which is rotating about a fixed axis. Various
parts of the object bear the same relationship to one another at all times. Now
let us try to find the total angular momentum of this object. If the mass of one
of its particles is mi, and its position or location is at (xi, yi), then the problem
is to find the angular momentum of that particle, because the total angular
momentum is the sum of the angular momenta of all such particles in the body.
For an object going around in a circle, the angular momentum, of course, is the
mass times the velocity times the distance from the axis, and the velocity is equal
to the angular velocity times the distance from the axis:

Li = miviri = mir
2
i ω, (18.20)

or, summing over all the particles i, we get

L = Iω, (18.21)
where

I =
∑
i

mir
2
i . (18.22)

This is the analog of the law that the momentum is mass times velocity.
Velocity is replaced by angular velocity, and we see that the mass is replaced
by a new thing which we call the moment of inertia I, which is analogous to
the mass. Equations (18.21) and (18.22) say that a body has inertia for turning
which depends, not just on the masses, but on how far away they are from the
axis. So, if we have two objects of the same mass, when we put the masses
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Fig. 18-4. The “inertia for turning” depends upon the lever arm of the
masses.

farther away from the axis, the inertia for turning will be higher. This is easily
demonstrated by the apparatus shown in Fig. 18-4, where a weight M is kept
from falling very fast because it has to turn the large weighted rod. At first, the
masses m are close to the axis, and M speeds up at a certain rate. But when
we change the moment of inertia by putting the two masses m much farther
away from the axis, then we see that M accelerates much less rapidly than it did
before, because the body has much more inertia against turning. The moment of
inertia is the inertia against turning, and is the sum of the contributions of all
the masses, times their distances squared, from the axis.

There is one important difference between mass and moment of inertia which
is very dramatic. The mass of an object never changes, but its moment of inertia
can be changed. If we stand on a frictionless rotatable stand with our arms
outstretched, and hold some weights in our hands as we rotate slowly, we may
change our moment of inertia by drawing our arms in, but our mass does not
change. When we do this, all kinds of wonderful things happen, because of the
law of the conservation of angular momentum: If the external torque is zero, then
the angular momentum, the moment of inertia times omega, remains constant.
Initially, we were rotating with a large moment of inertia I1 at a low angular
velocity ω1, and the angular momentum was I1ω1. Then we changed our moment
of inertia by pulling our arms in, say to a smaller value I2. Then the product Iω,
which has to stay the same because the total angular momentum has to stay the
same, was I2ω2. So I1ω1 = I2ω2. That is, if we reduce the moment of inertia, we
have to increase the angular velocity.
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19

Center of Mass; Moment of Inertia

19-1 Properties of the center of mass

In the previous chapter we found that if a great many forces are acting on a
complicated mass of particles, whether the particles comprise a rigid or a nonrigid
body, or a cloud of stars, or anything else, and we find the sum of all the forces
(that is, of course, the external forces, because the internal forces balance out),
then if we consider the body as a whole, and say it has a total mass M , there is
a certain point “inside” the body, called the center of mass, such that the net
resulting external force produces an acceleration of this point, just as though the
whole mass were concentrated there. Let us now discuss the center of mass in a
little more detail.

The location of the center of mass (abbreviated CM) is given by the equation

RCM =
∑
miri∑
mi

. (19.1)

This is, of course, a vector equation which is really three equations, one for
each of the three directions. We shall consider only the x-direction, because
if we can understand that one, we can understand the other two. What does
XCM =

∑
mixi/

∑
mi mean? Suppose for a moment that the object is divided

into little pieces, all of which have the same mass m; then the total mass is
simply the number N of pieces times the mass of one piece, say one gram, or any
unit. Then this equation simply says that we add all the x’s, and then divide
by the number of things that we have added: XCM = m

∑
xi/mN =

∑
xi/N .

In other words, XCM is the average of all the x’s, if the masses are equal. But
suppose one of them were twice as heavy as the others. Then in the sum, that x
would come in twice. This is easy to understand, for we can think of this double
mass as being split into two equal ones, just like the others; then in taking the
average, of course, we have to count that x twice because there are two masses
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there. Thus X is the average position, in the x-direction, of all the masses, every
mass being counted a number of times proportional to the mass, as though it
were divided into “little grams.” From this it is easy to prove that X must be
somewhere between the largest and the smallest x, and, therefore lies inside the
envelope including the entire body. It does not have to be in the material of the
body, for the body could be a circle, like a hoop, and the center of mass is in the
center of the hoop, not in the hoop itself.

Of course, if an object is symmetrical in some way, for instance, a rectangle,
so that it has a plane of symmetry, the center of mass lies somewhere on the
plane of symmetry. In the case of a rectangle there are two planes, and that
locates it uniquely. But if it is just any symmetrical object, then the center of
gravity lies somewhere on the axis of symmetry, because in those circumstances
there are as many positive as negative x’s.

A

B

CM

Fig. 19-1. The CM of a compound body lies on the line joining the
CM’s of the two composite parts.

Another interesting proposition is the following very curious one. Suppose
that we imagine an object to be made of two pieces, A and B (Fig. 19-1). Then
the center of mass of the whole object can be calculated as follows. First, find the
center of mass of piece A, and then of piece B. Also, find the total mass of each
piece, MA and MB . Then consider a new problem, in which a point mass MA is
at the center of mass of object A, and another point mass MB is at the center
of mass of object B. The center of mass of these two point masses is then the
center of mass of the whole object. In other words, if the centers of mass of
various parts of an object have been worked out, we do not have to start all over
again to find the center of mass of the whole object; we just have to put the
pieces together, treating each one as a point mass situated at the center of mass
of that piece. Let us see why that is. Suppose that we wanted to calculate the
center of mass of a complete object, some of whose particles are considered to
be members of object A and some members of object B. The total sum

∑
mixi
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can then be split into two pieces—the sum
∑
Amixi for the A object only, and

the sum
∑
Bmixi for object B only. Now if we were computing the center of

mass of object A alone, we would have exactly the first of these sums, and we
know that this by itself is MAXA, the total mass of all the particles in A times
the position of the center of mass of A, because that is the theorem of the center
of mass, applied to object A. In the same manner, just by looking at object B,
we get MBXB , and of course, adding the two yields MXCM:

MXCM =
∑
A

mixi +
∑
B

mixi

= MAXA +MBXB . (19.2)

Now since M is evidently the sum of MA and MB, we see that Eq. (19.2) can
be interpreted as a special example of the center of mass formula for two point
objects, one of mass MA located at XA and the other of mass MB located at XB .

The theorem concerning the motion of the center of mass is very interesting,
and has played an important part in the development of our understanding of
physics. Suppose we assume that Newton’s law is right for the small component
parts of a much larger object. Then this theorem shows that Newton’s law is also
correct for the larger object, even if we do not study the details of the object, but
only the total force acting on it and its mass. In other words, Newton’s law has
the peculiar property that if it is right on a certain small scale, then it will be
right on a larger scale. If we do not consider a baseball as a tremendously complex
thing, made of myriads of interacting particles, but study only the motion of the
center of mass and the external forces on the ball, we find F = ma, where F
is the external force on the baseball, m is its mass, and a is the acceleration of
its center of mass. So F = ma is a law which reproduces itself on a larger scale.
(There ought to be a good word, out of the Greek, perhaps, to describe a law
which reproduces the same law on a larger scale.)

Of course, one might suspect that the first laws that would be discovered
by human beings would be those that would reproduce themselves on a larger
scale. Why? Because the actual scale of the fundamental gears and wheels of the
universe are of atomic dimensions, which are so much finer than our observations
that we are nowhere near that scale in our ordinary observations. So the first
things that we would discover must be true for objects of no special size relative to
an atomic scale. If the laws for small particles did not reproduce themselves on a
larger scale, we would not discover those laws very easily. What about the reverse
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problem? Must the laws on a small scale be the same as those on a larger scale?
Of course it is not necessarily so in nature, that at an atomic level the laws have
to be the same as on a large scale. Suppose that the true laws of motion of atoms
were given by some strange equation which does not have the property that when
we go to a larger scale we reproduce the same law, but instead has the property
that if we go to a larger scale, we can approximate it by a certain expression such
that, if we extend that expression up and up, it keeps reproducing itself on a
larger and larger scale. That is possible, and in fact that is the way it works.
Newton’s laws are the “tail end” of the atomic laws, extrapolated to a very large
size. The actual laws of motion of particles on a fine scale are very peculiar, but
if we take large numbers of them and compound them, they approximate, but
only approximate, Newton’s laws. Newton’s laws then permit us to go on to a
higher and higher scale, and it still seems to be the same law. In fact, it becomes
more and more accurate as the scale gets larger and larger. This self-reproducing
factor of Newton’s laws is thus really not a fundamental feature of nature, but
is an important historical feature. We would never discover the fundamental
laws of the atomic particles at first observation because the first observations
are much too crude. In fact, it turns out that the fundamental atomic laws,
which we call quantum mechanics, are quite different from Newton’s laws, and
are difficult to understand because all our direct experiences are with large-scale
objects and the small-scale atoms behave like nothing we see on a large scale. So
we cannot say, “An atom is just like a planet going around the sun,” or anything
like that. It is like nothing we are familiar with because there is nothing like
it. As we apply quantum mechanics to larger and larger things, the laws about
the behavior of many atoms together do not reproduce themselves, but produce
new laws, which are Newton’s laws, which then continue to reproduce themselves
from, say, micro-microgram size, which still is billions and billions of atoms, on
up to the size of the earth, and above.

Let us now return to the center of mass. The center of mass is sometimes
called the center of gravity, for the reason that, in many cases, gravity may be
considered uniform. Let us suppose that we have small enough dimensions that the
gravitational force is not only proportional to the mass, but is everywhere parallel
to some fixed line. Then consider an object in which there are gravitational forces
on each of its constituent masses. Let mi be the mass of one part. Then the
gravitational force on that part is mi times g. Now the question is, where can we
apply a single force to balance the gravitational force on the whole thing, so that
the entire object, if it is a rigid body, will not turn? The answer is that this force

19-4



must go through the center of mass, and we show this in the following way. In
order that the body will not turn, the torque produced by all the forces must add
up to zero, because if there is a torque, there is a change of angular momentum,
and thus a rotation. So we must calculate the total of all the torques on all the
particles, and see how much torque there is about any given axis; it should be
zero if this axis is at the center of mass. Now, measuring x horizontally and y
vertically, we know that the torques are the forces in the y-direction, times the
lever arm x (that is to say, the force times the lever arm around which we want
to measure the torque). Now the total torque is the sum

τ =
∑

migxi = g
∑

mixi, (19.3)

so if the total torque is to be zero, the sum
∑
mixi must be zero. But

∑
mixi =

MXCM, the total mass times the distance of the center of mass from the axis.
Thus the x-distance of the center of mass from the axis is zero.

Of course, we have checked the result only for the x-distance, but if we use
the true center of mass the object will balance in any position, because if we
turned it 90 degrees, we would have y’s instead of x’s. In other words, when an
object is supported at its center of mass, there is no torque on it because of a
parallel gravitational field. In case the object is so large that the nonparallelism
of the gravitational forces is significant, then the center where one must apply
the balancing force is not simple to describe, and it departs slightly from the
center of mass. That is why one must distinguish between the center of mass and
the center of gravity. The fact that an object supported exactly at the center of
mass will balance in all positions has another interesting consequence. If, instead
of gravitation, we have a pseudo force due to acceleration, we may use exactly
the same mathematical procedure to find the position to support it so that there
are no torques produced by the inertial force of acceleration. Suppose that the
object is held in some manner inside a box, and that the box, and everything
contained in it, is accelerating. We know that, from the point of view of someone
at rest relative to this accelerating box, there will be an effective force due to
inertia. That is, to make the object go along with the box, we have to push on it
to accelerate it, and this force is “balanced” by the “force of inertia,” which is a
pseudo force equal to the mass times the acceleration of the box. To the man in
the box, this is the same situation as if the object were in a uniform gravitational
field whose “g” value is equal to the acceleration a. Thus the inertial force due
to accelerating an object has no torque about the center of mass.
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This fact has a very interesting consequence. In an inertial frame that is
not accelerating, the torque is always equal to the rate of change of the angular
momentum. However, about an axis through the center of mass of an object
which is accelerating, it is still true that the torque is equal to the rate of change
of the angular momentum. Even if the center of mass is accelerating, we may
still choose one special axis, namely, one passing through the center of mass, such
that it will still be true that the torque is equal to the rate of change of angular
momentum around that axis. Thus the theorem that torque equals the rate of
change of angular momentum is true in two general cases: (1) a fixed axis in
inertial space, (2) an axis through the center of mass, even though the object
may be accelerating.

19-2 Locating the center of mass

The mathematical techniques for the calculation of centers of mass are in the
province of a mathematics course, and such problems provide good exercise in
integral calculus. After one has learned calculus, however, and wants to know
how to locate centers of mass, it is nice to know certain tricks which can be used
to do so. One such trick makes use of what is called the theorem of Pappus. It
works like this: if we take any closed area in a plane and generate a solid by
moving it through space such that each point is always moved perpendicular to
the plane of the area, the resulting solid has a total volume equal to the area of
the cross section times the distance that the center of mass moved! Certainly
this is true if we move the area in a straight line perpendicular to itself, but if
we move it in a circle or in some other curve, then it generates a rather peculiar
volume. For a curved path, the outside goes around farther, and the inside goes
around less, and these effects balance out. So if we want to locate the center
of mass of a plane sheet of uniform density, we can remember that the volume
generated by spinning it about an axis is the distance that the center of mass
goes around, times the area of the sheet.

For example, if we wish to find the center of mass of a right triangle of
base D and height H (Fig. 19-2), we might solve the problem in the following
way. Imagine an axis along H, and rotate the triangle about that axis through
a full 360 degrees. This generates a cone. The distance that the x-coordinate
of the center of mass has moved is 2πx. The area which is being moved is the
area of the triangle, 1

2HD. So the x-distance of the center of mass times the
area of the triangle is the volume swept out, which is of course πD2H/3. Thus
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D
x

Fig. 19-2. A right triangle and a right circular cone generated by
rotating the triangle.

(2πx)( 1
2HD) = πD2H/3, or x = D/3. In a similar manner, by rotating about

the other axis, or by symmetry, we find y = H/3. In fact, the center of mass
of any uniform triangular area is where the three medians, the lines from the
vertices through the centers of the opposite sides, all meet. That point is 1/3
of the way along each median. Clue: Slice the triangle up into a lot of little
pieces, each parallel to a base. Note that the median line bisects every piece, and
therefore the center of mass must lie on this line.

Now let us try a more complicated figure. Suppose that it is desired to find
the position of the center of mass of a uniform semicircular disc—a disc sliced in
half. Where is the center of mass? For a full disc, it is at the center, of course,
but a half-disc is more difficult. Let r be the radius and x be the distance of the
center of mass from the straight edge of the disc. Spin it around this edge as axis
to generate a sphere. Then the center of mass has gone around 2πx, the area
is πr2/2 (because it is only half a circle). The volume generated is, of course,
4πr3/3, from which we find that

(2πx)( 1
2πr

2) = 4πr3/3,
or

x = 4r/3π.

There is another theorem of Pappus which is a special case of the above one,
and therefore equally true. Suppose that, instead of the solid semicircular disc,
we have a semicircular piece of wire with uniform mass density along the wire,
and we want to find its center of mass. In this case there is no mass in the
interior, only on the wire. Then it turns out that the area which is swept by
a plane curved line, when it moves as before, is the distance that the center of
mass moves times the length of the line. (The line can be thought of as a very
narrow area, and the previous theorem can be applied to it.)
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19-3 Finding the moment of inertia

Now let us discuss the problem of finding the moments of inertia of various
objects. The formula for the moment of inertia about the z-axis of an object is

I =
∑

mi(x2
i + y2

i )
or

I =
∫

(x2 + y2) dm =
∫

(x2 + y2)ρ dV. (19.4)

That is, we must sum the masses, each one multiplied by the square of its
distance (x2

i + y2
i ) from the axis. Note that it is not the three-dimensional

distance, only the two-dimensional distance squared, even for a three-dimensional
object. For the most part, we shall restrict ourselves to two-dimensional objects,
but the formula for rotation about the z-axis is just the same in three dimensions.

dxx

L

Fig. 19-3. A straight rod of length L rotating about an axis through
one end.

As a simple example, consider a rod rotating about a perpendicular axis
through one end (Fig. 19-3). Now we must sum all the masses times the x-
distances squared (the y’s being all zero in this case). What we mean by “the
sum,” of course, is the integral of x2 times the little elements of mass. If we
divide the rod into small elements of length dx, the corresponding elements of
mass are proportional to dx, and if dx were the length of the whole rod the mass
would be M . Therefore

dm = M dx/L

and so

I =
∫ L

0
x2 M dx

L
= M

L

∫ L

0
x2 dx = ML2

3 . (19.5)

The dimensions of moment of inertia are always mass times length squared, so
all we really had to work out was the factor 1/3.

19-8



Now what is I if the rotation axis is at the center of the rod? We could just
do the integral over again, letting x range from − 1

2L to + 1
2L. But let us notice

a few things about the moment of inertia. We can imagine the rod as two rods,
each of mass M/2 and length L/2; the moments of inertia of the two small rods
are equal, and are both given by the formula (19.5). Therefore the moment of
inertia is

I = 2(M/2)(L/2)2

3 = ML2

12 . (19.6)

Thus it is much easier to turn a rod about its center, than to swing it around an
end.

Of course, we could go on to compute the moments of inertia of various other
bodies of interest. However, while such computations provide a certain amount of
important exercise in the calculus, they are not basically of interest to us as such.
There is, however, an interesting theorem which is very useful. Suppose we have
an object, and we want to find its moment of inertia around some axis. That
means we want the inertia needed to carry it by rotation about that axis. Now if
we support the object on pivots at the center of mass, so that the object does not
turn as it rotates about the axis (because there is no torque on it from inertial
effects, and therefore it will not turn when we start moving it), then the forces
needed to swing it around are the same as though all the mass were concentrated
at the center of mass, and the moment of inertia would be simply I1 = MR2

CM,
where RCM is the distance from the axis to the center of mass. But of course
that is not the right formula for the moment of inertia of an object which is really
being rotated as it revolves, because not only is the center of it moving in a circle,
which would contribute an amount I1 to the moment of inertia, but also we must
turn it about its center of mass. So it is not unreasonable that we must add to I1
the moment of inertia Ic about the center of mass. So it is a good guess that the
total moment of inertia about any axis will be

I = Ic +MR2
CM. (19.7)

This theorem is called the parallel-axis theorem, and may be easily proved.
The moment of inertia about any axis is the mass times the sum of the xi’s and
the yi’s, each squared: I =

∑
(x2
i + y2

i )mi. We shall concentrate on the x’s, but
of course the y’s work the same way. Now x is the distance of a particular point
mass from the origin, but let us consider how it would look if we measured x′
from the CM, instead of x from the origin. To get ready for this analysis, we
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write
xi = x′i +XCM.

Then we just square this to find

x2
i = x′2i + 2XCMx

′
i +X2

CM.

So, when this is multiplied by mi and summed over all i, what happens? Taking
the constants outside the summation sign, we get

Ix =
∑

mix
′2
i + 2XCM

∑
mix

′
i +X2

CM
∑

mi.

The third sum is easy; it is just MX2
CM. In the second sum there are two pieces,

one of them is
∑
mix

′
i, which is the total mass times the x′-coordinate of the

center of mass. But this contributes nothing, because x′ is measured from the
center of mass, and in these axes the average position of all the particles, weighted
by the masses, is zero. The first sum, of course, is the x part of Ic. Thus we
arrive at Eq. (19.7), just as we guessed.

Let us check (19.7) for one example. Let us just see whether it works for the
rod. For an axis through one end, the moment of inertia should beML2/3, for we
calculated that. The center of mass of a rod, of course, is in the center of the rod,
at a distance L/2. Therefore we should find that ML2/3 = ML2/12 +M(L/2)2.
Since one-quarter plus one-twelfth is one-third, we have made no fundamental
error.

Incidentally, we did not really need to use an integral to find the moment of
inertia (19.5). If we simply assume that it isML2 times γ, an unknown coefficient,
and then use the argument about the two halves to get 1

4γ for (19.6), then from
our argument about transferring the axes we could prove that γ = 1

4γ + 1
4 , so γ

must be 1/3. There is always another way to do it!
In applying the parallel-axis theorem, it is of course important to remember

that the axis for Ic must be parallel to the axis about which the moment of inertia
is wanted.

One further property of the moment of inertia is worth mentioning because it
is often helpful in finding the moment of inertia of certain kinds of objects. This
property is that if one has a plane figure and a set of coordinate axes with origin
in the plane and z-axis perpendicular to the plane, then the moment of inertia of
this figure about the z-axis is equal to the sum of the moments of inertia about
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the x- and y-axes. This is easily proved by noting that

Ix =
∑

mi(y2
i + z2

i ) =
∑

miy
2
i

(since zi = 0). Similarly,
Iy =

∑
mi(x2

i + z2
i ) =

∑
mix

2
i ,

but
Iz =

∑
mi(x2

i + y2
i ) =

∑
mix

2
i +

∑
miy

2
i

= Ix + Iy.

As an example, the moment of inertia of a uniform rectangular plate of massM ,
width w, and length L, about an axis perpendicular to the plate and through
its center is simply

I = M(w2 + L2)/12,
because its moment of inertia about an axis in its plane and parallel to its length
is Mw2/12, i.e., just as for a rod of length w, and the moment of inertia about
the other axis in its plane is ML2/12, just as for a rod of length L.

To summarize, the moment of inertia of an object about a given axis, which
we shall call the z-axis, has the following properties:

(1) The moment of inertia is

Iz =
∑
i

mi(x2
i + y2

i ) =
∫

(x2 + y2) dm.

(2) If the object is made of a number of parts, each of whose moment of inertia
is known, the total moment of inertia is the sum of the moments of inertia
of the pieces.

(3) The moment of inertia about any given axis is equal to the moment of
inertia about a parallel axis through the CM plus the total mass times the
square of the distance from the axis to the CM.

(4) If the object is a plane figure, the moment of inertia about an axis perpen-
dicular to the plane is equal to the sum of the moments of inertia about
any two mutually perpendicular axes lying in the plane and intersecting at
the perpendicular axis.
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The moments of inertia of a number of elementary shapes having uniform
mass densities are given in Table 19-1, and the moments of inertia of some other
objects, which may be deduced from Table 19-1, using the above properties, are
given in Table 19-2.

Table 19-1

Object z-axis Iz

Thin rod, length L ⊥ rod at center ML2/12
Thin concentric
circular ring, radii ⊥ ring at center M(r2

1 + r2
2)/2

r1 and r2

Sphere, radius r through center 2Mr2/5

Table 19-2

Object z-axis Iz

Rect. sheet, sides a, b ‖ b at center Ma2/12
Rect. sheet, sides a, b ⊥ sheet at M(a2 + b2)/12

center
Thin annular ring, any diameter M(r2

1 + r2
2)/4

radii r1, r2

Rect. parallelepiped, ‖ c, through M(a2 + b2)/12
sides a, b, c center

Rt. circ. cyl., radius ‖ L, through Mr2/2
r, length L center

Rt. circ. cyl., radius ⊥ L, through M(r2/4 + L2/12)
r, length L center

19-4 Rotational kinetic energy

Now let us go on to discuss dynamics further. In the analogy between linear
motion and angular motion that we discussed in Chapter 18, we used the work
theorem, but we did not talk about kinetic energy. What is the kinetic energy of
a rigid body, rotating about a certain axis with an angular velocity ω? We can
immediately guess the correct answer by using our analogies. The moment of
inertia corresponds to the mass, angular velocity corresponds to velocity, and so
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the kinetic energy ought to be 1
2Iω

2, and indeed it is, as will now be demonstrated.
Suppose the object is rotating about some axis so that each point has a velocity
whose magnitude is ωri, where ri is the radius from the particular point to the
axis. Then if mi is the mass of that point, the total kinetic energy of the whole
thing is just the sum of the kinetic energies of all of the little pieces:

T = 1
2

∑
miv

2
i = 1

2

∑
mi(riω)2.

Now ω2 is a constant, the same for all points. Thus

T = 1
2ω

2
∑

mir
2
i = 1

2Iω
2. (19.8)

At the end of Chapter 18 we pointed out that there are some interesting
phenomena associated with an object which is not rigid, but which changes from
one rigid condition with a definite moment of inertia, to another rigid condition.
Namely, in our example of the turntable, we had a certain moment of inertia I1
with our arms stretched out, and a certain angular velocity ω1. When we pulled
our arms in, we had a different moment of inertia, I2, and a different angular
velocity, ω2, but again we were “rigid.” The angular momentum remained constant,
since there was no torque about the vertical axis of the turntable. This means
that I1ω1 = I2ω2. Now what about the energy? That is an interesting question.
With our arms pulled in, we turn faster, but our moment of inertia is less, and it
looks as though the energies might be equal. But they are not, because what
does balance is Iω, not Iω2. So if we compare the kinetic energy before and
after, the kinetic energy before is 1

2I1ω
2
1 = 1

2Lω1, where L = I1ω1 = I2ω2 is the
angular momentum. Afterward, by the same argument, we have T = 1

2Lω2 and
since ω2 > ω1 the kinetic energy of rotation is greater than it was before. So we
had a certain energy when our arms were out, and when we pulled them in, we
were turning faster and had more kinetic energy. What happened to the theorem
of the conservation of energy? Somebody must have done some work. We did
work! When did we do any work? When we move a weight horizontally, we do
not do any work. If we hold a thing out and pull it in, we do not do any work.
But that is when we are not rotating! When we are rotating, there is centrifugal
force on the weights. They are trying to fly out, so when we are going around
we have to pull the weights in against the centrifugal force. So, the work we
do against the centrifugal force ought to agree with the difference in rotational
energy, and of course it does. That is where the extra kinetic energy comes from.
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There is still another interesting feature which we can treat only descriptively,
as a matter of general interest. This feature is a little more advanced, but is
worth pointing out because it is quite curious and produces many interesting
effects.

Consider that turntable experiment again. Consider the body and the arms
separately, from the point of view of the man who is rotating. After the weights
are pulled in, the whole object is spinning faster, but observe, the central part
of the body is not changed, yet it is turning faster after the event than before.
So, if we were to draw a circle around the inner body, and consider only objects
inside the circle, their angular momentum would change; they are going faster.
Therefore there must be a torque exerted on the body while we pull in our arms.
No torque can be exerted by the centrifugal force, because that is radial. So that
means that among the forces that are developed in a rotating system, centrifugal
force is not the entire story, there is another force. This other force is called
Coriolis force, and it has the very strange property that when we move something
in a rotating system, it seems to be pushed sidewise. Like the centrifugal force,
it is an apparent force. But if we live in a system that is rotating, and move
something radially, we find that we must also push it sidewise to move it radially.
This sidewise push which we have to exert is what turned our body around.

Now let us develop a formula to show how this Coriolis force really works.
Suppose Moe is sitting on a carousel that appears to him to be stationary. But
from the point of view of Joe, who is standing on the ground and who knows
the right laws of mechanics, the carousel is going around. Suppose that we have
drawn a radial line on the carousel, and that Moe is moving some mass radially
along this line. We would like to demonstrate that a sidewise force is required to
do that. We can do this by paying attention to the angular momentum of the
mass. It is always going around with the same angular velocity ω, so that the
angular momentum is

L = mvtangr = mωr · r = mωr2.

So when the mass is close to the center, it has relatively little angular momentum,
but if we move it to a new position farther out, if we increase r, m has more
angular momentum, so a torque must be exerted in order to move it along the
radius. (To walk along the radius in a carousel, one has to lean over and push
sidewise. Try it sometime.) The torque that is required is the rate of change of L
with time as m moves along the radius. If m moves only along the radius, omega
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stays constant, so that the torque is

τ = Fcr = dL

dt
= d(mωr2)

dt
= 2mωr dr

dt
,

where Fc is the Coriolis force. What we really want to know is what sidewise
force has to be exerted by Moe in order to move m out at speed vr = dr/dt. This
is Fc = τ/r = 2mωvr.

Now that we have a formula for the Coriolis force, let us look at the situation
a little more carefully, to see whether we can understand the origin of this force
from a more elementary point of view. We note that the Coriolis force is the same
at every radius, and is evidently present even at the origin! But it is especially
easy to understand it at the origin, just by looking at what happens from the
inertial system of Joe, who is standing on the ground. Figure 19-4 shows three
successive views of m just as it passes the origin at t = 0. Because of the rotation
of the carousel, we see that m does not move in a straight line, but in a curved
path tangent to a diameter of the carousel where r = 0. In order for m to go
in a curve, there must be a force to accelerate it in absolute space. This is the
Coriolis force.

1
1

1

2
2

2

3

3
3

Fig. 19-4. Three successive views of a point moving radially on a
rotating turntable.

This is not the only case in which the Coriolis force occurs. We can also
show that if an object is moving with constant speed around the circumference
of a circle, there is also a Coriolis force. Why? Moe sees a velocity vM around
the circle. On the other hand, Joe sees m going around the circle with the
velocity vJ = vM + ωr, because m is also carried by the carousel. Therefore
we know what the force really is, namely, the total centripetal force due to the
velocity vJ , or mv2

J/r; that is the actual force. Now from Moe’s point of view,
this centripetal force has three pieces. We may write it all out as follows:

Fr = −mv
2
J

r
= −mv

2
M

r
− 2mvMω −mω2r.
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Now, Fr is the force that Moe would see. Let us try to understand it. Would Moe
appreciate the first term? “Yes,” he would say, “even if I were not turning, there
would be a centripetal force if I were to run around a circle with velocity vM .”
This is simply the centripetal force that Moe would expect, having nothing to do
with rotation. In addition, Moe is quite aware that there is another centripetal
force that would act even on objects which are standing still on his carousel. This
is the third term. But there is another term in addition to these, namely the
second term, which is again 2mωv. The Coriolis force Fc was tangential when
the velocity was radial, and now it is radial when the velocity is tangential. In
fact, one expression has a minus sign relative to the other. The force is always
in the same direction, relative to the velocity, no matter in which direction the
velocity is. The force is at right angles to the velocity, and of magnitude 2mωv.
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20

Rotation in space

20-1 Torques in three dimensions

In this chapter we shall discuss one of the most remarkable and amusing
consequences of mechanics, the behavior of a rotating wheel. In order to do
this we must first extend the mathematical formulation of rotational motion,
the principles of angular momentum, torque, and so on, to three-dimensional
space. We shall not use these equations in all their generality and study all their
consequences, because this would take many years, and we must soon turn to
other subjects. In an introductory course we can present only the fundamental
laws and apply them to a very few situations of special interest.

First, we notice that if we have a rotation in three dimensions, whether of a
rigid body or any other system, what we deduced for two dimensions is still right.
That is, it is still true that xFy − yFx is the torque “in the xy-plane,” or the
torque “around the z-axis.” It also turns out that this torque is still equal to the
rate of change of xpy − ypx, for if we go back over the derivation of Eq. (18.15)
from Newton’s laws we see that we did not have to assume that the motion was in
a plane; when we differentiate xpy−ypx, we get xFy−yFx, so this theorem is still
right. The quantity xpy − ypx, then, we call the angular momentum belonging
to the xy-plane, or the angular momentum about the z-axis. This being true, we
can use any other pair of axes and get another equation. For instance, we can use
the yz-plane, and it is clear from symmetry that if we just substitute y for x and z
for y, we would find yFz− zFy for the torque and ypz− zpy would be the angular
momentum associated with the yz-plane. Of course we could have another plane,
the zx-plane, and for this we would find zFx − xFz = d/dt (zpx − xpz).

That these three equations can be deduced for the motion of a single particle
is quite clear. Furthermore, if we added such things as xpy − ypx together for
many particles and called it the total angular momentum, we would have three
kinds for the three planes xy, yz, and zx, and if we did the same with the forces,
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we would talk about the torque in the planes xy, yz, and zx also. Thus we would
have laws that the external torque associated with any plane is equal to the rate
of change of the angular momentum associated with that plane. This is just a
generalization of what we wrote in two dimensions.

But now one may say, “Ah, but there are more planes; after all, can we not take
some other plane at some angle, and calculate the torque on that plane from the
forces? Since we would have to write another set of equations for every such plane,
we would have a lot of equations!” Interestingly enough, it turns out that if we
were to work out the combination x′Fy′ − y′Fx′ for another plane, measuring the
x′, Fy′ , etc., in that plane, the result can be written as some combination of the
three expressions for the xy-, yz- and zx-planes. There is nothing new. In other
words, if we know what the three torques in the xy-, yz-, and zx-planes are, then
the torque in any other plane, and correspondingly the angular momentum also,
can be written as some combination of these: six percent of one and ninety-two
percent of another, and so on. This property we shall now analyze.

Suppose that in the xyz-axes, Joe has worked out all his torques and his
angular momenta in his planes. But Moe has axes x′, y′, z′ in some other direction.
To make it a little easier, we shall suppose that only the x- and y-axes have
been turned. Moe’s x′ and y′ are new, but his z′ happens to be the same. That
is, he has new planes, let us say, for yz and zx. He therefore has new torques
and angular momenta which he would work out. For example, his torque in the
x′y′-plane would be equal to x′Fy′ − y′Fx′ and so forth. What we must now do
is to find the relationship between the new torques and the old torques, so we
will be able to make a connection from one set of axes to the other. Someone
may say, “That looks just like what we did with vectors.” And indeed, that is
exactly what we are intending to do. Then he may say, “Well, isn’t torque just a
vector?” It does turn out to be a vector, but we do not know that right away
without making an analysis. So in the following steps we shall make the analysis.
We shall not discuss every step in detail, since we only want to illustrate how it
works. The torques calculated by Joe are

τxy = xFy − yFx,
τyz = yFz − zFy ,
τzx = zFx − xFz .

(20.1)

We digress at this point to note that in such cases as this one may get the wrong
sign for some quantity if the coordinates are not handled in the right way. Why not
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write τyz = zFy − yFz? The problem arises from the fact that a coordinate system may
be either “right-handed” or “left-handed.” Having chosen (arbitrarily) a sign for, say
τxy, then the correct expressions for the other two quantities may always be found by
interchanging the letters xyz in either order

x

yz

or x

yz

Moe now calculates the torques in his system:

τx′y′ = x′Fy′ − y′Fx′ ,

τy′z′ = y′Fz′ − z′Fy′ ,

τz′x′ = z′Fx′ − x′Fz′ .

(20.2)

Now we suppose that one coordinate system is rotated by a fixed angle θ, such
that the z- and z′-axes are the same. (This angle θ has nothing to do with
rotating objects or what is going on inside the coordinate system. It is merely
the relationship between the axes used by one man and the axes used by the
other, and is supposedly constant.) Thus the coordinates of the two systems are
related by

x′ = x cos θ + y sin θ,
y′ = y cos θ − x sin θ,
z′ = z.

(20.3)

Likewise, because force is a vector it transforms into the new system in the
same way as do x, y, and z, since a thing is a vector if and only if the various
components transform in the same way as x, y, and z:

Fx′ = Fx cos θ + Fy sin θ,
Fy′ = Fy cos θ − Fx sin θ,
Fz′ = Fz .

(20.4)

Now we can find out how the torque transforms by merely substituting for
x′, y′, and z′ the expressions (20.3), and for Fx′ , Fy′ , Fz′ those given by (20.4),
all into (20.2). So, we have a rather long string of terms for τx′y′ and (rather
surprisingly at first) it turns out that it comes right down to xFy − yFx, which
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we recognize to be the torque in the xy-plane:

τx′y′ = (x cos θ + y sin θ)(Fy cos θ − Fx sin θ)
− (y cos θ − x sin θ)(Fx cos θ + Fy sin θ)

= xFy(cos2 θ + sin2 θ)− yFx(sin2 θ + cos2 θ)
+ xFx(− sin θ cos θ + sin θ cos θ)
+ yFy(sin θ cos θ − sin θ cos θ)

= xFy − yFx = τxy. (20.5)

That result is clear, for if we only turn our axes in the plane, the twist around z
in that plane is no different than it was before, because it is the same plane!
What will be more interesting is the expression for τy′z′ , because that is a new
plane. We now do exactly the same thing with the y′z′-plane, and it comes out
as follows:

τy′z′ = (y cos θ − x sin θ)Fz
− z(Fy cos θ − Fx sin θ)

= (yFz − zFy) cos θ + (zFx − xFz) sin θ
= τyz cos θ + τzx sin θ. (20.6)

Finally, we do it for z′x′:

τz′x′ = z(Fx cos θ + Fy sin θ)
− (x cos θ + y sin θ)Fz

= (zFx − xFz) cos θ − (yFz − zFy) sin θ
= τzx cos θ − τyz sin θ. (20.7)

We wanted to get a rule for finding torques in new axes in terms of torques in
old axes, and now we have the rule. How can we ever remember that rule? If we
look carefully at (20.5), (20.6), and (20.7), we see that there is a close relationship
between these equations and the equations for x, y, and z. If, somehow, we could
call τxy the z-component of something, let us call it the z-component of τ , then it
would be all right; we would understand (20.5) as a vector transformation, since
the z-component would be unchanged, as it should be. Likewise, if we associate
with the yz-plane the x-component of our newly invented vector, and with the
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zx-plane, the y-component, then these transformation expressions would read

τz′ = τz ,

τx′ = τx cos θ + τy sin θ,
τy′ = τy cos θ − τx sin θ,

(20.8)

which is just the rule for vectors!
Therefore we have proved that we may identify the combination of xFy − yFx

with what we ordinarily call the z-component of a certain artificially invented
vector. Although a torque is a twist on a plane, and it has no a priori vector
character, mathematically it does behave like a vector. This vector is at right
angles to the plane of the twist, and its length is proportional to the strength
of the twist. The three components of such a quantity will transform like a real
vector.

So we represent torques by vectors; with each plane on which the torque is
supposed to be acting, we associate a line at right angles, by a rule. But “at
right angles” leaves the sign unspecified. To get the sign right, we must adopt a
rule which will tell us that if the torque were in a certain sense on the xy-plane,
then the axis that we want to associate with it is in the “up” z-direction. That is,
somebody has to define “right” and “left” for us. Supposing that the coordinate
system is x, y, z in a right-hand system, then the rule will be the following: if
we think of the twist as if we were turning a screw having a right-hand thread,
then the direction of the vector that we will associate with that twist is in the
direction that the screw would advance.

Why is torque a vector? It is a miracle of good luck that we can associate a
single axis with a plane, and therefore that we can associate a vector with the
torque; it is a special property of three-dimensional space. In two dimensions, the
torque is an ordinary scalar, and there need be no direction associated with it. In
three dimensions, it is a vector. If we had four dimensions, we would be in great
difficulty, because (if we had time, for example, as the fourth dimension) we would
not only have planes like xy, yz, and zx, we would also have tx-, ty-, and tz-
planes. There would be six of them, and one cannot represent six quantities as
one vector in four dimensions.

We will be living in three dimensions for a long time, so it is well to notice
that the foregoing mathematical treatment did not depend upon the fact that x
was position and F was force; it only depended on the transformation laws for
vectors. Therefore if, instead of x, we used the x-component of some other vector,
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it is not going to make any difference. In other words, if we were to calculate
axby − aybx, where a and b are vectors, and call it the z-component of some new
quantity c, then these new quantities form a vector c. We need a mathematical
notation for the relationship of the new vector, with its three components, to
the vectors a and b. The notation that has been devised for this is c = a× b.
We have then, in addition to the ordinary scalar product in the theory of vector
analysis, a new kind of product, called the vector product. Thus, if c = a× b,
this is the same as writing

cx = aybz − azby ,
cy = azbx − axbz ,
cz = axby − aybx.

(20.9)

If we reverse the order of a and b, calling a, b and b, a, we would have the sign of c
reversed, because cz would be bxay − byax. Therefore the cross product is unlike
ordinary multiplication, where ab = ba; for the cross product, b× a = −a× b.
From this, we can prove at once that if a = b, the cross product is zero. Thus,
a× a = 0.

The cross product is very important for representing the features of rotation,
and it is important that we understand the geometrical relationship of the three
vectors a, b, and c. Of course the relationship in components is given in Eq. (20.9)
and from that one can determine what the relationship is in geometry. The
answer is, first, that the vector c is perpendicular to both a and b. (Try to
calculate c · a, and see if it does not reduce to zero.) Second, the magnitude of c
turns out to be the magnitude of a times the magnitude of b times the sine of
the angle between the two. In which direction does c point? Imagine that we
turn a into b through an angle less than 180◦; a screw with a right-hand thread
turning in this way will advance in the direction of c. The fact that we say a
right-hand screw instead of a left-hand screw is a convention, and is a perpetual
reminder that if a and b are “honest” vectors in the ordinary sense, the new kind
of “vector” which we have created by a× b is artificial, or slightly different in its
character from a and b, because it was made up with a special rule. If a and b
are called ordinary vectors, we have a special name for them, we call them polar
vectors. Examples of such vectors are the coordinate r, force F , momentum p,
velocity v, electric field E, etc.; these are ordinary polar vectors. Vectors which
involve just one cross product in their definition are called axial vectors or pseudo
vectors. Examples of pseudo vectors are, of course, torque τ and the angular
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momentum L. It also turns out that the angular velocity ω is a pseudo vector,
as is the magnetic field B.

In order to complete the mathematical properties of vectors, we should know
all the rules for their multiplication, using dot and cross products. In our
applications at the moment, we will need very little of this, but for the sake of
completeness we shall write down all of the rules for vector multiplication so that
we can use the results later. These are

(a) a× (b+ c) = a× b+ a× c,
(b) (αa)× b = α(a× b),
(c) a · (b× c) = (a× b) · c,
(d) a× (b× c) = b(a · c)− c(a · b),
(e) a× a = 0,
(f) a · (a× b) = 0.

(20.10)

20-2 The rotation equations using cross products

Now let us ask whether any equations in physics can be written using the
cross product. The answer, of course, is that a great many equations can be so
written. For instance, we see immediately that the torque is equal to the position
vector cross the force:

τ = r × F . (20.11)

This is a vector summary of the three equations τx = yFz − zFy, etc. By the
same token, the angular momentum vector, if there is only one particle present,
is the distance from the origin multiplied by the vector momentum:

L = r × p. (20.12)

For three-dimensional space rotation, the dynamical law analogous to the law F =
dp/dt of Newton, is that the torque vector is the rate of change with time of the
angular momentum vector:

τ = dL/dt. (20.13)

If we sum (20.13) over many particles, the external torque on a system is the
rate of change of the total angular momentum:

τ ext = dLtot/dt. (20.14)
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Another theorem: If the total external torque is zero, then the total vector
angular momentum of the system is a constant. This is called the law of conser-
vation of angular momentum. If there is no torque on a given system, its angular
momentum cannot change.

What about angular velocity? Is it a vector? We have already discussed
turning a solid object about a fixed axis, but for a moment suppose that we are
turning it simultaneously about two axes. It might be turning about an axis
inside a box, while the box is turning about some other axis. The net result of
such combined motions is that the object simply turns about some new axis!
The wonderful thing about this new axis is that it can be figured out this way.
If the rate of turning in the xy-plane is written as a vector in the z-direction
whose length is equal to the rate of rotation in the plane, and if another vector is
drawn in the y-direction, say, which is the rate of rotation in the zx-plane, then
if we add these together as a vector, the magnitude of the result tells us how
fast the object is turning, and the direction tells us in what plane, by the rule of
the parallelogram. That is to say, simply, angular velocity is a vector, where we
draw the magnitudes of the rotations in the three planes as projections at right
angles to those planes.*

As a simple application of the use of the angular velocity vector, we may
evaluate the power being expended by the torque acting on a rigid body. The
power, of course, is the rate of change of work with time; in three dimensions,
the power turns out to be P = τ · ω.

All the formulas that we wrote for plane rotation can be generalized to three
dimensions. For example, if a rigid body is turning about a certain axis with
angular velocity ω, we might ask, “What is the velocity of a point at a certain
radial position r?” We shall leave it as a problem for the student to show that
the velocity of a particle in a rigid body is given by v = ω × r, where ω is
the angular velocity and r is the position. Also, as another example of cross
products, we had a formula for Coriolis force, which can also be written using
cross products: F c = 2mv × ω. That is, if a particle is moving with velocity v
in a coordinate system which is, in fact, rotating with angular velocity ω, and
we want to think in terms of the rotating coordinate system, then we have to
add the pseudo force F c.

* That this is true can be derived by compounding the displacements of the particles of
the body during an infinitesimal time ∆t. It is not self-evident, and is left to those who are
interested to try to figure it out.
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20-3 The gyroscope

Let us now return to the law of conservation of angular momentum. This law
may be demonstrated with a rapidly spinning wheel, or gyroscope, as follows
(see Fig. 20-1). If we sit on a swivel chair and hold the spinning wheel with
its axis horizontal, the wheel has an angular momentum about the horizontal
axis. Angular momentum around a vertical axis cannot change because of the
(frictionless) pivot of the chair, so if we turn the axis of the wheel into the vertical,
then the wheel would have angular momentum about the vertical axis, because it
is now spinning about this axis. But the system (wheel, ourself, and chair) cannot
have a vertical component, so we and the chair have to turn in the direction
opposite to the spin of the wheel, to balance it.

BEFORE AFTER

Fig. 20-1. Before: axis is horizontal; moment about vertical axis = 0.
After: axis is vertical; momentum about vertical axis is still zero; man
and chair spin in direction opposite to spin of the wheel.

First let us analyze in more detail the thing we have just described. What is
surprising, and what we must understand, is the origin of the forces which turn
us and the chair around as we turn the axis of the gyroscope toward the vertical.
Figure 20-2 shows the wheel spinning rapidly about the y-axis. Therefore its
angular velocity is about that axis and, it turns out, its angular momentum is
likewise in that direction. Now suppose that we wish to rotate the wheel about
the x-axis at a small angular velocity Ω; what forces are required? After a short
time ∆t, the axis has turned to a new position, tilted at an angle ∆θ with the
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Fig. 20-2. A gyroscope.

horizontal. Since the major part of the angular momentum is due to the spin on
the axis (very little is contributed by the slow turning), we see that the angular
momentum vector has changed. What is the change in angular momentum? The
angular momentum does not change in magnitude, but it does change in direction
by an amount ∆θ. The magnitude of the vector ∆L is thus ∆L = L0 ∆θ, so
that the torque, which is the time rate of change of the angular momentum, is
τ = ∆L/∆t = L0 ∆θ/∆t = L0Ω. Taking the directions of the various quantities
into account, we see that

τ = Ω×L0. (20.15)
Thus, if Ω and L0 are both horizontal, as shown in the figure, τ is vertical. To
produce such a torque, horizontal forces F and −F must be applied at the ends
of the axle. How are these forces applied? By our hands, as we try to rotate the
axis of the wheel into the vertical direction. But Newton’s Third Law demands
that equal and opposite forces (and equal and opposite torques) act on us. This
causes us to rotate in the opposite sense about the vertical axis z.

This result can be generalized for a rapidly spinning top. In the familiar case
of a spinning top, gravity acting on its center of mass furnishes a torque about
the point of contact with the floor (see Fig. 20-3). This torque is in the horizontal
direction, and causes the top to precess with its axis moving in a circular cone
about the vertical. If Ω is the (vertical) angular velocity of precession, we again
find that

τ = dL/dt = Ω×L0.

Thus, when we apply a torque to a rapidly spinning top, the direction of the
precessional motion is in the direction of the torque, or at right angles to the
forces producing the torque.

We may now claim to understand the precession of gyroscopes, and indeed
we do, mathematically. However, this is a mathematical thing which, in a sense,
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Fig. 20-3. A rapidly spinning top. Note that the direction of the
torque vector is the direction of the precession.

appears as a “miracle.” It will turn out, as we go to more and more advanced
physics, that many simple things can be deduced mathematically more rapidly
than they can be really understood in a fundamental or simple sense. This is a
strange characteristic, and as we get into more and more advanced work there are
circumstances in which mathematics will produce results which no one has really
been able to understand in any direct fashion. An example is the Dirac equation,
which appears in a very simple and beautiful form, but whose consequences are
hard to understand. In our particular case, the precession of a top looks like some
kind of a miracle involving right angles and circles, and twists and right-hand
screws. What we should try to do is to understand it in a more physical way.

How can we explain the torque in terms of the real forces and the accelerations?
We note that when the wheel is precessing, the particles that are going around
the wheel are not really moving in a plane because the wheel is precessing
(see Fig. 20-4). As we explained previously (Fig. 19-4), the particles which are
crossing through the precession axis are moving in curved paths, and this requires
application of a lateral force. This is supplied by our pushing on the axle, which

LATER

NOW

EARLIER

Fig. 20-4. The motion of particles in the spinning wheel of Fig. 20-2,
whose axis is turning, is in curved lines.
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then communicates the force to the rim through the spokes. “Wait,” someone
says, “what about the particles that are going back on the other side?” It does
not take long to decide that there must be a force in the opposite direction on
that side. The net force that we have to apply is therefore zero. The forces
balance out, but one of them must be applied at one side of the wheel, and the
other must be applied at the other side of the wheel. We could apply these forces
directly, but because the wheel is solid we are allowed to do it by pushing on the
axle, since forces can be carried up through the spokes.

What we have so far proved is that if the wheel is precessing, it can balance
the torque due to gravity or some other applied torque. But all we have shown is
that this is a solution of an equation. That is, if the torque is given, and if we
get the spinning started right, then the wheel will precess smoothly and uniformly.
But we have not proved (and it is not true) that a uniform precession is the
most general motion a spinning body can undergo as the result of a given torque.
The general motion involves also a “wobbling” about the mean precession. This
“wobbling” is called nutation.

Some people like to say that when one exerts a torque on a gyroscope, it turns
and it precesses, and that the torque produces the precession. It is very strange
that when one suddenly lets go of a gyroscope, it does not fall under the action
of gravity, but moves sidewise instead! Why is it that the downward force of the
gravity, which we know and feel, makes it go sidewise? All the formulas in the
world like (20.15) are not going to tell us, because (20.15) is a special equation,
valid only after the gyroscope is precessing nicely. What really happens, in detail,
is the following. If we were to hold the axis absolutely fixed, so that it cannot
precess in any manner (but the top is spinning) then there is no torque acting,
not even a torque from gravity, because it is balanced by our fingers. But if we
suddenly let go, then there will instantaneously be a torque from gravity. Anyone
in his right mind would think that the top would fall, and that is what it starts
to do, as can be seen if the top is not spinning too fast.

The gyro actually does fall, as we would expect. But as soon as it falls, it is
then turning, and if this turning were to continue, a torque would be required. In
the absence of a torque in this direction, the gyro begins to “fall” in the direction
opposite that of the missing force. This gives the gyro a component of motion
around the vertical axis, as it would have in steady precession. But the actual
motion “overshoots” the steady precessional velocity, and the axis actually rises
again to the level from which it started. The path followed by the end of the
axle is a cycloid (the path followed by a pebble that is stuck in the tread of an
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automobile tire). Ordinarily, this motion is too quick for the eye to follow, and it
damps out quickly because of the friction in the gimbal bearings, leaving only
the steady precessional drift (Fig. 20-5). The slower the wheel spins, the more
obvious the nutation is.

Fig. 20-5. Actual motion of tip of axis of gyroscope under gravity just
after releasing axis previously held fixed.

When the motion settles down, the axis of the gyro is a little bit lower than
it was at the start. Why? (These are the more complicated details, but we bring
them in because we do not want the reader to get the idea that the gyroscope is
an absolute miracle. It is a wonderful thing, but it is not a miracle.) If we were
holding the axis absolutely horizontally, and suddenly let go, then the simple
precession equation would tell us that it precesses, that it goes around in a
horizontal plane. But that is impossible! Although we neglected it before, it is
true that the wheel has some moment of inertia about the precession axis, and
if it is moving about that axis, even slowly, it has a weak angular momentum
about the axis. Where did it come from? If the pivots are perfect, there is no
torque about the vertical axis. How then does it get to precess if there is no
change in the angular momentum? The answer is that the cycloidal motion of
the end of the axis damps down to the average, steady motion of the center of
the equivalent rolling circle. That is, it settles down a little bit low. Because it is
low, the spin angular momentum now has a small vertical component, which is
exactly what is needed for the precession. So you see it has to go down a little,
in order to go around. It has to yield a little bit to the gravity; by turning its
axis down a little bit, it maintains the rotation about the vertical axis. That,
then, is the way a gyroscope works.
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20-4 Angular momentum of a solid body

Before we leave the subject of rotations in three dimensions, we shall discuss,
at least qualitatively, a few effects that occur in three-dimensional rotations that
are not self-evident. The main effect is that, in general, the angular momentum
of a rigid body is not necessarily in the same direction as the angular velocity.
Consider a wheel that is fastened onto a shaft in a lopsided fashion, but with
the axis through the center of gravity, to be sure (Fig. 20-6). When we spin
the wheel around the axis, anybody knows that there will be shaking at the
bearings because of the lopsided way we have it mounted. Qualitatively, we
know that in the rotating system there is centrifugal force acting on the wheel,
trying to throw its mass as far as possible from the axis. This tends to line
up the plane of the wheel so that it is perpendicular to the axis. To resist this
tendency, a torque is exerted by the bearings. If there is a torque exerted by the
bearings, there must be a rate of change of angular momentum. How can there
be a rate of change of angular momentum when we are simply turning the wheel
about the axis? Suppose we break the angular velocity ω into components ω1
and ω2 perpendicular and parallel to the plane of the wheel. What is the angular
momentum? The moments of inertia about these two axes are different, so the
angular momentum components, which (in these particular, special axes only)
are equal to the moments of inertia times the corresponding angular velocity
components, are in a different ratio than are the angular velocity components.
Therefore the angular momentum vector is in a direction in space not along the
axis. When we turn the object, we have to turn the angular momentum vector
in space, so we must exert torques on the shaft.

ω

L

L1 = I1ω1
ω1

L2 = I2ω2
ω2

Fig. 20-6. The angular momentum of a rotating body is not necessarily
parallel to the angular velocity.

Although it is much too complicated to prove here, there is a very important
and interesting property of the moment of inertia which is easy to describe and to
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use, and which is the basis of our above analysis. This property is the following:
Any rigid body, even an irregular one like a potato, possesses three mutually
perpendicular axes through the CM, such that the moment of inertia about one
of these axes has the greatest possible value for any axis through the CM, the
moment of inertia about another of the axes has the minimum possible value,
and the moment of inertia about the third axis is intermediate between these two
(or equal to one of them). These axes are called the principal axes of the body,
and they have the important property that if the body is rotating about one
of them, its angular momentum is in the same direction as the angular velocity.
For a body having axes of symmetry, the principal axes are along the symmetry
axes.

x

y

L

ω

ωx
ωy

ωz

Aωx

Bωy

Cωz

Fig. 20-7. The angular velocity and angular momentum of a rigid
body (A > B > C).

If we take the x-, y-, and z-axes along the principal axes, and call the
corresponding principal moments of inertia A, B, and C, we may easily evaluate
the angular momentum and the kinetic energy of rotation of the body for any
angular velocity ω. If we resolve ω into components ωx, ωy, and ωz along the
x-, y-, z-axes, and use unit vectors i, j, k, also along x, y, z, we may write the
angular momentum as

L = Aωxi+Bωyj + Cωzk. (20.16)
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The kinetic energy of rotation is

KE = 1
2 (Aω2

x +Bω2
y + Cω2

z) (20.17)
= 1

2L · ω.
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21

The Harmonic Oscillator

21-1 Linear differential equations

In the study of physics, usually the course is divided into a series of subjects,
such as mechanics, electricity, optics, etc., and one studies one subject after the
other. For example, this course has so far dealt mostly with mechanics. But a
strange thing occurs again and again: the equations which appear in different
fields of physics, and even in other sciences, are often almost exactly the same,
so that many phenomena have analogs in these different fields. To take the
simplest example, the propagation of sound waves is in many ways analogous to
the propagation of light waves. If we study acoustics in great detail we discover
that much of the work is the same as it would be if we were studying optics in
great detail. So the study of a phenomenon in one field may permit an extension
of our knowledge in another field. It is best to realize from the first that such
extensions are possible, for otherwise one might not understand the reason for
spending a great deal of time and energy on what appears to be only a small
part of mechanics.

The harmonic oscillator, which we are about to study, has close analogs in
many other fields; although we start with a mechanical example of a weight on a
spring, or a pendulum with a small swing, or certain other mechanical devices, we
are really studying a certain differential equation. This equation appears again
and again in physics and in other sciences, and in fact it is a part of so many
phenomena that its close study is well worth our while. Some of the phenomena
involving this equation are the oscillations of a mass on a spring; the oscillations
of charge flowing back and forth in an electrical circuit; the vibrations of a tuning
fork which is generating sound waves; the analogous vibrations of the electrons
in an atom, which generate light waves; the equations for the operation of a
servosystem, such as a thermostat trying to adjust a temperature; complicated
interactions in chemical reactions; the growth of a colony of bacteria in interaction
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with the food supply and the poisons the bacteria produce; foxes eating rabbits
eating grass, and so on; all these phenomena follow equations which are very
similar to one another, and this is the reason why we study the mechanical
oscillator in such detail. The equations are called linear differential equations
with constant coefficients. A linear differential equation with constant coefficients
is a differential equation consisting of a sum of several terms, each term being a
derivative of the dependent variable with respect to the independent variable,
and multiplied by some constant. Thus

an d
nx/dtn + an−1 d

n−1x/dtn−1 + · · ·+ a1 dx/dt+ a0x = f(t) (21.1)

is called a linear differential equation of order n with constant coefficients (each
ai is constant).

21-2 The harmonic oscillator

Perhaps the simplest mechanical system whose motion follows a linear differ-
ential equation with constant coefficients is a mass on a spring: first the spring
stretches to balance the gravity; once it is balanced, we then discuss the vertical
displacement of the mass from its equilibrium position (Fig. 21-1). We shall
call this upward displacement x, and we shall also suppose that the spring is
perfectly linear, in which case the force pulling back when the spring is stretched
is precisely proportional to the amount of stretch. That is, the force is −kx
(with a minus sign to remind us that it pulls back). Thus the mass times the
acceleration must equal −kx:

md2x/dt2 = −kx. (21.2)

m x

′

Fig. 21-1. A mass on a spring: a simple example of a harmonic
oscillator.
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For simplicity, suppose it happens (or we change our unit of time measurement)
that the ratio k/m = 1. We shall first study the equation

d2x/dt2 = −x. (21.3)

Later we shall come back to Eq. (21.2) with the k and m explicitly present.
We have already analyzed Eq. (21.3) in detail numerically; when we first

introduced the subject of mechanics we solved this equation (see Eq. 9.12) to
find the motion. By numerical integration we found a curve (Fig. 9-4) which
showed that if m was initially displaced, but at rest, it would come down and go
through zero; we did not then follow it any farther, but of course we know that
it just keeps going up and down—it oscillates. When we calculated the motion
numerically, we found that it went through the equilibrium point at t = 1.570.
The length of the whole cycle is four times this long, or t0 = 6.28 “sec.” This
was found numerically, before we knew much calculus. We assume that in the
meantime the Mathematics Department has brought forth a function which,
when differentiated twice, is equal to itself with a minus sign. (There are, of
course, ways of getting at this function in a direct fashion, but they are more
complicated than already knowing what the answer is.) The function is x = cos t.
If we differentiate this we find dx/dt = − sin t and d2x/dt2 = − cos t = −x. The
function x = cos t starts, at t = 0, with x = 1, and no initial velocity; that was
the situation with which we started when we did our numerical work. Now that
we know that x = cos t, we can calculate a precise value for the time at which it
should pass x = 0. The answer is t = π/2, or 1.57080. We were wrong in the last
figure because of the errors of numerical analysis, but it was very close!

Now to go further with the original problem, we restore the time units to real
seconds. What is the solution then? First of all, we might think that we can get the
constants k andm in by multiplying cos t by something. So let us try the equation
x = A cos t; then we find dx/dt = −A sin t, and d2x/dt2 = −A cos t = −x. Thus
we discover to our horror that we did not succeed in solving Eq. (21.2), but we
got Eq. (21.3) again! That fact illustrates one of the most important properties
of linear differential equations: if we multiply a solution of the equation by any
constant, it is again a solution. The mathematical reason for this is clear. If x is
a solution, and we multiply both sides of the equation, say by A, we see that all
derivatives are also multiplied by A, and therefore Ax is just as good a solution
of the original equation as x was. The physics of it is the following. If we have a
weight on a spring, and pull it down twice as far, the force is twice as much, the
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resulting acceleration is twice as great, the velocity it acquires in a given time is
twice as great, the distance covered in a given time is twice as great; but it has
to cover twice as great a distance in order to get back to the origin because it is
pulled down twice as far. So it takes the same time to get back to the origin,
irrespective of the initial displacement. In other words, with a linear equation,
the motion has the same time pattern, no matter how “strong” it is.

That was the wrong thing to do—it only taught us that we can multiply
the solution by anything, and it satisfies the same equation, but not a different
equation. After a little cut and try to get to an equation with a different constant
multiplying x, we find that we must alter the scale of time. In other words,
Eq. (21.2) has a solution of the form

x = cosω0t. (21.4)

(It is important to realize that in the present case, ω0 is not an angular velocity
of a spinning body, but we run out of letters if we are not allowed to use the same
letter for more than one thing.) The reason we put a subscript “0” on ω is that we
are going to have more omegas before long; let us remember that ω0 refers to the
natural motion of this oscillator. Now we try Eq. (21.4) and this time we are more
successful, because dx/dt = −ω0 sinω0t and d2x/dt2 = −ω2

0 cosω0t = −ω2
0x. So

at last we have solved the equation that we really wanted to solve. The equation
d2x/dt2 = −ω2

0x is the same as Eq. (21.2) if ω2
0 = k/m.

The next thing we must investigate is the physical significance of ω0. We
know that the cosine function repeats itself when the angle it refers to is 2π. So
x = cosω0t will repeat its motion, it will go through a complete cycle, when the
“angle” changes by 2π. The quantity ω0t is often called the phase of the motion.
In order to change ω0t by 2π, the time must change by an amount t0, called
the period of one complete oscillation; of course t0 must be such that ω0t0 = 2π.
That is, ω0t0 must account for one cycle of the angle, and then everything will
repeat itself—if we increase t by t0, we add 2π to the phase. Thus

t0 = 2π/ω0 = 2π
√
m/k. (21.5)

Thus if we had a heavier mass, it would take longer to oscillate back and forth
on a spring. That is because it has more inertia, and so, while the forces are the
same, it takes longer to get the mass moving. Or, if the spring is stronger, it will
move more quickly, and that is right: the period is less if the spring is stronger.

Note that the period of oscillation of a mass on a spring does not depend
in any way on how it has been started, how far down we pull it. The period
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is determined, but the amplitude of the oscillation is not determined by the
equation of motion (21.2). The amplitude is determined, in fact, by how we let
go of it, by what we call the initial conditions or starting conditions.

Actually, we have not quite found the most general possible solution of
Eq. (21.2). There are other solutions. It should be clear why: because all of the
cases covered by x = a cosω0t start with an initial displacement and no initial
velocity. But it is possible, for instance, for the mass to start at x = 0, and we
may then give it an impulsive kick, so that it has some speed at t = 0. Such
a motion is not represented by a cosine—it is represented by a sine. To put it
another way, if x = cosω0t is a solution, then is it not obvious that if we were
to happen to walk into the room at some time (which we would call “t = 0”)
and saw the mass as it was passing x = 0, it would keep on going just the same?
Therefore, x = cosω0t cannot be the most general solution; it must be possible
to shift the beginning of time, so to speak. As an example, we could write the
solution this way: x = a cosω0(t − t1), where t1 is some constant. This also
corresponds to shifting the origin of time to some new instant. Furthermore, we
may expand

cos (ω0t+ ∆) = cosω0t cos ∆− sinω0t sin ∆,
and write

x = A cosω0t+B sinω0t,

where A = a cos ∆ and B = −a sin ∆. Any one of these forms is a possible way
to write the complete, general solution of (21.2): that is, every solution of the
differential equation d2x/dt2 = −ω2

0x that exists in the world can be written as

(a) x = a cosω0(t− t1),
or

(b) x = a cos (ω0t+ ∆), (21.6)
or

(c) x = A cosω0t+B sinω0t.

Some of the quantities in (21.6) have names: ω0 is called the angular frequency;
it is the number of radians by which the phase changes in a second. That is
determined by the differential equation. The other constants are not determined
by the equation, but by how the motion is started. Of these constants, a measures
the maximum displacement attained by the mass, and is called the amplitude
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of oscillation. The constant ∆ is sometimes called the phase of the oscillation,
but that is a confusion, because other people call ω0t + ∆ the phase, and say
the phase changes with time. We might say that ∆ is a phase shift from some
defined zero. Let us put it differently. Different ∆’s correspond to motions in
different phases. That is true, but whether we want to call ∆ the phase, or not,
is another question.

21-3 Harmonic motion and circular motion

The fact that cosines are involved in the solution of Eq. (21.2) suggests that
there might be some relationship to circles. This is artificial, of course, because
there is no circle actually involved in the linear motion—it just goes up and down.
We may point out that we have, in fact, already solved that differential equation
when we were studying the mechanics of circular motion. If a particle moves in
a circle with a constant speed v, the radius vector from the center of the circle
to the particle turns through an angle whose size is proportional to the time. If
we call this angle θ = vt/R (Fig. 21-2) then dθ/dt = ω0 = v/R. We know that
there is an acceleration a = v2/R = ω2

0R toward the center. Now we also know
that the position x, at a given moment, is the radius of the circle times cos θ,
and that y is the radius times sin θ:

x = R cos θ, y = R sin θ.

Now what about the acceleration? What is the x-component of acceleration,
d2x/dt2? We have already worked that out geometrically; it is the magnitude
of the acceleration times the cosine of the projection angle, with a minus sign
because it is toward the center.

ax = −a cos θ = −ω2
0R cos θ = −ω2

0x. (21.7)

x

y

θ
R

v

a

Fig. 21-2. A particle moving in a circular path at constant speed.
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In other words, when a particle is moving in a circle, the horizontal component of
its motion has an acceleration which is proportional to the horizontal displacement
from the center. Of course we also have the solution for motion in a circle:
x = R cosω0t. Equation (21.7) does not depend upon the radius of the circle, so
for a circle of any radius, one finds the same equation for a given ω0. Thus, for
several reasons, we expect that the displacement of a mass on a spring will turn
out to be proportional to cosω0t, and will, in fact, be exactly the same motion
as we would see if we looked at the x-component of the position of an object
rotating in a circle with angular velocity ω0. As a check on this, one can devise
an experiment to show that the up-and-down motion of a mass on a spring is the
same as that of a point going around in a circle. In Fig. 21-3 an arc light projected
on a screen casts shadows of a crank pin on a shaft and of a vertically oscillating
mass, side by side. If we let go of the mass at the right time from the right place,
and if the shaft speed is carefully adjusted so that the frequencies match, each
should follow the other exactly. One can also check the numerical solution we
obtained earlier with the cosine function, and see whether that agrees very well.

Light

from

Projector Shadows

Screen

ω0

m 12 1
2

Fig. 21-3. Demonstration of the equivalence between simple harmonic
motion and uniform circular motion.

Here we may point out that because uniform motion in a circle is so closely
related mathematically to oscillatory up-and-down motion, we can analyze oscil-
latory motion in a simpler way if we imagine it to be a projection of something
going in a circle. In other words, although the distance y means nothing in the
oscillator problem, we may still artificially supplement Eq. (21.2) with another
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equation using y, and put the two together. If we do this, we will be able to
analyze our one-dimensional oscillator with circular motions, which is a lot easier
than having to solve a differential equation. The trick in doing this is to use
complex numbers, a procedure we shall introduce in the next chapter.

21-4 Initial conditions

Now let us consider what determines the constants A and B, or a and ∆. Of
course these are determined by how we start the motion. If we start the motion
with just a small displacement, that is one type of oscillation; if we start with
an initial displacement and then push up when we let go, we get still a different
motion. The constants A and B, or a and ∆, or any other way of putting it, are
determined, of course, by the way the motion started, not by any other features
of the situation. These are called the initial conditions. We would like to connect
the initial conditions with the constants. Although this can be done using any
one of the forms (21.6), it turns out to be easiest if we use Eq. (21.6c). Suppose
that at t = 0 we have started with an initial displacement x0 and a certain
velocity v0. This is the most general way we can start the motion. (We cannot
specify the acceleration with which it started, true, because that is determined
by the spring, once we specify x0.) Now let us calculate A and B. We start with
the equation for x,

x = A cosω0t+B sinω0t.

Since we shall later need the velocity also, we differentiate x and obtain

v = −ω0A sinω0t+ ω0B cosω0t.

These expressions are valid for all t, but we have special knowledge about x and v
at t = 0. So if we put t = 0 into these equations, on the left we get x0 and v0,
because that is what x and v are at t = 0; also, we know that the cosine of zero
is unity, and the sine of zero is zero. Therefore we get

x0 = A · 1 +B · 0 = A

and
v0 = −ω0A · 0 + ω0B · 1 = ω0B.

So for this particular case we find that

A = x0, B = v0/ω0.

From these values of A and B, we can get a and ∆ if we wish.
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That is the end of our solution, but there is one physically interesting thing
to check, and that is the conservation of energy. Since there are no frictional
losses, energy ought to be conserved. Let us use the formula

x = a cos (ω0t+ ∆);
then

v = −ω0a sin (ω0t+ ∆).

Now let us find out what the kinetic energy T is, and what the potential energy U
is. The potential energy at any moment is 1

2kx
2, where x is the displacement

and k is the constant of the spring. If we substitute for x, using our expression
above, we get

U = 1
2kx

2 = 1
2ka

2 cos2 (ω0t+ ∆).
Of course the potential energy is not constant; the potential never becomes
negative, naturally—there is always some energy in the spring, but the amount
of energy fluctuates with x. The kinetic energy, on the other hand, is 1

2mv
2, and

by substituting for v we get

T = 1
2mv

2 = 1
2mω

2
0a

2 sin2 (ω0t+ ∆).

Now the kinetic energy is zero when x is at the maximum, because then there
is no velocity; on the other hand, it is maximal when x is passing through zero,
because then it is moving fastest. This variation of the kinetic energy is just
the opposite of that of the potential energy. But the total energy ought to be a
constant. If we note that k = mω2

0 , we see that

T + U = 1
2mω

2
0a

2[cos2 (ω0t+ ∆) + sin2 (ω0t+ ∆)] = 1
2mω

2
0a

2.

The energy is dependent on the square of the amplitude; if we have twice the
amplitude, we get an oscillation which has four times the energy. The average
potential energy is half the maximum and, therefore, half the total, and the
average kinetic energy is likewise half the total energy.

21-5 Forced oscillations

Next we shall discuss the forced harmonic oscillator, i.e., one in which there
is an external driving force acting. The equation then is the following:

md2x/dt2 = −kx+ F (t). (21.8)
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We would like to find out what happens in these circumstances. The external
driving force can have various kinds of functional dependence on the time; the
first one that we shall analyze is very simple—we shall suppose that the force is
oscillating:

F (t) = F0 cosωt. (21.9)
Notice, however, that this ω is not necessarily ω0: we have ω under our control;
the forcing may be done at different frequencies. So we try to solve Eq. (21.8)
with the special force (21.9). What is the solution of (21.8)? One special solution,
(we shall discuss the more general cases later) is

x = C cosωt, (21.10)

where the constant is to be determined. In other words, we might suppose that
if we kept pushing back and forth, the mass would follow back and forth in step
with the force. We can try it anyway. So we put (21.10) and (21.9) into (21.8),
and get

−mω2C cosωt = −mω2
0C cosωt+ F0 cosωt. (21.11)

We have also put in k = mω2
0 , so that we will understand the equation better at

the end. Now because the cosine appears everywhere, we can divide it out, and
that shows that (21.10) is, in fact, a solution, provided we pick C just right. The
answer is that C must be

C = F0/m(ω2
0 − ω2). (21.12)

That is, m oscillates at the same frequency as the force, but with an amplitude
which depends on the frequency of the force, and also upon the frequency of the
natural motion of the oscillator. It means, first, that if ω is very small compared
with ω0, then the displacement and the force are in the same direction. On the
other hand, if we shake it back and forth very fast, then (21.12) tells us that C is
negative if ω is above the natural frequency ω0 of the harmonic oscillator. (We
will call ω0 the natural frequency of the harmonic oscillator, and ω the applied
frequency.) At very high frequency the denominator may become very large, and
there is then not much amplitude.

Of course the solution we have found is the solution only if things are started
just right, for otherwise there is a part which usually dies out after a while. This
other part is called the transient response to F (t), while (21.10) and (21.12) are
called the steady-state response.
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According to our formula (21.12), a very remarkable thing should also occur:
if ω is almost exactly the same as ω0, then C should approach infinity. So if we
adjust the frequency of the force to be “in time” with the natural frequency, then
we should get an enormous displacement. This is well known to anybody who
has pushed a child on a swing. It does not work very well to close our eyes and
push at a certain speed at random. If we happen to get the right timing, then
the swing goes very high, but if we have the wrong timing, then sometimes we
may be pushing when we should be pulling, and so on, and it does not work.

If we make ω exactly equal to ω0, we find that it should oscillate at an
infinite amplitude, which is, of course, impossible. The reason it does not is that
something goes wrong with the equation, there are some other frictional terms,
and other forces, which are not in (21.8) but which occur in the real world. So
the amplitude does not reach infinity for some reason; it may be that the spring
breaks!
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22

Algebra

22-1 Addition and multiplication

In our study of oscillating systems we shall have occasion to use one of the
most remarkable, almost astounding, formulas in all of mathematics. From the
physicist’s point of view we could bring forth this formula in two minutes or
so, and be done with it. But science is as much for intellectual enjoyment as
for practical utility, so instead of just spending a few minutes on this amazing
jewel, we shall surround the jewel by its proper setting in the grand design of
that branch of mathematics which is called elementary algebra.

Now you may ask, “What is mathematics doing in a physics lecture?” We
have several possible excuses: first, of course, mathematics is an important tool,
but that would only excuse us for giving the formula in two minutes. On the
other hand, in theoretical physics we discover that all our laws can be written in
mathematical form; and that this has a certain simplicity and beauty about it.
So, ultimately, in order to understand nature it may be necessary to have a deeper
understanding of mathematical relationships. But the real reason is that the
subject is enjoyable, and although we humans cut nature up in different ways, and
we have different courses in different departments, such compartmentalization is
really artificial, and we should take our intellectual pleasures where we find them.

Another reason for looking more carefully at algebra now, even though most
of us studied algebra in high school, is that that was the first time we studied it;
all the equations were unfamiliar, and it was hard work, just as physics is now.
Every so often it is a great pleasure to look back to see what territory has been
covered, and what the great map or plan of the whole thing is. Perhaps some day
somebody in the Mathematics Department will present a lecture on mechanics in
such a way as to show what it was we were trying to learn in the physics course!

The subject of algebra will not be developed from the point of view of a
mathematician, exactly, because the mathematicians are mainly interested in how
various mathematical facts are demonstrated, and how many assumptions are
absolutely required, and what is not required. They are not so interested in the
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result of what they prove. For example, we may find the Pythagorean theorem
quite interesting, that the sum of the squares of the sides of a right triangle is
equal to the square of the hypotenuse; that is an interesting fact, a curiously
simple thing, which may be appreciated without discussing the question of how
to prove it, or what axioms are required. So, in the same spirit, we shall describe
qualitatively, if we may put it that way, the system of elementary algebra. We
say elementary algebra because there is a branch of mathematics called modern
algebra in which some of the rules such as ab = ba, are abandoned, and it is still
called algebra, but we shall not discuss that.

To discuss this subject we start in the middle. We suppose that we already
know what integers are, what zero is, and what it means to increase a number
by one unit. You may say, “That is not in the middle!” But it is the middle from
a mathematical standpoint, because we could go even further back and describe
the theory of sets in order to derive some of these properties of integers. But we
are not going in that direction, the direction of mathematical philosophy and
mathematical logic, but rather in the other direction, from the assumption that
we know what integers are and we know how to count.

If we start with a certain number a, an integer, and we count successively
one unit b times, the number we arrive at we call a+ b, and that defines addition
of integers.

Once we have defined addition, then we can consider this: if we start with
nothing and add a to it, b times in succession, we call the result multiplication of
integers; we call it b times a.

Now we can also have a succession of multiplications: if we start with 1 and
multiply by a, b times in succession, we call that raising to a power: ab.

Now as a consequence of these definitions it can be easily shown that all of
the following relationships are true:

(a) a+ b = b+ a (b) a+ (b+ c) = (a+ b) + c

(c) ab = ba (d) a(b+ c) = ab+ ac

(e) (ab)c = a(bc) (f) (ab)c = acbc

(g) abac = a(b+c) (h) (ab)c = a(bc)

(i) a+ 0 = a (j) a · 1 = a

(k) a1 = a

(22.1)

These results are well known and we shall not belabor the point, we merely list
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them. Of course, 1 and 0 have special properties; for example, a+ 0 is a, a times
1 = a, and a to the first power is a.

In this discussion we must also assume a few other properties like continuity
and ordering, which are very hard to define; we will let the rigorous theory do it.
Furthermore, it is definitely true that we have written down too many “rules”;
some of them may be deducible from the others, but we shall not worry about
such matters.

22-2 The inverse operations

In addition to the direct operations of addition, multiplication, and raising to
a power, we have also the inverse operations, which are defined as follows. Let us
assume that a and c are given, and that we wish to find what values of b satisfy
such equations as a+b = c, ab = c, ba = c. If a+b = c, b is defined as c−a, which
is called subtraction. The operation called division is also clear: if ab = c, then
b = c/a defines division—a solution of the equation ab = c “backwards.” Now if
we have a power ba = c and we ask ourselves, “What is b?,” it is called the ath root
of c: b = a

√
c. For instance, if we ask ourselves the following question, “What

integer, raised to the third power, equals 8?,” then the answer is called the cube
root of 8; it is 2. Because ba and ab are not equal, there are two inverse problems
associated with powers, and the other inverse problem would be, “To what power
must we raise 2 to get 8?” This is called taking the logarithm. If ab = c, we write
b = loga c. The fact that it has a cumbersome notation relative to the others does
not mean that it is any less elementary, at least applied to integers, than the other
processes. Although logarithms come late in an algebra class, in practice they are,
of course, just as simple as roots; they are just a different kind of solution of an
algebraic equation. The direct and inverse operations are summarized as follows:

(a) addition (a′) subtraction
a+ b = c b = c− a

(b) multiplication (b′) division
ab = c b = c/a

(c) power (c′) root
ba = c b = a

√
c

(d) power (d′) logarithm
ab = c b = loga c

(22.2)
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Now here is the idea. These relationships, or rules, are correct for integers,
since they follow from the definitions of addition, multiplication, and raising to a
power. We are going to discuss whether or not we can broaden the class of objects
which a, b, and c represent so that they will obey these same rules, although the
processes for a+ b, and so on, will not be definable in terms of the direct action
of adding 1, for instance, or successive multiplications by integers.

22-3 Abstraction and generalization

When we try to solve simple algebraic equations using all these definitions,
we soon discover some insoluble problems, such as the following. Suppose that
we try to solve the equation b = 3 − 5. That means, according to our def-
inition of subtraction, that we must find a number which, when added to 5,
gives 3. And of course there is no such number, because we consider only
positive integers; this is an insoluble problem. However, the plan, the great
idea, is this: abstraction and generalization. From the whole structure of al-
gebra, rules plus integers, we abstract the original definitions of addition and
multiplication, but we leave the rules (22.1) and (22.2), and assume these to
be true in general on a wider class of numbers, even though they are originally
derived on a smaller class. Thus, rather than using integers symbolically to
define the rules, we use the rules as the definition of the symbols, which then
represent a more general kind of number. As an example, by working with
the rules alone we can show that 3 − 5 = 0 − 2. In fact we can show that
one can make all subtractions, provided we define a whole set of new num-
bers: 0 − 1, 0 − 2, 0 − 3, 0 − 4, and so on, called the negative integers. Then
we may use all the other rules, like a(b + c) = ab + ac and so forth, to find
what the rules are for multiplying negative numbers, and we will discover, in
fact, that all of the rules can be maintained with negative as well as positive
integers.

So we have increased the range of objects over which the rules work, but the
meaning of the symbols is different.

One cannot say, for instance, that −2 times 5 really means to add 5 together
successively −2 times. That means nothing. But nevertheless everything will
work out all right according to the rules.

An interesting problem comes up in taking powers. Suppose that we wish
to discover what a(3−5) means. We know only that 3 − 5 is a solution of the
problem, (3− 5) + 5 = 3. Knowing that, we know that a(3−5)a5 = a3. Therefore
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a(3−5) = a3/a5, by the definition of division. With a little more work, this can
be reduced to 1/a2. So we find that the negative powers are the reciprocals of
the positive powers, but 1/a2 is a meaningless symbol, because if a is a positive
or negative integer, the square of it is greater than 1, and we do not yet know
what we mean by 1 divided by a number greater than 1!

Onward! The great plan is to continue the process of generalization; whenever
we find another problem that we cannot solve we extend our realm of numbers.
Consider division: we cannot find a number which is an integer, even a negative
integer, which is equal to the result of dividing 3 by 5. But if we suppose that all
fractional numbers also satisfy the rules, then we can talk about multiplying and
adding fractions, and everything works as well as it did before.

Take another example of powers: what is a3/5? We know only that (3/5)5 = 3,
since that was the definition of 3/5. So we know also that (a(3/5))5 = a(3/5)(5) =
a3, because this is one of the rules. Then by the definition of roots we find that
a(3/5) = 5

√
a3.

In this way, then, we can define what we mean by putting fractions in the
various symbols, by using the rules themselves to help us determine the definition—
it is not arbitrary. It is a remarkable fact that all the rules still work for positive
and negative integers, as well as for fractions!

We go on in the process of generalization. Are there any other equations
we cannot solve? Yes, there are. For example, it is impossible to solve this
equation: b = 21/2 =

√
2. It is impossible to find a number which is rational (a

fraction) whose square is equal to 2. It is very easy for us in modern days to
answer this question. We know the decimal system, and so we have no difficulty
in appreciating the meaning of an unending decimal as a type of approximation
to the square root of 2. Historically, this idea presented great difficulty to the
Greeks. To really define precisely what is meant here requires that we add some
substance of continuity and ordering, and it is, in fact, quite the most difficult
step in the processes of generalization just at this point. It was made, formally
and rigorously, by Dedekind. However, without worrying about the mathematical
rigor of the thing, it is quite easy to understand that what we mean is that we are
going to find a whole sequence of approximate fractions, perfect fractions (because
any decimal, when stopped somewhere, is of course rational), which just keeps
on going, getting closer and closer to the desired result. That is good enough
for what we wish to discuss, and it permits us to involve ourselves in irrational
numbers, and to calculate things like the square root of 2 to any accuracy that
we desire, with enough work.
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22-4 Approximating irrational numbers

The next problem comes with what happens with the irrational powers.
Suppose that we want to define, for instance, 10

√
2. In principle, the answer is

simple enough. If we approximate the square root of 2 to a certain number of
decimal places, then the power is rational, and we can take the approximate root,
using the above method, and get an approximation to 10

√
2. Then we may run it

up a few more decimal places (it is again rational), take the appropriate root,
this time a much higher root because there is a much bigger denominator in the
fraction, and get a better approximation. Of course we are going to get some
enormously high roots involved here, and the work is quite difficult. How can we
cope with this problem?

In the computations of square roots, cube roots, and other small roots, there
is an arithmetical process available by which we can get one decimal place after
another. But the amount of labor needed to calculate irrational powers and
the logarithms that go with them (the inverse problem) is so great that there
is no simple arithmetical process we can use. Therefore tables have been built
up which permit us to calculate these powers, and these are called the tables
of logarithms, or the tables of powers, depending on which way the table is set
up. It is merely a question of saving time; if we must raise some number to an
irrational power, we can look it up rather than having to compute it. Of course,
such a computation is just a technical problem, but it is an interesting one, and
of great historical value. In the first place, not only do we have the problem of
solving x = 10

√
2, but we also have the problem of solving 10x = 2, or x = log10 2.

This is not a problem where we have to define a new kind of number for the
result, it is merely a computational problem. The answer is simply an irrational
number, an unending decimal, not a new kind of a number.

Let us now discuss the problem of calculating solutions of such equations.
The general idea is really very simple. If we could calculate 101, and 104/10, and
101/100, and 104/1000 and so on, and multiply them all together, we would get
101.414... or 10

√
2, and that is the general idea on which things work. But instead

of calculating 101/10 and so on, we shall calculate 101/2, 101/4, and so on. Before
we start, we should explain why we make so much work with 10, instead of some
other number. Of course, we realize that logarithm tables are of great practical
utility, quite aside from the mathematical problem of taking roots, since with
any base at all,

logb(ac) = logb a+ logb c. (22.3)
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We are all familiar with the fact that one can use this fact in a practical way to
multiply numbers if we have a table of logarithms. The only question is, with
what base b shall we compute? It makes no difference what base is used; we
can use the same principle all the time, and if we are using logarithms to any
particular base, we can find logarithms to any other base merely by a change
in scale, a multiplying factor. If we multiply Eq. (22.3) by 61, it is just as true,
and if we had a table of logs with a base b, and somebody else multiplied all of
our table by 61, there would be no essential difference. Suppose that we know
the logarithms of all the numbers to the base b. In other words, we can solve
the equation ba = c for any c because we have a table. The problem is to find
the logarithm of the same number c to some other base, let us say the base x.
We would like to solve xa′ = c. It is easy to do, because we can always write
x = bt, which defines t, knowing x and b. As a matter of fact, t = logb x. Then
if we put that in and solve for a′, we see that (bt)a′ = ba

′t = c. In other words,
ta′ is the logarithm of c in base b. Thus a′ = a/t. Thus logs to base x are just
1/t, which is a constant, times the logs to the base, b. Therefore any log table is
equivalent to any other log table if we multiply by a constant, and the constant
is 1/ logb x. This permits us to choose a particular base, and for convenience we
take the base 10. (The question may arise as to whether there is any natural
base, any base in which things are somehow simpler, and we shall try to find an
answer to that later. At the moment we shall just use the base 10.)

Now let us see how to calculate logarithms. We begin by computing successive
square roots of 10, by cut and try. The results are shown in Table 22-1. The
powers of 10 are given in the first column, and the result, 10s, is given in the
third column. Thus 101 = 10. The one-half power of 10 we can easily work out,
because that is the square root of 10, and there is a known, simple process for
taking square roots of any number.* Using this process, we find the first square
root to be 3.16228. What good is that? It already tells us something, it tells
us how to take 100.5, so we now know at least one logarithm, if we happen to
need the logarithm of 3.16228, we know the answer is close to 0.50000. But we
must do a little bit better than that; we clearly need more information. So we
take the square root again, and find 101/4, which is 1.77828. Now we have the
logarithm of more numbers than we had before, 1.250 is the logarithm of 17.78

* There is a definite arithmetic procedure, but the easiest way to find the square root of any
number N is to choose some a fairly close, find N/a, average a′ = 1

2 [a+ (N/a)], and use this
average a′ for the next choice for a. The convergence is very rapid—the number of significant
figures doubles each time.
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Table 22-1

Successive Square Roots of Ten

Power s 1024 s 10s (10s − 1)/s

1 1024 10.00000 9.00
1/2 512 3.16228 4.32
1/4 256 1.77828 3.113
1/8 128 1.33352 2.668
1/16 64 1.15478 2.476
1/32 32 1.074607 2.3874
1/64 16 1.036633 2.3445
1/128 8 1.018152 2.3234211

1/256 4 1.0090350 2.3130104

1/512 2 1.0045073 2.3077 53

1/1024 1 1.0022511 2.3051 26y 26

∆/1024 ∆ 1 + 0.0022486∆←−2.3025
(∆→ 0)

and, incidentally, if it happens that somebody asks for 100.75, we can get it,
because that is 10(0.5+0.25); it is therefore the product of the second and third
numbers. If we can get enough numbers in column s to be able to make up
almost any number, then by multiplying the proper things in column 3, we can
get 10 to any power; that is the plan. So we evaluate ten successive square roots
of 10, and that is the main work which is involved in the calculations.

Why don’t we keep on going for more and more accuracy? Because we begin
to notice something. When we raise 10 to a very small power, we get 1 plus
a small amount. The reason for this is clear, because we are going to have to
take the 1000th power of 101/1000 to get back to 10, so we had better not start
with too big a number; it has to be close to 1. What we notice is that the small
numbers that are added to 1 begin to look as though we are merely dividing
by 2 each time; we see 1815 becomes 903, then 450, 225; so it is clear that, to an
excellent approximation, if we take another root, we shall get 1.00112 something,
and rather than actually take all the square roots, we guess at the ultimate
limit. When we take a small fraction ∆/1024 as ∆ approaches zero, what will
the answer be? Of course it will be some number close to 1 + 0.0022511 ∆. Not
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exactly 1 + 0.0022511 ∆, however—we can get a better value by the following
trick: we subtract the 1, and then divide by the power s. This ought to correct
all the excesses to the same value. We see that they are very closely equal. At
the top of the table they are not equal, but as they come down, they get closer
and closer to a constant value. What is the value? Again we look to see how the
series is going, how it has changed with s. It changed by 211, by 104, by 53, by
26. These changes are obviously half of each other, very closely, as we go down.
Therefore, if we kept going, the changes would be 13, 7, 3, 2 and 1, more or less,
or a total of 26. Thus we have only 26 more to go, and so we find that the true
number is 2.3025. (Actually, we shall later see that the exact number should
be 2.3026, but to keep it realistic, we shall not alter anything in the arithmetic.)
From this table we can now calculate any power of 10, by compounding the power
out of 1024ths.

Let us now actually calculate a logarithm, because the process we shall use is
where logarithm tables actually come from. The procedure is shown in Table 22-2,
and the numerical values are shown in Table 22-1 (columns 2 and 3).

Table 22-2

Calculation of a logarithm: log10 2

2÷ 1.77828 = 1.124682
1.124682÷ 1.074607 = 1.046598, etc.
∴ 2 = (1.77828)(1.074607)(1.036633)(1.0090350)(1.000573)

= 10
[

1
1024(256 + 32 + 16 + 4 + 0.254)

]
= 10

[
308.254

1024

]
= 100.30103

(
573
2249 = 0.254

)
∴ log10 2 = 0.30103

Suppose we want the logarithm of 2. That is, we want to know to what power
we must raise 10 to get 2. Can we raise 10 to the 1/2 power? No; that is too big.
In other words, we can see that the answer is going to be bigger than 1/4, and
less than 1/2. Let us take the factor 101/4 out; we divide 2 by 1.778 . . . , and get
1.124 . . . , and so on, and now we know that we have taken away 0.250000 from
the logarithm. The number 1.124 . . . , is now the number whose logarithm we
need. When we are finished we shall add back the 1/4, or 256/1024. Now we
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look in the table for the next number just below 1.124 . . . , and that is 1.074607.
We therefore divide by 1.074607 and get 1.046598. From that we discover that 2
can be made up of a product of numbers that are in Table 22-1, as follows:

2 = (1.77828)(1.074607)(1.036633)(1.0090350)(1.000573).

There was one factor (1.000573) left over, naturally, which is beyond the range of
our table. To get the logarithm of this factor, we use our result that 10∆/1024 ≈
1 + 2.3025∆/1024. We find ∆ = 0.254. Therefore our answer is 10 to the
following power: (256 + 32 + 16 + 4 + 0.254)/1024. Adding those together, we get
308.254/1024. Dividing, we get 0.30103, so we know that the log10 2 = 0.30103,
which happens to be right to 5 figures!

This is how logarithms were originally computed by Mr. Briggs of Halifax,
in 1620. He said, “I computed successively 54 square roots of 10.” We know he
really computed only the first 27, because the rest of them can be obtained by this
trick with ∆. His work involved calculating the square root of 10 twenty-seven
times, which is not much more than the ten times we did; however, it was more
work because he calculated to sixteen decimal places, and then reduced his answer
to fourteen when he published it, so that there were no rounding errors. He
made tables of logarithms to fourteen decimal places by this method, which is
quite tedious. But all logarithm tables for three hundred years were borrowed
from Mr. Briggs’ tables by reducing the number of decimal places. Only in
modern times, with the WPA and computing machines, have new tables been
independently computed. There are much more efficient methods of computing
logarithms today, using certain series expansions.

In the above process, we discovered something rather interesting, and that
is that for very small powers ε we can calculate 10ε easily; we have discovered
that 10ε = 1 + 2.3025ε, by sheer numerical analysis. Of course this also means
that 10n/2.3025 = 1 + n if n is very small. Now logarithms to any other base
are merely multiples of logarithms to the base 10. The base 10 was used only
because we have 10 fingers, and the arithmetic of it is easy, but if we ask for a
mathematically natural base, one that has nothing to do with the number of
fingers on human beings, we might try to change our scale of logarithms in some
convenient and natural manner, and the method which people have chosen is
to redefine the logarithms by multiplying all the logarithms to the base 10 by
2.3025 . . . This then corresponds to using some other base, and this is called the
natural base, or base e. Note that loge(1 + n) ≈ n, or en ≈ 1 + n as n→ 0.
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It is easy enough to find out what e is: e = 101/2.3025 or 100.434294..., an
irrational power. Our table of the successive square roots of 10 can be used
to compute, not just logarithms, but also 10 to any power, so let us use it to
calculate this natural base e. For convenience we transform 0.434294 . . . into
444.73/1024. Now, 444.73 is 256 + 128 + 32 + 16 + 8 + 4 + 0.73. Therefore e,
since it is an exponent of a sum, will be a product of the numbers

(1.77828)(1.33352)(1.074607)(1.036633)(1.018152)(1.009035)(1.001643) = 2.7184.

(The only problem is the last one, which is 0.73, and which is not in the table,
but we know that if ∆ is small enough, the answer is 1 + 2.3025 ∆.) When we
multiply all these together, we get 2.7184 (it should be 2.7183, but it is good
enough). The use of such tables, then, is the way in which irrational powers and
the logarithms of irrational numbers are all calculated. That takes care of the
irrationals.

22-5 Complex numbers

Now it turns out that after all that work we still cannot solve every equation!
For instance, what is the square root of −1? Suppose we have to find x2 = −1.
The square of no rational, of no irrational, of nothing that we have discovered so
far, is equal to −1. So we again have to generalize our numbers to a still wider
class. Let us suppose that a specific solution of x2 = −1 is called something, we
shall call it i; i has the property, by definition, that its square is −1. That is
about all we are going to say about it; of course, there is more than one root
of the equation x2 = −1. Someone could write i, but another could say, “No,
I prefer −i. My i is minus your i.” It is just as good a solution, and since the
only definition that i has is that i2 = −1, it must be true that any equation we
can write is equally true if the sign of i is changed everywhere. This is called
taking the complex conjugate. Now we are going to make up numbers by adding
successive i’s, and multiplying i’s by numbers, and adding other numbers, and
so on, according to all of our rules. In this way we find that numbers can all be
written in the form p+ iq, where p and q are what we call real numbers, i.e., the
numbers we have been defining up until now. The number i is called the unit
imaginary number. Any real multiple of i is called pure imaginary. The most
general number, a, is of the form p+ iq and is called a complex number. Things
do not get any worse if, for instance, we multiply two such numbers, let us say
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(r + is)(p+ iq). Then, using the rules, we get

(r + is)(p+ iq) = rp+ r(iq) + (is)p+ (is)(iq)
= rp+ i(rq) + i(sp) + (ii)(sq)
= (rp− sq) + i(rq + sp), (22.4)

since ii = i2 = −1. Therefore all the numbers that now belong in the rules (22.1)
have this mathematical form.

Now you say, “This can go on forever! We have defined powers of imaginaries
and all the rest, and when we are all finished, somebody else will come along with
another equation which cannot be solved, like x6 + 3x2 = −2. Then we have to
generalize all over again!” But it turns out that with this one more invention, just
the square root of −1, every algebraic equation can be solved! This is a fantastic
fact, which we must leave to the Mathematics Department to prove. The proofs
are very beautiful and very interesting, but certainly not self-evident. In fact,
the most obvious supposition is that we are going to have to invent again and
again and again. But the greatest miracle of all is that we do not. This is the
last invention. After this invention of complex numbers, we find that the rules
still work with complex numbers, and we are finished inventing new things. We
can find the complex power of any complex number, we can solve any equation
that is written algebraically, in terms of a finite number of those symbols. We
do not find any new numbers. The square root of i, for instance, has a definite
result, it is not something new; and ii is something. We will discuss that now.

We have already discussed multiplication, and addition is also easy; if we add
two complex numbers, (p+ iq) + (r + is), the answer is (p+ r) + i(q + s). Now
we can add and multiply complex numbers. But the real problem, of course, is
to compute complex powers of complex numbers. It turns out that the problem
is actually no more difficult than computing complex powers of real numbers. So
let us concentrate now on the problem of calculating 10 to a complex power, not
just an irrational power, but 10(r+is). Of course, we must at all times use our
rules (22.1) and (22.2). Thus

10(r+is) = 10r10is. (22.5)

But 10r we already know how to compute, and we can always multiply anything
by anything else; therefore the problem is to compute only 10is. Let us call it
some complex number, x+ iy. Problem: given s, find x, find y. Now if

10is = x+ iy,
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then the complex conjugate of this equation must also be true, so that

10−is = x− iy.

(Thus we see that we can deduce a number of things without actually computing
anything, by using our rules.) We deduce another interesting thing by multiplying
these together:

10is10−is = 100 = 1 = (x+ iy)(x− iy) = x2 + y2. (22.6)

Thus if we find x, we have y also.
Now the problem is how to compute 10 to an imaginary power. What guide

is there? We may work over our rules until we can go no further, but here is a
reasonable guide: if we can compute it for any particular s, we can get it for all
the rest. If we know 10is for any one s and then we want it for twice that s, we
can square the number, and so on. But how can we find 10is for even one special
value of s? To do so we shall make one additional assumption, which is not quite
in the category of all the other rules, but which leads to reasonable results and
permits us to make progress: when the power is small, we shall suppose that the
“law” 10ε = 1 + 2.3025ε is right, as ε gets very small, not only for real ε, but for
complex ε as well. Therefore, we begin with the supposition that this law is true
in general, and that tells us that 10is = 1 + 2.3025 · is, for s→ 0. So we assume
that if s is very small, say one part in 1024, we have a rather good approximation
to 10is.

Now we make a table by which we can compute all the imaginary powers
of 10, that is, compute x and y. It is done as follows. The first power we start
with is the 1/1024 power, which we presume is very nearly 1 + 2.3025i/1024.
Thus we start with

10i/1024 = 1.00000 + 0.0022486i, (22.7)
and if we keep multiplying the number by itself, we can get to a higher imaginary
power. In fact, we may just reverse the procedure we used in making our logarithm
table, and calculate the square, 4th power, 8th power, etc., of (22.7), and thus
build up the values shown in Table 22-3. We notice an interesting thing, that
the x numbers are positive at first, but then swing negative. We shall look into
that a little bit more in a moment. But first we may be curious to find for what
number s the real part of 10is is zero. The y-value would be 1, and so we would
have 10is = 1i, or is = log10 i. As an example of how to use this table, just as
we calculated log10 2 before, let us now use Table 22-3 to find log10 i.
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Table 22-3

Successive Squares of 10i/1024 = 1 + 0.0022486i

Power is 1024s 10is

i/1024 1 1.00000 + 0.00225i*
i/512 2 1.00000 + 0.00450i
i/256 4 0.99996 + 0.00900i
i/128 8 0.99984 + 0.01800i
i/64 16 0.99936 + 0.03599i
i/32 32 0.99742 + 0.07193i
i/16 64 0.98967 + 0.14349i
i/8 128 0.95885 + 0.28402i
i/4 256 0.83872 + 0.54467i
i/2 512 0.40679 + 0.91365i
i/1 1024 −0.66928 + 0.74332i

* Should be 0.0022486i

Which of the numbers in Table 22-3 do we have to multiply together to
get a pure imaginary result? After a little trial and error, we discover that to
reduce x the most, it is best to multiply “512” by “128.” This gives 0.13056 +
0.99159i. Then we discover that we should multiply this by a number whose
imaginary part is about equal to the size of the real part we are trying to remove.
Thus we choose “64” whose y-value is 0.14349, since that is closest to 0.13056.
This then gives −0.01308 + 1.00008i. Now we have overshot, and must divide
by 0.99996 + 0.00900i. How do we do that? By changing the sign of i and
multiplying by 0.99996− 0.00900i (which works if x2 + y2 = 1). Continuing in
this way, we find that the entire power to which 10 must be raised to give i is
i(512 + 128 + 64 − 4 − 2 + 0.20)/1024, or 698.20i/1024. If we raise 10 to that
power, we can get i. Therefore log10 i = 0.68184i.

22-6 Imaginary exponents

To further investigate the subject of taking complex imaginary powers, let
us look at the powers of 10 taking successive powers, not doubling the power
each time, in order to follow Table 22-3 further and to see what happens to those
minus signs. This is shown in Table 22-4, in which we take 10i/8, and just keep
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Table 22-4

Successive Powers of 10i/8

p = power · 8/i 10ip/8

0 1.00000 + 0.00000i
1 0.95882 + 0.28402i
2 0.83867 + 0.54465i
3 0.64944 + 0.76042i
4 0.40672 + 0.91356i
5 0.13050 + 0.99146i
6 −0.15647 + 0.98770i
7 −0.43055 + 0.90260i
8 −0.66917 + 0.74315i
9 −0.85268 + 0.52249i

10 −0.96596 + 0.25880i
11 −0.99969− 0.02620i
12 −0.95104− 0.30905i
14 −0.62928− 0.77717i
16 −0.10447− 0.99453i
18 +0.45454− 0.89098i
20 +0.86648− 0.49967i
22 +0.99884 + 0.05287i
24 +0.80890 + 0.58836i

multiplying it. We see that x decreases, passes through zero, swings almost to −1
(if we could get in between p = 10 and p = 11 it would obviously swing to −1),
and swings back. The y-value is going back and forth too.

In Fig. 22-1 the dots represent the numbers that appear in Table 22-4, and
the lines are just drawn to help you visually. So we see that the numbers x and y
oscillate; 10is repeats itself, it is a periodic thing, and as such, it is easy enough
to explain, because if a certain power is i, then the fourth power of that would
be i2 squared. It would be +1 again, and therefore, since 100.68i is equal to i, by
taking the fourth power we discover that 102.72i is equal to +1. Therefore, if we
wanted 103.00i, for instance, we could write it as 102.72i times 100.28i. In other
words, it has a period, it repeats. Of course, we recognize what the curves look
like! They look like the sine and cosine, and we shall call them, for a while, the
algebraic sine and algebraic cosine. However, instead of using the base 10, we
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Figure 22-1

shall put them into our natural base, which only changes the horizontal scale;
so we denote 2.3025s by t, and write 10is = eit, where t is a real number. Now
eit = x+ iy, and we shall write this as the algebraic cosine of t plus i times the
algebraic sine of t. Thus

eit = cos t+ i sin t. (22.8)

What are the properties of cos t and sin t? First, we know, for instance, that
x2 + y2 must be 1; we have proved that before, and it is just as true for base e
as for base 10. Therefore cos2 t + sin2 t = 1. We also know that, for small
t, eit = 1 + it, and therefore cos t is nearly 1, and sin t is nearly t, and so it
goes, that all of the various properties of these remarkable functions, which
come from taking imaginary powers, are the same as the sine and cosine of
trigonometry.

Is the period the same? Let us find out. e to what power is equal to i? What
is the logarithm of i to the base e? We worked it out before, in the base 10
it was 0.68184i, but when we change our logarithmic scale to e, we have to
multiply by 2.3025, and if we do that it comes out 1.570. So this will be called
“algebraic π/2.” But, we see, it differs from the regular π/2 by only one place
in the last point, and that, of course, is the result of errors in our arithmetic!
So we have created two new functions in a purely algebraic manner, the cosine
and the sine, which belong to algebra, and only to algebra. We wake up at the
end to discover the very functions that are natural to geometry. So there is a
connection, ultimately, between algebra and geometry.

We summarize with this, the most remarkable formula in mathematics:

eiθ = cos θ + i sin θ. (22.9)
This is our jewel.
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We may relate the geometry to the algebra by representing complex numbers
in a plane; the horizontal position of a point is x, the vertical position of a point
is y (Fig. 22-2). We represent every complex number, x+ iy. Then if the radial
distance to this point is called r and the angle is called θ, the algebraic law is that
x+ iy is written in the form reiθ, where the geometrical relationships between
x, y, r, and θ are as shown. This, then, is the unification of algebra and geometry.

x

y

x

yr

θ

Fig. 22-2. x + iy = re iθ.

When we began this chapter, armed only with the basic notions of integers
and counting, we had little idea of the power of the processes of abstraction
and generalization. Using the set of algebraic “laws,” or properties of numbers,
Eq. (22.1), and the definitions of inverse operations (22.2), we have been able
here, ourselves, to manufacture not only numbers but useful things like tables of
logarithms, powers, and trigonometric functions (for these are what the imaginary
powers of real numbers are), all merely by extracting ten successive square roots
of ten!
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23

Resonance

23-1 Complex numbers and harmonic motion

In the present chapter we shall continue our discussion of the harmonic
oscillator and, in particular, the forced harmonic oscillator, using a new technique
in the analysis. In the preceding chapter we introduced the idea of complex
numbers, which have real and imaginary parts and which can be represented
on a diagram in which the ordinate represents the imaginary part and the
abscissa represents the real part. If a is a complex number, we may write it as
a = ar + iai, where the subscript r means the real part of a, and the subscript i
means the imaginary part of a. Referring to Fig. 23-1, we see that we may
also write a complex number a = x + iy in the form x + iy = reiθ, where
r2 = x2 + y2 = (x + iy)(x − iy) = aa∗. (The complex conjugate of a, written
a∗, is obtained by reversing the sign of i in a.) So we shall represent a complex
number in either of two forms, a real plus an imaginary part, or a magnitude r and
a phase angle θ, so-called. Given r and θ, x and y are clearly r cos θ and r sin θ
and, in reverse, given a complex number x+ iy, r =

√
x2 + y2 and tan θ = y/x,

the ratio of the imaginary to the real part.

REAL AXIS

IMAGINARY
AXIS

a

x

yr

θ

Fig. 23-1. A complex number may be represented by a point in the
“complex plane.”

23-1



We are going to apply complex numbers to our analysis of physical phenomena
by the following trick. We have examples of things that oscillate; the oscillation
may have a driving force which is a certain constant times cosωt. Now such a force,
F = F0 cosωt, can be written as the real part of a complex number F = F0e

iωt

because eiωt = cosωt+ i sinωt. The reason we do this is that it is easier to work
with an exponential function than with a cosine. So the whole trick is to represent
our oscillatory functions as the real parts of certain complex functions. The
complex number F that we have so defined is not a real physical force, because
no force in physics is really complex; actual forces have no imaginary part, only
a real part. We shall, however, speak of the “force” F0e

iωt, but of course the
actual force is the real part of that expression.

Let us take another example. Suppose we want to represent a force which
is a cosine wave that is out of phase with a delayed phase ∆. This, of course,
would be the real part of F0e

i(ωt−∆), but exponentials being what they are, we
may write ei(ωt−∆) = eiωte−i∆. Thus we see that the algebra of exponentials is
much easier than that of sines and cosines; this is the reason we choose to use
complex numbers. We shall often write

F = F0e
−i∆eiωt = F̂ eiωt. (23.1)

We write a little caret (ˆ) over the F to remind ourselves that this quantity is a
complex number: here the number is

F̂ = F0e
−i∆.

Now let us solve an equation, using complex numbers, to see whether we can
work out a problem for some real case. For example, let us try to solve

d2x

dt2
+ kx

m
= F

m
= F0

m
cosωt, (23.2)

where F is the force which drives the oscillator and x is the displacement. Now,
absurd though it may seem, let us suppose that x and F are actually complex
numbers, for a mathematical purpose only. That is to say, x has a real part and
an imaginary part times i, and F has a real part and an imaginary part times i.
Now if we had a solution of (23.2) with complex numbers, and substituted the
complex numbers in the equation, we would get

d2(xr + ixi)
dt2

+ k(xr + ixi)
m

= Fr + iFi
m
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or
d2xr
dt2

+ kxr
m

+ i

(
d2xi
dt2

+ kxi
m

)
= Fr
m

+ iFi
m
.

Now, since if two complex numbers are equal, their real parts must be equal and
their imaginary parts must be equal, we deduce that the real part of x satisfies
the equation with the real part of the force. We must emphasize, however, that
this separation into a real part and an imaginary part is not valid in general,
but is valid only for equations which are linear, that is, for equations in which x
appears in every term only in the first power or the zeroth power. For instance,
if there were in the equation a term λx2, then when we substitute xr + ixi, we
would get λ(xr + ixi)2, but when separated into real and imaginary parts this
would yield λ(x2

r −x2
i ) as the real part and 2iλxrxi as the imaginary part. So we

see that the real part of the equation would not involve just λx2
r, but also −λx2

i .
In this case we get a different equation than the one we wanted to solve, with xi,
the completely artificial thing we introduced in our analysis, mixed in.

Let us now try our new method for the problem of the forced oscillator, that
we already know how to solve. We want to solve Eq. (23.2) as before, but we say
that we are going to try to solve

d2x

dt2
+ kx

m
= F̂ eiωt

m
, (23.3)

where F̂ eiωt is a complex number. Of course x will also be complex, but remember
the rule: take the real part to find out what is really going on. So we try to
solve (23.3) for the forced solution; we shall discuss other solutions later. The
forced solution has the same frequency as the applied force, and has some
amplitude of oscillation and some phase, and so it can be represented also
by some complex number x̂ whose magnitude represents the swing of x and
whose phase represents the time delay in the same way as for the force. Now
a wonderful feature of an exponential function is that d(x̂eiωt)/dt = iωx̂eiωt.
When we differentiate an exponential function, we bring down the exponent as
a simple multiplier. The second derivative does the same thing, it brings down
another iω, and so it is very simple to write immediately, by inspection, what the
equation is for x̂: every time we see a differentiation, we simply multiply by iω.
(Differentiation is now as easy as multiplication! This idea of using exponentials
in linear differential equations is almost as great as the invention of logarithms,
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in which multiplication is replaced by addition. Here differentiation is replaced
by multiplication.) Thus our equation becomes

(iω)2x̂+ (kx̂/m) = F̂ /m. (23.4)

(We have cancelled the common factor eiωt.) See how simple it is! Differential
equations are immediately converted, by sight, into mere algebraic equations; we
virtually have the solution by sight, that

x̂ = F̂ /m

(k/m)− ω2 ,

since (iω)2 = −ω2. This maybe slightly simplified by substituting k/m = ω2
0 ,

which gives
x̂ = F̂ /m(ω2

0 − ω2). (23.5)
This, of course, is the solution we had before; for since m(ω2

0 − ω2) is a real
number, the phase angles of F̂ and of x̂ are the same (or perhaps 180◦ apart, if
ω2 > ω2

0), as advertised previously. The magnitude of x̂, which measures how far
it oscillates, is related to the size of the F̂ by the factor 1/m(ω2

0 − ω2), and this
factor becomes enormous when ω is nearly equal to ω0. So we get a very strong
response when we apply the right frequency ω (if we hold a pendulum on the
end of a string and shake it at just the right frequency, we can make it swing
very high).

23-2 The forced oscillator with damping

That, then, is how we analyze oscillatory motion with the more elegant
mathematical technique. But the elegance of the technique is not at all exhibited
in such a problem that can be solved easily by other methods. It is only exhibited
when one applies it to more difficult problems. Let us therefore solve another,
more difficult problem, which furthermore adds a relatively realistic feature to
the previous one. Equation (23.5) tells us that if the frequency ω were exactly
equal to ω0, we would have an infinite response. Actually, of course, no such
infinite response occurs because some other things, like friction, which we have
so far ignored, limits the response. Let us therefore add to Eq. (23.2) a friction
term.

Ordinarily such a problem is very difficult because of the character and
complexity of the frictional term. There are, however, many circumstances in
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which the frictional force is proportional to the speed with which the object moves.
An example of such friction is the friction for slow motion of an object in oil or
a thick liquid. There is no force when it is just standing still, but the faster it
moves the faster the oil has to go past the object, and the greater is the resistance.
So we shall assume that there is, in addition to the terms in (23.2), another
term, a resistance force proportional to the velocity: Ff = −c dx/dt. It will be
convenient, in our mathematical analysis, to write the constant c as m times γ
to simplify the equation a little. This is just the same trick we use with k when
we replace it by mω2

0 , just to simplify the algebra. Thus our equation will be

m(d2x/dt2) + c(dx/dt) + kx = F (23.6)

or, writing c = mγ and k = mω2
0 and dividing out the mass m,

(d2x/dt2) + γ(dx/dt) + ω2
0x = F/m. (23.6a)

Now we have the equation in the most convenient form to solve. If γ is very
small, that represents very little friction; if γ is very large, there is a tremendous
amount of friction. How do we solve this new linear differential equation? Suppose
that the driving force is equal to F0 cos (ωt+ ∆); we could put this into (23.6a)
and try to solve it, but we shall instead solve it by our new method. Thus we
write F as the real part of F̂ eiωt and x as the real part of x̂eiωt, and substitute
these into Eq. (23.6a). It is not even necessary to do the actual substituting, for
we can see by inspection that the equation would become

[(iω)2x̂+ γ(iω)x̂+ ω2
0 x̂]eiωt = (F̂ /m)eiωt. (23.7)

[As a matter of fact, if we tried to solve Eq. (23.6a) by our old straightforward
way, we would really appreciate the magic of the “complex” method.] If we divide
by eiωt on both sides, then we can obtain the response x̂ to the given force F̂ ; it
is

x̂ = F̂ /m(ω2
0 − ω2 + iγω). (23.8)

Thus again x̂ is given by F̂ times a certain factor. There is no technical name
for this factor, no particular letter for it, but we may call it R for discussion
purposes:

R = 1
m(ω2

0 − ω2 + iγω)
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and
x̂ = F̂R. (23.9)

(Although the letters γ and ω0 are in very common use, this R has no particular
name.) This factor R can either be written as p+ iq, or as a certain magnitude ρ
times eiθ. If it is written as a certain magnitude times eiθ, let us see what it
means. Now F̂ = F0e

i∆, and the actual force F is the real part of F0e
i∆eiωt, that

is, F0 cos (ωt+ ∆). Next, Eq. (23.9) tells us that x̂ is equal to F̂R. So, writing
R = ρeiθ as another name for R, we get

x̂ = RF̂ = ρeiθF0e
i∆ = ρF0e

i(θ+∆).

Finally, going even further back, we see that the physical x, which is the real part
of the complex x̂eiωt, is equal to the real part of ρF0e

i(θ+∆)eiωt. But ρ and F0
are real, and the real part of ei(θ+∆+ωt) is simply cos (ωt+ ∆ + θ). Thus

x = ρF0 cos (ωt+ ∆ + θ). (23.10)

This tells us that the amplitude of the response is the magnitude of the force F
multiplied by a certain magnification factor, ρ; this gives us the “amount” of
oscillation. It also tells us, however, that x is not oscillating in phase with the
force, which has the phase ∆, but is shifted by an extra amount θ. Therefore ρ
and θ represent the size of the response and the phase shift of the response.

Now let us work out what ρ is. If we have a complex number, the square of
the magnitude is equal to the number times its complex conjugate; thus

ρ2 = 1
m2(ω2

0 − ω2 + iγω)(ω2
0 − ω2 − iγω)

= 1
m2[(ω2 − ω2

0)2 + γ2ω2] .
(23.11)

In addition, the phase angle θ is easy to find, for if we write

1/R = 1/ρeiθ = (1/ρ)e−iθ = m(ω2
0 − ω2 + iγω),

we see that
tan θ = −γω/(ω2

0 − ω2). (23.12)

It is minus because tan(−θ) = − tan θ. A negative value for θ results for all ω,
and this corresponds to the displacement x lagging the force F .
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Fig. 23-2. Plot of ρ2 versus ω.
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Fig. 23-3. Plot of θ versus ω.

Figure 23-2 shows how ρ2 varies as a function of frequency (ρ2 is physically
more interesting than ρ, because ρ2 is proportional to the square of the amplitude,
or more or less to the energy that is developed in the oscillator by the force). We
see that if γ is very small, then 1/(ω2

0 − ω2)2 is the most important term, and
the response tries to go up toward infinity when ω equals ω0. Now the “infinity”
is not actually infinite because if ω = ω0, then 1/γ2ω2 is still there. The phase
shift varies as shown in Fig. 23-3.

In certain circumstances we get a slightly different formula than (23.8), also
called a “resonance” formula, and one might think that it represents a different
phenomenon, but it does not. The reason is that if γ is very small the most
interesting part of the curve is near ω = ω0, and we may replace (23.8) by
an approximate formula which is very accurate if γ is small and ω is near ω0.
Since ω2

0 − ω2 = (ω0 − ω)(ω0 + ω), if ω is near ω0 this is nearly the same as
2ω0(ω0−ω) and γω is nearly the same as γω0. Using these in (23.8), we see that
ω2

0 − ω2 + iγω ≈ 2ω0(ω0 − ω + iγ/2), so that

x̂ ≈ F̂ /2mω0(ω0 − ω + iγ/2) if γ � ω0 and ω ≈ ω0. (23.13)
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It is easy to find the corresponding formula for ρ2. It is

ρ2 ≈ 1/4m2ω2
0 [(ω0 − ω)2 + γ2/4].

We shall leave it to the student to show the following: if we call the maximum
height of the curve of ρ2 vs. ω one unit, and we ask for the width ∆ω of the curve,
at one half the maximum height, the full width at half the maximum height of
the curve is ∆ω = γ, supposing that γ is small. The resonance is sharper and
sharper as the frictional effects are made smaller and smaller.

As another measure of the width, some people use a quantity Q which is
defined as Q = ω0/γ. The narrower the resonance, the higher the Q: Q = 1000
means a resonance whose width is only 1000th of the frequency scale. The Q of
the resonance curve shown in Fig. 23-2 is 5.

The importance of the resonance phenomenon is that it occurs in many other
circumstances, and so the rest of this chapter will describe some of these other
circumstances.

23-3 Electrical resonance

The simplest and broadest technical applications of resonance are in electricity.
In the electrical world there are a number of objects which can be connected to
make electric circuits. These passive circuit elements, as they are often called,
are of three main types, although each one has a little bit of the other two mixed
in. Before describing them in greater detail, let us note that the whole idea of our
mechanical oscillator being a mass on the end of a spring is only an approximation.
All the mass is not actually at the “mass”; some of the mass is in the inertia of
the spring. Similarly, all of the spring is not at the “spring”; the mass itself has a
little elasticity, and although it may appear so, it is not absolutely rigid, and as it
goes up and down, it flexes ever so slightly under the action of the spring pulling
it. The same thing is true in electricity. There is an approximation in which we
can lump things into “circuit elements” which are assumed to have pure, ideal
characteristics. It is not the proper time to discuss that approximation here, we
shall simply assume that it is true in the circumstances.

The three main kinds of circuit elements are the following. The first is called a
capacitor (Fig. 23-4); an example is two plane metallic plates spaced a very small
distance apart by an insulating material. When the plates are charged there is
a certain voltage difference, that is, a certain difference in potential, between
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Fig. 23-4. The three passive circuit elements.

them. The same difference of potential appears between the terminals A and B,
because if there were any difference along the connecting wire, electricity would
flow right away. So there is a certain voltage difference V between the plates if
there is a certain electric charge +q and −q on them, respectively. Between the
plates there will be a certain electric field; we have even found a formula for it
(Chapters 13 and 14):

V = σd/ε0 = qd/ε0A, (23.14)

where d is the spacing and A is the area of the plates. Note that the potential
difference is a linear function of the charge. If we do not have parallel plates,
but insulated electrodes which are of any other shape, the difference in potential
is still precisely proportional to the charge, but the constant of proportionality
may not be so easy to compute. However, all we need to know is that the
potential difference across a capacitor is proportional to the charge: V = q/C;
the proportionality constant is 1/C, where C is the capacitance of the object.

The second kind of circuit element is called a resistor ; it offers resistance to
the flow of electrical current. It turns out that metallic wires and many other
substances resist the flow of electricity in this manner: if there is a voltage
difference across a piece of some substance, there exists an electric current I =
dq/dt that is proportional to the electric voltage difference:

V = RI = Rdq/dt (23.15)

The proportionality coefficient is called the resistance R. This relationship may
already be familiar to you; it is Ohm’s law.

If we think of the charge q on a capacitor as being analogous to the displace-
ment x of a mechanical system, we see that the current, I = dq/dt, is analogous
to velocity, 1/C is analogous to a spring constant k, and R is analogous to the
resistive coefficient c = mγ in Eq. (23.6). Now it is very interesting that there
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exists another circuit element which is the analog of mass! This is a coil which
builds up a magnetic field within itself when there is a current in it. A changing
magnetic field develops in the coil a voltage that is proportional to dI/dt (this
is how a transformer works, in fact). The magnetic field is proportional to a
current, and the induced voltage (so-called) in such a coil is proportional to the
rate of change of the current:

V = LdI/dt = Ld2q/dt2. (23.16)

The coefficient L is the self-inductance, and is analogous to the mass in a
mechanical oscillating circuit.

1 2
V

L

R

C

Fig. 23-5. An oscillatory electrical circuit with resistance, inductance,
and capacitance.

Suppose we make a circuit in which we have connected the three circuit
elements in series (Fig. 23-5); then the voltage across the whole thing from 1
to 2 is the work done in carrying a charge through, and it consists of the sum
of several pieces: across the inductor, VL = Ld2q/dt2; across the resistance,
VR = Rdq/dt; across the capacitor, VC = q/C. The sum of these is equal to the
applied voltage, V :

Ld2q/dt2 +Rdq/dt+ q/C = V (t). (23.17)

Now we see that this equation is exactly the same as the mechanical equa-
tion (23.6), and of course it can be solved in exactly the same manner. We
suppose that V (t) is oscillatory: we are driving the circuit with a generator with
a pure sine wave oscillation. Then we can write our V (t) as a complex V̂ with
the understanding that it must be ultimately multiplied by eiωt, and the real part
taken in order to find the true V . Likewise, the charge q can thus be analyzed,
and then in exactly the same manner as in Eq. (23.8) we write the corresponding
equation: the second derivative of q̂ is (iω)2q̂; the first derivative is (iω)q̂. Thus
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Eq. (23.17) translates to [
L(iω)2 +R(iω) + 1

C

]
q̂ = V̂

or
q̂ = V̂

L(iω)2 +R(iω) + 1
C

which we can write in the form

q̂ = V̂ /L(ω2
0 − ω2 + iγω), (23.18)

where ω2
0 = 1/LC and γ = R/L. It is exactly the same denominator as we had

in the mechanical case, with exactly the same resonance properties! The corre-
spondence between the electrical and mechanical cases is outlined in Table 23-1.

Table 23-1

General Mechanical Electrical
characteristic property property

indep. variable time (t) time (t)
dep. variable position (x) charge (q)
inertia mass (m) inductance (L)
resistance drag coeff. (c = γm) resistance (R = γL)
stiffness stiffness (k) (capacitance)−1 (1/C)
resonant frequency ω2

0 = k/m ω2
0 = 1/LC

period t0 = 2π
√
m/k t0 = 2π

√
LC

figure of merit Q = ω0/γ Q = ω0L/R

We must mention a small technical point. In the electrical literature, a
different notation is used. (From one field to another, the subject is not really
any different, but the way of writing the notations is often different.) First, j
is commonly used instead of i in electrical engineering, to denote

√
−1. (After

all, i must be the current!) Also, the engineers would rather have a relationship
between V̂ and Î than between V̂ and q̂, just because they are more used to it
that way. Thus, since Î = dq̂/dt = iωq̂, we can just substitute Î/iω for q̂ and get

V̂ = (iωL+R+ 1/iωC)Î = ẐÎ. (23.19)
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Another way is to rewrite Eq. (23.17), so that it looks more familiar; one often
sees it written this way:

LdI/dt+RI + (1/C)
∫ t

I dt = V (t). (23.20)

At any rate, we find the relation (23.19) between voltage V̂ and current Î which
is just the same as (23.18) except divided by iω, and that produces Eq. (23.19).
The quantity R + iωL + 1/iωC is a complex number, and is used so much in
electrical engineering that it has a name: it is called the complex impedance,
Ẑ. Thus we can write V̂ = ẐÎ. The reason that the engineers like to do this
is that they learned something when they were young: V = RI for resistances,
when they only knew about resistances and dc. Now they have become more
educated and have ac circuits, so they want the equation to look the same. Thus
they write V̂ = ẐÎ, the only difference being that the resistance is replaced by a
more complicated thing, a complex quantity. So they insist that they cannot use
what everyone else in the world uses for imaginary numbers, they have to use a j
for that; it is a miracle that they did not insist also that the letter Z be an R!
(Then they get into trouble when they talk about current densities, for which
they also use j. The difficulties of science are to a large extent the difficulties of
notations, the units, and all the other artificialities which are invented by man,
not by nature.)

23-4 Resonance in nature

Although we have discussed the electrical case in detail, we could also bring
up case after case in many fields, and show exactly how the resonance equation
is the same. There are many circumstances in nature in which something is
“oscillating” and in which the resonance phenomenon occurs. We said that in
an earlier chapter; let us now demonstrate it. If we walk around our study,
pulling books off the shelves and simply looking through them to find an example
of a curve that corresponds to Fig. 23-2 and comes from the same equation,
what do we find? Just to demonstrate the wide range obtained by taking the
smallest possible sample, it takes only five or six books to produce quite a series
of phenomena which show resonances.

The first two are from mechanics, the first on a large scale: the atmosphere of
the whole earth. If the atmosphere, which we suppose surrounds the earth evenly
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Fig. 23-6. Response of the atmosphere to external excitation. a is
the required response if the atmospheric S2-tide is of gravitational origin;
peak amplification is 100 : 1. b is derived from observed magnification
and phase of M2-tide. [Munk and MacDonald, “Rotation of the Earth,”
Cambridge University Press (1960)]

on all sides, is pulled to one side by the moon or, rather, squashed prolate into a
double tide, and if we could then let it go, it would go sloshing up and down; it is
an oscillator. This oscillator is driven by the moon, which is effectively revolving
about the earth; any one component of the force, say in the x-direction, has a
cosine component, and so the response of the earth’s atmosphere to the tidal pull
of the moon is that of an oscillator. The expected response of the atmosphere is
shown in Fig. 23-6, curve b (curve a is another theoretical curve under discussion
in the book from which this is taken out of context). Now one might think
that we only have one point on this resonance curve, since we only have the one
frequency, corresponding to the rotation of the earth under the moon, which
occurs at a period of 12.42 hours—12 hours for the earth (the tide is a double
bump), plus a little more because the moon is going around. But from the size of
the atmospheric tides, and from the phase, the amount of delay, we can get both
ρ and θ. From those we can get ω0 and γ, and thus draw the entire curve! This is
an example of very poor science. From two numbers we obtain two numbers, and
from those two numbers we draw a beautiful curve, which of course goes through
the very point that determined the curve! It is of no use unless we can measure
something else, and in the case of geophysics that is often very difficult. But in
this particular case there is another thing which we can show theoretically must
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have the same timing as the natural frequency ω0: that is, if someone disturbed
the atmosphere, it would oscillate with the frequency ω0. Now there was such a
sharp disturbance in 1883; the Krakatoa volcano exploded and half the island
blew off, and it made such a terrific explosion in the atmosphere that the period
of oscillation of the atmosphere could be measured. It came out to 10 1

2 hours.
The ω0 obtained from Fig. 23-6 comes out 10 hours and 20 minutes, so there we
have at least one check on the reality of our understanding of the atmospheric
tides.

Next we go to the small scale of mechanical oscillation. This time we take a
sodium chloride crystal, which has sodium ions and chlorine ions next to each
other, as we described in an early chapter. These ions are electrically charged,
alternately plus and minus. Now there is an interesting oscillation possible.
Suppose that we could drive all the plus charges to the right and all the negative
charges to the left, and let go; they would then oscillate back and forth, the
sodium lattice against the chlorine lattice. How can we ever drive such a thing?
That is easy, for if we apply an electric field on the crystal, it will push the plus
charge one way and the minus charge the other way! So, by having an external
electric field we can perhaps get the crystal to oscillate. The frequency of the
electric field needed is so high, however, that it corresponds to infrared radiation!
So we try to find a resonance curve by measuring the absorption of infrared light
by sodium chloride. Such a curve is shown in Fig. 23-7. The abscissa is not
frequency, but is given in terms of wavelength, but that is just a technical matter,
of course, since for a wave there is a definite relation between frequency and
wavelength; so it is really a frequency scale, and a certain frequency corresponds
to the resonant frequency.

But what about the width? What determines the width? There are many
cases in which the width that is seen on the curve is not really the natural width γ
that one would have theoretically. There are two reasons why there can be a
wider curve than the theoretical curve. If the objects do not all have the same
frequency, as might happen if the crystal were strained in certain regions, so that
in those regions the oscillation frequency were slightly different than in other
regions, then what we have is many resonance curves on top of each other; so we
apparently get a wider curve. The other kind of width is simply this: perhaps
we cannot measure the frequency precisely enough—if we open the slit of the
spectrometer fairly wide, so although we thought we had only one frequency,
we actually had a certain range ∆ω, then we may not have the resolving power
needed to see a narrow curve. Offhand, we cannot say whether the width in
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Fig. 23-7. Transmission of infrared radiation through a thin (0.17 µ)
sodium chloride film. [After R. B. Barnes, Z. Physik 75, 723 (1932).
Kittel, Introduction to Solid State Physics, Wiley, 1956.]

Fig. 23-7 is natural, or whether it is due to inhomogeneities in the crystal or the
finite width of the slit of the spectrometer.

Now we turn to a more esoteric example, and that is the swinging of a magnet.
If we have a magnet, with north and south poles, in a constant magnetic field,
the N end of the magnet will be pulled one way and the S end the other way, and
there will in general be a torque on it, so it will vibrate about its equilibrium
position, like a compass needle. However, the magnets we are talking about are
atoms. These atoms have an angular momentum, the torque does not produce a
simple motion in the direction of the field, but instead, of course, a precession.
Now, looked at from the side, any one component is “swinging,” and we can
disturb or drive that swinging and measure an absorption. The curve in Fig. 23-8
represents a typical such resonance curve. What has been done here is slightly
different technically. The frequency of the lateral field that is used to drive
this swinging is always kept the same, while we would have expected that the
investigators would vary that and plot the curve. They could have done it that
way, but technically it was easier for them to leave the frequency ω fixed, and
change the strength of the constant magnetic field, which corresponds to changing
ω0 in our formula. They have plotted the resonance curve against ω0. Anyway,
this is a typical resonance with a certain ω0 and γ.

Now we go still further. Our next example has to do with atomic nuclei. The
motions of protons and neutrons in nuclei are oscillatory in certain ways, and we
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Fig. 23-8. Magnetic energy loss in paramagnetic organic compound
as function of applied magnetic field intensity. [Holden et al., Phys.
Rev. 75, 1614 (1949)]

can demonstrate this by the following experiment. We bombard a lithium atom
with protons, and we discover that a certain reaction, producing γ-rays, actually
has a very sharp maximum typical of resonance. We note in Fig. 23-9, however,
one difference from other cases: the horizontal scale is not a frequency, it is an
energy! The reason is that in quantum mechanics what we think of classically as
the energy will turn out to be really related to a frequency of a wave amplitude.
When we analyze something which in simple large-scale physics has to do with a
frequency, we find that when we do quantum-mechanical experiments with atomic
matter, we get the corresponding curve as a function of energy. In fact, this
curve is a demonstration of this relationship, in a sense. It shows that frequency
and energy have some deep interrelationship, which of course they do.

Now we turn to another example which also involves a nuclear energy level,
but now a much, much narrower one. The ω0 in Fig. 23-10 corresponds to an
energy of 100,000 electron volts, while the width γ is approximately 10−5 electron
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volt; in other words, this has a Q of 1010! When this curve was measured it was
the largest Q of any oscillator that had ever been measured. It was measured by
Dr. Mössbauer, and it was the basis of his Nobel prize. The horizontal scale here
is velocity, because the technique for obtaining the slightly different frequencies
was to use the Doppler effect, by moving the source relative to the absorber. One
can see how delicate the experiment is when we realize that the speed involved is
a few centimeters per second! On the actual scale of the figure, zero frequency
would correspond to a point about 1010 cm to the left—slightly off the paper!
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(a)
K−+p→ Λ+π++π−

(b)
K−+p→ K0+n

Fig. 23-11. Momentum dependence of the cross section for the
reactions (a) K− + p → Λ + π+ + π− and (b) K− + p → K0 + n.
The lower curves in (a) and (b) represent the presumed nonresonant
backgrounds, while the upper curves contain in addition the superposed
resonance. [Ferro-Luzzi et al., Phys. Rev. Lett. 8, 28 (1962)]

Finally, if we look in an issue of the Physical Review, say that of January 1,
1962, will we find a resonance curve? Every issue has a resonance curve, and
Fig. 23-11 is the resonance curve for this one. This resonance curve turns out to
be very interesting. It is the resonance found in a certain reaction among strange
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particles, a reaction in which a K− and a proton interact. The resonance is
detected by seeing how many of some kinds of particles come out, and depending
on what and how many come out, one gets different curves, but of the same
shape and with the peak at the same energy. We thus determine that there is a
resonance at a certain energy for the K− meson. That presumably means that
there is some kind of a state, or condition, corresponding to this resonance, which
can be attained by putting together a K− and a proton. This is a new particle,
or resonance. Today we do not know whether to call a bump like this a “particle”
or simply a resonance. When there is a very sharp resonance, it corresponds to a
very definite energy, just as though there were a particle of that energy present
in nature. When the resonance gets wider, then we do not know whether to
say there is a particle which does not last very long, or simply a resonance in
the reaction probability. In the second chapter, this point is made about the
particles, but when the second chapter was written this resonance was not known,
so our chart should now have still another particle in it!

23-19



24

Transients

24-1 The energy of an oscillator

Although this chapter is entitled “transients,” certain parts of it are, in a
way, part of the last chapter on forced oscillation. One of the features of a forced
oscillation which we have not yet discussed is the energy in the oscillation. Let
us now consider that energy.

In a mechanical oscillator, how much kinetic energy is there? It is proportional
to the square of the velocity. Now we come to an important point. Consider an
arbitrary quantity A, which may be the velocity or something else that we want
to discuss. When we write A = Âeiωt, a complex number, the true and honest
A, in the physical world, is only the real part; therefore if, for some reason, we
want to use the square of A, it is not right to square the complex number and
then take the real part, because the real part of the square of a complex number
is not just the square of the real part, but also involves the imaginary part. So
when we wish to find the energy we have to get away from the complex notation
for a while to see what the inner workings are.

Now the true physical A is the real part of A0e
i(ωt+∆), that is, A = A0 cos (ωt+

∆), where Â, the complex number, is written as A0e
i∆. Now the square of this

real physical quantity is A2 = A2
0 cos2 (ωt+ ∆). The square of the quantity, then,

goes up and down from a maximum to zero, like the square of the cosine. The
square of the cosine has a maximum of 1 and a minimum of 0, and its average
value is 1/2.

In many circumstances we are not interested in the energy at any specific
moment during the oscillation; for a large number of applications we merely
want the average of A2, the mean of the square of A over a period of time large
compared with the period of oscillation. In those circumstances, the average
of the cosine squared may be used, so we have the following theorem: if A is
represented by a complex number, then the mean of A2 is equal to 1

2A
2
0. Now A2

0
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is the square of the magnitude of the complex Â. (This can be written in many
ways—some people like to write |Â|2; others write, ÂÂ∗, Â times its complex
conjugate.) We shall use this theorem several times.

Now let us consider the energy in a forced oscillator. The equation for the
forced oscillator is

md2x/dt2 + γmdx/dt+mω2
0x = F (t). (24.1)

In our problem, of course, F (t) is a cosine function of t. Now let us analyze the
situation: how much work is done by the outside force F ? The work done by the
force per second, i.e., the power, is the force times the velocity. (We know that
the differential work in a time dt is F dx, and the power is F dx/dt.) Thus

P = F
dx

dt
= m

[(
dx

dt

)(
d2x

dt2

)
+ ω2

0x

(
dx

dt

)]
+ γm

(
dx

dt

)2
. (24.2)

But the first two terms on the right can also be written as d/dt[ 1
2m(dx/dt)2 +

1
2mω

2
0x

2], as is immediately verified by differentiating. That is to say, the term in
brackets is a pure derivative of two terms that are easy to understand—one is the
kinetic energy of motion, and the other is the potential energy of the spring. Let
us call this quantity the stored energy, that is, the energy stored in the oscillation.
Suppose that we want the average power over many cycles when the oscillator is
being forced and has been running for a long time. In the long run, the stored
energy does not change—its derivative gives zero average effect. In other words,
if we average the power in the long run, all the energy ultimately ends up in the
resistive term γm(dx/dt)2. There is some energy stored in the oscillation, but
that does not change with time, if we average over many cycles. Therefore the
mean power 〈P 〉 is

〈P 〉 = 〈γm(dx/dt)2〉. (24.3)

Using our method of writing complex numbers, and our theorem that 〈A2〉 =
1
2A

2
0, we may find this mean power. Thus if x = x̂eiωt, then dx/dt = iωx̂eiωt.

Therefore, in these circumstances, the average power could be written as

〈P 〉 = 1
2γmω

2x2
0. (24.4)

In the notation for electrical circuits, dx/dt is replaced by the current I (I is
dq/dt, where q corresponds to x), and mγ corresponds to the resistance R. Thus
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the rate of the energy loss—the power used up by the forcing function—is the
resistance in the circuit times the average square of the current:

〈P 〉 = R〈I2〉 = R · 1
2I

2
0 . (24.5)

This energy, of course, goes into heating the resistor; it is sometimes called the
heating loss or the Joule heating.

Another interesting feature to discuss is how much energy is stored. That is
not the same as the power, because although power was at first used to store up
some energy, after that the system keeps on absorbing power, insofar as there
are any heating (resistive) losses. At any moment there is a certain amount of
stored energy, so we would like to calculate the mean stored energy 〈E〉 also. We
have already calculated what the average of (dx/dt)2 is, so we find

〈E〉 = 1
2m〈(dx/dt)

2〉+ 1
2mω

2
0〈x2〉

= 1
2m(ω2 + ω2

0) 1
2x

2
0.

(24.6)

Now, when an oscillator is very efficient, and if ω is near ω0, so that |x̂| is large,
the stored energy is very high—we can get a large stored energy from a relatively
small force. The force does a great deal of work in getting the oscillation going,
but then to keep it steady, all it has to do is to fight the friction. The oscillator
can have a great deal of energy if the friction is very low, and even though it is
oscillating strongly, not much energy is being lost. The efficiency of an oscillator
can be measured by how much energy is stored, compared with how much work
the force does per oscillation.

How does the stored energy compare with the amount of work that is done in
one cycle? This is called the Q of the system, and Q is defined as 2π times the
mean stored energy, divided by the work done per cycle. (If we were to say the
work done per radian instead of per cycle, then the 2π disappears.)

Q = 2π
1
2m(ω2 + ω2

0) · 〈x2〉
γmω2〈x2〉 · 2π/ω = ω2 + ω2

0
2γω . (24.7)

Q is not a very useful number unless it is very large. When it is relatively large,
it gives a measure of how good the oscillator is. People have tried to define Q
in the simplest and most useful way; various definitions differ a bit from one
another, but if Q is very large, all definitions are in agreement. The most generally
accepted definition is Eq. (24.7), which depends on ω. For a good oscillator, close
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to resonance, we can simplify (24.7) a little by setting ω = ω0, and we then have
Q = ω0/γ, which is the definition of Q that we used before.

What is Q for an electrical circuit? To find out, we merely have to translate
L for m, R for mγ, and 1/C for mω2

0 (see Table 23-1). The Q at resonance is
Lω/R, where ω is the resonance frequency. If we consider a circuit with a high
Q, that means that the amount of energy stored in the oscillation is very large
compared with the amount of work done per cycle by the machinery that drives
the oscillations.

24-2 Damped oscillations

We now turn to our main topic of discussion: transients. By a transient is
meant a solution of the differential equation when there is no force present, but
when the system is not simply at rest. (Of course, if it is standing still at the
origin with no force acting, that is a nice problem—it stays there!) Suppose the
oscillation starts another way: say it was driven by a force for a while, and then
we turn off the force. What happens then? Let us first get a rough idea of what
will happen for a very high Q system. So long as a force is acting, the stored
energy stays the same, and there is a certain amount of work done to maintain
it. Now suppose we turn off the force, and no more work is being done; then the
losses which are eating up the energy of the supply are no longer eating up its
energy—there is no more driver. The losses will have to consume, so to speak,
the energy that is stored. Let us suppose that Q/2π = 1000. Then the work
done per cycle is 1/1000 of the stored energy. Is it not reasonable, since it is
oscillating with no driving force, that in one cycle the system will still lose a
thousandth of its energy E, which ordinarily would have been supplied from the
outside, and that it will continue oscillating, always losing 1/1000 of its energy
per cycle? So, as a guess, for a relatively high Q system, we would suppose that
the following equation might be roughly right (we will later do it exactly, and it
will turn out that it was right!):

dE/dt = −ωE/Q. (24.8)

This is rough because it is true only for large Q. In each radian the system loses a
fraction 1/Q of the stored energy E. Thus in a given amount of time dt the energy
will change by an amount ω dt/Q, since the number of radians associated with
the time dt is ω dt. What is the frequency? Let us suppose that the system moves
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so nicely, with hardly any force, that if we let go it will oscillate at essentially the
same frequency all by itself. So we will guess that ω is the resonant frequency ω0.
Then we deduce from Eq. (24.8) that the stored energy will vary as

E = E0e
−ω0t/Q = E0e

−γt. (24.9)

This would be the measure of the energy at any moment. What would the
formula be, roughly, for the amplitude of the oscillation as a function of the
time? The same? No! The amount of energy in a spring, say, goes as the square
of the displacement; the kinetic energy goes as the square of the velocity; so
the total energy goes as the square of the displacement. Thus the displacement,
the amplitude of oscillation, will decrease half as fast because of the square. In
other words, we guess that the solution for the damped transient motion will
be an oscillation of frequency close to the resonance frequency ω0, in which the
amplitude of the sine-wave motion will diminish as e−γt/2:

x = A0e
−γt/2 cosω0t. (24.10)

This equation and Fig. 24-1 give us an idea of what we should expect; now let
us try to analyze the motion precisely by solving the differential equation of the
motion itself.

x

t

e−γt/2

e−γt/2 cosω0t

Fig. 24-1. A damped cosine oscillation.

So, starting with Eq. (24.1), with no outside force, how do we solve it? Being
physicists, we do not have to worry about the method as much as we do about
what the solution is. Armed with our previous experience, let us try as a solution
an exponential curve, x = Aeiαt. (Why do we try this? It is the easiest thing to
differentiate!) We put this into (24.1) (with F (t) = 0), using the rule that each
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time we differentiate x with respect to time, we multiply by iα. So it is really
quite simple to substitute. Thus our equation looks like this:

(−α2 + iγα+ ω2
0)Aeiαt = 0. (24.11)

The net result must be zero for all times, which is impossible unless (a) A = 0,
which is no solution at all—it stands still, or (b)

− α2 + iαγ + ω2
0 = 0. (24.12)

If we can solve this and find an α, then we will have a solution in which A need
not be zero!

α = iγ/2±
√
ω2

0 − γ2/4. (24.13)

For a while we shall assume that γ is fairly small compared with ω0, so that
ω2

0 − γ2/4 is definitely positive, and there is nothing the matter with taking the
square root. The only bothersome thing is that we get two solutions! Thus

α1 = iγ/2 +
√
ω2

0 − γ2/4 = iγ/2 + ωγ (24.14)
and

α2 = iγ/2−
√
ω2

0 − γ2/4 = iγ/2− ωγ . (24.15)

Let us consider the first one, supposing that we had not noticed that the square
root has two possible values. Then we know that a solution for x is x1 = Aeiα1t,
where A is any constant whatever. Now, in substituting α1, because it is going to
come so many times and it takes so long to write, we shall call

√
ω2

0 − γ2/4 = ωγ .
Thus iα1 = −γ/2 + iωγ , and we get x = Ae(−γ/2+iωγ)t, or what is the same,
because of the wonderful properties of an exponential,

x1 = Ae−γt/2eiωγt. (24.16)

First, we recognize this as an oscillation, an oscillation at a frequency ωγ , which
is not exactly the frequency ω0, but is rather close to ω0 if it is a good system.
Second, the amplitude of the oscillation is decreasing exponentially! If we take,
for instance, the real part of (24.16), we get

x1 = Ae−γt/2 cosωγt. (24.17)
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This is very much like our guessed-at solution (24.10), except that the frequency
really is ωγ . This is the only error, so it is the same thing—we have the right
idea. But everything is not all right! What is not all right is that there is another
solution.

The other solution is α2, and we see that the difference is only that the sign
of ωγ is reversed:

x2 = Be−γt/2e−iωγt. (24.18)
What does this mean? We shall soon prove that if x1 and x2 are each a possible
solution of Eq. (24.1) with F = 0, then x1 + x2 is also a solution of the same
equation! So the general solution x is of the mathematical form

x = e−γt/2(Aeiωγt +Be−iωγt). (24.19)

Now we may wonder why we bother to give this other solution, since we were
so happy with the first one all by itself. What is the extra one for, because
of course we know we should only take the real part? We know that we must
take the real part, but how did the mathematics know that we only wanted the
real part? When we had a nonzero driving force F (t), we put in an artificial
force to go with it, and the imaginary part of the equation, so to speak, was
driven in a definite way. But when we put F (t) ≡ 0, our convention that x
should be only the real part of whatever we write down is purely our own, and
the mathematical equations do not know it yet. The physical world has a real
solution, but the answer that we were so happy with before is not real, it is
complex. The equation does not know that we are arbitrarily going to take the
real part, so it has to present us, so to speak, with a complex conjugate type of
solution, so that by putting them together we can make a truly real solution;
that is what α2 is doing for us. In order for x to be real, Be−ωγt will have to be
the complex conjugate of Aeωγt that the imaginary parts disappear. So it turns
out that B is the complex conjugate of A, and our real solution is

x = e−γt/2(Aeiωγt +A∗e−iωγt). (24.20)

So our real solution is an oscillation with a phase shift and a damping—just as
advertised.

24-3 Electrical transients

Now let us see if the above really works. We construct the electrical circuit
shown in Fig. 24-2, in which we apply to an oscilloscope the voltage across the
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Fig. 24-2. An electrical circuit for demonstrating transients.

inductance L after we suddenly turn on a voltage by closing the switch S. It is an
oscillatory circuit, and it generates a transient of some kind. It corresponds to a
circumstance in which we suddenly apply a force and the system starts to oscillate.
It is the electrical analog of a damped mechanical oscillator, and we watch the
oscillation on an oscilloscope, where we should see the curves that we were trying
to analyze. (The horizontal motion of the oscilloscope is driven at a uniform speed,
while the vertical motion is the voltage across the inductor. The rest of the circuit
is only a technical detail. We would like to repeat the experiment many, many
times, since the persistence of vision is not good enough to see only one trace
on the screen. So we do the experiment again and again by closing the switch
60 times a second; each time we close the switch, we also start the oscilloscope
horizontal sweep, and it draws the curve over and over.) In Figs. 24-3 to 24-6 we
see examples of damped oscillations, actually photographed on an oscilloscope
screen. Figure 24-3 shows a damped oscillation in a circuit which has a high Q, a
small γ. It does not die out very fast; it oscillates many times on the way down.

But let us see what happens as we decrease Q, so that the oscillation dies out
more rapidly. We can decrease Q by increasing the resistance R in the circuit.
When we increase the resistance in the circuit, it dies out faster (Fig. 24-4).
Then if we increase the resistance in the circuit still more, it dies out faster still
(Fig. 24-5). But when we put in more than a certain amount, we cannot see any
oscillation at all! The question is, is this because our eyes are not good enough?
If we increase the resistance still more, we get a curve like that of Fig. 24-6, which
does not appear to have any oscillations, except perhaps one. Now, how can we
explain that by mathematics?

The resistance is, of course, proportional to the γ term in the mechanical
device. Specifically, γ is R/L. Now if we increase the γ in the solutions (24.14)
and (24.15) that we were so happy with before, chaos sets in when γ/2 exceeds
ω0; we must write it a different way, as

iγ/2 + i
√
γ2/4− ω2

0 and iγ/2− i
√
γ2/4− ω2

0 .
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Figure 24-3

Figure 24-4

Figure 24-5

Figure 24-6
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Those are now the two solutions and, following the same line of mathematical
reasoning as previously, we again find two solutions: eiα1t and eiα2t. If we now
substitute for α1, we get

x = Ae−(γ/2+
√
γ2/4−ω2

0)t,

a nice exponential decay with no oscillations. Likewise, the other solution is

x = Be−(γ/2−
√
γ2/4−ω2

0)t.

Note that the square root cannot exceed γ/2, because even if ω0 = 0, one term
just equals the other. But ω2

0 is taken away from γ2/4, so the square root is less
than γ/2, and the term in parentheses is, therefore, always a positive number.
Thank goodness! Why? Because if it were negative, we would find e raised to a
positive factor times t, which would mean it was exploding! In putting more and
more resistance into the circuit, we know it is not going to explode—quite the
contrary. So now we have two solutions, each one by itself a dying exponential,
but one having a much faster “dying rate” than the other. The general solution is
of course a combination of the two; the coefficients in the combination depending
upon how the motion starts—what the initial conditions of the problem are. In
the particular way this circuit happens to be starting, the A is negative and the
B is positive, so we get the difference of two exponential curves.

Now let us discuss how we can find the two coefficients A and B (or A and A∗),
if we know how the motion was started.

Suppose that at t = 0 we know that x = x0, and dx/dt = v0. If we put t = 0,
x = x0, and dx/dt = v0 into the expressions

x = e−γt/2(Aeiωγt +A∗e−iωγt),
dx/dt = e−γt/2[(−γ/2 + iωγ)Aeiωγt + (−γ/2− iωγ)A∗e−iωγt],

we find, since e0 = ei0 = 1,

x0 = A+A∗ = 2AR,
v0 = −(γ/2)(A+A∗) + iωγ(A−A∗)

= −γx0/2 + iωγ(2iAI),

where A = AR + iAI , and A∗ = AR − iAI . Thus we find

AR = x0/2
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and
AI = −(v0 + γx0/2)/2ωγ . (24.21)

This completely determines A and A∗, and therefore the complete curve of the
transient solution, in terms of how it begins. Incidentally, we can write the
solution another way if we note that

eiθ + e−iθ = 2 cos θ and eiθ − e−iθ = 2i sin θ.

We may then write the complete solution as

x = e−γt/2
[
x0 cosωγt+ v0 + γx0/2

ωγ
sinωγt

]
, (24.22)

where ωγ = +
√
ω2

0 − γ2/4. This is the mathematical expression for the way an
oscillation dies out. We shall not make direct use of it, but there are a number
of points we should like to emphasize that are true in more general cases.

First of all the behavior of such a system with no external force is expressed by a
sum, or superposition, of pure exponentials in time (which we wrote as eiαt). This
is a good solution to try in such circumstances. The values of α may be complex
in general, the imaginary parts representing damping. Finally the intimate
mathematical relation of the sinusoidal and exponential function discussed in
Chapter 22 often appears physically as a change from oscillatory to exponential
behavior when some physical parameter (in this case resistance, γ) exceeds some
critical value.
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25

Linear Systems and Review

25-1 Linear differential equations

In this chapter we shall discuss certain aspects of oscillating systems that are
found somewhat more generally than just in the particular systems we have been
discussing. For our particular system, the differential equation that we have been
solving is

m
d2x

dt2
+ γm

dx

dt
+mω2

0x = F (t). (25.1)

Now this particular combination of “operations” on the variable x has the
interesting property that if we substitute (x+y) for x, then we get the sum of the
same operations on x and y; or, if we multiply x by a, then we get just a times
the same combination. This is easy to prove. Just as a “shorthand” notation,
because we get tired of writing down all those letters in (25.1), we shall use the
symbol L(x) instead. When we see this, it means the left-hand side of (25.1),
with x substituted in. With this system of writing, L(x + y) would mean the
following:

L(x+ y) = m
d2(x+ y)

dt2
+ γm

d(x+ y)
dt

+mω2
0(x+ y). (25.2)

(We underline the L so as to remind ourselves that it is not an ordinary function.)
We sometimes call this an operator notation, but it makes no difference what we
call it, it is just “shorthand.”

Our first statement was that

L(x+ y) = L(x) + L(y), (25.3)

which of course follows from the fact that a(x + y) = ax + ay, d(x + y)/dt =
dx/dt+ dy/dt, etc.
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Our second statement was, for constant a,

L(ax) = aL(x). (25.4)

[Actually, (25.3) and (25.4) are very closely related, because if we put x + x
into (25.3), this is the same as setting a = 2 in (25.4), and so on.]

In more complicated problems, there may be more derivatives, and more
terms in L; the question of interest is whether the two equations (25.3) and (25.4)
are maintained or not. If they are, we call such a problem a linear problem. In
this chapter we shall discuss some of the properties that exist because the system
is linear, to appreciate the generality of some of the results that we have obtained
in our special analysis of a special equation.

Now let us study some of the properties of linear differential equations, having
illustrated them already with the specific equation (25.1) that we have studied
so closely. The first property of interest is this: suppose that we have to solve
the differential equation for a transient, the free oscillation with no driving force.
That is, we want to solve

L(x) = 0. (25.5)
Suppose that, by some hook or crook, we have found a particular solution, which
we shall call x1. That is, we have an x1 for which L(x1) = 0. Now we notice
that ax1, is also a solution to the same equation; we can multiply this special
solution by any constant whatever, and get a new solution. In other words, if we
had a motion of a certain “size,” then a motion twice as “big” is again a solution.
Proof: L(ax1) = aL(x1) = a · 0 = 0.

Next, suppose that, by hook or by crook, we have not only found one solu-
tion x1, but also another solution, x2. (Remember that when we substituted
x = eiαt for finding the transients, we found two values for α, that is, two solutions,
x1 and x2.) Now let us show that the combination (x1 + x2) is also a solution. In
other words, if we put x = x1 + x2, x is again a solution of the equation. Why?
Because, if L(x1) = 0 and L(x2) = 0, then L(x1+x2) = L(x1)+L(x2) = 0+0 = 0.
So if we have found a number of solutions for the motion of a linear system we
can add them together.

Combining these two ideas, we see, of course, that we can also add six of
one and two of the other: if x1 is a solution, so is αx1. Therefore any sum of
these two solutions, such as (αx1 + βx2), is also a solution. If we happen to
be able to find three solutions, then we find that any combination of the three
solutions is again a solution, and so on. It turns out that the number of what
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we call independent solutions* that we have obtained for our oscillator problem
is only two. The number of independent solutions that one finds in the general
case depends upon what is called the number of degrees of freedom. We shall
not discuss this in detail now, but if we have a second-order differential equation,
there are only two independent solutions, and we have found both of them; so
we have the most general solution.

Now let us go on to another proposition, which applies to the situation in
which the system is subjected to an outside force. Suppose the equation is

L(x) = F (t), (25.6)

and suppose that we have found a special solution of it. Let us say that Joe’s
solution is xJ , and that L(xJ) = F (t). Suppose we want to find yet another
solution; suppose we add to Joe’s solution one of those that was a solution of the
free equation (25.5), say x1. Then we see by (25.3) that

L(xJ + x1) = L(xJ) + L(x1) = F (t) + 0 = F (t). (25.7)

Therefore, to the “forced” solution we can add any “free” solution, and we still
have a solution. The free solution is called a transient solution.

When we have no force acting, and suddenly turn one on, we do not imme-
diately get the steady solution that we solved for with the sine wave solution,
but for a while there is a transient which sooner or later dies out, if we wait long
enough. The “forced” solution does not die out, since it keeps on being driven
by the force. Ultimately, for long periods of time, the solution is unique, but
initially the motions are different for different circumstances, depending on how
the system was started.

25-2 Superposition of solutions

Now we come to another interesting proposition. Suppose that we have a
certain particular driving force Fa (let us say an oscillatory one with a certain
ω = ωa, but our conclusions will be true for any functional form of Fa) and we
have solved for the forced motion (with or without the transients; it makes no
difference). Now suppose some other force is acting, let us say Fb, and we solve

* Solutions which cannot be expressed as linear combinations of each other are called
independent.
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the same problem, but for this different force. Then suppose someone comes
along and says, “I have a new problem for you to solve; I have the force Fa +Fb.”
Can we do it? Of course we can do it, because the solution is the sum of the
two solutions xa and xb for the forces taken separately—a most remarkable
circumstance indeed. If we use (25.3), we see that

L(xa + xb) = L(xa) + L(xb) = Fa(t) + Fb(t). (25.8)

This is an example of what is called the principle of superposition for linear
systems, and it is very important. It means the following: if we have a complicated
force which can be broken up in any convenient manner into a sum of separate
pieces, each of which is in some way simple, in the sense that for each special
piece into which we have divided the force we can solve the equation, then the
answer is available for the whole force, because we may simply add the pieces of
the solution back together, in the same manner as the total force is compounded
out of pieces (Fig. 25-1).

Fa + Fb

Fa

Fb

xa + xb

xa

xb

Fig. 25-1. An example of the principle of superposition for linear
systems.
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Let us give another example of the principle of superposition. In Chapter 12
we said that it was one of the great facts of the laws of electricity that if we have
a certain distribution of charges qa and calculate the electric field Ea arising from
these charges at a certain place P , and if, on the other hand, we have another
set of charges qb and we calculate the field Eb due to these at the corresponding
place, then if both charge distributions are present at the same time, the field E
at P is the sum of Ea due to one set plus Eb due to the other. In other words,
if we know the field due to a certain charge, then the field due to many charges
is merely the vector sum of the fields of these charges taken individually. This
is exactly analogous to the above proposition that if we know the result of two
given forces taken at one time, then if the force is considered as a sum of them,
the response is a sum of the corresponding individual responses.

Ea
Eb

E

qa

qb

Fig. 25-2. The principle of superposition in electrostatics.

The reason why this is true in electricity is that the great laws of electricity,
Maxwell’s equations, which determine the electric field, turn out to be differential
equations which are linear, i.e., which have the property (25.3). What corresponds
to the force is the charge generating the electric field, and the equation which
determines the electric field in terms of the charge is linear.

As another interesting example of this proposition, let us ask how it is possible
to “tune in” to a particular radio station at the same time as all the radio stations
are broadcasting. The radio station transmits, fundamentally, an oscillating
electric field of very high frequency which acts on our radio antenna. It is true
that the amplitude of the oscillation of the field is changed, modulated, to carry
the signal of the voice, but that is very slow, and we are not going to worry about
it. When one hears “This station is broadcasting at a frequency of 780 kilocycles,”
this indicates that 780,000 oscillations per second is the frequency of the electric
field of the station antenna, and this drives the electrons up and down at that
frequency in our antenna. Now at the same time we may have another radio
station in the same town radiating at a different frequency, say 550 kilocycles per
second; then the electrons in our antenna are also being driven by that frequency.
Now the question is, how is it that we can separate the signals coming into the
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one radio at 780 kilocycles from those coming in at 550 kilocycles? We certainly
do not hear both stations at the same time.

By the principle of superposition, the response of the electric circuit in the
radio, the first part of which is a linear circuit, to the forces that are acting due
to the electric field Fa +Fb, is xa + xb. It therefore looks as though we will never
disentangle them. In fact, the very proposition of superposition seems to insist
that we cannot avoid having both of them in our system. But remember, for a
resonant circuit, the response curve, the amount of x per unit F , as a function of
the frequency, looks like Fig. 25-3. If it were a very high Q circuit, the response
would show a very sharp maximum. Now suppose that the two stations are
comparable in strength, that is, the two forces are of the same magnitude. The
response that we get is the sum of xa and xb. But, in Fig. 25-3, xa is tremendous,
while xb is small. So, in spite of the fact that the two signals are equal in strength,
when they go through the sharp resonant circuit of the radio tuned for ωa, the
frequency of the transmission of one station, then the response to this station
is much greater than to the other. Therefore the complete response, with both
signals acting, is almost all made up of ωa, and we have selected the station we
want.

ωωb ωc ωa

|x |

xb

xa

Fig. 25-3. A sharply tuned resonance curve.

Now what about the tuning? How do we tune it? We change ω0 by changing
the L or the C of the circuit, because the frequency of the circuit has to do with
the combination of L and C. In particular, most radios are built so that one can
change the capacitance. When we retune the radio, we can make a new setting
of the dial, so that the natural frequency of the circuit is shifted, say, to ωc. In
those circumstances we hear neither one station nor the other; we get silence,
provided there is no other station at frequency ωc. If we keep on changing the
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capacitance until the resonance curve is at ωb, then of course we hear the other
station. That is how radio tuning works; it is again the principle of superposition,
combined with a resonant response.*

To conclude this discussion, let us describe qualitatively what happens if we
proceed further in analyzing a linear problem with a given force, when the force is
quite complicated. Out of the many possible procedures, there are two especially
useful general ways that we can solve the problem. One is this: suppose that we
can solve it for special known forces, such as sine waves of different frequencies.
We know it is child’s play to solve it for sine waves. So we have the so-called
“child’s play” cases. Now the question is whether our very complicated force
can be represented as the sum of two or more “child’s play” forces. In Fig. 25-1
we already had a fairly complicated curve, and of course we can make it more
complicated still if we add in more sine waves. So it is certainly possible to
obtain very complicated curves. And, in fact, the reverse is also true: practically
every curve can be obtained by adding together infinite numbers of sine waves of
different wavelengths (or frequencies) for each one of which we know the answer.
We just have to know how much of each sine wave to put in to make the given F ,
and then our answer, x, is the corresponding sum of the F sine waves, each
multiplied by its effective ratio of x to F . This method of solution is called
the method of Fourier transforms or Fourier analysis. We are not going to
actually carry out such an analysis just now; we only wish to describe the idea
involved.

Another way in which our complicated problem can be solved is the following
very interesting one. Suppose that, by some tremendous mental effort, it were
possible to solve our problem for a special force, namely an impulse. The force is
quickly turned on and then off; it is all over. Actually we need only solve for an
impulse of some unit strength, any other strength can be gotten by multiplication
by an appropriate factor. We know that the response x for an impulse is a
damped oscillation. Now what can we say about some other force, for instance a
force like that of Fig. 25-4?

Such a force can be likened to a succession of blows with a hammer. First there
is no force, and all of a sudden there is a steady force—impulse, impulse, impulse,

* In modern superheterodyne receivers the actual operation is more complex. The amplifiers
are all tuned to a fixed frequency (called IF frequency) and an oscillator of variable tunable
frequency is combined with the input signal in a nonlinear circuit to produce a new frequency
(the difference of signal and oscillator frequency) equal to the IF frequency, which is then
amplified. This will be discussed in Chapter 50.
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F

Fig. 25-4. A complicated force may be treated as a succession of
sharp impulses.

impulse, . . . and then it stops. In other words, we imagine the continuous force
to be a series of impulses, very close together. Now, we know the result for an
impulse, so the result for a whole series of impulses will be a whole series of
damped oscillations: it will be the curve for the first impulse, and then (slightly
later) we add to that the curve for the second impulse, and the curve for the
third impulse, and so on. Thus we can represent, mathematically, the complete
solution for arbitrary functions if we know the answer for an impulse. We get
the answer for any other force simply by integrating. This method is called the
Green’s function method. A Green’s function is a response to an impulse, and
the method of analyzing any force by putting together the response of impulses
is called the Green’s function method.

The physical principles involved in both of these schemes are so simple,
involving just the linear equation, that they can be readily understood, but the
mathematical problems that are involved, the complicated integrations and so on,
are a little too advanced for us to attack right now. You will most likely return
to this some day when you have had more practice in mathematics. But the idea
is very simple indeed.

Finally, we make some remarks on why linear systems are so important. The
answer is simple: because we can solve them! So most of the time we solve linear
problems. Second (and most important), it turns out that the fundamental laws
of physics are often linear. The Maxwell equations for the laws of electricity are
linear, for example. The great laws of quantum mechanics turn out, so far as
we know, to be linear equations. That is why we spend so much time on linear
equations: because if we understand linear equations, we are ready, in principle,
to understand a lot of things.

We mention another situation where linear equations are found. When
displacements are small, many functions can be approximated linearly. For
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example, if we have a simple pendulum, the correct equation for its motion is

d2θ/dt2 = −(g/L) sin θ. (25.9)

This equation can be solved by elliptic functions, but the easiest way to solve it is
numerically, as was shown in Chapter 9 on Newton’s Laws of Motion. A nonlinear
equation cannot be solved, ordinarily, any other way but numerically. Now for
small θ, sin θ is practically equal to θ, and we have a linear equation. It turns
out that there are many circumstances where small effects are linear: for the
example here the swing of a pendulum through small arcs. As another example,
if we pull a little bit on a spring, the force is proportional to the extension. If we
pull hard, we break the spring, and the force is a completely different function of
the distance! Linear equations are important. In fact they are so important that
perhaps fifty percent of the time we are solving linear equations in physics and
in engineering.

25-3 Oscillations in linear systems

Let us now review the things we have been talking about in the past few
chapters. It is very easy for the physics of oscillators to become obscured by
the mathematics. The physics is actually very simple, and if we may forget the
mathematics for a moment we shall see that we can understand almost everything
that happens in an oscillating system. First, if we have only the spring and the
weight, it is easy to understand why the system oscillates—it is a consequence
of inertia. We pull the mass down and the force pulls it back up; as it passes
zero, which is the place it likes to be, it cannot just suddenly stop; because of its
momentum it keeps on going and swings to the other side, and back and forth.
So, if there were no friction, we would surely expect an oscillatory motion, and
indeed we get one. But if there is even a little bit of friction, then on the return
cycle, the swing will not be quite as high as it was the first time.

Now what happens, cycle by cycle? That depends on the kind and amount
of friction. Suppose that we could concoct a kind of friction force that always
remains in the same proportion to the other forces, of inertia and in the spring,
as the amplitude of oscillation varies. In other words, for smaller oscillations
the friction should be weaker than for big oscillations. Ordinary friction does
not have this property, so a special kind of friction must be carefully invented
for the very purpose of creating a friction that is directly proportional to the
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velocity—so that for big oscillations it is stronger and for small oscillations it
is weaker. If we happen to have that kind of friction, then at the end of each
successive cycle the system is in the same condition as it was at the start, except
a little bit smaller. All the forces are smaller in the same proportion: the spring
force is reduced, the inertial effects are lower because the accelerations are now
weaker, and the friction is less too, by our careful design. When we actually
have that kind of friction, we find that each oscillation is exactly the same as the
first one, except reduced in amplitude. If the first cycle dropped the amplitude,
say, to 90 percent of what it was at the start, the next will drop it to 90 percent
of 90 percent, and so on: the sizes of the oscillations are reduced by the same
fraction of themselves in every cycle. An exponential function is a curve which
does just that. It changes by the same factor in each equal interval of time. That
is to say, if the amplitude of one cycle, relative to the preceding one, is called a,
then the amplitude of the next is a2, and of the next, a3. So the amplitude is
some constant raised to a power equal to the number of cycles traversed:

A = A0a
n. (25.10)

But of course n ∝ t, so it is perfectly clear that the general solution will be some
kind of an oscillation, sine or cosine ωt, times an amplitude which goes as bt
more or less. But b can be written as e−c, if b is positive and less than 1. So this
is why the solution looks like e−ct cosω0t. It is very simple.

What happens if the friction is not so artificial; for example, ordinary rubbing
on a table, so that the friction force is a certain constant amount, and is indepen-
dent of the size of the oscillation that reverses its direction each half-cycle? Then
the equation is no longer linear, it becomes hard to solve, and must be solved
by the numerical method given in Chapter 9, or by considering each half-cycle
separately. The numerical method is the most powerful method of all, and can
solve any equation. It is only when we have a simple problem that we can use
mathematical analysis.

Mathematical analysis is not the grand thing it is said to be; it solves only
the simplest possible equations. As soon as the equations get a little more
complicated, just a shade—they cannot be solved analytically. But the numerical
method, which was advertised at the beginning of the course, can take care of
any equation of physical interest.

Next, what about the resonance curve? Why is there a resonance? First,
imagine for a moment that there is no friction, and we have something which
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could oscillate by itself. If we tapped the pendulum just right each time it went
by, of course we could make it go like mad. But if we close our eyes and do
not watch it, and tap at arbitrary equal intervals, what is going to happen?
Sometimes we will find ourselves tapping when it is going the wrong way. When
we happen to have the timing just right, of course, each tap is given at just the
right time, and so it goes higher and higher and higher. So without friction we
get a curve which looks like the solid curve in Fig. 25-5 for different frequencies.
Qualitatively, we understand the resonance curve; in order to get the exact shape
of the curve it is probably just as well to do the mathematics. The curve goes
toward infinity as ω → ω0, where ω0 is the natural frequency of the oscillator.

ω

x′

ω′

Fig. 25-5. Resonance curves with various amounts of friction present.

Now suppose there is a little bit of friction; then when the displacement of
the oscillator is small, the friction does not affect it much; the resonance curve
is the same, except when we are near resonance. Instead of becoming infinite
near resonance, the curve is only going to get so high that the work done by
our tapping each time is enough to compensate for the loss of energy by friction
during the cycle. So the top of the curve is rounded off—it does not go to infinity.
If there is more friction, the top of the curve is rounded off still more. Now
someone might say, “I thought the widths of the curves depended on the friction.”
That is because the curve is usually plotted so that the top of the curve is called
one unit. However, the mathematical expression is even simpler to understand if
we just plot all the curves on the same scale; then all that happens is that the
friction cuts down the top! If there is less friction, we can go farther up into that
little pinnacle before the friction cuts it off, so it looks relatively narrow. That is,
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the higher the peak of the curve, the narrower the width at half the maximum
height.

Finally, we take the case where there is an enormous amount of friction. It
turns out that if there is too much friction, the system does not oscillate at all.
The energy in the spring is barely able to move it against the frictional force,
and so it slowly oozes down to the equilibrium point.

25-4 Analogs in physics

The next aspect of this review is to note that masses and springs are not the
only linear systems; there are others. In particular, there are electrical systems
called linear circuits, in which we find a complete analog to mechanical systems.
We did not learn exactly why each of the objects in an electrical circuit works in
the way it does—that is not to be understood at the present moment; we may
assert it as an experimentally verifiable fact that they behave as stated.

For example, let us take the simplest possible circumstance. We have a piece
of wire, which is just a resistance, and we have applied to it a difference in
potential, V . Now the V means this: if we carry a charge q through the wire
from one terminal to another terminal, the work done is qV . The higher the
voltage difference, the more work was done when the charge, as we say, “falls”
from the high potential end of the terminal to the low potential end. So charges
release energy in going from one end to the other. Now the charges do not simply
fly from one end straight to the other end; the atoms in the wire offer some
resistance to the current, and this resistance obeys the following law for almost
all ordinary substances: if there is a current I, that is, so and so many charges
per second tumbling down, the number per second that comes tumbling through
the wire is proportional to how hard we push them—in other words, proportional
to how much voltage there is:

V = IR = R(dq/dt). (25.11)

The coefficient R is called the resistance, and the equation is called Ohm’s Law.
The unit of resistance is the ohm; it is equal to one volt per ampere. In mechanical
situations, to get such a frictional force in proportion to the velocity is difficult;
in an electrical system it is very easy, and this law is extremely accurate for most
metals.

We are often interested in how much work is done per second, the power loss,
or the energy liberated by the charges as they tumble down the wire. When
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we carry a charge q through a voltage V , the work is qV , so the work done per
second would be V (dq/dt), which is the same as V I, or also IR · I = I2R. This
is called the heating loss—this is how much heat is generated in the resistance
per second, by the conservation of energy. It is this heat that makes an ordinary
incandescent light bulb work.

Of course, there are other interesting properties of mechanical systems, such
as the mass (inertia), and it turns out that there is an electrical analog to inertia
also. It is possible to make something called an inductor , having a property
called inductance, such that a current, once started through the inductance, does
not want to stop. It requires a voltage in order to change the current! If the
current is constant, there is no voltage across an inductance. dc circuits do not
know anything about inductance; it is only when we change the current that the
effects of inductance show up. The equation is

V = L(dI/dt) = L(d2q/dt2), (25.12)

and the unit of inductance, called the henry, is such that one volt applied to
an inductance of one henry produces a change of one ampere per second in the
current. Equation (25.12) is the analog of Newton’s law for electricity, if we wish:
V corresponds to F , L corresponds to m, and I corresponds to velocity! All of the
consequent equations for the two kinds of systems will have the same derivations
because, in all the equations, we can change any letter to its corresponding
analog letter and we get the same equation; everything we deduce will have a
correspondence in the two systems.

Now what electrical thing corresponds to the mechanical spring, in which
there was a force proportional to the stretch? If we start with F = kx and replace
F → V and x→ q, we get V = αq. It turns out that there is such a thing, in fact
it is the only one of the three circuit elements we can really understand, because
we did study a pair of parallel plates, and we found that if there were a charge of
certain equal, opposite amounts on each plate, the electric field between them
would be proportional to the size of the charge. So the work done in moving a
unit charge across the gap from one plate to the other is precisely proportional to
the charge. This work is the definition of the voltage difference, and it is the line
integral of the electric field from one plate to another. It turns out, for historical
reasons, that the constant of proportionality is not called C, but 1/C. It could
have been called C, but it was not. So we have

V = q/C. (25.13)
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The unit of capacitance, C, is the farad; a charge of one coulomb on each plate
of a one-farad capacitor yields a voltage difference of one volt.

There are our analogies, and the equation corresponding to the oscillating
circuit becomes the following, by direct substitution of L for m, q for x, etc:

m(d2x/dt2) + γm(dx/dt) + kx = F, (25.14)

L(d2q/dt2) +R(dq/dt) + q/C = V. (25.15)

Now everything we learned about (25.14) can be transformed to apply to (25.15).
Every consequence is the same; so much the same that there is a brilliant thing
we can do.

Suppose we have a mechanical system which is quite complicated, not just
one mass on a spring, but several masses on several springs, all hooked together.
What do we do? Solve it? Perhaps; but look, we can make an electrical circuit
which will have the same equations as the thing we are trying to analyze! For
instance, if we wanted to analyze a mass on a spring, why can we not build
an electrical circuit in which we use an inductance proportional to the mass, a
resistance proportional to the corresponding mγ, 1/C proportional to k, all in
the same ratio? Then, of course, this electrical circuit will be the exact analog
of our mechanical one, in the sense that whatever q does, in response to V
(V also is made to correspond to the forces that are acting), so the x would
do in response to the force! So if we have a complicated thing with a whole
lot of interconnecting elements, we can interconnect a whole lot of resistances,
inductances, and capacitances, to imitate the mechanically complicated system.
What is the advantage to that? One problem is just as hard (or as easy) as
the other, because they are exactly equivalent. The advantage is not that it is
any easier to solve the mathematical equations after we discover that we have an
electrical circuit (although that is the method used by electrical engineers!), but
instead, the real reason for looking at the analog is that it is easier to make the
electrical circuit, and to change something in the system.

Suppose we have designed an automobile, and want to know how much it
is going to shake when it goes over a certain kind of bumpy road. We build an
electrical circuit with inductances to represent the inertia of the wheels, spring
constants as capacitances to represent the springs of the wheels, and resistors to
represent the shock absorbers, and so on for the other parts of the automobile.
Then we need a bumpy road. All right, we apply a voltage from a generator,
which represents such and such a kind of bump, and then look at how the left
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wheel jiggles by measuring the charge on some capacitor. Having measured it
(it is easy to do), we find that it is bumping too much. Do we need more shock
absorber, or less shock absorber? With a complicated thing like an automobile,
do we actually change the shock absorber, and solve it all over again? No!, we
simply turn a dial; dial number ten is shock absorber number three, so we put in
more shock absorber. The bumps are worse—all right, we try less. The bumps
are still worse; we change the stiffness of the spring (dial 17), and we adjust all
these things electrically, with merely the turn of a knob.

This is called an analog computer . It is a device which imitates the problem
that we want to solve by making another problem, which has the same equation,
but in another circumstance of nature, and which is easier to build, to measure,
to adjust, and to destroy!

25-5 Series and parallel impedances

Finally, there is an important item which is not quite in the nature of review.
This has to do with an electrical circuit in which there is more than one circuit
element. For example, when we have an inductor, a resistor, and a capacitor
connected as in Fig. 24-2, we note that all the charge went through every one
of the three, so that the current in such a singly connected thing is the same at
all points along the wire. Since the current is the same in each one, the voltage
across R is IR, the voltage across L is L(dI/dt), and so on. So, the total voltage
drop is the sum of these, and this leads to Eq. (25.15). Using complex numbers,
we found that we could solve the equation for the steady-state motion in response
to a sinusoidal force. We thus found that V̂ = ẐÎ. Now Ẑ is called the impedance
of this particular circuit. It tells us that if we apply a sinusoidal voltage, V̂ , we
get a current Î.

Now suppose we have a more complicated circuit which has two pieces,
which by themselves have certain impedances, Ẑ1 and Ẑ2 and we put them in

Z1 Z2

Z1

Z2

1 2 1 2

(a) Series (b) Parallel

Fig. 25-6. Two impedances, connected in series and in parallel.
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series (Fig. 25-6a) and apply a voltage. What happens? It is now a little more
complicated, but if Î is the current through Ẑ1, the voltage difference across Ẑ1,
is V̂1 = ÎẐ1; similarly, the voltage across Ẑ2 is V̂2 = ÎẐ2. The same current goes
through both. Therefore the total voltage is the sum of the voltages across the
two sections and is equal to V̂ = V̂1 + V̂2 = (Ẑ1 + Ẑ2)Î. This means that the
voltage on the complete circuit can be written V̂ = ÎẐs, where the Ẑs of the
combined system in series is the sum of the two Ẑ’s of the separate pieces:

Ẑs = Ẑ1 + Ẑ2. (25.16)

This is not the only way things may be connected. We may also connect
them in another way, called a parallel connection (Fig. 25-6b). Now we see that a
given voltage across the terminals, if the connecting wires are perfect conductors,
is effectively applied to both of the impedances, and will cause currents in each
independently. Therefore the current through Ẑ1 is equal to Î1 = V̂ /Ẑ1. The
current in Ẑ2 is Î2 = V̂ /Ẑ2. It is the same voltage. Now the total current
which is supplied to the terminals is the sum of the currents in the two sections:
Î = V̂ /Ẑ1 + V̂ /Ẑ2. This can be written as

V̂ = Î

(1/Ẑ1) + (1/Ẑ2)
= ÎẐp.

Thus
1/Ẑp = 1/Ẑ1 + 1/Ẑ2. (25.17)

More complicated circuits can sometimes be simplified by taking pieces of
them, working out the succession of impedances of the pieces, and combining
the circuit together step by step, using the above rules. If we have any kind of
circuit with many impedances connected in all kinds of ways, and if we include
the voltages in the form of little generators having no impedance (when we pass
charge through it, the generator adds a voltage V ), then the following principles
apply: (1) At any junction, the sum of the currents into a junction is zero.
That is, all the current which comes in must come back out. (2) If we carry a
charge around any loop, and back to where it started, the net work done is zero.
These rules are called Kirchhoff’s laws for electrical circuits. Their systematic
application to complicated circuits often simplifies the analysis of such circuits.
We mention them here in conjunction with Eqs. (25.16) and (25.17), in case you
have already come across such circuits that you need to analyze in laboratory
work. They will be discussed again in more detail next year.
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26

Optics: The Principle of Least Time

26-1 Light

This is the first of a number of chapters on the subject of electromagnetic
radiation. Light, with which we see, is only one small part of a vast spectrum of
the same kind of thing, the various parts of this spectrum being distinguished by
different values of a certain quantity which varies. This variable quantity could be
called the “wavelength.” As it varies in the visible spectrum, the light apparently
changes color from red to violet. If we explore the spectrum systematically, from
long wavelengths toward shorter ones, we would begin with what are usually called
radiowaves. Radiowaves are technically available in a wide range of wavelengths,
some even longer than those used in regular broadcasts; regular broadcasts have
wavelengths corresponding to about 500 meters. Then there are the so-called
“short waves,” i.e., radar waves, millimeter waves, and so on. There are no actual
boundaries between one range of wavelengths and another, because nature did
not present us with sharp edges. The number associated with a given name for
the waves are only approximate and, of course, so are the names we give to the
different ranges.

Then, a long way down through the millimeter waves, we come to what
we call the infrared, and thence to the visible spectrum. Then going in the
other direction, we get into a region which is called the ultraviolet. Where the
ultraviolet stops, the x-rays begin, but we cannot define precisely where this
is; it is roughly at 10−8 m, or 10−2 µ. These are “soft” x-rays; then there are
ordinary x-rays and very hard x-rays; then γ-rays, and so on, for smaller and
smaller values of this dimension called the wavelength.

Within this vast range of wavelengths, there are three or more regions of
approximation which are especially interesting. In one of these, a condition exists
in which the wavelengths involved are very small compared with the dimensions
of the equipment available for their study; furthermore, the photon energies,
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using the quantum theory, are small compared with the energy sensitivity of the
equipment. Under these conditions we can make a rough first approximation
by a method called geometrical optics. If, on the other hand, the wavelengths
are comparable to the dimensions of the equipment, which is difficult to arrange
with visible light but easier with radiowaves, and if the photon energies are still
negligibly small, then a very useful approximation can be made by studying the
behavior of the waves, still disregarding the quantum mechanics. This method is
based on the classical theory of electromagnetic radiation, which will be discussed
in a later chapter. Next, if we go to very short wavelengths, where we can
disregard the wave character but the photons have a very large energy compared
with the sensitivity of our equipment, things get simple again. This is the simple
photon picture, which we will describe only very roughly. The complete picture,
which unifies the whole thing into one model, will not be available to us for a
long time.

In this chapter our discussion is limited to the geometrical optics region, in
which we forget about the wavelength and the photon character of the light,
which will all be explained in due time. We do not even bother to say what
the light is, but just find out how it behaves on a large scale compared with
the dimensions of interest. All this must be said in order to emphasize the fact
that what we are going to talk about is only a very crude approximation; this
is one of the chapters that we shall have to “unlearn” again. But we shall very
quickly unlearn it, because we shall almost immediately go on to a more accurate
method.

Although geometrical optics is just an approximation, it is of very great
importance technically and of great interest historically. We shall present this
subject more historically than some of the others in order to give some idea of
the development of a physical theory or physical idea.

First, light is, of course, familiar to everybody, and has been familiar since
time immemorial. Now one problem is, by what process do we see light? There
have been many theories, but it finally settled down to one, which is that there
is something which enters the eye—which bounces off objects into the eye. We
have heard that idea so long that we accept it, and it is almost impossible for
us to realize that very intelligent men have proposed contrary theories—that
something comes out of the eye and feels for the object, for example. Some other
important observations are that, as light goes from one place to another, it goes
in straight lines, if there is nothing in the way, and that the rays do not seem
to interfere with one another. That is, light is crisscrossing in all directions in
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the room, but the light that is passing across our line of vision does not affect
the light that comes to us from some object. This was once a most powerful
argument against the corpuscular theory; it was used by Huygens. If light were
like a lot of arrows shooting along, how could other arrows go through them so
easily? Such philosophical arguments are not of much weight. One could always
say that light is made up of arrows which go through each other!

26-2 Reflection and refraction

The discussion above gives enough of the basic idea of geometrical optics—now
we have to go a little further into the quantitative features. Thus far we have light
going only in straight lines between two points; now let us study the behavior
of light when it hits various materials. The simplest object is a mirror, and the
law for a mirror is that when the light hits the mirror, it does not continue in a
straight line, but bounces off the mirror into a new straight line, which changes
when we change the inclination of the mirror. The question for the ancients
was, what is the relation between the two angles involved? This is a very simple
relation, discovered long ago. The light striking a mirror travels in such a way
that the two angles, between each beam and the mirror, are equal. For some
reason it is customary to measure the angles from the normal to the mirror
surface. Thus the so-called law of reflection is

θi = θr. (26.1)

That is a simple enough proposition, but a more difficult problem is encoun-
tered when light goes from one medium into another, for example from air into
water; here also, we see that it does not go in a straight line. In the water the
ray is at an inclination to its path in the air; if we change the angle θi so that
it comes down more nearly vertically, then the angle of “breakage” is not as

θi θr

Fig. 26-1. The angle of incidence is equal to the angle of reflection.
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θi

θr

Fig. 26-2. A light ray is refracted when it posses from one medium
into another.

Table 26-1

Angle in air Angle in water

10◦ 8◦
20◦ 15-1/2◦
30◦ 22-1/2◦
40◦ 29◦
50◦ 35◦
60◦ 40-1/2◦
70◦ 45-1/2◦
80◦ 50◦

Table 26-2

Angle in air Angle in water

10◦ 7-1/2◦
20◦ 15◦
30◦ 22◦
40◦ 29◦
50◦ 35◦
60◦ 40-1/2◦
70◦ 45◦
80◦ 48◦

great. But if we tilt the beam of light at quite an angle, then the deviation angle
is very large. The question is, what is the relation of one angle to the other?
This also puzzled the ancients for a long time, and here they never found the
answer! It is, however, one of the few places in all of Greek physics that one
may find any experimental results listed. Claudius Ptolemy made a list of the
angle in water for each of a number of different angles in air. Table 26-1 shows
the angles in the air, in degrees, and the corresponding angle as measured in
the water. (Ordinarily it is said that Greek scientists never did any experiments.
But it would be impossible to obtain this table of values without knowing the
right law, except by experiment. It should be noted, however, that these do
not represent independent careful measurements for each angle but only some
numbers interpolated from a few measurements, for they all fit perfectly on a
parabola.)
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This, then, is one of the important steps in the development of physical law:
first we observe an effect, then we measure it and list it in a table; then we try
to find the rule by which one thing can be connected with another. The above
numerical table was made in 140 a.d., but it was not until 1621 that someone
finally found the rule connecting the two angles! The rule, found by Willebrord
Snell, a Dutch mathematician, is as follows: if θi is the angle in air and θr is the
angle in the water, then it turns out that the sine of θi is equal to some constant
multiple of the sine of θr:

sin θi = n sin θr. (26.2)

For water the number n is approximately 1.33. Equation (26.2) is called Snell’s
law; it permits us to predict how the light is going to bend when it goes from air
into water. Table 26-2 shows the angles in air and in water according to Snell’s
law. Note the remarkable agreement with Ptolemy’s list.

26-3 Fermat’s principle of least time

Now in the further development of science, we want more than just a formula.
First we have an observation, then we have numbers that we measure, then we
have a law which summarizes all the numbers. But the real glory of science is
that we can find a way of thinking such that the law is evident.

The first way of thinking that made the law about the behavior of light evident
was discovered by Fermat in about 1650, and it is called the principle of least
time, or Fermat’s principle. His idea is this: that out of all possible paths that it
might take to get from one point to another, light takes the path which requires
the shortest time.

Let us first show that this is true for the case of the mirror, that this simple
principle contains both the law of straight-line propagation and the law for the
mirror. So, we are growing in our understanding! Let us try to find the solution
to the following problem. In Fig. 26-3 are shown two points, A and B, and a
plane mirror, MM ′. What is the way to get from A to B in the shortest time?
The answer is to go straight from A to B! But if we add the extra rule that the
light has to strike the mirror and come back in the shortest time, the answer is
not so easy. One way would be to go as quickly as possible to the mirror and
then go to B, on the path ADB. Of course, we then have a long path DB. If we
move over a little to the right, to E, we slightly increase the first distance, but
we greatly decrease the second one, and so the total path length, and therefore
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Fig. 26-3. Illustration of the principle of least time.

the travel time, is less. How can we find the point C for which the time is the
shortest? We can find it very nicely by a geometrical trick.

We construct on the other side of MM ′ an artificial point B′, which is the
same distance below the plane MM ′ as the point B is above the plane. Then
we draw the line EB′. Now because BFM is a right angle and BF = FB′, EB
is equal to EB′. Therefore the sum of the two distances, AE + EB, which is
proportional to the time it will take if the light travels with constant velocity,
is also the sum of the two lengths AE + EB′. Therefore the problem becomes,
when is the sum of these two lengths the least? The answer is easy: when the
line goes through point C as a straight line from A to B′! In other words, we
have to find the point where we go toward the artificial point, and that will be
the correct one. Now if ACB′ is a straight line, then angle BCF is equal to
angle B′CF and thence to angle ACM . Thus the statement that the angle of
incidence equals the angle of reflection is equivalent to the statement that the
light goes to the mirror in such a way that it comes back to the point B in the
least possible time. Originally, the statement was made by Hero of Alexandria
that the light travels in such a way that it goes to the mirror and to the other
point in the shortest possible distance, so it is not a modern theory. It was this
that inspired Fermat to suggest to himself that perhaps refraction operated on a
similar basis. But for refraction, light obviously does not use the path of shortest
distance, so Fermat tried the idea that it takes the shortest time.

Before we go on to analyze refraction, we should make one more remark about
the mirror. If we have a source of light at the point B and it sends light to
ward the mirror, then we see that the light which goes to A from the point B
comes to A in exactly the same manner as it would have come to A if there were
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an object at B′, and no mirror. Now of course the eye detects only the light
which enters it physically, so if we have an object at B and a mirror which makes
the light come into the eye in exactly the same manner as it would have come
into the eye if the object were at B′, then the eye-brain system interprets that,
assuming it does not know too much, as being an object at B′. So the illusion
that there is an object behind the mirror is merely due to the fact that the light
which is entering the eye is entering in exactly the same manner, physically, as it
would have entered had there been an object back there (except for the dirt on
the mirror, and our knowledge of the existence of the mirror, and so on, which is
corrected in the brain).

Now let us demonstrate that the principle of least time will give Snell’s law
of refraction. We must, however, make an assumption about the speed of light in
water. We shall assume that the speed of light in water is lower than the speed
of light in air by a certain factor, n.

x
AIR
WATER

N

N ′

A

B

C
E

X
F

Fig. 26-4. Illustration of Fermat’s principle for refraction.

In Fig. 26-4, our problem is again to go from A to B in the shortest time.
To illustrate that the best thing to do is not just to go in a straight line, let us
imagine that a beautiful girl has fallen out of a boat, and she is screaming for
help in the water at point B. The line marked x is the shoreline. We are at
point A on land, and we see the accident, and we can run and can also swim.
But we can run faster than we can swim. What do we do? Do we go in a straight
line? (Yes, no doubt!) However, by using a little more intelligence we would
realize that it would be advantageous to travel a little greater distance on land
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Fig. 26-5. The minimum time corresponds to point C, but nearby
points correspond to nearly the same time.

in order to decrease the distance in the water, because we go so much slower in
the water. (Following this line of reasoning out, we would say the right thing
to do is to compute very carefully what should be done!) At any rate, let us try
to show that the final solution to the problem is the path ACB, and that this
path takes the shortest time of all possible ones. If it is the shortest path, that
means that if we take any other, it will be longer. So, if we were to plot the time
it takes against the position of point X, we would get a curve something like
that shown in Fig. 26-5, where point C corresponds to the shortest of all possible
times. This means that if we move the point X to points near C, in the first
approximation there is essentially no change in time because the slope is zero
at the bottom of the curve. So our way of finding the law will be to consider
that we move the place by a very small amount, and to demand that there be
essentially no change in time. (Of course there is an infinitesimal change of a
second order; we ought to have a positive increase for displacements in either
direction from C.) So we consider a nearby point X and we calculate how long
it would take to go from A to B by the two paths, and compare the new path
with the old path. It is very easy to do. We want the difference, of course, to be
nearly zero if the distance XC is short. First, look at the path on land. If we
draw a perpendicular XE, we see that this path is shortened by the amount EC.
Let us say we gain by not having to go that extra distance. On the other hand,
in the water, by drawing a corresponding perpendicular, CF , we find that we
have to go the extra distance XF , and that is what we lose. Or, in time, we
gain the time it would have taken to go the distance EC, but we lose the time it
would have taken to go the distance XF . Those times must be equal since, in
the first approximation, there is to be no change in time. But supposing that in
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the water the speed is 1/n times as fast as in air, then we must have

EC = n ·XF. (26.3)

Therefore we see that when we have the right point, XC sinEXC = n·XC sinXCF
or, cancelling the common hypotenuse length XC and noting that

EXC = ECN = θi and XCF ≈ BCN ′ = θr (when X is near C),
we have

sin θi = n sin θr. (26.4)

So we see that to get from one point to another in the least time when the ratio
of speeds is n, the light should enter at such an angle that the ratio of the sines
of the angles θi and θr is the ratio of the speeds in the two media.

26-4 Applications of Fermat’s principle

Now let us consider some of the interesting consequences of the principle of
least time. First is the principle of reciprocity. If to go from A to B we have found
the path of the least time, then to go in the opposite direction (assuming that
light goes at the same speed in any direction), the shortest time will be the same
path, and therefore, if light can be sent one way, it can be sent the other way.

An example of interest is a glass block with plane parallel faces, set at an
angle to a light beam. Light, in going through the block from a point A to a
point B (Fig. 26-6) does not go through in a straight line, but instead it decreases
the time in the block by making the angle in the block less inclined, although it
loses a little bit in the air. The beam is simply displaced parallel to itself because
the angles in and out are the same.

A third interesting phenomenon is the fact that when we see the sun setting,
it is already below the horizon! It does not look as though it is below the horizon,
but it is (Fig. 26-7). The earth’s atmosphere is thin at the top and dense at the
bottom. Light travels more slowly in air than it does in a vacuum, and so the
light of the sun can get to point S beyond the horizon more quickly if, instead
of just going in a straight line, it avoids the dense regions where it goes slowly
by getting through them at a steeper tilt. When it appears to go below the
horizon, it is actually already well below the horizon. Another example of this
phenomenon is the mirage that one often sees while driving on hot roads. One
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Fig. 26-6. A beam of light is offset as it passes through a transparent
block.

TO APPARENT SUN

ATMOSPHERE

LIGHT PATH

TO TRUE
SUN

EARTH

Fig. 26-7. Near the horizon, the apparent sun is higher than the true
sun by about 1/2 degree.

HOT ROAD OR SAND

LIGHT FROM SKY

Fig. 26-8. A mirage.
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sees “water” on the road, but when he gets there, it is as dry as the desert! The
phenomenon is the following. What we are really seeing is the sky light “reflected”
on the road: light from the sky, heading for the road, can end up in the eye, as
shown in Fig. 26-8. Why? The air is very hot just above the road but it is cooler
up higher. Hotter air is more expanded than cooler air and is thinner, and this
decreases the speed of light less. That is to say, light goes faster in the hot region
than in the cool region. Therefore, instead of the light deciding to come in the
straightforward way, it also has a least-time path by which it goes into the region
where it goes faster for awhile, in order to save time. So, it can go in a curve.

OPTICAL SYSTEM

P P ′

Q
Q′

Fig. 26-9. An optical “black box.”

As another important example of the principle of least time, suppose that
we would like to arrange a situation where we have all the light that comes out
of one point, P , collected back together at another point, P ′ (Fig. 26-9). That
means, of course, that the light can go in a straight line from P to P ′. That is all
right. But how can we arrange that not only does it go straight, but also so that
the light starting out from P toward Q also ends up at P ′? We want to bring all
the light back to what we call a focus. How? If the light always takes the path of
least time, then certainly it should not want to go over all these other paths. The
only way that the light can be perfectly satisfied to take several adjacent paths
is to make those times exactly equal! Otherwise, it would select the one of least
time. Therefore the problem of making a focusing system is merely to arrange a
device so that it takes the same time for the light to go on all the different paths!

This is easy to do. Suppose that we had a piece of glass in which light goes
slower than it does in the air (Fig. 26-10). Now consider a ray which goes in air in
the path PQP ′. That is a longer path than from P directly to P ′ and no doubt
takes a longer time. But if we were to insert a piece of glass of just the right
thickness (we shall later figure out how thick) it might exactly compensate the
excess time that it would take the light to go at an angle! In those circumstances
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Fig. 26-10. A focusing optical system.

we can arrange that the time the light takes to go straight through is the same
as the time it takes to go in the path PQP ′. Likewise, if we take a ray PRR′P ′
which is partly inclined, it is not quite as long as PQP ′, and we do not have
to compensate as much as for the straight one, but we do have to compensate
somewhat. We end up with a piece of glass that looks like Fig. 26-10. With this
shape, all the light which comes from P will go to P ′. This, of course, is well
known to us, and we call such a device a converging lens. In the next chapter we
shall actually calculate what shape the lens has to have to make a perfect focus.

r1 r2

P P ′

Fig. 26-11. An ellipsoidal mirror.

Take another example: suppose we wish to arrange some mirrors so that the
light from P always goes to P ′ (Fig. 26-11). On any path, it goes to some mirror
and comes back, and all times must be equal. Here the light always travels in
air, so the time and the distance are proportional. Therefore the statement that
all the times are the same is the same as the statement that the total distance is
the same. Thus the sum of the two distances r1 and r2 must be a constant. An
ellipse is that curve which has the property that the sum of the distances from
two points is a constant for every point on the ellipse; thus we can be sure that
the light from one focus will come to the other.

The same principle works for gathering the light of a star. The great 200-inch
Palomar telescope is built on the following principle. Imagine a star billions of
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Fig. 26-12. A paraboloidal mirror.

miles away; we would like to cause all the light that comes in to come to a focus.
Of course we cannot draw the rays that go all the way up to the star, but we
still want to check whether the times are equal. Of course we know that when
the various rays have arrived at some plane KK ′, perpendicular to the rays, all
the times in this plane are equal (Fig. 26-12). The rays must then come down
to the mirror and proceed toward P ′ in equal times. That is, we must find a
curve which has the property that the sum of the distances XX ′ + X ′P ′ is a
constant, no matter where X is chosen. An easy way to find it is to extend the
length of the line XX ′ down to a plane LL′. Now if we arrange our curve so that
A′A′′ = A′P ′, B′B′′ = B′P ′, C ′C ′′ = C ′P ′, and so on, we will have our curve,
because then of course, AA′ + A′P ′ = AA′ + A′A′′ will be constant. Thus our
curve is the locus of all points equidistant from a line and a point. Such a curve
is called a parabola; the mirror is made in the shape of a parabola.

The above examples illustrate the principle upon which such optical devices
can be designed. The exact curves can be calculated using the principle that, to
focus perfectly, the travel times must be exactly equal for all light rays, as well
as being less than for any other nearby path.

We shall discuss these focusing optical devices further in the next chapter; let
us now discuss the further development of the theory. When a new theoretical
principle is developed, such as the principle of least time, our first inclination
might be to say, “Well, that is very pretty; it is delightful; but the question is,
does it help at all in understanding the physics?” Someone may say, “Yes, look
at how many things we can now understand!” Another says, “Very well, but I
can understand mirrors, too. I need a curve such that every tangent plane makes
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equal angles with the two rays. I can figure out a lens, too, because every ray
that comes to it is bent through an angle given by Snell’s law.” Evidently the
statement of least time and the statement that angles are equal on reflection,
and that the sines of the angles are proportional on refraction, are the same. So
is it merely a philosophical question, or one of beauty? There can be arguments
on both sides.

However, the importance of a powerful principle is that it predicts new things.
It is easy to show that there are a number of new things predicted by Fermat’s

principle. First, suppose that there are three media, glass, water, and air, and
we perform a refraction experiment and measure the index n for one medium
against another. Let us call n12 the index of air (1) against water (2); n13 the
index of air (1) against glass (3). If we measured water against glass, we should
find another index, which we shall call n23. But there is no a priori reason why
there should be any connection between n12, n13, and n23. On the other hand,
according to the idea of least time, there is a definite relationship. The index n12
is the ratio of two things, the speed in air to the speed in water; n13 is the ratio
of the speed in air to the speed in glass; n23 is the ratio of the speed in water to
the speed in glass. Therefore we cancel out the air, and get

n23 = v2

v3
= v1/v3

v1/v2
= n13

n12
. (26.5)

In other words, we predict that the index for a new pair of materials can be
obtained from the indexes of the individual materials, both against air or against
vacuum. So if we measure the speed of light in all materials, and from this get a
single number for each material, namely its index relative to vacuum, called ni
(n1 is the speed in air relative to the speed in vacuum, etc.), then our formula is
easy. The index for any two materials i and j is

nij = vi
vj

= nj
ni
. (26.6)

Using only Snell’s law, there is no basis for a prediction of this kind.* But of
course this prediction works. The relation (26.5) was known very early, and was
a very strong argument for the principle of least time.

* Although it can be deduced if the additional assumption is made that adding a layer of
one substance to the surface of another does not change the eventual angle of refraction in the
latter material.
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Another argument for the principle of least time, another prediction, is that
if we measure the speed of light in water, it will be lower than in air. This is a
prediction of a completely different type. It is a brilliant prediction, because all
we have so far measured are angles; here we have a theoretical prediction which
is quite different from the observations from which Fermat deduced the idea of
least time. It turns out, in fact, that the speed in water is slower than the speed
in air, by just the proportion that is needed to get the right index!

26-5 A more precise statement of Fermat’s principle

Actually, we must make the statement of the principle of least time a little
more accurately. It was not stated correctly above. It is incorrectly called the
principle of least time and we have gone along with the incorrect description for
convenience, but we must now see what the correct statement is. Suppose we had
a mirror as in Fig. 26-3. What makes the light think it has to go to the mirror?
The path of least time is clearly AB. So some people might say, “Sometimes it is
a maximum time.” It is not a maximum time, because certainly a curved path
would take a still longer time! The correct statement is the following: a ray going
in a certain particular path has the property that if we make a small change (say
a one percent shift) in the ray in any manner whatever, say in the location at
which it comes to the mirror, or the shape of the curve, or anything, there will
be no first-order change in the time; there will be only a second-order change in
the time. In other words, the principle is that light takes a path such that there
are many other paths nearby which take almost exactly the same time.

The following is another difficulty with the principle of least time, and one
which people who do not like this kind of a theory could never stomach. With
Snell’s theory we can “understand” light. Light goes along, it sees a surface, it
bends because it does something at the surface. The idea of causality, that it goes
from one point to another, and another, and so on, is easy to understand. But
the principle of least time is a completely different philosophical principle about
the way nature works. Instead of saying it is a causal thing, that when we do one
thing, something else happens, and so on, it says this: we set up the situation,
and light decides which is the shortest time, or the extreme one, and chooses
that path. But what does it do, how does it find out? Does it smell the nearby
paths, and check them against each other? The answer is, yes, it does, in a way.
That is the feature which is, of course, not known in geometrical optics, and
which is involved in the idea of wavelength; the wavelength tells us approximately
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Fig. 26-13. The passage of radiowaves through a narrow slit.

how far away the light must “smell” the path in order to check it. It is hard
to demonstrate this fact on a large scale with light, because the wavelengths
are so terribly short. But with radiowaves, say 3-cm waves, the distances over
which the radiowaves are checking are larger. If we have a source of radiowaves,
a detector, and a slit, as in Fig. 26-13, the rays of course go from S to D because
it is a straight line, and if we close down the slit it is all right—they still go. But
now if we move the detector aside to D′, the waves will not go through the wide
slit from S to D′, because they check several paths nearby, and say, “No, my
friend, those all correspond to different times.” On the other hand, if we prevent
the radiation from checking the paths by closing the slit down to a very narrow
crack, then there is but one path available, and the radiation takes it! With a
narrow slit, more radiation reaches D′ than reaches it with a wide slit!

One can do the same thing with light, but it is hard to demonstrate on a large
scale. The effect can be seen under the following simple conditions. Find a small,
bright light, say an unfrosted bulb in a street light far away or the reflection of
the sun in a curved automobile bumper. Then put two fingers in front of one eye,
so as to look through the crack, and squeeze the light to zero very gently. You
will see that the image of the light, which was a little dot before, becomes quite
elongated, and even stretches into a long line. The reason is that the fingers are
very close together, and the light which is supposed to come in a straight line
is spread out at an angle, so that when it comes into the eye it comes in from
several directions. Also you will notice, if you are very careful, side maxima, a lot
of fringes along the edges too. Furthermore, the whole thing is colored. All of this
will be explained in due time, but for the present it is a demonstration that light
does not always go in straight lines, and it is one that is very easily performed.
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26-6 How it works

Finally, we give a very crude view of what actually happens, how the whole
thing really works, from what we now believe is the correct, quantum-dynamically
accurate viewpoint, but of course only qualitatively described. In following the
light from A to B in Fig. 26-3, we find that the light does not seem to be in the
form of waves at all. Instead the rays seem to be made up of photons, and they
actually produce clicks in a photon counter, if we are using one. The brightness
of the light is proportional to the average number of photons that come in per
second, and what we calculate is the chance that a photon gets from A to B, say
by hitting the mirror. The law for that chance is the following very strange one.
Take any path and find the time for that path; then make a complex number,
or draw a little complex vector, ρeiθ, whose angle θ is proportional to the time.
The number of turns per second is the frequency of the light. Now take another
path; it has, for instance, a different time, so the vector for it is turned through
a different angle—the angle being always proportional to the time. Take all the
available paths and add on a little vector for each one; then the answer is that
the chance of arrival of the photon is proportional to the square of the length of
the final vector, from the beginning to the end!

C

D

E

Fig. 26-14. The summation of probability amplitudes for many neigh-
boring paths.

Now let us show how this implies the principle of least time for a mirror. We
consider all rays, all possible paths ADB, AEB, ACB, etc., in Fig. 26-3. The
path ADB makes a certain small contribution, but the next path, AEB, takes
a quite different time, so its angle θ is quite different. Let us say that point C
corresponds to minimum time, where if we change the paths the times do not
change. So for awhile the times do change, and then they begin to change less and
less as we get near point C (Fig. 26-14). So the arrows which we have to add are
coming almost exactly at the same angle for awhile near C, and then gradually
the time begins to increase again, and the phases go around the other way, and so
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on. Eventually, we have quite a tight knot. The total probability is the distance
from one end to the other, squared. Almost all of that accumulated probability
occurs in the region where all the arrows are in the same direction (or in the same
phase). All the contributions from the paths which have very different times as
we change the path, cancel themselves out by pointing in different directions.
That is why, if we hide the extreme parts of the mirror, it still reflects almost
exactly the same, because all we did was to take out a piece of the diagram inside
the spiral ends, and that makes only a very small change in the light. So this is
the relationship between the ultimate picture of photons with a probability of
arrival depending on an accumulation of arrows, and the principle of least time.
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27

Geometrical Optics

27-1 Introduction

In this chapter we shall discuss some elementary applications of the ideas of
the previous chapter to a number of practical devices, using the approximation
called geometrical optics. This is a most useful approximation in the practical
design of many optical systems and instruments. Geometrical optics is either
very simple or else it is very complicated. By that we mean that we can either
study it only superficially, so that we can design instruments roughly, using rules
that are so simple that we hardly need deal with them here at all, since they
are practically of high school level, or else, if we want to know about the small
errors in lenses and similar details, the subject gets so complicated that it is too
advanced to discuss here! If one has an actual, detailed problem in lens design,
including analysis of aberrations, then he is advised to read about the subject
or else simply to trace the rays through the various surfaces (which is what the
book tells how to do), using the law of refraction from one side to the other,
and to find out where they come out and see if they form a satisfactory image.
People have said that this is too tedious, but today, with computing machines, it
is the right way to do it. One can set up the problem and make the calculation
for one ray after another very easily. So the subject is really ultimately quite
simple, and involves no new principles. Furthermore, it turns out that the rules of
either elementary or advanced optics are seldom characteristic of other fields, so
that there is no special reason to follow the subject very far, with one important
exception.

The most advanced and abstract theory of geometrical optics was worked
out by Hamilton, and it turns out that this has very important applications in
mechanics. It is actually even more important in mechanics than it is in optics,
and so we leave Hamilton’s theory for the subject of advanced analytical mechanics,
which is studied in the senior year or in graduate school. So, appreciating that
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Figure 27-1

geometrical optics contributes very little, except for its own sake, we now go on
to discuss the elementary properties of simple optical systems on the basis of the
principles outlined in the last chapter.

In order to go on, we must have one geometrical formula, which is the following:
if we have a triangle with a small altitude h and a long base d, then the diagonal s
(we are going to need it to find the difference in time between two different routes)
is longer than the base (Fig. 27-1). How much longer? The difference ∆ = s− d
can be found in a number of ways. One way is this. We see that s2 − d2 = h2,
or (s− d)(s+ d) = h2. But s− d = ∆, and s+ d ≈ 2s. Thus

∆ ≈ h2/2s. (27.1)

This is all the geometry we need to discuss the formation of images by curved
surfaces!

27-2 The focal length of a spherical surface

The first and simplest situation to discuss is a single refracting surface,
separating two media with different indices of refraction (Fig. 27-2). We leave
the case of arbitrary indices of refraction to the student, because ideas are always

O V Q C O′

P

R
s s ′

AIR GLASS

Fig. 27-2. Focusing by a single refracting surface.
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the most important thing, not the specific situation, and the problem is easy
enough to do in any case. So we shall suppose that, on the left, the speed is 1
and on the right it is 1/n, where n is the index of refraction. The light travels
more slowly in the glass by a factor n.

Now suppose that we have a point at O, at a distance s from the front surface
of the glass, and another point O′ at a distance s′ inside the glass, and we desire
to arrange the curved surface in such a manner that every ray from O which hits
the surface, at any point P , will be bent so as to proceed toward the point O′.
For that to be true, we have to shape the surface in such a way that the time it
takes for the light to go from O to P , that is, the distance OP divided by the
speed of light (the speed here is unity), plus n ·O′P , which is the time it takes
to go from P to O′, is equal to a constant independent of the point P . This
condition supplies us with an equation for determining the surface. The answer
is that the surface is a very complicated fourth-degree curve, and the student
may entertain himself by trying to calculate it by analytic geometry. It is simpler
to try a special case that corresponds to s → ∞, because then the curve is a
second-degree curve and is more recognizable. It is interesting to compare this
curve with the parabolic curve we found for a focusing mirror when the light is
coming from infinity.

So the proper surface cannot easily be made—to focus the light from one
point to another requires a rather complicated surface. It turns out in practice
that we do not try to make such complicated surfaces ordinarily, but instead we
make a compromise. Instead of trying to get all the rays to come to a focus, we
arrange it so that only the rays fairly close to the axis OO′ come to a focus. The
farther ones may deviate if they want to, unfortunately, because the ideal surface
is complicated, and we use instead a spherical surface with the right curvature at
the axis. It is so much easier to fabricate a sphere than other surfaces that it is
profitable for us to find out what happens to rays striking a spherical surface,
supposing that only the rays near the axis are going to be focused perfectly.
Those rays which are near the axis are sometimes called paraxial rays, and what
we are analyzing are the conditions for the focusing of paraxial rays. We shall
discuss later the errors that are introduced by the fact that all rays are not always
close to the axis.

Thus, supposing P is close to the axis, we drop a perpendicular PQ such that
the height PQ is h. For a moment, we imagine that the surface is a plane passing
through P . In that case, the time needed to go from O to P would exceed the
time from O to Q, and also, the time from P to O′ would exceed the time from
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Q to O′. But that is why the glass must be curved, because the total excess
time must be compensated by the delay in passing from V to Q! Now the excess
time along route OP is h2/2s, and the excess time on the other route is nh2/2s′.
This excess time, which must be matched by the delay in going along V Q, differs
from what it would have been in a vacuum, because there is a medium present.
In other words, the time to go from V to Q is not as if it were straight in the
air, but it is slower by the factor n, so that the excess delay in this distance is
then (n− 1)V Q. And now, how large is V Q? If the point C is the center of the
sphere and if its radius is R, we see by the same formula that the distance V Q is
equal to h2/2R. Therefore we discover that the law that connects the distances s
and s′, and that gives us the radius of curvature R of the surface that we need, is

(h2/2s) + (nh2/2s′) = (n− 1)h2/2R (27.2)
or

(1/s) + (n/s′) = (n− 1)/R. (27.3)

If we have a position O and another position O′, and want to focus light from O
to O′, then we can calculate the required radius of curvature R of the surface by
this formula.

Now it turns out, interestingly, that the same lens, with the same curvature R,
will focus for other distances, namely, for any pair of distances such that the sum
of the two reciprocals, one multiplied by n, is a constant. Thus a given lens will
(so long as we limit ourselves to paraxial rays) focus not only from O to O′, but
between an infinite number of other pairs of points, so long as those pairs of
points bear the relationship that 1/s+ n/s′ is a constant, characteristic of the
lens.

In particular, an interesting case is that in which s→∞. We can see from the
formula that as one s increases, the other decreases. In other words, if point O
goes out, point O′ comes in, and vice versa. As point O goes toward infinity,
point O′ keeps moving in until it reaches a certain distance, called the focal
length f ′, inside the material. If parallel rays come in, they will meet the axis
at a distance f ′. Likewise, we could imagine it the other way. (Remember the
reciprocity rule: if light will go from O to O′, of course it will also go from O′

to O.) Therefore, if we had a light source inside the glass, we might want to know
where the focus is. In particular, if the light in the glass were at infinity (same
problem) where would it come to a focus outside? This distance is called f . Of
course, we can also put it the other way. If we had a light source at f and the
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light went through the surface, then it would go out as a parallel beam. We can
easily find out what f and f ′ are:

n/f ′ = (n− 1)/R or f ′ = Rn/(n− 1), (27.4)

1/f = (n− 1)/R or f = R/(n− 1). (27.5)

We see an interesting thing: if we divide each focal length by the corresponding
index of refraction we get the same result! This theorem, in fact, is general. It is
true of any system of lenses, no matter how complicated, so it is interesting to
remember. We did not prove here that it is general—we merely noted it for a
single surface, but it happens to be true in general that the two focal lengths of
a system are related in this way. Sometimes Eq. (27.3) is written in the form

1/s+ n/s′ = 1/f. (27.6)

This is more useful than (27.3) because we can measure f more easily than we
can measure the curvature and index of refraction of the lens: if we are not
interested in designing a lens or in knowing how it got that way, but simply lift
it off a shelf, the interesting quantity is f , not the n and the 1 and the R!

Now an interesting situation occurs if s becomes less than f . What happens
then? If s < f , then (1/s) > (1/f), and therefore s′ is negative; our equation says
that the light will focus only with a negative value of s′, whatever that means!
It does mean something very interesting and very definite. It is still a useful
formula, in other words, even when the numbers are negative. What it means is
shown in Fig. 27-3. If we draw the rays which are diverging from O, they will be
bent, it is true, at the surface, and they will not come to a focus, because O is so
close in that they are “beyond parallel.” However, they diverge as if they had
come from a point O′ outside the glass. This is an apparent image, sometimes

O′ O

Fig. 27-3. A virtual image.
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called a virtual image. The image O′ in Fig. 27-2 is called a real image. If the
light really comes to a point, it is a real image. But if the light appears to be
coming from a point, a fictitious point different from the original point, it is a
virtual image. So when s′ comes out negative, it means that O′ is on the other
side of the surface, and everything is all right.

O′

AIR GLASS

O

Fig. 27-4. A plane surface re-images the light from O′ to O.

Now consider the interesting case where R is equal to infinity; then we have
(1/s) + (n/s′) = 0. In other words, s′ = −ns, which means that if we look from a
dense medium into a rare medium and see a point in the rare medium, it appears
to be deeper by a factor n. Likewise, we can use the same equation backwards, so
that if we look into a plane surface at an object that is at a certain distance inside
the dense medium, it will appear as though the light is coming from not as far
back (Fig. 27-4). When we look at the bottom of a swimming pool from above,
it does not look as deep as it really is, by a factor 3/4, which is the reciprocal of
the index of refraction of water.

We could go on, of course, to discuss the spherical mirror. But if one appreci-
ates the ideas involved, he should be able to work it out for himself. Therefore
we leave it to the student to work out the formula for the spherical mirror, but
we mention that it is well to adopt certain conventions concerning the distances
involved:

(1) The object distance s is positive if the point O is to the left of the surface.
(2) The image distance s′ is positive if the point O′ is to the right of the surface.
(3) The radius of curvature of the surface is positive if the center is to the right

of the surface.

In Fig. 27-2, for example, s, s′, and R are all positive; in Fig. 27-3, s and R are
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positive, but s′ is negative. If we had used a concave surface, our formula (27.3)
would still give the correct result if we merely make R a negative quantity.

In working out the corresponding formula for a mirror, using the above
conventions, you will find that if you put n = −1 throughout the formula (27.3)
(as though the material behind the mirror had an index −1), the right formula
for a mirror results!

Although the derivation of formula (27.3) is simple and elegant, using least
time, one can of course work out the same formula using Snell’s law, remembering
that the angles are so small that the sines of angles can be replaced by the angles
themselves.

27-3 The focal length of a lens

Now we go on to consider another situation, a very practical one. Most of the
lenses that we use have two surfaces, not just one. How does this affect matters?
Suppose that we have two surfaces of different curvature, with glass filling the
space between them (Fig. 27-5). We want to study the problem of focusing from
a point O to an alternate point O′. How can we do that? The answer is this:
First, use formula (27.3) for the first surface, forgetting about the second surface.
This will tell us that the light which was diverging from O will appear to be
converging or diverging, depending on the sign, from some other point, say O′.
Now we consider a new problem. We have a different surface, between glass and
air, in which rays are converging toward a certain point O′. Where will they
actually converge? We use the same formula again! We find that they converge
at O′′. Thus, if necessary, we can go through 75 surfaces by just using the same
formula in succession, from one to the next!

1

2
n

R1

R2

O′O′′

Fig. 27-5. Image formation by a two-surface lens.
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There are some rather high-class formulas that would save us considerable
energy in the few times in our lives that we might have to chase the light through
five surfaces, but it is easier just to chase it through five surfaces when the
problem arises than it is to memorize a lot of formulas, because it may be we
will never have to chase it through any surfaces at all!

In any case, the principle is that when we go through one surface we find a
new position, a new focal point, and then take that point as the starting point
for the next surface, and so on. In order to actually do this, since on the second
surface we are going from n to 1 rather than from 1 to n, and since in many
systems there is more than one kind of glass, so that there are indices n1, n2,
. . . , we really need a generalization of formula (27.3) for a case where there are
two different indices, n1 and n2, rather than only n. Then it is not difficult to
prove that the general form of (27.3) is

(n1/s) + (n2/s
′) = (n2 − n1)/R. (27.7)

Particularly simple is the special case in which the two surfaces are very close
together—so close that we may ignore small errors due to the thickness. If we
draw the lens as shown in Fig. 27-6, we may ask this question: How must the
lens be built so as to focus light from O to O′? Suppose the light comes exactly
to the edge of the lens, at point P . Then the excess time in going from O to O′
is (n1h

2/2s) + (n1h
2/2s′), ignoring for a moment the presence of the thickness T

of glass of index n2. Now, to make the time for the direct path equal to that for
the path OPO′, we have to use a piece of glass whose thickness T at the center
is such that the delay introduced in going through this thickness is enough to
compensate for the excess time above. Therefore the thickness of the lens at the

O O′

P

Q
T

h

n1 n2 n1

Fig. 27-6. A thin lens with two positive radii.
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center must be given by the relationship

(n1h
2/2s) + (n1h

2/2s′) = (n2 − n1)T. (27.8)

We can also express T in terms of the radii R1 and R2 of the two surfaces. Paying
attention to our convention (3), we thus find, for R1 < R2 (a convex lens),

T = (h2/2R1)− (h2/2R2). (27.9)

Therefore, we finally get

(n1/s) + (n1/s
′) = (n2 − n1)(1/R1 − 1/R2). (27.10)

Now we note again that if one of the points is at infinity, the other will be at a
point which we will call the focal length f . The focal length f is given by

1/f = (n− 1)(1/R1 − 1/R2). (27.11)

where n = n2/n1.
Now, if we take the opposite case, where s goes to infinity, we see that s′ is

at the focal length f ′. This time the focal lengths are equal. (This is another
special case of the general rule that the ratio of the two focal lengths is the ratio
of the indices of refraction in the two media in which the rays focus. In this
particular optical system, the initial and final indices are the same, so the two
focal lengths are equal.)

Forgetting for a moment about the actual formula for the focal length, if
we bought a lens that somebody designed with certain radii of curvature and a
certain index, we could measure the focal length, say, by seeing where a point at
infinity focuses. Once we had the focal length, it would be better to write our
equation in terms of the focal length directly, and the formula then is

(1/s) + (1/s′) = 1/f. (27.12)

Now let us see how the formula works and what it implies in different circum-
stances. First, it implies that if s or s′ is infinite the other one is f . That means
that parallel light focuses at a distance f , and this in effect defines f . Another
interesting thing it says is that both points move in the same direction. If one
moves to the right, the other does also. Another thing it says is that s and s′
are equal if they are both equal to 2f . In other words, if we want a symmetrical
situation, we find that they will both focus at a distance 2f .

27-9



27-4 Magnification

So far we have discussed the focusing action only for points on the axis. Now
let us discuss also the imaging of objects not exactly on the axis, but a little
bit off, so that we can understand the properties of magnification. When we set
up a lens so as to focus light from a small filament onto a “point” on a screen,
we notice that on the screen we get a “picture” of the same filament, except of
a larger or smaller size than the true filament. This must mean that the light
comes to a focus from each point of the filament. In order to understand this a
little better, let us analyze the thin lens system shown schematically in Fig. 27-7.
We know the following facts:

(1) Any ray that comes in parallel on one side proceeds toward a certain
particular point called the focus on the other side, at a distance f from the
lens.

(2) Any ray that arrives at the lens from the focus on one side comes out
parallel to the axis on the other side.

This is all we need to establish formula (27.12) by geometry, as follows: Suppose
we have an object at some distance x from the focus; let the height of the object
be y. Then we know that one of the rays, namely PQ, will be bent so as to pass
through the focus R on the other side. Now if the lens will focus point P at all,
we can find out where if we find out where just one other ray goes, because the
new focus will be where the two intersect again. We need only use our ingenuity
to find the exact direction of one other ray. But we remember that a parallel
ray goes through the focus and vice versa: a ray which goes through the focus
will come out parallel! So we draw ray PT through U . (It is true that the actual
rays which are doing the focusing may be much more limited than the two we
have drawn, but they are harder to figure, so we make believe that we can make

P Q

R

UV

T S

X

Wf
fx

y y
x ′

y ′ y ′

Fig. 27-7. The geometry of imaging by a thin lens.

27-10



this ray.) Since it would come out parallel, we draw TS parallel to XW . The
intersection S is the point we need. This will determine the correct place and
the correct height. Let us call the height y′ and the distance from the focus, x′.
Now we may derive a lens formula. Using the similar triangles PV U and TXU ,
we find

y′

f
= y

x
. (27.13)

Similarly, from triangles SWR and QXR, we get

y′

x′
= y

f
. (27.14)

Solving each for y′/y, we find that

y′

y
= x′

f
= f

x
. (27.15)

Equation (27.15) is the famous lens formula; in it is everything we need to know
about lenses: It tells us the magnification, y′/y, in terms of the distances and
the focal lengths. It also connects the two distances x and x′ with f :

xx′ = f2, (27.16)

which is a much neater form to work with than Eq. (27.12). We leave it to the
student to demonstrate that if we call s = x+ f and s′ = x′ + f , Eq. (27.12) is
the same as Eq. (27.16).

27-5 Compound lenses

Without actually deriving it, we shall briefly describe the general result when
we have a number of lenses. If we have a system of several lenses, how can
we possibly analyze it? That is easy. We start with some object and calculate
where its image is for the first lens, using formula (27.16) or (27.12) or any other
equivalent formula, or by drawing diagrams. So we find an image. Then we treat
this image as the source for the next lens, and use the second lens with whatever
its focal length is to again find an image. We simply chase the thing through
the succession of lenses. That is all there is to it. It involves nothing new in
principle, so we shall not go into it. However, there is a very interesting net
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result of the effects of any sequence of lenses on light that starts and ends up in
the same medium, say air. Any optical instrument—a telescope or a microscope
with any number of lenses and mirrors—has the following property: There exist
two planes, called the principal planes of the system (these planes are often fairly
close to the first surface of the first lens and the last surface of the last lens),
which have the following properties: (1) If light comes into the system parallel
from the first side, it comes out at a certain focus, at a distance from the second
principal plane equal to the focal length, just as though the system were a thin
lens situated at this plane. (2) If parallel light comes in the other way, it comes
to a focus at the same distance f from the first principal plane, again as if a thin
lens where situated there. (See Fig. 27-8.)

x

y
x ′

y ′

f f

1 2

Fig. 27-8. Illustration of the principal planes of an optical system.

Of course, if we measure the distances x and x′, and y and y′ as before,
the formula (27.16) that we have written for the thin lens is absolutely general,
provided that we measure the focal length from the principal planes and not from
the center of the lens. It so happens that for a thin lens the principal planes are
coincident. It is just as though we could take a thin lens, slice it down the middle,
and separate it, and not notice that it was separated. Every ray that comes in
pops out immediately on the other side of the second plane from the same point
as it went into the first plane! The principal planes and the focal length may be
found either by experiment or by calculation, and then the whole set of properties
of the optical system are described. It is very interesting that the result is not
complicated when we are all finished with such a big, complicated optical system.

27-6 Aberrations

Before we get too excited about how marvelous lenses are, we must hasten
to add that there are also serious limitations, because of the fact that we have
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limited ourselves, strictly speaking, to paraxial rays, the rays near the axis. A
real lens having a finite size will, in general, exhibit aberrations. For example,
a ray that is on the axis, of course, goes through the focus; a ray that is very
close to the axis will still come to the focus very well. But as we go farther out,
the ray begins to deviate from the focus, perhaps by falling short, and a ray
striking near the top edge comes down and misses the focus by quite a wide
margin. So, instead of getting a point image, we get a smear. This effect is called
spherical aberration, because it is a property of the spherical surfaces we use in
place of the right shape. This could be remedied, for any specific object distance,
by re-forming the shape of the lens surface, or perhaps by using several lenses
arranged so that the aberrations of the individual lenses tend to cancel each other.

Lenses have another fault: light of different colors has different speeds, or
different indices of refraction, in the glass, and therefore the focal length of a
given lens is different for different colors. So if we image a white spot, the image
will have colors, because when we focus for the red, the blue is out of focus, or
vice versa. This property is called chromatic aberration.

There are still other faults. If the object is off the axis, then the focus really
isn’t perfect any more, when it gets far enough off the axis. The easiest way to
verify this is to focus a lens and then tilt it so that the rays are coming in at a
large angle from the axis. Then the image that is formed will usually be quite
crude, and there may be no place where it focuses well. There are thus several
kinds of errors in lenses that the optical designer tries to remedy by using many
lenses to compensate each other’s errors.

How careful do we have to be to eliminate aberrations? Is it possible to make
an absolutely perfect optical system? Suppose we had built an optical system
that is supposed to bring light exactly to a point. Now, arguing from the point
of view of least time, can we find a condition on how perfect the system has to
be? The system will have some kind of an entrance opening for the light. If we
take the farthest ray from the axis that can come to the focus (if the system
is perfect, of course), the times for all rays are exactly equal. But nothing is
perfect, so the question is, how wrong can the time be for this ray and not be
worth correcting any further? That depends on how perfect we want to make
the image. But suppose we want to make the image as perfect as it possibly can
be made. Then, of course, our impression is that we have to arrange that every
ray takes as nearly the same time as possible. But it turns out that this is not
true, that beyond a certain point we are trying to do something that is too fine,
because the theory of geometrical optics does not work!
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Remember that the principle of least time is not an accurate formulation,
unlike the principle of conservation of energy or the principle of conservation
of momentum. The principle of least time is only an approximation, and it
is interesting to know how much error can be allowed and still not make any
apparent difference. The answer is that if we have arranged that between the
maximal ray—the worst ray, the ray that is farthest out—and the central ray, the
difference in time is less than about the period that corresponds to one oscillation
of the light, then there is no use improving it any further. Light is an oscillatory
thing with a definite frequency that is related to the wavelength, and if we have
arranged that the time difference for different rays is less than about a period,
there is no use going any further.

27-7 Resolving power

Another interesting question—a very important technical question with all
optical instruments—is how much resolving power they have. If we build a
microscope, we want to see the objects that we are looking at. That means, for
instance, that if we are looking at a bacterium with a spot on each end, we want
to see that there are two dots when we magnify them. One might think that all
we have to do is to get enough magnification—we can always add another lens,
and we can always magnify again and again, and with the cleverness of designers,
all the spherical aberrations and chromatic aberrations can be cancelled out,
and there is no reason why we cannot keep on magnifying the image. So the
limitations of a microscope are not that it is impossible to build a lens that
magnifies more than 2000 diameters. We can build a system of lenses that
magnifies 10,000 diameters, but we still could not see two points that are too
close together because of the limitations of geometrical optics, because of the
fact that least time is not precise.

To discover the rule that determines how far apart two points have to be
so that at the image they appear as separate points can be stated in a very
beautiful way associated with the time it takes for different rays. Suppose that
we disregard the aberrations now, and imagine that for a particular point P
(Fig. 27-9) all the rays from object to image T take exactly the same time. (It
is not true, because it is not a perfect system, but that is another problem.)
Now take another nearby point, P ′, and ask whether its image will be distinct
from T . In other words, whether we can make out the difference between them.
Of course, according to geometrical optics, there should be two point images,
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Fig. 27-9. The resolving power of an optical system.

but what we see may be rather smeared and we may not be able to make out
that there are two points. The condition that the second point is focused in a
distinctly different place from the first one is that the two times for the extreme
rays P ′ST and P ′RT on each side of the big opening of the lenses to go from
one end to the other, must not be equal from the two possible object points to
a given image point. Why? Because, if the times were equal, of course both
would focus at the same point. So the times are not going to be equal. But by
how much do they have to differ so that we can say that both do not come to a
common focus, so that we can distinguish the two image points? The general rule
for the resolution of any optical instrument is this: two different point sources
can be resolved only if one source is focused at such a point that the times for
the maximal rays from the other source to reach that point, as compared with
its own true image point, differ by more than one period. It is necessary that the
difference in time between the top ray and the bottom ray to the wrong focus
shall exceed a certain amount, namely, approximately the period of oscillation of
the light:

t2 − t1 > 1/ν, (27.17)

where ν is the frequency of the light (number of oscillations per second; also speed
divided by wavelength). If the distance of separation of the two points is called
D, and if the opening angle of the lens is called θ, then one can demonstrate
that (27.17) is exactly equivalent to the statement that D must exceed λ/n sin θ,
where n is the index of refraction at P and λ is the wavelength. The smallest
things that we can see are therefore approximately the wavelength of light. A
corresponding formula exists for telescopes, which tells us the smallest difference
in angle between two stars that can just be distinguished.*

* The angle is about λ/D, where D is the lens diameter. Can you see why?
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28

Electromagnetic Radiation

28-1 Electromagnetism

The most dramatic moments in the development of physics are those in which
great syntheses take place, where phenomena which previously had appeared
to be different are suddenly discovered to be but different aspects of the same
thing. The history of physics is the history of such syntheses, and the basis of
the success of physical science is mainly that we are able to synthesize.

Perhaps the most dramatic moment in the development of physics during the
19th century occurred to J. C. Maxwell one day in the 1860’s, when he combined
the laws of electricity and magnetism with the laws of the behavior of light. As
a result, the properties of light were partly unravelled—that old and subtle stuff
that is so important and mysterious that it was felt necessary to arrange a special
creation for it when writing Genesis. Maxwell could say, when he was finished
with his discovery, “Let there be electricity and magnetism, and there is light!”

For this culminating moment there was a long preparation in the gradual
discovery and unfolding of the laws of electricity and magnetism. This story we
shall reserve for detailed study next year. However, the story is, briefly, as follows.
The gradually discovered properties of electricity and magnetism, of electric forces
of attraction and repulsion, and of magnetic forces, showed that although these
forces were rather complex, they all fell off inversely as the square of the distance.
We know, for example, that the simple Coulomb law for stationary charges is
that the electric force field varies inversely as the square of the distance. As a
consequence, for sufficiently great distances there is very little influence of one
system of charges on another. Maxwell noted that the equations or the laws that
had been discovered up to this time were mutually inconsistent when he tried to
put them all together, and in order for the whole system to be consistent, he had
to add another term to his equations. With this new term there came an amazing
prediction, which was that a part of the electric and magnetic fields would fall off
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much more slowly with the distance than the inverse square, namely, inversely as
the first power of the distance! And so he realized that electric currents in one
place can affect other charges far away, and he predicted the basic effects with
which we are familiar today—radio transmission, radar, and so on.

It seems a miracle that someone talking in Europe can, with mere electrical
influences, be heard thousands of miles away in Los Angeles. How is it possible?
It is because the fields do not vary as the inverse square, but only inversely as
the first power of the distance. Finally, then, even light itself was recognized
to be electric and magnetic influences extending over vast distances, generated
by an almost incredibly rapid oscillation of the electrons in the atoms. All
these phenomena we summarize by the word radiation or, more specifically,
electromagnetic radiation, there being one or two other kinds of radiation also.
Almost always, radiation means electromagnetic radiation.

And thus is the universe knit together. The atomic motions of a distant star
still have sufficient influence at this great distance to set the electrons in our eye
in motion, and so we know about the stars. If this law did not exist, we would
all be literally in the dark about the exterior world! And the electric surgings in
a galaxy five billion light years away—which is the farthest object we have found
so far—can still influence in a significant and detectable way the currents in the
great “dish” in front of a radio telescope. And so it is that we see the stars and
the galaxies.

This remarkable phenomenon is what we shall discuss in the present chapter.
At the beginning of this course in physics we outlined a broad picture of the
world, but we are now better prepared to understand some aspects of it, and
so we shall now go over some parts of it again in greater detail. We begin by
describing the position of physics at the end of the 19th century. All that was
then known about the fundamental laws can be summarized as follows.

First, there were laws of forces: one force was the law of gravitation, which
we have written down several times; the force on an object of mass m, due to
another of mass M , is given by

F = GmMer/r
2, (28.1)

where er is a unit vector directed from m to M , and r is the distance between
them.

Next, the laws of electricity and magnetism, as known at the end of the
19th century, are these: the electrical forces acting on a charge q can be described
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by two fields, called E and B, and the velocity v of the charge q, by the equation

F = q(E + v ×B). (28.2)

To complete this law, we have to say what the formulas for E and B are in a
given circumstance: if a number of charges are present, E and the B are each
the sum of contributions, one from each individual charge. So if we can find the
E and B produced by a single charge, we need only to add all the effects from
all the charges in the universe to get the total E and B! This is the principle of
superposition.

What is the formula for the electric and magnetic field produced by one
individual charge? It turns out that this is very complicated, and it takes a
great deal of study and sophistication to appreciate it. But that is not the
point. We write down the law now only to impress the reader with the beauty
of nature, so to speak, i.e., that it is possible to summarize all the fundamental
knowledge on one page, with notations that he is now familiar with. This law for
the fields of an individual charge is complete and accurate, so far as we know
(except for quantum mechanics) but it looks rather complicated. We shall not
study all the pieces now; we only write it down to give an impression, to show
that it can be written, and so that we can see ahead of time roughly what it
looks like. As a matter of fact, the most useful way to write the correct laws of
electricity and magnetism is not the way we shall now write them, but involves
what are called field equations, which we shall learn about next year. But the
mathematical notations for these are different and new, and so we write the law
in an inconvenient form for calculation, but in notations that we now know.

The electric field, E, is given by

E = −q
4πε0

[
er′

r′2
+ r′

c

d

dt

(
er′

r′2

)
+ 1
c2

d2

dt2
er′

]
. (28.3)

What do the various terms tell us? Take the first term, E = −qer′/4πε0r′2.
That, of course, is Coulomb’s law, which we already know: q is the charge that is
producing the field; er′ is the unit vector in the direction from the point P where
E is measured, r is the distance from P to q. But, Coulomb’s law is wrong. The
discoveries of the 19th century showed that influences cannot travel faster than
a certain fundamental speed c, which we now call the speed of light. It is not
correct that the first term is Coulomb’s law, not only because it is not possible to
know where the charge is now and at what distance it is now, but also because
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the only thing that can affect the field at a given place and time is the behavior
of the charges in the past. How far in the past? The time delay, or retarded
time, so-called, is the time it takes, at speed c, to get from the charge to the field
point P . The delay is r′/c.

So to allow for this time delay, we put a little prime on r, meaning how far
away it was when the information now arriving at P left q. Just for a moment
suppose that the charge carried a light, and that the light could only come
to P at the speed c. Then when we look at q, we would not see where it is
now, of course, but where it was at some earlier time. What appears in our
formula is the apparent direction er′—the direction it used to be—the so-called
retarded direction—and at the retarded distance r′. That would be easy enough to
understand, too, but it is also wrong. The whole thing is much more complicated.

There are several more terms. The next term is as though nature were trying
to allow for the fact that the effect is retarded, if we might put it very crudely. It
suggests that we should calculate the delayed Coulomb field and add a correction
to it, which is its rate of change times the time delay that we use. Nature seems
to be attempting to guess what the field at the present time is going to be, by
taking the rate of change and multiplying by the time that is delayed. But we
are not yet through. There is a third term—the second derivative, with respect
to t, of the unit vector in the direction of the charge. Now the formula is finished,
and that is all there is to the electric field from an arbitrarily moving charge.

The magnetic field is given by

B = −er′ ×E/c. (28.4)

We have written these down only for the purpose of showing the beauty of nature
or, in a way, the power of mathematics. We do not pretend to understand why it
is possible to write so much in such a small space, but (28.3) and (28.4) contain
the machinery by which electric generators work, how light operates, all the
phenomena of electricity and magnetism. Of course, to complete the story we
also need to know something about the behavior of the materials involved—the
properties of matter—which are not described properly by (28.3).

To finish with our description of the world of the 19th century we must
mention one other great synthesis which occurred in that century, one with which
Maxwell had a great deal to do also, and that was the synthesis of the phenomena
of heat and mechanics. We shall study that subject soon.

What had to be added in the 20th century was that the dynamical laws of
Newton were found to be all wrong, and quantum mechanics had to be introduced
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to correct them. Newton’s laws are approximately valid when the scale of things
is sufficiently large. These quantum-mechanical laws, combined with the laws of
electricity, have only recently been combined to form a set of laws called quantum
electrodynamics. In addition, there were discovered a number of new phenomena,
of which the first was radioactivity, discovered by Becquerel in 1898—he just
sneaked it in under the 19th century. This phenomenon of radioactivity was
followed up to produce our knowledge of nuclei and new kinds of forces that are
not gravitational and not electrical, but new particles with different interactions,
a subject which has still not been unravelled.

For those purists who know more (the professors who happen to be reading
this), we should add that when we say that (28.3) is a complete expression of the
knowledge of electrodynamics, we are not being entirely accurate. There was a
problem that was not quite solved at the end of the 19th century. When we try
to calculate the field from all the charges including the charge itself that we want
the field to act on, we get into trouble trying to find the distance, for example, of
a charge from itself, and dividing something by that distance, which is zero. The
problem of how to handle the part of this field which is generated by the very
charge on which we want the field to act is not yet solved today. So we leave it
there; we do not have a complete solution to that puzzle yet, and so we shall
avoid the puzzle for as long as we can.

28-2 Radiation

That, then, is a summary of the world picture. Now let us use it to discuss
the phenomena called radiation. To discuss these phenomena, we must select
from Eq. (28.3) only that piece which varies inversely as the distance and not as
the square of the distance. It turns out that when we finally do find that piece, it
is so simple in its form that it is legitimate to study optics and electrodynamics
in an elementary way by taking it as “the law” of the electric field produced by a
moving charge far away. We shall take it temporarily as a given law which we
will learn about in detail next year.

Of the terms appearing in (28.3), the first one evidently goes inversely as
the square of the distance, and the second is only a correction for delay, so it
is easy to show that both of them vary inversely as the square of the distance.
All of the effects we are interested in come from the third term, which is not
very complicated, after all. What this term says is: look at the charge and note
the direction of the unit vector (we can project the end of it onto the surface of
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a unit sphere). As the charge moves around, the unit vector wiggles, and the
acceleration of that unit vector is what we are looking for. That is all. Thus

E = −q
4πε0c2

d2er′

dt2
(28.5)

is a statement of the laws of radiation, because that is the only important term
when we get far enough away that the fields are varying inversely as the distance.
(The parts that go as the square have fallen off so much that we are not interested
in them.)

Now we can go a little bit further in studying (28.5) to see what it means.
Suppose a charge is moving in any manner whatsoever, and we are observing it
from a distance. We imagine for a moment that in a sense it is “lit up” (although
it is light that we are trying to explain); we imagine it as a little white dot. Then
we would see this white dot running around. But we don’t see exactly how it is
running around right now, because of the delay that we have been talking about.
What counts is how it was moving earlier. The unit vector er′ is pointed toward
the apparent position of the charge. Of course, the end of er′ goes on a slight
curve, so that its acceleration has two components. One is the transverse piece,
because the end of it goes up and down, and the other is a radial piece because
it stays on a sphere. It is easy to demonstrate that the latter is much smaller
and varies as the inverse square of r when r is very great. This is easy to see, for
when we imagine that we move a given source farther and farther away, then the
wigglings of er′ look smaller and smaller, inversely as the distance, but the radial
component of acceleration is varying much more rapidly than inversely as the
distance. So for practical purposes all we have to do is project the motion on a
plane at unit distance. Therefore we find the following rule: Imagine that we look
at the moving charge and that everything we see is delayed—like a painter trying
to paint a scene on a screen at a unit distance. A real painter, of course, does
not take into account the fact that light is going at a certain speed, but paints
the world as he sees it. We want to see what his picture would look like. So we
see a dot, representing the charge, moving about in the picture. The acceleration
of that dot is proportional to the electric field. That is all—all we need.

Thus Eq. (28.5) is the complete and correct formula for radiation; even
relativity effects are all contained in it. However, we often want to apply it to a
still simpler circumstance in which the charges are moving only a small distance
at a relatively slow rate. Since they are moving slowly, they do not move an
appreciable distance from where they start, so that the delay time is practically
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constant. Then the law is still simpler, because the delay time is fixed. Thus we
imagine that the charge is executing a very tiny motion at an effectively constant
distance. The delay at the distance r is r/c. Then our rule becomes the following:
If the charged object is moving in a very small motion and it is laterally displaced
by the distance x(t), then the angle that the unit vector er′ is displaced is x/r,
and since r is practically constant, the x-component of d2er′/dt2 is simply the
acceleration of x itself at an earlier time divided by r, and so finally we get the
law we want, which is

Ex(t) = −q
4πε0c2r

ax

(
t− r

c

)
. (28.6)

Only the component of ax perpendicular to the line of sight is important. Let
us see why that is. Evidently, if the charge is moving in and out straight at us,
the unit vector in that direction does not wiggle at all, and it has no acceleration.
So it is only the sidewise motion which is important, only the acceleration that
we see projected on the screen.

28-3 The dipole radiator

As our fundamental “law” of electromagnetic radiation, we are going to assume
that (28.6) is true, i.e., that the electric field produced by an accelerating charge
which is moving nonrelativistically at a very large distance r approaches that
form. The electric field varies inversely as r and is proportional to the acceleration
of the charge, projected onto the “plane of sight,” and this acceleration is not
today’s acceleration, but the acceleration that it had at an earlier time, the
amount of delay being a time, r/c. In the remainder of this chapter we shall
discuss this law so that we can understand it better physically, because we are
going to use it to understand all of the phenomena of light and radio propagation,
such as reflection, refraction, interference, diffraction, and scattering. It is the
central law, and is all we need. All the rest of Eq. (28.3) was written down only
to set the stage, so that we could appreciate where (28.6) fits and how it comes
about.

We shall discuss (28.3) further next year. In the meantime, we shall accept
it as true, but not just on a theoretical basis. We may devise a number of
experiments which illustrate the character of the law. In order to do so, we need
an accelerating charge. It should be a single charge, but if we can make a great
many charges move together, all the same way, we know that the field will be the
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Fig. 28-1. A high-frequency signal generator drives charges up and
down on two wires.

sum of the effects of each of the individual charges; we just add them together.
As an example, consider two pieces of wire connected to a generator, as shown in
Fig. 28-1. The idea is that the generator makes a potential difference, or a field,
which pulls electrons away from piece A and pushes them into B at one moment,
and then, an infinitesimal time later, it reverses the effect and pulls the electrons
out of B and pumps them back into A! So in these two wires charges, let us say,
are accelerating upward in wire A and upward in wire B for one moment, and a
moment later they are accelerating downward in wire A and downward in wire B.
The fact that we need two wires and a generator is merely that this is a way of
doing it. The net result is that we merely have a charge accelerating up and down
as though A and B were one single wire. A wire that is very short compared
with the distance light travels in one oscillation period is called an electric dipole
oscillator. Thus we have the circumstance that we need to apply our law, which
tells us that this charge makes an electric field, and so we need an instrument to
detect an electric field, and the instrument we use is the same thing—a pair of
wires like A and B! If an electric field is applied to such a device, it will produce
a force which will pull the electrons up on both wires or down on both wires.
This signal is detected by means of a rectifier mounted between A and B, and
a tiny, fine wire carries the information into an amplifier, where it is amplified so
we can hear the audiofrequency tone with which the radiofrequency is modulated.
When this probe feels an electric field, there will be a loud noise coming out of the
loudspeaker, and when there is no electric field driving it, there will be no noise.

Because the room in which the waves we are measuring has other objects in
it, our electric field will shake electrons in these other objects; the electric field
makes these other charges go up and down, and in going up and down, these
also produce an effect on our probe. Thus for a successful experiment we must
hold things fairly close together, so that the influences from the walls and from
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ourselves—the reflected waves—are relatively small. So the phenomena will not
turn out to appear to be precisely and perfectly in accord with Eq. (28.6), but
will be close enough that we shall be able to appreciate the law.

1

3

G

2

D

θ
r

Fig. 28-2. The instantaneous electric field on a sphere centered at a
localized, linearly oscillating charge.

Now we turn the generator on and hear the audio signal. We find a strong
field when the detector D is parallel to the generator G at point 1 (Fig. 28-2).
We find the same amount of field also at any other azimuth angle about the axis
of G, because it has no directional effects. On the other hand, when the detector
is at 3 the field is zero. That is all right, because our formula said that the field
should be the acceleration of the charge projected perpendicular to the line of
sight. Therefore when we look down on G, the charge is moving toward and
away from D, and there is no effect. So that checks the first rule, that there is
no effect when the charge is moving directly toward us. Secondly, the formula
says that the electric field should be perpendicular to r and in the plane of G
and r; so if we put D at 1 but rotate it 90◦, we should get no signal. And this is
just what we find, the electric field is indeed vertical, and not horizontal. When
we move D to some intermediate angle, we see that the strongest signal occurs
when it is oriented as shown, because although G is vertical, it does not produce
a field that is simply parallel to itself—it is the projection of the acceleration
perpendicular to the line of sight that counts. The signal is weaker at 2 than it is
at 1, because of the projection effect.
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28-4 Interference

Next, we may test what happens when we have two sources side by side
several wavelengths apart (Fig. 28-3). The law is that the two sources should
add their effects at point 1 when both of the sources are connected to the same
generator and are both moving up and down the same way, so that the total
electric field is the sum of the two and is twice as strong as it was before.

D

D

D

S1

S2

∆

1

2

3
TOP
VIEW

Fig. 28-3. Illustration of interference of sources.

Now comes an interesting possibility. Suppose we make the charges in S1
and S2 both accelerate up and down, but delay the timing of S2 so that they are
180◦ out of phase. Then the field produced by S1 will be in one direction and
the field produced by S2 will be in the opposite direction at any instant, and
therefore we should get no effect at point 1. The phase of oscillation is neatly
adjustable by means of a pipe which is carrying the signal to S2. By changing
the length of this pipe we change the time it takes the signal to arrive at S2 and
thus we change the phase of that oscillation. By adjusting this length, we can
indeed find a place where there is no more signal left, in spite of the fact that
both S1 and S2 are moving! The fact that they are both moving can be checked,
because if we cut one out, we can see the motion of the other. So the two of
them together can produce zero if everything is adjusted correctly.

Now, it is very interesting to show that the addition of the two fields is in
fact a vector addition. We have just checked it for up and down motion, but
let us check two nonparallel directions. First, we restore S1 and S2 to the same
phase; that is, they are again moving together. But now we turn S1 through 90◦,
as shown in Fig. 28-4. Now we should have at point 1 the sum of two effects,
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Fig. 28-4. Illustration of the vector character of the combination of
sources.

one of which is vertical and the other horizontal. The electric field is the vector
sum of these two in-phase signals—they are both strong at the same time and go
through zero together; the total field should be a signal R at 45◦. If we turn D
to get the maximum noise, it should be at about 45◦, and not vertical. And if
we turn it at right angles to that direction, we should get zero, which is easy to
measure. Indeed, we observe just such behavior!

Now, how about the retardation? How can we demonstrate that the signal is
retarded? We could, with a great deal of equipment, measure the time at which
it arrives, but there is another, very simple way. Referring again to Fig. 28-3,
suppose that S1 and S2 are in phase. They are both shaking together, and
they produce equal electric fields at point 1. But suppose we go to a certain
place 2 which is closer to S2 and farther from S1. Then, in accordance with the
principle that the acceleration should be retarded by an amount equal to r/c,
if the retardations are not equal, the signals are no longer in phase. Thus it
should be possible to find a position at which the distances of D from S1 and S2
differ by some amount ∆, in such a manner that there is no net signal. That
is, the distance ∆ is to be the distance light goes in one-half an oscillation of
the generator. We may go still further, and find a point where the difference is
greater by a whole cycle; that is to say, the signal from the first antenna reaches
point 3 with a delay in time that is greater than that of the second antenna
by just the length of time it takes for the electric current to oscillate once, and
therefore the two electric fields produced at 3 are in phase again. At point 3 the
signal is strong again.

This completes our discussion of the experimental verification of some of
the important features of Eq. (28.6). Of course we have not really checked
the 1/r variation of the electric field strength, or the fact that there is also a
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magnetic field that goes along with the electric field. To do so would require
rather sophisticated techniques and would hardly add to our understanding at
this point. In any case, we have checked those features that are of the greatest
importance for our later applications, and we shall come back to study some of
the other properties of electromagnetic waves next year.
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29

Interference

29-1 Electromagnetic waves

In this chapter we shall discuss the subject of the preceding chapter more
mathematically. We have qualitatively demonstrated that there are maxima
and minima in the radiation field from two sources, and our problem now is to
describe the field in mathematical detail, not just qualitatively.

We have already physically analyzed the meaning of formula (28.6) quite
satisfactorily, but there are a few points to be made about it mathematically. In
the first place, if a charge is accelerating up and down along a line, in a motion
of very small amplitude, the field at some angle θ from the axis of the motion is
in a direction at right angles to the line of sight and in the plane containing both
the acceleration and the line of sight (Fig. 29-1). If the distance is called r, then
at time t the electric field has the magnitude

E(t) = −qa(t− r/c) sin θ
4πε0c2r

, (29.1)

a′

r
E

θ

Fig. 29-1. The electric field E due to a positive charge whose retarded
acceleration is a′.
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Fig. 29-2. The acceleration of a certain charge as a function of time.

E

r

Fig. 29-3. The electric field as a function of position at a later time.
(The 1/r variation is ignored.)

where a(t − r/c) is the acceleration at the time (t − r/c), called the retarded
acceleration.

Now it would be interesting to draw a picture of the field under different
conditions. The thing that is interesting, of course, is the factor a(t − r/c),
and to understand it we can take the simplest case, θ = 90◦, and plot the field
graphically. What we had been thinking of before is that we stand in one position
and ask how the field there changes with time. But instead of that, we are now
going to see what the field looks like at different positions in space at a given
instant. So what we want is a “snapshot” picture which tells us what the field
is in different places. Of course it depends upon the acceleration of the charge.
Suppose that the charge at first had some particular motion: it was initially
standing still, and it suddenly accelerated in some manner, as shown in Fig. 29-2,
and then stopped. Then, a little bit later, we measure the field at a different
place. Then we may assert that the field will appear as shown in Fig. 29-3. At
each point the field is determined by the acceleration of the charge at an earlier
time, the amount earlier being the delay r/c. The field at farther and farther
points is determined by the acceleration at earlier and earlier times. So the curve
in Fig. 29-3 is really, in a sense, a “reversed” plot of the acceleration as a function
of time; the distance is related to time by a constant scale factor c, which we
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often take as unity. This is easily seen by considering the mathematical behavior
of a(t − r/c). Evidently, if we add a little time ∆t, we get the same value for
a(t− r/c) as we would have if we had subtracted a little distance: ∆r = −c∆t.

Stated another way: if we add a little time ∆t, we can restore a(t− r/c) to
its former value by adding a little distance ∆r = c∆t. That is, as time goes on
the field moves as a wave outward from the source. That is the reason why we
sometimes say light is propagated as waves. It is equivalent to saying that the
field is delayed, or to saying that the electric field is moving outward as time
goes on.

An interesting special case is that where the charge q is moving up and down
in an oscillatory manner. The case which we studied experimentally in the last
chapter was one in which the displacement x at any time t was equal to a certain
constant x0, the magnitude of the oscillation, times cosωt. Then the acceleration
is

a = −ω2x0 cosωt = a0 cosωt, (29.2)
where a0 is the maximum acceleration, −ω2x0. Putting this formula into (29.1),
we find

E = −q sin θ a0 cosω(t− r/c)
4πε0rc2

. (29.3)

Now, ignoring the angle θ and the constant factors, let us see what that looks
like as a function of position or as a function of time.

29-2 Energy of radiation

First of all, at any particular moment or in any particular place, the strength
of the field varies inversely as the distance r, as we mentioned previously. Now
we must point out that the energy content of a wave, or the energy effects that
such an electric field can have, are proportional to the square of the field, because
if, for instance, we have some kind of a charge or an oscillator in the electric field,
then if we let the field act on the oscillator, it makes it move. If this is a linear
oscillator, the acceleration, velocity, and displacement produced by the electric
field acting on the charge are all proportional to the field. So the kinetic energy
which is developed in the charge is proportional to the square of the field. So we
shall take it that the energy that a field can deliver to a system is proportional
somehow to the square of the field.

This means that the energy that the source can deliver decreases as we get
farther away; in fact, it varies inversely as the square of the distance. But that
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Fig. 29-4. The energy flowing within the cone OABCD is independent
of the distance r at which it is measured.

has a very simple interpretation: if we wanted to pick up all the energy we could
from the wave in a certain cone at a distance r1 (Fig. 29-4), and we do the same
at another distance r2, we find that the amount of energy per unit area at any
one place goes inversely as the square of r, but the area of the surface intercepted
by the cone goes directly as the square of r. So the energy that we can take out
of the wave within a given conical angle is the same, no matter how far away
we are! In particular, the total energy that we could take out of the whole wave
by putting absorbing oscillators all around is a certain fixed amount. So the
fact that the amplitude of E varies as 1/r is the same as saying that there is an
energy flux which is never lost, an energy which goes on and on, spreading over a
greater and greater effective area. Thus we see that after a charge has oscillated,
it has lost some energy which it can never recover; the energy keeps going farther
and farther away without diminution. So if we are far enough away that our
basic approximation is good enough, the charge cannot recover the energy which
has been, as we say, radiated away. Of course the energy still exists somewhere,
and is available to be picked up by other systems. We shall study this energy
“loss” further in Chapter 32.

Let us now consider more carefully how the wave (29.3) varies as a function
of time at a given place, and as a function of position at a given time. Again we
ignore the 1/r variation and the constants.

29-3 Sinusoidal waves

First let us fix the position r, and watch the field as a function of time. It is
oscillatory at the angular frequency ω. The angular frequency ω can be defined
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as the rate of change of phase with time (radians per second). We have already
studied such a thing, so it should be quite familiar to us by now. The period is
the time needed for one oscillation, one complete cycle, and we have worked that
out too; it is 2π/ω, because ω times the period is one cycle of the cosine.

Now we introduce a new quantity which is used a great deal in physics. This
has to do with the opposite situation, in which we fix t and look at the wave
as a function of distance r. Of course we notice that, as a function of r, the
wave (29.3) is also oscillatory. That is, aside from 1/r, which we are ignoring, we
see that E oscillates as we change the position. So, in analogy with ω, we can
define a quantity called the wave number , symbolized as k. This is defined as the
rate of change of phase with distance (radians per meter). That is, as we move
in space at a fixed time, the phase changes.

There is another quantity that corresponds to the period, and we might call
it the period in space, but it is usually called the wavelength, symbolized λ. The
wavelength is the distance occupied by one complete cycle. It is easy to see,
then, that the wavelength is 2π/k, because k times the wavelength would be the
number of radians that the whole thing changes, being the product of the rate of
change of the radians per meter, times the number of meters, and we must make
a 2π change for one cycle. So kλ = 2π is exactly analogous to ωt0 = 2π.

Now in our particular wave there is a definite relationship between the fre-
quency and the wavelength, but the above definitions of k and ω are actually
quite general. That is, the wavelength and the frequency may not be related in
the same way in other physical circumstances. However, in our circumstance
the rate of change of phase with distance is easily determined, because if we call
φ = ω(t− r/c) the phase, and differentiate (partially) with respect to distance r,
the rate of change, ∂φ/∂r, is ∣∣∣∣∂φ∂r

∣∣∣∣ = k = ω

c
. (29.4)

There are many ways to represent the same thing, such as

λ = ct0 (29.5)

ω = ck (29.6)

λν = c (29.7)

ωλ = 2πc (29.8)
Why is the wavelength equal to c times the period? That’s very easy, of course,
because if we sit still and wait for one period to elapse, the waves, travelling at
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the speed c, will move a distance ct0, and will of course have moved over just
one wavelength.

In a physical situation other than that of light, k is not necessarily related
to ω in this simple way. If we call the distance along an axis x, then the formula
for a cosine wave moving in a direction x with a wave number k and an angular
frequency ω will be written in general as cos (ωt− kx).

Now that we have introduced the idea of wavelength, we may say something
more about the circumstances in which (29.1) is a legitimate formula. We recall
that the field is made up of several pieces, one of which varies inversely as r,
another part which varies inversely as r2, and others which vary even faster. It
would be worth while to know in what circumstances the 1/r part of the field is
the most important part, and the other parts are relatively small. Naturally, the
answer is “if we go ‘far enough’ away,” because terms which vary inversely as
the square ultimately become negligible compared with the 1/r term. How far is
“far enough”? The answer is, qualitatively, that the other terms are of order λ/r
smaller than the 1/r term. Thus, so long as we are beyond a few wavelengths,
(29.1) is an excellent approximation to the field. Sometimes the region beyond a
few wavelengths is called the “wave zone.”

29-4 Two dipole radiators

Next let us discuss the mathematics involved in combining the effects of two
oscillators to find the net field at a given point. This is very easy in the few cases
that we considered in the previous chapter. We shall first describe the effects
qualitatively, and then more quantitatively. Let us take the simple case, where
the oscillators are situated with their centers in the same horizontal plane as the
detector, and the line of vibration is vertical.

Figure 29-5(a) represents the top view of two such oscillators, and in this
particular example they are half a wavelength apart in a N–S direction, and are
oscillating together in the same phase, which we call zero phase. Now we would
like to know the intensity of the radiation in various directions. By the intensity
we mean the amount of energy that the field carries past us per second, which is
proportional to the square of the field, averaged in time. So the thing to look at,
when we want to know how bright the light is, is the square of the electric field,
not the electric field itself. (The electric field tells the strength of the force felt
by a stationary charge, but the amount of energy that is going past, in watts per
square meter, is proportional to the square of the electric field. We shall derive
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Fig. 29-5. The intensities in various directions from two dipole oscilla-
tors one-half wavelength apart. Left: in phase (α = 0). Right: one-half
period out of phase (α = π).

the constant of proportionality in Chapter 31.) If we look at the array from the W
side, both oscillators contribute equally and in phase, so the electric field is twice
as strong as it would be from a single oscillator. Therefore the intensity is four
times as strong as it would be if there were only one oscillator. (The numbers
in Fig. 29-5 represent how strong the intensity would be in this case, compared
with what it would be if there were only a single oscillator of unit strength.) Now,
in either the N or S direction along the line of the oscillators, since they are half
a wavelength apart, the effect of one oscillator turns out to be out of phase by
exactly half an oscillation from the other, and therefore the fields add to zero.
At a certain particular intermediate angle (in fact, at 30◦) the intensity is 2, and
it falls off, 4, 2, 0, and so forth. We have to learn how to find these numbers at
other angles. It is a question of adding two oscillations with different phases.

Let us quickly look at some other cases of interest. Suppose the oscillators
are again one-half a wavelength apart, but the phase α of one is set half a period
behind the other in its oscillation (Fig. 29-5b). In the W direction the intensity
is now zero, because one oscillator is “pushing” when the other one is “pulling.”
But in the N direction the signal from the near one comes at a certain time, and
that of the other comes half a period later. But the latter was originally half a
period behind in timing, and therefore it is now exactly in time with the first one,
and so the intensity in this direction is 4 units. The intensity in the direction
at 30◦ is still 2, as we can prove later.

Now we come to an interesting case which shows up a possibly useful feature.
Let us remark that one of the reasons that phase relations of oscillators are
interesting is for beaming radio transmitters. For instance, if we build an antenna
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system and want to send a radio signal, say, to Hawaii, we set the antennas up
as in Fig. 29-5(a) and we broadcast with our two antennas in phase, because
Hawaii is to the west of us. Then we decide that tomorrow we are going to
broadcast toward Alberta, Canada. Since that is north, not west, all we have
to do is to reverse the phase of one of our antennas, and we can broadcast to
the north. So we can build antenna systems with various arrangements. Ours is
one of the simplest possible ones; we can make them much more complicated,
and by changing the phases in the various antennas we can send the beams in
various directions and send most of the power in the direction in which we wish
to transmit, without ever moving the antenna! In both of the preceding cases,
however, while we are broadcasting toward Alberta we are wasting a lot of power
on Easter Island, and it would be interesting to ask whether it is possible to
send it in only one direction. At first sight we might think that with a pair of
antennas of this nature the result is always going to be symmetrical. So let us
consider a case that comes out unsymmetrical, to show the possible variety.

λ/4

4

0

2 2

α = π/2

Fig. 29-6. A pair of dipole antennas giving maximum power in one
direction.

If the antennas are separated by one-quarter wavelength, and if the N one
is one-fourth period behind the S one in time, then what happens (Fig. 29-6)?
In the W direction we get 2, as we will see later. In the S direction we get zero,
because the signal from S comes at a certain time; that from N comes 90◦ later
in time, but it is already 90◦ behind in its built-in phase, therefore it arrives,
altogether, 180◦ out of phase, and there is no effect. On the other hand, in the
N direction, the N signal arrives earlier than the S signal by 90◦ in time, because
it is a quarter wavelength closer. But its phase is set so, that it is oscillating 90◦
behind in time, which just compensates the delay difference, and therefore the
two signals appear together in phase, making the field strength twice as large,
and the energy four times as great.
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Thus, by using some cleverness in spacing and phasing our antennas, we
can send the power all in one direction. But still it is distributed over a great
range of angles. Can we arrange it so that it is focused still more sharply in
a particular direction? Let us consider the case of Hawaii again, where we are
sending the beam east and west but it is spread over quite an angle, because
even at 30◦ we are still getting half the intensity—we are wasting the power. Can
we do better than that? Let us take a situation in which the separation is ten
wavelengths (Fig. 29-7), which is more nearly comparable to the situation in which
we experimented in the previous chapter, with separations of several wavelengths
rather than a small fraction of a wavelength. Here the picture is quite different.

10λ

∆

φ

I
To distant point

Fig. 29-7. The intensity pattern for two dipoles separated by 10λ.

If the oscillators are ten wavelengths apart (we take the in-phase case to make
it easy), we see that in the E–W direction, they are in phase, and we get a strong
intensity, four times what we would get if one of them were there alone. On the
other hand, at a very small angle away, the arrival times differ by 180◦ and the
intensity is zero. To be precise, if we draw a line from each oscillator to a distant
point and the difference ∆ in the two distances is λ/2, half an oscillation, then
they will be out of phase. So this first null occurs when that happens. (The
figure is not drawn to scale; it is only a rough sketch.) This means that we do
indeed have a very sharp beam in the direction we want, because if we just move
over a little bit we lose all our intensity. Unfortunately for practical purposes,
if we were thinking of making a radio broadcasting array and we doubled the
distance ∆, then we would be a whole cycle out of phase, which is the same as
being exactly in phase again! Thus we get many successive maxima and minima,
just as we found with the 2 1

2λ spacing in Chapter 28.
Now how can we arrange to get rid of all these extra maxima, or “lobes,” as

they are called? We could get rid of the unwanted lobes in a rather interesting
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Fig. 29-8. A six-dipole antenna array and part of its intensity pattern.

way. Suppose that we were to place another set of antennas between the two
that we already have. That is, the outside ones are still 10λ apart, but between
them, say every 2λ, we have put another antenna, and we drive them all in
phase. There are now six antennas, and if we looked at the intensity in the
E–W direction, it would, of course, be much higher with six antennas than with
one. The field would be six times and the intensity thirty-six times as great (the
square of the field). We get 36 units of intensity in that direction. Now if we
look at neighboring points, we find a zero as before, roughly, but if we go farther,
to where we used to get a big “bump,” we get a much smaller “bump” now. Let
us try to see why.

The reason is that although we might expect to get a big bump when the
distance ∆ is exactly equal to the wavelength, it is true that dipoles 1 and 6 are
then in phase and are cooperating in trying to get some strength in that direction.
But numbers 3 and 4 are roughly 1

2 a wavelength out of phase with 1 and 6, and
although 1 and 6 push together, 3 and 4 push together too, but in opposite phase.
Therefore there is very little intensity in this direction—but there is something;
it does not balance exactly. This kind of thing keeps on happening; we get very
little bumps, and we have the strong beam in the direction where we want it.
But in this particular example, something else will happen: namely, since the
distance between successive dipoles is 2λ, it is possible to find an angle where
the distance δ between successive dipoles is exactly one wavelength, so that the
effects from all of them are in phase again. Each one is delayed relative to the
next one by 360◦, so they all come back in phase, and we have another strong
beam in that direction! It is easy to avoid this in practice because it is possible
to put the dipoles closer than one wavelength apart. If we put in more antennas,
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closer than one wavelength apart, then this cannot happen. But the fact that
this can happen at certain angles, if the spacing is bigger than one wavelength,
is a very interesting and useful phenomenon in other applications—not radio
broadcasting, but in diffraction gratings.

29-5 The mathematics of interference

Now we have finished our analysis of the phenomena of dipole radiators
qualitatively, and we must learn how to analyze them quantitatively. To find the
effect of two sources at some particular angle in the most general case, where
the two oscillators have some intrinsic relative phase α from one another and
the strengths A1 and A2 are not equal, we find that we have to add two cosines
having the same frequency, but with different phases. It is very easy to find this
phase difference; it is made up of a delay due to the difference in distance, and
the intrinsic, built-in phase of the oscillation. Mathematically, we have to find
the sum R of two waves: R = A1 cos (ωt+ φ1) +A2 cos (ωt+ φ2). How do we do
it?

It is really very easy, and we presume that we already know how to do it.
However, we shall outline the procedure in some detail. First, we can, if we are
clever with mathematics and know enough about cosines and sines, simply work
it out. The easiest such case is the one where A1 and A2 are equal, let us say
they are both equal to A. In those circumstances, for example (we could call this
the trigonometric method of solving the problem), we have

R = A[cos (ωt+ φ1) + cos (ωt+ φ2)]. (29.9)

Once, in our trigonometry class, we may have learned the rule that

cosA+ cosB = 2 cos 1
2 (A+B) cos 1

2 (A−B). (29.10)

If we know that, then we can immediately write R as

R = 2A cos 1
2 (φ1 − φ2) cos (ωt+ 1

2φ1 + 1
2φ2). (29.11)

So we find that we have an oscillatory wave with a new phase and a new amplitude.
In general, the result will be an oscillatory wave with a new amplitude AR, which
we may call the resultant amplitude, oscillating at the same frequency but with
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a phase difference φR, called the resultant phase. In view of this, our particular
case has the following result: that the resultant amplitude is

AR = 2A cos 1
2 (φ1 − φ2), (29.12)

and the resultant phase is the average of the two phases, and we have completely
solved our problem.

x

y

A1

A2
AR

φ1

φ2

φRω

Fig. 29-9. A geometrical method for combining two cosine waves.
The entire diagram is thought of as rotating counterclockwise with
angular frequency ω.

Now suppose that we cannot remember that the sum of two cosines is twice
the cosine of half the sum times the cosine of half the difference. Then we may
use another method of analysis which is more geometrical. Any cosine function
of ωt can be considered as the horizontal projection of a rotating vector. Suppose
there were a vector A1 of length A1 rotating with time, so that its angle with the
horizontal axis is ωt+ φ1. (We shall leave out the ωt in a minute, and see that it
makes no difference.) Suppose that we take a snapshot at the time t = 0, although,
in fact, the picture is rotating with angular velocity ω (Fig. 29-9). The projection
of A1 along the horizontal axis is precisely A1 cos (ωt+ φ1). Now at t = 0 the
second wave could be represented by another vector, A2, of length A2 and at
an angle φ2, and also rotating. They are both rotating with the same angular
velocity ω, and therefore the relative positions of the two are fixed. The system
goes around like a rigid body. The horizontal projection of A2 is A2 cos (ωt+φ2).
But we know from the theory of vectors that if we add the two vectors in the
ordinary way, by the parallelogram rule, and draw the resultant vector AR, the
x-component of the resultant is the sum of the x-components of the other two
vectors. That solves our problem. It is easy to check that this gives the correct

29-12



result for the special case we treated above, where A1 = A2 = A. In this case,
we see from Fig. 29-9 that AR lies midway between A1 and A2 and makes an
angle 1

2 (φ2 − φ1) with each. Therefore we see that AR = 2A cos 1
2 (φ2 − φ1), as

before. Also, as we see from the triangle, the phase of AR, as it goes around, is
the average angle of A1 and A2 when the two amplitudes are equal. Clearly, we
can also solve for the case where the amplitudes are not equal, just as easily. We
can call that the geometrical way of solving the problem.

There is still another way of solving the problem, and that is the analytical
way. That is, instead of having actually to draw a picture like Fig. 29-9, we
can write something down which says the same thing as the picture: instead of
drawing the vectors, we write a complex number to represent each of the vectors.
The real parts of the complex numbers are the actual physical quantities. So in
our particular case the waves could be written in this way: A1e

i(ωt+φ1) [the real
part of this is A1 cos (ωt+ φ1)] and A2e

i(ωt+φ2). Now we can add the two:

R = A1e
i(ωt+φ1) +A2e

i(ωt+φ2) = (A1e
iφ1 +A2e

iφ2)eiωt (29.13)
or

R̂ = A1e
iφ1 +A2e

iφ2 = ARe
iφR . (29.14)

This solves the problem that we wanted to solve, because it represents the result
as a complex number of magnitude AR and phase φR.

To see how this method works, let us find the amplitude AR which is the
“length” of R̂. To get the “length” of a complex quantity, we always multiply the
quantity by its complex conjugate, which gives the length squared. The complex
conjugate is the same expression, but with the sign of the i’s reversed. Thus we
have

A2
R = (A1e

iφ1 +A2e
iφ2)(A1e

−iφ1 +A2e
−iφ2). (29.15)

In multiplying this out, we get A2
1 +A2

2 (here the e’s cancel), and for the cross
terms we have

A1A2(ei(φ1−φ2) + ei(φ2−φ1)).
Now

eiθ + e−iθ = cos θ + i sin θ + cos θ − i sin θ.

That is to say, eiθ + e−iθ = 2 cos θ. Our final result is therefore

A2
R = A2

1 +A2
2 + 2A1A2 cos (φ2 − φ1). (29.16)
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As we see, this agrees with the length of AR in Fig. 29-9, using the rules of
trigonometry.

Thus the sum of the two effects has the intensity A2
1 we would get with one

of them alone, plus the intensity A2
2 we would get with the other one alone,

plus a correction. This correction we call the interference effect. It is really
only the difference between what we get simply by adding the intensities, and
what actually happens. We call it interference whether it is positive or negative.
(Interference in ordinary language usually suggests opposition or hindrance, but
in physics we often do not use language the way it was originally designed!) If the
interference term is positive, we call that case constructive interference, horrible
though it may sound to anybody other than a physicist! The opposite case is
called destructive interference.

Now let us see how to apply our general formula (29.16) for the case of two
oscillators to the special situations which we have discussed qualitatively. To
apply this general formula, it is only necessary to find what phase difference,
φ1 − φ2, exists between the signals arriving at a given point. (It depends only on
the phase difference, of course, and not on the phase itself.) So let us consider
the case where the two oscillators, of equal amplitude, are separated by some
distance d and have an intrinsic relative phase α. (When one is at phase zero, the
phase of the other is α.) Then we ask what the intensity will be in some azimuth
direction θ from the E–W line. [Note that this is not the same θ as appears
in (29.1). We are torn between using an unconventional symbol like /U , or the
conventional symbol θ (Fig. 29-10).] The phase relationship is found by noting
that the difference in distance from P to the two oscillators is d sin θ, so that the
phase difference contribution from this is the number of wavelengths in d sin θ,
multiplied by 2π. (Those who are more sophisticated might want to multiply the
wave number k, which is the rate of change of phase with distance, by d sin θ;

d

Ae iωt

Ae i(ωt+α)

d sin θ

θ

To Point P

Fig. 29-10. Two oscillators of equal amplitude, with a phase differ-
ence α between them.
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it is exactly the same.) The phase difference due to the distance difference is
thus 2πd sin θ/λ, but, due to the timing of the oscillators, there is an additional
phase α. So the phase difference at arrival would be

φ2 − φ1 = α+ 2πd sin θ/λ. (29.17)

This takes care of all the cases. Thus all we have to do is substitute this expression
into (29.16) for the case A1 = A2, and we can calculate all the various results for
two antennas of equal intensity.

Now let us see what happens in our various cases. The reason we know, for
example, that the intensity is 2 at 30◦ in Fig. 29-5 is the following: the two
oscillators are 1

2λ apart, so at 30◦, d sin θ = λ/4. Thus φ2 − φ1 = 2πλ/4λ = π/2,
and so the interference term is zero. (We are adding two vectors at 90◦.) The
result is the hypotenuse of a 45◦ right-angle triangle, which is

√
2 times the unit

amplitude; squaring it, we get twice the intensity of one oscillator alone. All the
other cases can be worked out in this same way.
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30

Diffraction

30-1 The resultant amplitude due to n equal oscillators

This chapter is a direct continuation of the previous one, although the name
has been changed from Interference to Diffraction. No one has ever been able to
define the difference between interference and diffraction satisfactorily. It is just a
question of usage, and there is no specific, important physical difference between
them. The best we can do, roughly speaking, is to say that when there are only
a few sources, say two, interfering, then the result is usually called interference,
but if there is a large number of them, it seems that the word diffraction is more
often used. So, we shall not worry about whether it is interference or diffraction,
but continue directly from where we left off in the middle of the subject in the
last chapter.

Thus we shall now discuss the situation where there are n equally spaced
oscillators, all of equal amplitude but different from one another in phase, either
because they are driven differently in phase, or because we are looking at them at
an angle such that there is a difference in time delay. For one reason or another,
we have to add something like this:

R = A[cosωt+ cos (ωt+ φ) + cos (ωt+ 2φ) + · · ·+ cos (ωt+ (n− 1)φ)], (30.1)

where φ is the phase difference between one oscillator and the next one, as seen
in a particular direction. Specifically, φ = α+ 2πd sin θ/λ. Now we must add all
the terms together. We shall do this geometrically. The first one is of length A,
and it has zero phase. The next is also of length A and it has a phase equal to φ.
The next one is again of length A and it has a phase equal to 2φ, and so on. So
we are evidently going around an equiangular polygon with n sides (Fig. 30-1).

Now the vertices, of course, all lie on a circle, and we can find the net amplitude
most easily if we find the radius of that circle. Suppose that Q is the center of
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Fig. 30-1. The resultant amplitude of n = 6 equally spaced sources
with net successive phase differences φ.

the circle. Then we know that the angle OQS is just a phase angle φ. (This is
because the radius QS bears the same geometrical relation to A2 as QO bears
to A1, so they form an angle φ between them.) Therefore the radius r must
be such that A = 2r sinφ/2, which fixes r. But the large angle OQT is equal
to nφ, and we thus find that AR = 2r sinnφ/2. Combining these two results to
eliminate r, we get

AR = A
sinnφ/2
sinφ/2 . (30.2)

The resultant intensity is thus

I = I0
sin2 nφ/2
sin2 φ/2

. (30.3)

Now let us analyze this expression and study some of its consequences. In
the first place, we can check it for n = 1. It checks: I = I0. Next, we check it
for n = 2: writing sinφ = 2 sinφ/2 cosφ/2, we find that AR = 2A cosφ/2, which
agrees with (29.12).

Now the idea that led us to consider the addition of several sources was that
we might get a much stronger intensity in one direction than in another; that the
nearby maxima which would have been present if there were only two sources will
have gone down in strength. In order to see this effect, we plot the curve that
comes from (30.3), taking n to be enormously large and plotting the region near
φ = 0. In the first place, if φ is exactly 0, we have 0/0, but if φ is infinitesimal,
the ratio of the two sines squared is simply n2, since the sine and the angle are
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approximately equal. Thus the intensity of the maximum of the curve is equal
to n2 times the intensity of one oscillator. That is easy to see, because if they
are all in phase, then the little vectors have no relative angle and all n of them
add up so the amplitude is n times, and the intensity n2 times, stronger.

As the phase φ increases, the ratio of the two sines begins to fall off, and the
first time it reaches zero is when nφ/2 = π, because sin π = 0. In other words,
φ = 2π/n corresponds to the first minimum in the curve (Fig. 30-2). In terms
of what is happening with the arrows in Fig. 30-1, the first minimum occurs
when all the arrows come back to the starting point; that means that the total
accumulated angle in all the arrows, the total phase difference between the first
and last oscillator, must be 2π to complete the circle.

nφ/2π0 1 2 3 4 5

×10

I

n2I0
1.0

Fig. 30-2. The intensity as a function of phase angle for a large
number of oscillators of equal strength.

Now we go to the next maximum, and we want to see that it is really much
smaller than the first one, as we had hoped. We shall not go precisely to the
maximum position, because both the numerator and the denominator of (30.3)
are variant, but sinφ/2 varies quite slowly compared with sinnφ/2 when n is
large, so when sinnφ/2 = 1 we are very close to the maximum. The next
maximum of sin2 nφ/2 comes at nφ/2 = 3π/2, or φ = 3π/n. This corresponds
to the arrows having traversed the circle one and a half times. On putting
φ = 3π/n into the formula to find the size of the maximum, we find that
sin2 3π/2 = 1 in the numerator (because that is why we picked this angle), and
in the denominator we have sin2 3π/2n. Now if n is sufficiently large, then this
angle is very small and the sine is equal to the angle; so for all practical purposes,
we can put sin 3π/2n = 3π/2n. Thus we find that the intensity at this maximum
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is I = I0(4n2/9π2). But n2I0 was the maximum intensity, and so we have
4/9π2 times the maximum intensity, which is about 0.045, less than 5 percent, of
the maximum intensity! Of course there are decreasing intensities farther out.
So we have a very sharp central maximum with very weak subsidiary maxima on
the sides.

It is possible to prove that the area of the whole curve, including all the little
bumps, is equal to 2πnI0, or twice the area of the dotted rectangle in Fig. 30-2.

L

1 2 3 s n

d

δ = ∆/n = d sin θ

θ

∆

Fig. 30-3. A linear array of n equal oscillators, driven with phases αs =

sα.

Now let us consider further how we may apply Eq. (30.3) in different circum-
stances, and try to understand what is happening. Let us consider our sources
to be all on a line, as drawn in Fig. 30-3. There are n of them, all spaced by a
distance d, and we shall suppose that the intrinsic relative phase, one to the next,
is α. Then if we are observing in a given direction θ from the normal, there is an
additional phase 2πd sin θ/λ because of the time delay between each successive
two, which we talked about before. Thus

φ = α+ 2πd sin θ/λ
= α+ kd sin θ.

(30.4)

First, we shall take the case α = 0. That is, all oscillators are in phase, and we
want to know what the intensity is as a function of the angle θ. In order to find
out, we merely have to put φ = kd sin θ into formula (30.3) and see what happens.
In the first place, there is a maximum when φ = 0. That means that when all
the oscillators are in phase there is a strong intensity in the direction θ = 0. On
the other hand, an interesting question is, where is the first minimum? That
occurs when φ = 2π/n. In other words, when 2πd sin θ/λ = 2π/n, we get the
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first minimum of the curve. If we get rid of the 2π’s so we can look at it a little
better, it says that

nd sin θ = λ. (30.5)
Now let us understand physically why we get a minimum at that position. nd
is the total length L of the array. Referring to Fig. 30-3, we see that nd sin θ =
L sin θ = ∆. What (30.5) says is that when ∆ is equal to one wavelength, we
get a minimum. Now why do we get a minimum when ∆ = λ? Because the
contributions of the various oscillators are then uniformly distributed in phase
from 0◦ to 360◦. The arrows (Fig. 30-1) are going around a whole circle—we are
adding equal vectors in all directions, and such a sum is zero. So when we have
an angle such that ∆ = λ, we get a minimum. That is the first minimum.

There is another important feature about formula (30.3), which is that if
the angle φ is increased by any multiple of 2π, it makes no difference to the
formula. So we will get other strong maxima at φ = 2π, 4π, 6π, and so forth.
Near each of these great maxima the pattern of Fig. 30-2 is repeated. We may
ask ourselves, what is the geometrical circumstance that leads to these other
great maxima? The condition is that φ = 2πm, where m is any integer. That is,
2πd sin θ/λ = 2πm. Dividing by 2π, we see that

d sin θ = mλ. (30.6)

This looks like the other formula, (30.5). No, that formula was nd sin θ = λ. The
difference is that here we have to look at the individual sources, and when we say
d sin θ = mλ, that means that we have an angle θ such that δ = mλ. In other
words, each source is now contributing a certain amount, and successive ones
are out of phase by a whole multiple of 360◦, and therefore are contributing in
phase, because out of phase by 360◦ is the same as being in phase. So they all
contribute in phase and produce just as good a maximum as the one for m = 0
that we discussed before. The subsidiary bumps, the whole shape of the pattern,
is just like the one near φ = 0, with exactly the same minima on each side, etc.
Thus such an array will send beams in various directions—each beam having a
strong central maximum and a certain number of weak “side lobes.” The various
strong beams are referred to as the zero-order beam, the first-order beam, etc.,
according to the value of m. m is called the order of the beam.

We call attention to the fact that if d is less than λ, Eq. (30.6) can have
no solution except m = 0, so that if the spacing is too small there is only one
possible beam, the zero-order one centered at θ = 0. (Of course, there is also
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a beam in the opposite direction.) In order to get subsidiary great maxima, we
must have the spacing d of the array greater than one wavelength.

30-2 The diffraction grating

In technical work with antennas and wires it is possible to arrange that all the
phases of the little oscillators, or antennas, are equal. The question is whether
and how we can do a similar thing with light. We cannot at the present time
literally make little optical-frequency radio stations and hook them up with
infinitesimal wires and drive them all with a given phase. But there is a very
easy way to do what amounts to the same thing.

Suppose that we had a lot of parallel wires, equally spaced at a spacing d, and
a radiofrequency source very far away, practically at infinity, which is generating
an electric field which arrives at each one of the wires at the same phase (it is
so far away that the time delay is the same for all of the wires). (One can work
out cases with curved arrays, but let us take a plane one.) Then the external
electric field will drive the electrons up and down in each wire. That is, the
field which is coming from the original source will shake the electrons up and
down, and in moving, these represent new generators. This phenomenon is called
scattering: a light wave from some source can induce a motion of the electrons
in a piece of material, and these motions generate their own waves. Therefore all
that is necessary is to set up a lot of wires, equally spaced, drive them with a
radiofrequency source far away, and we have the situation that we want, without
a whole lot of special wiring. If the incidence is normal, the phases will be equal,
and we will get exactly the circumstance we have been discussing. Therefore, if
the wire spacing is greater than the wavelength, we will get a strong intensity of
scattering in the normal direction, and in certain other directions given by (30.6).

This can also be done with light! Instead of wires, we use a flat piece of glass
and make notches in it such that each of the notches scatters a little differently
than the rest of the glass. If we then shine light on the glass, each one of the
notches will represent a source, and if we space the lines very finely, but not
closer than a wavelength (which is technically almost impossible anyway), then
we would expect a miraculous phenomenon: the light not only will pass straight
through, but there will also be a strong beam at a finite angle, depending on
the spacing of the notches! Such objects have actually been made and are in
common use—they are called diffraction gratings.
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In one of its forms, a diffraction grating consists of nothing but a plane glass
sheet, transparent and colorless, with scratches on it. There are often several
hundred scratches to the millimeter, very carefully arranged so as to be equally
spaced. The effect of such a grating can be seen by arranging a projector so as
to throw a narrow, vertical line of light (the image of a slit) onto a screen. When
we put the grating into the beam, with its scratches vertical, we see that the
line is still there but, in addition, on each side we have another strong patch
of light which is colored. This, of course, is the slit image spread out over a
wide angular range, because the angle θ in (30.6) depends upon λ, and lights of
different colors, as we know, correspond to different frequencies, and therefore
different wavelengths. The longest visible wavelength is red, and since d sin θ = λ,
that requires a larger θ. And we do, in fact, find that red is at a greater angle
out from the central image! There should also be a beam on the other side, and
indeed we see one on the screen. Then, there might be another solution of (30.6)
when m = 2. We do see that there is something vaguely there—very weak—and
there are even other beams beyond.

We have just argued that all these beams ought to be of the same strength,
but we see that they actually are not and, in fact, not even the first ones on the
right and left are equal! The reason is that the grating has been carefully built to
do just this. How? If the grating consists of very fine notches, infinitesimally wide,
spaced evenly, then all the intensities would indeed be equal. But, as a matter
of fact, although we have taken the simplest case, we could also have considered
an array of pairs of antennas, in which each member of the pair has a certain
strength and some relative phase. In this case, it is possible to get intensities
which are different in the different orders. A grating is often made with little
“sawtooth” cuts instead of little symmetrical notches. By carefully arranging the,
“sawteeth,” more light may be sent into one particular order of spectrum than
into the others. In a practical grating, we would like to have as much light as
possible in one of the orders. This may seem a complicated point to bring in,
but it is a very clever thing to do, because it makes the grating more useful.

So far, we have taken the case where all the phases of the sources are equal.
But we also have a formula for φ when the phases differ from one to the next
by an angle α. That requires wiring up our antennas with a slight phase shift
between each one. Can we do that with light? Yes, we can do it very easily,
for suppose that there were a source of light at infinity, at an angle such that
the light is coming in at an angle θin, and let us say that we wish to discuss the
scattered beam, which is leaving at an angle θout (Fig. 30-4). The θout is the
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θin θout

d sin θout d sin θin

Fig. 30-4. The path difference for rays scattered from adjacent rulings
of a grating is d sin θout − d sin θin.

same θ as we have had before, but the θin is merely a means for arranging that
the phase of each source is different: the light coming from the distant driving
source first hits one scratch, then the next, then the next, and so on, with a phase
shift from one to the other, which, as we see, is α = −2πd sin θin/λ. Therefore
we have the formula for a grating in which light both comes in and goes out at
an angle:

φ = 2πd sin θout/λ− 2πd sin θin/λ. (30.7)

Let us try to find out where we get strong intensity in these circumstances. The
condition for strong intensities is, of course, that φ should be a multiple of 2π.
There are several interesting points to be noted.

One case of rather great interest is that which corresponds to m = 0, where
d is less than λ; in fact, this is the only solution. In this case we see that
sin θout = sin θin, which means that the light comes out in the same direction as
the light which was exciting the grating. We might think that the light “goes
right through.” No, it is different light that we are talking about. The light that
goes right through is from the original source; what we are talking about is the
new light which is generated by scattering. It turns out that the scattered light
is going in the same direction as the original light, in fact it can interfere with
it—a feature which we will study later.

There is another solution for this same case. For a given θin, θout may be
the supplement of θin. So not only do we get a beam in the same direction as
the incoming beam but also one in another direction, which, if we consider it
carefully, is such that the angle of incidence is equal to the angle of scattering.
This we call the reflected beam.
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So we begin to understand the basic machinery of reflection: the light that
comes in generates motions of the atoms in the reflector, and the reflector then
regenerates a new wave, and one of the solutions for the direction of scattering,
the only solution if the spacing of the scatterers is small compared with one
wavelength, is that the angle at which the light comes out is equal to the angle
at which it comes in!

Next, we discuss the special case when d→ 0. That is, we have just a solid
piece of material, so to speak, but of finite length. In addition, we want the phase
shift from one scatterer to the next to go to zero. In other words, we put more
and more antennas between the other ones, so that each of the phase differences
is getting smaller, but the number of antennas is increasing in such a way that
the total phase difference, between one end of the line and the other, is constant.
Let us see what happens to (30.3) if we keep the difference in phase nφ from one
end to the other constant (say nφ = Φ), letting the number go to infinity and
the phase shift φ of each one go to zero. But now φ is so small that sinφ = φ,
and if we also recognize n2I0 as Im, the maximum intensity at the center of the
beam, we find

I = 4Im sin2 1
2Φ/Φ2. (30.8)

This limiting case is what is shown in Fig. 30-2.
In such circumstances we find the same general kind of a picture as for finite

spacing with d > λ; all the side lobes are practically the same as before, but
there are no higher-order maxima. If the scatterers are all in phase, we get a
maximum in the direction θout = 0, and a minimum when the distance ∆ is equal
to λ, just as for finite d and n. So we can even analyze a continuous distribution
of scatterers or oscillators, by using integrals instead of summing.

L θ1

α = 0

λ

Fig. 30-5. The intensity pattern of a continuous line of oscillators has
a single strong maximum and many weak “side lobes.”
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As an example, suppose there were a long line of oscillators, with the charge
oscillating along the direction of the line (Fig. 30-5). From such an array the
greatest intensity is perpendicular to the line. There is a little bit of intensity up
and down from the equatorial plane, but it is very slight. With this result, we can
handle a more complicated situation. Suppose we have a set of such lines, each
producing a beam only in a plane perpendicular to the line. To find the intensity
in various directions from a series of long wires, instead of infinitesimal wires,
is the same problem as it was for infinitesimal wires, so long as we are in the
central plane perpendicular to the wires; we just add the contribution from each
of the long wires. That is why, although we actually analyzed only tiny antennas,
we might as well have used a grating with long, narrow slots. Each of the long
slots produces an effect only in its own direction, not up and down, but they are
all set next to each other horizontally, so they produce interference that way.

Thus we can build up more complicated situations by having various distri-
butions of scatterers in lines, planes, or in space. The first thing we did was to
consider scatterers in a line, and we have just extended the analysis to strips; we
can work it out by just doing the necessary summations, adding the contributions
from the individual scatterers. The principle is always the same.

30-3 Resolving power of a grating

We are now in a position to understand a number of interesting phenomena.
For example, consider the use of a grating for separating wavelengths. We noticed
that the whole spectrum was spread out on the screen, so a grating can be used
as an instrument for separating light into its different wavelengths. One of the
interesting questions is: supposing that there were two sources of slightly different
frequency, or slightly different wavelength, how close together in wavelength could
they be such that the grating would be unable to tell that there were really
two different wavelengths there? The red and the blue were clearly separated.
But when one wave is red and the other is slightly redder, very close, how close
can they be? This is called the resolving power of the grating, and one way of
analyzing the problem is as follows. Suppose that for light of a certain color
we happen to have the maximum of the diffracted beam occurring at a certain
angle. If we vary the wavelength the phase 2πd sin θ/λ is different, so of course
the maximum occurs at a different angle. That is why the red and blue are
spread out. How different in angle must it be in order for us to be able to see
it? If the two maxima are exactly on top of each other, of course we cannot see
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them. If the maximum of one is far enough away from the other, then we can see
that there is a double bump in the distribution of light. In order to be able to
just make out the double bump, the following simple criterion, called Rayleigh’s
criterion, is usually used (Fig. 30-6). It is that the first minimum from one bump
should sit at the maximum of the other. Now it is very easy to calculate, when
one minimum sits on the other maximum, how much the difference in wavelength
is. The best way to do it is geometrically.

Fig. 30-6. Illustration of the Rayleigh criterion. The maximum of one
pattern falls on the first minimum of the other.

In order to have a maximum for wavelength λ′, the distance ∆ (Fig. 30-3)
must be nλ′, and if we are looking at the mth-order beam, it is mnλ′. In other
words, 2πd sin θ/λ′ = 2πm, so nd sin θ, which is ∆, is mλ′ times n, or mnλ′. For
the other beam, of wavelength λ, we want to have a minimum at this angle.
That is, we want ∆ to be exactly one wavelength λ more than mnλ. That is,
∆ = mnλ+ λ = mnλ′. Thus if λ′ = λ+ ∆λ, we find

∆λ/λ = 1/mn. (30.9)

The ratio λ/∆λ is called the resolving power of a grating; we see that it is equal
to the total number of lines in the grating, times the order. It is not hard to
prove that this formula is equivalent to the formula that the error in frequency is
equal to the reciprocal time difference between extreme paths that are allowed
to interfere:*

∆ν = 1/T.
In fact, that is the best way to remember it, because the general formula works
not only for gratings, but for any other instrument whatsoever, while the special
formula (30.9) depends on the fact that we are using a grating.

* In our case T = ∆/c = mnλ/c, where c is the speed of light. The frequency ν = c/λ, so
∆ν = c∆λ/λ2.
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30-4 The parabolic antenna

Now let us consider another problem in resolving power. This has to do
with the antenna of a radio telescope, used for determining the position of radio
sources in the sky, i.e., how large they are in angle. Of course if we use any old
antenna and find signals, we would not know from what direction they came. We
are very interested to know whether the source is in one place or another. One
way we can find out is to lay out a whole series of equally spaced dipole wires on
the Australian landscape. Then we take all the wires from these antennas and
feed them into the same receiver, in such a way that all the delays in the feed
lines are equal. Thus the receiver receives signals from all of the dipoles in phase.
That is, it adds all the waves from every one of the dipoles in the same phase.
Now what happens? If the source is directly above the array, at infinity or nearly
so, then its radiowaves will excite all the antennas in the same phase, so they all
feed the receiver together.

Now suppose that the radio source is at a slight angle θ from the vertical.
Then the various antennas are receiving signals a little out of phase. The receiver
adds all these out-of-phase signals together, and so we get nothing, if the angle θ
is too big. How big may the angle be? Answer: we get zero if the angle ∆/L = θ
(Fig. 30-3) corresponds to a 360◦ phase shift, that is, if ∆ is the wavelength λ.
This is because the vector contributions form together a complete polygon with
zero resultant. The smallest angle that can be resolved by an antenna array of
length L is θ = λ/L. Notice that the receiving pattern of an antenna such as
this is exactly the same as the intensity distribution we would get if we turned
the receiver around and made it into a transmitter. This is an example of
what is called a reciprocity principle. It turns out, in fact, to be generally true
for any arrangement of antennas, angles, and so on, that if we first work out
what the relative intensities would be in various directions if the receiver were a
transmitter instead, then the relative directional sensitivity of a receiver with
the same external wiring, the same array of antennas, is the same as the relative
intensity of emission would be if it were a transmitter.

Some radio antennas are made in a different way. Instead of having a whole
lot of dipoles in a long line, with a lot of feed wires, we may arrange them not in
a line but in a curve, and put the receiver at a certain point where it can detect
the scattered waves. This curve is cleverly designed so that if the radiowaves
are coming down from above, and the wires scatter, making a new wave, the
wires are so arranged that the scattered waves reach the receiver all at the same
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time (Fig. 26-12). In other words, the curve is a parabola, and when the source
is exactly on its axis, we get a very strong intensity at the focus. In this case we
understand very clearly what the resolving power of such an instrument is. The
arranging of the antennas on a parabolic curve is not an essential point. It is only
a convenient way to get all the signals to the same point with no relative delay
and without feed wires. The angle such an instrument can resolve is still θ = λ/L,
where L is the separation of the first and last antennas. It does not depend on
the spacing of the antennas and they may be very close together or in fact be
all one piece of metal. Now we are describing a telescope mirror, of course. We
have found the resolving power of a telescope! (Sometimes the resolving power is
written θ = 1.22λ/L, where L is the diameter of the telescope. The reason that it
is not exactly λ/L is this: when we worked out that θ = λ/L, we assumed that all
the lines of dipoles were equal in strength, but when we have a circular telescope,
which is the way we usually arrange a telescope, not as much signal comes from the
outside edges, because it is not like a square, where we get the same intensity all
along a side. We get somewhat less because we are using only part of the telescope
there; thus we can appreciate that the effective diameter is a little shorter than
the true diameter, and that is what the 1.22 factor tells us. In any case, it seems
a little pedantic to put such precision into the resolving power formula.*)

30-5 Colored films; crystals

The above, then, are some of the effects of interference obtained by adding
the various waves. But there are a number of other examples, and even though
we do not understand the fundamental mechanism yet, we will some day, and
we can understand even now how the interference occurs. For example, when
a light wave hits a surface of a material with an index n, let us say at normal
incidence, some of the light is reflected. The reason for the reflection we are not
in a position to understand right now; we shall discuss it later. But suppose we
know that some of the light is reflected both on entering and leaving a refracting
medium. Then, if we look at the reflection of a light source in a thin film, we
see the sum of two waves; if the thicknesses are small enough, these two waves

* This is because Rayleigh’s criterion is a rough idea in the first place. It tells you where it
begins to get very hard to tell whether the image was made by one or by two stars. Actually, if
sufficiently careful measurements of the exact intensity distribution over the diffracted image
spot can be made, the fact that two sources make the spot can be proved even if θ is less
than λ/L.
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will produce an interference, either constructive or destructive, depending on
the signs of the phases. It might be, for instance, that for red light, we get an
enhanced reflection, but for blue light, which has a different wavelength, perhaps
we get a destructively interfering reflection, so that we see a bright red reflection.
If we change the thickness, i.e., if we look at another place where the film is
thicker, it may be reversed, the red interfering and the blue not, so it is bright
blue, or green, or yellow, or whatnot. So we see colors when we look at thin films
and the colors change if we look at different angles, because we can appreciate
that the timings are different at different angles. Thus we suddenly appreciate
another hundred thousand situations involving the colors that we see on oil films,
soap bubbles, etc. at different angles. But the principle is all the same: we are
only adding waves at different phases.

As another important application of diffraction, we may mention the following.
We used a grating and we saw the diffracted image on the screen. If we had used
monochromatic light, it would have been at a certain specific place. Then there
were various higher-order images also. From the positions of the images, we could
tell how far apart the lines on the grating were, if we knew the wavelength of
the light. From the difference in intensity of the various images, we could find
out the shape of the grating scratches, whether the grating was made of wires,
sawtooth notches, or whatever, without being able to see them. This principle is
used to discover the positions of the atoms in a crystal. The only complication
is that a crystal is three-dimensional; it is a repeating three-dimensional array
of atoms. We cannot use ordinary light, because we must use something whose
wavelength is less than the space between the atoms or we get no effect; so we
must use radiation of very short wavelength, i.e., x-rays. So, by shining x-rays
into a crystal and by noticing how intense is the reflection in the various orders,
we can determine the arrangement of the atoms inside without ever being able
to see them with the eye! It is in this way that we know the arrangement of the
atoms in various substances, which permitted us to draw those pictures in the
first chapter, showing the arrangement of atoms in salt, and so on. We shall later
come back to this subject and discuss it in more detail, and therefore we say no
more about this most remarkable idea at present.

30-6 Diffraction by opaque screens

Now we come to a very interesting situation. Suppose that we have an opaque
sheet with holes in it, and a light on one side of it. We want to know what the
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intensity is on the other side. What most people say is that the light shines
through the holes, and produces an effect on the other side. It will turn out that
one gets the right answer, to an excellent approximation, if he assumes that there
are sources distributed with uniform density across the open holes, and that
the phases of these sources are the same as they would have been if the opaque
material were absent. Of course, actually there are no sources at the holes, in
fact that is the only place that there are certainly no sources. Nevertheless, we
get the correct diffraction patterns by considering the holes to be the only places
that there are sources; that is a rather peculiar fact. We shall explain later why
this is true, but for now let us just suppose that it is.

In the theory of diffraction there is another kind of diffraction that we should
briefly discuss. It is usually not discussed in an elementary course as early as this,
only because the mathematical formulas involved in adding these little vectors
are a little elaborate. Otherwise it is exactly the same as we have been doing all
along. All the interference phenomena are the same; there is nothing very much
more advanced involved, only the circumstances are more complicated and it is
harder to add the vectors together, that is all.

Suppose that we have light coming in from infinity, casting a shadow of an
object. Figure 30-7 shows a screen on which the shadow of an object AB is made
by a light source very far away compared with one wavelength. Now we would
expect that outside the shadow, the intensity is all bright, and inside it, it is
all dark. As a matter of fact, if we plot the intensity as a function of position
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Fig. 30-7. A distant light source casts a shadow of an opaque object
on a screen.
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near the shadow edge, the intensity rises and then overshoots, and wobbles, and
oscillates about in a very peculiar manner near this edge (Fig. 30-9). We now
shall discuss the reason for this. If we use the theorem that we have not yet
proved, then we can replace the actual problem by a set of effective sources
uniformly distributed over the open space beyond the object.

We imagine a large number of very closely spaced antennas, and we want
the intensity at some point P . That looks just like what we have been doing.
Not quite; because our screen is not at infinity. We do not want the intensity
at infinity, but at a finite point. To calculate the intensity at some particular
place, we have to add the contributions from all the antennas. First there is an
antenna at D, exactly opposite P ; if we go up a little bit in angle, let us say a
height h, then there is an increase in delay (there is also a change in amplitude
because of the change in distance, but this is a very small effect if we are at all
far away, and is much less important than the difference in the phases). Now the
path difference EP −DP is approximately h2/2s, so that the phase difference is
proportional to the square of how far we go from D, while in our previous work
s was infinite, and the phase difference was linearly proportional to h. When
the phases are linearly proportional, each vector adds at a constant angle to the
next vector. What we now need is a curve which is made by adding a lot of
infinitesimal vectors with the requirement that the angle they make shall increase,
not linearly, but as the square of the length of the curve. To construct that
curve involves slightly advanced mathematics, but we can always construct it by
actually drawing the arrows and measuring the angles. In any case, we get the
marvelous curve (called Cornu’s spiral) shown in Fig. 30-8. Now how do we use
this curve?

If we want the intensity, let us say, at point P , we add a lot of contributions
of different phases from point D on up to infinity, and from D down only to
point BP . So we start at BP in Fig. 30-8, and draw a series of arrows of ever-
increasing angle. Therefore the total contribution above point BP all goes along
the spiraling curve. If we were to stop integrating at some place, then the total
amplitude would be a vector from B to that point; in this particular problem we
are going to infinity, so the total answer is the vector BP∞. Now the position
on the curve which corresponds to point BP on the object depends upon where
point P is located, since point D, the inflection point, always corresponds to
the position of point P . Thus, depending upon where P is located above B, the
beginning point will fall at various positions on the lower left part of the curve,
and the resultant vector BP∞, will have many maxima and minima (Fig. 30-9).
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Fig. 30-8. The addition of amplitudes for many in-phase oscillators
whose phase delays vary as the square of the distance from point D of
the previous figure.
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Fig. 30-9. The intensity near the edge of a shadow. The geometrical
shadow edge is at x0.
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On the other hand, if we are at Q, on the other side of P , then we are using
only one end of the spiral curve, and not the other end. In other words, we do not
even start at D, but at BQ, so on this side we get an intensity which continuously
falls off as Q goes farther into the shadow.

One point that we can immediately calculate with ease, to show that we really
understand it, is the intensity exactly opposite the edge. The intensity here is
1/4 that of the incident light. Reason: Exactly at the edge (so the endpoint B of
the arrow is at D in Fig. 30-8) we have half the curve that we would have had if
we were far into the bright region. If our point R is far into the light we go from
one end of the curve to the other, that is, one full unit vector; but if we are at
the edge of the shadow, we have only half the amplitude—1/4 the intensity.

In this chapter we have been finding the intensity produced in various direc-
tions from various distributions of sources. As a final example we shall derive
a formula which we shall need for the next chapter on the theory of the index
of refraction. Up to this point relative intensities have been sufficient for our
purpose, but this time we shall find the complete formula for the field in the
following situation.

30-7 The field of a plane of oscillating charges

Suppose that we have a plane full of sources, all oscillating together, with
their motion in the plane and all having the same amplitude and phase. What is
the field at a finite, but very large, distance away from the plane? (We cannot
get very close, of course, because we do not have the right formulas for the field
close to the sources.) If we let the plane of the charges be the xy-plane, then
we want to find the field at the point P far out on the z-axis (Fig. 30-10). We

Sheet of oscillating charges

Oscillating charge

P

Q

ρ

dρ

r

z

Fig. 30-10. Radiation field of a sheet of oscillating charges.
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suppose that there are η charges per unit area of the plane, and that each one of
them has a charge q. All of the charges move with simple harmonic motion, with
the same direction, amplitude, and phase. We let the motion of each charge, with
respect to its own average position, be x0 cosωt. Or, using the complex notation
and remembering that the real part represents the actual motion, the motion
can be described by x0e

iωt.
Now we find the field at the point P from all of the charges by finding the

field there from each charge q, and then adding the contributions from all the
charges. We know that the radiation field is proportional to the acceleration of
the charge, which is −ω2x0e

iωt (and is the same for every charge). The electric
field that we want at the point P due to a charge at the point Q is proportional
to the acceleration of the charge q, but we have to remember that the field at the
point P at the instant t is given by the acceleration of the charge at the earlier
time t′ = t− r/c, where r/c is the time it takes the waves to travel the distance r
from Q to P . Therefore the field at P is proportional to

− ω2x0e
iω(t−r/c). (30.10)

Using this value for the acceleration as seen from P in our formula for the electric
field at large distances from a radiating charge, we get(

Electric field at P
from charge at Q

)
= q

4πε0c2
ω2x0e

iω(t−r/c)

r
(approx.). (30.11)

Now this formula is not quite right, because we should have used not the
acceleration of the charge but its component perpendicular to the line QP . We
shall suppose, however, that the point P is so far away, compared with the
distance of the point Q from the axis (the distance ρ in Fig. 30-10), for those
changes that we need to take into account, that we can leave out the cosine factor
(which would be nearly equal to 1 anyway).

To get the total field at P , we now add the effects of all the charges in the
plane. We should, of course, make a vector sum. But since the direction of the
electric field is nearly the same for all the charges, we may, in keeping with the
approximation we have already made, just add the magnitudes of the fields. To
our approximation the field at P depends only on the distance r, so all charges
at the same r produce equal fields. So we add, first, the fields of those charges in
a ring of width dρ and radius ρ. Then, by taking the integral over all ρ, we will
obtain the total field.
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The number of charges in the ring is the product of the surface area of the
ring, 2πρ dρ, and η, the number of charges per unit area. We have, then,

Total field at P =
∫

q

4πε0c2
ω2x0e

iω(t−r/c)

r
· η · 2πρ dρ. (30.12)

We wish to evaluate this integral from ρ = 0 to ρ = ∞. The variable t, of
course, is to be held fixed while we do the integral, so the only varying quantities
are ρ and r. Leaving out all the constant factors, including the factor eiωt, for
the moment, the integral we wish is∫ ρ=∞

ρ=0

e−iωr/c

r
ρ dρ. (30.13)

To do this integral we need to use the relation between r and ρ:

r2 = ρ2 + z2. (30.14)

Since z is independent of ρ, when we take the differential of this equation, we get

2r dr = 2ρ dρ,

which is lucky, since in our integral we can replace ρ dρ by r dr and the r will
cancel the one in the denominator. The integral we want is then the simpler one∫ r=∞

r=z
e−iωr/c dr. (30.15)

To integrate an exponential is very easy. We divide by the coefficient of r in the
exponent and evaluate the exponential at the limits. But the limits of r are not
the same as the limits of ρ. When ρ = 0, we have r = z, so the limits of r are z
to infinity. We get for the integral

− c

iω
[e−i∞ − e−(iω/c)z], (30.16)

where we have written ∞ for (ω/c)∞, since they both just mean a very large
number!

Now e−i∞ is a mysterious quantity. Its real part, for example, is cos (−∞),
which, mathematically speaking, is completely indefinite (although we would
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expect it to be somewhere—or everywhere (?)—between +1 and −1!). But in a
physical situation, it can mean something quite reasonable, and usually can just
be taken to be zero. To see that this is so in our case, we go back to consider
again the original integral (30.15).

We can understand (30.15) as a sum of many small complex numbers, each
of magnitude ∆r, and with the angle θ = −ωr/c in the complex plane. We can
try to evaluate the sum by a graphical method. In Fig. 30-11 we have drawn the
first five pieces of the sum. Each segment of the curve has the length ∆r and is
placed at the angle ∆θ = −ω∆r/c with respect to the preceding piece. The sum
for these first five pieces is represented by the arrow from the starting point to
the end of the fifth segment. As we continue to add pieces we shall trace out a
polygon until we get back to the starting point (approximately) and then start
around once more. Adding more pieces, we just go round and round, staying
close to a circle whose radius is easily shown to be c/ω. We can see now why the
integral does not give a definite answer!

Real Axis

Imaginary Axis

C

θ

∆θ

∆θ
Sum

∆r
∆r

∆r

θ = − ωz
c

∆θ = − ω∆r
c

Fig. 30-11. Graphical solution of
∫∞
z
e−iωr/c dr .

But now we have to go back to the physics of the situation. In any real
situation the plane of charges cannot be infinite in extent, but must sometime
stop. If it stopped suddenly, and was exactly circular in shape, our integral would
have some value on the circle in Fig. 30-11. If, however, we let the number of
charges in the plane gradually taper off at some large distance from the center
(or else stop suddenly but in an irregular shape so for larger ρ the entire ring
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r ω1

Fig. 30-12. Graphical solution of
∫∞
z
ηe−iωr/c dr .

of width dρ no longer contributes), then the coefficient η in the exact integral
would decrease toward zero. Since we are adding smaller pieces but still turning
through the same angle, the graph of our integral would then become a curve
which is a spiral. The spiral would eventually end up at the center of our original
circle, as drawn in Fig. 30-12. The physically correct integral is the complex
number A in the figure represented by the interval from the starting point to the
center of the circle, which is just equal to

c

iω
e−iωz/c, (30.17)

as you can work out for yourself. This is the same result we would get from
Eq. (30.16) if we set e−i∞ = 0.

(There is also another reason why the contribution to the integral tapers off
for large values of r, and that is the factor we have omitted for the projection of
the acceleration on the plane perpendicular to the line PQ.)

We are, of course, interested only in physical situations, so we will take e−i∞
equal to zero. Returning to our original formula (30.12) for the field and putting
back all of the factors that go with the integral, we have the result

Total field at P = − ηq

2ε0c
iωx0e

iω(t−z/c) (30.18)

(remembering that 1/i = −i).
It is interesting to note that (iωx0e

iωt) is just equal to the velocity of the
charges, so that we can also write the equation for the field as

Total field at P = − ηq

2ε0c
[velocity of charges]at t− z/c, (30.19)
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which is a little strange, because the retardation is just by the distance z, which
is the shortest distance from P to the plane of charges. But that is the way
it comes out—fortunately a rather simple formula. (We may add, by the way,
that although our derivation is valid only for distances far from the plane of
oscillatory charges, it turns out that the formula (30.18) or (30.19) is correct at
any distance z, even for z < λ.)
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31

The Origin of the Refractive Index

31-1 The index of refraction

We have said before that light goes slower in water than in air, and slower,
slightly, in air than in vacuum. This effect is described by the index of refraction n.
Now we would like to understand how such a slower velocity could come about. In
particular, we should try to see what the relation is to some physical assumptions,
or statements, we made earlier, which were the following:

(a) That the total electric field in any physical circumstance can always be
represented by the sum of the fields from all the charges in the universe.

(b) That the field from a single charge is given by its acceleration evaluated
with a retardation at the speed c, always (for the radiation field).

But, for a piece of glass, you might think: “Oh, no, you should modify all
this. You should say it is retarded at the speed c/n.” That, however, is not right,
and we have to understand why it is not.

It is approximately true that light or any electrical wave does appear to travel
at the speed c/n through a material whose index of refraction is n, but the
fields are still produced by the motions of all the charges—including the charges
moving in the material—and with these basic contributions of the field travelling
at the ultimate velocity c. Our problem is to understand how the apparently
slower velocity comes about.

We shall try to understand the effect in a very simple case. A source which we
shall call “the external source” is placed a large distance away from a thin plate
of transparent material, say glass. We inquire about the field at a large distance
on the opposite side of the plate. The situation is illustrated by the diagram
of Fig. 31-1, where S and P are imagined to be very far away from the plate.
According to the principles we have stated earlier, an electric field anywhere
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electric wave

Glass plate

Arriving wave
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“Transmitted” wave

What is the
electric field
here?

Es

Eb

Es + Ea
+

Fig. 31-1. Electric waves passing through a layer of transparent
material.

that is far from all moving charges is the (vector) sum of the fields produced by
the external source (at S) and the fields produced by each of the charges in the
plate of glass, every one with its proper retardation at the velocity c. Remember
that the contribution of each charge is not changed by the presence of the other
charges. These are our basic principles. The field at P can be written thus:

E =
∑

all charges
Eeach charge (31.1)

or
E = Es +

∑
all other charges

Eeach charge, (31.2)

where Es is the field due to the source alone and would be precisely the field
at P if there were no material present. We expect the field at P to be different
from Es if there are any other moving charges.

Why should there be charges moving in the glass? We know that all material
consists of atoms which contain electrons. When the electric field of the source
acts on these atoms it drives the electrons up and down, because it exerts a
force on the electrons. And moving electrons generate a field—they constitute
new radiators. These new radiators are related to the source S, because they
are driven by the field of the source. The total field is not just the field of the
source S, but it is modified by the additional contribution from the other moving
charges. This means that the field is not the same as the one which was there
before the glass was there, but is modified, and it turns out that it is modified
in such a way that the field inside the glass appears to be moving at a different
speed. That is the idea which we would like to work out quantitatively.
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Now this is, in the exact case, pretty complicated, because although we have
said that all the other moving charges are driven by the source field, that is not
quite true. If we think of a particular charge, it feels not only the source, but like
anything else in the world, it feels all of the charges that are moving. It feels,
in particular, the charges that are moving somewhere else in the glass. So the
total field which is acting on a particular charge is a combination of the fields
from the other charges, whose motions depend on what this particular charge is
doing! You can see that it would take a complicated set of equations to get the
complete and exact formula. It is so complicated that we postpone this problem
until next year.

Instead we shall work out a very simple case in order to understand all the
physical principles very clearly. We take a circumstance in which the effects from
the other atoms are very small relative to the effects from the source. In other
words, we take a material in which the total field is not modified very much
by the motion of the other charges. That corresponds to a material in which
the index of refraction is very close to 1, which will happen, for example, if the
density of the atoms is very low. Our calculation will be valid for any case in
which the index is for any reason very close to 1. In this way we shall avoid the
complications of the most general, complete solution.

Incidentally, you should notice that there is another effect caused by the
motion of the charges in the plate. These charges will also radiate waves back
toward the source S. This backward-going field is the light we see reflected from
the surfaces of transparent materials. It does not come from just the surface. The
backward radiation comes from everywhere in the interior, but it turns out that
the total effect is equivalent to a reflection from the surfaces. These reflection
effects are beyond our approximation at the moment because we shall be limited
to a calculation for a material with an index so close to 1 that very little light is
reflected.

Before we proceed with our study of how the index of refraction comes about,
we should understand that all that is required to understand refraction is to
understand why the apparent wave velocity is different in different materials. The
bending of light rays comes about just because the effective speed of the waves is
different in the materials. To remind you how that comes about we have drawn
in Fig. 31-2 several successive crests of an electric wave which arrives from a
vacuum onto the surface of a block of glass. The arrow perpendicular to the

31-3



VACUUM GLASS

λ

λ0

θ0

θ

wave
crests

Fig. 31-2. Relation between refraction and velocity change.

wave crests indicates the direction of travel of the wave. Now all oscillations in
the wave must have the same frequency. (We have seen that driven oscillations
have the same frequency as the driving source.) This means, also, that the wave
crests for the waves on both sides of the surface must have the same spacing
along the surface because they must travel together, so that a charge sitting
at the boundary will feel only one frequency. The shortest distance between
crests of the wave, however, is the wavelength which is the velocity divided by
the frequency. On the vacuum side it is λ0 = 2πc/ω, and on the other side it is
λ = 2πv/ω or 2πc/ωn, if v = c/n is the velocity of the wave. From the figure we
can see that the only way for the waves to “fit” properly at the boundary is for
the waves in the material to be travelling at a different angle with respect to the
surface. From the geometry of the figure you can see that for a “fit” we must
have λ0/ sin θ0 = λ/ sin θ, or sin θ0/ sin θ = n, which is Snell’s law. We shall, for
the rest of our discussion, consider only why light has an effective speed of c/n
in material of index n, and no longer worry, in this chapter, about the bending
of the light direction.

We go back now to the situation shown in Fig. 31-1. We see that what we
have to do is to calculate the field produced at P by all the oscillating charges
in the glass plate. We shall call this part of the field Ea, and it is just the sum
written as the second term in Eq. (31.2). When we add it to the term Es, due to
the source, we will have the total field at P .
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This is probably the most complicated thing that we are going to do this
year, but it is complicated only in that there are many pieces that have to be put
together; each piece, however, is very simple. Unlike other derivations where we
say, “Forget the derivation, just look at the answer!,” in this case we do not need
the answer so much as the derivation. In other words, the thing to understand
now is the physical machinery for the production of the index.

To see where we are going, let us first find out what the “correction field” Ea
would have to be if the total field at P is going to look like radiation from the
source that is slowed down while passing through the thin plate. If the plate had
no effect on it, the field of a wave travelling to the right (along the z-axis) would
be

Es = E0 cosω(t− z/c) (31.3)
or, using the exponential notation,

Es = E0e
iω(t−z/c). (31.4)

Now what would happen if the wave travelled more slowly in going through
the plate? Let us call the thickness of the plate ∆z. If the plate were not there the
wave would travel the distance ∆z in the time ∆z/c. But if it appears to travel
at the speed c/n then it should take the longer time n∆z/c or the additional
time ∆t = (n− 1) ∆z/c. After that it would continue to travel at the speed c
again. We can take into account the extra delay in getting through the plate by
replacing t in Eq. (31.4) by (t−∆t) or by [t− (n− 1) ∆z/c]. So the wave after
insertion of the plate should be written

Eafter plate = E0e
iω[t−(n−1) ∆z/c−z/c]. (31.5)

We can also write this equation as

Eafter plate = e−iω(n−1) ∆z/cE0e
iω(t−z/c), (31.6)

which says that the wave after the plate is obtained from the wave which could
exist without the plate, i.e., from Es, by multiplying by the factor e−iω(n−1) ∆z/c.
Now we know that multiplying an oscillating function like eiωt by a factor eiθ
just says that we change the phase of the oscillation by the angle θ, which is, of
course, what the extra delay in passing through the thickness ∆z has done. It
has retarded the phase by the amount ω(n− 1) ∆z/c (retarded, because of the
minus sign in the exponent).
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We have said earlier that the plate should add a field Ea to the original
field Es = E0e

iω(t−z/c), but we have found instead that the effect of the plate is
to multiply the field by a factor which shifts its phase. However, that is really all
right because we can get the same result by adding a suitable complex number.
It is particularly easy to find the right number to add in the case that ∆z is
small, for you will remember that if x is a small number then ex is nearly equal
to (1 + x). We can write, therefore,

e−iω(n−1) ∆z/c = 1− iω(n− 1) ∆z/c. (31.7)

Using this equality in Eq. (31.6), we have

Eafter plate = E0e
iω(t−z/c)︸ ︷︷ ︸
Es

− iω(n− 1) ∆z
c

E0e
iω(t−z/c)︸ ︷︷ ︸

Ea

. (31.8)

The first term is just the field from the source, and the second term must just be
equal to Ea, the field produced to the right of the plate by the oscillating charges
of the plate—expressed here in terms of the index of refraction n, and depending,
of course, on the strength of the wave from the source.

What we have been doing is easily visualized if we look at the complex number
diagram in Fig. 31-3. We first draw the number Es (we chose some values for
z and t so that Es comes out horizontal, but this is not necessary). The delay
due to slowing down in the plate would delay the phase of this number, that is,
it would rotate Es through a negative angle. But this is equivalent to adding
the small vector Ea at roughly right angles to Es. But that is just what the
factor −i means in the second term of Eq. (31.8). It says that if Es is real, then
Ea is negative imaginary or that, in general, Es and Ea make a right angle.

Real Axis

Imaginary Axis

Angle = ω(n − 1)∆z/c

Es

Ea
E

after plate = Es + Ea

Fig. 31-3. Diagram for the transmitted wave at a particular t and z .
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31-2 The field due to the material

We now have to ask: Is the field Ea obtained in the second term of Eq. (31.8)
the kind we would expect from oscillating charges in the plate? If we can show
that it is, we will then have calculated what the index n should be! [Since n
is the only nonfundamental number in Eq. (31.8).] We turn now to calculating
what field Ea the charges in the material will produce. (To help you keep track
of the many symbols we have used up to now, and will be using in the rest of
our calculation, we have put them all together in Table 31-1.)

Table 31-1

Symbols used in the calculations

Es = field from the source
Ea = field produced by charges in the plate
∆z = thickness of the plate
z = perpendicular distance from the plate
n = index of refraction
ω = frequency (angular) of the radiation
N = number of charges per unit volume in the plate
η = number of charges per unit area of the plate
qe = charge on an electron
m = mass of an electron
ω0 = resonant frequency of an electron bound in an atom

If the source S (of Fig. 31-1) is far off to the left, then the field Es will have
the same phase everywhere on the plate, so we can write that in the neighborhood
of the plate

Es = E0e
iω(t−z/c). (31.9)

Right at the plate, where z = 0, we will have

Es = E0e
iωt (at the plate). (31.10)

Each of the electrons in the atoms of the plate will feel this electric field
and will be driven up and down (we assume the direction of E0 is vertical) by
the electric force qE. To find what motion we expect for the electrons, we will
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assume that the atoms are little oscillators, that is, that the electrons are fastened
elastically to the atoms, which means that if a force is applied to an electron its
displacement from its normal position will be proportional to the force.

You may think that this is a funny model of an atom if you have heard about
electrons whirling around in orbits. But that is just an oversimplified picture.
The correct picture of an atom, which is given by the theory of wave mechanics,
says that, so far as problems involving light are concerned, the electrons behave
as though they were held by springs. So we shall suppose that the electrons have
a linear restoring force which, together with their mass m, makes them behave
like little oscillators, with a resonant frequency ω0. We have already studied such
oscillators, and we know that the equation of their motion is written this way:

m

(
d2x

dt2
+ ω2

0x

)
= F, (31.11)

where F is the driving force.
For our problem, the driving force comes from the electric field of the wave

from the source, so we should use

F = qeEs = qeE0e
iωt, (31.12)

where qe is the electric charge on the electron and for Es we use the expres-
sion Es = E0e

iωt from (31.10). Our equation of motion for the electron is
then

m

(
d2x

dt2
+ ω2

0x

)
= qeE0e

iωt. (31.13)

We have solved this equation before, and we know that the solution is

x = x0e
iωt, (31.14)

where, by substituting in (31.13), we find that

x0 = qeE0

m(ω2
0 − ω2) , (31.15)

so that
x = qeE0

m(ω2
0 − ω2) e

iωt. (31.16)
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We have what we needed to know—the motion of the electrons in the plate. And
it is the same for every electron, except that the mean position (the “zero” of
the motion) is, of course, different for each electron.

Now we are ready to find the field Ea that these atoms produce at the
point P , because we have already worked out (at the end of Chapter 30) what
field is produced by a sheet of charges that all move together. Referring back to
Eq. (30.19), we see that the field Ea at P is just a negative constant times the
velocity of the charges retarded in time by the amount z/c. Differentiating x in
Eq. (31.16) to get the velocity, and sticking in the retardation [or just putting x0
from (31.15) into (30.18)] yields

Ea = − ηqe
2ε0c

[
iω

qeE0

m(ω2
0 − ω2) e

iω(t−z/c)
]
. (31.17)

Just as we expected, the driven motion of the electrons produced an extra wave
which travels to the right (that is what the factor eiω(t−z/c) says), and the
amplitude of this wave is proportional to the number of atoms per unit area
in the plate (the factor η) and also proportional to the strength of the source
field (the factor E0). Then there are some factors which depend on the atomic
properties (qe, m, and ω0), as we should expect.

The most important thing, however, is that this formula (31.17) for Ea looks
very much like the expression for Ea that we got in Eq. (31.8) by saying that
the original wave was delayed in passing through a material with an index of
refraction n. The two expressions will, in fact, be identical if

(n− 1) ∆z = ηq2
e

2ε0m(ω2
0 − ω2) . (31.18)

Notice that both sides are proportional to ∆z, since η, which is the number of
atoms per unit area, is equal to N ∆z, where N is the number of atoms per unit
volume of the plate. Substituting N ∆z for η and cancelling the ∆z, we get our
main result, a formula for the index of refraction in terms of the properties of
the atoms of the material—and of the frequency of the light:

n = 1 + Nq2
e

2ε0m(ω2
0 − ω2) . (31.19)

This equation gives the “explanation” of the index of refraction that we wished
to obtain.
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31-3 Dispersion

Notice that in the above process we have obtained something very interesting.
For we have not only a number for the index of refraction which can be computed
from the basic atomic quantities, but we have also learned how the index of
refraction should vary with the frequency ω of the light. This is something we
would never understand from the simple statement that “light travels slower in
a transparent material.” We still have the problem, of course, of knowing how
many atoms per unit volume there are, and what is their natural frequency ω0.
We do not know this just yet, because it is different for every different material,
and we cannot get a general theory of that now. Formulation of a general theory
of the properties of different substances—their natural frequencies, and so on—is
possible only with quantum atomic mechanics. Also, different materials have
different properties and different indexes, so we cannot expect, anyway, to get a
general formula for the index which will apply to all substances.

However, we shall discuss the formula we have obtained, in various possible
circumstances. First of all, for most ordinary gases (for instance, for air, most
colorless gases, hydrogen, helium, and so on) the natural frequencies of the
electron oscillators correspond to ultraviolet light. These frequencies are higher
than the frequencies of visible light, that is, ω0 is much larger than ω of visible
light, and to a first approximation, we can disregard ω2 in comparison with ω2

0 .
Then we find that the index is nearly constant. So for a gas, the index is nearly
constant. This is also true for most other transparent substances, like glass. If
we look at our expression a little more closely, however, we notice that as ω rises,
taking a little bit more away from the denominator, the index also rises. So n
rises slowly with frequency. The index is higher for blue light than for red light.
That is the reason why a prism bends the light more in the blue than in the red.

The phenomenon that the index depends upon the frequency is called the
phenomenon of dispersion, because it is the basis of the fact that light is “dispersed”
by a prism into a spectrum. The equation for the index of refraction as a function
of frequency is called a dispersion equation. So we have obtained a dispersion
equation. (In the past few years “dispersion equations” have been finding a new
use in the theory of elementary particles.)

Our dispersion equation suggests other interesting effects. If we have a
natural frequency ω0 which lies in the visible region, or if we measure the index
of refraction of a material like glass in the ultraviolet, where ω gets near ω0, we
see that at frequencies very close to the natural frequency the index can get
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enormously large, because the denominator can go to zero. Next, suppose that ω
is greater than ω0. This would occur, for example, if we take a material like glass,
say, and shine x-ray radiation on it. In fact, since many materials which are
opaque to visible light, like graphite for instance, are transparent to x-rays, we
can also talk about the index of refraction of carbon for x-rays. All the natural
frequencies of the carbon atoms would be much lower than the frequency we are
using in the x-rays, since x-ray radiation has a very high frequency. The index of
refraction is that given by our dispersion equation if we set ω0 equal to zero (we
neglect ω2

0 in comparison with ω2).
A similar situation would occur if we beam radiowaves (or light) on a gas

of free electrons. In the upper atmosphere electrons are liberated from their
atoms by ultraviolet light from the sun and they sit up there as free electrons.
For free electrons ω0 = 0 (there is no elastic restoring force). Setting ω0 = 0 in
our dispersion equation yields the correct formula for the index of refraction for
radiowaves in the stratosphere, where N is now to represent the density of free
electrons (number per unit volume) in the stratosphere. But let us look again at
the equation, if we beam x-rays on matter, or radiowaves (or any electric waves)
on free electrons the term (ω2

0 − ω2) becomes negative, and we obtain the result
that n is less than one. That means that the effective speed of the waves in the
substance is faster than c! Can that be correct?

It is correct. In spite of the fact that it is said that you cannot send signals any
faster than the speed of light, it is nevertheless true that the index of refraction of
materials at a particular frequency can be either greater or less than 1. This just
means that the phase shift which is produced by the scattered light can be either
positive or negative. It can be shown, however, that the speed at which you can
send a signal is not determined by the index at one frequency, but depends on
what the index is at many frequencies. What the index tells us is the speed at
which the nodes (or crests) of the wave travel. The node of a wave is not a signal
by itself. In a perfect wave, which has no modulations of any kind, i.e., which is
a steady oscillation, you cannot really say when it “starts,” so you cannot use
it for a timing signal. In order to send a signal you have to change the wave
somehow, make a notch in it, make it a little bit fatter or thinner. That means
that you have to have more than one frequency in the wave, and it can be shown
that the speed at which signals travel is not dependent upon the index alone,
but upon the way that the index changes with the frequency. This subject we
must also delay (until Chapter 48). Then we will calculate for you the actual
speed of signals through such a piece of glass, and you will see that it will not
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be faster than the speed of light, although the nodes, which are mathematical
points, do travel faster than the speed of light.

Just to give a slight hint as to how that happens, you will note that the real
difficulty has to do with the fact that the responses of the charges are opposite
to the field, i.e., the sign has gotten reversed. Thus in our expression for x
(Eq. 31.16) the displacement of the charge is in the direction opposite to the
driving field, because (ω2

0 − ω2) is negative for small ω0. The formula says that
when the electric field is pulling in one direction, the charge is moving in the
opposite direction.

How does the charge happen to be going in the opposite direction? It certainly
does not start off in the opposite direction when the field is first turned on. When
the motion first starts there is a transient, which settles down after awhile, and
only then is the phase of the oscillation of the charge opposite to the driving
field. And it is then that the phase of the transmitted field can appear to be
advanced with respect to the source wave. It is this advance in phase which is
meant when we say that the “phase velocity” or velocity of the nodes is greater
than c. In Fig. 31-4 we give a schematic idea of how the waves might look for
a case where the wave is suddenly turned on (to make a signal). You will see
from the diagram that the signal (i.e., the start of the wave) is not earlier for
the wave which ends up with an advance in phase.

Let us now look again at our dispersion equation. We should remark that
our analysis of the refractive index gives a result that is somewhat simpler than

(a)

(b)

(c)

Wave with no
material

Transmitted wave
with n > 1

Transmitted wave
with n < 1

E

E

E

t

t

t

delay of phase

advance of phase

Start

Fig. 31-4. Wave “signals.”
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you would actually find in nature. To be completely accurate we must add some
refinements. First, we should expect that our model of the atomic oscillator
should have some damping force (otherwise once started it would oscillate forever,
and we do not expect that to happen). We have worked out before (Eq. 23.8)
the motion of a damped oscillator and the result is that the denominator in
Eq. (31.16), and therefore in (31.19), is changed from (ω2

0−ω2) to (ω2
0−ω2 +iγω),

where γ is the damping coefficient.
We need a second modification to take into account the fact that there are

several resonant frequencies for a particular kind of atom. It is easy to fix up
our dispersion equation by imagining that there are several different kinds of
oscillators, but that each oscillator acts separately, and so we simply add the
contributions of all the oscillators. Let us say that there are Nk electrons per
unit of volume, whose natural frequency is ωk and whose damping factor is γk.
We would then have for our dispersion equation

n = 1 + q2
e

2ε0m
∑
k

Nk
ω2
k − ω2 + iγkω

. (31.20)

We have, finally, a complete expression which describes the index of refraction
that is observed for many substances.* The index described by this formula varies
with frequency roughly like the curve shown in Fig. 31-5.

You will note that so long as ω is not too close to one of the resonant
frequencies, the slope of the curve is positive. Such a positive slope is called

ωω1 ω2

n

1

0

etc.

etc.

Fig. 31-5. The index of refraction as a function of frequency.

* Actually, although in quantum mechanics Eq. (31.20) is still valid, its interpretation is
somewhat different. In quantum mechanics even an atom with one electron, like hydrogen, has
several resonant frequencies. Therefore Nk is not really the number of electrons having the
frequency ωk, but is replaced instead by Nfk, where N is the number of atoms per unit volume
and fk (called the oscillator strength) is a factor that tells how strongly the atom exhibits each
of its resonant frequencies ωk.
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“normal” dispersion (because it is clearly the most common occurrence). Very
near the resonant frequencies, however, there is a small range of ω’s for which
the slope is negative. Such a negative slope is often referred to as “anomalous”
(meaning abnormal) dispersion, because it seemed unusual when it was first
observed, long before anyone even knew there were such things as electrons.
From our point of view both slopes are quite “normal”!

31-4 Absorption

Perhaps you have noticed something a little strange about the last form
(Eq. 31.20) we obtained for our dispersion equation. Because of the term iγ
we put in to take account of damping, the index of refraction is now a complex
number! What does that mean? By working out what the real and imaginary
parts of n are we could write

n = n′ − in′′, (31.21)

where n′ and n′′ are real numbers. (We use the minus sign in front of the in′′
because then n′′ will turn out to be a positive number, as you can show for
yourself.)

We can see what such a complex index means by going back to Eq. (31.6),
which is the equation of the wave after it goes through a plate of material with
an index n. If we put our complex n into this equation, and do some rearranging,
we get

Eafter plate = e−ωn
′′ ∆z/c︸ ︷︷ ︸
A

e−iω(n′−1) ∆z/cE0e
iω(t−z/c)︸ ︷︷ ︸

B

. (31.22)

The last factors, marked B in Eq. (31.22), are just the form we had before, and
again describe a wave whose phase has been delayed by the angle ω(n′ − 1) ∆z/c
in traversing the material. The first term (A) is new and is an exponential
factor with a real exponent, because there were two i’s that cancelled. Also, the
exponent is negative, so the factor is a real number less than one. It describes a
decrease in the magnitude of the field and, as we should expect, by an amount
which is more the larger ∆z is. As the wave goes through the material, it is
weakened. The material is “absorbing” part of the wave. The wave comes out
the other side with less energy. We should not be surprised at this, because
the damping we put in for the oscillators is indeed a friction force and must

31-14



be expected to cause a loss of energy. We see that the imaginary part n′′ of a
complex index of refraction represents an absorption (or “attenuation”) of the
wave. In fact, n′′ is sometimes referred to as the “absorption index.”

We may also point out that an imaginary part to the index n corresponds
to bending the arrow Ea in Fig. 31-3 toward the origin. It is clear why the
transmitted field is then decreased.

Normally, for instance as in glass, the absorption of light is very small.
This is to be expected from our Eq. (31.20), because the imaginary part of the
denominator, iγkω, is much smaller than the term (ω2

k − ω2). But if the light
frequency ω is very close to ωk then the resonance term (ω2

k − ω2) can become
small compared with iγkω and the index becomes almost completely imaginary.
The absorption of the light becomes the dominant effect. It is just this effect
that gives the dark lines in the spectrum of light which we receive from the sun.
The light from the solar surface has passed through the sun’s atmosphere (as
well as the earth’s), and the light has been strongly absorbed at the resonant
frequencies of the atoms in the solar atmosphere.

The observation of such spectral lines in the sunlight allows us to tell the
resonant frequencies of the atoms and hence the chemical composition of the
sun’s atmosphere. The same kind of observations tell us about the materials in
the stars. From such measurements we know that the chemical elements in the
sun and in the stars are the same as those we find on the earth.

31-5 The energy carried by an electric wave

We have seen that the imaginary part of the index means absorption. We
shall now use this knowledge to find out how much energy is carried by a light
wave. We have given earlier an argument that the energy carried by light is
proportional to E2, the time average of the square of the electric field in the
wave. The decrease in E due to absorption must mean a loss of energy, which
would go into some friction of the electrons and, we might guess, would end up
as heat in the material.

If we consider the light arriving on a unit area, say one square centimeter,
of our plate in Fig. 31-1, then we can write the following energy equation (if we
assume that energy is conserved, as we do!):

Energy in per sec = energy out per sec + work done per sec. (31.23)

31-15



For the first term we can write αE2
s , where α is the as yet unknown constant

of proportionality which relates the average value of E2 to the energy being
carried. For the second term we must include the part from the radiating
atoms of the material, so we should use α(Es + Ea)2, or (evaluating the square)
α(E2

s + 2EsEa + E2
a).

All of our calculations have been made for a thin layer of material whose
index is not too far from 1, so that Ea would always be much less than Es (just
to make the calculations easier). In keeping with our approximations, we should,
therefore, leave out the term E2

a, because it is much smaller than EsEa. You
may say: “Then you should leave out EsEa also, because it is much smaller
than E2

s .” It is true that EsEa is much smaller than E2
s , but we must keep

EsEa or our approximation will be the one that would apply if we neglected the
presence of the material completely! One way of checking that our calculations
are consistent is to see that we always keep terms which are proportional to N ∆z,
the area density of atoms in the material, but we leave out terms which are
proportional to (N ∆z)2 or any higher power of N ∆z. Ours is what should be
called a “low-density approximation.”

In the same spirit, we might remark that our energy equation has neglected
the energy in the reflected wave. But that is OK because this term, too, is
proportional to (N ∆z)2, since the amplitude of the reflected wave is proportional
to N ∆z.

For the last term in Eq. (31.23) we wish to compute the rate at which the
incoming wave is doing work on the electrons. We know that work is force times
distance, so the rate of doing work (also called power) is the force times the
velocity. It is really F · v, but we do not need to worry about the dot product
when the velocity and force are along the same direction as they are here (except
for a possible minus sign). So for each atom we take qeEsv for the average rate
of doing work. Since there are N ∆z atoms in a unit area, the last term in
Eq. (31.23) should be N ∆z qeEsv. Our energy equation now looks like

αE2
s = αE2

s + 2αEsEa +N ∆z qeEsv. (31.24)
The E2

s terms cancel, and we have
2αEsEa = −N ∆z qeEsv. (31.25)

We now go back to Eq. (31.19), which tells us that for large z

Ea = −N ∆z qe
2ε0c

v(ret by z/c) (31.26)
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(recalling that η = N ∆z). Putting Eq. (31.26) into the left-hand side of (31.25),
we get

2α N ∆z qe
2ε0c

Es(at z) · v(ret by z/c).

However, Es(at z) is Es(at atoms) retarded by z/c. Since the average is inde-
pendent of time, it is the same now as retarded by z/c, or is Es(at atoms) · v,
the same average that appears on the right-hand side of (31.25). The two sides
are therefore equal if

α

ε0c
= 1, or α = ε0c. (31.27)

We have discovered that if energy is to be conserved, the energy carried in an
electric wave per unit area and per unit time (or what we have called the intensity)
must be given by ε0cE2. If we call the intensity S, we have

S =

 intensity
or

energy/area/time

 = ε0cE2, (31.28)

where the bar means the time average. We have a nice bonus result from our
theory of the refractive index!

31-6 Diffraction of light by a screen

It is now a good time to take up a somewhat different matter which we can
handle with the machinery of this chapter. In the last chapter we said that
when you have an opaque screen and the light can come through some holes, the
distribution of intensity—the diffraction pattern—could be obtained by imagining
instead that the holes are replaced by sources (oscillators) uniformly distributed
over the hole. In other words, the diffracted wave is the same as though the hole
were a new source. We have to explain the reason for that, because the hole is, of
course, just where there are no sources, where there are no accelerating charges.

Let us first ask: “What is an opaque screen?” Suppose we have a completely
opaque screen between a source S and an observer at P , as in Fig. 31-6(a). If the
screen is “opaque” there is no field at P . Why is there no field there? According
to the basic principles we should obtain the field at P as the field Es of the
source delayed, plus the field from all the other charges around. But, as we
have seen above, the charges in the screen will be set in motion by the field Es,
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E = Es + E′wall + E
′
plug = 0

Fig. 31-6. Diffraction by a screen.

and these motions generate a new field which, if the screen is opaque, must
exactly cancel the field Es on the back side of the screen. You say: “What a
miracle that it balances exactly! Suppose it was not exactly right!” If it were
not exactly right (remember that this opaque screen has some thickness), the
field toward the rear part of the screen would not be exactly zero. So, not
being zero, it would set into motion some other charges in the material of
the screen, and thus make a little more field, trying to get the total balanced
out. So if we make the screen thick enough, there is no residual field, because
there is enough opportunity to finally get the thing quieted down. In terms
of our formulas above we would say that the screen has a large and imaginary
index, so the wave is absorbed exponentially as it goes through. You know,
of course, that a thin enough sheet of the most opaque material, even gold, is
transparent.

Now let us see what happens with an opaque screen which has holes in it, as
in Fig. 31-6(b). What do we expect for the field at P? The field at P can be
represented as a sum of two parts—the field due to the source S plus the field
due to the wall, i.e., due to the motions of the charges in the walls. We might
expect the motions of the charges in the walls to be complicated, but we can find
out what fields they produce in a rather simple way.
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Suppose that we were to take the same screen, but plug up the holes, as
indicated in part (c) of the figure. We imagine that the plugs are of exactly
the same material as the wall. Mind you, the plugs go where the holes were in
case (b). Now let us calculate the field at P . The field at P is certainly zero in
case (c), but it is also equal to the field from the source plus the field due to
all the motions of the atoms in the walls and in the plugs. We can write the
following equations:

Case (b): Eat P = Es + Ewall,

Case (c): E′at P = 0 = Es + E′wall + E′plug,

where the primes refer to the case where the plugs are in place, but Es is, of
course, the same in both cases. Now if we subtract the two equations, we get

Eat P = (Ewall − E′wall)− E′plug.

Now if the holes are not too small (say many wavelengths across), we would not
expect the presence of the plugs to change the fields which arrive at the walls
except possibly for a little bit around the edges of the holes. Neglecting this
small effect, we can set Ewall = E′wall and obtain that

Eat P = −E′plug.

We have the result that the field at P when there are holes in a screen (case
b) is the same (except for sign) as the field that is produced by that part of a
complete opaque wall which is located where the holes are! (The sign is not too
interesting, since we are usually interested in intensity which is proportional to
the square of the field.) It seems like an amazing backwards-forwards argument.
It is, however, not only true (approximately for not too small holes), but useful,
and is the justification for the usual theory of diffraction.

The field E′plug is computed in any particular case by remembering that the
motion of the charges everywhere in the screen is just that which will cancel out
the field Es on the back of the screen. Once we know these motions, we add the
radiation fields at P due just to the charges in the plugs.

We remark again that this theory of diffraction is only approximate, and will
be good only if the holes are not too small. For holes which are too small the
E′plug term will be small and then the difference between E′wall and Ewall (which
difference we have taken to be zero) may be comparable to or larger than the
small E′plug term, and our approximation will no longer be valid.

31-19



32

Radiation Damping. Light Scattering

32-1 Radiation resistance

In the last chapter we learned that when a system is oscillating, energy is
carried away, and we deduced a formula for the energy which is radiated by an
oscillating system. If we know the electric field, then the average of the square
of the field times ε0c is the amount of energy that passes per square meter per
second through a surface normal to the direction in which the radiation is going:

S = ε0c〈E2〉. (32.1)

Any oscillating charge radiates energy; for instance, a driven antenna radiates
energy. If the system radiates energy, then in order to account for the conservation
of energy we must find that power is being delivered along the wires which lead
into the antenna. That is, to the driving circuit the antenna acts like a resistance,
or a place where energy can be “lost” (the energy is not really lost, it is really
radiated out, but so far as the circuit is concerned, the energy is lost). In an
ordinary resistance, the energy which is “lost” passes into heat; in this case the
energy which is “lost” goes out into space. But from the standpoint of circuit
theory, without considering where the energy goes, the net effect on the circuit is
the same—energy is “lost” from that circuit. Therefore the antenna appears to
the generator as having a resistance, even though it may be made with perfectly
good copper. In fact, if it is well built it will appear as almost a pure resistance,
with very little inductance or capacitance, because we would like to radiate as
much energy as possible out of the antenna. This resistance that an antenna
shows is called the radiation resistance.

If a current I is going to the antenna, then the average rate at which power
is delivered to the antenna is the average of the square of the current times the
resistance. The rate at which power is radiated by the antenna is proportional
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to the square of the current in the antenna, of course, because all the fields are
proportional to the currents, and the energy liberated is proportional to the
square of the field. The coefficient of proportionality between radiated power
and 〈I2〉 is the radiation resistance.

An interesting question is, what is this radiation resistance due to? Let us
take a simple example: let us say that currents are driven up and down in an
antenna. We find that we have to put work in, if the antenna is to radiate energy.
If we take a charged body and accelerate it up and down it radiates energy; if
it were not charged it would not radiate energy. It is one thing to calculate
from the conservation of energy that energy is lost, but another thing to answer
the question, against what force are we doing the work? That is an interesting
and very difficult question which has never been completely and satisfactorily
answered for electrons, although it has been for antennas. What happens is this:
in an antenna, the fields produced by the moving charges in one part of the
antenna react on the moving charges in another part of the antenna. We can
calculate these forces and find out how much work they do, and so find the right
rule for the radiation resistance. When we say “We can calculate—” that is not
quite right—we cannot, because we have not yet studied the laws of electricity at
short distances; only at large distances do we know what the electric field is. We
saw the formula (28.3), but at present it is too complicated for us to calculate
the fields inside the wave zone. Of course, since conservation of energy is valid,
we can calculate the result all right without knowing the fields at short distances.
(As a matter of fact, by using this argument backwards it turns out that one can
find the formula for the forces at short distances only by knowing the field at
very large distances, by using the laws of conservation of energy, but we shall not
go into that here.)

The problem in the case of a single electron is this: if there is only one charge,
what can the force act on? It has been proposed, in the old classical theory, that
the charge was a little ball, and that one part of the charge acted on the other
part. Because of the delay in the action across the tiny electron, the force is not
exactly in phase with the motion. That is, if we have the electron standing still,
we know that “action equals reaction.” So the various internal forces are equal,
and there is no net force. But if the electron is accelerating, then because of the
time delay across it, the force which is acting on the front from the back is not
exactly the same as the force on the back from the front, because of the delay in
the effect. This delay in the timing makes for a lack of balance, so, as a net effect,
the thing holds itself back by its bootstraps! This model of the origin of the
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resistance to acceleration, the radiation resistance of a moving charge, has run
into many difficulties, because our present view of the electron is that it is not a
“little ball”; this problem has never been solved. Nevertheless we can calculate
exactly, of course, what the net radiation resistance force must be, i.e., how much
loss there must be when we accelerate a charge, in spite of not knowing directly
the mechanism of how that force works.

32-2 The rate of radiation of energy

Now we shall calculate the total energy radiated by an accelerating charge.
To keep the discussion general, we shall take the case of a charge accelerating any
which way, but nonrelativistically. At a moment when the acceleration is, say,
vertical, we know that the electric field that is generated is the charge multiplied
by the projection of the retarded acceleration, divided by the distance. So we
know the electric field at any point, and we therefore know the square of the
electric field and thus the energy ε0cE2 leaving through a unit area per second.

The quantity ε0c appears quite often in expressions involving radiowave
propagation. Its reciprocal is called the impedance of a vacuum, and it is an easy
number to remember: it has the value 1/ε0c = 377 ohms. So the power in watts
per square meter is equal to the average of the field squared, divided by 377.

Using our expression (29.1) for the electric field, we find that

S = q2a′2 sin2 θ

16π2ε0r2c3
(32.2)

is the power per square meter radiated in the direction θ. We notice that it goes
inversely as the square of the distance, as we said before. Now suppose we wanted
the total energy radiated in all directions: then we must integrate (32.2) over all
directions. First we multiply by the area, to find the amount that flows within a
little angle dθ (Fig. 32-1). We need the area of a spherical section. The way to
think of it is this: if r is the radius, then the width of the annular segment is r dθ,
and the circumference is 2πr sin θ, because r sin θ is the radius of the circle. So
the area of the little piece of the sphere is 2πr sin θ times r dθ:

dA = 2πr2 sin θ dθ. (32.3)

By multiplying the flux [(32.2), the power per square meter] by the area in square
meters included in the small angle dθ, we find the amount of energy that is
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r sin θ dθ

r

a′

Fig. 32-1. The area of a spherical segment is 2πr sin θ · r dθ.

liberated in this direction between θ and θ + dθ; then we integrate that over all
the angles θ from 0 to 180◦:

P =
∫
S dA = q2a′2

8πε0c3
∫ π

0
sin3 θ dθ. (32.4)

By writing sin3 θ = (1−cos2 θ) sin θ it is not hard to show that
∫ π

0 sin3 θ dθ = 4/3.
Using that fact, we finally get

P = q2a′2

6πε0c3
. (32.5)

This expression deserves some remarks. First of all, since the vector a′ had a
certain direction, the a′2 in (32.5) would be the square of the vector a′, that is,
a′ · a′, the length of the vector, squared. Secondly, the flux (32.2) was calculated
using the retarded acceleration; that is, the acceleration at the time at which the
energy now passing through the sphere was radiated. We might like to say that
this energy was in fact liberated at this earlier time. This is not exactly true; it
is only an approximate idea. The exact time when the energy is liberated cannot
be defined precisely. All we can really calculate precisely is what happens in a
complete motion, like an oscillation or something, where the acceleration finally
ceases. Then what we find is that the total energy flux per cycle is the average
of acceleration squared, for a complete cycle. This is what should really appear
in (32.5). Or, if it is a motion with an acceleration that is initially and finally
zero, then the total energy that has flown out is the time integral of (32.5).

To illustrate the consequences of formula (32.5) when we have an oscillating
system, let us see what happens if the displacement x of the charge is oscillating
so that the acceleration a is −ω2x0e

iωt. The average of the acceleration squared
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over a cycle (remember that we have to be very careful when we square things
that are written in complex notation—it really is the cosine, and the average
of cos2 ωt is one-half) thus is

〈a′2〉 = 1
2ω

4x2
0.

Therefore

P = q2ω4x2
0

12πε0c3
. (32.6)

The formulas we are now discussing are relatively advanced and more or less
modern; they date from the beginning of the twentieth century, and they are very
famous. Because of their historical value, it is important for us to be able to read
about them in older books. In fact, the older books also used a system of units
different from our present mks system. However, all these complications can be
straightened out in the final formulas dealing with electrons by the following
rule: The quantity q2

e/4πε0, where qe is the electronic charge (in coulombs), has,
historically, been written as e2. It is very easy to calculate that e in the mks
system is numerically equal to 1.5188×10−14, because we know that, numerically,
qe = 1.60206× 10−19 and 1/4πε0 = 8.98748× 109. Therefore we shall often use
the convenient abbreviation

e2 = q2
e

4πε0
. (32.7)

If we use the above numerical value of e in the older formulas and treat them as
though they were written in mks units, we will get the right numerical results.
For example, the older form of (32.5) is P = 2

3e
2a′2/c3. Again, the potential

energy of a proton and an electron at distance r is q2
e/4πε0r or e2/r, with

e = 1.5188× 10−14 (mks).

32-3 Radiation damping

Now the fact that an oscillator loses a certain energy would mean that if we
had a charge on the end of a spring (or an electron in an atom) which has a
natural frequency ω0, and we start it oscillating and let it go, it will not oscillate
forever, even if it is in empty space millions of miles from anything. There is no
oil, no resistance, in an ordinary sense; no “viscosity.” But nevertheless it will
not oscillate, as we might once have said, “forever,” because if it is charged it is
radiating energy, and therefore the oscillation will slowly die out. How slowly?
What is the Q of such an oscillator, caused by the electromagnetic effects, the
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so-called radiation resistance or radiation damping of the oscillator? The Q of
any oscillating system is the total energy content of the oscillator at any time
divided by the energy loss per radian:

Q = W

dW/dφ
.

Or (another way to write it), since dW/dφ = (dW/dt)/(dφ/dt) = (dW/dt)/ω,

Q = ωW

dW/dt
. (32.8)

If for a given Q this tells us how the energy of the oscillation dies out, dW/dt =
−(ω/Q)W , which has the solution W = W0e

−ωt/Q if W0 is the initial energy
(at t = 0).

To find the Q for a radiator, we go back to (32.8) and use (32.6) for dW/dt.
Now what do we use for the energy W of the oscillator? The kinetic energy

of the oscillator is 1
2mv

2, and the mean kinetic energy is mω2x2
0/4. But we

remember that for the total energy of an oscillator, on the average half is kinetic
and half is potential energy, and so we double our result, and find for the total
energy of the oscillator

W = 1
2mω

2x2
0. (32.9)

What do we use for the frequency in our formulas? We use the natural frequency ω0
because, for all practical purposes, that is the frequency at which our atom is
radiating, and for m we use the electron mass me. Then, making the necessary
divisions and cancellations, the formula comes down to

1
Q

= 4πe2

3λmec2
. (32.10)

(In order to see it better and in a more historical form we write it using our
abbreviation q2

e/4πε0 = e2, and the factor ω0/c which was left over has been
written as 2π/λ.) Since Q is dimensionless, the combination e2/mec

2 must be
a property only of the electron charge and mass, an intrinsic property of the
electron, and it must be a length. It has been given a name, the classical electron
radius, because the early atomic models, which were invented to explain the
radiation resistance on the basis of the force of one part of the electron acting
on the other parts, all needed to have an electron whose dimensions were of this
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general order of magnitude. However, this quantity no longer has the significance
that we believe that the electron really has such a radius. Numerically, the
magnitude of the radius is

r0 = e2

mec2
= 2.82× 10−15 m. (32.11)

Now let us actually calculate the Q of an atom that is emitting light—let us
say a sodium atom. For a sodium atom, the wavelength is roughly 6000 angstroms,
in the yellow part of the visible spectrum, and this is a typical wavelength. Thus

Q = 3λ
4πr0

≈ 5× 107, (32.12)

so the Q of an atom is of the order 108. This means that an atomic oscillator
will oscillate for 108 radians or about 107 oscillations, before its energy falls by a
factor 1/e. The frequency of oscillation of light corresponding to 6000 angstroms,
ν = c/λ, is on the order of 1015 cycles/sec, and therefore the lifetime, the time
it takes for the energy of a radiating atom to die out by a factor 1/e, is on the
order of 10−8 sec. In ordinary circumstances, freely emitting atoms usually take
about this long to radiate. This is valid only for atoms which are in empty space,
not being disturbed in any way. If the electron is in a solid and it has to hit
other atoms or other electrons, then there are additional resistances and different
damping.

The effective resistance term γ in the resistance law for the oscillator can
be found from the relation 1/Q = γ/ω0, and we remember that the size of γ
determines how wide the resonance curve is (Fig. 23-2). Thus we have just
computed the widths of spectral lines for freely radiating atoms! Since λ = 2πc/ω,
we find that

∆λ = 2πc∆ω/ω2 = 2πcγ/ω2
0 = 2πc/Qω0

= λ/Q = 4πr0/3 = 1.18× 10−14 m. (32.13)

32-4 Independent sources

In preparation for our second topic, the scattering of light, we must now
discuss a certain feature of the phenomenon of interference that we neglected to
discuss previously. This is the question of when interference does not occur. If
we have two sources S1 and S2, with amplitudes A1 and A2, and we make an
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observation in a certain direction in which the phases of arrival of the two signals
are φ1 and φ2 (a combination of the actual time of oscillation and the delayed
time, depending on the position of observation), then the energy that we receive
can be found by compounding the two complex number vectors A1 and A2, one
at angle φ1 and the other at angle φ2 (as we did in Chapter 29) and we find that
the resultant energy is proportional to

A2
R = A2

1 +A2
2 + 2A1A2 cos (φ1 − φ2). (32.14)

Now if the cross term 2A1A2 cos (φ1 − φ2) were not there, then the total energy
that would be received in a given direction would simply be the sum of the
energies, A2

1 +A2
2, that would be liberated by each source separately, which is

what we usually expect. That is, the combined intensity of light shining on
something from two sources is the sum of the intensities of the two lights. On the
other hand, if we have things set just right and we have a cross term, it is not
such a sum, because there is also some interference. If there are circumstances
in which this term is of no importance, then we would say the interference is
apparently lost. Of course, in nature it is always there, but we may not be able
to detect it.

Let us consider some examples. Suppose, first, that the two sources are
7,000,000,000 wavelengths apart, not an impossible arrangement. Then in a given
direction it is true that there is a very definite value of these phase differences.
But, on the other hand, if we move just a hair in one direction, a few wavelengths,
which is no distance at all (our eye already has a hole in it that is so large that we
are averaging the effects over a range very wide compared with one wavelength)
then we change the relative phase, and the cosine changes very rapidly. If we
take the average of the intensity over a little region, then the cosine, which goes
plus, minus, plus, minus, as we move around, averages to zero.

So if we average over regions where the phase varies very rapidly with position,
we get no interference.

Another example. Suppose that the two sources are two independent radio
oscillators—not a single oscillator being fed by two wires, which guarantees that
the phases are kept together, but two independent sources—and that they are not
precisely tuned at the same frequency (it is very hard to make them at exactly
the same frequency without actually wiring them together). In this case we have
what we call two independent sources. Of course, since the frequencies are not
exactly equal, although they started in phase, one of them begins to get a little
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ahead of the other, and pretty soon they are out of phase, and then it gets still
further ahead, and pretty soon they are in phase again. So the phase difference
between the two is gradually drifting with time, but if our observation is so crude
that we cannot see that little time, if we average over a much longer time, then
although the intensity swells and falls like what we call “beats” in sound, if these
swellings and fallings are too rapid for our equipment to follow, then again this
term averages out.

In other words, in any circumstance in which the phase shift averages out, we
get no interference!

One finds many books which say that two distinct light sources never interfere.
This is not a statement of physics, but is merely a statement of the degree of
sensitivity of the technique of the experiments at the time the book was written.
What happens in a light source is that first one atom radiates, then another atom
radiates, and so forth, and we have just seen that atoms radiate a train of waves
only for about 10−8 sec; after 10−8 sec, some atom has probably taken over, then
another atom takes over, and so on. So the phases can really only stay the same
for about 10−8 sec. Therefore, if we average for very much more than 10−8 sec,
we do not see an interference from two different sources, because they cannot hold
their phases steady for longer than 10−8 sec. With photocells, very high-speed
detection is possible, and one can show that there is an interference which varies
with time, up and down, in about 10−8 sec. But most detection equipment, of
course, does not look at such fine time intervals, and thus sees no interference.
Certainly with the eye, which has a tenth-of-a-second averaging time, there is no
chance whatever of seeing an interference between two different ordinary sources.

Recently it has become possible to make light sources which get around this
effect by making all the atoms emit together in time. The device which does this
is a very complicated thing, and has to be understood in a quantum-mechanical
way. It is called a laser , and it is possible to produce from a laser a source in
which the time during which the phase is kept constant, is very much longer than
10−8 sec. It can be of the order of a hundredth, a tenth, or even one second, and
so, with ordinary photocells, one can pick up the frequency between two different
lasers. One can easily detect the pulsing of the beats between two laser sources.
Soon, no doubt, someone will be able to demonstrate two sources shining on a
wall, in which the beats are so slow that one can see the wall get bright and dark!

Another case in which the interference averages out is that in which, instead
of having only two sources, we have many. In this case, we would write the
expression for A2

R as the sum of a whole lot of amplitudes, complex numbers,
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squared, and we would get the square of each one, all added together, plus cross
terms between every pair, and if the circumstances are such that the latter average
out, then there will be no effects of interference. It may be that the various sources
are located in such random positions that, although the phase difference between
A2 and A3 is also definite, it is very different from that between A1 and A2, etc.
So we would get a whole lot of cosines, many plus, many minus, all averaging out.

So it is that in many circumstances we do not see the effects of interference,
but see only a collective, total intensity equal to the sum of all the intensities.

32-5 Scattering of light

The above leads us to an effect which occurs in air as a consequence of the
irregular positions of the atoms. When we were discussing the index of refraction,
we saw that an incoming beam of light will make the atoms radiate again. The
electric field of the incoming beam drives the electrons up and down, and they
radiate because of their acceleration. This scattered radiation combines to give
a beam in the same direction as the incoming beam, but of somewhat different
phase, and this is the origin of the index of refraction.

But what can we say about the amount of re-radiated light in some other
direction? Ordinarily, if the atoms are very beautifully located in a nice pattern,
it is easy to show that we get nothing in other directions, because we are adding
a lot of vectors with their phases always changing, and the result comes to zero.
But if the objects are randomly located, then the total intensity in any direction
is the sum of the intensities that are scattered by each atom, as we have just
discussed. Furthermore, the atoms in a gas are in actual motion, so that although
the relative phase of two atoms is a definite amount now, later the phase would be
quite different, and therefore each cosine term will average out. Therefore, to find
out how much light is scattered in a given direction by a gas, we merely study the
effects of one atom and multiply the intensity it radiates by the number of atoms.

Earlier, we remarked that the phenomenon of scattering of light of this nature
is the origin of the blue of the sky. The sunlight goes through the air, and when
we look to one side of the sun—say at 90◦ to the beam—we see blue light; what
we now have to calculate is how much light we see and why it is blue.

If the incident beam has the electric field* E = Ê0e
iωt at the point where

the atom is located, we know that an electron in the atom will vibrate up and
* When a caret appears on a vector it signifies that the components of the vector are complex:

Ê = (Êx, Êy , Êz).
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Fig. 32-2. A beam of radiation falls on an atom and causes the
charges (electrons) in the atom to move. The moving electrons in turn
radiate in various directions.

down in response to this E (Fig. 32-2). From Eq. (23.8), the response will be

x̂ = qeÊ0

m(ω2
0 − ω2 + iγω) . (32.15)

We could include the damping and the possibility that the atom acts like several
oscillators of different frequency and sum over the various frequencies, but for
simplicity let us just take one oscillator and neglect the damping. Then the
response to the external electric field, which we have already used in the calculation
of the index of refraction, is simply

x̂ = qeÊ0

m(ω2
0 − ω2) . (32.16)

We could now easily calculate the intensity of light that is emitted in various
directions, using formula (32.2) and the acceleration corresponding to the above x̂.

Rather than do this, however, we shall simply calculate the total amount of
light scattered in all directions, just to save time. The total amount of light
energy per second, scattered in all directions by the single atom, is of course
given by Eq. (32.6). So, putting together the various pieces and regrouping them,
we get

P = [(q2
eω

4/12πε0c3)q2
eE

2
0/m

2
e(ω2 − ω2

0)2]
= ( 1

2ε0cE
2
0)(8π/3)(q4

e/16π2ε20m
2
ec

4)[ω4/(ω2 − ω2
0)2]

= ( 1
2ε0cE

2
0)(8πr2

0/3)[ω4/(ω2 − ω2
0)2] (32.17)

for the total scattered power, radiated in all directions.
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We have written the result in the above form because it is then easy to
remember: First, the total energy that is scattered is proportional to the square
of the incident field. What does that mean? Obviously, the square of the incident
field is proportional to the energy which is coming in per second. In fact, the
energy incident per square meter per second is ε0c times the average 〈E2〉 of
the square of the electric field, and if E0 is the maximum value of E, then
〈E2〉 = 1

2E
2
0 . In other words, the total energy scattered is proportional to the

energy per square meter that comes in; the brighter the sunlight that is shining
in the sky, the brighter the sky is going to look.

Next, what fraction of the incoming light is scattered? Let us imagine a
“target” with a certain area, let us say σ, in the beam (not a real, material target,
because this would diffract light, and so on; we mean an imaginary area drawn
in space). The total amount of energy that would pass through this surface σ
in a given circumstance is proportional both to the incoming intensity and to σ,
and the total power would be

P = ( 1
2ε0cE

2
0)σ. (32.18)

Now we invent an idea: we say that the atom scatters a total amount of
intensity which is the amount which would fall on a certain geometrical area,
and we give the answer by giving that area. That answer, then, is independent
of the incident intensity; it gives the ratio of the energy scattered to the energy
incident per square meter. In other words, the ratio

total energy scattered per second
energy incident per square meter per second is an area.

The significance of this area is that, if all the energy that impinged on that area
were to be spewed in all directions, then that is the amount of energy that would
be scattered by the atom.

This area is called a cross section for scattering; the idea of cross section is
used constantly, whenever some phenomenon occurs in proportion to the intensity
of a beam. In such cases one always describes the amount of the phenomenon by
saying what the effective area would have to be to pick up that much of the beam.
It does not mean in any way that this oscillator actually has such an area. If
there were nothing present but a free electron shaking up and down there would
be no area directly associated with it, physically. It is merely a way of expressing
the answer to a certain kind of problem; it tells us what area the incident beam
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would have to hit in order to account for that much energy coming off. Thus, for
our case,

σs = 8πr2
0

3 · ω4

(ω2 − ω2
0)2 (32.19)

(the subscript s is for “scattering”).
Let us look at some examples. First, if we go to a very low natural frequency ω0,

or to completely unbound electrons, for which ω0 = 0, then the frequency ω
cancels out and the cross section is a constant. This low-frequency limit, or the
free electron cross section, is known as the Thomson scattering cross section. It
is an area whose dimensions are approximately 10−15 meter, more or less, on a
side, i.e., 10−30 square meter, which is rather small!

On the other hand, if we take the case of light in the air, we remember that for
air the natural frequencies of the oscillators are higher than the frequency of the
light that we use. This means that, to a first approximation, we can disregard ω2

in the denominator, and we find that the scattering is proportional to the fourth
power of the frequency. That is to say, light which is of higher frequency by, say,
a factor of two, is sixteen times more intensely scattered, which is a quite sizable
difference. This means that blue light, which has about twice the frequency of
the reddish end of the spectrum, is scattered to a far greater extent than red
light. Thus when we look at the sky it looks that glorious blue that we see all
the time!

There are several points to be made about the above results. One interesting
question is, why do we ever see the clouds? Where do the clouds come from?
Everybody knows it is the condensation of water vapor. But, of course, the
water vapor is already in the atmosphere before it condenses, so why don’t we
see it then? After it condenses it is perfectly obvious. It wasn’t there, now it is
there. So the mystery of where the clouds come from is not really such a childish
mystery as “Where does the water come from, Daddy?,” but has to be explained.

We have just explained that every atom scatters light, and of course the water
vapor will scatter light, too. The mystery is why, when the water is condensed
into clouds, does it scatter such a tremendously greater amount of light?

Consider what would happen if, instead of a single atom, we had an agglom-
erate of atoms, say two, very close together compared with the wavelength of the
light. Remember, atoms are only an angstrom or so across, while the wavelength
of light is some 5000 angstroms, so when they form a clump, a few atoms together,
they can be very close together compared with the wavelength of light. Then
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when the electric field acts, both of the atoms will move together. The electric
field that is scattered will then be the sum of the two electric fields in phase, i.e.,
double the amplitude that there was with a single atom, and the energy which
is scattered is therefore four times what it is with a single atom, not twice! So
lumps of atoms radiate or scatter more energy than they do as single atoms. Our
argument that the phases are independent is based on the assumption that there
is a real and large difference in phase between any two atoms, which is true only
if they are several wavelengths apart and randomly spaced, or moving. But if
they are right next to each other, they necessarily scatter in phase, and they have
a coherent interference which produces an increase in the scattering.

If we have N atoms in a lump, which is a tiny droplet of water, then each one
will be driven by the electric field in about the same way as before (the effect of
one atom on the other is not important; it is just to get the idea anyway) and
the amplitude of scattering from each one is the same, so the total field which is
scattered is N -fold increased. The intensity of the light which is scattered is then
the square, or N2-fold, increased. We would have expected, if the atoms were
spread out in space, only N times as much as 1, whereas we get N2 times as
much as 1! That is to say, the scattering of water in lumps of N molecules each
is N times more intense than the scattering of the single atoms. So as the water
agglomerates the scattering increases. Does it increase ad infinitum? No! When
does this analysis begin to fail? How many atoms can we put together before
we cannot drive this argument any further? Answer : If the water drop gets so
big that from one end to the other is a wavelength or so, then the atoms are
no longer all in phase because they are too far apart. So as we keep increasing
the size of the droplets we get more and more scattering, until such a time that
a drop gets about the size of a wavelength, and then the scattering does not
increase anywhere nearly as rapidly as the drop gets bigger. Furthermore, the
blue disappears, because for long wavelengths the drops can be bigger, before
this limit is reached, than they can be for short wavelengths. Although the short
waves scatter more per atom than the long waves, there is a bigger enhancement
for the red end of the spectrum than for the blue end when all the drops are
bigger than the wavelength, so the color is shifted from the blue toward the red.

Now we can make an experiment that demonstrates this. We can make
particles that are very small at first, and then gradually grow in size. We use a
solution of sodium thiosulfate (hypo) with sulfuric acid, which precipitates very
fine grains of sulfur. As the sulfur precipitates, the grains first start very small,
and the scattering is a little bluish. As it precipitates more it gets more intense,
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and then it will get whitish as the particles get bigger. In addition, the light
which goes straight through will have the blue taken out. That is why the sunset
is red, of course, because the light that comes through a lot of air, to the eye has
had a lot of blue light scattered out, so it is yellow-red.

Finally, there is one other important feature which really belongs in the next
chapter, on polarization, but it is so interesting that we point it out now. This
is that the electric field of the scattered light tends to vibrate in a particular
direction. The electric field in the incoming light is oscillating in some way, and
the driven oscillator goes in this same direction, and if we are situated about at
right angles to the beam, we will see polarized light, that is to say, light in which
the electric field is going only one way. In general, the atoms can vibrate in any
direction at right angles to the beam, but if they are driven directly toward or
away from us, we do not see it. So if the incoming light has an electric field which
changes and oscillates in any direction, which we call unpolarized light, then the
light which is coming out at 90◦ to the beam vibrates in only one direction! (See
Fig. 32-3.)

k

Incident beam
(unpolarized)

Electron
moves in
plane ⊥ k

Radiation scattered
⊥ k is plane polarized

−

+
Atom

Fig. 32-3. Illustration of the origin of the polarization of radiation
scattered at right angles to the incident beam.

There is a substance called polaroid which has the property that when light
goes through it, only the piece of the electric field which is along one particular
axis can get through. We can use this to test for polarization, and indeed we find
the light scattered by the hypo solution to be strongly polarized.

32-15



33

Polarization

33-1 The electric vector of light

In this chapter we shall consider those phenomena which depend on the fact
that the electric field that describes the light is a vector. In previous chapters
we have not been concerned with the direction of oscillation of the electric field,
except to note that the electric vector lies in a plane perpendicular to the direction
of propagation. The particular direction in this plane has not concerned us. We
now consider those phenomena whose central feature is the particular direction
of oscillation of the electric field.

In ideally monochromatic light, the electric field must oscillate at a definite
frequency, but since the x-component and the y-component can oscillate indepen-
dently at a definite frequency, we must first consider the resultant effect produced
by superposing two independent oscillations at right angles to each other. What
kind of electric field is made up of an x-component and a y-component which
oscillate at the same frequency? If one adds to an x-vibration a certain amount of
y-vibration at the same phase, the result is a vibration in a new direction in the
xy-plane. Figure 33-1 illustrates the superposition of different amplitudes for the
x-vibration and the y-vibration. But the resultants shown in Fig. 33-1 are not
the only possibilities; in all of these cases we have assumed that the x-vibration
and the y-vibration are in phase, but it does not have to be that way. It could
be that the x-vibration and the y-vibration are out of phase.

When the x-vibration and the y-vibration are not in phase, the electric field
vector moves around in an ellipse, and we can illustrate this in a familiar way. If
we hang a ball from a support by a long string, so that it can swing freely in a
horizontal plane, it will execute sinusoidal oscillations. If we imagine horizontal
x- and y-coordinates with their origin at the rest position of the ball, the ball
can swing in either the x- or y-direction with the same pendulum frequency.
By selecting the proper initial displacement and initial velocity, we can set the
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Fig. 33-1. Superposition of x-vibrations and y -vibrations in phase.

ball in oscillation along either the x-axis or the y-axis, or along any straight
line in the xy-plane. These motions of the ball are analogous to the oscillations
of the electric field vector illustrated in Fig. 33-1. In each instance, since the
x-vibrations and the y-vibrations reach their maxima and minima at the same
time, the x- and y-oscillations are in phase. But we know that the most general
motion of the ball is motion in an ellipse, which corresponds to oscillations in
which the x- and y-directions are not in the same phase. The superposition of x-
and y-vibrations which are not in phase is illustrated in Fig. 33-2 for a variety
of angles between the phase of the x-vibration and that of the y-vibration. The
general result is that the electric vector moves around an ellipse. The motion in
a straight line is a particular case corresponding to a phase difference of zero (or
an integral multiple of π); motion in a circle corresponds to equal amplitudes
with a phase difference of 90◦ (or any odd integral multiple of π/2).

In Fig. 33-2 we have labeled the electric field vectors in the x- and y-directions
with complex numbers, which are a convenient representation in which to express
the phase difference. Do not confuse the real and imaginary components of the
complex electric vector in this notation with the x- and y-coordinates of the field.
The x- and y-coordinates plotted in Fig. 33-1 and Fig. 33-2 are actual electric
fields that we can measure. The real and imaginary components of a complex
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Fig. 33-2. Superposition of x-vibrations and y -vibrations with equal
amplitudes but various relative phases. The components Ex and Ey are
expressed in both real and complex notations.

electric field vector are only a mathematical convenience and have no physical
significance.

Now for some terminology. Light is linearly polarized (sometimes called
plane polarized) when the electric field oscillates on a straight line; Fig. 33-1
illustrates linear polarization. When the end of the electric field vector travels in
an ellipse, the light is elliptically polarized. When the end of the electric field
vector travels around a circle, we have circular polarization. If the end of the
electric vector, when we look at it as the light comes straight toward us, goes
around in a counterclockwise direction, we call it right-hand circular polarization.
Figure 33-2(g) illustrates right-hand circular polarization, and Fig. 33-2(c) shows
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left-hand circular polarization. In both cases the light is coming out of the paper.
Our convention for labeling left-hand and right-hand circular polarization is
consistent with that which is used today for all the other particles in physics
which exhibit polarization (e.g., electrons). However, in some books on optics
the opposite conventions are used, so one must be careful.

We have considered linearly, circularly, and elliptically polarized light, which
covers everything except for the case of unpolarized light. Now how can the light
be unpolarized when we know that it must vibrate in one or another of these
ellipses? If the light is not absolutely monochromatic, or if the x- and y-phases
are not kept perfectly together, so that the electric vector first vibrates in one
direction, then in another, the polarization is constantly changing. Remember
that one atom emits during 10−8 sec, and if one atom emits a certain polarization,
and then another atom emits light with a different polarization, the polarizations
will change every 10−8 sec. If the polarization changes more rapidly than we
can detect it, then we call the light unpolarized, because all the effects of the
polarization average out. None of the interference effects of polarization would
show up with unpolarized light. But as we see from the definition, light is
unpolarized only if we are unable to find out whether the light is polarized or
not.

33-2 Polarization of scattered light

The first example of the polarization effect that we have already discussed
is the scattering of light. Consider a beam of light, for example from the sun,
shining on the air. The electric field will produce oscillations of charges in the
air, and motion of these charges will radiate light with its maximum intensity
in a plane normal to the direction of vibration of the charges. The beam from
the sun is unpolarized, so the direction of polarization changes constantly, and
the direction of vibration of the charges in the air changes constantly. If we
consider light scattered at 90◦, the vibration of the charged particles radiates
to the observer only when the vibration is perpendicular to the observer’s line
of sight, and then light will be polarized along the direction of vibration. So
scattering is an example of one means of producing polarization.

33-3 Birefringence

Another interesting effect of polarization is the fact that there are substances
for which the index of refraction is different for light linearly polarized in one
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direction and linearly polarized in another. Suppose that we had some material
which consisted of long, nonspherical molecules, longer than they are wide, and
suppose that these molecules were arranged in the substance with their long axes
parallel. Then what happens when the oscillating electric field passes through this
substance? Suppose that because of the structure of the molecule, the electrons
in the substance respond more easily to oscillations in the direction parallel to
the axes of the molecules than they would respond if the electric field tries to
push them at right angles to the molecular axis. In this way we expect a different
response for polarization in one direction than for polarization at right angles to
that direction. Let us call the direction of the axes of the molecules the optic axis.
When the polarization is in the direction of the optic axis the index of refraction
is different than it would be if the direction of polarization were at right angles
to it. Such a substance is called birefringent. It has two refrangibilities, i.e.,
two indexes of refraction, depending on the direction of the polarization inside
the substance. What kind of a substance can be birefringent? In a birefringent
substance there must be a certain amount of lining up, for one reason or another,
of unsymmetrical molecules. Certainly a cubic crystal, which has the symmetry of
a cube, cannot be birefringent. But long needlelike crystals undoubtedly contain
molecules that are asymmetric, and one observes this effect very easily.

Let us see what effects we would expect if we were to shine polarized light
through a plate of a birefringent substance. If the polarization is parallel to
the optic axis, the light will go through with one velocity; if the polarization is
perpendicular to the axis, the light is transmitted with a different velocity. An
interesting situation arises when, say, light is linearly polarized at 45◦ to the
optic axis. Now the 45◦ polarization, we have already noticed, can be represented
as a superposition of the x- and the y-polarizations of equal amplitude and in
phase, as shown in Fig. 33-2(a). Since the x- and y-polarizations travel with
different velocities, their phases change at a different rate as the light passes
through the substance. So, although at the start the x- and y-vibrations are in
phase, inside the material the phase difference between x- and y-vibrations is
proportional to the depth in the substance. As the light proceeds through the
material the polarization changes as shown in the series of diagrams in Fig. 33-2.
If the thickness of the plate is just right to introduce a 90◦ phase shift between
the x- and y-polarizations, as in Fig. 33-2(c), the light will come out circularly
polarized. Such a thickness is called a quarter-wave plate, because it introduces a
quarter-cycle phase difference between the x- and the y-polarizations. If linearly
polarized light is sent through two quarter-wave plates, it will come out plane-
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polarized again, but at right angles to the original direction, as we can see from
Fig. 33-2(e).

One can easily illustrate this phenomenon with a piece of cellophane. Cello-
phane is made of long, fibrous molecules, and is not isotropic, since the fibers
lie preferentially in a certain direction. To demonstrate birefringence we need a
beam of linearly polarized light, and we can obtain this conveniently by passing
unpolarized light through a sheet of polaroid. Polaroid, which we will discuss
later in more detail, has the useful property that it transmits light that is linearly
polarized parallel to the axis of the polaroid with very little absorption, but
light polarized in a direction perpendicular to the axis of the polaroid is strongly
absorbed. When we pass unpolarized light through a sheet of polaroid, only that
part of the unpolarized beam which is vibrating parallel to the axis of the polaroid
gets through, so that the transmitted beam is linearly polarized. This same
property of polaroid is also useful in detecting the direction of polarization of a
linearly polarized beam, or in determining whether a beam is linearly polarized or
not. One simply passes the beam of light through the polaroid sheet and rotates
the polaroid in the plane normal to the beam. If the beam is linearly polarized,
it will not be transmitted through the sheet when the axis of the polaroid is
normal to the direction of polarization. The transmitted beam is only slightly
attenuated when the axis of the polaroid sheet is rotated through 90◦. If the
transmitted intensity is independent of the orientation of the polaroid, the beam
is not linearly polarized.

To demonstrate the birefringence of cellophane, we use two sheets of polaroid,
as shown in Fig. 33-3. The first gives us a linearly polarized beam which we pass
through the cellophane and then through the second polaroid sheet, which serves
to detect any effect the cellophane may have had on the polarized light passing

POLAROID

CELLOPHANE

Fig. 33-3. An experimental demonstration of the birefringence of
cellophane. The electric vectors in the light are indicated by the dot-
ted lines. The pass axes of the polaroid sheets and optic axes of the
cellophane are indicated by arrows. The incident beam is unpolarized.
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through it. If we first set the axes of the two polaroid sheets perpendicular to each
other and remove the cellophane, no light will be transmitted through the second
polaroid. If we now introduce the cellophane between the two polaroid sheets, and
rotate the sheet about the beam axis, we observe that in general the cellophane
makes it possible for some light to pass through the second polaroid. However,
there are two orientations of the cellophane sheet, at right angles to each other,
which permit no light to pass through the second polaroid. These orientations in
which linearly polarized light is transmitted through the cellophane with no effect
on the direction of polarization must be the directions parallel and perpendicular
to the optic axis of the cellophane sheet.

We suppose that the light passes through the cellophane with two different
velocities in these two different orientations, but it is transmitted without changing
the direction of polarization. When the cellophane is turned halfway between
these two orientations, as shown in Fig. 33-3, we see that the light transmitted
through the second polaroid is bright.

It just happens that ordinary cellophane used in commercial packaging is
very close to a half-wave thickness for most of the colors in white light. Such
a sheet will turn the axis of linearly polarized light through 90◦ if the incident
linearly polarized beam makes an angle of 45◦ with the optic axis, so that the
beam emerging from the cellophane is then vibrating in the right direction to
pass through the second polaroid sheet.

If we use white light in our demonstration, the cellophane sheet will be of the
proper half-wave thickness only for a particular component of the white light,
and the transmitted beam will have the color of this component. The color
transmitted depends on the thickness of the cellophane sheet, and we can vary
the effective thickness of the cellophane by tilting it so that the light passes
through the cellophane at an angle, consequently through a longer path in the
cellophane. As the sheet is tilted the transmitted color changes. With cellophane
of different thicknesses one can construct filters that will transmit different colors.
These filters have the interesting property that they transmit one color when the
two polaroid sheets have their axes perpendicular, and the complementary color
when the axes of the two polaroid sheets are parallel.

Another interesting application of aligned molecules is quite practical. Certain
plastics are composed of very long and complicated molecules all twisted together.
When the plastic is solidified very carefully, the molecules are all twisted in a mass,
so that there are as many aligned in one direction as another, and so the plastic
is not particularly birefringent. Usually there are strains and stresses introduced

33-7



when the material is solidified, so the material is not perfectly homogeneous.
However, if we apply tension to a piece of this plastic material, it is as if we were
pulling a whole tangle of strings, and there will be more strings preferentially
aligned parallel to the tension than in any other direction. So when a stress is
applied to certain plastics, they become birefringent, and one can see the effects
of the birefringence by passing polarized light through the plastic. If we examine
the transmitted light through a polaroid sheet, patterns of light and dark fringes
will be observed (in color, if white light is used). The patterns move as stress is
applied to the sample, and by counting the fringes and seeing where most of them
are, one can determine what the stress is. Engineers use this phenomenon as a
means of finding the stresses in odd-shaped pieces that are difficult to calculate.

Another interesting example of a way of obtaining birefringence is by means
of a liquid substance. Consider a liquid composed of long asymmetric molecules
which carry a plus or minus average charge near the ends of the molecule, so that
the molecule is an electric dipole. In the collisions in the liquid the molecules will
ordinarily be randomly oriented, with as many molecules pointed in one direction
as in another. If we apply an electric field the molecules will tend to line up,
and the moment they line up the liquid becomes birefringent. With two polaroid
sheets and a transparent cell containing such a polar liquid, we can devise an
arrangement with the property that light is transmitted only when the electric
field is applied. So we have an electrical switch for light, which is called a Kerr
cell. This effect, that an electric field can produce birefringence in certain liquids,
is called the Kerr effect.

33-4 Polarizers

So far we have considered substances in which the refractive index is different
for light polarized in different directions. Of very practical value are those crystals
and other substances in which not only the index, but also the coefficient of
absorption, is different for light polarized in different directions. By the same
arguments which supported the idea of birefringence, it is understandable that
absorption can vary with the direction in which the charges are forced to vibrate
in an anisotropic substance. Tourmaline is an old, famous example and polaroid
is another. Polaroid consists of a thin layer of small crystals of herapathite (a
salt of iodine and quinine), all aligned with their axes parallel. These crystals
absorb light when the oscillations are in one direction, and they do not absorb
appreciably when the oscillations are in the other direction.

33-8



Suppose that we send light into a polaroid sheet polarized linearly at an
angle θ to the passing direction. What intensity will come through? This incident
light can be resolved into a component perpendicular to the pass direction which
is proportional to sin θ, and a component along the pass direction which is
proportional to cos θ. The amplitude which comes out of the polaroid is only
the cosine θ part; the sin θ component is absorbed. The amplitude which passes
through the polaroid is smaller than the amplitude which entered, by a factor cos θ.
The energy which passes through the polaroid, i.e., the intensity of the light, is
proportional to the square of cos θ. Cos2 θ, then, is the intensity transmitted
when the light enters polarized at an angle θ to the pass direction. The absorbed
intensity, of course, is sin2 θ.

An interesting paradox is presented by the following situation. We know that
it is not possible to send a beam of light through two polaroid sheets with their
axes crossed at right angles. But if we place a third polaroid sheet between the
first two, with its pass axis at 45◦ to the crossed axes, some light is transmitted.
We know that polaroid absorbs light, it does not create anything. Nevertheless,
the addition of a third polaroid at 45◦ allows more light to get through. The
analysis of this phenomenon is left as an exercise for the student.

One of the most interesting examples of polarization is not in complicated
crystals or difficult substances, but in one of the simplest and most familiar of
situations—the reflection of light from a surface. Believe it or not, when light is
reflected from a glass surface it may be polarized, and the physical explanation of
this is very simple. It was discovered empirically by Brewster that light reflected
from a surface is completely polarized if the reflected beam and the beam refracted
into the material form a right angle. The situation is illustrated in Fig. 33-4. If
the incident beam is polarized in the plane of incidence, there will be no reflection
at all. Only if the incident beam is polarized normal to the plane of incidence will
it be reflected. The reason is very easy to understand. In the reflecting material
the light is polarized transversely, and we know that it is the motion of the charges
in the material which generates the emergent beam, which we call the reflected
beam. The source of this so-called reflected light is not simply that the incident
beam is reflected; our deeper understanding of this phenomenon tells us that the
incident beam drives an oscillation of the charges in the material, which in turn
generates the reflected beam. From Fig. 33-4 it is clear that only oscillations
normal to the paper can radiate in the direction of reflection, and consequently the
reflected beam will be polarized normal to the plane of incidence. If the incident
beam is polarized in the plane of incidence, there will be no reflected light.
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Fig. 33-4. Reflection of linearly polarized light at Brewster’s angle.
The polarization direction is indicated by dashed arrows; round dots
indicate polarization normal to the paper.

This phenomenon is readily demonstrated by reflecting a linearly polarized
beam from a flat piece of glass. If the glass is turned to present different angles
of incidence to the polarized beam, sharp attenuation of the reflected intensity
is observed when the angle of incidence passes through Brewster’s angle. This
attenuation is observed only if the plane of polarization lies in the plane of
incidence. If the plane of polarization is normal to the plane of incidence, the
usual reflected intensity is observed at all angles.

33-5 Optical activity

Another most remarkable effect of polarization is observed in materials com-
posed of molecules which do not have reflection symmetry: molecules shaped
something like a corkscrew, or like a gloved hand, or any shape which, if viewed
through a mirror, would be reversed in the same way that a left-hand glove
reflects as a right-hand glove. Suppose all of the molecules in the substance are
the same, i.e., none is a mirror image of any other. Such a substance may show
an interesting effect called optical activity, whereby as linearly polarized light
passes through the substance, the direction of polarization rotates about the
beam axis.

To understand the phenomenon of optical activity requires some calculation,
but we can see qualitatively how the effect might come about, without actually
carrying out the calculations. Consider an asymmetric molecule in the shape
of a spiral, as shown in Fig. 33-5. Molecules need not actually be shaped like a
corkscrew in order to exhibit optical activity, but this is a simple shape which
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Fig. 33-5. A molecule with a shape that is not symmetric when
reflected in a mirror. A beam of light, linearly polarized in the y -direction,
falls on the molecule.

we shall take as a typical example of those that do not have reflection symmetry.
When a light beam linearly polarized along the y-direction falls on this molecule,
the electric field will drive charges up and down the helix, thereby generating
a current in the y-direction and radiating an electric field Ey polarized in the
y-direction. However, if the electrons are constrained to move along the spiral,
they must also move in the x-direction as they are driven up and down. When
a current is flowing up the spiral, it is also flowing into the paper at z = z1
and out of the paper at z = z1 +A, if A is the diameter of our molecular spiral.
One might suppose that the current in the x-direction would produce no net
radiation, since the currents are in opposite directions on opposite sides of the
spiral. However, if we consider the x-components of the electric field arriving
at z = z2, we see that the field radiated by the current at z = z1 + A and the
field radiated from z = z1 arrive at z2 separated in time by the amount A/c,
and thus separated in phase by π + ωA/c. Since the phase difference is not
exactly π, the two fields do not cancel exactly, and we are left with a small
x-component in the electric field generated by the motion of the electrons in the
molecule, whereas the driving electric field had only a y-component. This small
x-component, added to the large y-component, produces a resultant field that is
tilted slightly with respect to the y-axis, the original direction of polarization.
As the light moves through the material, the direction of polarization rotates
about the beam axis. By drawing a few examples and considering the currents
that will be set in motion by an incident electric field, one can convince himself
that the existence of optical activity and the sign of the rotation are independent
of the orientation of the molecules.

Corn syrup is a common substance which possesses optical activity. The
phenomenon is easily demonstrated with a polaroid sheet to produce a linearly
polarized beam, a transmission cell containing corn syrup, and a second polaroid
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sheet to detect the rotation of the direction of polarization as the light passes
through the corn syrup.

33-6 The intensity of reflected light

Let us now consider quantitatively the reflection coefficient as a function of
angle. Figure 33-6(a) shows a beam of light striking a glass surface, where it
is partly reflected and partly refracted into the glass. Let us suppose that the
incident beam, of unit amplitude, is linearly polarized normal to the plane of the
paper. We will call the amplitude of the reflected wave b, and the amplitude of
the refracted wave a. The refracted and reflected waves will, of course, be linearly
polarized, and the electric field vectors of the incident, reflected, and refracted
waves are all parallel to each other. Figure 33-6(b) shows the same situation, but
now we suppose that the incident wave, of unit amplitude, is polarized in the
plane of the paper. Now let us call the amplitude of the reflected and refracted
wave B and A, respectively.

We wish to calculate how strong the reflection is in the two situations illus-
trated in Fig. 33-6(a) and 33-6(b). We already know that when the angle between
the reflected beam and refracted beam is a right angle, there will be no reflected
wave in Fig. 33-6(b), but let us see if we cannot get a quantitative answer—an
exact formula for B and b as a function of the angle of incidence, i.

The principle that we must understand is as follows. The currents that are
generated in the glass produce two waves. First, they produce the reflected wave.

(a)

Glass1

−1
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b
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(b)
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B
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Fig. 33-6. An incident wave of unit amplitude is reflected and refracted
at a glass surface. In (a) the incident wave is linearly polarized normal
to the plane of the paper. In (b) the incident wave is linearly polarized
in the direction shown by the dashed arrows.
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Moreover, we know that if there were no currents generated in the glass, the
incident wave would continue straight into the glass. Remember that all the
sources in the world make the net field. The source of the incident light beam
produces a field of unit amplitude, which would move into the glass along the
dotted line in the figure. This field is not observed, and therefore the currents
generated in the glass must produce a field of amplitude −1, which moves along
the dotted line. Using this fact, we will calculate the amplitude of the refracted
waves, a and A.

In Fig. 33-6(a) we see that the field of amplitude b is radiated by the motion
of charges inside the glass which are responding to a field a inside the glass, and
that therefore b is proportional to a. We might suppose that since our two figures
are exactly the same, except for the direction of polarization, the ratio B/A
would be the same as the ratio b/a. This is not quite true, however, because in
Fig. 33-6(b) the polarization directions are not all parallel to each other, as they
are in Fig. 33-6(a). It is only the component of A which is perpendicular to B,
A cos (i+ r), which is effective in producing B. The correct expression for the
proportionality is then

b

a
= B

A cos (i+ r) . (33.1)

Now we use a trick. We know that in both (a) and (b) of Fig. 33-6 the electric
field in the glass must produce oscillations of the charges, which generate a field
of amplitude −1, polarized parallel to the incident beam, and moving in the
direction of the dotted line. But we see from part (b) of the figure that only
the component of A that is normal to the dashed line has the right polarization
to produce this field, whereas in Fig. 33-6(a) the full amplitude a is effective,
since the polarization of wave a is parallel to the polarization of the wave of
amplitude −1. Therefore we can write

A cos (i− r)
a

= −1
−1 , (33.2)

since the two amplitudes on the left side of Eq. (33.2) each produce the wave of
amplitude −1.

Dividing Eq. (33.1) by Eq. (33.2), we obtain

B

b
= cos (i+ r)

cos (i− r) , (33.3)
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a result which we can check against what we already know. If we set (i+r) = 90◦,
Eq. (33.3) gives B = 0, as Brewster says it should be, so our results so far are at
least not obviously wrong.

We have assumed unit amplitudes for the incident waves, so that |B|2/12 is
the reflection coefficient for waves polarized in the plane of incidence, and |b|2/12

is the reflection coefficient for waves polarized normal to the plane of incidence.
The ratio of these two reflection coefficients is determined by Eq. (33.3).

Now we perform a miracle, and compute not just the ratio, but each coefficient
|B|2 and |b|2 individually! We know from the conservation of energy that the
energy in the refracted wave must be equal to the incident energy minus the energy
in the reflected wave, 1 − |B|2 in one case, 1 − |b|2 in the other. Furthermore,
the energy which passes into the glass in Fig. 33-6(b) is to the energy which
passes into the glass in Fig. 33-6(a) as the ratio of the squares of the refracted
amplitudes, |A|2/|a|2. One might ask whether we really know how to compute
the energy inside the glass, because, after all, there are energies of motion of the
atoms in addition to the energy in the electric field. But it is obvious that all of
the various contributions to the total energy will be proportional to the square
of the amplitude of the electric field. Therefore we can write

1− |B|2
1− |b|2 = |A|

2

|a|2
. (33.4)

We now substitute Eq. (33.2) to eliminate A/a from the expression above,
and express B in terms of b by means of Eq. (33.3):

1− |b|2 cos2 (i+ r)
cos2 (i− r)

1− |b|2 = 1
cos2 (i− r) . (33.5)

This equation contains only one unknown amplitude, b. Solving for |b|2, we
obtain

|b|2 = sin2 (i− r)
sin2 (i+ r)

(33.6)

and, with the aid of (33.3),

|B|2 = tan2 (i− r)
tan2 (i+ r)

. (33.7)
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So we have found the reflection coefficient |b|2 for an incident wave polarized
perpendicular to the plane of incidence, and also the reflection coefficient |B|2
for an incident wave polarized in the plane of incidence!

It is possible to go on with arguments of this nature and deduce that b is real.
To prove this, one must consider a case where light is coming from both sides of
the glass surface at the same time, a situation not easy to arrange experimentally,
but fun to analyze theoretically. If we analyze this general case, we can prove
that b must be real, and therefore, in fact, that b = ± sin (i− r)/ sin (i+ r). It
is even possible to determine the sign by considering the case of a very, very
thin layer in which there is reflection from the front and from the back surfaces,
and calculating how much light is reflected. We know how much light should be
reflected by a thin layer, because we know how much current is generated, and
we have even worked out the fields produced by such currents.

One can show by these arguments that

b = − sin (i− r)
sin (i+ r) , B = − tan (i− r)

tan (i+ r) . (33.8)

These expressions for the reflection coefficients as a function of the angles of
incidence and refraction are called Fresnel’s reflection formulas.

If we consider the limit as the angles i and r go to zero, we find, for the case
of normal incidence, that B2 ≈ b2 ≈ (i− r)2/(i+ r)2 for both polarizations, since
the sines are practically equal to the angles, as are also the tangents. But we
know that sin i/ sin r = n, and when the angles are small, i/r ≈ n. It is thus easy
to show that the coefficient of reflection for normal incidence is

B2 = b2 = (n− 1)2

(n+ 1)2 .

It is interesting to find out how much light is reflected at normal incidence
from the surface of water, for example. For water, n is 4/3, so that the reflection
coefficient is (1/7)2 ≈ 2%. At normal incidence, only two percent of the light is
reflected from the surface of water.

33-7 Anomalous refraction

The last polarization effect we shall consider was actually one of the first to be
discovered: anomalous refraction. Sailors visiting Iceland brought back to Europe
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crystals of Iceland spar (CaCO3) which had the amusing property of making
anything seen through the crystal appear doubled, i.e., as two images. This came
to the attention of Huygens, and played an important role in the discovery of
polarization. As is often the case, the phenomena which are discovered first are
the hardest, ultimately, to explain. It is only after we understand a physical
concept thoroughly that we can carefully select those phenomena which most
clearly and simply demonstrate the concept.

Ex

Ey

wave front

wave front

optic
axis

optic
axis

Fig. 33-7. The upper diagram shows the path of the ordinary ray
through a doubly refracting crystal. The extraordinary ray is shown in
the lower diagram. The optic axis lies in the plane of the paper.

Anomalous refraction is a particular case of the same birefringence that we
considered earlier. Anomalous refraction comes about when the optic axis, the
long axis of our asymmetric molecules, is not parallel to the surface of the crystal.
In Fig. 33-7 are drawn two pieces of birefringent material, with the optic axis as
shown. In the upper figure, the incident beam falling on the material is linearly
polarized in a direction perpendicular to the optic axis of the material. When
this beam strikes the surface of the material, each point on the surface acts as a
source of a wave which travels into the crystal with velocity v⊥, the velocity of
light in the crystal when the plane of polarization is normal to the optic axis.
The wavefront is just the envelope or locus of all these little spherical waves, and
this wavefront moves straight through the crystal and out the other side. This is
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just the ordinary behavior we would expect, and this ray is called the ordinary
ray.

In the lower figure the linearly polarized light falling on the crystal has its
direction of polarization turned through 90◦, so that the optic axis lies in the
plane of polarization. When we now consider the little waves originating at any
point on the surface of the crystal, we see that they do not spread out as spherical
waves. Light travelling along the optic axis travels with velocity v⊥ because
the polarization is perpendicular to the optic axis, whereas the light travelling
perpendicular to the optic axis travels with velocity v‖ because the polarization
is parallel to the optic axis. In a birefringent material v‖ 6= v⊥, and in the figure
v‖ < v⊥. A more complete analysis will show that the waves spread out on the
surface of an ellipsoid, with the optic axis as major axis of the ellipsoid. The
envelope of all these elliptical waves is the wavefront which proceeds through
the crystal in the direction shown. Again, at the back surface the beam will be
deflected just as it was at the front surface, so that the light emerges parallel
to the incident beam, but displaced from it. Clearly, this beam does not follow
Snell’s law, but goes in an extraordinary direction. It is therefore called the
extraordinary ray.

When an unpolarized beam strikes an anomalously refracting crystal, it is
separated into an ordinary ray, which travels straight through in the normal
manner, and an extraordinary ray which is displaced as it passes through the
crystal. These two emergent rays are linearly polarized at right angles to each
other. That this is true can be readily demonstrated with a sheet of polaroid
to analyze the polarization of the emergent rays. We can also demonstrate that
our interpretation of this phenomenon is correct by sending linearly polarized
light into the crystal. By properly orienting the direction of polarization of the
incident beam, we can make this light go straight through without splitting, or
we can make it go through without splitting but with a displacement.

We have represented all the various polarization cases in Figs. 33-1 and 33-2
as superpositions of two special polarization cases, namely x and y in various
amounts and phases. Other pairs could equally well have been used. Polarization
along any two perpendicular axes x′, y′ inclined to x and y would serve as well [for
example, any polarization can be made up of superpositions of cases (a) and (e)
of Fig. 33-2]. It is interesting, however, that this idea can be extended to other
cases also. For example, any linear polarization can be made up by superposing
suitable amounts at suitable phases of right and left circular polarizations [cases
(c) and (g) of Fig. 33-2], since two equal vectors rotating in opposite directions
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Fig. 33-8. Two oppositely rotating vectors of equal amplitude add to
produce a vector in a fixed direction, but with an oscillating amplitude.

add to give a single vector oscillating in a straight line (Fig. 33-8). If the phase
of one is shifted relative to the other, the line is inclined. Thus all the pictures
of Fig. 33-1 could be labeled “the superposition of equal amounts of right and
left circularly polarized light at various relative phases.” As the left slips behind
the right in phase, the direction of the linear polarization changes. Therefore
optically active materials are, in a sense, birefringent. Their properties can be
described by saying that they have different indexes for right- and left-hand
circularly polarized light. Superposition of right and left circularly polarized light
of different intensities produces elliptically polarized light.

Circularly polarized light has another interesting property—it carries angular
momentum (about the direction of propagation). To illustrate this, suppose that
such light falls on an atom represented by a harmonic oscillator that can be
displaced equally well in any direction in the plane xy. Then the x-displacement of
the electron will respond to the Ex component of the field, while the y-component
responds, equally, to the equal Ey component of the field but 90◦ behind in phase.
That is, the responding electron goes around in a circle, with angular velocity ω,
in response to the rotating electric field of the light (Fig. 33-9). Depending on
the damping characteristics of the response of the oscillator, the direction of the
displacement a of the electron, and the direction of the force qeE on it need not
be the same but they rotate around together. The E may have a component at
right angles to a, so work is done on the system and a torque τ is exerted. The
work done per second is τω. Over a period of time T the energy absorbed is τωT ,
while τT is the angular momentum delivered to the matter absorbing the energy.
We see therefore that a beam of right circularly polarized light containing a total
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Fig. 33-9. A charge moving in a circle in response to circularly polarized
light.

energy E carries an angular momentum (with vector directed along the direction
of propagation) E/ω. For when this beam is absorbed that angular momentum is
delivered to the absorber. Left-hand circular light carries angular momentum of
the opposite sign, −E/ω.
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34

Relativistic Effects in Radiation

34-1 Moving sources

In the present chapter we shall describe a number of miscellaneous effects
in connection with radiation, and then we shall be finished with the classical
theory of light propagation. In our analysis of light, we have gone rather far and
into considerable detail. The only phenomena of any consequence associated
with electromagnetic radiation that we have not discussed is what happens if
radiowaves are contained in a box with reflecting walls, the size of the box
being comparable to a wavelength, or are transmitted down a long tube. The
phenomena of so-called cavity resonators and waveguides we shall discuss later;
we shall first use another physical example—sound—and then we shall return to
this subject. Except for this, the present chapter is our last consideration of the
classical theory of light.

We can summarize all the effects that we shall now discuss by remarking that
they have to do with the effects of moving sources. We no longer assume that
the source is localized, with all its motion being at a relatively low speed near a
fixed point.

We recall that the fundamental laws of electrodynamics say that, at large
distances from a moving charge, the electric field is given by the formula

E = − q

4πε0c2
d2eR′

dt2
. (34.1)

The second derivative of the unit vector eR′ which points in the apparent direction
of the charge, is the determining feature of the electric field. This unit vector
does not point toward the present position of the charge, of course, but rather in
the direction that the charge would seem to be, if the information travels only at
the finite speed c from the charge to the observer.

34-1



Associated with the electric field is a magnetic field, always at right angles
to the electric field and at right angles to the apparent direction of the source,
given by the formula

B = −eR′ ×E/c. (34.2)

Until now we have considered only the case in which motions are nonrelativistic
in speed, so that there is no appreciable motion in the direction of the source
to be considered. Now we shall be more general and study the case where the
motion is at an arbitrary velocity, and see what different effects may be expected
in those circumstances. We shall let the motion be at an arbitrary speed, but of
course we shall still assume that the detector is very far from the source.

x

y

z

R0

eR′

O

P A

T


x(τ)
y(τ)
z(τ)

Fig. 34-1. The path of a moving charge. The true position at the
time τ is at T , but the retarded position is at A.

We already know from our discussion in Chapter 28 that the only things that
count in d2eR′/dt2 are the changes in the direction of eR′ . Let the coordinates
of the charge be (x, y, z), with z measured along the direction of observation
(Fig. 34-1). At a given moment in time, say the moment τ , the three components
of the position are x(τ), y(τ), and z(τ). The distance R is very nearly equal
to R(τ) = R0 + z(τ). Now the direction of the vector eR′ depends mainly on x
and y, but hardly at all upon z: the transverse components of the unit vector are
x/R and y/R, and when we differentiate these components we get things like R2

in the denominator:

d(x/R)
dt

= dx/dt

R
− dz

dt

x

R2 .

So, when we are far enough away the only terms we have to worry about are the
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variations of x and y. Thus we take out the factor R0 and get

Ex = − q

4πε0c2R0

d2x′

dt2
,

Ey = − q

4πε0c2R0

d2y′

dt2
, (34.3)

where R0 is the distance, more or less, to q; let us take it as the distance OP to the
origin of the coordinates (x, y, z). Thus the electric field is a constant multiplied
by a very simple thing, the second derivatives of the x- and y-coordinates. (We
could put it more mathematically by calling x and y the transverse components
of the position vector r of the charge, but this would not add to the clarity.)

Of course, we realize that the coordinates must be measured at the retarded
time. Here we find that z(τ) does affect the retardation. What time is the
retarded time? If the time of observation is called t (the time at P ) then the
time τ to which this corresponds at A is not the time t, but is delayed by the
total distance that the light has to go, divided by the speed of light. In the
first approximation, this delay is R0/c, a constant (an uninteresting feature),
but in the next approximation we must include the effects of the position in the
z-direction at the time τ , because if q is a little farther back, there is a little
more retardation. This is an effect that we have neglected before, and it is the
only change needed in order to make our results valid for all speeds.

What we must now do is to choose a certain value of t and calculate the value
of τ from it, and thus find out where x and y are at that τ . These are then the
retarded x and y, which we call x′ and y′, whose second derivatives determine
the field. Thus τ is determined by

t = τ + R0

c
+ z(τ)

c
and

x′(t) = x(τ), y′(t) = y(τ). (34.4)

Now these are complicated equations, but it is easy enough to make a geometrical
picture to describe their solution. This picture will give us a good qualitative
feeling for how things work, but it still takes a lot of detailed mathematics to
deduce the precise results of a complicated problem.
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Fig. 34-2. A geometrical solution of Eq. (34.5) to find x ′(t).

34-2 Finding the “apparent” motion

The above equation has an interesting simplification. If we disregard the
uninteresting constant delay R0/c, which just means that we must change the
origin of t by a constant, then it says that

ct = cτ + z(τ), x′ = x(τ), y′ = y(τ). (34.5)

Now we need to find x′ and y′ as functions of t, not τ , and we can do this in
the following way: Eq. (34.5) says that we should take the actual motion and
add a constant (the speed of light) times τ . What that turns out to mean is
shown in Fig. 34-2. We take the actual motion of the charge (shown at left) and
imagine that as it is going around it is being swept away from the point P at
the speed c (there are no contractions from relativity or anything like that; this
is just a mathematical addition of the cτ). In this way we get a new motion,
in which the line-of-sight coordinate is ct, as shown at the right. (The figure
shows the result for a rather complicated motion in a plane, but of course the
motion may not be in one plane—it may be even more complicated than motion
in a plane.) The point is that the horizontal (i.e., line-of-sight) distance now is
no longer the old z, but is z + cτ , and therefore is ct. Thus we have found a
picture of the curve, x′ (and y′) against t! All we have to do to find the field
is to look at the acceleration of this curve, i.e., to differentiate it twice. So the
final answer is: in order to find the electric field for a moving charge, take the
motion of the charge and translate it back at the speed c to “open it out”; then
the curve, so drawn, is a curve of the x′ and y′ positions of the function of t. The
acceleration of this curve gives the electric field as a function of t. Or, if we wish,
we can now imagine that this whole “rigid” curve moves forward at the speed
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Fig. 34-3. The x ′(t) curve for a particle moving at constant speed v =

0.94c in a circle.

c through the plane of sight, so that the point of intersection with the plane of
sight has the coordinates x′ and y′. The acceleration of this point makes the
electric field. This solution is just as exact as the formula we started with—it is
simply a geometrical representation.

If the motion is relatively slow, for instance if we have an oscillator just going
up and down slowly, then when we shoot that motion away at the speed of light,
we would get, of course, a simple cosine curve, and that gives a formula we have
been looking at for a long time: it gives the field produced by an oscillating charge.
A more interesting example is an electron moving rapidly, very nearly at the
speed of light, in a circle. If we look in the plane of the circle, the retarded x′(t)
appears as shown in Fig. 34-3. What is this curve? If we imagine a radius vector
from the center of the circle to the charge, and if we extend this radial line a
little bit past the charge, just a shade if it is going fast, then we come to a point
on the line that goes at the speed of light. Therefore, when we translate the
motion back at the speed of light, that corresponds to having a wheel with a
charge on it rolling backward (without slipping) at the speed c; thus we find a
curve which is very close to a cycloid—it is called a curtate cycloid. If the charge
is going very nearly at the speed of light, the “cusps” are very sharp indeed; if it
went at exactly the speed of light, they would be actual cusps, infinitely sharp.
“Infinitely sharp” is interesting; it means that near a cusp the second derivative
is enormous. Once in each cycle we get a sharp pulse of electric field. This is
not at all what we would get from a nonrelativistic motion, where each time the
charge goes around there is an oscillation which is of about the same “strength”
all the time. Instead, there are very sharp pulses of electric field spaced at time
intervals T0 apart, where T0 is the period of revolution. These strong electric
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fields are emitted in a narrow cone in the direction of motion of the charge. When
the charge is moving away from P , there is very little curvature and there is very
little radiated field in the direction of P .

34-3 Synchrotron radiation

We have very fast electrons moving in circular paths in the synchrotron; they
are travelling at very nearly the speed c, and it is possible to see the above
radiation as actual light! Let us discuss this in more detail.

In the synchrotron we have electrons which go around in circles in a uniform
magnetic field. First, let us see why they go in circles. From Eq. (28.2), we know
that the force on a particle in a magnetic field is given by

F = qv ×B, (34.6)

and it is at right angles both to the field and to the velocity. As usual, the force is
equal to the rate of change of momentum with time. If the field is directed upward
out of the paper, the momentum of the particle and the force on it are as shown in
Fig. 34-4. Since the force is at right angles to the velocity, the kinetic energy, and
therefore the speed, remains constant. All the magnetic field does is to change
the direction of motion. In a short time ∆t, the momentum vector changes at
right angles to itself by an amount ∆p = F ∆t, and therefore p turns through
an angle ∆θ = ∆p/p = qvB∆t/p, since |F | = qvB. But in this same time the
particle has gone a distance ∆s = v∆t. Evidently, the two lines AB and CD will
intersect at a point O such that OA = OC = R, where ∆s = R∆θ. Combining

OA

C

B

D R

F

∆θ
p

∆p

p + ∆p

Fig. 34-4. A charged particle moves in a circular (or helical) path in a
uniform magnetic field.
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this with the previous expressions, we find R∆θ/∆t = Rω = v = qvBR/p, from
which we find

p = qBR (34.7)
and

ω = qvB/p. (34.8)

Since this same argument can be applied during the next instant, the next, and
so on, we conclude that the particle must be moving in a circle of radius R, with
angular velocity ω.

The result that the momentum of the particle is equal to a charge times the
radius times the magnetic field is a very important law that is used a great deal.
It is important for practical purposes because if we have elementary particles
which all have the same charge and we observe them in a magnetic field, we
can measure the radii of curvature of their orbits and, knowing the magnetic
field, thus determine the momenta of the particles. If we multiply both sides of
Eq. (34.7) by c, and express q in terms of the electronic charge, we can measure
the momentum in units of the electron volt. In those units our formula is

pc(eV) = 3× 108(q/qe)BR, (34.9)

where B, R, and the speed of light are all expressed in the mks system, the latter
being 3× 108, numerically.

The mks unit of magnetic field is called a weber per square meter. There is
an older unit which is still in common use, called a gauss. One weber/m2 is
equal to 104 gauss. To give an idea of how big magnetic fields are, the strongest
magnetic field that one can usually make in iron is about 1.5× 104 gauss; beyond
that, the advantage of using iron disappears. Today, electromagnets wound
with superconducting wire are able to produce steady fields of over 105 gauss
strength—that is, 10 mks units. The field of the earth is a few tenths of a gauss
at the equator.

Returning to Eq. (34.9), we could imagine the synchrotron running at a billion
electron volts, so pc would be 109 for a billion electron volts. (We shall come
back to the energy in just a moment.) Then, if we had a B corresponding to, say,
10,000 gauss, which is a good substantial field, one mks unit, then we see that R
would have to be 3.3 meters. The actual radius of the Caltech synchrotron is
3.7 meters, the field is a little bigger, and the energy is 1.5 billion, but it is the
same idea. So now we have a feeling for why the synchrotron has the size it has.
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We have calculated the momentum, but we know that the total energy,
including the rest energy, is given by W =

√
p2c2 +m2c4, and for an electron

the rest energy corresponding to mc2 is 0.511 × 106 eV, so when pc is 109 eV
we can neglect mc2, and so for all practical purposes W = pc when the speeds
are relativistic. It is practically the same to say the energy of an electron is a
billion electron volts as to say the momentum times c is a billion electron volts.
If W = 109 eV, it is easy to show that the speed differs from the speed of light
by but one part in eight million!

We turn now to the radiation emitted by such a particle. A particle moving
on a circle of radius 3.3 meters, or 20 meters circumference, goes around once
in roughly the time it takes light to go 20 meters. So the wavelength that
should be emitted by such a particle would be 20 meters—in the shortwave
radio region. But because of the piling up effect that we have been discussing
(Fig. 34-3), and because the distance by which we must extend the radius to
reach the speed c is only one part in eight million of the radius, the cusps of the
curtate cycloid are enormously sharp compared with the distance between them.
The acceleration, which involves a second derivative with respect to time, gets
twice the “compression factor” of 8× 106 because the time scale is reduced by
eight million twice in the neighborhood of the cusp. Thus we might expect the
effective wavelength to be much shorter, to the extent of 64 times 1012 smaller
than 20 meters, and that corresponds to the x-ray region. (Actually, the cusp
itself is not the entire determining factor; one must also include a certain region
about the cusp. This changes the factor to the 3/2 power instead of the square,
but still leaves us above the optical region.) Thus, even though a slowly moving
electron would have radiated 20-meter radiowaves, the relativistic effect cuts
down the wavelength so much that we can see it! Clearly, the light should be
polarized, with the electric field perpendicular to the uniform magnetic field.

To further appreciate what we would observe, suppose that we were to take
such light (to simplify things, because these pulses are so far apart in time, we
shall just take one pulse) and direct it onto a diffraction grating, which is a lot
of scattering wires. After this pulse comes away from the grating, what do we
see? (We should see red light, blue light, and so on, if we see any light at all.)
What do we see? The pulse strikes the grating head-on, and all the oscillators
in the grating, together, are violently moved up and then back down again, just
once. They then produce effects in various directions, as shown in Fig. 34-5. But
the point P is closer to one end of the grating than to the other, so at this point
the electric field arrives first from wire A, next from B, and so on; finally, the
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Fig. 34-5. The light which strikes a grating as a single, sharp pulse is
scattered in various directions as different colors.

pulse from the last wire arrives. In short, the sum of the reflections from all the
successive wires is as shown in Fig. 34-6(a); it is an electric field which is a series
of pulses, and it is very like a sine wave whose wavelength is the distance between
the pulses, just as it would be for monochromatic light striking the grating! So,
we get colored light all right. But, by the same argument, will we not get light
from any kind of a “pulse”? No. Suppose that the curve were much smoother;
then we would add all the scattered waves together, separated by a small time
between them (Fig. 34-6b). Then we see that the field would not shake at all,
it would be a very smooth curve, because each pulse does not vary much in the
time interval between pulses.

(a) (b)

Fig. 34-6. The total electric field due to a series of (a) sharp pulses
and (b) smooth pulses.

The electromagnetic radiation emitted by relativistic charged particles cir-
culating in a magnetic field is called synchrotron radiation. It is so named for
obvious reasons, but it is not limited specifically to synchrotrons, or even to
earthbound laboratories. It is exciting and interesting that it also occurs in
nature!
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Fig. 34-7. The crab nebula as seen in all colors (no filter).

34-4 Cosmic synchrotron radiation

In the year 1054 the Chinese and Japanese civilizations were among the most
advanced in the world; they were conscious of the external universe, and they
recorded, most remarkably, an explosive bright star in that year. (It is amazing
that none of the European monks, writing all the books of the middle ages, even
bothered to write that a star exploded in the sky, but they did not.) Today we
may take a picture of that star, and what we see is shown in Fig. 34-7. On the
outside is a big mass of red filaments, which is produced by the atoms of the thin
gas “ringing” at their natural frequencies; this makes a bright line spectrum with
different frequencies in it. The red happens in this case to be due to nitrogen.
On the other hand, in the central region is a mysterious, fuzzy patch of light
in a continuous distribution of frequency, i.e., there are no special frequencies
associated with particular atoms. Yet this is not dust “lit up” by nearby stars,
which is one way by which one can get a continuous spectrum. We can see stars
through it, so it is transparent, but it is emitting light.
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(a) (b)

Fig. 34-8. The crab nebula as seen through a blue filter and a polaroid.
(a) Electric vector vertical. (b) Electric vector horizontal.

In Fig. 34-8 we look at the same object, using light in a region of the spectrum
which has no bright spectral line, so that we see only the central region. But
in this case, also, polarizers have been put on the telescope, and the two views
correspond to two orientations 90◦ apart. We see that the pictures are different!
That is to say, the light is polarized. The reason, presumably, is that there is a
local magnetic field, and many very energetic electrons are going around in that
magnetic field.

We have just illustrated how the electrons could go around the field in a circle.
We can add to this, of course, any uniform motion in the direction of the field,
since the force, qv × B, has no component in this direction and, as we have
already remarked, the synchrotron radiation is evidently polarized in a direction
at right angles to the projection of the magnetic field onto the plane of sight.

Putting these two facts together, we see that in a region where one picture is
bright and the other one is black, the light must have its electric field completely
polarized in one direction. This means that there is a magnetic field at right
angles to this direction, while in other regions, where there is a strong emission in
the other picture, the magnetic field must be the other way. If we look carefully
at Fig. 34-8, we may notice that there is, roughly speaking, a general set of
“lines” that go one way in one picture and at right angles to this in the other.
The pictures show a kind of fibrous structure. Presumably, the magnetic field
lines will tend to extend relatively long distances in their own direction, and
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so, presumably, there are long regions of magnetic field with all the electrons
spiralling one way, while in another region the field is the other way and the
electrons are also spiralling that way.

What keeps the electron energy so high for so long a time? After all, it
is 900 years since the explosion—how can they keep going so fast? How they
maintain their energy and how this whole thing keeps going is still not thoroughly
understood.

34-5 Bremsstrahlung

We shall next remark briefly on one other interesting effect of a very fast-
moving particle that radiates energy. The idea is very similar to the one we have
just discussed. Suppose that there are charged particles in a piece of matter and
a very fast electron, say, comes by (Fig. 34-9). Then, because of the electric field
around the atomic nucleus the electron is pulled, accelerated, so that the curve
of its motion has a slight kink or bend in it. If the electron is travelling at very
nearly the speed of light, what is the electric field produced in the direction C?
Remember our rule: we take the actual motion, translate it backwards at speed c,
and that gives us a curve whose curvature measures the electric field. It was
coming toward us at the speed v, so we get a backward motion, with the whole
picture compressed into a smaller distance in proportion as c− v is smaller than
c. So, if 1− v/c� 1, there is a very sharp and rapid curvature at B′, and when
we take the second derivative of that we get a very high field in the direction
of the motion. So when very energetic electrons move through matter they spit
radiation in a forward direction. This is called bremsstrahlung. As a matter of
fact, the synchrotron is used, not so much to make high-energy electrons (actually
if we could get them out of the machine more conveniently we would not say
this) as to make very energetic photons—gamma rays—by passing the energetic
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Fig. 34-9. A fast electron passing near a nucleus radiates energy in
the direction of its motion.
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electrons through a solid tungsten “target,” and letting them radiate photons
from this bremsstrahlung effect.

34-6 The Doppler effect

Now we go on to consider some other examples of the effects of moving sources.
Let us suppose that the source is a stationary atom which is oscillating at one
of its natural frequencies, ω0. Then we know that the frequency of the light
we would observe is ω0. But now let us take another example, in which we
have a similar oscillator oscillating with a frequency ω1, and at the same time
the whole atom, the whole oscillator, is moving along in a direction toward the
observer at velocity v. Then the actual motion in space, of course, is as shown in
Fig. 34-10(a). Now we play our usual game, we add cτ ; that is to say, we translate
the whole curve backward and we find then that it oscillates as in Fig. 34-10(b).
In a given amount of time τ , when the oscillator would have gone a distance vτ ,
on the x′ vs. ct diagram it goes a distance (c − v)τ . So all the oscillations of
frequency ω1 in the time ∆τ are now found in the interval ∆t = (1− v/c) ∆τ ;
they are squashed together, and as this curve comes by us at speed c, we will see
light of a higher frequency, higher by just the compression factor (1− v/c). Thus
we observe

ω = ω1

1− v/c . (34.10)

We can, of course, analyze this situation in various other ways. Suppose that
the atom were emitting, instead of sine waves, a series of pulses, pip, pip, pip,
pip, at a certain frequency ω1. At what frequency would they be received by
us? The first one that arrives has a certain delay, but the next one is delayed
less because in the meantime the atom moves closer to the receiver. Therefore,
the time between the “pips” is decreased by the motion. If we analyze the
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Fig. 34-10. The x-z and x ′-t curves of a moving oscillator.
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geometry of the situation, we find that the frequency of the pips is increased by
the factor 1/(1− v/c).

Is ω = ω0/(1− v/c), then, the frequency that would be observed if we took
an ordinary atom, which had a natural frequency ω0, and moved it toward the
receiver at speed v? No; as we well know, the natural frequency ω1 of a moving
atom is not the same as that measured when it is standing still, because of the
relativistic dilation in the rate of passage of time. Thus if ω0 were the true
natural frequency, then the modified natural frequency ω1 would be

ω1 = ω0
√

1− v2/c2. (34.11)

Therefore the observed frequency ω is

ω = ω0
√

1− v2/c2

1− v/c . (34.12)

The shift in frequency observed in the above situation is called the Doppler
effect: if something moves toward us the light it emits appears more violet, and
if it moves away it appears more red.

We shall now give two more derivations of this same interesting and important
result. Suppose, now, that the source is standing still and is emitting waves
at frequency ω0, while the observer is moving with speed v toward the source.
After a certain period of time t the observer will have moved to a new position, a
distance vt from where he was at t = 0. How many radians of phase will he have
seen go by? A certain number, ω0t, went past any fixed point, and in addition
the observer has swept past some more by his own motion, namely a number vtk0
(the number of radians per meter times the distance). So the total number of
radians in the time t, or the observed frequency, would be ω1 = ω0 + k0v. We
have made this analysis from the point of view of a man at rest; we would like
to know how it would look to the man who is moving. Here we have to worry
again about the difference in clock rate for the two observers, and this time that
means that we have to divide by

√
1− v2/c2. So if k0 is the wave number, the

number of radians per meter in the direction of motion, and ω0 is the frequency,
then the observed frequency for a moving man is

ω = ω0 + k0v√
1− v2/c2

. (34.13)
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For the case of light, we know that k0 = ω0/c. So, in this particular problem,
the equation would read

ω = ω0(1 + v/c)√
1− v2/c2

, (34.14)

which looks completely unlike formula (34.12)! Is the frequency that we would
observe if we move toward a source different than the frequency that we would
see if the source moved toward us? Of course not! The theory of relativity says
that these two must be exactly equal. If we were expert enough mathematicians
we would probably recognize that these two mathematical expressions are exactly
equal! In fact, the necessary equality of the two expressions is one of the ways
by which some people like to demonstrate that relativity requires a time dilation,
because if we did not put those square-root factors in, they would no longer be
equal.

Since we know about relativity, let us analyze it in still a third way, which
may appear a little more general. (It is really the same thing, since it makes no
difference how we do it!) According to the relativity theory there is a relationship
between position and time as observed by one man and position and time as seen
by another who is moving relative to him. We wrote down those relationships
long ago (Chapter 16). This is the Lorentz transformation and its inverse:

x′ = x+ vt√
1− v2/c2

, x = x′ − vt′√
1− v2/c2

,

t′ = t+ vx/c2√
1− v2/c2

, t = t′ − vx′/c2√
1− v2/c2

.

(34.15)

If we were standing still on the ground, the form of a wave would be cos (ωt−kx);
all the nodes and maxima and minima would follow this form. But what would
a man in motion, observing the same physical wave, see? Where the field is
zero, the positions of all the nodes are the same (when the field is zero, everyone
measures the field as zero); that is a relativistic invariant. So the form is the
same for the other man too, except that we must transform it into his frame of
reference:

cos (ωt− kx) = cos
[
ω
t′ − vx′/c2√

1− v2/c2
− k x′ − vt′√

1− v2/c2

]
.
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If we regroup the terms inside the brackets, we get

cos (ωt− kx) = cos
[

ω + kv√
1− v2/c2︸ ︷︷ ︸ t

′ − k + vω/c2√
1− v2/c2︸ ︷︷ ︸x

′
]

= cos [ ω′ t′ − k′ x′ ] . (34.16)

This is again a wave, a cosine wave, in which there is a certain frequency ω′, a
constant multiplying t′, and some other constant, k′, multiplying x′. We call k′
the wave number, or the number of waves per meter, for the other man. Therefore
the other man will see a new frequency and a new wave number given by

ω′ = ω + kv√
1− v2/c2

, (34.17)

k′ = k + ωv/c2√
1− v2/c2

. (34.18)

If we look at (34.17), we see that it is the same formula (34.13), that we obtained
by a more physical argument.

34-7 The ω, k four-vector

The relationships indicated in Eqs. (34.17) and (34.18) are very interesting,
because these say that the new frequency ω′ is a combination of the old frequency ω
and the old wave number k, and that the new wave number is a combination
of the old wave number and frequency. Now the wave number is the rate of
change of phase with distance, and the frequency is the rate of change of phase
with time, and in these expressions we see a close analogy with the Lorentz
transformation of the position and time: if ω is thought of as being like t, and k
is thought of as being like x divided by c2, then the new ω′ will be like t′, and
the new k′ will be like x′/c2. That is to say, under the Lorentz transformation ω
and k transform the same way as do t and x. They constitute what we call a
four-vector ; when a quantity has four components transforming like time and
space, it is a four-vector. Everything seems all right, then, except for one little
thing: we said that a four-vector has to have four components; where are the
other two components? We have seen that ω and k are like time and space in one
space direction, but not in all directions, and so we must next study the problem
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Fig. 34-11. A plane wave travelling in an oblique direction.

of the propagation of light in three space dimensions, not just in one direction,
as we have been doing up until now.

Suppose that we have a coordinate system, x, y, z, and a wave which is
travelling along and whose wavefronts are as shown in Fig. 34-11. The wavelength
of the wave is λ, but the direction of motion of the wave does not happen to be
in the direction of one of the axes. What is the formula for such a wave? The
answer is clearly cos (ωt− ks), where k = 2π/λ and s is the distance along the
direction of motion of the wave—the component of the spatial position in the
direction of motion. Let us put it this way: if r is the vector position of a point in
space, then s is r · ek, where ek is a unit vector in the direction of motion. That
is, s is just r cos (r, ek), the component of distance in the direction of motion.
Therefore our wave is cos (ωt− kek · r).

Now it turns out to be very convenient to define a vector k, which is called
the wave vector, which has a magnitude equal to the wave number, 2π/λ, and is
pointed in the direction of propagation of the waves:

k = 2πek/λ = kek. (34.19)

Using this vector, our wave can be written as cos (ωt − k · r), or as cos (ωt −
kxx− kyy − kzz). What is the significance of a component of k, say kx? Clearly,
kx is the rate of change of phase with respect to x. Referring to Fig. 34-11, we
see that the phase changes as we change x, just as if there were a wave along
x, but of a longer wavelength. The “wavelength in the x-direction” is longer
than a natural, true wavelength by the secant of the angle α between the actual
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direction of propagation and the x-axis:

λx = λ/ cosα. (34.20)

Therefore the rate of change of phase, which is proportional to the reciprocal
of λx, is smaller by the factor cosα; that is just how kx would vary—it would
be the magnitude of k, times the cosine of the angle between k and the x-axis!

That, then, is the nature of the wave vector that we use to represent a wave
in three dimensions. The four quantities ω, kx, ky, kz transform in relativity as
a four-vector, where ω corresponds to the time, and kx, ky, kz correspond to the
x-, y-, and z-components of the four-vector.

In our previous discussion of special relativity (Chapter 17), we learned that
there are ways of making relativistic dot products with four-vectors. If we use
the position vector xµ, where µ stands for the four components (time and three
space ones), and if we call the wave vector kµ, where the index µ again has four
values, time and three space ones, then the dot product of xµ and kµ is written∑′

kµxµ (see Chapter 17). This dot product is an invariant, independent of the
coordinate system; what is it equal to? By the definition of this dot product in
four dimensions, it is ∑′

kµxµ = ωt− kxx− kyy − kzz. (34.21)

We know from our study of vectors that
∑′

kµxµ is invariant under the Lorentz
transformation, since kµ is a four-vector. But this quantity is precisely what
appears inside the cosine for a plane wave, and it ought to be invariant under a
Lorentz transformation. We cannot have a formula with something that changes
inside the cosine, since we know that the phase of the wave cannot change when
we change the coordinate system.

34-8 Aberration

In deriving Eqs. (34.17) and (34.18), we have taken a simple example where
k happened to be in a direction of motion, but of course we can generalize it
to other cases also. For example, suppose there is a source sending out light in
a certain direction from the point of view of a man at rest, but we are moving
along on the earth, say (Fig. 34-12). From which direction does the light appear
to come? To find out, we will have to write down the four components of kµ and
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Fig. 34-12. A distant source S is viewed by (a) a stationary telescope,
and (b) a laterally moving telescope.

apply the Lorentz transformation. The answer, however, can be found by the
following argument: we have to point our telescope at an angle to see the light.
Why? Because light is coming down at the speed c, and we are moving sidewise
at the speed v, so the telescope has to be tilted forward so that as the light comes
down it goes “straight” down the tube. It is very easy to see that the horizontal
distance is vt when the vertical distance is ct, and therefore, if θ′ is the angle
of tilt, tan θ′ = v/c. How nice! How nice, indeed—except for one little thing:
θ′ is not the angle at which we would have to set the telescope relative to the
earth, because we made our analysis from the point of view of a “fixed” observer.
When we said the horizontal distance is vt, the man on the earth would have
found a different distance, since he measured with a “squashed” ruler. It turns
out that, because of that contraction effect,

tan θ = v/c√
1− v2/c2

, (34.22)

which is equivalent to
sin θ = v/c. (34.23)

It will be instructive for the student to derive this result, using the Lorentz
transformation.

This effect, that a telescope has to be tilted, is called aberration, and it has
been observed. How can we observe it? Who can say where a given star should
be? Suppose we do have to look in the wrong direction to see a star; how do we
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know it is the wrong direction? Because the earth goes around the sun. Today
we have to point the telescope one way; six months later we have to tilt the
telescope the other way. That is how we can tell that there is such an effect.

34-9 The momentum of light

Now we turn to a different topic. We have never, in all our discussion of the
past few chapters, said anything about the effects of the magnetic field that is
associated with light. Ordinarily, the effects of the magnetic field are very small,
but there is one interesting and important effect which is a consequence of the
magnetic field. Suppose that light is coming from a source and is acting on a
charge and driving that charge up and down. We will suppose that the electric
field is in the x-direction, so the motion of the charge is also in the x-direction:
it has a position x and a velocity v, as shown in Fig. 34-13. The magnetic field
is at right angles to the electric field. Now as the electric field acts on the charge
and moves it up and down, what does the magnetic field do? The magnetic field
acts on the charge (say an electron) only when it is moving; but the electron
is moving, it is driven by the electric field, so the two of them work together:
While the thing is going up and down it has a velocity and there is a force on it,
B times v times q; but in which direction is this force? It is in the direction of
the propagation of light. Therefore, when light is shining on a charge and it is
oscillating in response to that light, there is a driving force in the direction of
the light beam. This is called radiation pressure or light pressure.

Let us determine how strong the radiation pressure is. Evidently it is F = qvB
or, since everything is oscillating, it is the time average of this, 〈F 〉. From (34.2)
the strength of the magnetic field is the same as the strength of the electric field
divided by c, so we need to find the average of the electric field, times the velocity,
times the charge, times 1/c: 〈F 〉 = q〈vE〉/c. But the charge q times the field E

x

y z

S

E

v

B F

Fig. 34-13. The magnetic force on a charge which is driven by the
electric field is in the direction of the light beam.
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is the electric force on a charge, and the force on the charge times the velocity
is the work dW/dt being done on the charge! Therefore the force, the “pushing
momentum,” that is delivered per second by the light, is equal to 1/c times the
energy absorbed from the light per second! That is a general rule, since we did
not say how strong the oscillator was, or whether some of the charges cancel
out. In any circumstance where light is being absorbed, there is a pressure. The
momentum that the light delivers is always equal to the energy that is absorbed,
divided by c:

〈F 〉 = dW/dt

c
. (34.24)

That light carries energy we already know. We now understand that it also
carries momentum, and further, that the momentum carried is always 1/c times
the energy.

When light is emitted from a source there is a recoil effect: the same thing in
reverse. If an atom is emitting an energy W in some direction, then there is a
recoil momentum p = W/c. If light is reflected normally from a mirror, we get
twice the force.

That is as far as we shall go using the classical theory of light. Of course we
know that there is a quantum theory, and that in many respects light acts like a
particle. The energy of a light-particle is a constant times the frequency:

W = hν = ~ω. (34.25)

We now appreciate that light also carries a momentum equal to the energy
divided by c, so it is also true that these effective particles, these photons, carry
a momentum

p = W/c = ~ω/c = ~k. (34.26)

The direction of the momentum is, of course, the direction of propagation of the
light. So, to put it in vector form,

W = ~ω, p = ~k. (34.27)

We also know, of course, that the energy and momentum of a particle should
form a four-vector. We have just discovered that ω and k form a four-vector.
Therefore it is a good thing that (34.27) has the same constant in both cases;
it means that the quantum theory and the theory of relativity are mutually
consistent.
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Equation (34.27) can be written more elegantly as pµ = ~kµ, a relativistic
equation, for a particle associated with a wave. Although we have discussed this
only for photons, for which k (the magnitude of k) equals ω/c and p = W/c,
the relation is much more general. In quantum mechanics all particles, not only
photons, exhibit wavelike properties, but the frequency and wave number of the
waves is related to the energy and momentum of particles by (34.27) (called the
de Broglie relations) even when p is not equal to W/c.

In the last chapter we saw that a beam of right or left circularly polarized light
also carries angular momentum in an amount proportional to the energy E of the
wave. In the quantum picture, a beam of circularly polarized light is regarded as
a stream of photons, each carrying an angular momentum ±~, along the direction
of propagation. That is what becomes of polarization in the corpuscular point of
view—the photons carry angular momentum like spinning rifle bullets. But this
“bullet” picture is really as incomplete as the “wave” picture, and we shall have
to discuss these ideas more fully in a later chapter on Quantum Behavior.
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35

Color Vision

35-1 The human eye

The phenomenon of colors depends partly on the physical world. We discuss
the colors of soap films and so on as being produced by interference. But also,
of course, it depends on the eye, or what happens behind the eye, in the brain.
Physics characterizes the light that enters the eye, but after that, our sensations
are the result of photochemical-neural processes and psychological responses.

There are many interesting phenomena associated with vision which involve
a mixture of physical phenomena and physiological processes, and the full ap-
preciation of natural phenomena, as we see them, must go beyond physics in
the usual sense. We make no apologies for making these excursions into other
fields, because the separation of fields, as we have emphasized, is merely a human
convenience, and an unnatural thing. Nature is not interested in our separations,
and many of the interesting phenomena bridge the gaps between fields.

In Chapter 3 we have already discussed the relation of physics to the other
sciences in general terms, but now we are going to look in some detail at a specific
field in which physics and other sciences are very, very closely interrelated. That
area is vision. In particular, we shall discuss color vision. In the present chapter
we shall discuss mainly the observable phenomena of human vision, and in the
next chapter we shall consider the physiological aspects of vision, both in man
and in other animals.

It all begins with the eye; so, in order to understand what phenomena we see,
some knowledge of the eye is required. In the next chapter we shall discuss in some
detail how the various parts of the eye work, and how they are interconnected
with the nervous system. For the present, we shall describe only briefly how the
eye functions (Fig. 35-1).

Light enters the eye through the cornea; we have already discussed how it is
bent and is imaged on a layer called the retina in the back of the eye, so that
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Fig. 35-1. The eye.

different parts of the retina receive light from different parts of the visual field
outside. The retina is not absolutely uniform: there is a place, a spot, in the
center of our field of view which we use when we are trying to see things very
carefully, and at which we have the greatest acuity of vision; it is called the fovea
or macula. The side parts of the eye, as we can immediately appreciate from
our experience in looking at things, are not as effective for seeing detail as is the
center of the eye. There is also a spot in the retina where the nerves carrying all
the information run out; that is a blind spot. There is no sensitive part of the
retina here, and it is possible to demonstrate that if we close, say, the left eye and
look straight at something, and then move a finger or another small object slowly
out of the field of view it suddenly disappears somewhere. The only practical use
of this fact that we know of is that some physiologist became quite a favorite in
the court of a king of France by pointing this out to him; in the boring sessions
that he had with his courtiers, the king could amuse himself by “cutting off their
heads” by looking at one and watching another’s head disappear.

Figure 35-2 shows a magnified view of the inside of the retina in somewhat
schematic form. In different parts of the retina there are different kinds of
structures. The objects that occur more densely near the periphery of the retina
are called rods. Closer to the fovea, we find, besides these rod cells, also cone
cells. We shall describe the structure of these cells later. As we get close to the
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Fig. 35-2. The structure of the retina. (Light enters from below.)

fovea, the number of cones increases, and in the fovea itself there are in fact
nothing but cone cells, packed very tightly, so tightly that the cone cells are
much finer, or narrower here than anywhere else. So we must appreciate that we
see with the cones right in the middle of the field of view, but as we go to the
periphery we have the other cells, the rods. Now the interesting thing is that
in the retina each of the cells which is sensitive to light is not connected by a
fiber directly to the optic nerve, but is connected to many other cells, which are
themselves connected to each other. There are several kinds of cells: there are
cells that carry the information toward the optic nerve, but there are others that
are mainly interconnected “horizontally.” There are essentially four kinds of cells,
but we shall not go into these details now. The main thing we emphasize is that
the light signal is already being “thought about.” That is to say, the information
from the various cells does not immediately go to the brain, spot for spot, but in
the retina a certain amount of the information has already been digested, by a
combining of the information from several visual receptors. It is important to
understand that some brain-function phenomena occur in the eye itself.

35-2 Color depends on intensity

One of the most striking phenomena of vision is the dark adaptation of the
eye. If we go into the dark from a brightly lighted room, we cannot see very well
for a while, but gradually things become more and more apparent, and eventually
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we can see something where we could see nothing before. If the intensity of the
light is very low, the things that we see have no color. It is known that this
dark-adapted vision is almost entirely due to the rods, while the vision in bright
light is due to the cones. As a result, there are a number of phenomena that we
can easily appreciate because of this transfer of function from the cones and rods
together, to just the rods.

There are many situations in which, if the light intensity were stronger, we
could see color, and we would find these things quite beautiful. One example
is that through a telescope we nearly always see “black and white” images of
faint nebulae, but W. C. Miller of the Mt. Wilson and Palomar Observatories
had the patience to make color pictures of some of these objects. Nobody has
ever really seen these colors with the eye, but they are not artificial colors, it
is merely that the light intensity is not strong enough for the cones in our eye
to see them. Among the more spectacular such objects are the ring nebula and
the Crab nebula. The former shows a beautiful blue inner part, with a bright
red outer halo, and the latter shows a general bluish haze permeated by bright
red-orange filaments.

In the bright light, apparently, the rods are at very low sensitivity but, in the
dark, as time goes on they pick up their ability to see light. The variations in light
intensity for which one can adapt is over a million to one. Nature does not do
all this with just one kind of cell, but she passes her job from bright-light-seeing
cells, the color-seeing cells, the cones, to low-intensity, dark-adapted cells, the
rods. Among the interesting consequences of this shift is, first, that there is no
color, and second, that there is a difference in the relative brightness of differently
colored objects. It turns out that the rods see better toward the blue than the
cones do, and the cones can see, for example, deep red light, while the rods find
that absolutely impossible to see. So red light is black so far as the rods are
concerned. Thus two pieces of colored paper, say blue and red, in which the red
might be even brighter than the blue in good light, will, in the dark, appear
completely reversed. It is a very striking effect. If we are in the dark and can
find a magazine or something that has colors and, before we know for sure what
the colors are, we judge the lighter and darker areas, and if we then carry the
magazine into the light, we may see this very remarkable shift between which was
the brightest color and which was not. The phenomenon is called the Purkinje
effect.

In Fig. 35-3, the dashed curve represents the sensitivity of the eye in the dark,
i.e., using the rods, while the solid curve represents it in the light. We see that
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Fig. 35-3. The spectral sensitivity of the eye. Dashed curve, rods;
solid curve, cones.

the peak sensitivity of the rods is in the green region and that of the cones is
more in the yellow region. If there is a red-colored page (red is about 650 mµ)
we can see it if it is brightly lighted, but in the dark it is almost invisible.

Another effect of the fact that rods take over in the dark, and that there are
no rods in the fovea, is that when we look straight at something in the dark, our
vision is not quite as acute as when we look to one side. A faint star or nebula
can sometimes be seen better by looking a little to one side than directly at it,
because we do not have sensitive rods in the middle of the fovea.

Another interesting effect of the fact that the number of cones decreases as
we go farther to the side of the field of view is that even in a bright light color
disappears as the object goes far to one side. The way to test that is to look in
some particular fixed direction, let a friend walk in from one side with colored
cards, and try to decide what color they are before they are right in front of you.
One finds that he can see that the cards are there long before he can determine
the color. When doing this, it is advisable to come in from the side opposite the
blind spot, because it is otherwise rather confusing to almost see the color, then
not see anything, then to see the color again.

Another interesting phenomenon is that the periphery of the retina is very
sensitive to motion. Although we cannot see very well from the corner of our
eye, if a little bug moves and we do not expect anything to be moving over there,
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we are immediately sensitive to it. We are all “wired up” to look for something
jiggling to the side of the field.

35-3 Measuring the color sensation

Now we go to the cone vision, to the brighter vision, and we come to the
question which is most characteristic of cone vision, and that is color. As we
know, white light can be split by a prism into a whole spectrum of wavelengths
which appear to us to have different colors; that is what colors are, of course:
appearances. Any source of light can be analyzed by a grating or a prism, and one
can determine the spectral distribution, i.e., the “amount” of each wavelength. A
certain light may have a lot of blue, considerable red, very little yellow, and so on.
That is all very precise in the sense of physics, but the question is, what color will
it appear to be? It is evident that the different colors depend somehow upon the
spectral distribution of the light, but the problem is to find what characteristics
of the spectral distribution produce the various sensations. For example, what
do we have to do to get a green color? We all know that we can simply take a
piece of the spectrum which is green. But is that the only way to get green, or
orange, or any other color?

Is there more than one spectral distribution which produces the same apparent
visual effect? The answer is, definitely yes. There is a very limited number of
visual effects, in fact just a three-dimensional manifold of them, as we shall
shortly see, but there is an infinite number of different curves that we can draw
for the light that comes from different sources. Now the question we have to
discuss is, under what conditions do different distributions of light appear as
exactly the same color to the eye?

The most powerful psycho-physical technique in color judgment is to use the
eye as a null instrument. That is, we do not try to define what constitutes a
green sensation, or to measure in what circumstances we get a green sensation,
because it turns out that this is extremely complicated. Instead, we study the
conditions under which two stimuli are indistinguishable. Then we do not have
to decide whether two people see the same sensation in different circumstances,
but only whether, if for one person two sensations are the same, they are also the
same for another. We do not have to decide whether, when one sees something
green, what it feels like inside is the same as what it feels like inside someone
else when he sees something green; we do not know anything about that.
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To illustrate the possibilities, we may use a series of four projector lamps
which have filters on them, and whose brightnesses are continuously adjustable
over a wide range: one has a red filter and makes a spot of red light on the
screen, the next one has a green filter and makes a green spot, the third one
has a blue filter, and the fourth one is a white circle with a black spot in the
middle of it. Now if we turn on some red light, and next to it put some green,
we see that in the area of overlap it produces a sensation which is not what we
call reddish green, but a new color, yellow in this particular case. By changing
the proportions of the red and the green, we can go through various shades of
orange and so forth. If we have set it for a certain yellow, we can also obtain
that same yellow, not by mixing these two colors but by mixing some other ones,
perhaps a yellow filter with white light, or something like that, to get the same
sensation. In other words, it is possible to make various colors in more than one
way by mixing the lights from various filters.

What we have just discovered may be expressed analytically as follows. A
particular yellow, for example, can be represented by a certain symbol Y , which is
the “sum” of certain amounts of red-filtered light (R) and green-filtered light (G).
By using two numbers, say r and g, to describe how bright the R and G are, we
can write a formula for this yellow:

Y = rR+ gG. (35.1)

The question is, can we make all the different colors by adding together two
or three lights of different, fixed colors? Let us see what can be done in that
connection. We certainly cannot get all the different colors by mixing only red
and green, because, for instance, blue never appears in such a mixture. However,
by putting in some blue the central region, where all three spots overlap, may
be made to appear to be a fairly nice white. By mixing the various colors and
looking at this central region, we find that we can get a considerable range of
colors in that region by changing the proportions, and so it is not impossible
that all the colors can be made by mixing these three colored lights. We shall
discuss to what extent this is true; it is in fact essentially correct, and we shall
shortly see how to define the proposition better.

In order to illustrate our point, we move the spots on the screen so that they
all fall on top of each other, and then we try to match a particular color which
appears in the annular ring made by the fourth lamp. What we once thought
was “white” coming from the fourth lamp now appears yellowish. We may try to
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match that by adjusting the red and green and blue as best we can by a kind of
trial and error, and we find that we can approach rather closely this particular
shade of “cream” color. So it is not hard to believe that we can make all colors.
We shall try to make yellow in a moment, but before we do that, there is one
color that might be very hard to make. People who give lectures on color make
all the “bright” colors, but they never make brown, and it is hard to recall ever
having seen brown light. As a matter of fact, this color is never used for any
stage effect, one never sees a spotlight with brown light; so we think it might
be impossible to make brown. In order to find out whether it is possible to
make brown, we point out that brown light is merely something that we are not
used to seeing without its background. As a matter of fact, we can make it by
mixing some red and yellow. To prove that we are looking at brown light, we
merely increase the brightness of the annular background against which we see
the very same light, and we see that that is, in fact, what we call brown! Brown
is always a dark color next to a lighter background. We can easily change the
character of the brown. For example, if we take some green out we get a reddish
brown, apparently a chocolaty reddish brown, and if we put more green into it,
in proportion, we get that horrible color which all the uniforms of the Army are
made of, but the light from that color is not so horrible by itself; it is of yellowish
green, but seen against a light background.

Now we put a yellow filter in front of the fourth light and try to match that.
(The intensity must of course be within the range of the various lamps; we cannot
match something which is too bright, because we do not have enough power in
the lamp.) But we can match the yellow; we use a green and red mixture, and
put in a touch of blue to make it even more perfect. Perhaps we are ready to
believe that, under good conditions, we can make a perfect match of any given
color.

Now let us discuss the laws of color mixture. In the first place, we found that
different spectral distributions can produce the same color; next, we saw that
“any” color can be made by adding together three special colors, red, blue, and
green. The most interesting feature of color mixing is this: if we have a certain
light, which we may call X, and if it appears indistinguishable from Y , to the
eye (it may be a different spectral distribution, but it appears indistinguishable),
we call these colors “equal,” in the sense that the eye sees them as equal, and we
write

X = Y. (35.2)
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Here is one of the great laws of color: if two spectral distributions are indistin-
guishable, and we add to each one a certain light, say Z (if we write X + Z,
this means that we shine both lights on the same patch), and then we take Y
and add the same amount of the same other light, Z, the new mixtures are also
indistinguishable:

X + Z = Y + Z. (35.3)

We have just matched our yellow; if we now shine pink light on the whole thing,
it will still match. So adding any other light to the matched lights leaves a match.
In other words, we can summarize all these color phenomena by saying that once
we have a match between two colored lights, seen next to each other in the same
circumstances, then this match will remain, and one light can be substituted for
the other light in any other color mixing situation. In fact, it turns out, and
it is very important and interesting, that this matching of the color of lights is
not dependent upon the characteristics of the eye at the moment of observation:
we know that if we look for a long time at a bright red surface, or a bright red
light, and then look at a white paper, it looks greenish, and other colors are also
distorted by our having looked so long at the bright red. If we now have a match
between, say, two yellows, and we look at them and make them match, then we
look at a bright red surface for a long time, and then turn back to the yellow,
it may not look yellow any more; I do not know what color it will look, but it
will not look yellow. Nevertheless the yellows will still look matched, and so, as
the eye adapts to various levels of intensity, the color match still works, with the
obvious exception of when we go into the region where the intensity of the light
gets so low that we have shifted from cones to rods; then the color match is no
longer a color match, because we are using a different system.

The second principle of color mixing of lights is this: any color at all can
be made from three different colors, in our case, red, green, and blue lights.
By suitably mixing the three together we can make anything at all, as we
demonstrated with our two examples. Further, these laws are very interesting
mathematically. For those who are interested in the mathematics of the thing, it
turns out as follows. Suppose that we take our three colors, which were red, green,
and blue, but label them A, B, and C, and call them our primary colors. Then
any color could be made by certain amounts of these three: say an amount a of
color A, an amount b of color B, and an amount c of color C makes X:

X = aA+ bB + cC. (35.4)

35-9



Now suppose another color Y is made from the same three colors:

Y = a′A+ b′B + c′C. (35.5)

Then it turns out that the mixture of the two lights (it is one of the consequences
of the laws that we have already mentioned) is obtained by taking the sum of
the components of X and Y :

Z = X + Y = (a+ a′)A+ (b+ b′)B + (c+ c′)C. (35.6)

It is just like the mathematics of the addition of vectors, where (a, b, c) are the
components of one vector, and (a′, b′, c′) are those of another vector, and the new
light Z is then the “sum” of the vectors. This subject has always appealed to
physicists and mathematicians. In fact, Schrödinger wrote a wonderful paper on
color vision in which he developed this theory of vector analysis as applied to
the mixing of colors.

Now a question is, what are the correct primary colors to use? There is no
such thing as “the” correct primary colors for the mixing of lights. There may be,
for practical purposes, three paints that are more useful than others for getting a
greater variety of mixed pigments, but we are not discussing that matter now.
Any three differently colored lights whatsoever* can always be mixed in the correct
proportion to produce any color whatsoever. Can we demonstrate this fantastic
fact? Instead of using red, green, and blue, let us use red, blue, and yellow in
our projector. Can we use red, blue, and yellow to make, say, green?

By mixing these three colors in various proportions, we get quite an array of
different colors, ranging over quite a spectrum. But as a matter of fact, after a
lot of trial and error, we find that nothing ever looks like green. The question
is, can we make green? The answer is yes. How? By projecting some red onto
the green, then we can make a match with a certain mixture of yellow and blue!
So we have matched them, except that we had to cheat by putting the red on
the other side. But since we have some mathematical sophistication, we can
appreciate that what we really showed was not that X could always be made, say,
of red, blue, and yellow, but by putting the red on the other side we found that
red plus X could be made out of blue and yellow. Putting it on the other side of
the equation, we can interpret that as a negative amount, so if we will allow that
the coefficients in equations like (35.4) can be both positive and negative, and if

* Except, of course, if one of the three can be matched by mixing the other two.
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we interpret negative amounts to mean that we have to add those to the other
side, then any color can be matched by any three, and there is no such thing as
“the” fundamental primaries.

We may ask whether there are three colors that come only with positive
amounts for all mixings. The answer is no. Every set of three primaries requires
negative amounts for some colors, and therefore there is no unique way to define
a primary. In elementary books they are said to be red, green, and blue, but that
is merely because with these a wider range of colors is available without minus
signs for some of the combinations.

35-4 The chromaticity diagram

Now let us discuss the combination of colors on a mathematical level as a
geometrical proposition. If any one color is represented by Eq. (35.4), we can
plot it as a vector in space by plotting along three axes the amounts a, b, and c,
and then a certain color is a point. If another color is a′, b′, c′, that color is
located somewhere else. The sum of the two, as we know, is the color which
comes from adding these as vectors. We can simplify this diagram and represent
everything on a plane by the following observation: if we had a certain color light,
and merely doubled a and b and c, that is, if we make them all stronger in the
same ratio, it is the same color, but brighter. So if we agree to reduce everything
to the same light intensity, then we can project everything onto a plane, and
this has been done in Fig. 35-4. It follows that any color obtained by mixing a
given two in some proportion will lie somewhere on a line drawn between the two
points. For instance, a fifty-fifty mixture would appear halfway between them,
and 1/4 of one and 3/4 of the other would appear 1/4 of the way from one point
to the other, and so on. If we use a blue and a green and a red, as primaries,
we see that all the colors that we can make with positive coefficients are inside
the dotted triangle, which contains almost all of the colors that we can ever see,
because all the colors that we can ever see are enclosed in the oddly shaped area
bounded by the curve. Where did this area come from? Once somebody made a
very careful match of all the colors that we can see against three special ones.
But we do not have to check all colors that we can see, we only have to check the
pure spectral colors, the lines of the spectrum. Any light can be considered as a
sum of various positive amounts of various pure spectral colors—pure from the
physical standpoint. A given light will have a certain amount of red, yellow, blue,
and so on—spectral colors. So if we know how much of each of our three chosen
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Fig. 35-4. The standard chromaticity diagram.

primaries is needed to make each of these pure components, we can calculate
how much of each is needed to make our given color. So, if we find out what the
color coefficients of all the spectral colors are for any given three primary colors,
then we can work out the whole color mixing table.

An example of such experimental results for mixing three lights together
is given in Fig. 35-5. This figure shows the amount of each of three different
particular primaries, red, green and blue, which is required to make each of the
spectral colors. Red is at the left end of the spectrum, yellow is next, and so on, all
the way to blue. Notice that at some points minus signs are necessary. It is from
such data that it is possible to locate the position of all of the colors on a chart,
where the x- and the y-coordinates are related to the amounts of the different
primaries that are used. That is the way that the curved boundary line has been
found. It is the locus of the pure spectral colors. Now any other color can be
made by adding spectral lines, of course, and so we find that anything that can be
produced by connecting one part of this curve to another is a color that is available
in nature. The straight line connects the extreme violet end of the spectrum with
the extreme red end. It is the locus of the purples. Inside the boundary are colors
that can be made with lights, and outside it are colors that cannot be made with
lights, and nobody has ever seen them (except, possibly, in after-images!).
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Fig. 35-5. The color coefficients of pure spectral colors in terms of a
certain set of standard primary colors.

35-5 The mechanism of color vision

Now the next aspect of the matter is the question, why do colors behave in
this way? The simplest theory, proposed by Young and Helmholtz, supposes that
in the eye there are three different pigments which receive the light and that these
have different absorption spectra, so that one pigment absorbs strongly, say, in
the red, another absorbs strongly in the blue, another absorbs in the green. Then
when we shine a light on them we will get different amounts of absorptions in the
three regions, and these three pieces of information are somehow maneuvered in
the brain or in the eye, or somewhere, to decide what the color is. It is easy to
demonstrate that all of the rules of color mixing would be a consequence of this
proposition. There has been considerable debate about the thing because the
next problem, of course, is to find the absorption characteristics of each of the
three pigments. It turns out, unfortunately, that because we can transform the
color coordinates in any manner we want to, we can only find all kinds of linear
combinations of absorption curves by the color-mixing experiments, but not the
curves for the individual pigments. People have tried in various ways to obtain a
specific curve which does describe some particular physical property of the eye.
One such curve is called a brightness curve, demonstrated in Fig. 35-3. In this
figure are two curves, one for eyes in the dark, the other for eyes in the light;
the latter is the cone brightness curve. This is measured by finding what is the
smallest amount of colored light we need in order to be able to just see it. This
measures how sensitive the eye is in different spectral regions. There is another
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very interesting way to measure this. If we take two colors and make them appear
in an area, by flickering back and forth from one to the other, we see a flicker
if the frequency is too low. However, as the frequency increases, the flicker will
ultimately disappear at a certain frequency that depends on the brightness of
the light, let us say at 16 repetitions per second. Now if we adjust the brightness
or the intensity of one color against the other, there comes an intensity where
the flicker at 16 cycles disappears. To get flicker with the brightness so adjusted,
we have to go to a much lower frequency in order to see a flicker of the color.
So, we get what we call a flicker of the brightness at a higher frequency and,
at a lower frequency, a flicker of the color. It is possible to match two colors
for “equal brightness” by this flicker technique. The results are almost, but not
exactly, the same as those obtained by measuring the threshold sensitivity of the
eye for seeing weak light by the cones. Most workers use the flicker system as a
definition of the brightness curve.

Now, if there are three color-sensitive pigments in the eye, the problem is to
determine the shape of the absorption spectrum of each one. How? We know
there are people who are color blind—eight percent of the male population, and
one-half of one percent of the female population. Most of the people who are color
blind or abnormal in color vision have a different degree of sensitivity than others
to a variation of color, but they still need three colors to match. However, there
are some who are called dichromats, for whom any color can be matched using only
two primary colors. The obvious suggestion, then, is to say that they are missing
one of the three pigments. If we can find three kinds of color-blind dichromats who
have different color-mixing rules, one kind should be missing the red, another the
green, and another the blue pigmentation. By measuring all these types we can
determine the three curves! It turns out that there are three types of dichromatic
color blindness; there are two common types and a third very rare type, and
from these three it has been possible to deduce the pigment absorption spectra.

Figure 35-6 shows the color mixing of a particular type of color-blind person
called a deuteranope. For him, the loci of constant colors are not points, but
certain lines, along each of which the color appears to him to be the same. If the
theory that he is missing one of the three pieces of information is right, all these
lines should intersect at a point. If we carefully measure on this graph, they do
intersect perfectly. Obviously, therefore, this has been made by a mathematician
and does not represent real data! As a matter of fact, if we look at the latest
paper with real data, it turns out that in the graph of Fig. 35-6, the point of
focus of all the lines is not exactly at the right place. Using the lines in the
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Fig. 35-6. Loci of colors confused by deuteranopes.

above figure, we cannot find reasonable spectra; we need negative and positive
absorptions in different regions. But using the new data of Yustova, it turns out
that each of the absorption curves is everywhere positive.

Figure 35-7 shows a different kind of color blindness, that of the protanope,
which has a focus near the red end of the boundary curve. Yustova gets approxi-
mately the same position in this case. Using the three different kinds of color
blindness, the three pigment response curves have finally been determined, and
are shown in Fig. 35-8. Finally? Perhaps. There is a question as to whether the
three-pigment idea is right, whether color blindness results from lack of one pig-
ment, and even whether the color-mix data on color blindness are right. Different
workers get different results. This field is still very much under development.

35-6 Physiochemistry of color vision

Now, what about checking these curves against actual pigments in the eye?
The pigments that can be obtained from a retina consist mainly of a pigment
called visual purple. The most remarkable features of this are, first, that it is in
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Fig. 35-9. The sensitivity curve of the dark-adapted eye, compared
with the absorption curve of visual purple.

the eye of almost every vertebrate animal, and second, that its response curve
fits beautifully with the sensitivity of the eye, as seen in Fig. 35-9, in which are
plotted on the same scale the absorption of visual purple and the sensitivity of
the dark-adapted eye. This pigment is evidently the pigment that we see with
in the dark: visual purple is the pigment for the rods, and it has nothing to do
with color vision. This fact was discovered in 1877. Even today it can be said
that the color pigments of the cones have never been obtained in a test tube. In
1958 it could be said that the color pigments had never been seen at all. But
since that time, two of them have been detected by Rushton by a very simple
and beautiful technique.

The trouble is, presumably, that since the eye is so weakly sensitive to bright
light compared with light of low intensity, it needs a lot of visual purple to see
with, but not much of the color pigments for seeing colors. Rushton’s idea is to
leave the pigment in the eye, and measure it anyway. What he does is this. There
is an instrument called an ophthalmoscope for sending light into the eye through
the lens and then focusing the light that comes back out. With it one can measure
how much is reflected. So one measures the reflection coefficient of light which
has gone twice through the pigment (reflected by a back layer in the eyeball,
and coming out through the pigment of the cone again). Nature is not always
so beautifully designed. The cones are interestingly designed so that the light
that comes into the cone bounces around and works its way down into the little
sensitive points at the apex. The light goes right down into the sensitive point,
bounces at the bottom and comes back out again, having traversed a considerable
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amount of the color-vision pigment; also, by looking at the fovea, where there
are no rods, one is not confused by visual purple. But the color of the retina
has been seen a long time ago: it is a sort of orangey pink; then there are all the
blood vessels, and the color of the material at the back, and so on. How do we
know when we are looking at the pigment? Answer: First we take a color-blind
person, who has fewer pigments and for whom it is therefore easier to make
the analysis. Second, the various pigments, like visual purple, have an intensity
change when they are bleached by light; when we shine light on them they change
their concentration. So, while looking at the absorption spectrum of the eye,
Rushton put another beam in the whole eye, which changes the concentration of
the pigment, and he measured the change in the spectrum, and the difference, of
course, has nothing to do with the amount of blood or the color of the reflecting
layers, and so on, but only the pigment, and in this manner Rushton obtained
a curve for the pigment of the protanope eye, which is given in Fig. 35-10.
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Fig. 35-10. Absorption spectrum of the color pigment of a protanope
colorblind eye (squares) and a normal eye (dots).

The second curve in Fig. 35-10 is a curve obtained with a normal eye. This
was obtained by taking a normal eye and, having already determined what one
pigment was, bleaching the other one in the red where the first one is insensitive.
Red light has no effect on the protanope eye, but does in the normal eye, and thus
one can obtain the curve for the missing pigment. The shape of one curve fits
beautifully with Yustova’s green curve, but the red curve is a little bit displaced.
So perhaps we are getting on the right track. Or perhaps not—the latest work
with deuteranopes does not show any definite pigment missing.
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Color is not a question of the physics of the light itself. Color is a sensation,
and the sensation for different colors is different in different circumstances. For
instance, if we have a pink light, made by superimposing crossing beams of white
light and red light (all we can make with white and red is pink, obviously), we
may show that white light may appear blue. If we place an object in the beams,
it casts two shadows—one illuminated by the white light alone and the other
by the red. For most people the “white” shadow of an object looks blue, but if
we keep expanding this shadow until it covers the entire screen, we see that it
suddenly appears white, not blue! We can get other effects of the same nature
by mixing red, yellow, and white light. Red, yellow, and white light can produce
only orangey yellows, and so on. So if we mix such lights roughly equally, we
get only orange light. Nevertheless, by casting different kinds of shadows in the
light, with various overlaps of colors, one gets quite a series of beautiful colors
which are not in the light themselves (that is only orange), but in our sensations.
We clearly see many different colors that are quite unlike the “physical” ones in
the beam. It is very important to appreciate that a retina is already “thinking”
about the light; it is comparing what it sees in one region with what it sees in
another, although not consciously. What we know of how it does that is the
subject of the next chapter.
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36

Mechanisms of Seeing

36-1 The sensation of color

In discussing the sense of sight, we have to realize that (outside of a gallery of
modern art!) one does not see random spots of color or spots of light. When we
look at an object we see a man or a thing; in other words, the brain interprets
what we see. How it does that, no one knows, and it does it, of course, at a very
high level. Although we evidently do learn to recognize what a man looks like
after much experience, there are a number of features of vision which are more
elementary but which also involve combining information from different parts
of what we see. To help us understand how we make an interpretation of an
entire image, it is worth while to study the earliest stages of the putting together
of information from the different retinal cells. In the present chapter we shall
concentrate mainly on that aspect of vision, although we shall also mention a
number of side issues as we go along.

An example of the fact that we have an accumulation, at a very elementary
level, of information from several parts of the eye at the same time, beyond our
voluntary control or ability to learn, was that blue shadow which was produced
by white light when both white and red were shining on the same screen. This
effect at least involves the knowledge that the background of the screen is pink,
even though, when we are looking at the blue shadow, it is only “white” light
coming into a particular spot in the eye; somewhere, pieces of information have
been put together. The more complete and familiar the context is, the more
the eye will make corrections for peculiarities. In fact, Land has shown that
if we mix that apparent blue and the red in various proportions, by using two
photographic transparencies with absorption in front of the red and the white in
different proportions, it can be made to represent a real scene, with real objects,
rather faithfully. In this case we get a lot of intermediate apparent colors too,
analogous to what we would get by mixing red and blue-green; it seems to be an
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Fig. 36-1. When a disc like the above is spun, colors appear in only
one of the two darker “rings.” If the spin direction is reversed, the colors
appear in the other ring.

almost complete set of colors, but if we look very hard at them, they are not so
very good. Even so, it is surprising how much can be obtained from just red and
white. The more the scene looks like a real situation, the more one is able to
compensate for the fact that all the light is actually nothing but pink!

Another example is the appearance of “colors” in a black-and-white rotating
disc, whose black and white areas are as shown in Fig. 36-1. When the disc is
rotated, the variations of light and dark at any one radius are exactly the same;
it is only the background that is different for the two kinds of “stripes.” Yet one
of the “rings” appears colored with one color and the other with another.* No
one yet understands the reason for those colors, but it is clear that information
is being put together at a very elementary level, in the eye itself, most likely.

Almost all present-day theories of color vision agree that the color-mixing
data indicate that there are only three pigments in the cones of the eye, and that
it is the spectral absorption in those three pigments that fundamentally produces
the color sense. But the total sensation that is associated with the absorption
characteristics of the three pigments acting together is not necessarily the sum
of the individual sensations. We all agree that yellow simply does not seem to be
reddish green; in fact it might be a tremendous surprise to most people to discover
that light is, in fact, a mixture of colors, because presumably the sensation of
light is due to some other process than a simple mixture like a chord in music,
where the three notes are there at the same time and if we listen hard we can
hear them individually. We cannot look hard and see the red and the green.

* The colors depend on speed of rotation, on the brightness of illumination, and to some
extent on who looks at them and how intently he stares at them.
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The earliest theories of vision said that there are three pigments and three
kinds of cones, each kind containing one pigment; that a nerve runs from each
cone to the brain, so that the three pieces of information are carried to the brain;
and then in the brain, anything can happen. This, of course, is an incomplete
idea: it does no good to discover that the information is carried along the optic
nerve to the brain, because we have not even started to solve the problem. We
must ask more basic questions: Does it make any difference where the information
is put together? Is it important that it be carried right up into the brain in the
optic nerve, or could the retina do some analysis first? We have seen a picture
of the retina as an extremely complicated thing with lots of interconnections
(Fig. 35-2) and it might make some analyses.

As a matter of fact, people who study anatomy and the development of the
eye have shown that the retina is, in fact, the brain: in the development of
the embryo, a piece of the brain comes out in front, and long fibers grow back,
connecting the eyes to the brain. The retina is organized in just the way the brain
is organized and, as someone has beautifully put it, “The brain has developed
a way to look out upon the world.” The eye is a piece of brain that is touching
light, so to speak, on the outside. So it is not at all unlikely that some analysis
of the color has already been made in the retina.

This gives us a very interesting opportunity. None of the other senses involves
such a large amount of calculation, so to speak, before the signal gets into a nerve
that one can make measurements on. The calculations for all the rest of the
senses usually happen in the brain itself, where it is very difficult to get at specific
places to make measurements, because there are so many interconnections. Here,
with the visual sense, we have the light, three layers of cells making calculations,
and the results of the calculations being transmitted through the optic nerve. So
we have the first chance to observe physiologically how, perhaps, the first layers
of the brain work in their first steps. It is thus of double interest, not simply
interesting for vision, but interesting to the whole problem of physiology.

The fact that there are three pigments does not mean that there must be
three kinds of sensations. One of the other theories of color vision has it that
there are really opposing color schemes (Fig. 36-2). That is, one of the nerve
fibers carries a lot of impulses if there is yellow being seen, and less than usual
for blue. Another nerve fiber carries green and red information in the same
way, and another, white and black. In other words, in this theory someone
has already started to make a guess as to the system of wiring, the method of
calculation.
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r− g = k2(α+γ−2β)
w−bk = k3(α+γ+β)−k4(α+β+γ)

Fig. 36-2. Neural connections according to an “opponent” theory of
color vision.

The problems we are trying to solve by guessing at these first calculations
are questions about the apparent colors that are seen on a pink background,
what happens when the eye is adapted to different colors, and also the so-called
psychological phenomena. The psychological phenomena are of the nature, for
instance, that white does not “feel” like red and yellow and blue, and this
theory was advanced because the psychologists say that there are four apparent
pure colors: “There are four stimuli which have a remarkable capacity to evoke
psychologically simple blue, yellow, green, and red hues respectively. Unlike
sienna, magenta, purple, or most of the discriminable colors, these simple hues
are unmixed in the sense that none partakes of the nature of the other; specifically,
blue is not yellowish, reddish, or greenish, and so on; these are psychologically
primary hues.” That is a psychological fact, so-called. To find out from what
evidence this psychological fact was deduced, we must search very hard indeed
through all the literature: In the modern literature all we find on the subject are
repeats of the same statement, or of one by a German psychologist, who uses
as one of his authorities Leonardo da Vinci, who, of course, we all know was a
great artist. He says, “Leonardo thought there were five colors.” Then, looking
still further, we find, in a still older book, the evidence for the subject. The book
says something like this: “Purple is reddish-blue, orange is reddish-yellow, but
can red be seen as purplish-orange? Are not red and yellow more unitary than
purple or orange? The average person, asked to state which colors are unitary,
names red, yellow, and blue, these three, and some observers add a fourth, green.

36-4



Psychologists are accustomed to accept the four as salient hues.” So that is the
situation in the psychological analysis of this matter: if everybody says there are
three, and somebody says there are four, and they want it to be four, it will be
four. That shows the difficulty with psychological researches. It is clear that we
have such feelings, but it is very difficult to obtain much information about them.

So the other direction to go is the physiological direction, to find out experi-
mentally what actually happens in the brain, the eye, the retina, or wherever,
and perhaps to discover that some combinations of impulses from various cells
move along certain nerve fibers. Incidentally, primary pigments do not have to
be in separate cells; one could have cells in which are mixtures of the various
pigments, cells with the red and the green pigments, cells with all three (the
information of all three is then white information), and so on. There are many
ways of hooking the system up, and we have to find out which way nature has
used. It would be hoped, ultimately, that when we understand the physiological
connections we will have a little bit of understanding of some of those aspects of
the psychology, so we look in that direction.

36-2 The physiology of the eye

We begin by talking not only about color vision, but about vision in general,
just to remind ourselves about the interconnections in the retina, shown in
Fig. 35-2. The retina is really like the surface of the brain. Although the
actual picture through a microscope is a little more complicated looking than
this somewhat schematized drawing, by careful analysis one can see all these
interconnections. There is no question that one part of the surface of the retina
is connected to other parts, and that the information that comes out on the
long axons, which produce the optic nerve, are combinations of information from
many cells. There are three layers of cells in the succession of function: there
are retinal cells, which are the ones that the light affects, an intermediate cell
which takes information from a single or a few retinal cells and gives it out again
to several cells in a third layer of cells and carries it to the brain. There are all
kinds of cross connections between cells in the layers.

We now turn to some aspects of the structure and performance of the eye
(see Fig. 35-1). The focusing of the light is accomplished mainly by the cornea,
by the fact that it has a curved surface which “bends” the light. This is why we
cannot see clearly under water, because we then do not have enough difference
between the index of the cornea, which is 1.37, and that of the water, which
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is 1.33. Behind the cornea is water, practically, with an index of 1.33, and behind
that is a lens which has a very interesting structure: it is a series of layers, like an
onion, except that it is all transparent, and it has an index of 1.40 in the middle
and 1.38 at the outside. (It would be nice if we could make optical glass in which
we could adjust the index throughout, for then we would not have to curve it as
much as we do when we have a uniform index.) Furthermore, the shape of the
cornea is not that of a sphere. A spherical lens has a certain amount of spherical
aberration. The cornea is “flatter” at the outside than is a sphere, in just such a
manner that the spherical aberration is less for the cornea than it would be if
we put a spherical lens in there! The light is focused by the cornea-lens system
onto the retina. As we look at things that are closer and farther away, the lens
tightens and loosens and changes the focus to adjust for the different distances.
To adjust for the total amount of light there is the iris, which is what we call the
color of the eye, brown or blue, depending on who it is; as the amount of light
increases and decreases, the iris moves in and out.

Let us now look at the neural machinery for controlling the accommodation of
the lens, the motion of the eye, the muscles which turn the eye in the socket, and
the iris, shown schematically in Fig. 36-3. Of all the information that comes out of
the optic nerve A, the great majority is divided into one of two bundles (which we
will talk about later) and thence to the brain. But there are a few fibers, of interest
to us now, which do not run directly to the visual cortex of the brain where we “see”
the images, but instead go into the mid-brain H. These are the fibers which mea-
sure the average light and make adjustment for the iris; or, if the image looks foggy,
they try to correct the lens; or, if there is a double image, they try to adjust the
eye for binocular vision. At any rate, they go through the mid-brain and feed back
into the eye. At K are the muscles which run the accommodation of the lens, and
at L another one that runs into the iris. The iris has two muscle systems. One is a
circular muscle L which, when it is excited, pulls in and closes down the iris; it acts
very rapidly and the nerves are directly connected from the brain through short
axons into the iris. The opposite muscles are radial muscles, so that, when the
things get dark and the circular muscle relaxes, these radial muscles pull out. Here
we have, as in many places in the body, a pair of muscles which work in opposite
directions, and in almost every such case the nerve systems which control the two
are very delicately adjusted, so that when signals are sent in to tighten one, signals
are automatically sent in to loosen the other. The iris is a peculiar exception: the
nerves which make the iris contract are the ones we have already described, but
the nerves which make the iris expand come out from no one knows exactly where,
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go down into the spinal cord back of the chest, into the thoracic sections, out of the
spinal cord, up through the neck ganglia, and all the way around and back up into
the head in order to run the other end of the iris. In fact, the signal goes through
a completely different nervous system, not the central nervous system at all, but
the sympathetic nervous system, so it is a very strange way of making things go.

We have already emphasized another strange thing about the eye, that the
light-sensitive cells are on the wrong side, so that the light has to go through
several layers of other cells before it gets to the receptors—it is built inside out!
So some of the features are wonderful and some are apparently stupid.

Figure 36-4 shows the connections of the eye to the part of the brain which is
most directly concerned with the visual process. The optic nerve fibers run into a
certain area just beyond D, called the lateral geniculate, whereupon they run out
to a section of the brain called the visual cortex. Notice that some of the fibers
from each eye are sent over to the other side of the brain, so the picture formed is
incomplete. The optic nerves from the left side of the right eye run across the optic
chiasma B, while the ones on the left side of the left eye come around and go this
same way. So the left side of the brain receives all the information which comes
from the left side of the eyeball of each eye, i.e., on the right side of the visual
field, while the right side of the brain sees the left side of the visual field. This
is the manner in which the information from each of the two eyes is put together
in order to tell how far away things are. This is the system of binocular vision.

The connections between the retina and the visual cortex are interesting. If a
spot in the retina is excised or destroyed in any way, then the whole fiber will die,
and we can thereby find out where it is connected. It turns out that, essentially,
the connections are one to one—for each spot in the retina there is one spot in
the visual cortex—and spots that are very close together in the retina are very
close together in the visual cortex. So the visual cortex still represents the spatial
arrangement of the rods and cones, but of course much distorted. Things which
are in the center of the field, which occupy a very small part of the retina, are
expanded over many, many cells in the visual cortex. It is clear that it is useful
to have things which are originally close together, still close together. The most
remarkable aspect of the matter, however, is the following. The place where one
would think it would be most important to have things close together would be
right in the middle of the visual field. Believe it or not, the up-and-down line in
our visual field as we look at something is of such a nature that the information
from all the points on the right side of that line is going into the left side of the
brain, and information from the points on the left side is going into the right side
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of the brain, and the way this area is made, there is a cut right down through
the middle, so that the things that are very close together right in the middle are
very far apart in the brain! Somehow, the information has to go from one side of
the brain to the other through some other channels, which is quite surprising.

The question of how this network ever gets “wired” together is very interesting.
The problem of how much is already wired and how much is learned is an old one.
It used to be thought long ago that perhaps it does not have to be wired carefully
at all, it is only just roughly interconnected, and then, by experience, the young
child learns that when a thing is “up there” it produces some sensation in the
brain. (Doctors always tell us what the young child “feels,” but how do they know
what a child feels at the age of one?) The child, at the age of one, supposedly sees
that an object is “up there,” gets a certain sensation, and learns to reach “there,”
because when he reaches “here,” it does not work. That approach probably is not
correct, because we already see that in many cases there are these special detailed
interconnections. More illuminating are some most remarkable experiments done
with a salamander. (Incidentally, with the salamander there is a direct crossover
connection, without the optic chiasma, because the eyes are on each side of the
head and have no common area. Salamanders do not have binocular vision.)
The experiment is this. We can cut the optic nerve in a salamander and the
nerve will grow out from the eyes again. Thousands and thousands of cell fibers
will thus re-establish themselves. Now, in the optic nerve the fibers do not stay
adjacent to each other—it is like a great, sloppily made telephone cable, all the
fibers twisting and turning, but when it gets to the brain they are all sorted out
again. When we cut the optic nerve of the salamander, the interesting question
is, will it ever get straightened out? The answer is remarkable: yes. If we cut
the optic nerve of the salamander and it grows back, the salamander has good
visual acuity again. However, if we cut the optic nerve and turn the eye upside
down and let it grow back again, it has good visual acuity all right, but it has a
terrible error: when the salamander sees a fly “up here,” it jumps at it “down
there,” and it never learns. Therefore there is some mysterious way by which the
thousands and thousands of fibers find their right places in the brain.

This problem of how much is wired in, and how much is not, is an important
problem in the theory of the development of creatures. The answer is not known,
but is being studied intensively.

The same experiment in the case of a goldfish shows that there is a terrible
knot, like a great scar or complication, in the optic nerve where we cut it, but in
spite of all this the fibers grow back to their right places in the brain.
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In order to do this, as they grow into the old channels of the optic nerve they
must make several decisions about the direction in which they should grow. How
do they do this? There seem to be chemical clues that different fibers respond to
differently. Think of the enormous number of growing fibers, each of which is an
individual differing in some way from its neighbors; in responding to whatever
the chemical clues are, it responds in a unique enough way to find its proper
place for ultimate connection in the brain! This is an interesting—a fantastic—
thing. It is one of the great recently discovered phenomena of biology and is
undoubtedly connected to many older unsolved problems of growth, organization,
and development of organisms, and particularly of embryos.

One other interesting phenomenon has to do with the motion of the eye.
The eyes must be moved in order to make the two images coincide in different
circumstances. These motions are of different kinds: one is to follow something,
which requires that both eyes must go in the same direction, right or left, and the
other is to point them toward the same place at various distances away, which
requires that they must move oppositely. The nerves going into the muscles of
the eye are already wired up for just such purposes. There is one set of nerves
which will pull the muscles on the inside of one eye and the outside of the other,
and relax the opposite muscles, so that the two eyes move together. There is
another center where an excitation will cause the eyes to move in toward each
other from parallel. Either eye can be turned out to the corner if the other eye
moves toward the nose, but it is impossible consciously or unconsciously to turn
both eyes out at the same time, not because there are no muscles, but because
there is no way to send a signal to turn both eyes out, unless we have had an
accident or there is something the matter, for instance if a nerve has been cut.
Although the muscles of one eye can certainly steer that eye about, not even a
Yogi is able to move both eyes out freely under voluntary control, because there
does not seem to be any way to do it. We are already wired to a certain extent.
This is an important point, because most of the earlier books on anatomy and
psychology, and so on, do not appreciate or do not emphasize the fact that we
are so completely wired already—they say that everything is just learned.

36-3 The rod cells

Let us now examine in more detail what happens in the rod cells. Figure 36-5
shows an electron micrograph of the middle of a rod cell (the rod cell keeps
going up out of the field). There are layer after layer of plane structures, shown
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Fig. 36-5. Electron micrograph of a rod cell.

magnified at the right, which contain the substance rhodopsin (visual purple), the
dye, or pigment, which produces the effects of vision in the rods. The rhodopsin,
which is the pigment, is a big protein which contains a special group called
retinene, which can be taken off the protein, and which is, undoubtedly, the
main cause of the absorption of light. We do not understand the reason for the
planes, but it is very likely that there is some reason for holding all the rhodopsin
molecules parallel. The chemistry of the thing has been worked out to a large
extent, but there might be some physics to it. It may be that all of the molecules
are arranged in some kind of a row so that when one is excited an electron which
is generated, say, may run all the way down to some place at the end to get
the signal out, or something. This subject is very important, and has not been
worked out. It is a field in which both biochemistry and solid state physics, or
something like it, will ultimately be used.

This kind of a structure, with layers, appears in other circumstances where
light is important, for example in the chloroplast in plants, where the light causes
photosynthesis. If we magnify those, we find the same thing with almost the
same kind of layers, but there we have chlorophyll, of course, instead of retinene.
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The chemical form of retinene is shown in Fig. 36-6. It has a series of alternate
double bonds along the side chain, which is characteristic of nearly all strongly
absorbing organic substances, like chlorophyll, blood, and so on. This substance
is impossible for human beings to manufacture in their own cells—we have to
eat it. So we eat it in the form of a special substance, which is exactly the same
as retinene except that there is a hydrogen tied on the right end; it is called
vitamin A, and if we do not eat enough of it, we do not get a supply of retinene,
and the eye becomes what we call night blind, because there is then not enough
pigment in the rhodopsin to see with the rods at night.

The reason why such a series of double bonds absorbs light very strongly is
also known. We may just give a hint: The alternating series of double bonds
is called a conjugated double bond; a double bond means that there is an extra
electron there, and this extra electron is easily shifted to the right or left. When
light strikes this molecule, the electron of each double bond is shifted over by one
step. All the electrons in the whole chain shift, like a string of dominoes falling
over, and though each one moves only a little distance (we would expect that, in a
single atom, we could move the electron only a little distance), the net effect is the
same as though the one at the end was moved over to the other end! It is the same
as though one electron went the whole distance back and forth, and so, in this
manner, we get a much stronger absorption under the influence of the electric field,
than if we could only move the electron a distance which is associated with one
atom. So, since it is easy to move the electrons back and forth, retinene absorbs
light very strongly; that is the machinery of the physical-chemical end of it.

36-4 The compound (insect) eye

Let us now return to biology. The human eye is not the only kind of eye.
In the vertebrates, almost all eyes are essentially like the human eye. However,
in the lower animals there are many other kinds of eyes: eye spots, various eye
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cups, and other less sensitive things, which we have no time to discuss. But
there is one other highly developed eye among the invertebrates, the compound
eye of the insect. (Most insects having large compound eyes also have various
additional simpler eyes as well.) A bee is an insect whose vision has been studied
very carefully. It is easy to study the properties of the vision of bees because
they are attracted to honey, and we can make experiments in which we identify
the honey by putting it on blue paper or red paper, and see which one they come
to. By this method some very interesting things have been discovered about the
vision of the bee.

In the first place, in trying to measure how acutely bees could see the color
difference between two pieces of “white” paper, some researchers found they
were not very good, and others found they were fantastically good. Even if the
two pieces of white paper were almost exactly the same, the bees could still tell
the difference. The experimenters used zinc white for one piece of paper and
lead white for the other, and although these look exactly the same to us, the
bee could easily distinguish them, because they reflect a different amount in the
ultraviolet. In this way it was discovered that the bee’s eye is sensitive over a wider
range of the spectrum than is our own. Our eye works from 7000 angstroms to
4000 angstroms, from red to violet, but the bee’s can see down to 3000 angstroms
into the ultraviolet! This makes for a number of different interesting effects.
In the first place, bees can distinguish between many flowers which to us look
alike. Of course, we must realize that the colors of flowers are not designed
for our eyes, but for the bee; they are signals to attract the bees to a specific
flower. We all know that there are many “white” flowers. Apparently white is
not very interesting to the bees, because it turns out that all of the white flowers
have different proportions of reflection in the ultraviolet; they do not reflect one
hundred percent of the ultraviolet as would a true white. All the light is not
coming back, the ultraviolet is missing, and that is a color, just as, for us, if
the blue is missing, it comes out yellow. So, all the flowers are colored for the
bees. However, we also know that red cannot be seen by bees. Thus we might
expect that all red flowers should look black to the bee. Not so! A careful study
of red flowers shows, first, that even with our own eye we can see that a great
majority of red flowers have a bluish tinge because they are mainly reflecting an
additional amount in the blue, which is the part that the bee sees. Furthermore,
experiments also show that flowers vary in their reflection of the ultraviolet over
different parts of the petals, and so on. So if we could see the flowers as bees see
them they would be even more beautiful and varied!
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It has been shown, however, that there are a few red flowers which do not
reflect in the blue or in the ultraviolet, and would, therefore, appear black to the
bee! This was of quite some concern to the people who worry about this matter,
because black does not seem like an interesting color, since it is hard to tell from
a dirty old shadow. It actually turned out that these flowers were not visited by
bees, these are the flowers that are visited by hummingbirds, and hummingbirds
can see the red!

Another interesting aspect of the vision of the bee is that bees can apparently
tell the direction of the sun by looking at a patch of blue sky, without seeing
the sun itself. We cannot easily do this. If we look out the window at the sky
and see that it is blue, in which direction is the sun? The bee can tell, because
the bee is quite sensitive to the polarization of light, and the scattered light
of the sky is polarized.* There is still some debate about how this sensitivity
operates. Whether it is because the reflections of the light are different in different
circumstances, or the bee’s eye is directly sensitive, is not yet known.†

It is also said that the bee can notice flicker up to 200 oscillations per second,
while we see it only up to 20. The motions of bees in the hives are very quick; the
feet move and the wings vibrate, but it is very hard for us to see these motions
with our eye. However, if we could see more rapidly we would be able to see the
motion. It is probably very important to the bee that its eye has such a rapid
response.

Now let us discuss the visual acuity we could expect from the bee. The
eye of a bee is a compound eye, and it is made of a large number of special
cells called ommatidia, which are arranged conically on the surface of a sphere
(roughly) on the outside of the bee’s head. Figure 36-7 shows a picture of one
such ommatidium. At the top there is a transparent area, a kind of “lens,” but
actually it is more like a filter or light pipe to make the light come down along
the narrow fiber, which is where the absorption presumably occurs. Out of the
other end of it comes the nerve fiber. The central fiber is surrounded on its sides
by six cells which, in fact, have secreted the fiber. That is enough description

* The human eye also has a slight sensitivity to the polarization of light, and one can learn
to tell the direction of the sun! The phenomenon that is involved here is called Haidinger’s
brush; it is a faint, yellowish hourglass-like pattern seen at the center of the visual field when
one looks at a broad, featureless expanse using polarizing glasses. It can also be seen in the
blue sky without polarizing glasses if one rotates his head back and forth about the axis of
vision.

† Evidence obtained since this lecture was given indicates that the eye is directly sensitive.
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Fig. 36-7. The structure of an ommatidium (a single cell of a com-
pound eye).

for our purposes; the point is that it is a conical thing and many can fit next to
each other all over the surface of the eye of the bee.

Now let us discuss the resolution of the eye of the bee. If we draw lines
(Fig. 36-8) to represent the ommatidia on the surface, which we suppose is a
sphere of radius r, we may actually calculate how wide each ommatidium is
by using our brains, and assuming that evolution is as clever as we are! If we
have a very large ommatidium we do not have much resolution. That is, one
cell gets a piece of information from one direction, and the adjacent cell gets a
piece of information from another direction, and so on, and the bee cannot see
things in between very well. So the uncertainty of visual acuity in the eye will
surely correspond to an angle, the angle of the end of the ommatidium relative
to the center of curvature of the eye. (The eye cells, of course, exist only at the
surface of the sphere; inside that is the head of the bee.) This angle, from one
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ommatidium to the next, is, of course, the diameter of the ommatidia divided by
the radius of the eye surface:

∆θg = δ/r. (36.1)
So, we may say, “The finer we make the δ, the more the visual acuity. So why
doesn’t the bee just use very, very fine ommatidia?” Answer : We know enough
physics to realize that if we are trying to get light down into a narrow slot, we
cannot see accurately in a given direction because of the diffraction effect. The
light that comes from several directions can enter and, due to diffraction, we will
get light coming in at angle ∆θd such that

∆θd = λ/δ. (36.2)

Now we see that if we make the δ too small, then each ommatidium does not
look in only one direction, because of diffraction! If we make them too big, each
one sees in a definite direction, but there are not enough of them to get a good
view of the scene. So we adjust the distance δ in order to make minimal the total
effect of these two. If we add the two together, and find the place where the sum
has a minimum (Fig. 36-9), we find that

d(∆θg + ∆θd)
dδ

= 0 = 1
r
− λ

δ2 , (36.3)

which gives us a distance
δ =
√
λr. (36.4)

If we guess that r is about 3 millimeters, take the light that the bee sees as
4000 angstroms, and put the two together and take the square root, we find

δ = (3× 10−3 × 4× 10−7)1/2 m
= 3.5× 10−5 m = 35 µ. (36.5)
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The book says the diameter is 30 µ, so that is rather good agreement! So,
apparently, it really works, and we can understand what determines the size of
the bee’s eye! It is also easy to put the above number back in and find out how
good the bee’s eye actually is in angular resolution; it is very poor relative to
our own. We can see things that are thirty times smaller in apparent size than
the bee; the bee has a rather fuzzy out-of-focus image relative to what we can
see. Nevertheless it is all right, and it is the best they can do. We might ask
why the bees do not develop a good eye like our own, with a lens and so on.
There are several interesting reasons. In the first place, the bee is too small; if it
had an eye like ours, but on his scale, the opening would be about 30 µ in size
and diffraction would be so important that it would not be able to see very well
anyway. The eye is not good if it is too small. Secondly, if it were as big as the
bee’s head, then the eye would occupy the whole head of the bee. The beauty of
the compound eye is that it takes up no space, it is just a very thin layer on the
surface of the bee. So when we argue that they should have done it our way, we
must remember that they had their own problems!

36-5 Other eyes

Besides the bees, many other animals can see color. Fish, butterflies, birds,
and reptiles can see color, but it is believed that most mammals cannot. The
primates can see color. The birds certainly see color, and that accounts for the
colors of birds. There would be no point in having such brilliantly colored males
if the females could not notice it! That is, the evolution of the sexual “whatever
it is” that the birds have is a result of the female being able to see color. So next
time we look at a peacock and think of what a brilliant display of gorgeous color
it is, and how delicate all the colors are, and what a wonderful aesthetic sense it
takes to appreciate all that, we should not compliment the peacock, but should
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compliment the visual acuity and aesthetic sense of the peahen, because that is
what has generated the beautiful scene!

All invertebrates have poorly developed eyes or compound eyes, but all the
vertebrates have eyes very similar to our own, with one exception. If we consider
the highest form of animal, we usually say, “Here we are!,” but if we take a less
prejudiced point of view and restrict ourselves to the invertebrates, so that we
cannot include ourselves, and ask what is the highest invertebrate animal, most
zoologists agree that the octopus is the highest animal! It is very interesting
that, besides the development of its brain and its reactions and so on, which are
rather good for an invertebrate, it has also developed, independently, a different
eye. It is not a compound eye or an eye spot—it has a cornea, it has lids, it has
an iris, it has a lens, it has two regions of water, it has a retina behind. It is
essentially the same as the eye of the vertebrates! It is a remarkable example of
a coincidence in evolution where nature has twice discovered the same solution
to a problem, with one slight improvement. In the octopus it also turns out,
amazingly, that the retina is a piece of the brain that has come out in the same
way in its embryonic development as is true for vertebrates, but the interesting
thing which is different is that the cells which are sensitive to light are on the
inside, and the cells which do the calculation are in back of them, rather than
“inside out,” as in our eye. So we see, at least, that there is no good reason for
its being inside out. The other time nature tried it, she got it straightened out!
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Fig. 36-10. The eye of an octopus.
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(See Fig. 36-10.) The biggest eyes in the world are those of the giant squid; they
have been found up to 15 inches in diameter!

36-6 Neurology of vision

One of the main points of our subject is the interconnection of information
from one part of the eye to the other. Let us consider the compound eye of the
horseshoe crab, on which considerable experimentation has been done. First
of all, we must appreciate what kind of information can come along nerves. A
nerve carries a kind of disturbance which has an electrical effect that is easy to
detect, a kind of wavelike disturbance which runs down the nerve and produces
an effect at the other end: a long piece of the nerve cell, called the axon, carries
the information along, and a certain kind of impulse, called a “spike,” goes along
if it is excited at one end. When one spike goes down the nerve, another cannot
immediately follow. All the spikes are of the same size, so it is not that we get
higher spikes when the thing is more strongly excited, but that we get more
spikes per second. The size of the spike is determined by the fiber. It is important
to appreciate this in order to see what happens next.

Figure 36-11(a) shows the compound eye of the horseshoe crab; it is not very
much of an eye, it has only about a thousand ommatidia. Figure 36-11(b) is a
cross section through the system; one can see the ommatidia, with the nerve
fibers that run out of them and go into the brain. But note that even in a
horseshoe crab there are little interconnections. They are much less elaborate
than in the human eye, and it gives us a chance to study a simpler example.

Let us now look at the experiments which have been done by putting fine
electrodes into the optic nerve of the horseshoe crab, and shining light on only
one of the ommatidia, which is easy to do with lenses. If we turn a light on at
some instant t0, and measure the electrical pulses that come out, we find that
there is a slight delay and then a rapid series of discharges which gradually slow
down to a uniform rate, as shown in Fig. 36-12(a). When the light goes out,
the discharge stops. Now it is very interesting that if, while our amplifier is
connected to this same nerve fiber, we shine light on a different ommatidium
nothing happens; no signal.

Now we do another experiment: we shine the light on the original ommatidium
and get the same response, but if we now turn light on another one nearby as well,
the pulses are interrupted briefly and then run at a much lower rate (Fig. 36-12b).
The rate of one is inhibited by the impulses which are coming out of the other!

36-19



Fig. 36-11. The compound eye of the horseshoe crab. (a) Normal
view. (b) Cross section.

Figures 36-7, 11, 12, 13 reprinted with permission from Goldsmith, Sensory Communications, W. A. Rosenblith, ed.
Copyright 1961, Massachusetts Institute of Technology.

In other words, each nerve fiber carries the information from one ommatidium,
but the amount that it carries is inhibited by the signals from the others. So, for
example, if the whole eye is more or less uniformly illuminated, the information
coming from any one ommatidium will be relatively weak, because it is inhibited
by so many. In fact the inhibition is additive—if we shine light on several
nearby ommatidia the inhibition is very great. The inhibition is greater when the
ommatidia are closer, and if the ommatidia are far enough away from one another,
inhibition is practically zero. So it is additive and depends on the distance; here
is a first example of information from different parts of the eye being combined
in the eye itself. We can see, perhaps, if we think about it awhile, that this is a
device to enhance contrast at the edges of objects, because if a part of the scene
is light and a part is black, then the ommatidia in the lighted area give impulses
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Fig. 36-12. The response to light of the nerve fibers of the eye of the
horseshoe crab.

that are inhibited by all the other light in the neighborhood, so it is relatively
weak. On the other hand, an ommatidium at the boundary which is given a
“white” impulse is also inhibited by others in the neighborhood, but there are
not as many of them, since some are black; the net signal is therefore stronger.
The result would be a curve, something like that of Fig. 36-13. The crab will see
an enhancement of the contour.

The fact that there is an enhancement of contours has long been known; in
fact it is a remarkable thing that has been commented on by psychologists many
times. In order to draw an object, we have only to draw its outline. How used
we are to looking at pictures that have only the outline! What is the outline?

x

R

Illumination

Response of Ommatidium

Fig. 36-13. The net response of horseshoe crab ommatidia near a
sharp change in illumination.
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The outline is only the edge difference between light and dark or one color and
another. It is not something definite. It is not, believe it or not, that every object
has a line around it! There is no such line. It is only in our own psychological
makeup that there is a line; we are beginning to understand the reasons why the
“line” is enough of a clue to get the whole thing. Presumably our own eye works
in some similar manner—much more complicated, but similar.

Finally, we shall briefly describe the more elaborate work, the beautiful,
advanced work that has been done on the frog. Doing a corresponding experiment
on a frog, by putting very fine, beautifully built needlelike probes into the optic
nerve of a frog, one can obtain the signals that are going along one particular
axon and, just as in the case of the horseshoe crab, we find that the information
does not depend on just one spot in the eye, but is a sum of information over
several spots.

The most recent picture of the operation of the frog’s eye is the following.
One can find four different kinds of optic nerve fibers, in the sense that there are
four different kinds of responses. These experiments were not done by shining
on-and-off impulses of light, because that is not what a frog sees. A frog just sits
there and his eyes never move, unless the lily pad is flopping back and forth, and
in that case his eyes wobble just right so that the image stays put. He does not
turn his eyes. If anything moves in his field of vision, like a little bug (he has
to be able to see something small moving in the fixed background), it turns out
that there are four different kinds of fibers which discharge, whose properties are
summarized in Table 36-1. Sustained edge detection, nonerasable, means that if
we bring an object with an edge into the field of view of the frog, then there are

Table 36-1

Types of response in optic nerve fibers of a frog

Type Speed Angular
field

1. Sustained edge detection (nonerasable) 0.2–0.5 m/sec 1◦

2. Convex edge detection (erasable) 0.5 m/sec 2◦–3◦

3. Changing contrast detection 1–2 m/sec 7◦–10◦

4. Dimming detection Up to 1
2 m/sec Up to 15◦

5. Darkness detection ? Very large
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a lot of impulses in this particular fiber while the object is moving, but they die
down to a sustained impulse that continues as long as the edge is there, even if it
is standing still. If we turn out the light, the impulses stop. If we turn it on again
while the edge is still in view, they start again. They are not erasable. Another
kind of fiber is very similar, except that if the edge is straight it does not work. It
must be a convex edge with dark behind it! How complicated must be the system
of interconnections in the retina of the eye of the frog in order for it to understand
that a convex surface has moved in! Furthermore, although this fiber does sustain
somewhat, it does not sustain as long as the other, and if we turn out the light
and turn it on again it does not build up again. It depends on the moving in of the
convex surface. The eye sees it move in and remembers that it is there, but if we
merely turn out the light for a moment, it simply forgets it and no longer sees it.

Another example is change-in-contrast detection. If there is an edge moving
in or out there are pulses, but if the thing stands still there are no pulses at all.

Then there is a dimming detector. If the light intensity is going down it
creates pulses, but if it stays down or stays up, the impulse stops; it only works
while the light is dimming.

Then, finally, there are a few fibers which are dark detectors—a most amazing
thing—they fire all the time! If we increase the light, they fire less rapidly, but
all the time. If we decrease the light, they fire more rapidly, all the time. In the
dark they fire like mad, perpetually saying, “It is dark! It is dark! It is dark!”

Now these responses seem to be rather complicated to classify, and we might
wonder whether perhaps the experiments are being misinterpreted. But it is very
interesting that these same classes are very clearly separated in the anatomy
of the frog! By other measurements, after these responses had been classified
(afterwards, that is what is important about this), it was discovered that the
speed of the signals on the different fibers was not the same, so here was another,
independent way to check which kind of a fiber we have found!

Another interesting question is from how big an area is one particular fiber
making its calculations? The answer is different for the different classes.

Figure 36-14 shows the surface of the so-called tectum of a frog, where the
nerves come into the brain from the optic nerve. All the nerve fibers coming
in from the optic nerve make connections in various layers of the tectum. This
layered structure is analogous to the retina; that is partly why we know that
the brain and retina are very similar. Now, by taking an electrode and moving
it down in succession through the layers, we can find out which kinds of optic
nerves end where, and the beautiful and wonderful result is that the different
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Fig. 36-14. The tectum of a frog.

kinds of fibers end in different layers! The first ones end in number 1 type, the
second in number 2, the threes and fives end in the same place, and deepest of
all is number four. (What a coincidence, they got the numbers almost in the
right order! No, that is why they numbered them that way, the first paper had
the numbers in a different order!)

We may briefly summarize what we have just learned this way: There are
three pigments, presumably. There may be many different kinds of receptor cells
containing the three pigments in different proportions, but there are many cross
connections which may permit additions and subtractions through addition and
reinforcement in the nervous system. So before we really understand color vision,
we will have to understand the final sensation. This subject is still an open one,
but these researches with microelectrodes and so on will perhaps ultimately give
us more information on how we see color.
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37

Quantum Behavior

37-1 Atomic mechanics

In the last few chapters we have treated the essential ideas necessary for an
understanding of most of the important phenomena of light—or electromagnetic ra-
diation in general. (We have left a few special topics for next year. Specifically, the
theory of the index of dense materials and total internal reflection.) What we have
dealt with is called the “classical theory” of electric waves, which turns out to be a
completely adequate description of nature for a large number of effects. We have
not had to worry yet about the fact that light energy comes in lumps or “photons.”

We would like to take up as our next subject the problem of the behavior
of relatively large pieces of matter—their mechanical and thermal properties,
for instance. In discussing these, we will find that the “classical” (or older)
theory fails almost immediately, because matter is really made up of atomic-sized
particles. Still, we will deal only with the classical part, because that is the only
part that we can understand using the classical mechanics we have been learning.
But we shall not be very successful. We shall find that in the case of matter,
unlike the case of light, we shall be in difficulty relatively soon. We could, of
course, continuously skirt away from the atomic effects, but we shall instead
interpose here a short excursion in which we will describe the basic ideas of the
quantum properties of matter, i.e., the quantum ideas of atomic physics, so that
you will have some feeling for what it is we are leaving out. For we will have to
leave out some important subjects that we cannot avoid coming close to.

So we will give now the introduction to the subject of quantum mechanics,
but will not be able actually to get into the subject until much later.

“Quantum mechanics” is the description of the behavior of matter in all its
details and, in particular, of the happenings on an atomic scale. Things on a
very small scale behave like nothing that you have any direct experience about.
They do not behave like waves, they do not behave like particles, they do not
behave like clouds, or billiard balls, or weights on springs, or like anything that
you have ever seen.

37-1



Newton thought that light was made up of particles, but then it was discovered,
as we have seen here, that it behaves like a wave. Later, however (in the beginning
of the twentieth century) it was found that light did indeed sometimes behave
like a particle. Historically, the electron, for example, was thought to behave like
a particle, and then it was found that in many respects it behaved like a wave. So
it really behaves like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of the 20th century, which gave some indications
about how small things do behave, produced an increasing confusion which was
finally resolved in 1926 and 1927 by Schrödinger, Heisenberg, and Born. They
finally obtained a consistent description of the behavior of matter on a small
scale. We take up the main features of that description in this chapter.

Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to and it appears peculiar and mysterious to everyone, both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just
do not act that way. So we have to learn about them in a sort of abstract or
imaginative fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot explain the mystery in the sense of “explaining” how it works. We
will tell you how it works. In telling you how it works we will have told you
about the basic peculiarities of all quantum mechanics.

37-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more

37-2



GUN

(a)

WALL

1

2

x

MOVABLE
DETECTOR

BACKSTOP

(b)

P1

P2

(c)

P12

P12 = P1 + P2

Fig. 37-1. Interference experiment with bullets.

familiar behavior of particles like bullets, and with the behavior of waves like water
waves. We consider first the behavior of bullets in the experimental setup shown
diagrammatically in Fig. 37-1. We have a machine gun that shoots a stream of
bullets. It is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
a wall (made of armor plate) that has in it two holes just about big enough to let
a bullet through. Beyond the wall is a backstop (say a thick wall of wood) which
will “absorb” the bullets when they hit it. In front of the wall we have an object
which we shall call a “detector” of bullets. It might be a box containing sand.
Any bullet that enters the detector will be stopped and accumulated. When we
wish, we can empty the box and count the number of bullets that have been
caught. The detector can be moved back and forth (in what we will call the
x-direction). With this apparatus, we can find out experimentally the answer to
the question: “What is the probability that a bullet which passes through the
holes in the wall will arrive at the backstop at the distance x from the center?”
First, you should realize that we should talk about probability, because we cannot
say definitely where any particular bullet will go. A bullet which happens to hit
one of the holes may bounce off the edges of the hole, and may end up anywhere
at all. By “probability” we mean the chance that the bullet will arrive at the
detector, which we can measure by counting the number which arrive at the
detector in a certain time and then taking the ratio of this number to the total
number that hit the backstop during that time. Or, if we assume that the gun
always shoots at the same rate during the measurements, the probability we want
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is just proportional to the number that reach the detector in some standard time
interval.

For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any
given moment either nothing arrives, or one and only one—exactly one—bullet
arrives at the backstop. Also, the size of the lump certainly does not depend on the
rate of firing of the gun. We shall say: “Bullets always arrive in identical lumps.”
What we measure with our detector is the probability of arrival of a lump. And we
measure the probability as a function of x. The result of such measurements with
this apparatus (we have not yet done the experiment, so we are really imagining
the result) are plotted in the graph drawn in part (c) of Fig. 37-1. In the graph
we plot the probability to the right and x vertically, so that the x-scale fits the
diagram of the apparatus. We call the probability P12 because the bullets may
have come either through hole 1 or through hole 2. You will not be surprised that
P12 is large near the middle of the graph but gets small if x is very large. You may
wonder, however, why P12 has its maximum value at x = 0. We can understand
this fact if we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass only through
hole 1, and we get the curve marked P1 in part (b) of the figure. As you would
expect, the maximum of P1 occurs at the value of x which is on a straight line with
the gun and hole 1. When hole 1 is closed, we get the symmetric curve P2 drawn
in the figure. P2 is the probability distribution for bullets that pass through hole 2.
Comparing parts (b) and (c) of Fig. 37-1, we find the important result that

P12 = P1 + P2. (37.1)

The probabilities just add together. The effect with both holes open is the sum
of the effects with each hole open alone. We shall call this result an observation
of “no interference,” for a reason that you will see later. So much for bullets.
They come in lumps, and their probability of arrival shows no interference.

37-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus
is shown diagrammatically in Fig. 37-2. We have a shallow trough of water. A
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Fig. 37-2. Interference experiment with water waves.

small object labeled the “wave source” is jiggled up and down by a motor and
makes circular waves. To the right of the source we have again a wall with two
holes, and beyond that is a second wall, which, to keep things simple, is an
“absorber,” so that there is no reflection of the waves that arrive there. This can
be done by building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x-direction, as before. The
detector is now a device which measures the “intensity” of the wave motion. You
can imagine a gadget which measures the height of the wave motion, but whose
scale is calibrated in proportion to the square of the actual height, so that the
reading is proportional to the intensity of the wave. Our detector reads, then, in
proportion to the energy being carried by the wave—or rather, the rate at which
energy is carried to the detector.

With our wave apparatus, the first thing to notice is that the intensity can
have any size. If the source just moves a very small amount, then there is just
a little bit of wave motion at the detector. When there is more motion at the
source, there is more intensity at the detector. The intensity of the wave can
have any value at all. We would not say that there was any “lumpiness” in the
wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked I12 in part (c) of the figure.

37-5



We have already worked out how such patterns can come about when we
studied the interference of electric waves. In this case we would observe that the
original wave is diffracted at the holes, and new circular waves spread out from
each hole. If we cover one hole at a time and measure the intensity distribution at
the absorber we find the rather simple intensity curves shown in part (b) of the
figure. I1 is the intensity of the wave from hole 1 (which we find by measuring
when hole 2 is blocked off) and I2 is the intensity of the wave from hole 2 (seen
when hole 1 is blocked).

The intensity I12 observed when both holes are open is certainly not the sum
of I1 and I2. We say that there is “interference” of the two waves. At some places
(where the curve I12 has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity.
We say that the two waves are “interfering constructively” at such places. There
will be such constructive interference wherever the distance from the detector to
one hole is a whole number of wavelengths larger (or shorter) than the distance
from the detector to the other hole.

At those places where the two waves arrive at the detector with a phase
difference of π (where they are “out of phase”) the resulting wave motion at
the detector will be the difference of the two amplitudes. The waves “interfere
destructively,” and we get a low value for the wave intensity. We expect such low
values wherever the distance between hole 1 and the detector is different from the
distance between hole 2 and the detector by an odd number of half-wavelengths.
The low values of I12 in Fig. 37-2 correspond to the places where the two waves
interfere destructively.

You will remember that the quantitative relationship between I1, I2, and I12
can be expressed in the following way: The instantaneous height of the water
wave at the detector for the wave from hole 1 can be written as (the real part
of) ĥ1e

iωt, where the “amplitude” ĥ1 is, in general, a complex number. The
intensity is proportional to the mean squared height or, when we use the complex
numbers, to |ĥ1|2. Similarly, for hole 2 the height is ĥ2e

iωt and the intensity
is proportional to |ĥ2|2. When both holes are open, the wave heights add to
give the height (ĥ1 + ĥ2)eiωt and the intensity |ĥ1 + ĥ2|2. Omitting the constant
of proportionality for our present purposes, the proper relations for interfering
waves are

I1 = |ĥ1|2, I2 = |ĥ2|2, I12 = |ĥ1 + ĥ2|2. (37.2)
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You will notice that the result is quite different from that obtained with
bullets (Eq. 37.1). If we expand |ĥ1 + ĥ2|2 we see that

|ĥ1 + ĥ2|2 = |ĥ1|2 + |ĥ2|2 + 2|ĥ1||ĥ2| cos δ, (37.3)

where δ is the phase difference between ĥ1 and ĥ2. In terms of the intensities,
we could write

I12 = I1 + I2 + 2
√
I1I2 cos δ. (37.4)

The last term in (37.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

37-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 37-3. We make an electron gun which consists of a tungsten
wire heated by an electric current and surrounded by a metal box with a hole in
it. If the wire is at a negative voltage with respect to the box, electrons emitted
by the wire will be accelerated toward the walls and some will pass through the
hole. All the electrons which come out of the gun will have (nearly) the same
energy. In front of the gun is again a wall (just a thin metal plate) with two
holes in it. Beyond the wall is another plate which will serve as a “backstop.”
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x

P1

P2

P1 = |φ1|2
P2 = |φ2|2
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Fig. 37-3. Interference experiment with electrons.
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In front of the backstop we place a movable detector. The detector might be a
geiger counter or, perhaps better, an electron multiplier, which is connected to
a loudspeaker.

We should say right away that you should not try to set up this experiment (as
you could have done with the two we have already described). This experiment
has never been done in just this way. The trouble is that the apparatus would
have to be made on an impossibly small scale to show the effects we are interested
in. We are doing a “thought experiment,” which we have chosen because it is easy
to think about. We know the results that would be obtained because there are
many experiments that have been done, in which the scale and the proportions
have been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click . . . . . click-click . . . click . . . . . . . . click . . . . click-click . . . . . . click . . . , etc.,
just as you have, no doubt, heard a geiger counter operating. If we count the
clicks which arrive in a sufficiently long time—say for many minutes—and then
count again for another equal period, we find that the two numbers are very
nearly the same. So we can speak of the average rate at which the clicks are
heard (so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower
the temperature of the wire in the gun the rate of clicking slows down, but still
each click sounds the same. We would notice also that if we put two separate
detectors at the backstop, one or the other would click, but never both at once.
(Except that once in a while, if there were two clicks very close together in time,
our ear might not sense the separation.) We conclude, therefore, that whatever
arrives at the backstop arrives in “lumps.” All the “lumps” are the same size:
only whole “lumps” arrive, and they arrive one at a time at the backstop. We
shall say: “Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find exper-
imentally the answer to the question: “What is the relative probability that
an electron ‘lump’ will arrive at the backstop at various distances x from the
center?” As before, we obtain the relative probability by observing the rate of
clicks, holding the operation of the gun constant. The probability that lumps
will arrive at a particular x is proportional to the average rate of clicks at that x.
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The result of our experiment is the interesting curve marked P12 in part (c)
of Fig. 37-3. Yes! That is the way electrons go.

37-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 37-3 to see whether we can
understand the behavior of the electrons. The first thing we would say is that
since they come in lumps, each lump, which we may as well call an electron, has
come either through hole 1 or through hole 2. Let us write this in the form of a
“Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Proposition A, all electrons that arrive at the backstop can be
divided into two classes: (1) those that come through hole 1, and (2) those that
come through hole 2. So our observed curve must be the sum of the effects of
the electrons which come through hole 1 and the electrons which come through
hole 2. Let us check this idea by experiment. First, we will make a measurement
for those electrons that come through hole 1. We block off hole 2 and make
our counts of the clicks from the detector. From the clicking rate, we get P1.
The result of the measurement is shown by the curve marked P1 in part (b) of
Fig. 37-3. The result seems quite reasonable. In a similar way, we measure P2,
the probability distribution for the electrons that come through hole 2. The
result of this measurement is also drawn in the figure.

The result P12 obtained with both holes open is clearly not the sum of P1
and P2, the probabilities for each hole alone. In analogy with our water-wave
experiment, we say: “There is interference.”

For electrons: P12 6= P1 + P2. (37.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through
hole 1 or hole 2, because if they did, the probabilities should add. Perhaps they
go in a more complicated way. They split in half and . . . ” But no! They cannot,
they always arrive in lumps . . . “Well, perhaps some of them go through 1, and
then they go around through 2, and then around a few more times, or by some
other complicated path . . . then by closing hole 2, we changed the chance that
an electron that started out through hole 1 would finally get to the backstop . . . ”
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But notice! There are some points at which very few electrons arrive when both
holes are open, but which receive many electrons if we close one hole, so closing
one hole increased the number from the other. Notice, however, that at the
center of the pattern, P12 is more than twice as large as P1 + P2. It is as though
closing one hole decreased the number of electrons which come through the other
hole. It seems hard to explain both effects by proposing that the electrons travel
in complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for P12
in terms of individual electrons going around in complicated ways through the
holes. None of them has succeeded. None of them can get the right curve for P12
in terms of P1 and P2.

Yet, surprisingly enough, the mathematics for relating P1 and P2 to P12 is
extremely simple. For P12 is just like the curve I12 of Fig. 37-2, and that was
simple. What is going on at the backstop can be described by two complex
numbers that we can call φ̂1 and φ̂2 (they are functions of x, of course). The
absolute square of φ̂1 gives the effect with only hole 1 open. That is, P1 = |φ̂1|2.
The effect with only hole 2 open is given by φ̂2 in the same way. That is,
P2 = |φ̂2|2. And the combined effect of the two holes is just P12 = |φ̂1 + φ̂2|2.
The mathematics is the same as that we had for the water waves! (It is hard to
see how one could get such a simple result from a complicated game of electrons
going back and forth through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the intensity
as the mean over time of the square of the wave amplitude, and we used complex
numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex
numbers. The real parts alone will not do. That is a technical point, for the
moment, because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P1 + P2), that is really all there is to say. But there are a
large number of subtleties involved in the fact that nature does work this way.
We would like to illustrate some of these subtleties for you now. First, since the
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number that arrives at a particular point is not equal to the number that arrives
through 1 plus the number that arrives through 2, as we would have concluded
from Proposition A, undoubtedly we should conclude that Proposition A is false.
It is not true that the electrons go either through hole 1 or hole 2. But that
conclusion can be tested by another experiment.

37-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we add
a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 37-4. We know that electric charges scatter light. So when an
electron passes, however it does pass, on its way to the detector, it will scatter
some light to our eye, and we can see where the electron goes. If, for instance,
an electron were to take the path via hole 2 that is sketched in Fig. 37-4, we
should see a flash of light coming from the vicinity of the place marked A in the
figure. If an electron passes through hole 1 we would expect to see a flash from
the vicinity of the upper hole. If it should happen that we get light from both
places at the same time, because the electron divides in half . . . Let us just do
the experiment!

ELECTRON
GUN

(a)

1

2

LIGHT
SOURCE

A

(b)

x

P ′1

P ′2

(c)

x

P ′12

P ′12 = P
′
1 + P

′
2

Fig. 37-4. A different electron experiment.

Here is what we see: every time that we hear a “click” from our electron
detector (at the backstop), we also see a flash of light either near hole 1 or near
hole 2, but never both at once! And we observe the same result no matter where
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we put the detector. From this observation we conclude that when we look at
the electrons we find that the electrons go either through one hole or the other.
Experimentally, Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t P12
just equal to P1 + P2? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they
went through, by watching for the flashes. We can keep track of things this
way: whenever we hear a “click” we will put a count in Column 1 if we see the
flash near hole 1, and if we see the flash near hole 2, we will record a count
in Column 2. Every electron which arrives is recorded in one of two classes:
those which come through 1 and those which come through 2. From the number
recorded in Column 1 we get the probability P ′1 that an electron will arrive at
the detector via hole 1; and from the number recorded in Column 2 we get P ′2,
the probability that an electron will arrive at the detector via hole 2. If we now
repeat such a measurement for many values of x, we get the curves for P ′1 and P ′2
shown in part (b) of Fig. 37-4.

Well, that is not too surprising! We get for P ′1 something quite similar to
what we got before for P1 by blocking off hole 2; and P ′2 is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is
open or closed.

But wait! What do we have now for the total probability, the probability
that an electron will arrive at the detector by any route? We already have that
information. We just pretend that we never looked at the light flashes, and we
lump together the detector clicks which we have separated into the two columns.
We must just add the numbers. For the probability that an electron will arrive
at the backstop by passing through either hole, we do find P ′12 = P ′1 + P ′2. That
is, although we succeeded in watching which hole our electrons come through,
we no longer get the old interference curve P12, but a new one, P ′12 showing no
interference! If we turn out the light P12 is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on
our light source that disturbs things? It must be that the electrons are very
delicate, and the light, when it scatters off the electrons, gives them a jolt that
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changes their motion. We know that the electric field of the light acting on a
charge will exert a force on it. So perhaps we should expect the motion to be
changed. Anyway, the light exerts a big influence on the electrons. By trying to
“watch” the electrons we have changed their motions. That is, the jolt given to
the electron when the photon is scattered by it is such as to change the electron’s
motion enough so that if it might have gone to where P12 was at a maximum it
will instead land where P12 was a minimum; that is why we no longer see the
wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave will
be weak enough that it will have a negligible effect.” O.K. Let’s try it. The first
thing we observe is that the flashes of light scattered from the electrons as they
pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a “click”
from the detector but see no flash at all. The electron has gone by without being
“seen.” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in lumps that we call “photons.” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we
hear a click in the detector we will keep a count in three columns: in Column (1)
those electrons seen by hole 1, in Column (2) those electrons seen by hole 2,
and in Column (3) those electrons not seen at all. When we work up our data
(computing the probabilities) we find these results: Those “seen by hole 1” have
a distribution like P ′1; those “seen by hole 2” have a distribution like P ′2 (so that
those “seen by either hole 1 or 2” have a distribution like P ′12); and those “not
seen at all” have a “wavy” distribution just like P12 of Fig. 37-3! If the electrons
are not seen, we have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized
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effects and the effect of the photons being scattered is enough to smear out any
interference effect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon” is
inversely proportional to its wavelength (p = h/λ). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our
experiment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave
nature of the light, there is a limitation on how close two spots can be and still
be seen as two separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance between
our holes, we see a big fuzzy flash when the light is scattered by the electrons.
We can no longer tell which hole the electron went through! We just know it went
somewhere! And it is just with light of this color that we find that the jolts given
to the electron are small enough so that P ′12 begins to look like P12—that we
begin to get some interference effect. And it is only for wavelengths much longer
than the separation of the two holes (when we have no chance at all of telling
where the electron went) that the disturbance due to the light gets sufficiently
small that we again get the curve P12 shown in Fig. 37-3.

In our experiment we find that it is impossible to arrange the light in such
a way that one can tell which hole the electron went through, and at the same
time not disturb the pattern. It was suggested by Heisenberg that the then
new laws of nature could only be consistent if there were some basic limitation
on our experimental capabilities not previously recognized. He proposed, as a
general principle, his uncertainty principle, which we can state in terms of our
experiment as follows: “It is impossible to design an apparatus to determine
which hole the electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus is capable
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of determining which hole the electron goes through, it cannot be so delicate
that it does not disturb the pattern in an essential way. No one has ever found
(or even thought of) a way around the uncertainty principle. So we must assume
that it describes a basic characteristic of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter depends on the correctness of the uncertainty
principle. Since quantum mechanics is such a successful theory, our belief in
the uncertainty principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent results
and would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? It is true, or is it not true, that
the electron either goes through hole 1 or it goes through hole 2?” The only
answer that can be given is that we have found from experiment that there is
a certain special way that we have to think in order that we do not get into
inconsistencies. What we must say (to avoid making wrong predictions) is the
following. If one looks at the holes or, more accurately, if one has a piece of
apparatus which is capable of determining whether the electrons go through
hole 1 or hole 2, then one can say that it goes either through hole 1 or hole 2.
But, when one does not try to tell which way the electron goes, when there is
nothing in the experiment to disturb the electrons, then one may not say that
an electron goes either through hole 1 or hole 2. If one does say that, and starts
to make any deductions from the statement, he will make errors in the analysis.
This is the logical tightrope on which we must walk if we wish to describe nature
successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see
an interference pattern there? It turns out that for the bullets the wavelengths
were so tiny that the interference patterns became very fine. So fine, in fact, that
with any detector of finite size one could not distinguish the separate maxima
and minima. What we saw was only a kind of average, which is the classical
curve. In Fig. 37-5 we have tried to indicate schematically what happens with
large-scale objects. Part (a) of the figure shows the probability distribution
one might predict for bullets, using quantum mechanics. The rapid wiggles are
supposed to represent the interference pattern one gets for waves of very short
wavelength. Any physical detector, however, straddles several wiggles of the
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Fig. 37-5. Interference pattern with bullets: (a) actual (schematic),
(b) observed.

probability curve, so that the measurements show the smooth curve drawn in
part (b) of the figure.

37-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments. We
will, however, put the results in a form which makes them true for a general class
of such experiments. We can write our summary more simply if we first define
an “ideal experiment” as one in which there are no uncertain external influences,
i.e., no jiggling or other things going on that we cannot take into account. We
would be quite precise if we said: “An ideal experiment is one in which all of the
initial and final conditions of the experiment are completely specified.” What we
will call “an event” is, in general, just a specific set of initial and final conditions.
(For example: “an electron leaves the gun, arrives at the detector, and nothing
else happens.”) Now for our summary.

Summary

(1) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number φ which is called the probability
amplitude:

P = probability,
φ = probability amplitude,
P = |φ|2.

(37.6)
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(2) When an event can occur in several alternative ways, the probability
amplitude for the event is the sum of the probability amplitudes for each
way considered separately. There is interference:

φ = φ1 + φ2,

P = |φ1 + φ2|2. (37.7)

(3) If an experiment is performed which is capable of determining whether one
or another alternative is actually taken, the probability of the event is the
sum of the probabilities for each alternative. The interference is lost:

P = P1 + P2. (37.8)

One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No one can
“explain” any more than we have just “explained.” No one will give you any deeper
representation of the situation. We have no ideas about a more basic mechanism
from which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance, and we
believe now that it is impossible, that the only thing that can be predicted is the
probability of different events. It must be recognized that this is a retrenchment
in our earlier ideal of understanding nature. It may be a backward step, but no
one has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some
kind of internal works—some inner variables—that we do not yet know about.
Perhaps that is why we cannot predict what will happen. If we could look more
closely at the electron we could be able to tell where it would end up.” So far as
we know, that is impossible. We would still be in difficulty. Suppose we were to
assume that inside the electron there is some kind of machinery that determines
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where it is going to end up. That machine must also determine which hole it is
going to go through on its way. But we must not forget that what is inside the
electron should not be dependent on what we do, and in particular upon whether
we open or close one of the holes. So if an electron, before it starts, has already
made up its mind (a) which hole it is going to use, and (b) where it is going to
land, we should find P1 for those electrons that have chosen hole 1, P2 for those
that have chosen hole 2, and necessarily the sum P1 + P2 for those that arrive
through the two holes. There seems to be no way around this. But we have
verified experimentally that that is not the case. And no one has figured a way
out of this puzzle. So at the present time we must limit ourselves to computing
probabilities. We say “at the present time,” but we suspect very strongly that
it is something that will be with us forever—that it is impossible to beat that
puzzle—that this is the way nature really is.

37-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component
of its momentum with an uncertainty ∆p, you cannot, at the same time, know its
x-position more accurately than ∆x ≥ ~/2∆p. The uncertainties in the position
and momentum at any instant must have their product greater than half the
reduced Planck constant. This is a special case of the uncertainty principle that
was stated above more generally. The more general statement was that one
cannot design equipment in any way to determine which of two alternatives is
taken, without, at the same time, destroying the pattern of interference.

Let us show for one particular case that the kind of relation given by Heisenberg
must be true in order to keep from getting into trouble. We imagine a modification
of the experiment of Fig. 37-3, in which the wall with the holes consists of a plate
mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 37-6. By watching the motion of the plate carefully we can
try to tell which hole an electron goes through. Imagine what happens when
the detector is placed at x = 0. We would expect that an electron which passes
through hole 1 must be deflected downward by the plate to reach the detector.
Since the vertical component of the electron momentum is changed, the plate
must recoil with an equal momentum in the opposite direction. The plate will
get an upward kick. If the electron goes through the lower hole, the plate should
feel a downward kick. It is clear that for every position of the detector, the
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Fig. 37-6. An experiment in which the recoil of the wall is measured.

momentum received by the plate will have a different value for a traversal via
hole 1 than for a traversal via hole 2. So! Without disturbing the electrons at
all, but just by watching the plate, we can tell which path the electron used.

Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is we cannot say precisely where the two holes
are. They will be in a different place for every electron that goes through. This
means that the center of our interference pattern will have a different location for
each electron. The wiggles of the interference pattern will be smeared out. We
shall show quantitatively in the next chapter that if we determine the momentum
of the plate sufficiently accurately to determine from the recoil measurement
which hole was used, then the uncertainty in the x-position of the plate will,
according to the uncertainty principle, be enough to shift the pattern observed at
the detector up and down in the x-direction about the distance from a maximum
to its nearest minimum. Such a random shift is just enough to smear out the
pattern so that no interference is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg rec-
ognized that if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would collapse.
So he proposed that it must be impossible. Then people sat down and tried to
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figure out ways of doing it, and nobody could figure out a way to measure the
position and the momentum of anything—a screen, an electron, a billiard ball,
anything—with any greater accuracy. Quantum mechanics maintains its perilous
but accurate existence.
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38

The Relation of Wave and
Particle Viewpoints

38-1 Probability wave amplitudes

In this chapter we shall discuss the relationship of the wave and particle
viewpoints. We already know, from the last chapter, that neither the wave
viewpoint nor the particle viewpoint is correct. Usually we have tried to present
things accurately, or at least precisely enough that they will not have to be
changed when we learn more—it may be extended, but it will not be changed!
But when we try to talk about the wave picture or the particle picture, both are
approximate, and both will change. Therefore what we learn in this chapter will
not be accurate in a certain sense; it is a kind of half-intuitive argument that will
be made more precise later, but certain things will be changed a little bit when
we interpret them correctly in quantum mechanics. The reason for doing such a
thing, of course, is that we are not going to go directly into quantum mechanics,
but we want to have at least some idea of the kinds of effects that we will find.
Furthermore, all our experiences are with waves and with particles, and so it is
rather handy to use the wave and particle ideas to get some understanding of
what happens in given circumstances before we know the complete mathematics
of the quantum-mechanical amplitudes. We shall try to illustrate the weakest
places as we go along, but most of it is very nearly correct—it is just a matter of
interpretation.

First of all, we know that the new way of representing the world in quantum
mechanics—the new framework—is to give an amplitude for every event that can
occur, and if the event involves the reception of one particle then we can give the
amplitude to find that one particle at different places and at different times. The
probability of finding the particle is then proportional to the absolute square of
the amplitude. In general, the amplitude to find a particle in different places at
different times varies with position and time.
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In a special case the amplitude varies sinusoidally in space and time like
ei(ωt−k·r) (do not forget that these amplitudes are complex numbers, not real
numbers) and involves a definite frequency ω and wave number k. Then it turns
out that this corresponds to a classical limiting situation where we would have
believed that we have a particle whose energy E was known and is related to the
frequency by

E = ~ω, (38.1)

and whose momentum p is also known and is related to the wave number by

p = ~k. (38.2)

This means that the idea of a particle is limited. The idea of a particle—
its location, its momentum, etc.—which we use so much, is in certain ways
unsatisfactory. For instance, if an amplitude to find a particle at different places
is given by ei(ωt−k·r), whose absolute square is a constant, that would mean that
the probability of finding a particle is the same at all points. That means we do
not know where it is—it can be anywhere—there is a great uncertainty in its
location.

On the other hand, if the position of a particle is more or less well known and
we can predict it fairly accurately, then the probability of finding it in different
places must be confined to a certain region, whose length we call ∆x. Outside
this region, the probability is zero. Now this probability is the absolute square of
an amplitude, and if the absolute square is zero, the amplitude is also zero, so
that we have a wave train whose length is ∆x (Fig. 38-1), and the wavelength
(the distance between nodes of the waves in the train) of that wave train is what
corresponds to the particle momentum.

Here we encounter a strange thing about waves; a very simple thing which
has nothing to do with quantum mechanics strictly. It is something that anybody
who works with waves, even if he knows no quantum mechanics, knows: namely,
we cannot define a unique wavelength for a short wave train. Such a wave train

∆x

Fig. 38-1. A wave packet of length ∆x .
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does not have a definite wavelength; there is an indefiniteness in the wave number
that is related to the finite length of the train, and thus there is an indefiniteness
in the momentum.

38-2 Measurement of position and momentum

Let us consider two examples of this idea—to see the reason why there is an
uncertainty in the position and/or the momentum, if quantum mechanics is right.
We have also seen before that if there were not such a thing—if it were possible
to measure the position and the momentum of anything simultaneously—we
would have a paradox; it is fortunate that we do not have such a paradox, and
the fact that such an uncertainty comes naturally from the wave picture shows
that everything is mutually consistent.

B

C

∆θ

Fig. 38-2. Diffraction of particles passing through a slit.

Here is one example which shows the relationship between the position and
the momentum in a circumstance that is easy to understand. Suppose we have a
single slit, and particles are coming from very far away with a certain energy—so
that they are all coming essentially horizontally (Fig. 38-2). We are going to
concentrate on the vertical components of momentum. All of these particles have
a certain horizontal momentum p0, say, in a classical sense. So, in the classical
sense, the vertical momentum py, before the particle goes through the hole, is
definitely known. The particle is moving neither up nor down, because it came
from a source that is far away—and so the vertical momentum is of course zero.
But now let us suppose that it goes through a hole whose width is B. Then
after it has come out through the hole, we know the position vertically—the
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y position—with considerable accuracy—namely ±B.* That is, the uncertainty
in position, ∆y, is of order B. Now we might also want to say, since we know the
momentum is absolutely horizontal, that ∆py is zero; but that is wrong. We once
knew the momentum was horizontal, but we do not know it any more. Before the
particles passed through the hole, we did not know their vertical positions. Now
that we have found the vertical position by having the particle come through the
hole, we have lost our information on the vertical momentum! Why? According
to the wave theory, there is a spreading out, or diffraction, of the waves after
they go through the slit, just as for light. Therefore there is a certain probability
that particles coming out of the slit are not coming exactly straight. The pattern
is spread out by the diffraction effect, and the angle of spread, which we can
define as the angle of the first minimum, is a measure of the uncertainty in the
final angle.

How does the pattern become spread? To say it is spread means that there
is some chance for the particle to be moving up or down, that is, to have a
component of momentum up or down. We say chance and particle because we
can detect this diffraction pattern with a particle counter, and when the counter
receives the particle, say at C in Fig. 38-2, it receives the entire particle, so that,
in a classical sense, the particle has a vertical momentum, in order to get from
the slit up to C.

To get a rough idea of the spread of the momentum, the vertical momentum py
has a spread which is equal to p0 ∆θ, where p0 is the horizontal momentum.
And how big is ∆θ in the spread-out pattern? We know that the first minimum
occurs at an angle ∆θ such that the waves from one edge of the slit have to travel
one wavelength farther than the waves from the other side—we worked that
out before (Chapter 30). Therefore ∆θ is λ/B, and so ∆py in this experiment
is p0λ/B. Note that if we make B smaller and make a more accurate measurement
of the position of the particle, the diffraction pattern gets wider. Remember,
when we closed the slits on the experiment with the microwaves, we had more
intensity farther out. So the narrower we make the slit, the wider the pattern
gets, and the more is the likelihood that we would find that the particle has
sidewise momentum. Thus the uncertainty in the vertical momentum is inversely
proportional to the uncertainty of y. In fact, we see that the product of the
two is equal to p0λ. But λ is the wavelength and p0 is the momentum, and in

* More precisely, the error in our knowledge of y is ±B/2. But we are now only interested
in the general idea, so we won’t worry about factors of 2.
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accordance with quantum mechanics, the wavelength times the momentum is
Planck’s constant h. So we obtain the rule that the uncertainties in the vertical
momentum and in the vertical position have a product of the order h:

∆y∆py ≥ ~/2. (38.3)

We cannot prepare a system in which we know the vertical position of a particle
and can predict how it will move vertically with greater certainty than given
by (38.3). That is, the uncertainty in the vertical momentum must exceed ~/2∆y,
where ∆y is the uncertainty in our knowledge of the position.

Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it has gone
through the slit, its position is known. Both position and momentum seem to be
known with arbitrary accuracy. It is quite true that we can receive a particle, and
on reception determine what its position is and what its momentum would have
had to have been to have gotten there. That is true, but that is not what the
uncertainty relation (38.3) refers to. Equation (38.3) refers to the predictability
of a situation, not remarks about the past. It does no good to say “I knew what
the momentum was before it went through the slit, and now I know the position,”
because now the momentum knowledge is lost. The fact that it went through
the slit no longer permits us to predict the vertical momentum. We are talking
about a predictive theory, not just measurements after the fact. So we must talk
about what we can predict.

Now let us take the thing the other way around. Let us take another example
of the same phenomenon, a little more quantitatively. In the previous example
we measured the momentum by a classical method. Namely, we considered the
direction and the velocity and the angles, etc., so we got the momentum by
classical analysis. But since momentum is related to wave number, there exists
in nature still another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses Eq. (38.2). We measure
the wavelengths of the waves. Let us try to measure momentum in this way.

Suppose we have a grating with a large number of lines (Fig. 38-3), and send
a beam of particles at the grating. We have often discussed this problem: if
the particles have a definite momentum, then we get a very sharp pattern in a
certain direction, because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the resolving
power of such a grating is. Rather than derive it again, we refer to Chapter 30,
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Nmλ / L

Fig. 38-3. Determination of momentum by using a diffraction grating.

where we found that the relative uncertainty in the wavelength that can be
measured with a given grating is 1/Nm, where N is the number of lines on the
grating and m is the order of the diffraction pattern. That is,

∆λ/λ = 1/Nm. (38.4)

Now formula (38.4) can be rewritten as

∆λ/λ2 = 1/Nmλ = 1/L, (38.5)

where L is the distance shown in Fig. 38-3. This distance is the difference between
the total distance that the particle or wave or whatever it is has to travel if
it is reflected from the bottom of the grating, and the distance that it has to
travel if it is reflected from the top of the grating. That is, the waves which form
the diffraction pattern are waves which come from different parts of the grating.
The first ones that arrive come from the bottom end of the grating, from the
beginning of the wave train, and the rest of them come from later parts of the
wave train, coming from different parts of the grating, until the last one finally
arrives, and that involves a point in the wave train a distance L behind the first
point. So in order that we shall have a sharp line in our spectrum corresponding
to a definite momentum, with an uncertainty given by (38.4), we have to have a
wave train of at least length L. If the wave train is too short we are not using
the entire grating. The waves which form the spectrum are being reflected from
only a very short sector of the grating if the wave train is too short, and the
grating will not work right—we will find a big angular spread. In order to get a
narrower one, we need to use the whole grating, so that at least at some moment
the whole wave train is scattering simultaneously from all parts of the grating.
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Thus the wave train must be of length L in order to have an uncertainty in the
wavelength less than that given by (38.5). Incidentally,

∆λ/λ2 = ∆(1/λ) = ∆k/2π. (38.6)
Therefore

∆k = 2π/L. (38.7)

where L is the length of the wave train.
This means that if we have a wave train whose length is less than L, the

uncertainty in the wave number must exceed 2π/L. Or the uncertainty in a wave
number times the length of the wave train—we will call that for a moment ∆x—
exceeds 2π. We call it ∆x because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that is where we
could find the particle, within an uncertainty ∆x. Now this property of waves,
that the length of the wave train times the uncertainty of the wave number
associated with it is at least π, is a property that is known to everyone who
studies them. It has nothing to do with quantum mechanics. It is simply that if
we have a finite train, we cannot count the waves in it very precisely. Let us try
another way to see the reason for that.

Suppose that we have a finite train of length L; then because of the way it
has to decrease at the ends, as in Fig. 38-1, the number of waves in the length L
is uncertain by something like ±1. But the number of waves in L is kL/2π. Thus
k is uncertain, and we again get the result (38.7), a property merely of waves.
The same thing works whether the waves are in space and k is the number of
radians per centimeter and L is the length of the train, or the waves are in time
and ω is the number of oscillations per second and T is the “length” in time
that the wave train comes in. That is, if we have a wave train lasting only for a
certain finite time T , then the uncertainty in the frequency is given by

∆ω = 2π/T. (38.8)

We have tried to emphasize that these are properties of waves alone, and they
are well known, for example, in the theory of sound.

The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p = ~k, so
that relation (38.7) tells us that ∆p ≈ h/∆x. This, then, is a limitation of the
classical idea of momentum. (Naturally, it has to be limited in some ways if we
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are going to represent particles by waves!) It is nice that we have found a rule
that gives us some idea of when there is a failure of classical ideas.

38-3 Crystal diffraction

Next let us consider the reflection of particle waves from a crystal. A crystal
is a thick thing which has a whole lot of similar atoms—we will include some
complications later—in a nice array. The question is how to set the array so that
we get a strong reflected maximum in a given direction for a given beam of, say,
light (x-rays), electrons, neutrons, or anything else. In order to obtain a strong
reflection, the scattering from all of the atoms must be in phase. There cannot
be equal numbers in phase and out of phase, or the waves will cancel out. The
way to arrange things is to find the regions of constant phase, as we have already
explained; they are planes which make equal angles with the initial and final
directions (Fig. 38-4).

θ
θ θ
d

d sin θ

d sin θ

Fig. 38-4. Scattering of waves by crystal planes.

If we consider two parallel planes, as in Fig. 38-4, the waves scattered from
the two planes will be in phase provided the difference in distance travelled by a
wavefront is an integral number of wavelengths. This difference can be seen to
be 2d sin θ, where d is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

2d sin θ = nλ (n = 1, 2, . . . ). (38.9)
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If, for example, the crystal is such that the atoms happen to lie on planes
obeying condition (38.9) with n = 1, then there will be a strong reflection. If,
on the other hand, there are other atoms of the same nature (equal in density)
halfway between, then the intermediate planes will also scatter equally strongly
and will interfere with the others and produce no effect. So d in (38.9) must refer
to adjacent planes; we cannot take a plane five layers farther back and use this
formula!

As a matter of interest, actual crystals are not usually as simple as a single
kind of atom repeated in a certain way. Instead; if we make a two-dimensional
analog, they are much like wallpaper, in which there is some kind of figure
which repeats all over the wallpaper. By “figure” we mean, in the case of atoms,
some arrangement—calcium and a carbon and three oxygens, etc., for calcium
carbonate, and so on—which may involve a relatively large number of atoms.
But whatever it is, the figure is repeated in a pattern. This basic figure is called
a unit cell.

The basic pattern of repetition defines what we call the lattice type; the lattice
type can be immediately determined by looking at the reflections and seeing
what their symmetry is. In other words, where we find any reflections at all
determines the lattice type, but in order to determine what is in each of the
elements of the lattice one must take into account the intensity of the scattering
at the various directions. Which directions scatter depends on the type of lattice,
but how strongly each scatters is determined by what is inside each unit cell, and
in that way the structure of crystals is worked out.

Two photographs of x-ray diffraction patterns are shown in Figs. 38-5 and 38-6;
they illustrate scattering from rock salt and myoglobin, respectively.

Figure 38-5 Figure 38-6
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Incidentally, an interesting thing happens if the spacings of the nearest planes
are less than λ/2. In this case (38.9) has no solution for n. Thus if λ is bigger
than twice the distance between adjacent planes then there is no side diffraction
pattern, and the light—or whatever it is—will go right through the material
without bouncing off or getting lost. So in the case of light, where λ is much
bigger than the spacing, of course it does go through and there is no pattern of
reflection from the planes of the crystal.

PILE

SHORT-λ NEUTRONS

GRAPHITE

SHORT-λ NEUTRONS

LONG-λ
NEUTRONS

Fig. 38-7. Diffusion of pile neutrons through graphite block.

This fact also has an interesting consequence in the case of piles which make
neutrons (these are obviously particles, for anybody’s money!). If we take these
neutrons and let them into a long block of graphite, the neutrons diffuse and
work their way along (Fig. 38-7). They diffuse because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms because of
diffraction from the crystal planes. It turns out that if we take a very long piece
of graphite, the neutrons that come out the far end are all of long wavelength! In
fact, if one plots the intensity as a function of wavelength, we get nothing except

λ
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Fig. 38-8. Intensity of neutrons out of graphite rod as function of
wavelength.
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for wavelengths longer than a certain minimum (Fig. 38-8). In other words, we
can get very slow neutrons that way. Only the slowest neutrons come through;
they are not diffracted or scattered by the crystal planes of the graphite, but
keep going right through like light through glass, and are not scattered out the
sides. There are many other demonstrations of the reality of neutron waves and
waves of other particles.

38-4 The size of an atom

We now consider another application of the uncertainty relation, Eq. (38.3).
It must not be taken too seriously; the idea is right but the analysis is not very
accurate. The idea has to do with the determination of the size of atoms, and
the fact that, classically, the electrons would radiate light and spiral in until
they settle down right on top of the nucleus. But that cannot be right quantum-
mechanically because then we would know where each electron was and how fast
it was moving.

Suppose we have a hydrogen atom, and measure the position of the electron; we
must not be able to predict exactly where the electron will be, or the momentum
spread will then turn out to be infinite. Every time we look at the electron,
it is somewhere, but it has an amplitude to be in different places so there is a
probability of it being found in different places. These places cannot all be at the
nucleus; we shall suppose there is a spread in position of order a. That is, the
distance of the electron from the nucleus is usually about a. We shall determine
a by minimizing the total energy of the atom.

The spread in momentum is roughly ~/a because of the uncertainty relation,
so that if we try to measure the momentum of the electron in some manner,
such as by scattering x-rays off it and looking for the Doppler effect from a
moving scatterer, we would expect not to get zero every time—the electron is
not standing still—but the momenta must be of the order p ≈ ~/a. Then the
kinetic energy is roughly 1

2mv
2 = p2/2m = ~2/2ma2. (In a sense, this is a kind

of dimensional analysis to find out in what way the kinetic energy depends upon
the reduced Planck constant, upon m, and upon the size of the atom. We need
not trust our answer to within factors like 2, π, etc. We have not even defined a
very precisely.) Now the potential energy is minus e2 over the distance from the
center, say −e2/a, where, we remember, e2 is the charge of an electron squared,
divided by 4πε0. Now the point is that the potential energy is reduced if a gets
smaller, but the smaller a is, the higher the momentum required, because of
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the uncertainty principle, and therefore the higher the kinetic energy. The total
energy is

E = ~2/2ma2 − e2/a. (38.10)

We do not know what a is, but we know that the atom is going to arrange itself
to make some kind of compromise so that the energy is as little as possible. In
order to minimize E, we differentiate with respect to a, set the derivative equal
to zero, and solve for a. The derivative of E is

dE/da = −~2/ma3 + e2/a2, (38.11)

and setting dE/da = 0 gives for a the value

a0 = ~2/me2 = 0.528 angstrom,
= 0.528× 10−10 meter. (38.12)

This particular distance is called the Bohr radius, and we have thus learned
that atomic dimensions are of the order of angstroms, which is right: This is
pretty good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms! Atoms are completely impossible from the
classical point of view, since the electrons would spiral into the nucleus.

Now if we put the value (38.12) for a0 into (38.10) to find the energy, it comes
out

E0 = −e2/2a0 = −me4/2~2 = −13.6 eV. (38.13)

What does a negative energy mean? It means that the electron has less energy
when it is in the atom than when it is free. It means it is bound. It means it takes
energy to kick the electron out; it takes energy of the order of 13.6 eV to ionize
a hydrogen atom. We have no reason to think that it is not two or three times
this—or half of this—or (1/π) times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in such a
way that it happens to come out the right number! This number, 13.6 electron
volts, is called a Rydberg of energy; it is the ionization energy of hydrogen.

So we now understand why we do not fall through the floor. As we walk, our
shoes with their masses of atoms push against the floor with its mass of atoms.
In order to squash the atoms closer together, the electrons would be confined to
a smaller space and, by the uncertainty principle, their momenta would have to
be higher on the average, and that means high energy; the resistance to atomic
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compression is a quantum-mechanical effect and not a classical effect. Classically,
we would expect that if we were to draw all the electrons and protons closer
together, the energy would be reduced still further, and the best arrangement of
positive and negative charges in classical physics is all on top of each other. This
was well known in classical physics and was a puzzle because of the existence of the
atom. Of course, the early scientists invented some ways out of the trouble—but
never mind, we have the right way out, now! (Maybe.)

Incidentally, although we have no reason to understand it at the moment, in
a situation where there are many electrons it turns out that they try to keep
away from each other. If one electron is occupying a certain space, then another
does not occupy the same space. More precisely, there are two spin cases, so that
two can sit on top of each other, one spinning one way and one the other way.
But after that we cannot put any more there. We have to put others in another
place, and that is the real reason that matter has strength. If we could put all
the electrons in the same place it would condense even more than it does. It is
the fact that the electrons cannot all get on top of each other that makes tables
and everything else solid.

Obviously, in order to understand the properties of matter, we will have to
use quantum mechanics and not be satisfied with classical mechanics.

38-5 Energy levels

We have talked about the atom in its lowest possible energy condition, but
it turns out that the electron can do other things. It can jiggle and wiggle in a
more energetic manner, and so there are many different possible motions for the
atom. According to quantum mechanics, in a stationary condition there can only
be definite energies for an atom. We make a diagram (Fig. 38-9) in which we
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Fig. 38-9. Energy diagram for an atom, showing several possible
transitions.
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plot the energy vertically, and we make a horizontal line for each allowed value of
the energy. When the electron is free, i.e., when its energy is positive, it can have
any energy; it can be moving at any speed. But bound energies are not arbitrary.
The atom must have one or another out of a set of allowed values, such as those
in Fig. 38-9.

Now let us call the allowed values of the energy E0, E1, E2, E3. If an atom
is initially in one of these “excited states,” E1, E2, etc., it does not remain in
that state forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is determined
by conservation of energy plus the quantum-mechanical understanding that the
frequency of the light is related to the energy of the light by (38.1). Therefore
the frequency of the light which is liberated in a transition from energy E3 to
energy E1 (for example) is

ω31 = (E3 − E1)/~. (38.14)

This, then, is a characteristic frequency of the atom and defines a spectral emission
line. Another possible transition would be from E3 to E0. That would have a
different frequency

ω30 = (E3 − E0)/~. (38.15)
Another possibility is that if the atom were excited to the state E1 it could drop
to the ground state E0, emitting a photon of frequency

ω10 = (E1 − E0)/~. (38.16)

The reason we bring up three transitions is to point out an interesting relationship.
It is easy to see from (38.14), (38.15), and (38.16) that

ω30 = ω31 + ω10. (38.17)

In general, if we find two spectral lines, we shall expect to find another line at the
sum of the frequencies (or the difference in the frequencies), and that all the lines
can be understood by finding a series of levels such that every line corresponds
to the difference in energy of some pair of levels. This remarkable coincidence in
spectral frequencies was noted before quantum mechanics was discovered, and it
is called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.

38-14



We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from
what has been said so far, but we are all familiar with the fact that confined
waves have definite frequencies. For instance, if sound is confined to an organ
pipe, or anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an object in
which the waves are confined has certain resonance frequencies. It is therefore a
property of waves in a confined space—a subject which we will discuss in detail
with formulas later on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and energy, we are
not surprised to find definite energies associated with electrons bound in atoms.

38-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation affects the phenomenon. It has always been known
that making observations affects a phenomenon, but the point is that the effect
cannot be disregarded or minimized or decreased arbitrarily by rearranging the
apparatus. When we look for a certain phenomenon we cannot help but disturb
it in a certain minimum way, and the disturbance is necessary for the consistency
of the viewpoint. The observer was sometimes important in prequantum physics,
but only in a rather trivial sense. The problem has been raised: if a tree falls in
a forest and there is nobody there to hear it, does it make a noise? A real tree
falling in a real forest makes a sound, of course, even if nobody is there. Even if
no one is present to hear it, there are other traces left. The sound will shake some
leaves, and if we were careful enough we might find somewhere that some thorn
had rubbed against a leaf and made a tiny scratch that could not be explained
unless we assumed the leaf were vibrating. So in a certain sense we would have
to admit that there is a sound made. We might ask: was there a sensation of
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sound? No, sensations have to do, presumably, with consciousness. And whether
ants are conscious and whether there were ants in the forest, or whether the tree
was conscious, we do not know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we
cannot measure. (Actually relativity theory also said this.) Unless a thing can be
defined by measurement, it has no place in a theory. And since an accurate value
of the momentum of a localized particle cannot be defined by measurement it
therefore has no place in the theory. The idea that this is what was the matter
with classical theory is a false position. It is a careless analysis of the situation.
Just because we cannot measure position and momentum precisely does not a
priori mean that we cannot talk about them. It only means that we need not talk
about them. The situation in the sciences is this: A concept or an idea which
cannot be measured or cannot be referred directly to experiment may or may not
be useful. It need not exist in a theory. In other words, suppose we compare the
classical theory of the world with the quantum theory of the world, and suppose
that it is true experimentally that we can measure position and momentum only
imprecisely. The question is whether the ideas of the exact position of a particle
and the exact momentum of a particle are valid or not. The classical theory
admits the ideas; the quantum theory does not. This does not in itself mean that
classical physics is wrong. When the new quantum mechanics was discovered,
the classical people—which included everybody except Heisenberg, Schrödinger,
and Born—said: “Look, your theory is not any good because you cannot answer
certain questions like: what is the exact position of a particle?, which hole does
it go through?, and some others.” Heisenberg’s answer was: “I do not need to
answer such questions because you cannot ask such a question experimentally.” It
is that we do not have to. Consider two theories (a) and (b); (a) contains an idea
that cannot be checked directly but which is used in the analysis, and the other,
(b), does not contain the idea. If they disagree in their predictions, one could not
claim that (b) is false because it cannot explain this idea that is in (a), because
that idea is one of the things that cannot be checked directly. It is always good
to know which ideas cannot be checked directly, but it is not necessary to remove
them all. It is not true that we can pursue science completely by using only those
concepts which are directly subject to experiment.

In quantum mechanics itself there is a wave function amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The
basis of a science is its ability to predict. To predict means to tell what will
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happen in an experiment that has never been done. How can we do that? By
assuming that we know what is there, independent of the experiment. We must
extrapolate the experiments to a region where they have not been done. We
must take our concepts and extend them to places where they have not yet
been checked. If we do not do that, we have no prediction. So it was perfectly
sensible for the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant something
also for an electron. It was not stupidity. It was a sensible procedure. Today we
say that the law of relativity is supposed to be true at all energies, but someday
somebody may come along and say how stupid we were. We do not know where
we are “stupid” until we “stick our neck out,” and so the whole idea is to put our
neck out. And the only way to find out that we are wrong is to find out what
our predictions are. It is absolutely necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in
physics in a given physical circumstance which is arranged as carefully as possible.
If we have an atom that is in an excited state and so is going to emit a photon,
we cannot say when it will emit the photon. It has a certain amplitude to emit
the photon at any time, and we can predict only a probability for emission; we
cannot predict the future exactly. This has given rise to all kinds of nonsense
and questions on the meaning of freedom of will, and of the idea that the world
is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position
and the velocity of every particle in the world, or in a box of gas, we could predict
exactly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exactly where
just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a
billion, we find an even larger error in the position after the collision. And that
is amplified, of course, in the next collision, so that if we start with only a tiny
error it rapidly magnifies to a very great uncertainty. To give an example: if
water falls over a dam, it splashes. If we stand nearby, every now and then a
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drop will land on our nose. This appears to be completely random, yet such a
behavior would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it goes over
the dam. How? The tiniest irregularities are magnified in falling, so that we get
complete randomness. Obviously, we cannot really predict the position of the
drops unless we know the motion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The
time goes, in fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the accuracy is taken
to be one part in billions and billions and billions—no matter how many billions
we wish, provided we do stop somewhere—then we can find a time less than the
time it took to state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the apparent freedom
and indeterminacy of the human mind, we should have realized that classical
“deterministic” physics could not ever hope to understand it, and to welcome
quantum mechanics as a release from a “completely mechanistic” universe. For
already in classical mechanics there was indeterminability from a practical point
of view.
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39

The Kinetic Theory of Gases

39-1 Properties of matter

With this chapter we begin a new subject which will occupy us for some
time. It is the first part of the analysis of the properties of matter from the
physical point of view, in which, recognizing that matter is made out of a great
many atoms, or elementary parts, which interact electrically and obey the laws
of mechanics, we try to understand why various aggregates of atoms behave the
way they do.

It is obvious that this is a difficult subject, and we emphasize at the beginning
that it is in fact an extremely difficult subject, and that we have to deal with
it differently than we have dealt with the other subjects so far. In the case of
mechanics and in the case of light, we were able to begin with a precise statement
of some laws, like Newton’s laws, or the formula for the field produced by an
accelerating charge, from which a whole host of phenomena could be essentially
understood, and which would produce a basis for our understanding of mechanics
and of light from that time on. That is, we may learn more later, but we do not
learn different physics, we only learn better methods of mathematical analysis to
deal with the situation.

We cannot use this approach effectively in studying the properties of matter.
We can discuss matter only in a most elementary way; it is much too complicated
a subject to analyze directly from its specific basic laws, which are none other
than the laws of mechanics and electricity. But these are a bit too far away from
the properties we wish to study; it takes too many steps to get from Newton’s laws
to the properties of matter, and these steps are, in themselves, fairly complicated.
We will now start to take some of these steps, but while many of our analyses
will be quite accurate, they will eventually get less and less accurate. We will
have only a rough understanding of the properties of matter.
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One of the reasons that we have to perform the analysis so imperfectly is that
the mathematics of it requires a deep understanding of the theory of probability;
we are not going to want to know where every atom is actually moving, but
rather, how many move here and there on the average, and what the odds are for
different effects. So this subject involves a knowledge of the theory of probability,
and our mathematics is not yet quite ready and we do not want to strain it too
hard.

Secondly, and more important from a physical standpoint, the actual behavior
of the atoms is not according to classical mechanics, but according to quantum
mechanics, and a correct understanding of the subject cannot be attained until
we understand quantum mechanics. Here, unlike the case of billiard balls and
automobiles, the difference between the classical mechanical laws and the quantum-
mechanical laws is very important and very significant, so that many things that
we will deduce by classical physics will be fundamentally incorrect. Therefore
there will be certain things to be partially unlearned; however, we shall indicate in
every case when a result is incorrect, so that we will know just where the “edges”
are. One of the reasons for discussing quantum mechanics in the preceding
chapters was to give an idea as to why, more or less, classical mechanics is
incorrect in the various directions.

Why do we deal with the subject now at all? Why not wait half a year, or a
year, until we know the mathematics of probability better, and we learn a little
quantum mechanics, and then we can do it in a more fundamental way? The
answer is that it is a difficult subject, and the best way to learn is to do it slowly!
The first thing to do is to get some idea, more or less, of what ought to happen
in different circumstances, and then, later, when we know the laws better, we
will formulate them better.

Anyone who wants to analyze the properties of matter in a real problem
might want to start by writing down the fundamental equations and then try
to solve them mathematically. Although there are people who try to use such
an approach, these people are the failures in this field; the real successes come
to those who start from a physical point of view, people who have a rough idea
where they are going and then begin by making the right kind of approximations,
knowing what is big and what is small in a given complicated situation. These
problems are so complicated that even an elementary understanding, although
inaccurate and incomplete, is worthwhile having, and so the subject will be one
that we shall go over again and again, each time with more and more accuracy,
as we go through our course in physics.
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Another reason for beginning the subject right now is that we have already
used many of these ideas in, for example, chemistry, and we have even heard of
some of them in high school. It is interesting to know the physical basis for these
things.

As an interesting example, we all know that equal volumes of gases, at the
same pressure and temperature, contain the same number of molecules. The
law of multiple proportions, that when two gases combine in a chemical reaction
the volumes needed always stand in simple integral proportions, was understood
ultimately by Avogadro to mean that equal volumes have equal numbers of atoms.
Now why do they have equal numbers of atoms? Can we deduce from Newton’s
laws that the number of atoms should be equal? We shall address ourselves to
that specific matter in this chapter. In succeeding chapters, we shall discuss
various other phenomena involving pressures, volumes, temperature, and heat.

We shall also find that the subject can be attacked from a nonatomic point of
view, and that there are many interrelationships of the properties of substances.
For instance, when we compress something, it heats; if we heat it, it expands.
There is a relationship between these two facts which can be deduced indepen-
dently of the machinery underneath. This subject is called thermodynamics. The
deepest understanding of thermodynamics comes, of course, from understanding
the actual machinery underneath, and that is what we shall do: we shall take
the atomic viewpoint from the beginning and use it to understand the various
properties of matter and the laws of thermodynamics.

Let us, then, discuss the properties of gases from the standpoint of Newton’s
laws of mechanics.

39-2 The pressure of a gas

First, we know that a gas exerts a pressure, and we must clearly understand
what this is due to. If our ears were a few times more sensitive, we would hear
a perpetual rushing noise. Evolution has not developed the ear to that point,
because it would be useless if it were so much more sensitive—we would hear
a perpetual racket. The reason is that the eardrum is in contact with the air,
and air is a lot of molecules in perpetual motion and these bang against the
eardrums. In banging against the eardrums they make an irregular tattoo—boom,
boom, boom—which we do not hear because the atoms are so small, and the
sensitivity of the ear is not quite enough to notice it. The result of this perpetual
bombardment is to push the drum away, but of course there is an equal perpetual
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bombardment of atoms on the other side of the eardrum, so the net force on it
is zero. If we were to take the air away from one side, or change the relative
amounts of air on the two sides, the eardrum would then be pushed one way or
the other, because the amount of bombardment on one side would be greater
than on the other. We sometimes feel this uncomfortable effect when we go up
too fast in an elevator or an airplane, especially if we also have a bad cold (when
we have a cold, inflammation closes the tube which connects the air on the inside
of the eardrum with the outside air through the throat, so that the two pressures
cannot readily equalize).

V

x dx

A
F

Fig. 39-1. Atoms of a gas in a box with a frictionless piston.

In considering how to analyze the situation quantitatively, we imagine that
we have a volume of gas in a box, at one end of which is a piston which can be
moved (Fig. 39-1). We would like to find out what force on the piston results
from the fact that there are atoms in this box. The volume of the box is V ,
and as the atoms move around inside the box with various velocities they bang
against the piston. Suppose there is nothing, a vacuum, on the outside of the
piston. What of it? If the piston were left alone, and nobody held onto it, each
time it got banged it would pick up a little momentum and it would gradually
get pushed out of the box. So in order to keep it from being pushed out of the
box, we have to hold it with a force F . The problem is, how much force? One
way of expressing the force is to talk about the force per unit area: if A is the
area of the piston, then the force on the piston will be written as a number times
the area. We define the pressure, then, as equal to the force that we have to
apply on a piston, divided by the area of the piston:

P = F/A. (39.1)

To make sure we understand the idea (we have to derive it for another purpose
anyway), the differential work dW done on the gas in compressing it by moving
the piston in a differential amount −dx would be the force times the distance
that we compress it, which, according to (39.1), would be the pressure times the
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area, times the distance, which is equal to minus the pressure times the change
in the volume:

dW = F (−dx) = −PAdx = −P dV. (39.2)

(The area A times the distance dx is the volume change.) The minus sign is there
because, as we compress it, we decrease the volume; if we think about it we can
see that if a gas is compressed, work is done on it.

How much force do we have to apply to balance the banging of the molecules?
The piston receives from each collision a certain amount of momentum. A certain
amount of momentum per second will pour into the piston, and it will start to move.
To keep it from moving, we must pour back into it the same amount of momentum
per second from our force. Of course, the force is the amount of momentum per
second that we must pour in. There is another way to put it: if we let go of the
piston it will pick up speed because of the bombardments; with each collision
we get a little more speed, and the speed thus accelerates. The rate at which the
piston picks up speed, or accelerates, is proportional to the force on it. So we see
that the force, which we already have said is the pressure times the area, is equal
to the momentum per second delivered to the piston by the colliding molecules.

To calculate the momentum per second is easy—we can do it in two parts:
first, we find the momentum delivered to the piston by one particular atom in a
collision with the piston, then we have to multiply by the number of collisions
per second that the atoms have with the wall. The force will be the product of
these two factors. Now let us see what the two factors are: In the first place,
we shall suppose that the piston is a perfect “reflector” for the atoms. If it is
not, the whole theory is wrong, and the piston will start to heat up and things
will change, but eventually, when equilibrium has set in, the net result is that
the collisions are effectively perfectly elastic. On the average, every particle that
comes in leaves with the same energy. So we shall imagine that the gas is in
a steady condition, and we lose no energy to the piston because the piston is
standing still. In those circumstances, if a particle comes in with a certain speed,
it comes out with the same speed and, we will say, with the same mass.

If v is the velocity of an atom, and vx is the x-component of v, then mvx is
the x-component of momentum “in”; but we also have an equal component of
momentum “out,” and so the total momentum delivered to the piston by the
particle, in one collision, is 2mvx, because it is “reflected.”

Now, we need the number of collisions made by the atoms in a second, or in
a certain amount of time dt; then we divide by dt. How many atoms are hitting?
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Let us suppose that there are N atoms in the volume V , or n = N/V in each unit
volume. To find how many atoms hit the piston, we note that, given a certain
amount of time t, if a particle has a certain velocity toward the piston it will
hit during the time t, provided it is close enough. If it is too far away, it goes
only part way toward the piston in the time t, but does not reach the piston.
Therefore it is clear that only those molecules which are within a distance vxt
from the piston are going to hit the piston in the time t. Thus the number of
collisions in a time t is equal to the number of atoms which are in the region
within a distance vxt, and since the area of the piston is A, the volume occupied
by the atoms which are going to hit the piston is vxtA. But the number of atoms
that are going to hit the piston is that volume times the number of atoms per
unit volume, nvxtA. Of course we do not want the number that hit in a time t,
we want the number that hit per second, so we divide by the time t, to get nvxA.
(This time t could be made very short; if we feel we want to be more elegant, we
call it dt, then differentiate, but it is the same thing.)

So we find that the force is

F = nvxA · 2mvx. (39.3)

See, the force is proportional to the area, if we keep the particle density fixed as
we change the area! The pressure is then

P = 2nmv2
x. (39.4)

Now we notice a little trouble with this analysis: First, all the molecules do
not have the same velocity, and they do not move in the same direction. So, all
the v2

x’s are different! So what we must do, of course, is to take an average of
the v2

x’s, since each one makes its own contribution. What we want is the square
of vx, averaged over all the molecules:

P = nm〈v2
x〉. (39.5)

Did we forget to include the factor 2? No; of all the atoms, only half are headed
toward the piston. The other half are headed the other way, so the number of
atoms per unit volume that are hitting the piston is only n/2.

Now as the atoms bounce around, it is clear that there is nothing special
about the “x-direction”; the atoms may also be moving up and down, back and
forth, in and out. Therefore it is going to be true that 〈v2

x〉, the average motion
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of the atoms in one direction, and the average in the other two directions, are all
going to be equal:

〈v2
x〉 = 〈v2

y〉 = 〈v2
z〉. (39.6)

It is only a matter of rather tricky mathematics to notice, therefore, that they
are each equal to one-third of their sum, which is of course the square of the
magnitude of the velocity:

〈v2
x〉 = 1

3 〈v
2
x + v2

y + v2
z〉 = 〈v2〉/3. (39.7)

This has the advantage that we do not have to worry about any particular
direction, and so we write our pressure formula again in this form:

P = ( 2
3 )n〈mv2/2〉. (39.8)

The reason we wrote the last factor as 〈mv2/2〉 is that this is the kinetic energy
of the center-of-mass motion of the molecule. We find, therefore, that

PV = N( 2
3 )〈mv2/2〉. (39.9)

With this equation we can calculate how much the pressure is, if we know the
speeds.

As a very simple example let us take helium gas, or any other gas, like mercury
vapor, or potassium vapor of high enough temperature, or argon, in which all the
molecules are single atoms, for which we may suppose that there is no internal
motion in the atom. If we had a complex molecule, there might be some internal
motion, mutual vibrations, or something. We suppose that we may disregard
that; this is actually a serious matter that we will have to come back to, but it
turns out to be all right. We suppose that the internal motion of the atoms can
be disregarded, and therefore, for this purpose, that the kinetic energy of the
center-of-mass motion is all the energy there is. So for a monatomic gas, the
kinetic energy is the total energy. In general, we are going to call U the total
energy (it is sometimes called the total internal energy—we may wonder why,
since there is no external energy to a gas), i.e., all the energy of all the molecules
in the gas, or the object, whatever it is.

For a monatomic gas we will suppose that the total energy U is equal to
a number of atoms times the average kinetic energy of each, because we are
disregarding any possibility of excitation or motion inside the atoms themselves.
Then, in these circumstances, we would have

PV = 2
3U. (39.10)
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Incidentally, we can stop here and find the answer to the following question:
Suppose that we take a can of gas and compress the gas slowly, how much pressure
do we need to squeeze the volume down? It is easy to find out, since the pressure
is 2

3 the energy divided by V . As we squeeze it down, we do work on the gas
and we thereby increase the energy U . So we are going to have some kind of a
differential equation: If we start out in a given circumstance with a certain energy
and a certain volume, we then know the pressure. Now we start to squeeze, but
the moment we do, the energy U increases and the volume V decreases, so the
pressure goes up.

So, we have to solve a differential equation, and we will solve it in a moment.
We must first emphasize, however, that as we are compressing this gas, we are
supposing that all the work goes into increasing the energy of the atoms inside.
We may ask, “Isn’t that necessary? Where else could it go?” It turns out that it
can go another place. There are what we call “heat leaks” through the walls: the
hot (i.e., fast-moving) atoms that bombard the walls, heat the walls, and energy
goes away. We shall suppose for the present that this is not the case.

For somewhat wider generality, although we are still making some very special
assumptions about our gas, we shall write, not PV = 2

3U , but

PV = (γ − 1)U. (39.11)

It is written (γ − 1) times U for conventional reasons, because we will deal with
a few other cases later where the number in front of U will not be 2

3 , but will
be a different number. So, in order to do the thing in general, we call it γ − 1,
because people have been calling it that for almost one hundred years. This γ,
then, is 5

3 for a monatomic gas like helium, because 5
3 − 1 is 2

3 .
We have already noticed that when we compress a gas the work done is −P dV .

A compression in which there is no heat energy added or removed is called an
adiabatic compression, from the Greek a (not) + dia (through) + bainein (to
go). (The word adiabatic is used in physics in several ways, and it is sometimes
hard to see what is common about them.) That is, for an adiabatic compression
all the work done goes into changing the internal energy. That is the key—that
there are no other losses of energy—for then we have P dV = −dU . But since
U = PV/(γ − 1), we may write

dU = (P dV + V dP )/(γ − 1). (39.12)

So we have P dV = −(P dV +V dP )/(γ−1), or, rearranging the terms, γP dV =
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−V dP , or
(γ dV/V ) + (dP/P ) = 0. (39.13)

Fortunately, assuming that γ is constant, as it is for a monatomic gas, we
can integrate this: it gives γ lnV + lnP = lnC, where lnC is the constant of
integration. If we take the exponential of both sides, we get the law

PV γ = C (a constant). (39.14)

In other words, under adiabatic conditions, where the temperature rises as we
compress because no heat is being lost, the pressure times the volume to the
5
3 power is a constant for a monatomic gas! Although we derived it theoretically,
this is, in fact, the way monatomic gases behave experimentally.

39-3 Compressibility of radiation

We may give one other example of the kinetic theory of a gas, one which
is not used in chemistry so much, but is used in astronomy. We have a large
number of photons in a box in which the temperature is very high. (The box
is, of course, the gas in a very hot star. The sun is not hot enough; there are
still too many atoms, but at still higher temperatures in certain very hot stars,
we may neglect the atoms and suppose that the only objects that we have in
the box are photons.) Now then, a photon has a certain momentum p. (We
always find that we are in terrible trouble when we do kinetic theory: p is the
pressure, but p is the momentum; v is the volume, but v is the velocity; T is the
temperature, but T is the kinetic energy or the time or the torque; one must keep
one’s wits about one!) This p is momentum, it is a vector. Going through the
same analysis as before, it is the x-component of the vector p which generates
the “kick,” and twice the x-component of the vector p is the momentum which
is given in the kick. Thus 2px replaces 2mvx, and in evaluating the number of
collisions, vx is still vx, so when we get all the way through, we find that the
pressure in Eq. (39.4) is, instead,

P = 2npxvx. (39.15)

Then, in the averaging, it becomes n times the average of pxvx (the same factor
of 2) and, finally, putting in the other two directions, we find

PV = N〈p · v〉/3. (39.16)
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This checks with the formula (39.9), because the momentum is mv; it is a little
more general, that is all. The pressure times the volume is the total number of
atoms times 1

3 (p · v), averaged.
Now, for photons, what is p · v? The momentum and the velocity are in the

same direction, and the velocity is the speed of light, so this is the momentum of
each of the objects, times the speed of light. The momentum times the speed of
light of every photon is its energy: E = pc, so these terms are the energies of
each of the photons, and we should, of course, take an average energy, times the
number of photons. So we have 1

3 of the energy inside the gas:

PV = U/3 (photon gas). (39.17)

For photons, then, since we have 1
3 in front, (γ − 1) in (39.11) is 1

3 , or γ = 4
3 ,

and we have discovered that radiation in a box obeys the law

PV 4/3 = C. (39.18)

So we know the compressibility of radiation! That is what is used in an analysis
of the contribution of radiation pressure in a star, that is how we calculate it,
and how it changes when we compress it. What wonderful things are already
within our power!

39-4 Temperature and kinetic energy

So far we have not dealt with temperature; we have purposely been avoiding
the temperature. As we compress a gas, we know that the energy of the molecules
increases, and we are used to saying that the gas gets hotter; we would like
to understand what this has to do with the temperature. If we try to do the
experiment, not adiabatically but at what we call constant temperature, what are
we doing? We know that if we take two boxes of gas and let them sit next to
each other long enough, even if at the start they were at what we call different
temperatures, they will in the end come to the same temperature. Now what
does that mean? That means that they get to a condition that they would get
to if we left them alone long enough! What we mean by equal temperature is
just that—the final condition when things have been sitting around interacting
with each other long enough.

Let us consider, now, what happens if we have two gases in containers
separated by a movable piston as in Fig. 39-2 (just for simplicity we shall take
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(1) (2)

Fig. 39-2. Atoms of two different monatomic gases are separated by
a movable piston.

two monatomic gases, say helium and neon). In container (1) the atoms have
mass m1, velocity v1, and there are n1 per unit volume, and in the other container
the atoms have mass m2, velocity v2, there are n2 atoms per unit volume. What
are the conditions for equilibrium?

Obviously, the bombardment from the left side must be such that it moves
the piston to the right and compresses the other gas until its pressure builds up,
and the thing will thus slosh back and forth, and will gradually come to rest at a
place where the pressures are equal on both sides. So we can arrange that the
pressures are equal; that just means that the internal energies per unit volume are
equal, or that the numbers n times the average kinetic energies on each side are
equal. What we have to try to prove, eventually, is that the numbers themselves
are equal. So far, all we know is that the numbers times the kinetic energies are
equal,

n1〈m1v
2
1/2〉 = n2〈m2v

2
2/2〉,

from (39.8), because the pressures are equal. We must realize that this is not the
only condition over the long run, but something else must happen more slowly
as the true complete equilibrium corresponding to equal temperatures sets in.

To see the idea, suppose that the pressure on the left side were developed by
having a very high density but a low velocity. By having a large n and a small v,
we can get the same pressure as by having a small n and a large v. The atoms
may be moving slowly but be packed nearly solidly, or there may be fewer but
they are hitting harder. Will it stay like that forever? At first we might think so,
but then we think again and find we have forgotten one important point. That is,
that the intermediate piston does not receive a steady pressure; it wiggles, just
like the eardrum that we were first talking about, because the hangings are not
absolutely uniform. There is not a perpetual, steady pressure, but a tattoo—the
pressure varies, and so the thing jiggles. Suppose that the atoms on the right
side are not jiggling much, but those on the left are few and far between and very
energetic. The piston will, now and then, get a big impulse from the left, and will
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Fig. 39-3. A collision between unequal atoms, viewed in the CM
system. u1 = |v1 − vCM|, u2 = |v2 − vCM|.

be driven against the slow atoms on the right, giving them more speed. (As each
atom collides with the piston, it either gains or loses energy, depending upon
whether the piston is moving one way or the other when the atom strikes it.) So,
as a result of the collisions, the piston finds itself jiggling, jiggling, jiggling, and
this shakes the other gas—it gives energy to the other atoms, and they build up
faster motions, until they balance the jiggling that the piston is giving to them.
The system comes to some equilibrium where the piston is moving at such a
mean square speed that it picks up energy from the atoms at about the same
rate as it puts energy back into them. So the piston picks up a certain mean
irregularity in speed, and it is our problem to find it. When we do find it, we can
solve our problem better, because the gases will adjust their velocities until the
rate at which they are trying to pour energy into each other through the piston
will become equal.

It is quite difficult to figure out the details of the piston in this particular
circumstance; although it is ideally simple to understand, it turns out to be a
little harder to analyze. Before we analyze that, let us analyze another problem
in which we have a box of gas but now we have two different kinds of molecules
in it, having masses m1 and m2, velocities v1 and v2, and so forth; there is now
a much more intimate relationship. If all of the No. 2 molecules are standing
still, that condition is not going to last, because they get kicked by the No. 1
molecules and so pick up speed. If they are all going much faster than the No. 1
molecules, then maybe that will not last either—they will pass the energy back
to the No. 1 molecules. So when both gases are in the same box, the problem is
to find the rule that determines the relative speeds of the two.

This is still a very difficult problem, but we will solve it as follows. First we
consider the following sub-problem (again this is one of those cases where—never
mind the derivation—in the end the result is very simple to remember, but the

39-12



derivation is just ingenious). Let us suppose that we have two molecules, of
different mass, colliding, and that the collision is viewed in the center-of-mass
(CM) system. In order to remove a complication, we look at the collision in the
CM. As we know from the laws of collision, by the conservation of momentum
and energy, after the molecules collide the only way they can move is such that
each maintains its own original speed—and they just change their direction. So
we have an average collision that looks like that in Fig. 39-3. Suppose, for a
moment, that we watch all the collisions with the CM at rest. Suppose we
imagine that they are all initially moving horizontally. Of course, after the first
collision some of them are moving at an angle. In other words, if they were all
going horizontally, then at least some would later be moving vertically. Now in
some other collision, they would be coming in from another direction, and then
they would be twisted at still another angle. So even if they were completely
organized in the beginning, they would get sprayed around at all angles, and
then the sprayed ones would get sprayed some more, and sprayed some more,
and sprayed some more. Ultimately, what will be the distribution? Answer: It
will be equally likely to find any pair moving in any direction in space. After that
further collisions could not change the distribution.

They are equally likely to go in all directions, but how do we say that? There
is of course no likelihood that they will go in any specific direction, because a
specific direction is too exact, so we have to talk about per unit “something.”
The idea is that any area on a sphere centered at a collision point will have just
as many molecules going through it as go through any other equal area on the
sphere. So the result of the collisions will be to distribute the directions so that
equal areas on a sphere will have equal probabilities.

Incidentally, if we just want to discuss the original direction and some other
direction an angle θ from it, it is an interesting property that the differential
area of a sphere of unit radius is sin θ dθ times 2π (see Fig. 32-1). And sin θ dθ
is the same as the differential of − cos θ. So what it means is that the cosine of
the angle θ between any two directions is equally likely to be anything from −1
to +1.

Next, we have to worry about the actual case, where we do not have the
collision in the CM system, but we have two atoms which are coming together
with vector velocities v1 and v2. What happens now? We can analyze this
collision with the vector velocities v1 and v2 in the following way: We first say
that there is a certain CM; the velocity of the CM is given by the “average”
velocity, with weights proportional to the masses, so the velocity of the CM
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is vCM = (m1v1 + m2v2)/(m1 + m2). If we watch this collision in the CM
system, then we see a collision just like that in Fig. 39-3, with a certain relative
velocity w coming in. The relative velocity is just v1 − v2. Now the idea is that,
first, the whole CM is moving, and in the CM there is a relative velocity w, and
the molecules collide and come off in some new direction. All this happens while
the CM keeps right on moving, without any change.

Now then, what is the distribution resulting from this? From our previous
argument we conclude this: that at equilibrium, all directions for w are equally
likely, relative to the direction of the motion of the CM.* There will be no
particular correlation, in the end, between the direction of the motion of the
relative velocity and that of the motion of the CM. Of course, if there were, the
collisions would spray it about, so it is all sprayed around. So the cosine of the
angle between w and vCM is zero on the average. That is,

〈w · vCM〉 = 0. (39.19)

But w · vCM can be expressed in terms of v1 and v2 as well:

w · vCM = (v1 − v2) · (m1v1 +m2v2)
m1 +m2

= (m1v
2
1 −m2v

2
2) + (m2 −m1)(v1 · v2)
m1 +m2

. (39.20)

First, let us look at the v1 · v2; what is the average of v1 · v2? That is, what
is the average of the component of velocity of one molecule in the direction of
another? Surely there is just as much likelihood of finding any given molecule
moving one way as another. The average of the velocity v2 in any direction is
zero. Certainly, then, in the direction of v1, v2 has zero average. So, the average
of v1 · v2 is zero! Therefore, we conclude that the average of m1v

2
1 must be equal

to the average of m2v
2
2 . That is, the average kinetic energy of the two must be

equal:
〈 12m1v

2
1〉 = 〈 12m2v

2
2〉. (39.21)

If we have two kinds of atoms in a gas, it can be shown, and we presume to have
shown it, that the average of the kinetic energy of one is the same as the average

* This argument, which was the one used by Maxwell, involves some subtleties. Although
the conclusion is correct, the result does not follow purely from the considerations of symmetry
that we used before, since, by going to a reference frame moving through the gas, we may find
a distorted velocity distribution. We have not found a simple proof of this result.
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of the kinetic energy of the other, when they are both in the same gas in the
same box in equilibrium. That means that the heavy ones will move slower than
the light ones; this is easily shown by experimentation with “atoms” of different
masses in an air trough.

Fig. 39-4. Two gases in a box with a semipermeable membrane.

Now we would like to go one step further, and say that if we have two different
gases separated in a box, they will also have equal average kinetic energy when
they have finally come to equilibrium, even though they are not in the same box.
We can make the argument in a number of ways. One way is to argue that if
we have a fixed partition with a tiny hole in it (Fig. 39-4) so that one gas could
leak out through the holes while the other could not, because the molecules are
too big, and these had attained equilibrium, then we know that in one part,
where they are mixed, they have the same average kinetic energy, but some come
through the hole without loss of kinetic energy, so the average kinetic energy in
the pure gas and in the mixture must be the same. That is not too satisfactory,
because maybe there are no holes, for this kind of molecule, that separate one
kind from the other.

Let us now go back to the piston problem. We can give an argument which
shows that the kinetic energy of this piston must also be 1

2m2v
2
2 . Actually, that

would be the kinetic energy due to the purely horizontal motion of the piston,
so, forgetting its up and down motion, it will have to be the same as 1

2m2v
2
2x .

Likewise, from the equilibrium on the other side, we can prove that the kinetic
energy of the piston is 1

2m1v
2
1x . Although this is not in the middle of the gas,

but is on one side of the gas, we can still make the argument, although it is a
little more difficult, that the average kinetic energy of the piston and of the gas
molecules are equal as a result of all the collisions.

If this still does not satisfy us, we may make an artificial example by which
the equilibrium is generated by an object which can be hit on all sides. Suppose
that we have a short rod with a ball on each end sticking through the piston, on
a frictionless sliding universal joint. Each ball is round, like one of the molecules,
and can be hit on all sides. This whole object has a certain total mass, m. Now,
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we have the gas molecules with mass m1 and mass m2 as before. The result of
the collisions, by the analysis that was made before, is that the kinetic energy
of m because of collisions with the molecules on one side must be 1

2m1v
2
1 , on

the average. Likewise, because of the collisions with molecules on the other side,
it has to be 1

2m2v
2
2 on the average. So, therefore, both sides have to have the

same kinetic energy when they are in thermal equilibrium. So, although we only
proved it for a mixture of gases, it is easily extended to the case where there are
two different, separate gases at the same temperature.

Thus when we have two gases at the same temperature, the mean kinetic
energy of the CM motions are equal.

The mean molecular kinetic energy is a property only of the “temperature.”
Being a property of the “temperature,” and not of the gas, we can use it as a
definition of the temperature. The mean kinetic energy of a molecule is thus
some function of the temperature. But who is to tell us what scale to use for
the temperature? We may arbitrarily define the scale of temperature so that
the mean energy is linearly proportional to the temperature. The best way to
do it would be to call the mean energy itself “the temperature.” That would
be the simplest possible function. Unfortunately, the scale of temperature has
been chosen differently, so instead of calling it temperature directly we use a
constant conversion factor between the energy of a molecule and a degree of
absolute temperature called a degree Kelvin. The constant of proportionality is
k = 1.38× 10−23 joule for every degree Kelvin.* So if T is absolute temperature,
our definition says that the mean molecular kinetic energy is 3

2kT . (The
3
2 is put

in as a matter of convenience, so as to get rid of it somewhere else.)
We point out that the kinetic energy associated with the component of motion

in any particular direction is only 1
2kT . The three independent directions that

are involved make it 3
2kT .

39-5 The ideal gas law

Now, of course, we can put our definition of temperature into Eq. (39.9) and
so find the law for the pressure of gases as a function of the temperature: it is
that the pressure times the volume is equal to the total number of atoms times
the universal constant k, times the temperature:

PV = NkT. (39.22)
* The centigrade scale is just this Kelvin scale with a zero chosen at 273.16 ◦K, so T =

273.16 + centigrade temperature.
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Furthermore, at the same temperature and pressure and volume, the number of
atoms is determined; it too is a universal constant! So equal volumes of different
gases, at the same pressure and temperature, have the same number of molecules,
because of Newton’s laws. That is an amazing conclusion!

In practice, when dealing with molecules, because the numbers are so large,
the chemists have artificially chosen a specific number, a very large number, and
called it something else. They have a number which they call a mole. A mole is
merely a handy number. Why they did not choose 1024 objects, so it would come
out even, is a historical question. They happened to choose, for the convenient
number of objects on which they standardize, N0 = 6.02× 1023 objects, and this
is called a mole of objects. So instead of measuring the number of molecules in
units, they measure in terms of numbers of moles.* In terms of N0 we can write
the number of moles, times the number of atoms in a mole, times kT , and if we
want to, we can take the number of atoms in a mole times k, which is a mole’s
worth of k, and call it something else, and we do—we call it R. A mole’s worth
of k is 8.317 joules: R = N0k = 8.317 J ·mole−1 · ◦K−1. Thus we also find the
gas law written as the number of moles (also called N) times RT , or the number
of atoms, times kT :

PV = NRT. (39.23)

It is the same thing, just a different scale for measuring numbers. We use 1 as a
unit, and chemists use 6× 1023 as a unit!

We now make one more remark about our gas law, and that has to do with
the law for objects other than monatomic molecules. We have dealt only with the
CM motion of the atoms of a monatomic gas. What happens if there are forces
present? First, consider the case that the piston is held by a horizontal spring,
and there are forces on it. The exchange of jiggling motion between atoms and
piston at any moment does not depend on where the piston is at that moment,
of course. The equilibrium conditions are the same. No matter where the piston
is, its speed of motion must be such that it passes energy to the molecules in just
the right way. So it makes no difference about the spring. The speed at which
the piston has to move, on the average, is the same. So our theorem, that the
mean value of the kinetic energy in one direction is 1

2kT , is true whether there
are forces present or not.

* What the chemists call molecular weights are the masses in grams of a mole of a molecule.
The mole is defined so that the mass of a mole of carbon atoms of isotope 12 (i.e., having
6 protons and 6 neutrons in the nucleus) is exactly 12 grams.
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Consider, for example, a diatomic molecule composed of atoms mA and mB .
What we have proved is that the motion of the CM of part A and that of part B
are such that 〈 12mAv

2
A〉 = 〈 12mBv

2
B〉 = 3

2kT . How can this be, if they are held
together? Although they are held together, when they are spinning and turning
in there, when something hits them, exchanging energy with them, the only
thing that counts is how fast they are moving. That alone determines how fast
they exchange energy in collisions. At the particular instant, the force is not an
essential point. Therefore the same principle is right, even when there are forces.

Let us prove, finally, that the gas law is consistent also with a disregard of
the internal motion. We did not really include the internal motions before; we
just treated a monatomic gas. But we shall now show that an entire object,
considered as a single body of total mass M , has a velocity of the CM such that〈 1

2Mv2
CM
〉

= 3
2kT. (39.24)

In other words, we can consider either the separate pieces or the whole thing! Let
us see the reason for that: The mass of the diatomic molecule is M = mA +mB ,
and the velocity of the center of mass is equal to vCM = (mAvA +mBvB)/M .
Now we need 〈v2

CM〉. If we square vCM, we get

v2
CM = m2

Av
2
A + 2mAmBvA · vB +m2

Bv
2
B

M2 .

Now we multiply 1
2M and take the average, and thus we get

〈 1
2Mv2

CM
〉

=
mA

3
2kT +mAmB〈vA · vB〉+mB

3
2kT

M

= 3
2kT + mAmB〈vA · vB〉

M
.

(We have used the fact that (mA + mB)/M = 1.) Now what is 〈vA · vB〉? (It
had better be zero!) To find out, let us use our assumption that the relative
velocity, w = vA − vB is not any more likely to point in one direction than in
another—that is, that its average component in any direction is zero. Thus we
assume that

〈w · vCM〉 = 0.
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But what is w · vCM? It is

w · vCM = (vA − vB) · (mAvA +mBvB)
M

= mAv
2
A + (mB −mA)(vA · vB)−mBv

2
B

M
.

Therefore, since 〈mAv
2
A〉 = 〈mBv

2
B〉, the first and last terms cancel out on the

average, and we are left with

(mB −mA)〈vA · vB〉 = 0.

Thus if mA 6= mB, we find that 〈vA · vB〉 = 0, and therefore that the bodily
motion of the entire molecule, regarded as a single particle of mass M , has a
kinetic energy, on the average, equal to 3

2kT .
Incidentally, we have also proved at the same time that the average kinetic

energy of the internal motions of the diatomic molecule, disregarding the bodily
motion of the CM, is 3

2kT ! For, the total kinetic energy of the parts of the
molecule is 1

2mAv
2
A + 1

2mBv
2
B , whose average is 3

2kT + 3
2kT , or 3kT . The kinetic

energy of the center-of-mass motion is 3
2kT , so the average kinetic energy of the

rotational and vibratory motions of the two atoms inside the molecule is the
difference, 3

2kT .
The theorem concerning the average energy of the CM motion is general: for

any object considered as a whole, with forces present or no, for every independent
direction of motion that there is, the average kinetic energy in that motion is 1

2kT .
These “independent directions of motion” are sometimes called the degrees of
freedom of the system. The number of degrees of freedom of a molecule composed
of r atoms is 3r, since each atom needs three coordinates to define its position.
The entire kinetic energy of the molecule can be expressed either as the sum of
the kinetic energies of the separate atoms, or as the sum of the kinetic energy of
the CM motion plus the kinetic energy of the internal motions. The latter can
sometimes be expressed as a sum of rotational kinetic energy of the molecule and
vibrational energy, but this is an approximation. Our theorem, applied to the
r-atom molecule, says that the molecule will have, on the average, 3rkT/2 joules
of kinetic energy, of which 3

2kT is kinetic energy of the center-of-mass motion of
the entire molecule, and the rest, 3

2 (r−1)kT , is internal vibrational and rotational
kinetic energy.
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40

The Principles of Statistical Mechanics

40-1 The exponential atmosphere

We have discussed some of the properties of large numbers of intercolliding
atoms. The subject is called kinetic theory, a description of matter from the point
of view of collisions between the atoms. Fundamentally, we assert that the gross
properties of matter should be explainable in terms of the motion of its parts.

We limit ourselves for the present to conditions of thermal equilibrium, that is,
to a subclass of all the phenomena of nature. The laws of mechanics which apply
just to thermal equilibrium are called statistical mechanics, and in this section
we want to become acquainted with some of the central theorems of this subject.

We already have one of the theorems of statistical mechanics, namely, the
mean value of the kinetic energy for any motion at the absolute temperature T
is 1

2kT for each independent motion, i.e., for each degree of freedom. That tells
us something about the mean square velocities of the atoms. Our objective now
is to learn more about the positions of the atoms, to discover how many of them
are going to be in different places at thermal equilibrium, and also to go into
a little more detail on the distribution of the velocities. Although we have the
mean square velocity, we do not know how to answer a question such as how
many of them are going three times faster than the root mean square, or how
many of them are going one-quarter of the root mean square speed. Or have they
all the same speed exactly?

So, these are the two questions that we shall try to answer: How are the
molecules distributed in space when there are forces acting on them, and how
are they distributed in velocity?

It turns out that the two questions are completely independent, and that
the distribution of velocities is always the same. We already received a hint
of the latter fact when we found that the average kinetic energy is the same,
1
2kT per degree of freedom, no matter what forces are acting on the molecules.
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The distribution of the velocities of the molecules is independent of the forces,
because the collision rates do not depend upon the forces.

Let us begin with an example: the distribution of the molecules in an at-
mosphere like our own, but without the winds and other kinds of disturbance.
Suppose that we have a column of gas extending to a great height, and at thermal
equilibrium—unlike our atmosphere, which as we know gets colder as we go up.
We could remark that if the temperature differed at different heights, we could
demonstrate lack of equilibrium by connecting a rod to some balls at the bottom
(Fig. 40-1), where they would pick up 1

2kT from the molecules there and would
shake, via the rod, the balls at the top and those would shake the molecules
at the top. So, ultimately, of course, the temperature becomes the same at all
heights in a gravitational field.

Mechanism
for equalizing
temperature

h + dh

h

g

Fig. 40-1. The pressure at height h must exceed that at h + dh by
the weight of the intervening gas.

If the temperature is the same at all heights, the problem is to discover by
what law the atmosphere becomes tenuous as we go up. If N is the total number
of molecules in a volume V of gas at pressure P , then we know PV = NkT ,
or P = nkT , where n = N/V is the number of molecules per unit volume. In
other words, if we know the number of molecules per unit volume, we know
the pressure, and vice versa: they are proportional to each other, since the
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temperature is constant in this problem. But the pressure is not constant, it
must increase as the altitude is reduced, because it has to hold, so to speak, the
weight of all the gas above it. That is the clue by which we may determine how
the pressure changes with height. If we take a unit area at height h, then the
vertical force from below, on this unit area, is the pressure P . The vertical force
per unit area pushing down at a height h+ dh would be the same, in the absence
of gravity, but here it is not, because the force from below must exceed the force
from above by the weight of gas in the section between h and h+ dh. Now mg is
the force of gravity on each molecule, where g is the acceleration due to gravity,
and ndh is the total number of molecules in the unit section. So this gives us
the differential equation Ph+dh − Ph = dP = −mgndh. Since P = nkT , and T
is constant, we can eliminate either P or n, say P , and get

dn

dh
= −mg

kT
n

for the differential equation, which tells us how the density goes down as we go
up in energy.

We thus have an equation for the particle density n, which varies with height,
but which has a derivative which is proportional to itself. Now a function which
has a derivative proportional to itself is an exponential, and the solution of this
differential equation is

n = n0e
−mgh/kT . (40.1)

Here the constant of integration, n0, is obviously the density at h = 0 (which
can be chosen anywhere), and the density goes down exponentially with height.

Note that if we have different kinds of molecules with different masses, they
go down with different exponentials. The ones which were heavier would decrease
with altitude faster than the light ones. Therefore we would expect that because
oxygen is heavier than nitrogen, as we go higher and higher in an atmosphere
with nitrogen and oxygen the proportion of nitrogen would increase. This does
not really happen in our own atmosphere, at least at reasonable heights, because
there is so much agitation which mixes the gases back together again. It is not
an isothermal atmosphere. Nevertheless, there is a tendency for lighter materials,
like hydrogen, to dominate at very great heights in the atmosphere, because the
lowest masses continue to exist, while the other exponentials have all died out
(Fig. 40-2).
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Fig. 40-2. The normalized density as a function of height in the earth’s
gravitational field for oxygen and for hydrogen, at constant temperature.

40-2 The Boltzmann law

Here we note the interesting fact that the numerator in the exponent of
Eq. (40.1) is the potential energy of an atom. Therefore we can also state this
particular law as: the density at any point is proportional to

e−the potential energy of each atom/kT .

That may be an accident, i.e., may be true only for this particular case of
a uniform gravitational field. However, we can show that it is a more general
proposition. Suppose that there were some kind of force other than gravity acting
on the molecules in a gas. For example, the molecules may be charged electrically,
and may be acted on by an electric field or another charge that attracts them.
Or, because of the mutual attractions of the atoms for each other, or for the wall,
or for a solid, or something, there is some force of attraction which varies with
position and which acts on all the molecules. Now suppose, for simplicity, that
the molecules are all the same, and that the force acts on each individual one, so
that the total force on a piece of gas would be simply the number of molecules
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times the force on each one. To avoid unnecessary complication, let us choose a
coordinate system with the x-axis in the direction of the force, F .

In the same manner as before, if we take two parallel planes in the gas,
separated by a distance dx, then the force on each atom, times the n atoms per
cm3 (the generalization of the previous nmg), times dx, must be balanced by the
pressure change: Fndx = dP = kT dn. Or, to put this law in a form which will
be useful to us later,

F = kT
d

dx
(lnn). (40.2)

For the present, observe that −F dx is the work we would do in taking a molecule
from x to x+ dx, and if F comes from a potential, i.e., if the work done can be
represented by a potential energy at all, then this would also be the difference in
the potential energy (P.E.). The negative differential of potential energy is the
work done, F dx, and we find that d(lnn) = −d(P.E.)/kT , or, after integrating,

n = (constant)e−P.E./kT . (40.3)

Therefore what we noticed in a special case turns out to be true in general.
(What if F does not come from a potential? Then (40.2) has no solution at all.
Energy can be generated, or lost by the atoms running around in cyclic paths
for which the work done is not zero, and no equilibrium can be maintained at
all. Thermal equilibrium cannot exist if the external forces on the atoms are
not conservative.) Equation (40.3), known as Boltzmann’s law, is another of the
principles of statistical mechanics: that the probability of finding molecules in a
given spatial arrangement varies exponentially with the negative of the potential
energy of that arrangement, divided by kT .

This, then, could tell us the distribution of molecules: Suppose that we had a
positive ion in a liquid, attracting negative ions around it, how many of them
would be at different distances? If the potential energy is known as a function of
distance, then the proportion of them at different distances is given by this law,
and so on, through many applications.

40-3 Evaporation of a liquid

In more advanced statistical mechanics one tries to solve the following impor-
tant problem. Consider an assembly of molecules which attract each other, and
suppose that the force between any two, say i and j, depends only on their sepa-
ration rij , and can be represented as the derivative of a potential function V (rij).
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r0

P.E.
V (r)

Fig. 40-3. A potential-energy function for two molecules, which
depends only on their separation.

Figure 40-3 shows a form such a function might have. For r > r0, the energy
decreases as the molecules come together, because they attract, and then the
energy increases very sharply as they come still closer together, because they repel
strongly, which is characteristic of the way molecules behave, roughly speaking.

Now suppose we have a whole box full of such molecules, and we would like
to know how they arrange themselves on the average. The answer is e−P.E./kT .
The total potential energy in this case would be the sum over all the pairs,
supposing that the forces are all in pairs (there may be three-body forces in more
complicated things, but in electricity, for example, the potential energy is all in
pairs). Then the probability for finding molecules in any particular combination
of rij ’s will be proportional to

exp
[
−
∑
i,j

V (rij)/kT
]
.

Now, if the temperature is very high, so that kT � |V (r0)|, the exponent is
relatively small almost everywhere, and the probability of finding a molecule is
almost independent of position. Let us take the case of just two molecules: the
e−P.E./kT would be the probability of finding them at various mutual distances r.
Clearly, where the potential goes most negative, the probability is largest, and
where the potential goes toward infinity, the probability is almost zero, which
occurs for very small distances. That means that for such atoms in a gas, there
is no chance that they are on top of each other, since they repel so strongly.
But there is a greater chance of finding them per unit volume at the point r0
than at any other point. How much greater, depends on the temperature. If
the temperature is very large compared with the difference in energy between

40-6



r = r0 and r =∞, the exponential is always nearly unity. In this case, where the
mean kinetic energy (about kT ) greatly exceeds the potential energy, the forces
do not make much difference. But as the temperature falls, the probability of
finding the molecules at the preferred distance r0 gradually increases relative to
the probability of finding them elsewhere and, in fact, if kT is much less than
|V (r0)|, we have a relatively large positive exponent in that neighborhood. In
other words, in a given volume they are much more likely to be at the distance
of minimum energy than far apart. As the temperature falls, the atoms fall
together, clump in lumps, and reduce to liquids, and solids, and molecules, and
as you heat them up they evaporate.

The requirements for the determination of exactly how things evaporate,
exactly how things should happen in a given circumstance, involve the following.
First, to discover the correct molecular-force law V (r), which must come from
something else, quantum mechanics, say, or experiment. But, given the law of
force between the molecules, to discover what a billion molecules are going to do
merely consists of studying the function e−

∑
Vij/kT . Surprisingly enough, since

it is such a simple function and such an easy idea, given the potential, the labor
is enormously complicated; the difficulty is the tremendous number of variables.

In spite of such difficulties, the subject is quite exciting and interesting. It is
often called an example of a “many-body problem,” and it really has been a very
interesting thing. In that single formula must be contained all the details, for
example, about the solidification of gas, or the forms of the crystals that the solid
can take, and people have been trying to squeeze it out, but the mathematical
difficulties are very great, not in writing the law, but in dealing with so enormous
a number of variables.

That then, is the distribution of particles in space. That is the end of classical
statistical mechanics, practically speaking, because if we know the forces, we
can, in principle, find the distribution in space, and the distribution of velocities
is something that we can work out once and for all, and is not something that
is different for the different cases. The great problems are in getting particular
information out of our formal solution, and that is the main subject of classical
statistical mechanics.

40-4 The distribution of molecular speeds

Now we go on to discuss the distribution of velocities, because sometimes
it is interesting or useful to know how many of them are moving at different
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speeds. In order to do that, we may make use of the facts which we discovered
with regard to the gas in the atmosphere. We take it to be a perfect gas, as we
have already assumed in writing the potential energy, disregarding the energy of
mutual attraction of the atoms. The only potential energy that we included in our
first example was gravity. We would, of course, have something more complicated
if there were forces between the atoms. Thus we assume that there are no forces
between the atoms and, for a moment, disregard collisions also, returning later
to the justification of this. Now we saw that there are fewer molecules at the
height h than there are at the height 0; according to formula (40.1), they decrease
exponentially with height. How can there be fewer at greater heights? After
all, do not all the molecules which are moving up at height 0 arrive at h? No!,
because some of those which are moving up at 0 are going too slowly, and cannot
climb the potential hill to h. With that clue, we can calculate how many must
be moving at various speeds, because from (40.1) we know how many are moving
with less than enough speed to climb a given distance h. Those are just the ones
that account for the fact that the density at h is lower than at 0.

Now let us put that idea a little more precisely: let us count how many
molecules are passing from below to above the plane h = 0 (by calling it
height = 0, we do not mean that there is a floor there; it is just a convenient label,
and there is gas at negative h). These gas molecules are moving around in every
direction, but some of them are moving through the plane, and at any moment a
certain number per second of them are passing through the plane from below to

h = 0

h = h

Fig. 40-4. Only those molecules moving up at h = 0 with sufficient
velocity can arrive at height h.
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above with different velocities. Now we note the following: if we call u the velocity
which is just needed to get up to the height h (kinetic energy mu2/2 = mgh),
then the number of molecules per second which are passing upward through
the lower plane in a vertical direction with velocity component greater than u
is exactly the same as the number which pass through the upper plane with
any upward velocity. Those molecules whose vertical velocity does not exceed u
cannot get through the upper plane. So therefore we see that

Number passing h = 0 with vz > u = number passing h = h with vz > 0.

But the number which pass through h with any velocity greater than 0 is less than
the number which pass through the lower height with any velocity greater than 0,
because the number of atoms is greater; that is all we need. We know already
that the distribution of velocities is the same, after the argument we made earlier
about the temperature being constant all the way through the atmosphere. So,
since the velocity distributions are the same, and it is just that there are more
atoms lower down, clearly the number n>0(h), passing with positive velocity at
height h, and the number n>0(0), passing with positive velocity at height 0, are
in the same ratio as the densities at the two heights, which is e−mgh/kT . But
n>0(h) = n>u(0), and therefore we find that

n>u(0)
n>0(0) = e−mgh/kT = e−mu

2/2kT ,

since 1
2mu

2 = mgh. Thus, in words, the number of molecules per unit area
per second passing the height 0 with a z-component of velocity greater than u
is e−mu2/2kT times the total number that are passing through the plane with
velocity greater than zero.

Now this is not only true at the arbitrarily chosen height 0, but of course it
is true at any other height, and thus the distributions of velocities are all the
same! (The final statement does not involve the height h, which appeared only
in the intermediate argument.) The result is a general proposition that gives us
the distribution of velocities. It tells us that if we drill a little hole in the side
of a gas pipe, a very tiny hole, so that the collisions are few and far between,
i.e., are farther apart than the diameter of the hole, then the particles which are
coming out will have different velocities, but the fraction of particles which come
out at a velocity greater than u is e−mu2/2kT .
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Now we return to the question about the neglect of collisions: Why does it
not make any difference? We could have pursued the same argument, not with a
finite height h, but with an infinitesimal height h, which is so small that there
would be no room for collisions between 0 and h. But that was not necessary:
the argument is evidently based on an analysis of the energies involved, the
conservation of energy, and in the collisions that occur there is an exchange of
energies among the molecules. However, we do not really care whether we follow
the same molecule if energy is merely exchanged with another molecule. So it
turns out that even if the problem is analyzed more carefully (and it is more
difficult, naturally, to do a rigorous job), it still makes no difference in the result.

It is interesting that the velocity distribution we have found is just

n>u ∝ e−kinetic energy/kT . (40.4)

This way of describing the distribution of velocities, by giving the number
of molecules that pass a given area with a certain minimum z-component, is
not the most convenient way of giving the velocity distribution. For instance,
inside the gas, one more often wants to know how many molecules are moving
with a z-component of velocity between two given values, and that, of course, is
not directly given by Eq. (40.4). We would like to state our result in the more
conventional form, even though what we already have written is quite general.
Note that it is not possible to say that any molecule has exactly some stated
velocity; none of them has a velocity exactly equal to 1.7962899173 meters per
second. So in order to make a meaningful statement, we have to ask how many are
to be found in some range of velocities. We have to say how many have velocities
between 1.796 and 1.797, and so on. On mathematical terms, let f(u) du be
the fraction of all the molecules which have velocities between u and u+ du or,
what is the same thing (if du is infinitesimal), all that have a velocity u with
a range du. Figure 40-5 shows a possible form for the function f(u), and the
shaded part, of width du and mean height f(u), represents this fraction f(u) du.
That is, the ratio of the shaded area to the total area of the curve is the relative
proportion of molecules with velocity u within du. If we define f(u) so that the
fraction having a velocity in this range is given directly by the shaded area, then
the total area must be 100 percent of them, that is,∫ ∞

−∞
f(u) du = 1. (40.5)
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u
du

f (u)

Fig. 40-5. A velocity distribution function. The shaded area is f (u) du,
the fraction of particles having velocities within a range du about u.

Now we have only to get this distribution by comparing it with the theorem
we derived before. First we ask, what is the number of molecules passing through
an area per second with a velocity greater than u, expressed in terms of f(u)? At
first we might think it is merely the integral of

∫∞
u
f(u) du, but it is not, because

we want the number that are passing the area per second. The faster ones pass
more often, so to speak, than the slower ones, and in order to express how many
pass, you have to multiply by the velocity. (We discussed that in the previous
chapter when we talked about the number of collisions.) In a given time t the
total number which pass through the surface is all of those which have been able
to arrive at the surface, and the number which arrive come from a distance ut.
So the number of molecules which arrive is not simply the number which are
there, but the number that are there per unit volume, multiplied by the distance
that they sweep through in racing for the area through which they are supposed
to go, and that distance is proportional to u. Thus we need the integral of u
times f(u) du, an infinite integral with a lower limit u, and this must be the same
as we found before, namely e−mu2/2kT , with a proportionality constant which
we will get later: ∫ ∞

u

uf(u) du = const · e−mu
2/2kT . (40.6)

Now if we differentiate the integral with respect to u, we get the thing that
is inside the integral, i.e., the integrand (with a minus sign, since u is the lower
limit), and if we differentiate the other side, we get u times the same exponential
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(and some constants). The u’s cancel and we find

f(u) du = Ce−mu
2/2kT du. (40.7)

We retain the du on both sides as a reminder that it is a distribution, and it tells
what the proportion is for velocity between u and u+ du.

The constant C must be so determined that the integral is unity, according
to Eq. (40.5). Now we can prove* that∫ ∞

−∞
e−x

2
dx =

√
π.

Using this fact, it is easy to find that C =
√
m/2πkT .

Since velocity and momentum are proportional, we may say that the distribu-
tion of momenta is also proportional to e−K.E./kT per unit momentum range. It
turns out that this theorem is true in relativity too, if it is in terms of momentum,
while if it is in velocity it is not, so it is best to learn it in momentum instead of
in velocity:

f(p) dp = Ce−K.E./kT dp. (40.8)
So we find that the probabilities of different conditions of energy, kinetic and
potential, are both given by e−energy/kT , a very easy thing to remember and a
rather beautiful proposition.

So far we have, of course, only the distribution of the velocities “vertically.”
We might want to ask, what is the probability that a molecule is moving in
another direction? Of course these distributions are connected, and one can
obtain the complete distribution from the one we have, because the complete
distribution depends only on the square of the magnitude of the velocity, not
upon the z-component. It must be something that is independent of direction,

* To get the value of the integral, let

I =
∫∞
−∞ e−x

2
dx.

Then
I2 =

∫∞
−∞ e−x

2
dx ·
∫∞
−∞ e−y

2
dy =

∫∞
−∞

∫∞
−∞ e−(x2+y2) dy dx,

which is a double integral over the whole xy-plane. But this can also be written in polar
coordinates as

I2 =
∫∞

0 e−r
2 · 2πr dr = π

∫∞
0 e−t dt = π.
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and there is only one function involved, the probability of different magnitudes.
We have the distribution of the z-component, and therefore we can get the
distribution of the other components from it. The result is that the probability
is still proportional to e−K.E/kT , but now the kinetic energy involves three parts,
mv2

x/2, mv2
y/2, and mv2

z/2, summed in the exponent. Or we can write it as a
product:

f(vx, vy, vz) dvx dvy dvz
∝ e−mv

2
x/2kT · e−mv

2
y/2kT · e−mv

2
z/2kT dvx dvy dvz. (40.9)

You can see that this formula must be right because, first, it is a function only
of v2, as required, and second, the probabilities of various values of vz obtained
by integrating over all vx and vy is just (40.7). But this one function (40.9) can
do both those things!

40-5 The specific heats of gases

Now we shall look at some ways to test the theory, and to see how successful
is the classical theory of gases. We saw earlier that if U is the internal energy
of N molecules, then PV = NkT = (γ − 1)U holds, sometimes, for some gases,
maybe. If it is a monatomic gas, we know this is also equal to 2

3 of the kinetic
energy of the center-of-mass motion of the atoms. If it is a monatomic gas, then
the kinetic energy is equal to the internal energy, and therefore γ − 1 = 2

3 . But
suppose it is, say, a more complicated molecule, that can spin and vibrate, and
let us suppose (it turns out to be true according to classical mechanics) that
the energies of the internal motions are also proportional to kT . Then at a
given temperature, in addition to kinetic energy 3

2kT , it has internal vibrational
and rotational energies. So the total U includes not just the kinetic energy, but
also the rotational and vibrational energies, and we get a different value of γ.
Technically, the best way to measure γ is by measuring the specific heat, which
is the change in energy with temperature. We will return to that approach later.
For our present purposes, we may suppose γ is found experimentally from the
PV γ curve for adiabatic compression.

Let us make a calculation of γ for some cases. First, for a monatomic gas U
is the total energy, the same as the kinetic energy, and we know already that γ
should be 5

3 . For a diatomic gas, we may take, as an example, oxygen, hydrogen
iodide, hydrogen, etc., and suppose that the diatomic gas can be represented
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as two atoms held together by some kind of force like the one of Fig. 40-3. We
may also suppose, and it turns out to be quite true, that at the temperatures
that are of interest for the diatomic gas, the pairs of atoms tend strongly to be
separated by r0, the distance of potential minimum. If this were not true, if the
probability were not strongly varying enough to make the great majority sit near
the bottom, we would have to remember that oxygen gas is a mixture of O2 and
single oxygen atoms in a nontrivial ratio. We know that there are, in fact, very
few single oxygen atoms, which means that the potential energy minimum is very
much greater in magnitude than kT , as we have seen. Since they are clustered
strongly around r0, the only part of the curve that is needed is the part near
the minimum, which may be approximated by a parabola. A parabolic potential
implies a harmonic oscillator, and in fact, to an excellent approximation, the
oxygen molecule can be represented as two atoms connected by a spring.

Now what is the total energy of this molecule at temperature T? We know
that for each of the two atoms, each of the kinetic energies should be 3

2kT , so
the kinetic energy of both of them is 3

2kT + 3
2kT . We can also put this in a

different way: the same 3
2 plus 3

2 can also be looked at as kinetic energy of the
center of mass (3

2 ), kinetic energy of rotation ( 2
2 ), and kinetic energy of vibration

( 1
2 ). We know that the kinetic energy of vibration is 1

2 , since there is just one
dimension involved and each degree of freedom has 1

2kT . Regarding the rotation,
it can turn about either of two axes, so there are two independent motions. We
assume that the atoms are some kind of points, and cannot spin about the line
joining them; this is something to bear in mind, because if we get a disagreement,
maybe that is where the trouble is. But we have one more thing, which is the
potential energy of vibration; how much is that? In a harmonic oscillator the
average kinetic energy and average potential energy are equal, and therefore the
potential energy of vibration is 1

2kT , also. The grand total of energy is U = 7
2kT ,

or kT is 2
7U per atom. That means, then, that γ is 9

7 instead of 5
3 , i.e., γ = 1.286.

We may compare these numbers with the relevant measured values shown
in Table 40-1. Looking first at helium, which is a monatomic gas, we find
very nearly 5

3 , and the error is probably experimental, although at such a low
temperature there may be some forces between the atoms. Krypton and argon,
both monatomic, agree also within the accuracy of the experiment.

We turn to the diatomic gases and find hydrogen with 1.404, which does not
agree with the theory, 1.286. Oxygen, 1.399, is very similar, but again not in
agreement. Hydrogen iodide again is similar at 1.40. It begins to look as though
the right answer is 1.40, but it is not, because if we look further at bromine
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Table 40-1

Values of the specific heat ratio, γ, for various gases

Gas T (◦C) γ

He −180 1.660
Kr 19 1.68
Ar 15 1.668
H2 100 1.404
O2 100 1.399
HI 100 1.40
Br2 300 1.32
I2 185 1.30
NH3 15 1.310
C2H6 15 1.22

we see 1.32, and at iodine we see 1.30. Since 1.30 is reasonably close to 1.286,
iodine may be said to agree rather well, but oxygen is far off. So here we have a
dilemma. We have it right for one molecule, we do not have it right for another
molecule, and we may need to be pretty ingenious in order to explain both.

Let us look further at a still more complicated molecule with large numbers
of parts, for example, C2H6, which is ethane. It has eight different atoms, and
they are all vibrating and rotating in various combinations, so the total amount
of internal energy must be an enormous number of kT ’s, at least 12kT for kinetic
energy alone, and γ− 1 must be very close to zero, or γ almost exactly 1. In fact,
it is lower, but 1.22 is not so much lower, and is higher than the 1 1

12 calculated
from the kinetic energy alone, and it is just not understandable!

Furthermore, the whole mystery is deep, because the diatomic molecule
cannot be made rigid by a limit. Even if we made the couplings stiffer indefinitely,
although it might not vibrate much, it would nevertheless keep vibrating. The
vibrational energy inside is still kT , since it does not depend on the strength of
the coupling. But if we could imagine absolute rigidity, stopping all vibration to
eliminate a variable, then we would get U = 5

2kT and γ = 1.40 for the diatomic
case. This looks good for H2 or O2. On the other hand, we would still have
problems, because γ for either hydrogen or oxygen varies with temperature! From
the measured values shown in Fig. 40-6, we see that for H2, γ varies from about
1.6 at −185◦C to 1.3 at 2000◦C. The variation is more substantial in the case of
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Fig. 40-6. Experimental values of γ as a function of temperature for
hydrogen and oxygen. Classical theory predicts γ = 1.286, independent
of temperature.

hydrogen than for oxygen, but nevertheless, even in oxygen, γ tends definitely to
go up as we go down in temperature.

40-6 The failure of classical physics

So, all in all, we might say that we have some difficulty. We might try some
force law other than a spring, but it turns out that anything else will only make
γ higher. If we include more forms of energy, γ approaches unity more closely,
contradicting the facts. All the classical theoretical things that one can think of
will only make it worse. The fact is that there are electrons in each atom, and
we know from their spectra that there are internal motions; each of the electrons
should have at least 1

2kT of kinetic energy, and something for the potential energy,
so when these are added in, γ gets still smaller. It is ridiculous. It is wrong.

The first great paper on the dynamical theory of gases was by Maxwell in
1859. On the basis of ideas we have been discussing, he was able accurately to
explain a great many known relations, such as Boyle’s law, the diffusion theory,
the viscosity of gases, and things we shall talk about in the next chapter. He listed
all these great successes in a final summary, and at the end he said, “Finally, by
establishing a necessary relation between the motions of translation and rotation
(he is talking about the 1

2kT theorem) of all particles not spherical, we proved
that a system of such particles could not possibly satisfy the known relation
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between the two specific heats.” He is referring to γ (which we shall see later is
related to two ways of measuring specific heat), and he says we know we cannot
get the right answer.

Ten years later, in a lecture, he said, “I have now put before you what I
consider to be the greatest difficulty yet encountered by the molecular theory.”
These words represent the first discovery that the laws of classical physics were
wrong. This was the first indication that there was something fundamentally
impossible, because a rigorously proved theorem did not agree with experiment.
About 1890, Jeans was to talk about this puzzle again. One often hears it said
that physicists at the latter part of the nineteenth century thought they knew all
the significant physical laws and that all they had to do was to calculate more
decimal places. Someone may have said that once, and others copied it. But a
thorough reading of the literature of the time shows they were all worrying about
something. Jeans said about this puzzle that it is a very mysterious phenomenon,
and it seems as though as the temperature falls, certain kinds of motions “freeze
out.”

If we could assume that the vibrational motion, say, did not exist at low
temperature and did exist at high temperature, then we could imagine that a gas
might exist at a temperature sufficiently low that vibrational motion does not
occur, so γ = 1.40, or a higher temperature at which it begins to come in, so γ
falls. The same might be argued for the rotation. If we can eliminate the rotation,
say it “freezes out” at sufficiently low temperature, then we can understand the
fact that the γ of hydrogen approaches 1.66 as we go down in temperature. How
can we understand such a phenomenon? Of course that these motions “freeze
out” cannot be understood by classical mechanics. It was only understood when
quantum mechanics was discovered.

Without proof, we may state the results for statistical mechanics of the
quantum-mechanical theory. We recall that according to quantum mechanics, a
system which is bound by a potential, for the vibrations, for example, will have
a discrete set of energy levels, i.e., states of different energy. Now the question
is: how is statistical mechanics to be modified according to quantum-mechanical
theory? It turns out, interestingly enough, that although most problems are
more difficult in quantum mechanics than in classical mechanics, problems in
statistical mechanics are much easier in quantum theory! The simple result we
have in classical mechanics, that n = n0e

−energy/kT , becomes the following very
important theorem: If the energies of the set of molecular states are called, say,
E0, E1, E2, . . . , Ei, . . . , then in thermal equilibrium the probability of finding a
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molecule in the particular state of having energy Ei is proportional to e−Ei/kT .
That gives the probability of being in various states. In other words, the relative
chance, the probability, of being in state E1 relative to the chance of being in
state E0, is

P1

P0
= e−E1/kT

e−E0/kT
, (40.10)

which, of course, is the same as

n1 = n0e
−(E1−E0)/kT , (40.11)

since P1 = n1/N and P0 = n0/N . So it is less likely to be in a higher energy state
than in a lower one. The ratio of the number of atoms in the upper state to the
number in the lower state is e raised to the power (minus the energy difference,
over kT )—a very simple proposition.

Now it turns out that for a harmonic oscillator the energy levels are evenly
spaced. Calling the lowest energy E0 = 0 (it actually is not zero, it is a little
different, but it does not matter if we shift all energies by a constant), the first
one is then E1 = ~ω, and the second one is 2~ω, and the third one is 3~ω, and
so on.

Now let us see what happens. We suppose we are studying the vibrations
of a diatomic molecule, which we approximate as a harmonic oscillator. Let
us ask what is the relative chance of finding a molecule in state E1 instead of
in state E0. The answer is that the chance of finding it in state E1, relative
to that of finding it in state E0, goes down as e−~ω/kT . Now suppose that kT
is much less than ~ω, and we have a low-temperature circumstance. Then the
probability of its being in state E1 is extremely small. Practically all the atoms
are in state E0. If we change the temperature but still keep it very small, then
the chance of its being in state E1 = ~ω remains infinitesimal—the energy of the
oscillator remains nearly zero; it does not change with temperature so long as the
temperature is much less than ~ω. All oscillators are in the bottom state, and
their motion is effectively “frozen”; there is no contribution of it to the specific
heat. We can judge, then, from Table 40-1, that at 100◦C, which is 373 degrees
absolute, kT is much less than the vibrational energy in the oxygen or hydrogen
molecules, but not so in the iodine molecule. The reason for the difference is
that an iodine atom is very heavy, compared with hydrogen, and although the
forces may be comparable in iodine and hydrogen, the iodine molecule is so
heavy that the natural frequency of vibration is very low compared with the
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natural frequency of hydrogen. With ~ω higher than kT at room temperature
for hydrogen, but lower for iodine, only the latter, iodine, exhibits the classical
vibrational energy. As we increase the temperature of a gas, starting from a very
low value of T , with the molecules almost all in their lowest state, they gradually
begin to have an appreciable probability to be in the second state, and then in
the next state, and so on. When the probability is appreciable for many states,
the behavior of the gas approaches that given by classical physics, because the
quantized states become nearly indistinguishable from a continuum of energies,
and the system can have almost any energy. Thus, as the temperature rises,
we should again get the results of classical physics, as indeed seems to be the
case in Fig. 40-6. It is possible to show in the same way that the rotational
states of atoms are also quantized, but the states are so much closer together
that in ordinary circumstances kT is bigger than the spacing. Then many levels
are excited, and the rotational kinetic energy in the system participates in the
classical way. The one example where this is not quite true at room temperature
is for hydrogen.

This is the first time that we have really deduced, by comparison with
experiment, that there was something wrong with classical physics, and we have
looked for a resolution of the difficulty in quantum mechanics in much the same
way as it was done originally. It took 30 or 40 years before the next difficulty was
discovered, and that had to do again with statistical mechanics, but this time
the mechanics of a photon gas. That problem was solved by Planck, in the early
years of the 20th century.
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41

The Brownian Movement

41-1 Equipartition of energy

The Brownian movement was discovered in 1827 by Robert Brown, a botanist.
While he was studying microscopic life, he noticed little particles of plant pollens
jiggling around in the liquid he was looking at in the microscope, and he was
wise enough to realize that these were not living, but were just little pieces of
dirt moving around in the water. In fact he helped to demonstrate that this
had nothing to do with life by getting from the ground an old piece of quartz in
which there was some water trapped. It must have been trapped for millions and
millions of years, but inside he could see the same motion. What one sees is that
very tiny particles are jiggling all the time.

This was later proved to be one of the effects of molecular motion, and we
can understand it qualitatively by thinking of a great push ball on a playing field,
seen from a great distance, with a lot of people underneath, all pushing the ball
in various directions. We cannot see the people because we imagine that we are
too far away, but we can see the ball, and we notice that it moves around rather
irregularly. We also know, from the theorems that we have discussed in previous
chapters, that the mean kinetic energy of a small particle suspended in a liquid
or a gas will be 3

2kT even though it is very heavy compared with a molecule. If
it is very heavy, that means that the speeds are relatively slow, but it turns out,
actually, that the speed is not really so slow. In fact, we cannot see the speed
of such a particle very easily because although the mean kinetic energy is 3

2kT ,
which represents a speed of a millimeter or so per second for an object a micron
or two in diameter, this is very hard to see even in a microscope, because the
particle continuously reverses its direction and does not get anywhere. How far
it does get we will discuss at the end of the present chapter. This problem was
first solved by Einstein at the beginning of the 20th century.
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Incidentally, when we say that the mean kinetic energy of this particle is 3
2kT ,

we claim to have derived this result from the kinetic theory, that is, from Newton’s
laws. We shall find that we can derive all kinds of things—marvelous things—from
the kinetic theory, and it is most interesting that we can apparently get so much
from so little. Of course we do not mean that Newton’s laws are “little”—they
are enough to do it, really—what we mean is that we did not do very much. How
do we get so much out? The answer is that we have been perpetually making
a certain important assumption, which is that if a given system is in thermal
equilibrium at some temperature, it will also be in thermal equilibrium with
anything else at the same temperature. For instance, if we wanted to see how
a particle would move if it was really colliding with water, we could imagine
that there was a gas present, composed of another kind of particle, little fine
pellets that (we suppose) do not interact with water, but only hit the particle
with “hard” collisions. Suppose the particle has a prong sticking out of it; all
our pellets have to do is hit the prong. We know all about this imaginary gas of
pellets at temperature T—it is an ideal gas. Water is complicated, but an ideal
gas is simple. Now, our particle has to be in equilibrium with the gas of pellets.
Therefore, the mean motion of the particle must be what we get for gaseous
collisions, because if it were not moving at the right speed relative to the water
but, say, was moving faster, that would mean that the pellets would pick up
energy from it and get hotter than the water. But we had started them at the
same temperature, and we assume that if a thing is once in equilibrium, it stays in
equilibrium—parts of it do not get hotter and other parts colder, spontaneously.

This proposition is true and can be proved from the laws of mechanics, but
the proof is very complicated and can be established only by using advanced
mechanics. It is much easier to prove in quantum mechanics than it is in classical
mechanics. It was proved first by Boltzmann, but for now we simply take it to
be true, and then we can argue that our particle has to have 3

2kT of energy if it
is hit with artificial pellets, so it also must have 3

2kT when it is being hit with
water at the same temperature and we take away the pellets; so it is 3

2kT . It is a
strange line of argument, but perfectly valid.

In addition to the motion of colloidal particles for which the Brownian move-
ment was first discovered, there are a number of other phenomena, both in the
laboratory and in other situations, where one can see Brownian movement. If we
are trying to build the most delicate possible equipment, say a very small mirror
on a thin quartz fiber for a very sensitive ballistic galvanometer (Fig. 41-1), the
mirror does not stay put, but jiggles all the time—all the time—so that when we
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Fig. 41-1. (a) A sensitive light-beam galvanometer. Light from a
source L is reflected from a small mirror onto a scale. (b) A schematic
record of the reading of the scale as a function of the time.

shine a light on it and look at the position of the spot, we do not have a perfect
instrument because the mirror is always jiggling. Why? Because the average
kinetic energy of rotation of this mirror has to be, on the average, 1

2kT .
What is the mean-square angle over which the mirror will wobble? Suppose we

find the natural vibration period of the mirror by tapping on one side and seeing
how long it takes to oscillate back and forth, and we also know the moment of
inertia, I. We know the formula for the kinetic energy of rotation—it is given by
Eq. (19.8): T = 1

2Iω
2. That is the kinetic energy, and the potential energy that

goes with it will be proportional to the square of the angle—it is V = 1
2αθ

2. But,
if we know the period t0 and calculate from that the natural frequency ω0 = 2π/t0,
then the potential energy is V = 1

2Iω
2
0θ

2. Now we know that the average kinetic
energy is 1

2kT , but since it is a harmonic oscillator the average potential energy
is also 1

2kT . Thus
1
2Iω

2
0〈θ2〉 = 1

2kT,

or
〈θ2〉 = kT/Iω2

0 . (41.1)

In this way we can calculate the oscillations of a galvanometer mirror, and thereby
find what the limitations of our instrument will be. If we want to have smaller
oscillations, we have to cool the mirror. An interesting question is, where to cool
it. This depends upon where it is getting its “kicks” from. If it is through the
fiber, we cool it at the top—if the mirror is surrounded by a gas and is getting hit
mostly by collisions in the gas, it is better to cool the gas. As a matter of fact, if
we know where the damping of the oscillations comes from, it turns out that that
is always the source of the fluctuations also, a point which we will come back to.
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Fig. 41-2. A high-Q resonant circuit. (a) Actual circuit, at tempera-
ture T . (b) Artificial circuit, with an ideal (noiseless) resistance and a
“noise generator” G.

The same thing works, amazingly enough, in electrical circuits. Suppose that
we are building a very sensitive, accurate amplifier for a definite frequency and
have a resonant circuit (Fig. 41-2) in the input so as to make it very sensitive to
this certain frequency, like a radio receiver, but a really good one. Suppose we
wish to go down to the very lowest limit of things, so we take the voltage, say
off the inductance, and send it into the rest of the amplifier. Of course, in any
circuit like this, there is a certain amount of loss. It is not a perfect resonant
circuit, but it is a very good one and there is a little resistance, say (we put
the resistor in so we can see it, but it is supposed to be small). Now we would
like to find out: How much does the voltage across the inductance fluctuate?
Answer: We know that 1

2LI
2 is the “kinetic energy”—the energy associated with

a coil in a resonant circuit (Chapter 25). Therefore the mean value of 1
2LI

2 is
equal to 1

2kT—that tells us what the rms current is and we can find out what
the rms voltage is from the rms current. For if we want the voltage across the
inductance the formula is V̂L = iωLÎ, and the mean absolute square voltage on
the inductance is 〈V 2

L 〉 = L2ω2
0〈I2〉, and putting in 1

2L〈I
2〉 = 1

2kT , we obtain

〈V 2
L 〉 = Lω2

0kT. (41.2)

So now we can design circuits and tell when we are going to get what is called
Johnson noise, the noise associated with thermal fluctuations!

Where do the fluctuations come from this time? They come again from the
resistor—they come from the fact that the electrons in the resistor are jiggling
around because they are in thermal equilibrium with the matter in the resistor,
and they make fluctuations in the density of electrons. They thus make tiny
electric fields which drive the resonant circuit.

Electrical engineers represent the answer in another way. Physically, the
resistor is effectively the source of noise. However, we may replace the real circuit
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having an honest, true physical resistor which is making noise, by an artificial
circuit which contains a little generator that is going to represent the noise, and
now the resistor is otherwise ideal—no noise comes from it. All the noise is
in the artificial generator. And so if we knew the characteristics of the noise
generated by a resistor, if we had the formula for that, then we could calculate
what the circuit is going to do in response to that noise. So, we need a formula
for the noise fluctuations. Now the noise that is generated by the resistor is at
all frequencies, since the resistor by itself is not resonant. Of course the resonant
circuit only “listens” to the part that is near the right frequency, but the resistor
has many different frequencies in it. We may describe how strong the generator
is, as follows: The mean power that the resistor would absorb if it were connected
directly across the noise generator would be 〈E2〉/R, if E were the voltage from
the generator. But we would like to know in more detail how much power there
is at every frequency. There is very little power in any one frequency; it is a
distribution. Let P (ω) dω be the power that the generator would deliver in the
frequency range dω into the very same resistor. Then we can prove (we shall
prove it for another case, but the mathematics is exactly the same) that the
power comes out

P (ω) dω = (2/π)kT dω, (41.3)

and is independent of the resistance when put this way.

41-2 Thermal equilibrium of radiation

Now we go on to consider a still more advanced and interesting proposition
that is as follows. Suppose we have a charged oscillator like those we were talking
about when we were discussing light, let us say an electron oscillating up and
down in an atom. If it oscillates up and down, it radiates light. Now suppose that
this oscillator is in a very thin gas of other atoms, and that from time to time
the atoms collide with it. Then in equilibrium, after a long time, this oscillator
will pick up energy such that its kinetic energy of oscillation is 1

2kT , and since
it is a harmonic oscillator, its entire energy will become kT . That is, of course,
a wrong description so far, because the oscillator carries electric charge, and if
it has an energy kT it is shaking up and down and radiating light. Therefore
it is impossible to have equilibrium of real matter alone without the charges
in it emitting light, and as light is emitted, energy flows away, the oscillator
loses its kT as time goes on, and thus the whole gas which is colliding with the
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oscillator gradually cools off. And that is, of course, the way a warm stove cools,
by radiating the light into the sky, because the atoms are jiggling their charge
and they continually radiate, and slowly, because of this radiation, the jiggling
motion slows down.

On the other hand, if we enclose the whole thing in a box so that the light
does not go away to infinity, then we can eventually get thermal equilibrium. We
may either put the gas in a box where we can say that there are other radiators
in the box walls sending light back or, to take a nicer example, we may suppose
the box has mirror walls. It is easier to think about that case. Thus we assume
that all the radiation that goes out from the oscillator keeps running around in
the box. Then, of course, it is true that the oscillator starts to radiate, but pretty
soon it can maintain its kT of energy in spite of the fact that it is radiating,
because it is being illuminated, we may say, by its own light reflected from the
walls of the box. That is, after a while there is a great deal of light rushing
around in the box, and although the oscillator is radiating some, the light comes
back and returns some of the energy that was radiated.

We shall now determine how much light there must be in such a box at
temperature T in order that the shining of the light on this oscillator will
generate just enough energy to account for the light it radiated.

Let the gas atoms be very few and far between, so that we have an ideal
oscillator with no resistance except radiation resistance. Then we consider that
at thermal equilibrium the oscillator is doing two things at the same time. First,
it has a mean energy kT , and we calculate how much radiation it emits. Second,
this radiation should be exactly the amount that would result because of the fact
that the light shining on the oscillator is scattered. Since there is nowhere else
the energy can go, this effective radiation is really just scattered light from the
light that is in there.

Thus we first calculate the energy that is radiated by the oscillator per second,
if the oscillator has a certain energy. (We borrow from Chapter 32 on radiation
resistance a number of equations without going back over their derivation.) The
energy radiated per radian divided by the energy of the oscillator is called 1/Q
(Eq. 32.8): 1/Q = (dW/dt)/ω0W . Using the quantity γ, the damping constant,
this can also be written as 1/Q = γ/ω0, where ω0 is the natural frequency of
the oscillator—if gamma is very small, Q is very large. The energy radiated per
second is then

dW

dt
= ω0W

Q
= ω0Wγ

ω0
= γW. (41.4)
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The energy radiated per second is thus simply gamma times the energy of the
oscillator. Now the oscillator should have an average energy kT , so we see that
gamma kT is the average amount of energy radiated per second:

〈dW/dt〉 = γkT. (41.5)

Now we only have to know what gamma is. Gamma is easily found from
Eq. (32.12). It is

γ = ω0

Q
= 2

3
r0ω

2
0

c
, (41.6)

where r0 = e2/mc2 is the classical electron radius, and we have set λ = 2πc/ω0.
Our final result for the average rate of radiation of light near the frequency ω0

is therefore
dW

dt
= 2

3
r0ω

2
0kT

c
. (41.7)

Next we ask how much light must be shining on the oscillator. It must be
enough that the energy absorbed from the light (and thereupon scattered) is just
exactly this much. In other words, the emitted light is accounted for as scattered
light from the light that is shining on the oscillator in the cavity. So we must
now calculate how much light is scattered from the oscillator if there is a certain
amount—unknown—of radiation incident on it. Let I(ω) dω be the amount of
light energy there is at the frequency ω, within a certain range dω (because there
is no light at exactly a certain frequency; it is spread all over the spectrum). So
I(ω) is a certain spectral distribution which we are now going to find—it is the
color of a furnace at temperature T that we see when we open the door and
look in the hole. Now how much light is absorbed? We worked out the amount
of radiation absorbed from a given incident light beam, and we calculated it in
terms of a cross section. It is just as though we said that all of the light that falls
on a certain cross section is absorbed. So the total amount that is re-radiated
(scattered) is the incident intensity I(ω) dω multiplied by the cross section σ.

The formula for the cross section that we derived (Eq. 32.19) did not have
the damping included. It is not hard to go through the derivation again and put
in the resistance term, which we neglected. If we do that, and calculate the cross
section the same way, we get

σs = 8πr2
0

3

(
ω4

(ω2 − ω2
0)2 + γ2ω2

)
. (41.8)
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Now, as a function of frequency, σs is of significant size only for ω very near
to the natural frequency ω0. (Remember that the Q for a radiating oscillator
is about 108.) The oscillator scatters very strongly when ω is equal to ω0, and
very weakly for other values of ω. Therefore we can replace ω by ω0 and ω2 − ω2

0
by 2ω0(ω − ω0), and we get

σs = 2πr2
0ω

2
0

3[(ω − ω0)2 + γ2/4] . (41.9)

Now the whole curve is localized near ω = ω0. (We do not really have to make
any approximations, but it is much easier to do the integrals if we simplify the
equation a bit.) Now we multiply the intensity in a given frequency range by the
cross section of scattering, to get the amount of energy scattered in the range dω.
The total energy scattered is then the integral of this for all ω. Thus

dWs

dt
=
∫ ∞

0
I(ω)σs(ω) dω

=
∫ ∞

0

2πr2
0ω

2
0I(ω) dω

3[(ω − ω0)2 + γ2/4] .
(41.10)

Now we set dWs/dt = 3γkT . Why three? Because when we made our analysis
of the cross section in Chapter 32, we assumed that the polarization was such
that the light could drive the oscillator. If we had used an oscillator which could
move only in one direction, and the light, say, was polarized in the wrong way,
it would not give any scattering. So we must either average the cross section of
an oscillator which can go only in one direction, over all directions of incidence
and polarization of the light or, more easily, we can imagine an oscillator which
will follow the field no matter which way the field is pointing. Such an oscillator,
which can oscillate equally in three directions, would have 3kT average energy
because there are 3 degrees of freedom in that oscillator. So we should use 3γkT
because of the 3 degrees of freedom.

Now we have to do the integral. Let us suppose that the unknown spectral
distribution I(ω) of the light is a smooth curve and does not vary very much
across the very narrow frequency region where σs is peaked (Fig. 41-3). Then the
only significant contribution comes when ω is very close to ω0, within an amount
gamma, which is very small. So therefore, although I(ω) may be an unknown
and complicated function, the only place where it is important is near ω = ω0,
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ω

ω0
ω0 − γ

2
ω0 +

γ
2

I(ω0)

I(ω)

Fig. 41-3. The factors in the integrand (41.10). The peak is the
resonance curve 1/

[
(ω − ω0)2 + γ2/4

]
. To a good approximation the

factor I(ω) can be replaced by I(ω0).

and there we may replace the smooth curve by a flat one—a “constant”—at
the same height. In other words, we simply take I(ω) outside the integral sign
and call it I(ω0). We may also take the rest of the constants out in front of the
integral, and what we have left is

2
3πr

2
0ω

2
0I(ω0)

∫ ∞
0

dω

(ω − ω0)2 + γ2/4 = 3γkT. (41.11)

Now, the integral should go from 0 to ∞, but 0 is so far from ω0 that the curve is
all finished by that time, so we go instead to minus∞—it makes no difference and
it is much easier to do the integral. The integral is an inverse tangent function
of the form

∫
dx/(x2 + a2). If we look it up in a book we see that it is equal

to π/a. So what it comes to for our case is 2π/γ. Therefore we get, with some
rearranging,

I(ω0) = 9γ2kT

4π2r2
0ω

2
0
. (41.12)

Then we substitute the formula (41.6) for gamma (do not worry about writing
ω0; since it is true of any ω0, we may just call it ω) and the formula for I(ω)
then comes out

I(ω) = ω2kT

π2c2
. (41.13)

And that gives us the distribution of light in a hot furnace. It is called the
blackbody radiation. Black, because the hole in the furnace that we look at is
black when the temperature is zero.

41-9



Inside a closed box at temperature T , (41.13) is the distribution of energy
of the radiation, according to classical theory. First, let us notice a remarkable
feature of that expression. The charge of the oscillator, the mass of the oscillator,
all properties specific to the oscillator, cancel out, because once we have reached
equilibrium with one oscillator, we must be at equilibrium with any other oscillator
of a different mass, or we will be in trouble. So this is an important kind of
check on the proposition that equilibrium does not depend on what we are in
equilibrium with, but only on the temperature. Now let us draw a picture of the
I(ω) curve (Fig. 41-4). It tells us how much light we have at different frequencies.

ω

I(ω)
2T0

T0

RADIO IR VISIBLE UV X-RAYS

Fig. 41-4. The blackbody intensity distribution at two temperatures,
according to classical physics (solid curves). The dashed curves show
the actual distribution.

The amount of intensity that there is in our box, per unit frequency range,
goes, as we see, as the square of the frequency, which means that if we have a
box at any temperature at all, and if we look at the x-rays that are coming out,
there will be a lot of them!

Of course we know this is false. When we open the furnace and take a look
at it, we do not burn our eyes out from x-rays at all. It is completely false.
Furthermore, the total energy in the box, the total of all this intensity summed
over all frequencies, would be the area under this infinite curve. Therefore,
something is fundamentally, powerfully, and absolutely wrong.

Thus was the classical theory absolutely incapable of correctly describing
the distribution of light from a blackbody, just as it was incapable of correctly
describing the specific heats of gases. Physicists went back and forth over this
derivation from many different points of view, and there is no escape. This is
the prediction of classical physics. Equation (41.13) is called Rayleigh’s law, and
it is the prediction of classical physics, and is obviously absurd.
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41-3 Equipartition and the quantum oscillator

The difficulty above was another part of the continual problem of classical
physics, which started with the difficulty of the specific heat of gases, and now has
been focused on the distribution of light in a blackbody. Now, of course, at the
time that theoreticians studied this thing, there were also many measurements
of the actual curve. And it turned out that the correct curve looked like the
dashed curves in Fig. 41-4. That is, the x-rays were not there. If we lower the
temperature, the whole curve goes down in proportion to T , according to the
classical theory, but the observed curve also cuts off sooner at a lower temperature.
Thus the low-frequency end of the curve is right, but the high-frequency end
is wrong. Why? When Sir James Jeans was worrying about the specific heats
of gases, he noted that motions which have high frequency are “frozen out” as
the temperature goes too low. That is, if the temperature is too low, if the
frequency is too high, the oscillators do not have kT of energy on the average.
Now recall how our derivation of (41.13) worked: It all depends on the energy of
an oscillator at thermal equilibrium. What the kT of (41.5) was, and what the
same kT in (41.13) is, is the mean energy of a harmonic oscillator of frequency ω
at temperature T . Classically, this is kT , but experimentally, no!—not when the
temperature is too low or the oscillator frequency is too high. And so the reason
that the curve falls off is the same reason that the specific heats of gases fail.
It is easier to study the blackbody curve than it is the specific heats of gases,
which are so complicated, therefore our attention is focused on determining the
true blackbody curve, because this curve is a curve which correctly tells us, at
every frequency, what the average energy of harmonic oscillators actually is as a
function of temperature.

Planck studied this curve. He first determined the answer empirically, by
fitting the observed curve with a nice function that fitted very well. Thus he
had an empirical formula for the average energy of a harmonic oscillator as a
function of frequency. In other words, he had the right formula instead of kT ,
and then by fiddling around he found a simple derivation for it which involved a
very peculiar assumption. That assumption was that the harmonic oscillator can
take up energies only ~ω at a time. The idea that they can have any energy at
all is false. Of course, that was the beginning of the end of classical mechanics.

The very first correctly determined quantum-mechanical formula will now be
derived. Suppose that the permitted energy levels of a harmonic oscillator were
equally spaced at ~ω0 apart, so that the oscillator could take on only these different
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N0

N1

N2

N3

N4

E0 = 0

E1 = h̄ω

E2 = 2h̄ω

E3 = 3h̄ω

E4 = 4h̄ω

P0 = A

P1 = A exp( −h̄ω/kt)

P2 = A exp(−2h̄ω/kt)

P3 = A exp(−3h̄ω/kt)

P4 = A exp(−4h̄ω/kt)

Fig. 41-5. The energy levels of a harmonic oscillator are equally
spaced: En = n~ω.

energies (Fig. 41-5). Planck made a somewhat more complicated argument than
the one that is being given here, because that was the very beginning of quantum
mechanics and he had to prove some things. But we are going to take it as a fact
(which he demonstrated in this case) that the probability of occupying a level of
energy E is P (E) = αe−E/kT . If we go along with that, we will obtain the right
result.

Suppose now that we have a lot of oscillators, and each is a vibrator of
frequency ω0. Some of these vibrators will be in the bottom quantum state,
some will be in the next one, and so forth. What we would like to know is the
average energy of all these oscillators. To find out, let us calculate the total
energy of all the oscillators and divide by the number of oscillators. That will
be the average energy per oscillator in thermal equilibrium, and will also be the
energy that is in equilibrium with the blackbody radiation and that should go
in Eq. (41.13) in place of kT . Thus we let N0 be the number of oscillators that
are in the ground state (the lowest energy state); N1 the number of oscillators
in the state E1; N2 the number that are in state E2; and so on. According to
the hypothesis (which we have not proved) that in quantum mechanics the law
that replaced the probability e−P.E./kT or e−K.E./kT in classical mechanics is that
the probability goes down as e−∆E/kT , where ∆E is the excess energy, we shall
assume that the number N1 that are in the first state will be the number N0 that
are in the ground state, times e−~ω/kT . Similarly, N2, the number of oscillators
in the second state, is N2 = N0e

−2~ω/kT . To simplify the algebra, let us call
e−~ω/kT = x. Then we simply have N1 = N0x, N2 = N0x

2, . . . , Nn = N0x
n.

The total energy of all the oscillators must first be worked out. If an oscillator
is in the ground state, there is no energy. If it is in the first state, the energy
is ~ω, and there are N1 of them. So N1~ω, or ~ωN0x is how much energy we get

41-12



from those. Those that are in the second state have 2~ω, and there are N2 of
them, so N2 · 2~ω = 2~ωN0x

2 is how much energy we get, and so on. Then we
add it all together to get Etot = N0~ω(0 + x+ 2x2 + 3x3 + · · · ).

And now, how many oscillators are there? Of course, N0 is the number that
are in the ground state, N1 in the first state, and so on, and we add them together:
Ntot = N0(1 + x+ x2 + x3 + · · · ). Thus the average energy is

〈E〉 = Etot

Ntot
= N0~ω(0 + x+ 2x2 + 3x3 + · · · )

N0(1 + x+ x2 + x3 + · · · ) . (41.14)

Now the two sums which appear here we shall leave for the reader to play with
and have some fun with. When we are all finished summing and substituting
for x in the sum, we should get—if we make no mistakes in the sum—

〈E〉 = ~ω
e~ω/kT − 1 . (41.15)

This, then, was the first quantum-mechanical formula ever known, or ever dis-
cussed, and it was the beautiful culmination of decades of puzzlement. Maxwell
knew that there was something wrong, and the problem was, what was right?
Here is the quantitative answer of what is right instead of kT . This expression
should, of course, approach kT as ω → 0 or as T →∞. See if you can prove that
it does—learn how to do the mathematics.

This is the famous cutoff factor that Jeans was looking for, and if we use it
instead of kT in (41.13), we obtain for the distribution of light in a black box

I(ω) dω = ~ω3 dω

π2c2(e~ω/kT − 1) . (41.16)

We see that for a large ω, even though we have ω3 in the numerator, there is
an e raised to a tremendous power in the denominator, so the curve comes down
again and does not “blow up”—we do not get ultraviolet light and x-rays where
we do not expect them!

One might complain that in our derivation of (41.16) we used the quantum
theory for the energy levels of the harmonic oscillator, but the classical theory in
determining the cross section σs. But the quantum theory of light interacting
with a harmonic oscillator gives exactly the same result as that given by the
classical theory. That, in fact, is why we were justified in spending so much
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time on our analysis of the index of refraction and the scattering of light, using
a model of atoms like little oscillators—the quantum formulas are substantially
the same.

Now let us return to the Johnson noise in a resistor. We have already remarked
that the theory of this noise power is really the same theory as that of the classical
blackbody distribution. In fact, rather amusingly, we have already said that if the
resistance in a circuit were not a real resistance, but were an antenna (an antenna
acts like a resistance because it radiates energy), a radiation resistance, it would
be easy for us to calculate what the power would be. It would be just the power
that runs into the antenna from the light that is all around, and we would get the
same distribution, changed by only one or two factors. We can suppose that the
resistor is a generator with an unknown power spectrum P (ω). The spectrum is
determined by the fact that this same generator, connected to a resonant circuit
of any frequency, as in Fig. 41-2(b), generates in the inductance a voltage of the
magnitude given in Eq. (41.2). One is thus led to the same integral as in (41.10),
and the same method works to give Eq. (41.3). For low temperatures the kT
in (41.3) must of course be replaced by (41.15). The two theories (blackbody
radiation and Johnson noise) are also closely related physically, for we may of
course connect a resonant circuit to an antenna, so the resistance R is a pure
radiation resistance. Since (41.2) does not depend on the physical origin of
the resistance, we know the generator G for a real resistance and for radiation
resistance is the same. What is the origin of the generated power P (ω) if the
resistance R is only an ideal antenna in equilibrium with its environment at
temperature T? It is the radiation I(ω) in the space at temperature T which
impinges on the antenna and, as “received signals,” makes an effective generator.
Therefore one can deduce a direct relation of P (ω) and I(ω), leading then from
(41.13) to (41.3).

All the things we have been talking about—the so-called Johnson noise and
Planck’s distribution, and the correct theory of the Brownian movement which
we are about to describe—are developments of the first decade or so of the 20th
century. Now with those points and that history in mind, we return to the
Brownian movement.

41-4 The random walk

Let us consider how the position of a jiggling particle should change with time,
for very long times compared with the time between “kicks.” Consider a little

41-14



B

S36

Fig. 41-6. A random walk of 36 steps of length l . How far is S36 from
B? Ans: about 6I on the average.

Brownian movement particle which is jiggling about because it is bombarded
on all sides by irregularly jiggling water molecules. Query: After a given length
of time, how far away is it likely to be from where it began? This problem was
solved by Einstein and Smoluchowski. If we imagine that we divide the time
into little intervals, let us say a hundredth of a second or so, then after the first
hundredth of a second it moves here, and in the next hundredth it moves some
more, in the next hundredth of a second it moves somewhere else, and so on. In
terms of the rate of bombardment, a hundredth of a second is a very long time.
The reader may easily verify that the number of collisions a single molecule of
water receives in a second is about 1014, so in a hundredth of a second it has
1012 collisions, which is a lot! Therefore, after a hundredth of a second it is not
going to remember what happened before. In other words, the collisions are
all random, so that one “step” is not related to the previous “step.” It is like
the famous drunken sailor problem: the sailor comes out of the bar and takes
a sequence of steps, but each step is chosen at an arbitrary angle, at random
(Fig. 41-6). The question is: After a long time, where is the sailor? Of course we
do not know! It is impossible to say. What do we mean—he is just somewhere
more or less random. Well then, on the average, where is he? On the average,
how far away from the bar has he gone? We have already answered this question,
because once we were discussing the superposition of light from a whole lot of
different sources at different phases, and that meant adding a lot of arrows at
different angles (Chapter 32). There we discovered that the mean square of the
distance from one end to the other of the chain of random steps, which was the
intensity of the light, is the sum of the intensities of the separate pieces. And so,
by the same kind of mathematics, we can prove immediately that if RN is the
vector distance from the origin after N steps, the mean square of the distance
from the origin is proportional to the number N of steps. That is, 〈R2

N 〉 = NL2,
where L is the length of each step. Since the number of steps is proportional to
the time in our present problem, the mean square distance is proportional to the
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time:
〈R2〉 = αt. (41.17)

This does not mean that the mean distance is proportional to the time. If the
mean distance were proportional to the time it would mean that the drifting is
at a nice uniform velocity. The sailor is making some relatively sensible headway,
but only such that his mean square distance is proportional to time. That is the
characteristic of a random walk.

We may show very easily that in each successive step the square of the distance
increases, on the average, by L2. For if we write RN = RN−1 +L, we find that
R2
N is

RN ·RN = R2
N = R2

N−1 + 2RN−1 ·L+ L2,

and averaging over many trials, we have 〈R2
N 〉 = 〈R2

N−1〉+L2, since 〈RN−1 ·L〉 =
0. Thus, by induction,

〈R2
N 〉 = NL2. (41.18)

Now we would like to calculate the coefficient α in Eq. (41.17), and to do so
we must add a feature. We are going to suppose that if we were to put a force on
this particle (having nothing to do with the Brownian movement—we are taking
a side issue for the moment), then it would react in the following way against
the force. First, there would be inertia. Let m be the coefficient of inertia, the
effective mass of the object (not necessarily the same as the real mass of the
real particle, because the water has to move around the particle if we pull on it).
Thus if we talk about motion in one direction, there is a term like m(d2x/dt2) on
one side. And next, we want also to assume that if we kept a steady pull on the
object, there would be a drag on it from the fluid, proportional to its velocity.
Besides the inertia of the fluid, there is a resistance to flow due to the viscosity
and the complexity of the fluid. It is absolutely essential that there be some
irreversible losses, something like resistance, in order that there be fluctuations.
There is no way to produce the kT unless there are also losses. The source of the
fluctuations is very closely related to these losses. What the mechanism of this
drag is, we will discuss soon—we shall talk about forces that are proportional to
the velocity and where they come from. But let us suppose for now that there
is such a resistance. Then the formula for the motion under an external force,
when we are pulling on it in a normal manner, is

m
d2x

dt2
+ µ

dx

dt
= Fext. (41.19)
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The quantity µ can be determined directly from experiment. For example, we
can watch the drop fall under gravity. Then we know that the force is mg, and µ
is mg divided by the speed of fall the drop ultimately acquires. Or we could put
the drop in a centrifuge and see how fast it sediments. Or if it is charged, we can
put an electric field on it. So µ is a measurable thing, not an artificial thing, and
it is known for many types of colloidal particles, etc.

Now let us use the same formula in the case where the force is not external,
but is equal to the irregular forces of the Brownian movement. We shall then
try to determine the mean square distance that the object goes. Instead of
taking the distances in three dimensions, let us take just one dimension, and
find the mean of x2, just to prepare ourselves. (Obviously the mean of x2 is
the same as the mean of y2 is the same as the mean of z2, and therefore the
mean square of the distance is just 3 times what we are going to calculate.)
The x-component of the irregular forces is, of course, just as irregular as any
other component. What is the rate of change of x2? It is d(x2)/dt = 2x(dx/dt),
so what we have to find is the average of the position times the velocity. We
shall show that this is a constant, and that therefore the mean square radius
will increase proportionally to the time, and at what rate. Now if we multiply
Eq. (41.19) by x, mx(d2x/dt2) + µx(dx/dt) = xFx. We want the time average
of x(dx/dt), so let us take the average of the whole equation, and study the three
terms. Now what about x times the force? If the particle happens to have gone
a certain distance x, then, since the irregular force is completely irregular and
does not know where the particle started from, the next impulse can be in any
direction relative to x. If x is positive, there is no reason why the average force
should also be in that direction. It is just as likely to be one way as the other.
The bombardment forces are not driving it in a definite direction. So the average
value of x times F is zero. On the other hand, for the term mx(d2x/dt2) we will
have to be a little fancy, and write this as

mx
d2x

dt2
= m

d[x(dx/dt)]
dt

−m
(
dx

dt

)2
.

Thus we put in these two terms and take the average of both. So let us see how
much the first term should be. Now x times the velocity has a mean that does not
change with time, because when it gets to some position it has no remembrance of
where it was before, so things are no longer changing with time. So this quantity,
on the average, is zero. We have left the quantity mv2, and that is the only thing
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we know: mv2/2 has a mean value 1
2kT . Therefore we find that〈

mx
d2x

dt2

〉
+ µ

〈
x
dx

dt

〉
= 〈xFx〉

implies

−〈mv2〉+ µ

2
d

dt
〈x2〉 = 0,

or
d〈x2〉
dt

= 2 kT
µ
. (41.20)

Therefore the object has a mean square distance 〈R2〉, at the end of a certain
amount of t, equal to

〈R2〉 = 6kT t

µ
. (41.21)

And so we can actually determine how far the particles go! We first must
determine how they react to a steady force, how fast they drift under a known
force (to find µ), and then we can determine how far they go in their random
motions. This equation was of considerable importance historically, because
it was one of the first ways by which the constant k was determined. After
all, we can measure µ, the time, how far the particles go, and we can take an
average. The reason that the determination of k was important is that in the
law PV = RT for a mole, we know that R, which can also be measured, is equal
to the number of atoms in a mole times k. A mole was originally defined as
so and so many grams of oxygen-16 (now carbon is used), so the number of
atoms in a mole was not known, originally. It is, of course, a very interesting
and important problem. How big are atoms? How many are there? So one of
the earliest determinations of the number of atoms was by the determination
of how far a dirty little particle would move if we watched it patiently under a
microscope for a certain length of time. And thus Boltzmann’s constant k and
the Avogadro number N0 were determined because R had already been measured.

41-18



42

Applications of Kinetic Theory

42-1 Evaporation

In this chapter we shall discuss some further applications of kinetic theory.
In the previous chapter we emphasized one particular aspect of kinetic theory,
namely, that the average kinetic energy in any degree of freedom of a molecule
or other object is 1

2kT . The central feature of what we shall now discuss, on
the other hand, is the fact that the probability of finding a particle in different
places, per unit volume, varies as e−potential energy/kT ; we shall make a number of
applications of this.

The phenomena which we want to study are relatively complicated: a liquid
evaporating, or electrons in a metal coming out of the surface, or a chemical
reaction in which there are a large number of atoms involved. In such cases it is no
longer possible to make from the kinetic theory any simple and correct statements,
because the situation is too complicated. Therefore, this chapter, except where
otherwise emphasized, is quite inexact. The idea to be emphasized is only that
we can understand, from the kinetic theory, more or less how things ought to
behave. By using thermodynamic arguments, or some empirical measurements
of certain critical quantities, we can get a more accurate representation of the
phenomena.

However, it is very useful to know even only more or less why something
behaves as it does, so that when the situation is a new one, or one that we have
not yet started to analyze, we can say, more or less, what ought to happen. So
this discussion is highly inaccurate but essentially right—right in idea, but a
little bit simplified, let us say, in the specific details.

The first example that we shall consider is the evaporation of a liquid. Suppose
we have a box with a large volume, partially filled with liquid in equilibrium and
with the vapor at a certain temperature. We shall suppose that the molecules of
the vapor are relatively far apart, and that inside the liquid, the molecules are
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packed close together. The problem is to find out how many molecules there are
in the vapor phase, compared with the number there are in the liquid. How dense
is the vapor at a given temperature, and how does it depend on the temperature?

Let us say that n equals the number of molecules per unit volume in the
vapor. That number, of course, varies with the temperature. If we add heat,
we get more evaporation. Now let another quantity, 1/Va, equal the number of
atoms per unit volume in the liquid: We suppose that each molecule in the liquid
occupies a certain volume, so that if there are more molecules of liquid, then all
together they occupy a bigger volume. Thus if Va is the volume occupied by one
molecule, the number of molecules in a unit volume is a unit volume divided by
the volume of each molecule. Furthermore, we suppose that there is a force of
attraction between the molecules to hold them together in the liquid. Otherwise
we cannot understand why it condenses. Thus suppose that there is such a force
and that there is an energy of binding of the molecules in the liquid which is lost
when they go into the vapor. That is, we are going to suppose that, in order
to take a single molecule out of the liquid into the vapor, a certain amount of
work W has to be done. There is a certain difference, W , in the energy of a
molecule in the liquid from what it would have if it were in the vapor, because
we have to pull it away from the other molecules which attract it.

Now we use the general principle that the number of atoms per unit volume in
two different regions is n2/n1 = e−(E2−E1)/kT . So the number n per unit volume
in the vapor, divided by the number 1/Va per unit volume in the liquid, is equal
to

nVa = e−W/kT , (42.1)

because that is the general rule. It is like the atmosphere in equilibrium under
gravity, where the gas at the bottom is denser than that at the top because of
the work mgh needed to lift the gas molecules to the height h. In the liquid, the
molecules are denser than in the vapor because we have to pull them out through
the energy “hill” W , and the ratio of the densities is e−W/kT .

This is what we wanted to deduce—that the vapor density varies as e to the
minus some energy or other over kT . The factors in front are not really interesting
to us, because in most cases the vapor density is very much lower than the liquid
density. In those circumstances, where we are not near the critical point where
they are almost the same, but where the vapor density is much lower than the
liquid density, then the fact that n is very much less than 1/Va is occasioned
by the fact that W is very much greater than kT . So formulas such as (42.1)
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are interesting only when W is very much bigger than kT , because in those
circumstances, since we are raising e to minus a tremendous amount, if we change
T a little bit, that tremendous power changes a bit, and the change produced in
the exponential factor is very much more important than any change that might
occur in the factors out in front. Why should there be any changes in such factors
as Va? Because ours was an approximate analysis. After all, there is not really a
definite volume for each molecule; as we change the temperature, the volume Va
does not stay constant—the liquid expands. There are other little features like
that, and so the actual situation is more complicated. There are slowly varying
temperature-dependent factors all over the place. In fact, we might say that W
itself varies slightly with temperature, because at a higher temperature, at a
different molecular volume, there would be different average attractions, and so
on. So, while we might think that if we have a formula in which everything varies
in an unknown way with temperature then we have no formula at all, if we realize
that the exponent W/kT is, in general, very large, we see that in the curve of the
vapor density as a function of temperature most of the variation is occasioned by
the exponential factor, and if we take W as a constant and the coefficient 1/Va
as nearly constant, it is a good approximation for short intervals along the curve.
Most of the variation, in other words, is of the general nature e−W/kT .

It turns out that there are many, many phenomena in nature which are
characterized by having to borrow an energy from somewhere, and in which
the central feature of the temperature variation is e to the minus the energy
over kT . This is a useful fact only when the energy is large compared with kT ,
so that most of the variation is contained in the variation of the kT and not in
the constant and in other factors.

Now let us consider another way of obtaining a somewhat similar result for
the evaporation, but looking at it in more detail. To arrive at (42.1), we simply
applied a rule which is valid at equilibrium, but in order to understand things
better, there is no harm in trying to look at the details of what is going on. We
may also describe what is going on in the following way: the molecules that
are in the vapor continually bombard the surface of the liquid; when they hit
it, they may bounce off or they may get stuck. There is an unknown factor for
that—maybe 50–50, maybe 10 to 90—we do not know. Let us say they always
get stuck—we can analyze it over again later on the assumption that they do
not always get stuck. Then at a given moment there will be a certain number
of atoms which are condensing onto the surface of the liquid. The number of
condensing molecules, the number that arrive on a unit area per unit time, is the
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number n per unit volume times the velocity v. This velocity of the molecules
is related to the temperature, because we know that 1

2mv
2 is equal to 3

2kT on
the average. So v is some kind of a mean velocity. Of course we should integrate
over the angles and get some kind of an average, but it is roughly proportional
to the root-mean-square velocity, within some factor. Thus

Nc = nv (42.2)

is the rate at which the molecules arrive per unit area and are condensing.
At the same time, however, the atoms in the liquid are jiggling about, and

from time to time one of them gets kicked out. Now we have to estimate how
fast they get kicked out. The idea will be that at equilibrium the number that
are kicked out per second and the number that arrive per second are equal.

How many get kicked out? In order to get kicked out, a particular molecule has
to have acquired by accident an excess energy over its neighbors—a considerable
excess energy, because it is attracted very strongly by the other molecules in
the liquid. Ordinarily it does not leave because it is so strongly attracted, but
in the collisions sometimes one of them gets an extra energy by accident. And
the chance that it gets the extra energy W which it needs in our case is very
small if W � kT . In fact, e−W/kT is the chance that an atom has picked up
more than this much energy. That is the general principle in kinetic theory: in
order to borrow an excess energy W over the average, the odds are e to the
minus the energy that we have to borrow, over kT . Now suppose that some
molecules have borrowed this energy. We now have to estimate how many leave
the surface per second. Of course, just because a molecule has the necessary
energy does not mean that it will actually evaporate, since it may be buried too
deeply inside the liquid or, even if it is near the surface, it may be travelling
in the wrong direction. The number that are going to leave a unit area per
second is going to be something like this: the number of atoms there are near
the surface, per unit area, divided by the time it takes one to escape, multiplied
by the probability e−W/kT that they are ready to escape in the sense that they
have enough energy.

We shall suppose that each molecule at the surface of the liquid occupies
a certain cross-sectional area A. Then the number of molecules per unit area
of liquid surface will be 1/A. And now, how long does it take a molecule to
escape? If the molecules have a certain average speed v, and have to move, say,
one molecular diameter D, the thickness of the first layer, then the time it takes
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to get across that thickness is the time needed to escape, if the molecule has
enough energy. The time will be D/v. Thus the number evaporating should be
approximately

Ne = (1/A)(v/D)e−W/kT . (42.3)
Now the area of each atom times the thickness of the layer is approximately
the same as the volume Va occupied by a single atom. And so, in order to get
equilibrium, we must have Nc = Ne, or

nv = (v/Va)e−W/kT . (42.4)

We may cancel the v’s, since they are equal; even though one is the velocity of a
molecule in the vapor and the other is the velocity of an evaporating molecule,
these are the same, because we know their mean kinetic energy (in one direction)
is 1

2kT . But one may object, “No! No! These are the especially fast-moving ones;
these are the ones that have picked up excess energy.” Not really, because the
moment they start to pull away from the liquid, they have to lose that excess
energy against the potential energy. So, as they come to the surface they are
slowed down to the velocity v! It is the same as it was in our discussion of
the distribution of molecular velocities in the atmosphere—at the bottom, the
molecules had a certain distribution of energy. The ones that arrive at the top
have the same distribution of energy, because the slow ones did not arrive at
all, and the fast ones were slowed down. The molecules that are evaporating
have the same distribution of energy as the ones inside—a rather remarkable
fact. Anyway, it is useless to try to argue so closely about our formula because of
other inaccuracies, such as the probability of bouncing back rather than entering
the liquid, and so on. Thus we have a rough idea of the rate of evaporation and
condensation, and we see, of course, that the vapor density n varies in the same
way as before, but now we have understood it in some detail rather than just as
an arbitrary formula.

This deeper understanding permits us to analyze some things. For example,
suppose that we were to pump away the vapor at such a great rate that we
removed the vapor as fast as it formed (if we had very good pumps and the liquid
was evaporating very slowly), how fast would evaporation occur if we maintained
a liquid temperature T? Suppose that we have already experimentally measured
the equilibrium vapor density, so that we know, at the given temperature, how
many molecules per unit volume are in equilibrium with the liquid. Now we
would like to know how fast it will evaporate. Even though we have used only a
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rough analysis so far as the evaporation part of it is concerned, the number of
vapor molecules arriving was not done so badly, aside from the unknown factor of
reflection coefficient. So therefore we may use the fact that the number that are
leaving, at equilibrium, is the same as the number that arrive. True, the vapor
is being swept away and so the molecules are only coming out, but if the vapor
were left alone, it would attain the equilibrium density at which the number that
come back would equal the number that are evaporating. Therefore, we can
easily see that the number that are coming off the surface per second is equal to
the unknown reflection coefficient R times the number that would come down
to the surface per second were the vapor still there, because that is how many
would balance the evaporation at equilibrium:

Ne = nvR = (vR/Va)e−W/kT . (42.5)

Of course, the number of molecules that hit the liquid from the vapor is easy to
calculate, since we do not need to know as much about the forces as we do when
we are worrying about how they get to escape through the liquid surface; it is
much easier to make the argument the other way.

42-2 Thermionic emission

We may give another example of a very practical situation that is similar to
the evaporation of a liquid—so similar that it is not worth making a separate
analysis. It is essentially the same problem. In a radio tube there is a source of
electrons, namely a heated tungsten filament, and a positively charged plate to
attract the electrons. Any electron that escapes from the surface of the tungsten
is immediately swept away to the plate. That is our ideal “pump,” which is
“pumping” the electrons away all the time. Now the question is: How many
electrons per second can we get out of a piece of tungsten, and how does that
number vary with temperature? The answer to that problem is the same as (42.5),
because it turns out that in a piece of metal, electrons are attracted to the ions,
or to atoms, of the metal. They are attracted, if we may say it crudely, to the
metal. In order to get an electron out of a piece of metal, it takes a certain
amount of energy or work to pull it out. This work varies with the different kinds
of metal. In fact, it varies even with the character of the surface of a given kind
of metal, but the total work may be a few electron volts, which, incidentally, is
typical of the energy involved in chemical reactions. We can remember the latter
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fact by remembering that the voltage in a chemical cell like a flashlight battery,
which is produced by chemical reactions, is about one volt.

How can we find out how many electrons come out per second? It would be
quite difficult to analyze the effects on the electrons going out; it is easier to
analyze the situation the other way. So, we could start out by imagining that
we did not draw the electrons away, and that the electrons were like a gas, and
could come back to the metal. Then there would be a certain density of electrons
at equilibrium which would, of course, be given by exactly the same formula
as (42.1), where Va is the volume per electron in the metal, roughly, and W is
equal to qeφ, where φ is the so-called work function, or the voltage needed to pull
an electron off the surface. This would tell us how many electrons would have to
be in the surrounding space and striking the metal in order to balance the ones
that are coming out. And thus it is easy to calculate how many are coming out
if we sweep away all of them, because the number that are coming out is exactly
equal to the number that would be going in with the above density of electron
“vapor.” In other words, the answer is that the current of electricity that comes
in per unit area is equal to the charge on each times the number that arrive per
second per unit area, which is the number per unit volume times the velocity, as
we have seen many times:

I = qenv = (qev/Va)e−qeφ/kT . (42.6)

Now one electron volt corresponds to kT at a temperature of 11,600 degrees. The
filament of the tube may be operating at a temperature of, say, 1100 degrees, so
the exponential factor is something like e−10; when we change the temperature a
little bit, the exponential factor changes a lot. Thus, again, the central feature
of the formula is the e−qeφ/kT . As a matter of fact, the factor in front is quite
wrong—it turns out that the behavior of electrons in a metal is not correctly
described by the classical theory, but by quantum mechanics, but this only
changes the factor in front a little. Actually, no one has ever been able to get
the thing straightened out very well, even though many people have used the
high-class quantum-mechanical theory for their calculations. The big problem is,
does W change slightly with temperature? If it does, one cannot distinguish a
W changing slowly with temperature from a different coefficient in front. That
is, if W changed linearly, say, with temperature, so that W = W0 + αkT , then
we would have

e−W/kT = e−(W0+αkT )/kT = e−αe−W0/kT .
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Thus a linearly temperature-dependent W is equivalent to a shifted “constant.”
It is really quite difficult and usually fruitless to try to obtain the coefficient in
the front accurately.

42-3 Thermal ionization

Now we go on to another example of the same idea; always the same idea.
This has to do with ionization. Suppose that in a gas we have a whole lot of
atoms which are in the neutral state, say, but the gas is hot and the atoms can
become ionized. We would like to know how many ions there are in a given
circumstance if we have a certain density of atoms per unit volume at a certain
temperature. Again we consider a box in which there are N atoms which can
hold electrons. (If an electron has come off an atom, it is called an ion, and if
the atom is neutral, we simply call it an atom.) Then suppose that, at any given
moment, the number of neutral atoms is na, the number of ions is ni, and the
number of electrons is ne, all per unit volume. The problem is: What is the
relationship of these three numbers?

In the first place, we have two conditions or constraints on the numbers. For
instance, as we vary different conditions, like the temperature and so on, na + ni
would remain constant, because this would be simply the number N of atomic
nuclei that are in the box. If we keep the number of nuclei per unit volume
fixed, and change, say, the temperature, then as the ionization proceeded some
atoms would turn to ions, but the total number of atoms plus ions would be
unchanged. That is, na + ni = N . Another condition is that if the entire gas
is to be electrically neutral (and if we neglect double or triple ionization), that
means that the number of ions is equal to the number of electrons at all times,
or ni = ne. These are subsidiary equations that simply express the conservation
of charge and the conservation of atoms.

These equations are true, and we ultimately will use them when we consider a
real problem. But we want to obtain another relationship between the quantities.
We can do this as follows. We again use the idea that it takes a certain amount
of energy to lift the electron out of the atom, which we call the ionization energy,
and we would write it as W , in order to make all of the formulas look the same.
So we let W equal the energy needed to pull an electron out of an atom and
make an ion. Now we again say that the number of free electrons per unit volume
in the “vapor” is equal to the number of bound electrons per unit volume in
the atoms, times e to the minus the energy difference between being bound and
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being free, over kT . That is the basic equation again. How can we write it? The
number of free electrons per unit volume would, of course, be ne, because that is
the definition of ne. Now what about the number of electrons per unit volume
that are bound to atoms? The total number of places that we could put the
electrons is apparently na + ni, and we will suppose that when they are bound
each one is bound within a certain volume Va. So the total amount of volume
which is available to electrons which would be bound is (na + ni)Va, so we might
want to write our formula as

ne = na
(na + ni)Va

e−W/kT .

The formula is wrong, however, in one essential feature, which is the following:
when an electron is already on an atom, another electron cannot come to that
volume anymore! In other words, all the volumes of all the possible sites are not
really available for the one electron which is trying to make up its mind whether
or not to be in the vapor or in the condensed position, because in this problem
there is an extra feature that when one electron is where another electron is, it is
not allowed to go—it is repelled. For that reason, it comes out that we should
count only that part of the volume which is available for an electron to sit on or
not. That is, those which are already occupied do not count in the total available
volume, but the only volume which is allowed is that of the ions, where there are
vacant places for the electron to go. Then, in those circumstances, we find that a
nicer way to write our formula is

neni
na

= 1
Va

e−W/kT . (42.7)

This formula is called the Saha ionization equation. Now let us see if we can
understand qualitatively why a formula like this is right, by arguing about the
kinetic things that are happening.

First, every once in a while an electron comes to an ion and they combine
to make an atom. And also, every once in a while, an atom gets into a collision
and breaks up into an ion and an electron. Now those two rates must be equal.
How fast do electrons and ions find each other? The rate is certainly increased if
the number of electrons per unit volume is increased. It is also increased if the
number of ions per unit volume is increased. That is, the total rate at which
recombination is occurring is certainly proportional to the number of electrons
times the number of ions. Now the total rate at which ionization is occurring
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due to collisions must be dependent linearly on how many atoms there are to
ionize. And so the rates will balance when there is some relationship between
the product neni and the number of atoms, na. The fact that this relationship
happens to be given by this particular formula, where W is the ionization energy,
is of course a little bit more information, but we can easily understand that
the formula would necessarily involve the concentrations of the electrons, ions,
and atoms in the combination neni/na to produce a constant independent of
the n’s, and dependent only on temperature, the atomic cross sections, and other
constant factors.

We may also note that, since the equation involves the numbers per unit
volume, if we were to do two experiments with a given total number N of
atoms plus ions, that is, a certain fixed number of nuclei, but using boxes with
different volumes, the n’s would all be smaller in the larger box. But since the
ratio neni/na stays the same, the total number of electrons and ions must be
greater in the larger box. To see this, suppose that there are N nuclei inside a box
of volume V , and that a fraction f of them are ionized. Then ne = fN/V = ni,
and na = (1− f)N/V . Then our equation becomes

f2

1− f
N

V
= e−W/kT

Va
. (42.8)

In other words, if we take a smaller and smaller density of atoms, or make the
volume of the container bigger and bigger, the fraction f of electrons and ions
must increase. That ionization, just from “expansion” as the density goes down,
is the reason why we believe that at very low densities, such as in the cold
space between the stars, there may be ions present, even though we might not
understand it from the point of view of the available energy. Although it takes
many, many kT of energy to make them, there are ions present.

Why can there be ions present when there is so much space around, while if
we increase the density, the ions tend to disappear? Answer : Consider an atom.
Every once in a while, light, or another atom, or an ion, or whatever it is that
maintains thermal equilibrium, strikes it. Very rarely, because it takes such a
terrific amount of excess energy, an electron comes off and an ion is left. Now
that electron, if the space is enormous, wanders and wanders and does not come
near anything for years, perhaps. But once in a very great while, it does come
back to an ion and they combine to make an atom. So the rate at which electrons
are coming out from the atoms is very slow. But if the volume is enormous, an

42-10



electron which has escaped takes so long to find another ion to recombine with
that its probability of recombination is very, very small; thus, in spite of the large
excess energy needed, there may be a reasonable number of electrons.

42-4 Chemical kinetics

The same situation that we have just called “ionization” is also found in
a chemical reaction. For instance, if two objects A and B combine into a
compound AB, then if we think about it for a while we see that AB is what we
have called an atom, B is what we call an electron, and A is what we call an ion.
With these substitutions the equations of equilibrium are exactly the same in
form:

nAnB
nAB

= ce−W/kT . (42.9)

This formula, of course, is not exact, since the “constant” c depends on how much
volume is allowed for the A and B to combine, and so on, but by thermodynamic
arguments one can identify what the meaning of the W in the exponential factor
is, and it turns out that it is very close to the energy needed in the reaction.

Suppose that we tried to understand this formula as a result of collisions,
much in the way that we understood the evaporation formula, by arguing about
how many electrons came off and how many of them came back per unit time.
Suppose that A and B combine in a collision every once in a while to form a
compound AB. And suppose that the compound AB is a complicated molecule
which jiggles around and is hit by other molecules, and from time to time it gets
enough energy to explode and break up again into A and B.

Now it actually turns out, in chemical reactions, that if the atoms come
together with too small an energy, even though energy may be released in the
reaction A + B → AB, the fact that A and B may touch each other does not
necessarily make the reaction start. It usually is required that the collision be
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Fig. 42-1. The energy relationship for the reaction A+ B → AB.

42-11



rather hard, in fact, to get the reaction to go at all—a “soft” collision between A
and B may not do it, even though energy may be released in the process. So
let us suppose that it is very common in chemical reactions that, in order for A
and B to form AB, they cannot just hit each other, but they have to hit each
other with sufficient energy. This energy is called the activation energy—the
energy needed to “activate” the reaction. Call A∗ the activation energy, the
excess energy needed in a collision in order that the reaction may really occur.
Then the rate Rf at which A and B produce AB would involve the number of
atoms of A times the number of atoms of B, times the rate at which a single
atom would strike a certain cross section σAB , times a factor e−A∗/kT which is
the probability that they have enough energy:

Rf = nAnBvσABe
−A∗/kT . (42.10)

Now we have to find the opposite rate, Rr. There is a certain chance that AB
will fly apart. In order to fly apart, it not only must have the energy W which it
needs in order to get apart at all but, just as it was hard for A and B to come
together, so there is a kind of hill that A and B have to climb over to get apart
again; they must have not only enough energy just to get ready to pull apart,
but a certain excess. It is like climbing a hill to get into a deep valley; they have
to climb the hill coming in and they have to climb out of the valley and then over
the hill coming back (Fig. 42-1). Thus the rate at which AB goes to A and B
will be proportional to the number nAB that are present, times e−(W+A∗)/kT :

Rr = c′nABe
−(W+A∗)/kT . (42.11)

The c′ will involve the volume of atoms and the rate of collisions, which we
can work out, as we did the case of evaporation, with areas and times and
thicknesses; but we shall not do this. The main feature of interest to us is that
when these two rates are equal, the ratio of them is equal to unity. This tells
us that nAnB/nAB = ce−W/kT , as before, where c involves the cross sections,
velocities, and other factors independent of the n’s.

The interesting thing is that the rate of the reaction also varies as e−const/kT ,
although the constant is not the same as that which governs the concentrations;
the activation energy A∗ is quite different from the energy W . W governs the
proportions of A, B, and AB that we have in equilibrium, but if we want to know
how fast A + B goes to AB, that is not a question of equilibrium, and here a
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different energy, the activation energy, governs the rate of reaction through an
exponential factor.

Furthermore, A∗ is not a fundamental constant like W . Suppose that at the
surface of the wall—or at some other place—A and B could temporarily stick
there in such a way that they could combine more easily. In other words, we might
find a “tunnel” through the hill, or perhaps a lower hill. By the conservation
of energy, when we are all finished we have still made AB out of A and B,
so the energy difference W will be quite independent of the way the reaction
occurred, but the activation energy A∗ will depend very much on the way the
reaction occurs. This is why the rates of chemical reactions are very sensitive to
outside conditions. We can change the rate by putting in a surface of a different
kind, we can put it in a “different barrel” and it will go at a different rate, if
it depends on the nature of the surface. Or if we put in a third kind of object
it may change the rate very much; some things produce enormous changes in
rate simply by changing the A∗ a little bit—they are called catalysts. A reaction
might practically not occur at all because A∗ is too big at the given temperature,
but when we put in this special stuff, the catalyst, then the reaction goes very
fast indeed, because A∗ is reduced.

Incidentally, there is some trouble with such a reaction, A plus B, making
AB, because we cannot conserve both energy and momentum when we try to put
two objects together to make one that is more stable. Therefore, we need at least
a third object C, so the actual reaction is much more complicated. The forward
rate would involve the product nAnBnC , and it might seem that our formula is
going wrong, but no! When we look at the rate at which AB goes the other way,
we find that it also needs to collide with C, so there is an nABnC in the reverse
rate; the nC ’s cancel out in the formula for the equilibrium concentrations. The
law of equilibrium, (42.9), which we first wrote down is absolutely guaranteed to
be true, no matter what the mechanism of the reaction may be!

42-5 Einstein’s laws of radiation

We now turn to an interesting analogous situation having to do with the
blackbody radiation law. In the last chapter we worked out the distribution law
for the radiation in a cavity the way Planck did, considering the radiation from
an oscillator. The oscillator had to have a certain mean energy, and since it was
oscillating, it would radiate and would keep pumping radiation into the cavity
until it piled up enough radiation to balance the absorption and emission. In
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that way we found that the intensity of radiation at frequency ω was given by
the formula

I(ω) dω = ~ω3 dω

π2c2(e~ω/kT − 1) . (42.12)

This result involved the assumption that the oscillator which was generating
the radiation had definite, equally spaced energy levels. We did not say that
light had to be a photon or anything like that. There was no discussion about
how, when an atom goes from one level to another, the energy must come out
in one unit of energy, ~ω, in the form of light. Planck’s original idea was that
the matter was quantized but not the light: material oscillators cannot take up
just any energy, but have to take it in lumps. Furthermore, the trouble with the
derivation is that it was partially classical. We calculated the rate of radiation
from an oscillator according to classical physics; then we turned around and
said, “No, this oscillator has a lot of energy levels.” So gradually, in order to
find the right result, the completely quantum-mechanical result, there was a
slow development which culminated in the quantum mechanics of 1927. But in
the meantime, there was an attempt by Einstein to convert Planck’s viewpoint
that only oscillators of matter were quantized, to the idea that light was really
photons and could be considered in a certain way as particles with energy ~ω.
Furthermore, Bohr had pointed out that any system of atoms has energy levels,
but they are not necessarily equally spaced like Planck’s oscillator. And so it
became necessary to rederive or at least rediscuss the radiation law from a more
completely quantum-mechanical viewpoint.

Einstein assumed that Planck’s final formula was right, and he used that
formula to obtain some new information, previously unknown, about the inter-
action of radiation with matter. His discussion went as follows: Consider any
two of the many energy levels of an atom, say the mth level and the nth level
(Fig. 42-2). Now Einstein proposed that when such an atom has light of the right
frequency shining on it, it can absorb that photon of light and make a transition
from state n to state m, and that the probability that this occurs per second

n

m

Absorption Induced emission

Spontaneous emission

Fig. 42-2. Transitions between two energy levels of an atom.
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depends upon the two levels, of course, but is proportional to how intense the
light is that is shining on it. Let us call the proportionality constant Bnm, merely
to remind us that this is not a universal constant of nature, but depends on the
particular pair of levels: some levels are easy to excite; some levels are hard to
excite. Now what is the formula going to be for the rate of emission from m to n?
Einstein proposed that this must have two parts to it. First, even if there were
no light present, there would be some chance that an atom in an excited state
would fall to a lower state, emitting a photon; this we call spontaneous emission.
It is analogous to the idea that an oscillator with a certain amount of energy,
even in classical physics, does not keep that energy, but loses it by radiation.
Thus the analog of spontaneous radiation of a classical system is that if the atom
is in an excited state there is a certain probability Amn, which depends on the
levels again, for it to go down from m to n, and this probability is independent
of whether light is shining on the atom or not. But then Einstein went further,
and by comparison with the classical theory and by other arguments, concluded
that emission was also influenced by the presence of light—that when light of
the right frequency is shining on an atom, it has an increased rate of emitting a
photon that is proportional to the intensity of the light, with a proportionality
constant Bmn. Later, if we deduce that this coefficient is zero, then we will have
found that Einstein was wrong. Of course we will find he was right.

Thus Einstein assumed that there are three kinds of processes: an absorption
proportional to the intensity of light, an emission proportional to the inten-
sity of light, called induced emission or sometimes stimulated emission, and a
spontaneous emission independent of light.

Now suppose that we have, in equilibrium at temperature T , a certain number
of atoms Nn in the state n and another number Nm in the state m. Then the
total number of atoms that are going from n to m is the number that are in the
state n times the rate per second that, if one is in n, it goes up to m. So we have
a formula for the number that are going from n to m per second:

Rn→m = NnBnmI(ω). (42.13)

The number that will go from m to n is expressed in the same manner, as the
number Nm that are in m, times the chance per second that each one goes down
to n. This time our expression is

Rm→n = Nm[Amn +BmnI(ω)]. (42.14)
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Now we shall suppose that in thermal equilibrium the number of atoms going up
must equal the number coming down. That is one way, at least, in which the
number will be sure to stay constant in each level.* So we take these two rates to
be equal at equilibrium. But we have one other piece of information: we know how
large Nm is compared with Nn—the ratio of those two is e−(Em−En)/kT . Now
Einstein assumed that the only light which is effective in making the transition
from n to m is the light which has the frequency corresponding to the energy
difference, so Em − En = ~ω in all our formulas. Thus

Nm = Nne
−~ω/kT . (42.15)

Thus if we set the two rates equal: NnBnmI(ω) = Nm[Amn +BmnI(ω)], and
divide by Nm, we get

BnmI(ω)e~ω/kT = Amn +BmnI(ω). (42.16)

From this equation, we can calculate I(ω). It is simply

I(ω) = Amn
Bnme~ω/kT −Bmn

. (42.17)

But Planck has already told us that the formula must be (42.12). Therefore
we can deduce something: First, that Bnm must equal Bmn, since otherwise we
cannot get the (e~ω/kT − 1). So Einstein discovered some things that he did
not know how to calculate, namely that the induced emission probability and the
absorption probability must be equal. This is interesting. And furthermore, in
order for (42.17) and (42.12) to agree,

Amn/Bmn must be ~ω3/π2c2. (42.18)

So if we know, for instance, the absorption rate for a given level, we can deduce
the spontaneous emission rate and the induced emission rate, or any combination.

This is as far as Einstein or anyone else could go using such arguments. To
actually compute the absolute spontaneous emission rate or the other rates for
any specific atomic transition, of course, requires a knowledge of the machinery
of the atom, called quantum electrodynamics, which was not discovered until
eleven years later. This work of Einstein was done in 1916.

* This is not the only way one can arrange to keep the numbers of atoms in the various levels
constant, but it is the way it actually works. That every process must, in thermal equilibrium,
be balanced by its exact opposite is called the principle of detailed balancing.
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Fig. 42-3. By exciting, say by blue light, a higher state h, which may
emit a photon leaving atoms in state m, the number in this state m
becomes sufficiently large to start laser action.

The possibility of induced emission has, today, found interesting applications.
If there is light present, it will tend to induce the downward transition. The
transition then adds its ~ω to the available light energy, if there were some atoms
sitting in the upper state. Now we can arrange, by some nonthermal method, to
have a gas in which the number in the state m is very much greater than the
number in the state n. This is far out of equilibrium, and so is not given by the
formula e−~ω/kT , which is for equilibrium. We can even arrange it so that the
number in the upper state is very large, while the number in the lower state is
practically zero. Then light which has the frequency corresponding to the energy
difference Em − En will not be strongly absorbed, because there are not many
atoms in state n to absorb it. On the other hand, when that light is present, it
will induce the emission from this upper state! So, if we had a lot of atoms in
the upper state, there would be a sort of chain reaction, in which, the moment
the atoms began to emit, more would be caused to emit, and the whole lot of
them would dump down together. This is what is called a laser , or, in the case
of the far infrared, a maser .

Various tricks can be used to obtain the atoms in state m. There may be
higher levels to which the atoms can get if we shine in a strong beam of light of
high frequency. From these high levels, they may trickle down, emitting various
photons, until they all get stuck in the state m. If they tend to stay in the
state m without emitting, the state is called metastable. And then they are
all dumped down together by induced emissions. One more technical point—if
we put this system in an ordinary box, it would radiate in so many different
directions spontaneously, compared with the induced effect, that we would still
be in trouble. But we can enhance the induced effect, increase its efficiency, by
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putting nearly perfect mirrors on each side of the box, so that the light which is
emitted gets another chance, and another chance, and another chance, to induce
more emission. Although the mirrors are almost one hundred percent reflecting,
there is a slight amount of transmission of the mirror, and a little light gets out.
In the end, of course, from the conservation of energy, all the light goes out in
a nice uniform straight direction which makes the strong light beams that are
possible today with lasers.
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43

Diffusion

43-1 Collisions between molecules

We have considered so far only the molecular motions in a gas which is in
thermal equilibrium. We want now to discuss what happens when things are
near, but not exactly in, equilibrium. In a situation far from equilibrium, things
are extremely complicated, but in a situation very close to equilibrium we can
easily work out what happens. To see what happens, we must, however, return
to the kinetic theory. Statistical mechanics and thermodynamics deal with the
equilibrium situation, but away from equilibrium we can only analyze what occurs
atom by atom, so to speak.

As a simple example of a nonequilibrium circumstance, we shall consider
the diffusion of ions in a gas. Suppose that in a gas there is a relatively small
concentration of ions—electrically charged molecules. If we put an electric field
on the gas, then each ion will have a force on it which is different from the forces
on the neutral molecules of the gas. If there were no other molecules present, an
ion would have a constant acceleration until it reached the wall of the container.
But because of the presence of the other molecules, it cannot do that; its velocity
increases only until it collides with a molecule and loses its momentum. It starts
again to pick up more speed, but then it loses its momentum again. The net
effect is that an ion works its way along an erratic path, but with a net motion in
the direction of the electric force. We shall see that the ion has an average “drift”
with a mean speed which is proportional to the electric field—the stronger the
field, the faster it goes. While the field is on, and while the ion is moving along, it
is, of course, not in thermal equilibrium, it is trying to get to equilibrium, which
is to be sitting at the end of the container. By means of the kinetic theory we
can compute the drift velocity.

It turns out that with our present mathematical abilities we cannot really
compute precisely what will happen, but we can obtain approximate results
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which exhibit all the essential features. We can find out how things will vary with
pressure, with temperature, and so on, but it will not be possible to get precisely
the correct numerical factors in front of all the terms. We shall, therefore, in our
derivations, not worry about the precise value of numerical factors. They can be
obtained only by a very much more sophisticated mathematical treatment.

Before we consider what happens in nonequilibrium situations, we shall need
to look a little closer at what goes on in a gas in thermal equilibrium. We shall
need to know, for example, what the average time between successive collisions
of a molecule is.

Any molecule experiences a sequence of collisions with other molecules—in a
random way, of course. A particular molecule will, in a long period of time T ,
have a certain number, N , of hits. If we double the length of time, there will be
twice as many hits. So the number of collisions is proportional to the time T .
We would like to write it this way:

N = T/τ. (43.1)

We have written the constant of proportionality as 1/τ , where τ will have the
dimensions of a time. The constant τ is the average time between collisions.
Suppose, for example, that in an hour there are 60 collisions; then τ is one minute.
We would say that τ (one minute) is the average time between the collisions.

We may often wish to ask the following question: “What is the chance that a
molecule will experience a collision during the next small interval of time dt?”
The answer, we may intuitively understand, is dt/τ . But let us try to make a
more convincing argument. Suppose that there were a very large number N of
molecules. How many will have collisions in the next interval of time dt? If there
is equilibrium, nothing is changing on the average with time. So N molecules
waiting the time dt will have the same number of collisions as one molecule
waiting for the time N dt. That number we know is N dt/τ . So the number of
hits of N molecules is N dt/τ in a time dt, and the chance, or probability, of a
hit for any one molecule is just 1/N as large, or (1/N)(N dt/τ) = dt/τ , as we
guessed above. That is to say, the fraction of the molecules which will suffer a
collision in the time dt is dt/τ . To take an example, if τ is one minute, then in
one second the fraction of particles which will suffer collisions is 1/60. What this
means, of course, is that 1/60 of the molecules happen to be close enough to
what they are going to hit next that their collisions will occur in the next second.

When we say that τ , the mean time between collisions, is one minute, we
do not mean that all the collisions will occur at times separated by exactly one
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minute. A particular particle does not have a collision, wait one minute, and then
have another collision. The times between successive collisions are quite variable.
We will not need it for our later work here, but we may make a small diversion
to answer the question: “What are the times between collisions?” We know that
for the case above, the average time is one minute, but we might like to know,
for example, what is the chance that we get no collision for two minutes?

We shall find the answer to the general question: “What is the probability
that a molecule will go for a time t without having a collision?” At some arbitrary
instant—that we call t = 0—we begin to watch a particular molecule. What is
the chance that it gets by until t without colliding with another molecule? To
compute the probability, we observe what is happening to all N0 molecules in a
container. After we have waited a time t, some of them will have had collisions.
We let N(t) be the number that have not had collisions up to the time t. N(t)
is, of course, less than N0. We can find N(t) because we know how it changes
with time. If we know that N(t) molecules have got by until t, then N(t+ dt),
the number which get by until t+ dt, is less than N(t) by the number that have
collisions in dt. The number that collide in dt we have written above in terms of
the mean time τ as dN = N(t) dt/τ . We have the equation

N(t+ dt) = N(t)−N(t) dt
τ
. (43.2)

The quantity on the left-hand side, N(t+ dt), can be written, according to the
definitions of calculus, as N(t) + (dN/dt) dt. Making this substitution, Eq. (43.2)
yields

dN(t)
dt

= −N(t)
τ

. (43.3)

The number that are being lost in the interval dt is proportional to the number
that are present, and inversely proportional to the mean life τ . Equation (43.3)
is easily integrated if we rewrite it as

dN(t)
N(t) = −dt

τ
. (43.4)

Each side is a perfect differential, so the integral is

lnN(t) = −t/τ + (a constant), (43.5)
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which says the same thing as

N(t) = (constant)e−t/τ . (43.6)

We know that the constant must be just N0, the total number of molecules
present, since all of them start at t = 0 to wait for their “next” collision. We can
write our result as

N(t) = N0e
−t/τ . (43.7)

If we wish the probability of no collision, P (t), we can get it by dividing N(t)
by N0, so

P (t) = e−t/τ . (43.8)

Our result is: the probability that a particular molecule survives a time t without
a collision is e−t/τ , where τ is the mean time between collisions. The probability
starts out at 1 (or certainty) for t = 0, and gets less as t gets bigger and
bigger. The probability that the molecule avoids a collision for a time equal
to τ is e−1 ≈ 0.37. The chance is less than one-half that it will have a greater
than average time between collisions. That is all right, because there are enough
molecules which go collision-free for times much longer than the mean time before
colliding, so that the average time can still be τ .

We originally defined τ as the average time between collisions. The result
we have obtained in Eq. (43.7) also says that the mean time from an arbitrary
starting instant to the next collision is also τ . We can demonstrate this somewhat
surprising fact in the following way. The number of molecules which experience
their next collision in the interval dt at the time t after an arbitrarily chosen
starting time is N(t) dt/τ . Their “time until the next collision” is, of course,
just t. The “average time until the next collision” is obtained in the usual way:

Average time until the next collision = 1
N0

∫ ∞
0

t
N(t) dt
τ

.

Using N(t) obtained in (43.7) and evaluating the integral, we find indeed that τ
is the average time from any instant until the next collision.

43-2 The mean free path

Another way of describing the molecular collisions is to talk not about the time
between collisions, but about how far the particle moves between collisions. If
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we say that the average time between collisions is τ , and that the molecules have
a mean velocity v, we can expect that the average distance between collisions,
which we shall call l, is just the product of τ and v. This distance between
collisions is usually called the mean free path:

Mean free path l = τv. (43.9)

In this chapter we shall be a little careless about what kind of average we
mean in any particular case. The various possible averages—the mean, the root-
mean-square, etc.—are all nearly equal and differ by factors which are near to
one. Since a detailed analysis is required to obtain the correct numerical factors
anyway, we need not worry about which average is required at any particular
point. We may also warn the reader that the algebraic symbols we are using for
some of the physical quantities (e.g., l for the mean free path) do not follow a
generally accepted convention, mainly because there is no general agreement.

Just as the chance that a molecule will have a collision in a short time dt
is equal to dt/τ , the chance that it will have a collision in going a distance dx
is dx/l. Following the same line of argument used above, the reader can show
that the probability that a molecule will go at least the distance x before having
its next collision is e−x/l.

The average distance a molecule goes before colliding with another molecule—
the mean free path l—will depend on how many molecules there are around and
on the “size” of the molecules, i.e., how big a target they represent. The effective
“size” of a target in a collision we usually describe by a “collision cross section,”
the same idea that is used in nuclear physics, or in light-scattering problems.

Consider a moving particle which travels a distance dx through a gas which
has n0 scatterers (molecules) per unit volume (Fig. 43-1). If we look at each unit

dx

Total number of
molecules is n0 dx

Collision area is σc

unit area

Total area covered is σcn0 dx

Fig. 43-1. Collision cross section.

43-5



of area perpendicular to the direction of motion of our selected particle, we will
find there n0 dx molecules. If each one presents an effective collision area or, as
it is usually called, “collision cross section,” σc, then the total area covered by
the scatterers is σcn0 dx.

By “collision cross section” we mean the area within which the center of our
particle must be located if it is to collide with a particular molecule. If molecules
were little spheres (a classical picture) we would expect that σc = π(r1 + r2)2,
where r1 and r2 are the radii of the two colliding objects. The chance that
our particle will have a collision is the ratio of the area covered by scattering
molecules to the total area, which we have taken to be one. So the probability of
a collision in going a distance dx is just σcn0 dx:

Chance of a collision in dx = σcn0 dx. (43.10)

We have seen above that the chance of a collision in dx can also be written
in terms of the mean free path l as dx/l. Comparing this with (43.10), we can
relate the mean free path to the collision cross section:

1
l

= σcn0, (43.11)

which is easier to remember if we write it as

σcn0l = 1. (43.12)

This formula can be thought of as saying that there should be one collision, on
the average, when the particle goes through a distance l in which the scattering
molecules could just cover the total area. In a cylindrical volume of length l
and a base of unit area, there are n0l scatterers; if each one has an area σc the
total area covered is n0lσc, which is just one unit of area. The whole area is
not covered, of course, because some molecules are partly hidden behind others.
That is why some molecules go farther than l before having a collision. It is
only on the average that the molecules have a collision by the time they go the
distance l. From measurements of the mean free path l we can determine the
scattering cross section σc, and compare the result with calculations based on a
detailed theory of atomic structure. But that is a different subject! So we return
to the problem of nonequilibrium states.
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43-3 The drift speed

We want to describe what happens to a molecule, or several molecules, which
are different in some way from the large majority of the molecules in a gas.
We shall refer to the “majority” molecules as the “background” molecules, and
we shall call the molecules which are different from the background molecules
“special” molecules or, for short, the S-molecules. A molecule could be special
for any number of reasons: It might be heavier than the background molecules.
It might be a different chemical. It might have an electric charge—i.e., be an
ion in a background of uncharged molecules. Because of their different masses
or charges the S-molecules may have forces on them which are different from
the forces on the background molecules. By considering what happens to these
S-molecules we can understand the basic effects which come into play in a similar
way in many different phenomena. To list a few: the diffusion of gases, electric
currents in batteries, sedimentation, centrifugal separation, etc.

We begin by concentrating on the basic process: an S-molecule in a back-
ground gas is acted on by some specific force F (which might be, e.g., gravitational
or electrical) and in addition by the not-so-specific forces due to collisions with
the background molecules. We would like to describe the general behavior of the
S-molecule. What happens to it, in detail, is that it darts around hither and yon
as it collides over and over again with other molecules. But if we watch it carefully
we see that it does make some net progress in the direction of the force F . We
say that there is a drift, superposed on its random motion. We would like to
know what the speed of its drift is—its drift velocity—due to the force F .

If we start to observe an S-molecule at some instant we may expect that it is
somewhere between two collisions. In addition to the velocity it was left with
after its last collision it is picking up some velocity component due to the force F .
In a short time (on the average, in a time τ) it will experience a collision and
start out on a new piece of its trajectory. It will have a new starting velocity,
but the same acceleration from F .

To keep things simple for the moment, we shall suppose that after each
collision our S-molecule gets a completely “fresh” start. That is, that it keeps no
remembrance of its past acceleration by F . This might be a reasonable assumption
if our S-molecule were much lighter than the background molecules, but it is
certainly not valid in general. We shall discuss later an improved assumption.

For the moment, then, our assumption is that the S-molecule leaves each
collision with a velocity which may be in any direction with equal likelihood. The
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starting velocity will take it equally in all directions and will not contribute to
any net motion, so we shall not worry further about its initial velocity after a
collision. In addition to its random motion, each S-molecule will have, at any
moment, an additional velocity in the direction of the force F , which it has picked
up since its last collision. What is the average value of this part of the velocity?
It is just the acceleration F /m (where m is the mass of the S-molecule) times
the average time since the last collision. Now the average time since the last
collision must be the same as the average time until the next collision, which
we have called τ , above. The average velocity from F , of course, is just what is
called the drift velocity, so we have the relation

vdrift = Fτ

m
. (43.13)

This basic relation is the heart of our subject. There may be some complication
in determining what τ is, but the basic process is defined by Eq. (43.13).

You will notice that the drift velocity is proportional to the force. There
is, unfortunately, no generally used name for the constant of proportionality.
Different names have been used for each different kind of force. If in an electrical
problem the force is written as the charge times the electric field, F = qE, then
the constant of proportionality between the velocity and the electric field E is
usually called the “mobility.” In spite of the possibility of some confusion, we
shall use the term mobility for the ratio of the drift velocity to the force for any
force. We write

vdrift = µF. (43.14)
in general, and we shall call µ the mobility. We have from Eq. (43.13) that

µ = τ/m. (43.15)

The mobility is proportional to the mean time between collisions (there are fewer
collisions to slow it down) and inversely proportional to the mass (more inertia
means less speed picked up between collisions).

To get the correct numerical coefficient in Eq. (43.13), which is correct as
given, takes some care. Without intending to confuse, we should still point out
that the arguments have a subtlety which can be appreciated only by a careful
and detailed study. To illustrate that there are difficulties, in spite of appearances,
we shall make over again the argument which led to Eq. (43.13) in a reasonable
but erroneous way (and the way one will find in many textbooks!).
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We might have said: The mean time between collisions is τ . After a collision
the particle starts out with a random velocity, but it picks up an additional
velocity between collisions, which is equal to the acceleration times the time.
Since it takes the time τ to arrive at the next collision it gets there with the
velocity (F/m)τ . At the beginning of the collision it had zero velocity. So between
the two collisions it has, on the average, a velocity one-half of the final velocity, so
the mean drift velocity is 1

2Fτ/m. (Wrong!) This result is wrong and the result
in Eq. (43.13) is right, although the arguments may sound equally satisfactory.
The reason the second result is wrong is somewhat subtle, and has to do with the
following: The argument is made as though all collisions were separated by the
mean time τ . The fact is that some times are shorter and others are longer than
the mean. Short times occur more often but make less contribution to the drift
velocity because they have less chance “to really get going.” If one takes proper
account of the distribution of free times between collisions, one can show that
there should not be the factor 1

2 that was obtained from the second argument.
The error was made in trying to relate by a simple argument the average final
velocity to the average velocity itself. This relationship is not simple, so it is best
to concentrate on what is wanted: the average velocity itself. The first argument
we gave determines the average velocity directly—and correctly! But we can
perhaps see now why we shall not in general try to get all of the correct numerical
coefficients in our elementary derivations!

We return now to our simplifying assumption that each collision knocks out
all memory of the past motion—that a fresh start is made after each collision.
Suppose our S-molecule is a heavy object in a background of lighter molecules.
Then our S-molecule will not lose its “forward” momentum in each collision.
It would take several collisions before its motion was “randomized” again. We
should assume, instead, that at each collision—in each time τ on the average—it
loses a certain fraction of its momentum. We shall not work out the details, but
just state that the result is equivalent to replacing τ , the average collision time,
by a new—and longer—τ which corresponds to the average “forgetting time,” i.e.,
the average time to forget its forward momentum. With such an interpretation
of τ we can use our formula (43.15) for situations which are not quite as simple
as we first assumed.

43-4 Ionic conductivity
We now apply our results to a special case. Suppose we have a gas in a vessel

in which there are also some ions—atoms or molecules with a net electric charge.
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We show the situation schematically in Fig. 43-2. If two opposite walls of the
container are metallic plates, we can connect them to the terminals of a battery
and thereby produce an electric field in the gas. The electric field will result in a
force on the ions, so they will begin to drift toward one or the other of the plates.
An electric current will be induced, and the gas with its ions will behave like a
resistor. By computing the ion flow from the drift velocity we can compute the
resistance. We ask, specifically: How does the flow of electric current depend on
the voltage difference V that we apply across the two plates?

b

metal

Area A

+ −

E

Gas with ni ions
per unit volume

Insulator

To battery with voltage V

Fig. 43-2. Electric current from an ionized gas.

We consider the case that our container is a rectangular box of length b and
cross-sectional area A (Fig. 43-2). If the potential difference, or voltage, from
one plate to the other is V , the electric field E between the plates is V/b. (The
electric potential is the work done in carrying a unit charge from one plate to
the other. The force on a unit charge is E. If E is the same everywhere between
the plates, which is a good enough approximation for now, the work done on a
unit charge is just Eb, so V = Eb.) The special force on an ion of the gas is qE,
where q is the charge on the ion. The drift velocity of the ion is then µ times
this force, or

vdrift = µF = µqE = µq
V

b
. (43.16)

An electric current I is the flow of charge in a unit time. The electric current
to one of the plates is given by the total charge of the ions which arrive at the
plate in a unit of time. If the ions drift toward the plate with the velocity vdrift,
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then those which are within a distance (vdrift · T ) will arrive at the plate in the
time T . If there are ni ions per unit volume, the number which reach the plate
in the time T is (ni ·A · vdrift · T ). Each ion carries the charge q, so we have that

Charge collected in T = qniAvdriftT. (43.17)

The current I is the charge collected in T divided by T , so

I = qniAvdrift. (43.18)

Substituting vdrift from (43.16), we have

I = µq2ni
A

b
V. (43.19)

We find that the current is proportional to the voltage, which is just the form of
Ohm’s law, and the resistance R is the inverse of the proportionality constant:

1
R

= µq2ni
A

b
. (43.20)

We have a relation between the resistance and the molecular properties ni, q,
and µ, which depends in turn on m and τ . If we know ni and q from atomic
measurements, a measurement of R could be used to determine µ, and from µ
also τ .

43-5 Molecular diffusion

We turn now to a different kind of problem, and a different kind of analysis:
the theory of diffusion. Suppose that we have a container of gas in thermal
equilibrium, and that we introduce a small amount of a different kind of gas
at some place in the container. We shall call the original gas the “background”
gas and the new one the “special” gas. The special gas will start to spread out
through the whole container, but it will spread slowly because of the presence
of the background gas. This slow spreading-out process is called diffusion. The
diffusion is controlled mainly by the molecules of the special gas getting knocked
about by the molecules of the background gas. After a large number of collisions,
the special molecules end up spread out more or less evenly throughout the
whole volume. We must be careful not to confuse diffusion of a gas with the
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gross transport that may occur due to convection currents. Most commonly, the
mixing of two gases occurs by a combination of convection and diffusion. We are
interested now only in the case that there are no “wind” currents. The gas is
spreading only by molecular motions, by diffusion. We wish to compute how fast
diffusion takes place.

We now compute the net flow of molecules of the “special” gas due to the
molecular motions. There will be a net flow only when there is some nonuniform
distribution of the molecules, otherwise all of the molecular motions would average
to give no net flow. Let us consider first the flow in the x-direction. To find the
flow, we consider an imaginary plane surface perpendicular to the x-axis and
count the number of special molecules that cross this plane. To obtain the net
flow, we must count as positive those molecules which cross in the direction of
positive x and subtract from this number the number which cross in the negative
x-direction. As we have seen many times, the number which cross a surface area
in a time ∆T is given by the number which start the interval ∆T in a volume
which extends the distance v∆T from the plane. (Note that v, here, is the actual
molecular velocity, not the drift velocity.)

We shall simplify our algebra by giving our surface one unit of area. Then the
number of special molecules which pass from left to right (taking the +x-direction
to the right) is n−v∆T , where n− is the number of special molecules per unit
volume to the left (within a factor of 2 or so, but we are ignoring such factors!).
The number which cross from right to left is, similarly, n+v∆T , where n+ is the
number density of special molecules on the right-hand side of the plane. If we
call the molecular current J , by which we mean the net flow of molecules per
unit area per unit time, we have

J = n−v∆T − n+v∆T
∆T , (43.21)

or
J = (n− − n+)v. (43.22)

What shall we use for n− and n+? When we say “the density on the left,”
how far to the left do we mean? We should choose the density at the place from
which the molecules started their “flight,” because the number which start such
trips is determined by the number present at that place. So by n− we should
mean the density a distance to the left equal to the mean free path l, and by n+,
the density at the distance l to the right of our imaginary surface.

43-12



It is convenient to consider that the distribution of our special molecules
in space is described by a continuous function of x, y, and z which we shall
call na. By na(x, y, z) we mean the number density of special molecules in a
small volume element centered on (x, y, z). In terms of na we can express the
difference (n+ − n−) as

(n+ − n−) = dna
dx

∆x = dna
dx
· 2l. (43.23)

Substituting this result in Eq. (43.22) and neglecting the factor of 2, we get

Jx = −lv dna
dx

. (43.24)

We have found that the flow of special molecules is proportional to the derivative
of the density, or to what is sometimes called the “gradient” of the density.

It is clear that we have made several rough approximations. Besides various
factors of two we have left out, we have used v where we should have used vx, and
we have assumed that n+ and n− refer to places at the perpendicular distance l
from our surface, whereas for those molecules which do not travel perpendicular
to the surface element, l should correspond to the slant distance from the surface.
All of these refinements can be made; the result of a more careful analysis shows
that the right-hand side of Eq. (43.24) should be multiplied by 1/3. So a better
answer is

Jx = − lv3
dna
dx

. (43.25)

Similar equations can be written for the currents in the y- and z-directions.
The current Jx and the density gradient dna/dx can be measured by macro-

scopic observations. Their experimentally determined ratio is called the “diffusion
coefficient,” D. That is,

Jx = −D dna
dx

. (43.26)

We have been able to show that for a gas we expect

D = 1
3 lv. (43.27)

So far in this chapter we have considered two distinct processes: mobility, the
drift of molecules due to “outside” forces; and diffusion, the spreading determined
only by the internal forces, the random collisions. There is, however, a relation
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between them, since they both depend basically on the thermal motions, and the
mean free path l appears in both calculations.

If, in Eq. (43.25), we substitute l = vτ and τ = µm, we have

Jx = − 1
3mv

2µ
dna
dx

. (43.28)

But mv2 depends only on the temperature. We recall that

1
2mv

2 = 3
2kT, (43.29)

so
Jx = −µkT dna

dx
. (43.30)

We find thatD, the diffusion coefficient, is just kT times µ, themobility coefficient:

D = µkT. (43.31)

And it turns out that the numerical coefficient in (43.31) is exactly right—no
extra factors have to be thrown in to adjust for our rough assumptions. We
can show, in fact, that (43.31) must always be correct—even in complicated
situations (for example, the case of a suspension in a liquid) where the details of
our simple calculations would not apply at all.

To show that (43.31) must be correct in general, we shall derive it in a different
way, using only our basic principles of statistical mechanics. Imagine a situation
in which there is a gradient of “special” molecules, and we have a diffusion current
proportional to the density gradient, according to Eq. (43.26). We now apply
a force field in the x-direction, so that each special molecule feels the force F .
According to the definition of the mobility µ there will be a drift velocity given
by

vdrift = µF. (43.32)

By our usual arguments, the drift current (the net number of molecules which
pass a unit of area in a unit of time) will be

Jdrift = navdrift, (43.33)
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or
Jdrift = naµF. (43.34)

We now adjust the force F so that the drift current due to F just balances
the diffusion, so that there is no net flow of our special molecules. We have
Jx + Jdrift = 0, or

D
dna
dx

= naµF. (43.35)

Under the “balance” conditions we find a steady (with time) gradient of
density given by

dna
dx

= naµF

D
. (43.36)

But notice! We are describing an equilibrium condition, so our equilibrium
laws of statistical mechanics apply. According to these laws the probability of
finding a molecule at the coordinate x is proportional to e−U/kT , where U is the
potential energy. In terms of the number density na, this means that

na = n0e
−U/kT . (43.37)

If we differentiate (43.37) with respect to x, we find

dna
dx

= −n0e
−U/kT · 1

kT

dU

dx
, (43.38)

or
dna
dx

= − na
kT

dU

dx
. (43.39)

In our situation, since the force F is in the x-direction, the potential energy U is
just −Fx, and −dU/dx = F . Equation (43.39) then gives

dna
dx

= naF

kT
. (43.40)

[This is just exactly Eq. (40.2), from which we deduced e−U/kT in the first place,
so we have come in a circle]. Comparing (43.40) with (43.36), we get exactly
Eq. (43.31). We have shown that Eq. (43.31), which gives the diffusion current
in terms of the mobility, has the correct coefficient and is very generally true.
Mobility and diffusion are intimately connected. This relation was first deduced
by Einstein.
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43-6 Thermal conductivity

The methods of the kinetic theory that we have been using above can be
used also to compute the thermal conductivity of a gas. If the gas at the top of a
container is hotter than the gas at the bottom, heat will flow from the top to the
bottom. (We think of the top being hotter because otherwise convection currents
would be set up and the problem would no longer be one of heat conduction.)
The transfer of heat from the hotter gas to the colder gas is by the diffusion
of the “hot” molecules—those with more energy—downward and the diffusion
of the “cold” molecules upward. To compute the flow of thermal energy we
can ask about the energy carried downward across an element of area by the
downward-moving molecules, and about the energy carried upward across the
surface by the upward-moving molecules. The difference will give us the net
downward flow of energy.

The thermal conductivity κ is defined as the ratio of the rate at which thermal
energy is carried across a unit surface area, to the temperature gradient:

1
A

dQ

dt
= −κ dT

dz
. (43.41)

Since the details of the calculations are quite similar to those we have done above
in considering molecular diffusion, we shall leave it as an exercise for the reader
to show that

κ = knlv

γ − 1 , (43.42)

where kT/(γ − 1) is the average energy of a molecule at the temperature T .
If we use our relation nlσc = 1, the heat conductivity can be written as

κ = 1
γ − 1

kv

σc
. (43.43)

We have a rather surprising result. We know that the average velocity of gas
molecules depends on the temperature but not on the density. We expect σc
to depend only on the size of the molecules. So our simple result says that the
thermal conductivity κ (and therefore the rate of flow of heat in any particular
circumstance) is independent of the density of the gas! The change in the number
of “carriers” of energy with a change in density is just compensated by the larger
distance the “carriers” can go between collisions.
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One may ask: “Is the heat flow independent of the gas density in the limit
as the density goes to zero? When there is no gas at all?” Certainly not! The
formula (43.43) was derived, as were all the others in this chapter, under the
assumption that the mean free path between collisions is much smaller than any
of the dimensions of the container. Whenever the gas density is so low that a
molecule has a fair chance of crossing from one wall of its container to the other
without having a collision, none of the calculations of this chapter apply. We
must in such cases go back to kinetic theory and calculate again the details of
what will occur.
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44

The Laws of Thermodynamics

44-1 Heat engines; the first law

So far we have been discussing the properties of matter from the atomic
point of view, trying to understand roughly what will happen if we suppose that
things are made of atoms obeying certain laws. However, there are a number of
relationships among the properties of substances which can be worked out without
consideration of the detailed structure of the materials. The determination of the
relationships among the various properties of materials, without knowing their
internal structure, is the subject of thermodynamics. Historically, thermodynamics
was developed before an understanding of the internal structure of matter was
achieved.

To give an example: we know from the kinetic theory that the pressure of a gas
is caused by molecular bombardment, and we know that if we heat a gas, so that
the bombardment increases, the pressure must increase. Conversely, if the piston
in a container of the gas is moved inward against the force of bombardment, the
energy of the molecules bombarding the piston will increase, and consequently the
temperature will increase. So, on the one hand, if we increase the temperature at
a given volume, we increase the pressure. On the other hand, if we compress the
gas, we will find that the temperature will rise. From the kinetic theory, one can
derive a quantitative relationship between these two effects, but instinctively one
might guess that they are related in some necessary fashion which is independent
of the details of the collisions.

Let us consider another example. Many people are familiar with this interesting
property of rubber: If we take a rubber band and pull it, it gets warm. If one
puts it between his lips, for example, and pulls it out, he can feel a distinct
warming, and this warming is reversible in the sense that if he relaxes the rubber
band quickly while it is between his lips, it is distinctly cooled. That means that
when we stretch a rubber band it heats, and when we release the tension of the
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Fig. 44-1. The heated rubber band.

band it cools. Now our instincts might suggest that if we heated a band, it might
pull: that the fact that pulling a band heats it might imply that heating a band
should cause it to contract. And, in fact, if we apply a gas flame to a rubber
band holding a weight, we will see that the band contracts abruptly (Fig. 44-1).
So it is true that when we heat a rubber band it pulls, and this fact is definitely
related to the fact that when we release the tension of it, it cools.

The internal machinery of rubber that causes these effects is quite complicated.
We will describe it from a molecular point of view to some extent, although our
main purpose in this chapter is to understand the relationship of these effects
independently of the molecular model. Nevertheless, we can show from the
molecular model that the effects are closely related. One way to understand the
behavior of rubber is to recognize that this substance consists of an enormous
tangle of long chains of molecules, a kind of “molecular spaghetti,” with one extra
complication: between the chains there are cross-links—like spaghetti that is
sometimes welded together where it crosses another piece of spaghetti—a grand
tangle. When we pull out such a tangle, some of the chains tend to line up along
the direction of the pull. At the same time, the chains are in thermal motion, so
they hit each other continually. It follows that such a chain, if stretched, would
not by itself remain stretched, because it would be hit from the sides by the other
chains and other molecules, and would tend to kink up again. So the real reason
why a rubber band tends to contract is this: when one pulls it out, the chains are
lengthwise, and the thermal agitations of the molecules on the sides of the chains
tend to kink the chains up, and make them shorten. One can then appreciate
that if the chains are held stretched and the temperature is increased, so that
the vigor of the bombardment on the sides of the chains is also increased, the
chains tend to pull in, and they are able to pull a stronger weight when heated.
If, after being stretched for a time, a rubber band is allowed to relax, each chain
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becomes soft, and the molecules striking it lose energy as they pound into the
relaxing chain. So the temperature falls.

We have seen how these two processes, contraction when heated and cooling
during relaxation, can be related by the kinetic theory, but it would be a tremen-
dous challenge to determine from the theory the precise relationship between the
two. We would have to know how many collisions there were each second and
what the chains look like, and we would have to take account of all kinds of other
complications. The detailed mechanism is so complex that we cannot, by kinetic
theory, really determine exactly what happens; still, a definite relation between
the two effects we observe can be worked out without knowing anything about
the internal machinery!

The whole subject of thermodynamics depends essentially upon the following
kind of consideration: because a rubber band is “stronger” at higher temperatures
than it is at lower temperatures, it ought to be possible to lift weights, and to
move them around, and thus to do work with heat. In fact, we have already seen
experimentally that a heated rubber band can lift a weight. The study of the way
that one does work with heat is the beginning of the science of thermodynamics.
Can we make an engine which uses the heating effect on a rubber band to do work?
One can make a silly looking engine that does just this. It consists of a bicycle
wheel in which all the spokes are rubber bands (Fig. 44-2). If one heats the rubber
bands on one side of the wheel with a pair of heat lamps, they become “stronger”
than the rubber bands on the other side. The center of gravity of the wheel will

Fig. 44-2. The rubber band heat engine.

44-3



be pulled to one side, away from the bearing, so that the wheel turns. As it turns,
cool rubber bands move toward the heat, and the heated bands move away from
the heat and cool, so that the wheel turns slowly so long as the heat is applied. The
efficiency of this engine is extremely low. Four hundred watts of power pour into
the two lamps, but it is just possible to lift a fly with such an engine! An interesting
question, however, is whether we can get heat to do the work in more efficient ways.

In fact, the science of thermodynamics began with an analysis, by the great
engineer Sadi Carnot, of the problem of how to build the best and most efficient
engine, and this constitutes one of the few famous cases in which engineering
has contributed fundamentally to physical theory. Another example that comes
to mind is the more recent analysis of information theory by Claude Shannon.
These two analyses, incidentally, turn out to be closely related.

Now the way a steam engine ordinarily operates is that heat from a fire
boils some water, and the steam so formed expands and pushes on a piston
which makes a wheel go around. So the steam pushes the piston—what then?
One has to finish the job: a stupid way to complete the cycle would be to let
the steam escape into the air, for then one has to keep supplying water. It
is cheaper—more efficient—to let the steam go into another box, where it is
condensed by cool water, and then pump the water back into the boiler, so that
it circulates continuously. Heat is thus supplied to the engine and converted into
work. Now would it be better to use alcohol? What property should a substance
have so that it makes the best possible engine? That was the question to which
Carnot addressed himself, and one of the by-products was the discovery of the
type of relationship that we have just explained above.

The results of thermodynamics are all contained implicitly in certain appar-
ently simple statements called the laws of thermodynamics. At the time when
Carnot lived, the first law of thermodynamics, the conservation of energy, was
not known. Carnot’s arguments were so carefully drawn, however, that they are
valid even though the first law was not known in his time! Some time afterwards,
Clapeyron made a simpler derivation that could be understood more easily than
Carnot’s very subtle reasoning. But it turned out that Clapeyron assumed, not
the conservation of energy in general, but that heat was conserved according to
the caloric theory, which was later shown to be false. So it has often been said
that Carnot’s logic was wrong. But his logic was quite correct. Only Clapeyron’s
simplified version, that everybody read, was incorrect.

The so-called second law of thermodynamics was thus discovered by Carnot
before the first law! It would be interesting to give Carnot’s argument that did
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not use the first law, but we shall not do so because we want to learn physics,
not history. We shall use the first law from the start, in spite of the fact that a
great deal can be done without it.

Let us begin by stating the first law, the conservation of energy: if one has a
system and puts heat into it, and does work on it, then its energy is increased by
the heat put in and the work done. We can write this as follows: The heat Q
put into the system, plus the work W done on the system, is the increase in the
energy U of the system; the latter energy is sometimes called the internal energy:

Change in U = Q+W. (44.1)

The change in U can be represented as adding a little heat ∆Q and adding a
little work ∆W :

∆U = ∆Q+ ∆W, (44.2)

which is a differential form of the same law. We know that very well, from an
earlier chapter.

44-2 The second law

Now, what about the second law of thermodynamics? We know that if we
do work against friction, say, the work lost to us is equal to the heat produced.
If we do work in a room at temperature T , and we do the work slowly enough,
the room temperature does not change much, and we have converted work into
heat at a given temperature. What about the reverse possibility? Is it possible
to convert the heat back into work at a given temperature? The second law of
thermodynamics asserts that it is not. It would be very convenient to be able to
convert heat into work merely by reversing a process like friction. If we consider
only the conservation of energy, we might think that heat energy, such as that in
the vibrational motions of molecules, might provide a goodly supply of useful
energy. But Carnot assumed that it is impossible to extract the energy of heat
at a single temperature. In other words, if the whole world were at the same
temperature, one could not convert any of its heat energy into work: while the
process of making work go into heat can take place at a given temperature, one
cannot reverse it to get the work back again. Specifically, Carnot assumed that
heat cannot be taken in at a certain temperature and converted into work with
no other change in the system or the surroundings.
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That last phrase is very important. Suppose we have a can of compressed
air at a certain temperature, and we let the air expand. It can do work; it can
make hammers go, for example. It cools off a little in the expansion, but if we
had a big sea, like the ocean, at a given temperature—a heat reservoir—we could
warm it up again. So we have taken the heat out of the sea, and we have done
work with the compressed air. But Carnot was not wrong, because we did not
leave everything as it was. If we recompress the air that we let expand, we will
find we are doing extra work, and when we are finished we will discover that we
not only got no work out of the system at temperature T , but we actually put
some in. We must talk only about situations in which the net result of the whole
process is to take heat away and convert it into work, just as the net result of the
process of doing work against friction is to take work and convert it into heat. If
we move in a circle, we can bring the system back precisely to its starting point,
with the net result that we did work against friction and produced heat. Can we
reverse the process? Turn a switch, so that everything goes backwards, so the
friction does work against us, and cools the sea? According to Carnot: no! So
let us suppose that this is impossible.

If it were possible it would mean, among other things, that we could take
heat out of a cold body and put it into a hot body at no cost, as it were. Now
we know it is natural that a hot thing can warm up a cool thing; if we simply
put a hot body and a cold one together, and change nothing else, our experience
assures us that it is not going to happen that the hot one gets hotter, and the
cold one gets colder! But if we could obtain work by extracting the heat out of
the ocean, say, or from anything else at a single temperature, then that work
could be converted back into heat by friction at some other temperature. For
instance, the other arm of a working machine could be rubbing something that is
already hot. The net result would be to take heat from a “cold” body, the ocean,
and to put it into a hot body. Now, the hypothesis of Carnot, the second law
of thermodynamics, is sometimes stated as follows: heat cannot, of itself, flow
from a cold to a hot object. But, as we have just seen, these two statements are
equivalent: first, that one cannot devise a process whose only result is to convert
heat to work at a single temperature, and second, that one cannot make heat
flow by itself from a cold to a hot place. We shall mostly use the first form.

Carnot’s analysis of heat engines is quite similar to the argument that we
gave about weight-lifting engines in our discussion of the conservation of energy
in Chapter 4. In fact, that argument was patterned after Carnot’s argument
about heat engines, and so the present treatment will sound very much the same.
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Fig. 44-3. Heat engine.

Suppose we build a heat engine that has a “boiler” somewhere at a temper-
ature T1. A certain heat Q1 is taken from the boiler, the steam engine does
some work W , and it then delivers some heat Q2 into a “condenser” at another
temperature T2 (Fig. 44-3). Carnot did not say how much heat, because he did
not know the first law, and he did not use the law that Q2 was equal to Q1
because he did not believe it. Although everybody thought that, according to
the caloric theory, the heats Q1 and Q2 would have to be the same, Carnot did
not say they were the same—that is part of the cleverness of his argument. If we
do use the first law, we find that the heat delivered, Q2, is the heat Q1 that was
put in minus the work W that was done:

Q2 = Q1 −W. (44.3)

(If we have some kind of cyclic process where water is pumped back into the boiler
after it is condensed, we will say that we have heat Q1 absorbed and work W
done, during each cycle, for a certain amount of water that goes around the
cycle.)

Now we shall build another engine, and see if we cannot get more work
from the same amount of heat being delivered at the temperature T1, with the
condenser still at the temperature T2. We shall use the same amount of heat Q1
from the boiler, and we shall try to get more work than we did out of the steam
engine, perhaps by using another fluid, such as alcohol.

44-3 Reversible engines

Now we must analyze our engines. One thing is clear: we will lose something
if the engines contain devices in which there is friction. The best engine will be
a frictionless engine. We assume, then, the same idealization that we did when
we studied the conservation of energy; that is, a perfectly frictionless engine.

We must also consider the analog of frictionless motion, “frictionless” heat
transfer. If we put a hot object at a high temperature against a cold object, so
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Fig. 44-4. Reversible heat transfer.

that the heat flows, then it is not possible to make that heat flow in a reverse
direction by a very small change in the temperature of either object. But when
we have a practically frictionless machine, if we push it with a little force one
way, it goes that way, and if we push it with a little force the other way, it goes
the other way. We need to find the analog of frictionless motion: heat transfer
whose direction we can reverse with only a tiny change. If the difference in
temperature is finite, that is impossible, but if one makes sure that heat flows
always between two things at essentially the same temperature, with just an
infinitesimal difference to make it flow in the desired direction, the flow is said to
be reversible (Fig. 44-4). If we heat the object on the left a little, heat will flow to
the right; if we cool it a little, heat will flow to the left. So we find that the ideal
engine is a so-called reversible engine, in which every process is reversible in the
sense that, by minor changes, infinitesimal changes, we can make the engine go
in the opposite direction. That means that nowhere in the machine must there
be any appreciable friction, and nowhere in the machine must there be any place
where the heat of the reservoirs, or the flame of the boiler, is in direct contact
with something definitely cooler or warmer.

Let us now consider an idealized engine in which all the processes are reversible.
To show that such a thing is possible in principle, we will give an example of an
engine cycle which may or may not be practical, but which is at least reversible,
in the sense of Carnot’s idea. Suppose that we have a gas in a cylinder equipped
with a frictionless piston. The gas is not necessarily a perfect gas. The fluid does
not even have to be a gas, but to be specific let us say we do have a perfect gas.
Also, suppose that we have two heat pads, T1 and T2—great big things that have
definite temperatures, T1 and T2. We will suppose in this case that T1 is higher
than T2. Let us first heat the gas and at the same time expand it, while it is
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Step (1) Isothermal expansion at T1, absorb heat Q1

Step (2) Adiabatic expansion, temperature falls from T1 to T2

Step (3) Isothermal compression at T2, deliver heat Q2

Step (4) Adiabatic compression, temperature rises from T2 to T1

Q1

T1

T1

T1

T1

T1ωT2

T2ωT1

Q2

T2

T2

T2

T2

Fig. 44-5. Steps in Carnot cycle.

in contact with the heat pad at T1. As we do this, pulling the piston out very
slowly as the heat flows into the gas, we will make sure that the temperature
of the gas never gets very far from T1. If we pull the piston out too fast, the
temperature of the gas will fall too much below T1 and then the process will not
be quite reversible, but if we pull it out slowly enough, the temperature of the gas
will never depart much from T1. On the other hand, if we push the piston back
slowly, the temperature would be only infinitesimally higher than T1, and the
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Fig. 44-6. The Carnot cycle.

heat would pour back. We see that such an isothermal (constant-temperature)
expansion, done slowly and gently enough, is a reversible process.

To understand what we are doing, we shall use a plot (Fig. 44-6) of the pressure
of the gas against its volume. As the gas expands, the pressure falls. The curve
marked (1) tells us how the pressure and volume change if the temperature is
kept fixed at the value T1. For an ideal gas this curve would be PV = NkT1.
During an isothermal expansion the pressure falls as the volume increases until
we stop at the point b. At the same time, a certain heat Q1 must flow into the gas
from the reservoir, for if the gas were expanded without being in contact with the
reservoir it would cool off, as we already know. Having completed the isothermal
expansion, stopping at the point b, let us take the cylinder away from the reservoir
and continue the expansion. This time we permit no heat to enter the cylinder.
Again we perform the expansion slowly, so there is no reason why we cannot
reverse it, and we again assume there is no friction. The gas continues to expand
and the temperature falls, since there is no longer any heat entering the cylinder.

We let the gas expand, following the curve marked (2), until the temperature
falls to T2, at the point marked c. This kind of expansion, made without adding
heat, is called an adiabatic expansion. For an ideal gas, we already know that
curve (2) has the form PV γ = constant, where γ is a constant greater than 1, so
that the adiabatic curve has a more negative slope than the isothermal curve.
The gas cylinder has now reached the temperature T2, so that if we put it on the
heat pad at temperature T2 there will be no irreversible changes. Now we slowly
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Fig. 44-7. Reversible engine A being driven backwards by engine B.

compress the gas while it is in contact with the reservoir at T2, following the
curve marked (3) (Fig. 44-5, Step 3). Because the cylinder is in contact with the
reservoir, the temperature does not rise, but heat Q2 flows from the cylinder into
the reservoir at the temperature T2. Having compressed the gas isothermally
along curve (3) to the point d, we remove the cylinder from the heat pad at
temperature T2 and compress it still further, without letting any heat flow out.
The temperature will rise, and the pressure will follow the curve marked (4). If
we carry out each step properly, we can return to the point a at temperature T1
where we started, and repeat the cycle.

We see that on this diagram we have carried the gas around a complete cycle,
and during one cycle we have put Q1 in at temperature T1, and have removed Q2
at temperature T2. Now the point is that this cycle is reversible, so that we could
represent all the steps the other way around. We could have gone backwards
instead of forwards: we could have started at point a, at temperature T1, expanded
along the curve (4), expanded further at the temperature T2, absorbing heat Q2,
and so on, going around the cycle backward. If we go around the cycle in one
direction, we must do work on the gas; if we go in the other direction, the gas
does work on us.

Incidentally, it is easy to find out what the total amount of work is, because
the work during any expansion is the pressure times the change in volume,

∫
P dV .

On this particular diagram, we have plotted P vertically and V horizontally. So
if we call the vertical distance y and the horizontal distance x, this is

∫
y dx—in

other words, the area under the curve. So the area under each of the numbered
curves is a measure of the work done by or on the gas in the corresponding step.
It is easy to see that the net work done is the shaded area of the picture.
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Now that we have given a single example of a reversible machine, we shall
suppose that other such engines are also possible. Let us assume that we have
a reversible engine A which takes Q1 at T1, does work W , and delivers some
heat at T2. Now let us assume we have any other engine B, made by man,
already designed or not yet invented, made of rubber bands, steam, or whatever,
reversible or not, which is designed so that it takes in the same amount of heat Q1
at T1, and rejects the heat at the lower temperature T2 (Fig. 44-7). Assume
that engine B does some work, W ′. Now we shall show that W ′ is not greater
than W—that no engine can do more work than a reversible one. Why? Suppose
that, indeed, W ′ were bigger than W . Then we could take the heat Q1 out of
the reservoir at T1, and with engine B we could do work W ′ and deliver some
heat to the reservoir at T2; we do not care how much. That done, we could save
some of the work W ′, which is supposed to be greater than W ; we could use
a part of it, W , and save the remainder, W ′ −W , for useful work. With the
work W we could run engine A backwards because it is a reversible engine. It will
absorb some heat from the reservoir at T2 and deliver Q1 back to the reservoir
at T1. After this double cycle, the net result would be that we would have put
everything back the way it was before, and we would have done some excess
work, namely W ′ −W , and all we would have done would be to extract energy
from the reservoir at T2! We were careful to restore the heat Q1 to the reservoir
at T1. So that reservoir can be small and “inside” our combined machine A+B,
whose net effect is therefore to extract a net heat W ′ −W from the reservoir
at T2 and convert it into work. But to obtain useful work from a reservoir at a
single temperature with no other changes is impossible according to Carnot’s
postulate; it cannot be done. Therefore no engine which absorbs a given amount
of heat from a higher temperature T1 and delivers it at the temperature T2 can
do more work than a reversible engine operating under the same temperature
conditions.

Now suppose that engine B is also reversible. Then, of course, not only must
W ′ be not greater than W , but now we can reverse the argument and show that
W cannot be greater than W ′. So, if both engines are reversible they must both
do the same amount of work, and we thus come to Carnot’s brilliant conclusion:
that if an engine is reversible, it makes no difference how it is designed, because
the amount of work one will obtain if the engine absorbs a given amount of
heat at temperature T1 and delivers heat at some other temperature T2 does not
depend on the design of the engine. It is a property of the world, not a property
of a particular engine.
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If we could find out what the law is that determines how much work we obtain
when we absorb the heat Q1 at T1 and deliver heat at T2, this quantity would
be a universal thing, independent of the substance. Of course if we knew the
properties of a particular substance, we could work it out and then say that all
other substances must give the same amount of work in a reversible engine. That
is the key idea, the clue by which we can find the relationship between how much,
for instance, a rubber band contracts when we heat it, and how much it cools
when we let it contract. Imagine that we put that rubber band in a reversible
machine, and that we make it go around a reversible cycle. The net result, the
total amount of work done, is that universal function, that great function which
is independent of substance. So we see that a substance’s properties must be
limited in a certain way; one cannot make up anything he wants, or he would be
able to invent a substance which he could use to produce more than the maximum
allowable work when he carried it around a reversible cycle. This principle, this
limitation, is the only real rule that comes out of the thermodynamics.

44-4 The efficiency of an ideal engine

Now we shall try to find the law which determines the work W as a function
of Q1, T1, and T2. It is clear that W is proportional to Q1, for if we consider two
reversible engines in parallel, both working together and both double engines,
the combination is also a reversible engine. If each one absorbed heat Q1, the
two together absorb 2Q1 and the work done is 2W , and so on. So it is not
unreasonable that W is proportional to Q1.

Now the next important step is to find this universal law. We can, and will,
do so by studying a reversible engine with the one particular substance whose
laws we know, a perfect gas. It is also possible to obtain the rule by a purely
logical argument, using no particular substance at all. This is one of the very
beautiful pieces of reasoning in physics and we are reluctant not to show it to you,
so for those who would like to see it we shall discuss it in just a moment. But
first we shall use the much less abstract and simpler method of direct calculation
for a perfect gas.

We need only obtain formulas for Q1 and Q2 (forW is just Q1−Q2), the heats
exchanged with the reservoirs during the isothermal expansion or contraction.
For example, how much heat Q1 is absorbed from the reservoir at temperature T1
during the isothermal expansion [marked (1) in Fig. 44-6] from point a, at
pressure pa, volume Va, temperature T1, to point b with pressure pb, volume Vb,
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and the same temperature T1? For a perfect gas each molecule has an energy that
depends only on the temperature, and since the temperature and the number of
molecules are the same at a and at b, the internal energy is the same. There is
no change in U ; all the work done by the gas,

W =
∫ b

a

p dV,

during the expansion is energy Q1 taken from the reservoir. During the expansion,
pV = NkT1, or

p = NkT1

V
or

Q1 =
∫ b

a

p dV =
∫ b

a

NkT1
dV

V
(44.4)

or
Q1 = NkT1 ln Vb

Va

is the heat taken from the reservoir at T1. In the same way, for the compression
at T2 [curve (3) of Fig. 44-6] the heat delivered to the reservoir at T2 is

Q2 = NkT2 ln Vc
Vd
. (44.5)

To finish our analysis we need only find a relation between Vc/Vd and Vb/Va.
This we do by noting that (2) is an adiabatic expansion from b to c, during which
pV γ is a constant. Since pV = NkT , we can write this as (pV )V γ−1 = const or,
in terms of T and V , as TV γ−1 = const, or

T1V
γ−1
b = T2V

γ−1
c . (44.6)

Likewise, since (4), the compression from d to a, is also adiabatic, we find

T1V
γ−1
a = T2V

γ−1
d . (44.6a)

If we divide this equation by the previous one, we find that Vb/Va must equal Vc/Vd,
so the ln’s in (44.4) and (44.5) are equal, and that

Q1

T1
= Q2

T2
. (44.7)
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Fig. 44-8. Engines 1 and 2 together are equivalent to engine 3.

This is the relation we were seeking. Although proved for a perfect gas engine,
we know it must be true for any reversible engine at all.

Now we shall see how this universal law could also be obtained by logical
argument, without knowing the properties of any specific substances, as follows.
Suppose that we have three engines and three temperatures, let us say T1, T2,
and T3. Let one engine absorb heat Q1 from the temperature T1 and do a certain
amount of work W13, and let it deliver heat Q3 to the temperature T3 (Fig. 44-8).
Let another engine run backwards between T2 and T3. Suppose that we let the
second engine be of such a size that it will absorb the same heat Q3, and deliver
the heat Q2. We will have to put a certain amount of work,W32, into it—negative
because the engine is running backwards. When the first machine goes through a
cycle, it absorbs heat Q1 and delivers Q3 at the temperature T3; then the second
machine takes the same heat Q3 out of the reservoir at the temperature T3 and
delivers it into the reservoir at temperature T2. Therefore the net result of the
two machines in tandem is to take the heat Q1 from T1, and deliver Q2 at T2.
The two machines are thus equivalent to a third one, which absorbs Q1 at T1,
does work W12, and delivers heat Q2 at T2, because W12 = W13 −W32, as one
can immediately show from the first law, as follows:

W13 −W32 = (Q1 −Q3)− (Q2 −Q3) = Q1 −Q2 = W12. (44.8)

We can now obtain the laws which relate the efficiencies of the engines, because
there clearly must be some kind of relationship between the efficiencies of engines
running between the temperatures T1 and T3, and between T2 and T3, and
between T1 and T2.
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We can make the argument very clear in the following way: We have just
seen that we can always relate the heat absorbed at T1 to the heat delivered
at T2 by finding the heat delivered at some other temperature T3. Therefore
we can get all the engines’ properties if we introduce a standard temperature,
analyzing everything with that standard temperature. In other words, if we
knew the efficiency of an engine running between a certain temperature T and a
certain arbitrary standard temperature, then we could work out the efficiency
for any other difference in temperature. Because we assume we are using only
reversible engines, we can work from the initial temperature down to the standard
temperature and back up to the final temperature again. We shall define the
standard temperature arbitrarily as one degree. We shall also adopt a special
symbol for the heat which is delivered at this standard temperature: we shall
call it QS . In other words, when a reversible engine absorbs the heat Q at
temperature T , it will deliver, at the unit temperature, a heat QS . If one engine,
absorbing heat Q1 at T1, delivers the heat QS at one degree, and if an engine
absorbing heat Q2 at temperature T2 will also deliver the same heat QS at one
degree, then it follows that an engine which absorbs heat Q1 at the temperature T1
will deliver heat Q2 if it runs between T1 and T2, as we have already proved by
considering engines running between three temperatures. So all we really have
to do is to find how much heat Q1 we need to put in at the temperature T1 in
order to deliver a certain amount of heat QS at the unit temperature. If we
discover that, we have everything. The heat Q, of course, is a function of the
temperature T . It is easy to see that the heat must increase as the temperature
increases, for we know that it takes work to run an engine backwards and deliver
heat at a higher temperature. It is also easy to see that the heat Q1 must be
proportional to QS . So the great law is something like this: for a given amount
of heat QS delivered at one degree from an engine running at temperature T
degrees, the heat Q absorbed must be that amount QS times some increasing
function of the temperature:

Q = QSf(T ). (44.9)

44-5 The thermodynamic temperature
At this stage we are not going to try to find the formula for the above increasing

function of the temperature in terms of our familiar mercury temperature scale,
but instead we shall define temperature by a new scale. At one time “the
temperature” was defined arbitrarily by dividing the expansion of water into
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even degrees of a certain size. But when one then measures temperature with a
mercury thermometer, one finds that the degrees are no longer even. But now
we can make a definition of temperature which is independent of any particular
substance. We can use that function f(T ), which does not depend on what device
we use, because the efficiency of these reversible engines is independent of their
working substances. Since the function we found is rising with temperature,
we will define the function itself as the temperature, measured in units of the
standard one-degree temperature, as follows:

Q = ST, (44.10)
where

QS = S · 1◦. (44.11)

This means that we can tell how hot an object is by finding out how much heat
is absorbed by a reversible engine working between the temperature of the object
and the unit temperature (Fig. 44-9). If seven times more heat is taken out
of a boiler than is delivered at a one-degree condenser, the temperature of the
boiler will be called seven degrees, and so forth. So, by measuring how much
heat is absorbed at different temperatures, we determine the temperature. The
temperature defined in this way is called the absolute thermodynamic temperature,
and it is independent of the substance. We shall use this definition exclusively
from now on.*

T

1◦K

Reversible
Engine

W = Q− S · 1◦

Q = ST

QS = S · 1◦

Fig. 44-9. Absolute thermodynamic temperature.

* We have previously defined our scale of temperature in a different way, namely by stating
that the mean kinetic energy of a molecule in a perfect gas is proportional to the temperature,
or that the perfect gas law says pV is proportional to T . Is this new definition equivalent? Yes,
since the final result (44.7) derived from the gas law is the same as that derived here. We shall
discuss this point again in the next chapter.
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Now we see that when we have two engines, one working between T1 and one
degree, the other working between T2 and one degree, delivering the same heat
at unit temperature, then the heats absorbed must be related by

Q1

T1
= S = Q2

T2
. (44.12)

But that means that if we have a single engine running between T1 and T2, then
the result of the whole analysis, the grand finale, is that Q1 is to T1 as Q2 is
to T2, if the engine absorbs energy Q1 at temperature T1 and delivers heat Q2 at
temperature T2. Whenever the engine is reversible, this relationship between the
heats must follow. That is all there is to it: that is the center of the universe of
thermodynamics.

If this is all there is to thermodynamics, why is it considered such a difficult
subject? In doing a problem involving a given mass of some substance, the
condition of the substance at any moment can be described by telling what its
temperature is and what its volume is. If we know the temperature and volume of
a substance, and that the pressure is some function of the temperature and volume,
then we know the internal energy. One could say, “I do not want to do it that way.
Tell me the temperature and the pressure, and I will tell you the volume. I can
think of the volume as a function of temperature and pressure, and the internal
energy as a function of temperature and pressure, and so on.” That is why thermo-
dynamics is hard, because everyone uses a different approach. If we could only sit
down once and decide on our variables, and stick to them, it would be fairly easy.

Now we start to make deductions. Just as F = ma is the center of the
universe in mechanics, and it goes on and on and on after that, in the same way
the principle just found is all there is to thermodynamics. But can one make
conclusions out of it?

We begin. To obtain our first conclusion, we shall combine both laws, the
law of conservation of energy and this law which relates the heats Q2 and Q1,
and we can easily obtain the efficiency of a reversible engine. From the first law,
we have W = Q1 −Q2. According to our new principle,

Q2 = T2

T1
Q1,

so the work becomes

W = Q1

(
1− T2

T1

)
= Q1

T1 − T2

T1
, (44.13)
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which tells us the efficiency of the engine—how much work we get out of so
much heat. The efficiency of an engine is proportional to the difference in the
temperatures between which the engine runs, divided by the higher temperature:

Efficiency = W

Q1
= T1 − T2

T1
. (44.14)

The efficiency cannot be greater than unity and the absolute temperature cannot
be less than zero, absolute zero. So, since T2 must be positive, the efficiency is
always less than unity. That is our first conclusion.

44-6 Entropy

Equation (44.7) or (44.12) can be interpreted in a special way. Working always
with reversible engines, a heat Q1 at temperature T1 is “equivalent” to Q2 at T2 if
Q1/T1 = Q2/T2, in the sense that as one is absorbed the other is delivered. This
suggests that if we call Q/T something, we can say: in a reversible process as
much Q/T is absorbed as is liberated; there is no gain or loss of Q/T . This Q/T
is called entropy, and we say “there is no net change in entropy in a reversible
cycle.” If T is 1◦, then the entropy is QS/1◦ or, as we symbolized it, QS/1◦ = S.
Actually, S is the letter usually used for entropy, and it is numerically equal to
the heat (which we have called QS) delivered to a 1◦-reservoir (entropy is not
itself a heat, it is heat divided by a temperature, hence it is measured in joules
per degree).

Now it is interesting that besides the pressure, which is a function of the
temperature and the volume, and the internal energy, which is a function of
temperature and volume, we have found another quantity which is a function
of the condition, i.e., the entropy of the substance. Let us try to explain how
we compute it, and what we mean when we call it a “function of the condition.”
Consider the system in two different conditions, much as we had in the experiment
where we did the adiabatic and isothermal expansions. (Incidentally, there is
no need that a heat engine have only two reservoirs, it could have three or four
different temperatures at which it takes in and delivers heats, and so on.) We
can move around on a pV diagram all over the place, and go from one condition
to another. In other words, we could say the gas is in a certain condition a,
and then it goes over to some other condition, b, and we will require that this
transition, made from a to b, be reversible. Now suppose that all along the path
from a to b we have little reservoirs at different temperatures, so that the heat dQ
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removed from the substance at each little step is delivered to each reservoir at
the temperature corresponding to that point on the path. Then let us connect
all these reservoirs, by reversible heat engines, to a single reservoir at the unit
temperature. When we are finished carrying the substance from a to b, we shall
bring all the reservoirs back to their original condition. Any heat dQ that has
been absorbed from the substance at temperature T has now been converted by
a reversible machine, and a certain amount of entropy dS has been delivered at
the unit temperature as follows:

dS = dQ/T. (44.15)

Let us compute the total amount of entropy which has been delivered. The
entropy difference, or the entropy needed to go from a to b by this particular
reversible transformation, is the total entropy, the total of the entropy taken out
of the little reservoirs, and delivered at the unit temperature:

Sb − Sa =
∫ b

a

dQ

T
. (44.16)

The question is, does the entropy difference depend upon the path taken? There
is more than one way to go from a to b. Remember that in the Carnot cycle
we could go from a to c in Fig. 44-6 by first expanding isothermally and then
adiabatically; or we could first expand adiabatically and then isothermally. So
the question is whether the entropy change which occurs when we go from a to b
in Fig. 44-10 is the same on one route as it is on another. It must be the same,

Volume

T
e
m
p
e
ra
tu
re

1◦

a

b

Reservoirs

Engines

T
dQ

dW

dS · 1◦

Fig. 44-10. Change in entropy during a reversible transformation.
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because if we went all the way around the cycle, going forward on one path and
backward on another, we would have a reversible engine, and there would be no
loss of heat to the reservoir at unit temperature. In a totally reversible cycle, no
heat must be taken from the reservoir at the unit temperature, so the entropy
needed to go from a to b is the same over one path as it is over another. It is
independent of path, and depends only on the endpoints. We can, therefore, say
that there is a certain function, which we call the entropy of the substance, that
depends only on the condition, i.e., only on the volume and temperature.

We can find a function S(V, T ) which has the property that if we compute
the change in entropy, as the substance is moved along any reversible path, in
terms of the heat rejected at unit temperature, then

∆S =
∫
dQ

T
, (44.17)

where dQ is the heat removed from the substance at temperature T . This total
entropy change is the difference between the entropy calculated at the initial and
final points:

∆S = S(Vb, Tb)− S(Va, Ta) =
∫ b

a

dQ

T
. (44.18)

This expression does not completely define the entropy, but rather only the
difference of entropy between two different conditions. Only if we can evaluate
the entropy for one special condition can we really define S absolutely.

For a long time it was believed that absolute entropy meant nothing—that
only differences could be defined—but finally Nernst proposed what he called the
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∆S = Sb − Sa

Total Entropy Change = 0

Fig. 44-11. Change in entropy in a completely reversible cycle.
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heat theorem, which is also called the third law of thermodynamics. It is very
simple. We will say what it is, but we will not explain why it is true. Nernst’s
postulate states simply that the entropy of any object at absolute zero is zero.
We know of one case of T and V , namely T = 0, where S is zero; and so we can
get the entropy at any other point.

To give an illustration of these ideas, let us calculate the entropy of a perfect
gas. In an isothermal (and therefore reversible) expansion,

∫
dQ/T is Q/T , since

T is constant. Therefore (from 44.4) the change in entropy is

S(Va, T )− S(Vb, T ) = Nk ln Va
Vb
,

so S(V, T ) = Nk lnV plus some function of T only. How does S depend on T?
We know that for a reversible adiabatic expansion, no heat is exchanged. Thus
the entropy does not change even though V changes, provided that T changes
also, such that TV γ−1 = constant. Can you see that this implies that

S(V, T ) = Nk

[
lnV + 1

γ − 1 lnT
]

+ a,

where a is some constant independent of both V and T ? [a is called the chemical
constant. It depends on the gas in question, and may be determined experimen-
tally from the Nernst theorem by measuring the heat liberated in cooling and
condensing the gas until it is brought to a solid (or for helium, a liquid) at 0◦, by
integrating

∫
dQ/T . It can also be determined theoretically by means of Planck’s

constant and quantum mechanics, but we shall not study it in this course.]
Now we shall remark on some of the properties of the entropy of things. We

first remember that if we go along a reversible cycle from a to b, then the entropy
of the substance will change by Sb−Sa. And we remember that as we go along the
path, the entropy—the heat delivered at unit temperature—increases according
to the rule dS = dQ/T , where dQ is the heat we remove from the substance
when its temperature is T .

We already know that if we have a reversible cycle, the total entropy of
everything is not changed, because the heat Q1 absorbed at T1 and the heat Q2
delivered at T2 correspond to equal and opposite changes in entropy, so that the
net change in the entropy is zero. So for a reversible cycle there is no change
in the entropy of anything, including the reservoirs. This rule may look like the
conservation of energy again, but it is not; it applies only to reversible cycles. If
we include irreversible cycles there is no law of conservation of entropy.
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We shall give two examples. First, suppose that we do irreversible work on
an object by friction, generating a heat Q on some object at temperature T . The
entropy is increased by Q/T . The heat Q is equal to the work, and thus when
we do a certain amount of work by friction against an object whose temperature
is T , the entropy of the whole world increases by W/T .

Another example of irreversibility is this: If we put together two objects that
are at different temperatures, say T1 and T2, a certain amount of heat will flow
from one to the other by itself. Suppose, for instance, we put a hot stone in cold
water. Then when a certain heat ∆Q is transferred from T1 to T2, how much
does the entropy of the hot stone change? It decreases by ∆Q/T1. How much
does the water entropy change? It increases by ∆Q/T2. The heat will, of course,
flow only from the higher temperature T1 to the lower temperature T2, so that
∆Q is positive if T1 is greater than T2. So the change in entropy of the whole
world is positive, and it is the difference of the two fractions:

∆S = ∆Q
T2
− ∆Q

T1
. (44.19)

So the following proposition is true: in any process that is irreversible, the
entropy of the whole world is increased. Only in reversible processes does the
entropy remain constant. Since no process is absolutely reversible, there is always
at least a small gain in the entropy; a reversible process is an idealization in
which we have made the gain of entropy minimal.

Unfortunately, we are not going to enter into the field of thermodynamics very
far. Our purpose is only to illustrate the principal ideas involved and the reasons
why it is possible to make such arguments, but we will not use thermodynamics
very much in this course. Thermodynamics is used very often by engineers and,
particularly, by chemists. So we must learn our thermodynamics in practice in
chemistry or engineering. Because it is not worthwhile duplicating everything,
we shall just give some discussion of the origin of the theory, rather than much
detail for special applications.

The two laws of thermodynamics are often stated this way:

First law: the energy of the universe is always constant.

Second law: the entropy of the universe is always increasing.

That is not a very good statement of the second law; it does not say, for example,
that in a reversible cycle the entropy stays the same, and it does not say exactly
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what the entropy is. It is just a clever way of remembering the two laws, but it
does not really tell us exactly where we stand. We have summarized the laws
discussed in this chapter in Table 44-1. In the next chapter we shall apply these
laws to discover the relationship between the heat generated in the expansion of
a rubber band, and the extra tension when it is heated.

Table 44-1

Summary of the laws of thermodynamics

First law:
Heat put into a system + Work done on a system = Increase in internal energy of the
system:

dQ+ dW = dU.

Second law:
A process whose only net result is to take heat from a reservoir and convert it to
work is impossible.
No heat engine taking heat Q1 from T1 and delivering heat Q2 at T2 can do more
work than a reversible engine, for which

W = Q1 −Q2 = Q1

(
T1 − T2

T1

)
.

The entropy of a system is defined this way:

(a) If heat ∆Q is added reversibly to a system at temperature T , the increase in
entropy of the system is ∆S = ∆Q/T .

(b) At T = 0, S = 0 (third law).

In a reversible change, the total entropy of all parts of the system (including reservoirs)
does not change.
In irreversible change, the total entropy of the system always increases.
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45

Illustrations of Thermodynamics

45-1 Internal energy

Thermodynamics is a rather difficult and complex subject when we come to
apply it, and it is not appropriate for us to go very far into the applications
in this course. The subject is of very great importance, of course, to engineers
and chemists, and those who are interested in the subject can learn about the
applications in physical chemistry or in engineering thermodynamics. There
are also good equation reference books, such as Zemansky’s Heat and Thermo-
dynamics, where one can learn more about the subject. In the Encyclopedia
Britannica, fourteenth edition, one can find excellent articles on thermodynamics
and thermochemistry, and in the article on chemistry, the sections on physical
chemistry, vaporization, liquefication of gases, and so on.

The subject of thermodynamics is complicated because there are so many
different ways of describing the same thing. If we wish to describe the behavior
of a gas, we can say that the pressure depends on the temperature and on the
volume, or we can say that the volume depends on the temperature and the
pressure. Or with respect to the internal energy U , we might say that it depends
on the temperature and volume, if those are the variables we have chosen—but
we might also say that it depends on the temperature and the pressure, or the
pressure and the volume, and so on. In the last chapter we discussed another
function of temperature and volume, called the entropy S, and we can of course
construct as many other functions of these variables as we like: U − TS is a
function of temperature and volume. So we have a large number of different
quantities which can be functions of many different combinations of variables.

To keep the subject simple in this chapter, we shall decide at the start
to use temperature and volume as the independent variables. Chemists use
temperature and pressure, because they are easier to measure and control in
chemical experiments, but we shall use temperature and volume throughout this
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chapter, except in one place where we shall see how to make the transformation
into the chemists’ system of variables.

We shall first, then, consider only one system of independent variables: tem-
perature and volume. Secondly, we shall discuss only two dependent functions:
the internal energy and the pressure. All the other functions can be derived
from these, so it is not necessary to discuss them. With these limitations,
thermodynamics is still a fairly difficult subject, but it is not quite so impossible!

First we shall review some mathematics. If a quantity is a function of two
variables, the idea of the derivative of the quantity requires a little more careful
thought than for the case where there is only one variable. What do we mean
by the derivative of the pressure with respect to the temperature? The pressure
change accompanying a change in the temperature depends partly, of course, on
what happens to the volume while T is changing. We must specify the change
in V before the concept of a derivative with respect to T has a precise meaning.
We might ask, for example, for the rate of change of P with respect to T if V is
held constant. This ratio is just the ordinary derivative that we usually write
as dP/dT . We customarily use a special symbol, ∂P/∂T , to remind us that P
depends on another variable V as well as on T , and that this other variable is
held constant. We shall not only use the symbol ∂ to call attention to the fact
that the other variable is held constant, but we shall also write the variable that
is held constant as a subscript, (∂P/∂T )V . Since we have only two independent
variables, this notation is redundant, but it will help us keep our wits about us
in the thermodynamic jungle of partial derivatives.

Let us suppose that the function f(x, y) depends on the two independent
variables x and y. By (∂f/∂x)y we mean simply the ordinary derivative, obtained
in the usual way, if we treat y as a constant:(

∂f

∂x

)
y

= limit
∆x→0

f(x+ ∆x, y)− f(x, y)
∆x .

Similarly, we define(
∂f

∂y

)
x

= limit
∆y→0

f(x, y + ∆y)− f(x, y)
∆y .

For example, if f(x, y) = x2 + yx, then (∂f/∂x)y = 2x+ y, and (∂f/∂y)x = x.
We can extend this idea to higher derivatives: ∂2f/∂y2 or ∂2f/∂y∂x. The latter
symbol indicates that we first differentiate f with respect to x, treating y as a
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constant, then differentiate the result with respect to y, treating x as a constant.
The actual order of differentiation is immaterial: ∂2f/∂x∂y = ∂2f/∂y∂x.

We will need to compute the change ∆f in f(x, y) when x changes to x+ ∆x
and y changes to y + ∆y. We assume throughout the following that ∆x and ∆y
are infinitesimally small:

∆f = f(x+ ∆x, y + ∆y)− f(x, y)
= f(x+ ∆x, y + ∆y)− f(x, y + ∆y)︸ ︷︷ ︸+ f(x, y + ∆y)− f(x, y)︸ ︷︷ ︸
= ∆x

(
∂f

∂x

)
y

+ ∆y
(
∂f

∂y

)
x

(45.1)

The last equation is the fundamental relation that expresses ∆f in terms of ∆x
and ∆y.

As an example of the use of this relation, let us calculate the change in the
internal energy U(T, V ) when the temperature changes from T to T + ∆T and
the volume changes from V to V + ∆V . Using Eq. (45.1), we write

∆U = ∆T
(
∂U

∂T

)
V

+ ∆V
(
∂U

∂V

)
T

. (45.2)

In our last chapter we found another expression for the change ∆U in the internal
energy when a quantity of heat ∆Q was added to the gas:

∆U = ∆Q− P ∆V. (45.3)

In comparing Eqs. (45.2) and (45.3) one might at first be inclined to think that
P = −(∂U/∂V )T , but this is not correct. To obtain the correct relation, let us first
suppose that we add a quantity of heat ∆Q to the gas while keeping the volume
constant, so that ∆V = 0. With ∆V = 0, Eq. (45.3) tells us that ∆U = ∆Q,
and Eq. (45.2) tells us that ∆U = (∂U/∂T )V ∆T , so that (∂U/∂T )V = ∆Q/∆T .
The ratio ∆Q/∆T , the amount of heat one must put into a substance in order
to change its temperature by one degree with the volume held constant, is called
the specific heat at constant volume and is designated by the symbol CV . By this
argument we have shown that (

∂U

∂T

)
V

= CV . (45.4)
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Fig. 45-1. Pressure-volume diagram for a Carnot cycle. The curves
marked T and T − ∆T are isothermal lines; the steeper curves are
adiabatic lines. ∆V is the volume change as heat ∆Q is added to the
gas at constant temperature T . ∆P is the pressure change at constant
volume as the gas temperature is changed from T to T − ∆T .

Now let us again add a quantity of heat ∆Q to the gas, but this time we
will hold T constant and allow the volume to change by ∆V . The analysis in
this case is more complex, but we can calculate ∆U by the argument of Carnot,
making use of the Carnot cycle we introduced in the last chapter.

The pressure-volume diagram for the Carnot cycle is shown in Fig. 45-1. As
we have already shown, the total amount of work done by the gas in a reversible
cycle is ∆Q(∆T/T ), where ∆Q is the amount of heat energy added to the gas
as it expands isothermally at temperature T from volume V to V + ∆V , and
T −∆T is the final temperature reached by the gas as it expands adiabatically
on the second leg of the cycle. Now we will show that this work done is also
given by the shaded area in Fig. 45-1. In any circumstances, the work done by
the gas is

∫
P dV , and is positive when the gas expands and negative when the

gas is compressed. If we plot P vs. V , the variation of P and V is represented
by a curve which gives the value of P corresponding to a particular value of V .
As the volume changes from one value to another, the work done by the gas,
the integral

∫
P dV , is the area under the curve connecting the initial and final

values of V . When we apply this idea to the Carnot cycle, we see that as we go
around the cycle, paying attention to the sign of the work done by the gas, the
net work done by the gas is just the shaded area in Fig. 45-1.

Now we want to evaluate the shaded area geometrically. The cycle we
have used in Fig. 45-1 differs from that used in the previous chapter in that
we now suppose that ∆T and ∆Q are infinitesimally small. We are working
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V

P

∆V

∆P

Fig. 45-2. Shaded area = area enclosed by dashed lines = area of
rectangle = ∆P ∆V .

between adiabatic lines and isothermal lines that are very close together, and
the figure described by the heavy lines in Fig. 45-1 will approach a parallelogram
as the increments ∆T and ∆Q approach zero. The area of this parallelogram is
just ∆V ∆P , where ∆V is the change in volume as energy ∆Q is added to the gas
at constant temperature, and ∆P is the change in pressure as the temperature
changes by ∆T at constant volume. One can easily show that the shaded area
in Fig. 45-1 is given by ∆V ∆P by recognizing that the shaded area is equal to
the area enclosed by the dotted lines in Fig. 45-2, which in turn differs from the
rectangle bounded by ∆P and ∆V only by the addition and subtraction of the
equal triangular areas in Fig. 45-2.

Now let us summarize the results of the arguments we have developed so far:

Work done by the gas = shaded area = ∆V ∆P = ∆Q
(

∆T
T

)
or

∆T
T
· (heat needed to change V by ∆V )constant T

= ∆V · (change in P when T changes by ∆T )constant V
or

1
∆V · (heat needed to change V by ∆V )T = T (∂P/∂T )V .



(45.5)

Equation (45.5) expresses the essential result of Carnot’s argument. The whole
of thermodynamics can be deduced from Eq. (45.5) and the First Law, which is
stated in Eq. (45.3). Equation (45.5) is essentially the Second Law, although it
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was originally deduced by Carnot in a slightly different form, since he did not
use our definition of temperature.

Now we can proceed to calculate (∂U/∂V )T . By how much would the internal
energy U change if we changed the volume by ∆V ? First, U changes because
heat is put in, and second, U changes because work is done. The heat put in is

∆Q = T

(
∂P

∂T

)
V

∆V,

according to Eq. (45.5), and the work done on the substance is −P ∆V . Therefore
the change ∆U in internal energy has two pieces:

∆U = T

(
∂P

∂T

)
V

∆V − P ∆V. (45.6)

Dividing both sides by ∆V , we find for the rate of change of U with V at
constant T (

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P. (45.7)

In our thermodynamics, in which T and V are the only variables and P and U
are the only functions, Eqs. (45.3) and (45.7) are the basic equations from which
all the results of the subject can be deduced.

45-2 Applications

Now let us discuss the meaning of Eq. (45.7) and see why it answers the
questions which we proposed in our last chapter. We considered the following
problem: in kinetic theory it is obvious that an increase in temperature leads
to an increase in pressure, because of the bombardments of the atoms on a
piston. For the same physical reason, when we let the piston move back, heat
is taken out of the gas and, in order to keep the temperature constant, heat
will have to be put back in. The gas cools when it expands, and the pressure
rises when it is heated. There must be some connection between these two
phenomena, and this connection is given explicitly in Eq. (45.7). If we hold the
volume fixed and increase the temperature, the pressure rises at a rate (∂P/∂T )V .
Related to that fact is this: if we increase the volume, the gas will cool unless we
pour some heat in to maintain the temperature constant, and (∂U/∂V )T tells
us the amount of heat needed to maintain the temperature. Equation (45.7)
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expresses the fundamental interrelationship between these two effects. That is
what we promised we would find when we came to the laws of thermodynamics.
Without knowing the internal mechanism of the gas, and knowing only that we
cannot make perpetual motion of the second type, we can deduce the relationship
between the amount of heat needed to maintain a constant temperature when
the gas expands, and the pressure change when the gas is heated at constant
volume!

Now that we have the result we wanted for a gas, let us consider the rubber
band. When we stretch a rubber band, we find that its temperature rises, and
when we heat a rubber band, we find that it pulls itself in. What is the equation
that gives the same relation for a rubber band as Eq. (45.3) gives for gas? For a
rubber band the situation will be something like this: when heat ∆Q is put in,
the internal energy is changed by ∆U and some work is done. The only difference
will be that the work done by the rubber band is −F ∆L instead of P ∆V , where
F is the force on the band, and L is the length of the band. The force F is a
function of temperature and of length of the band. Replacing P ∆V in Eq. (45.3)
by −F ∆L, we get

∆U = ∆Q+ F ∆L. (45.8)

Comparing Eqs. (45.3) and (45.8), we see that the rubber band equation is
obtained by a mere substitution of one letter for another. Furthermore, if we
substitute L for V , and −F for P , all of our discussion of the Carnot cycle
applies to the rubber band. We can immediately deduce, for instance, that the
heat ∆Q needed to change the length by ∆L is given by the analog to Eq. (45.5):
∆Q = −T (∂F/∂T )L ∆L. This equation tells us that if we keep the length of a
rubber band fixed and heat the band, we can calculate how much the force will
increase in terms of the heat needed to keep the temperature constant when the
band is relaxed a little bit. So we see that the same equation applies to both gas
and a rubber band. In fact, if one can write ∆U = ∆Q+A∆B, where A and B
represent different quantities, force and length, pressure and volume, etc., one can
apply the results obtained for a gas by substituting A and B for −P and V . For
example, consider the electric potential difference, or “voltage,” E in a battery
and the charge ∆Z that moves through the battery. We know that the work done
in a reversible electric cell, like a storage battery, is E∆Z. (Since we include
no P ∆V term in the work, we require that our battery maintain a constant
volume.) Let us see what thermodynamics can tell us about the performance of
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a battery. If we substitute E for P and Z for V in Eq. (45.6), we obtain

∆U
∆Z = T

(
∂E

∂T

)
Z

− E. (45.9)

Equation (45.9) says that the internal energy U is changed when a charge ∆Z
moves through the cell. Why is ∆U/∆Z not simply the voltage E of the battery?
(The answer is that a real battery gets warm when charge moves through the
cell. The internal energy of the battery is changed, first, because the battery did
some work on the outside circuit, and second, because the battery is heated.)
The remarkable thing is that the second part can again be expressed in terms
of the way in which the battery voltage changes with temperature. Incidentally,
when the charge moves through the cell, chemical reactions occur, and Eq. (45.9)
suggests a nifty way of measuring the amount of energy required to produce
a chemical reaction. All we need to do is construct a cell that works on the
reaction, measure the voltage, and measure how much the voltage changes with
temperature when we draw no charge from the battery!

Now we have assumed that the volume of the battery can be maintained
constant, since we have omitted the P ∆V term when we set the work done by the
battery equal to E∆Z. It turns out that it is technically quite difficult to keep
the volume constant. It is much easier to keep the cell at constant atmospheric
pressure. For that reason, the chemists do not like any of the equations we
have written above: they prefer equations which describe performance under
constant pressure. We chose at the beginning of this chapter to use V and T as
independent variables. The chemists prefer P and T , and we will now consider
how the results we have obtained so far can be transformed into the chemists’
system of variables. Remember that in the following treatment confusion can
easily set in because we are shifting gears from T and V to T and P .

We started in Eq. (45.3) with ∆U = ∆Q− P ∆V ; P ∆V may be replaced by
E∆Z or A∆B. If we could somehow replace the last term, P ∆V , by V ∆P ,
then we would have interchanged V and P , and the chemists would be happy.
Well, a clever man noticed that the differential of the product PV is d(PV ) =
P dV + V dP , and if he added this equality to Eq. (45.3), he obtained

∆(PV ) = P ∆V + V ∆P
∆U = ∆Q − P ∆V

∆(U + PV ) = ∆Q + V ∆P
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In order that the result look like Eq. (45.3), we define U + PV to be something
new, called the enthalpy, H, and we write ∆H = ∆Q+ V ∆P .

Now we are ready to transform our results into chemists’ language with the
following rules: U → H, P → −V , V → P . For example, the fundamental
relationship that chemists would use instead of Eq. (45.7) is(

∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V.

It should now be clear how one transforms to the chemists’ variables T and P .
We now go back to our original variables: for the remainder of this chapter, T
and V are the independent variables.

Now let us apply the results we have obtained to a number of physical
situations. Consider first the ideal gas. From kinetic theory we know that the
internal energy of a gas depends only on the motion of the molecules and the
number of molecules. The internal energy depends on T , but not on V . If we
change V , but keep T constant, U is not changed. Therefore (∂U/∂V )T = 0, and
Eq. (45.7) tells us that for an ideal gas

T

(
∂P

∂T

)
V

− P = 0. (45.10)

Equation (45.10) is a differential equation that can tell us something about P .
We take account of the partial derivatives in the following way: Since the partial
derivative is at constant V , we will replace the partial derivative by an ordinary
derivative and write explicitly, to remind us, “constant V .” Equation (45.10) then
becomes

T
∆P
∆T − P = 0; const V , (45.11)

which we can integrate to get

lnP = lnT + const; const V ,
P = const× T ; const V . (45.12)

We know that for an ideal gas the pressure per mole is equal to

P = RT

V
, (45.13)
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which is consistent with (45.12), since V and R are constants. Why did we
bother to go through this calculation if we already knew the results? Because
we have been using two independent definitions of temperature! At one stage
we assumed that the kinetic energy of the molecules was proportional to the
temperature, an assumption that defines one scale of temperature which we will
call the ideal gas scale. The T in Eq. (45.13) is based on the gas scale. We
also call temperatures measured on the gas scale kinetic temperatures. Later,
we defined the temperature in a second way which was completely independent
of any substance. From arguments based on the Second Law we defined what
we might call the “grand thermodynamic absolute temperature” T , the T that
appears in Eq. (45.12). What we proved here is that the pressure of an ideal gas
(defined as one for which the internal energy does not depend on the volume) is
proportional to the grand thermodynamic absolute temperature. We also know
that the pressure is proportional to the temperature measured on the gas scale.
Therefore we can deduce that the kinetic temperature is proportional to the
“grand thermodynamic absolute temperature.” That means, of course, that if we
were sensible we could make two scales agree. In this instance, at least, the two
scales have been chosen so that they coincide; the proportionality constant has
been chosen to be 1. Most of the time man chooses trouble for himself, but in
this case he made them equal!

45-3 The Clausius-Clapeyron equation

The vaporization of a liquid is another application of the results we have
derived. Suppose we have some liquid in a cylinder, such that we can compress
it by pushing on the piston, and we ask ourselves, “If we keep the temperature
constant, how does the pressure vary with volume?” In other words, we want
to draw an isothermal line on the P -V diagram. The substance in the cylinder
is not the ideal gas that we considered earlier; now it may be in the liquid or
the vapor phase, or both may be present. If we apply sufficient pressure, the
substance will condense to a liquid. Now if we squeeze still harder, the volume
changes very little, and our isothermal line rises rapidly with decreasing volume,
as shown at the left in Fig. 45-3.

If we increase the volume by pulling the piston out, the pressure drops until
we reach the point at which the liquid starts to boil, and then vapor starts to form.
If we pull the piston out farther, all that happens is that more liquid vaporizes.
When there is part liquid and part vapor in the cylinder, the two phases are in
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Fig. 45-3. Isothermal lines for a condensable vapor compressed in a
cylinder. At the left, the substance is in the liquid phase. At the right,
the substance is vaporized. In the center, both liquid, and vapor are
present in the cylinder.

VOLUME

P
R

E
S

S
U

R
E

VL VG

∆P
T

T − ∆T

Fig. 45-4. Pressure-volume diagram for a Carnot cycle with a con-
densable vapor in the cylinder. At the left, the substance is in the liquid
state. A quantity of heat L is added at temperature T to vaporize the
liquid. The vapor expands adiabatically as T changes to T − ∆T .
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equilibrium—liquid is evaporating and vapor is condensing at the same rate. If
we make more room for the vapor, more vapor is needed to maintain the pressure,
so a little more liquid evaporates, but the pressure remains constant. On the flat
part of the curve in Fig. 45-3 the pressure does not change, and the value of the
pressure here is called the vapor pressure at temperature T . As we continue to
increase the volume, there comes a time when there is no more liquid to evaporate.
At this juncture, if we expand the volume further, the pressure will fall as for
an ordinary gas, as shown at the right of the P -V diagram. The lower curve in
Fig. 45-3 is the isothermal line at a slightly lower temperature T −∆T . The
pressure in the liquid phase is slightly reduced because liquid expands with an
increase in temperature (for most substances, but not for water near the freezing
point) and, of course, the vapor pressure is lower at the lower temperature.

We will now make a cycle out of the two isothermal lines by connecting
them (say by adiabatic lines) at both ends of the upper flat section, as shown in
Fig. 45-4. We are going to use the argument of Carnot, which tells us that the
heat added to the substance in changing it from a liquid to a vapor is related
to the work done by the substance as it goes around the cycle. Let us call L
the heat needed to vaporize the substance in the cylinder. As in the argument
immediately preceding Eq. (45.5), we know that L(∆T/T ) = work done by the
substance. As before, the work done by the substance is the shaded area, which is
approximately ∆P (VG−VL), where ∆P is the difference in vapor pressure at the
two temperatures T and T−∆T , VG is the volume of the gas, and VL is the volume
of the liquid, both volumes measured at the vapor pressure at temperature T .
Setting these two expressions for the area equal, we get L∆T/T = ∆P (VG−VL),
or

L

T (VG − VL) = (∂Pvap/∂T ). (45.14)

Equation (45.14) gives the relationship between the rate of change of vapor
pressure with temperature and the amount of heat required to evaporate the
liquid. This relationship was deduced by Carnot, but it is called the Clausius-
Clapeyron equation.

Now let us compare Eq. (45.14) with the results deduced from kinetic theory.
Usually VG is very much larger than VL. So VG − VL ≈ VG = RT/P per mole. If
we further assume that L is a constant, independent of temperature—not a very
good approximation—then we would have ∂P/∂T = L/(RT 2/P ). The solution
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of this differential equation is

P = const e−L/RT . (45.15)

Let us compare this with the pressure variation with temperature that we deduced
earlier from kinetic theory. Kinetic theory indicated the possibility, at least
roughly, that the number of molecules per unit volume of vapor above a liquid
would be

n =
(

1
Va

)
e−(UG−UL)/RT , (45.16)

where UG − UL is the internal energy per mole in the gas minus the internal
energy per mole in the liquid, i.e., the energy needed to vaporize a mole of
liquid. Equation (45.15) from thermodynamics and Eq. (45.16) from kinetic
theory are very closely related because the pressure is nkT , but they are not
exactly the same. However, they will turn out to be exactly the same if we
assume UG − UL = const, instead of L = const. If we assume UG − UL = const,
independent of temperature, then the argument leading to Eq. (45.15) will
produce Eq. (45.16). Since the pressure is constant while the volume is changing,
the change in internal energy UG − UL is equal to the heat L put in minus the
work done P (VG − VL), so L = (UG + PVG)− (UL + PVL).

This comparison shows the advantages and disadvantages of thermodynamics
over kinetic theory: First of all, Eq. (45.14) obtained by thermodynamics is
exact, while Eq. (45.16) can only be approximated, for instance, if U is nearly
constant, and if the model is right. Second, we may not understand correctly
how the gas goes into the liquid; nevertheless, Eq. (45.14) is right, while (45.16)
is only approximate. Third, although our treatment applies to a gas condensing
into a liquid, the argument is true for any other change of state. For instance,
the solid-to-liquid transition has the same kind of curve as that shown in Figs.
45-3 and 45-4. Introducing the latent heat for melting, M/mole, the formula
analogous to Eq. (45.14) then is (∂Pmelt/∂T )V = M/[T (Vliq − Vsolid)]. Although
we may not understand the kinetic theory of the melting process, we nevertheless
have a correct equation. However, when we can understand the kinetic theory,
we have another advantage. Equation (45.14) is only a differential relationship,
and we have no way of obtaining the constants of integration. In the kinetic
theory we can obtain the constants also if we have a good model that describes
the phenomenon completely. So there are advantages and disadvantages to
each. When knowledge is weak and the situation is complicated, thermodynamic
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relations are really the most powerful. When the situation is very simple and a
theoretical analysis can be made, then it is better to try to get more information
from theoretical analysis.

One more example: blackbody radiation. We have discussed a box containing
radiation and nothing else. We have talked about the equilibrium between the
oscillator and the radiation. We also found that the photons hitting the wall of
the box would exert the pressure P , and we found PV = U/3, where U is the
total energy of all the photons and V is the volume of the box. If we substitute
U = 3PV in the basic Eq. (45.7), we find*(

∂U

∂V

)
T

= 3P = T

(
∂P

∂T

)
V

− P. (45.17)

Since the volume of our box is constant, we can replace (∂P/∂T )V by dP/dT to
obtain an ordinary differential equation we can integrate: lnP = 4 lnT + const,
or P = const× T 4. The pressure of radiation varies as the fourth power of the
temperature, and the total energy density of the radiation, U/V = 3P , also
varies as T 4. It is usual to write U/V = (4σ/c)T 4, where c is the speed of light
and σ is called the Stefan-Boltzmann constant. It is not possible to get σ from
thermodynamics alone. Here is a good example of its power, and its limitations.
To know that U/V goes as T 4 is a great deal, but to know how big U/V actually
is at any temperature requires that we go into the kind of detail that only a
complete theory can supply. For blackbody radiation we have such a theory and
we can derive an expression for the constant σ in the following manner.

Let I(ω) dω be the intensity distribution, the energy flow through 1 m2

in one second with frequency between ω and ω + dω. The energy density
distribution = energy/volume = I(ω) dω/c is

U

V
= total energy density

=
∫ ∞
ω=0

energy density between ω and ω + dω

* In this case (∂P/∂V )T = 0, because in order to keep the oscillator in equilibrium at a
given temperature, the radiation in the neighborhood of the oscillator has to be the same,
regardless of the volume of the box. The total quantity of photons inside the box must therefore
be proportional to its volume, so the internal energy per unit volume, and thus the pressure,
depends only on the temperature.
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=
∫ ∞

0

I(ω) dω
c

.

From our earlier discussions, we know that

I(ω) = ~ω3

π2c2(e~ω/kT − 1) .

Substituting this expression for I(ω) in our equation for U/V , we get

U

V
= 1
π2c3

∫ ∞
0

~ω3 dω

e~ω/kT − 1 .

If we substitute x = ~ω/kT , the expression becomes

U

V
= (kT )4

~3π2c3

∫ ∞
0

x3 dx

ex − 1 .

This integral is just some number that we can get, approximately, by drawing
a curve and taking the area by counting squares. It is roughly 6.5. The math-
ematicians among us can show that the integral is exactly π4/15.* Comparing
this expression with U/V = (4σ/c)T 4, we find

σ = k4π2

60~3c3
= 5.67× 10−8 watts

(meter)2(degree)4 .

If we make a small hole in our box, how much energy will flow per second
through the hole of unit area? To go from energy density to energy flow, we
multiply the energy density U/V by c. We also multiply by 1

4 , which arises
as follows: first, a factor of 1

2 , because only the energy which is flowing out

* Since (ex − 1)−1 = e−x + e−2x + · · · , the integral is
∞∑
n=1

∫ ∞
0

e−nxx3 dx.

But
∫∞

0 e−nx dx = 1/n, and differentiating with respect to n three times gives
∫∞

0 x3e−nx dx =
6/n4, so the integral is 6(1 + 1

16 + 1
81 + · · · ) and a good estimate comes from adding the first

few terms. In Chapter 50 we will find a way to show that the sum of the reciprocal fourth
powers of the integers is, in fact, π4/90.
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escapes; and second, another factor 1
2 , because energy which approaches the

hole at an angle to the normal is less effective in getting through the hole by a
cosine factor. The average value of the cosine is 1

2 . It is clear now why we write
U/V = (4σ/c)T 4: so that we can ultimately say that the flux from a small hole
is σT 4 per unit area.
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46

Ratchet and pawl*

46-1 How a ratchet works

In this chapter we discuss the ratchet and pawl, a very simple device which
allows a shaft to turn only one way. The possibility of having something turn
only one way requires some detailed and careful analysis, and there are some
very interesting consequences.

The plan of the discussion came about in attempting to devise an elementary
explanation, from the molecular or kinetic point of view, for the fact that there
is a maximum amount of work which can be extracted from a heat engine. Of
course we have seen the essence of Carnot’s argument, but it would be nice to
find an explanation which is elementary in the sense that we can see what is
happening physically. Now, there are complicated mathematical demonstrations
which follow from Newton’s laws to demonstrate that we can get only a certain
amount of work out when heat flows from one place to another, but there is great
difficulty in converting this into an elementary demonstration. In short, we do
not understand it, although we can follow the mathematics.

In Carnot’s argument, the fact that more than a certain amount of work
cannot be extracted in going from one temperature to another is deduced from
another axiom, which is that if everything is at the same temperature, heat cannot
be converted to work by means of a cyclic process. First, let us back up and try
to see, in at least one elementary example, why this simpler statement is true.

Let us try to invent a device which will violate the Second Law of Thermo-
dynamics, that is, a gadget which will generate work from a heat reservoir with
everything at the same temperature. Let us say we have a box of gas at a certain
temperature, and inside there is an axle with vanes in it. (See Fig. 46-1 but take
T1 = T2 = T , say.) Because of the bombardments of gas molecules on the vane,

* See Parrando and Espanol, Am. J. Phys. 64, 1125 (1996) for a critical analysis of this
chapter.
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T2

T1

?

Fig. 46-1. The ratchet and pawl machine.

the vane oscillates and jiggles. All we have to do is to hook onto the other end
of the axle a wheel which can turn only one way—the ratchet and pawl. Then
when the shaft tries to jiggle one way, it will not turn, and when it jiggles the
other, it will turn. Then the wheel will slowly turn, and perhaps we might even
tie a flea onto a string hanging from a drum on the shaft, and lift the flea! Now
let us ask if this is possible. According to Carnot’s hypothesis, it is impossible.
But if we just look at it, we see, prima facie, that it seems quite possible. So
we must look more closely. Indeed, if we look at the ratchet and pawl, we see a
number of complications.

First, our idealized ratchet is as simple as possible, but even so, there is a
pawl, and there must be a spring in the pawl. The pawl must return after coming
off a tooth, so the spring is necessary.

Another feature of this ratchet and pawl, not shown in the figure, is quite
essential. Suppose the device were made of perfectly elastic parts. After the pawl
is lifted off the end of the tooth and is pushed back by the spring, it will bounce
against the wheel and continue to bounce. Then, when another fluctuation came,
the wheel could turn the other way, because the tooth could get underneath
during the moment when the pawl was up! Therefore an essential part of the
irreversibility of our wheel is a damping or deadening mechanism which stops
the bouncing. When the damping happens, of course, the energy that was in the
pawl goes into the wheel and shows up as heat. So, as it turns, the wheel will
get hotter and hotter. To make the thing simpler, we can put a gas around the
wheel to take up some of the heat. Anyway, let us say the gas keeps rising in
temperature, along with the wheel. Will it go on forever? No! The pawl and
wheel, both at some temperature T , also have Brownian motion. This motion is
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such that, every once in a while, by accident, the pawl lifts itself up and over a
tooth just at the moment when the Brownian motion on the vanes is trying to
turn the axle backwards. And as things get hotter, this happens more often.

So, this is the reason this device does not work in perpetual motion. When
the vanes get kicked, sometimes the pawl lifts up and goes over the end. But
sometimes, when it tries to turn the other way, the pawl has already lifted due
to the fluctuations of the motions on the wheel side, and the wheel goes back the
other way! The net result is nothing. It is not hard to demonstrate that when
the temperature on both sides is equal, there will be no net average motion of
the wheel. Of course the wheel will do a lot of jiggling this way and that way,
but it will not do what we would like, which is to turn just one way.

Let us look at the reason. It is necessary to do work against the spring in
order to lift the pawl to the top of a tooth. Let us call this energy ε, and let θ
be the angle between the teeth. The chance that the system can accumulate
enough energy, ε, to get the pawl over the top of the tooth, is e−ε/kT . But the
probability that the pawl will accidentally be up is also e−ε/kT . So the number
of times that the pawl is up and the wheel can turn backwards freely is equal to
the number of times that we have enough energy to turn it forward when the
pawl is down. We thus get a “balance,” and the wheel will not go around.

46-2 The ratchet as an engine

Let us now go further. Take the example where the temperature of the vanes
is T1 and the temperature of the wheel, or ratchet, is T2, and T2 is less than T1.
Because the wheel is cold and the fluctuations of the pawl are relatively infrequent,
it will be very hard for the pawl to attain an energy ε. Because of the high
temperature T1, the vanes will often attain the energy ε, so our gadget will go in
one direction, as designed.

We would now like to see if it can lift weights. Onto the drum in the middle
we tie a string, and put a weight, such as our flea, on the string. We let L be the
torque due to the weight. If L is not too great, our machine will lift the weight
because the Brownian fluctuations make it more likely to move in one direction
than the other. We want to find how much weight it can lift, how fast it goes
around, and so on.

First we consider a forward motion, the usual way one designs a ratchet to
run. In order to make one step forward, how much energy has to be borrowed
from the vane end? We must borrow an energy ε to lift the pawl. The wheel
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turns through an angle θ against a torque L, so we also need the energy Lθ. The
total amount of energy that we have to borrow is thus ε+ Lθ. The probability
that we get this energy is proportional to e−(ε+Lθ)/kT1 . Actually, it is not only
a question of getting the energy, but we also would like to know the number of
times per second it has this energy. The probability per second is proportional
to e−(ε+Lθ)/kT1 , and we shall call the proportionality constant 1/τ . It will cancel
out in the end anyway. When a forward step happens, the work done on the
weight is Lθ. The energy taken from the vane is ε+ Lθ. The spring gets wound
up with energy ε, then it goes clatter, clatter, bang, and this energy goes into
heat. All the energy taken out goes to lift the weight and to drive the pawl,
which then falls back and gives heat to the other side.

Now we look at the opposite case, which is backward motion. What happens
here? To get the wheel to go backwards all we have to do is supply the energy to
lift the pawl high enough so that the ratchet will slip. This is still energy ε. Our
probability per second for the pawl to lift this high is now (1/τ)e−ε/kT2 . Our
proportionality constant is the same, but this time kT2 shows up because of the
different temperature. When this happens, the work is released because the wheel
slips backward. It loses one notch, so it releases work Lθ. The energy taken from
the ratchet system is ε, and the energy given to the gas at T1 on the vane side
is Lθ + ε. It takes a little thinking to see the reason for that. Suppose the pawl
has lifted itself up accidentally by a fluctuation. Then when it falls back and the
spring pushes it down against the tooth, there is a force trying to turn the wheel,
because the tooth is pushing on an inclined plane. This force is doing work, and
so is the force due to the weights. So both together make up the total force, and
all the energy which is slowly released appears at the vane end as heat. (Of course
it must, by conservation of energy, but one must be careful to think the thing
through!) We notice that all these energies are exactly the same, but reversed.
So, depending upon which of these two rates is greater, the weight is either slowly
lifted or slowly released. Of course, it is constantly jiggling around, going up for
a while and down for a while, but we are talking about the average behavior.

Suppose that for a particular weight the rates happen to be equal. Then we
add an infinitesimal weight to the string. The weight will slowly go down, and
work will be done on the machine. Energy will be taken from the wheel and
given to the vanes. If instead we take off a little bit of weight, then the imbalance
is the other way. The weight is lifted, and heat is taken from the vane and put
into the wheel. So we have the conditions of Carnot’s reversible cycle, provided
that the weight is just such that these two are equal. This condition is evidently
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Table 46-1

Summary of operation of ratchet and pawl.

Forward: Needs energy ε+ Lθ from vane. ∴ Rate = 1
τ
e−(Lθ+ε)/kT1

Takes from vane Lθ + ε

Does work Lθ

Gives to ratchet ε

Backward: Needs energy ε for pawl. ∴ Rate = 1
τ
e−ε/kT2

Takes from ratchet ε
Releases work Lθ same as above with sign reversed.

Gives to vane Lθ + ε

If system is reversible, rates are equal, hence ε+ Lθ

T1
= ε

T2
.

Heat to ratchet
Heat from vane = ε

Lθ + ε
. Hence Q2

Q1
= T2

T1
.

that (ε+Lθ)/T1 = ε/T2. Let us say that the machine is slowly lifting the weight.
Energy Q1 is taken from the vanes and energy Q2 is delivered to the wheel, and
these energies are in the ratio (ε+ Lθ)/ε. If we are lowering the weight, we also
have Q1/Q2 = (ε+ Lθ)/ε. Thus (Table 46-1) we have

Q1/Q2 = T1/T2.

Furthermore, the work we get out is to the energy taken from the vane as Lθ is
to Lθ + ε, hence as (T1 − T2)/T1. We see that our device cannot extract more
work than this, operating reversibly. This is the result that we expected from
Carnot’s argument, and the main result of this lecture. However, we can use
our device to understand a few other phenomena, even out of equilibrium, and
therefore beyond the range of thermodynamics.

Let us now calculate how fast our one-way device would turn if everything
were at the same temperature and we hung a weight on the drum. If we pull very,
very hard, of course, there are all kinds of complications. The pawl slips over the
ratchet, or the spring breaks, or something. But suppose we pull gently enough
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that everything works nicely. In those circumstances, the above analysis is right
for the probability of the wheel going forward and backward, if we remember
that the two temperatures are equal. In each step an angle θ is obtained, so the
angular velocity is θ times the probability of one of these jumps per second. It
goes forward with probability (1/τ)e−(ε+Lθ)/kT and backward with probability
(1/τ)e−ε/kT , so that for the angular velocity we have

ω = (θ/τ)(e−(ε+Lθ)/kT − e−ε/kT )
= (θ/τ)e−ε/kT (e−Lθ/kT − 1). (46.1)

If we plot ω against L, we get the curve shown in Fig. 46-2. We see that it
makes a great difference whether L is positive or negative. If L increases in the
positive range, which happens when we try to drive the wheel backward, the
backward velocity approaches a constant. As L becomes negative, ω really “takes
off” forward, since e to a tremendous power is very great!

L

ω

Fig. 46-2. Angular velocity of the ratchet as a function of torque.

The angular velocity that was obtained from different forces is thus very
unsymmetrical. Going one way it is easy: we get a lot of angular velocity for a
little force. Going the other way, we can put on a lot of force, and yet the wheel
hardly goes around.

We find the same thing in an electrical rectifier. Instead of the force, we have
the electric field, and instead of the angular velocity, we have the electric current.
In the case of a rectifier, the voltage is not proportional to resistance, and the
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situation is unsymmetrical. The same analysis that we made for the mechanical
rectifier will also work for an electrical rectifier. In fact, the kind of formula
we obtained above is typical of the current-carrying capacities of rectifiers as a
function of their voltages.

Now let us take all the weights away, and look at the original machine. If
T2 were less than T1, the ratchet would go forward, as anybody would believe.
But what is hard to believe, at first sight, is the opposite. If T2 is greater than
T1, the ratchet goes around the opposite way! A dynamic ratchet with lots of
heat in it runs itself backwards, because the ratchet pawl is bouncing. If the
pawl, for a moment, is on the incline somewhere, it pushes the inclined plane
sideways. But it is always pushing on an inclined plane, because if it happens to
lift up high enough to get past the point of a tooth, then the inclined plane slides
by, and it comes down again on an inclined plane. So a hot ratchet and pawl is
ideally built to go around in a direction exactly opposite to that for which it was
originally designed!

In spite of all our cleverness of lopsided design, if the two temperatures are
exactly equal there is no more propensity to turn one way than the other. The
moment we look at it, it may be turning one way or the other, but in the long
run, it gets nowhere. The fact that it gets nowhere is really the fundamental
deep principle on which all of thermodynamics is based.

46-3 Reversibility in mechanics

What deeper mechanical principle tells us that, in the long run, if the tem-
perature is kept the same everywhere, our gadget will turn neither to the right
nor to the left? We evidently have a fundamental proposition that there is no
way to design a machine which, left to itself, will be more likely to be turning
one way than the other after a long enough time. We must try to see how this
follows from the laws of mechanics.

The laws of mechanics go something like this: the mass times the acceleration
is the force, and the force on each particle is some complicated function of the
positions of all the other particles. There are other situations in which forces
depend on velocity, such as in magnetism, but let us not consider that now.
We take a simpler case, such as gravity, where forces depend only on position.
Now suppose that we have solved our set of equations and we have a certain
motion x(t) for each particle. In a complicated enough system, the solutions are
very complicated, and what happens with time turns out to be very surprising.
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If we write down any arrangement we please for the particles, we will see this
arrangement actually occur if we wait long enough! If we follow our solution for
a long enough time, it tries everything that it can do, so to speak. This is not
absolutely necessary in the simplest devices, but when systems get complicated
enough, with enough atoms, it happens. Now there is something else the solution
can do. If we solve the equations of motion, we may get certain functions such
as t+ t2 + t3. We claim that another solution would be −t+ t2 − t3. In other
words, if we substitute −t everywhere for t throughout the entire solution, we
will once again get a solution of the same equation. This follows from the fact
that if we substitute −t for t in the original differential equation, nothing is
changed, since only second derivatives with respect to t appear. This means that
if we have a certain motion, then the exact opposite motion is also possible. In
the complete confusion which comes if we wait long enough, it finds itself going
one way sometimes, and it finds itself going the other way sometimes. There is
nothing more beautiful about one of the motions than about the other. So it is
impossible to design a machine which, in the long run, is more likely to be going
one way than the other, if the machine is sufficiently complicated.

One might think up an example for which this is obviously untrue. If we take
a wheel, for instance, and spin it in empty space, it will go the same way forever.
So there are some conditions, like the conservation of angular momentum, which
violate the above argument. This just requires that the argument be made with a
little more care. Perhaps the walls take up the angular momentum, or something
like that, so that we have no special conservation laws. Then, if the system is
complicated enough, the argument is true. It is based on the fact that the laws
of mechanics are reversible.

For historical interest, we would like to remark on a device invented by
Maxwell, who first worked out the dynamical theory of gases. He supposed the
following situation: We have two boxes of gas at the same temperature, with a
little hole between them. At the hole sits a little demon (who may be a machine
of course!). There is a door on the hole, which can be opened or closed by the
demon. He watches the molecules coming from the left. Whenever he sees a fast
molecule, he opens the door. When he sees a slow one, he leaves it closed. If
we want him to be an extra special demon, he can have eyes at the back of his
head, and do the opposite to the molecules from the other side. He lets the slow
ones through to the left, and the fast through to the right. Pretty soon the left
side will get cold and the right side hot. Then, are the ideas of thermodynamics
violated because we could have such a demon?
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It turns out, if we build a finite-sized demon, that the demon himself gets so
warm that he cannot see very well after a while. The simplest possible demon, as
an example, would be a trap door held over the hole by a spring. A fast molecule
comes through, because it is able to lift the trap door. The slow molecule cannot
get through, and bounces back. But this thing is nothing but our ratchet and
pawl in another form, and ultimately the mechanism will heat up. If we assume
that the specific heat of the demon is not infinite, it must heat up. It has but
a finite number of internal gears and wheels, so it cannot get rid of the extra
heat that it gets from observing the molecules. Soon it is shaking from Brownian
motion so much that it cannot tell whether it is coming or going, much less
whether the molecules are coming or going, so it does not work.

46-4 Irreversibility

Are all the laws of physics reversible? Evidently not! Just try to unscramble
an egg! Run a moving picture backwards, and it takes only a few minutes for
everybody to start laughing. The most natural characteristic of all phenomena is
their obvious irreversibility.

Where does irreversibility come from? It does not come from Newton’s laws.
If we claim that the behavior of everything is ultimately to be understood in
terms of the laws of physics, and if it also turns out that all the equations have
the fantastic property that if we put t = −t we have another solution, then every
phenomenon is reversible. How then does it come about in nature on a large scale
that things are not reversible? Obviously there must be some law, some obscure
but fundamental equation, perhaps in electricity, maybe in neutrino physics, in
which it does matter which way time goes.

Let us discuss that question now. We already know one of those laws, which
says that the entropy is always increasing. If we have a hot thing and a cold thing,
the heat goes from hot to cold. So the law of entropy is one such law. But we
expect to understand the law of entropy from the point of view of mechanics. In
fact, we have just been successful in obtaining all the consequences of the argument
that heat cannot flow backwards by itself from just mechanical arguments, and
we thereby obtained an understanding of the Second Law. Apparently we can get
irreversibility from reversible equations. But was it only a mechanical argument
that we used? Let us look into it more closely.

Since our question has to do with the entropy, our problem is to try to find a
microscopic description of entropy. If we say we have a certain amount of energy
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in something, like a gas, then we can get a microscopic picture of it, and say
that every atom has a certain energy. All these energies added together give us
the total energy. Similarly, maybe every atom has a certain entropy. If we add
everything up, we would have the total entropy. It does not work so well, but let
us see what happens.

As an example, we calculate the entropy difference between a gas at a certain
temperature at one volume, and a gas at the same temperature at another volume.
We remember, from Chapter 44, that we had, for the change in entropy,

∆S =
∫
dQ

T
.

In the present case, the energy of the gas is the same before and after expansion,
since the temperature does not change. So we have to add enough heat to equal
the work done by the gas or, for each little change in volume,

dQ = P dV.

Putting this in for dQ, we get

∆S =
∫ V2

V1

P
dV

T
=
∫ V2

V1

NkT

V

dV

T

= Nk ln V2

V1
,

as we obtained in Chapter 44. For instance, if we expand the volume by a factor
of 2, the entropy change is Nk ln 2.

Let us now consider another interesting example. Suppose we have a box
with a barrier in the middle. On one side is neon (“black” molecules), and on
the other, argon (“white” molecules). Now we take out the barrier, and let them
mix. How much has the entropy changed? It is possible to imagine that instead
of the barrier we have a piston, with holes in it that let the whites through but
not the blacks, and another kind of piston which is the other way around. If we
move one piston to each end, we see that, for each gas, the problem is like the
one we just solved. So we get an entropy change of Nk ln 2, which means that
the entropy has increased by k ln 2 per molecule. The 2 has to do with the extra
room that the molecule has, which is rather peculiar. It is not a property of the
molecule itself, but of how much room the molecule has to run around in. This is
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a strange situation, where entropy increases but where everything has the same
temperature and the same energy! The only thing that is changed is that the
molecules are distributed differently.

We well know that if we just pull the barrier out, everything will get mixed
up after a long time, due to the collisions, the jiggling, the banging, and so on.
Every once in a while a white molecule goes toward a black, and a black one
goes toward a white, and maybe they pass. Gradually the whites worm their
way, by accident, across into the space of blacks, and the blacks worm their way,
by accident, into the space of whites. If we wait long enough we get a mixture.
Clearly, this is an irreversible process in the real world, and ought to involve an
increase in the entropy.

Here we have a simple example of an irreversible process which is completely
composed of reversible events. Every time there is a collision between any two
molecules, they go off in certain directions. If we took a moving picture of a
collision in reverse, there would be nothing wrong with the picture. In fact, one
kind of collision is just as likely as another. So the mixing is completely reversible,
and yet it is irreversible. Everyone knows that if we started with white and with
black, separated, we would get a mixture within a few minutes. If we sat and
looked at it for several more minutes, it would not separate again but would stay
mixed. So we have an irreversibility which is based on reversible situations. But
we also see the reason now. We started with an arrangement which is, in some
sense, ordered. Due to the chaos of the collisions, it becomes disordered. It is the
change from an ordered arrangement to a disordered arrangement which is the
source of the irreversibility.

It is true that if we took a motion picture of this, and showed it backwards,
we would see it gradually become ordered. Someone would say, “That is against
the laws of physics!” So we would run the film over again, and we would look
at every collision. Every one would be perfect, and every one would be obeying
the laws of physics. The reason, of course, is that every molecule’s velocities are
just right, so if the paths are all followed back, they get back to their original
condition. But that is a very unlikely circumstance to have. If we start with the
gas in no special arrangement, just whites and blacks, it will never get back.

46-5 Order and entropy

So we now have to talk about what we mean by disorder and what we mean
by order. It is not a question of pleasant order or unpleasant disorder. What is
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different in our mixed and unmixed cases is the following. Suppose we divide
the space into little volume elements. If we have white and black molecules, how
many ways could we distribute them among the volume elements so that white is
on one side, and black on the other? On the other hand, how many ways could
we distribute them with no restriction on which goes where? Clearly, there are
many more ways to arrange them in the latter case. We measure “disorder” by
the number of ways that the insides can be arranged, so that from the outside it
looks the same. The logarithm of that number of ways is the entropy. The number
of ways in the separated case is less, so the entropy is less, or the “disorder” is
less.

So with the above technical definition of disorder we can understand the
proposition. First, the entropy measures the disorder. Second, the universe
always goes from “order” to “disorder,” so entropy always increases. Order is
not order in the sense that we like the arrangement, but in the sense that the
number of different ways we can hook it up, and still have it look the same from
the outside, is relatively restricted. In the case where we reversed our motion
picture of the gas mixing, there was not as much disorder as we thought. Every
single atom had exactly the correct speed and direction to come out right! The
entropy was not high after all, even though it appeared so.

What about the reversibility of the other physical laws? When we talked
about the electric field which comes from an accelerating charge, it was said that
we must take the retarded field. At a time t and at a distance r from the charge,
we take the field due to the acceleration at a time t− r/c, not t+ r/c. So it looks,
at first, as if the law of electricity is not reversible. Very strangely, however, the
laws we used come from a set of equations called Maxwell’s equations, which
are, in fact, reversible. Furthermore, it is possible to argue that if we were to
use only the advanced field, the field due to the state of affairs at t+ r/c, and
do it absolutely consistently in a completely enclosed space, everything happens
exactly the same way as if we use retarded fields! This apparent irreversibility in
electricity, at least in an enclosure, is thus not an irreversibility at all. We have
some feeling for that already, because we know that when we have an oscillating
charge which generates fields which are bounced from the walls of an enclosure
we ultimately get to an equilibrium in which there is no one-sidedness. The
retarded field approach is only a convenience in the method of solution.

So far as we know, all the fundamental laws of physics, like Newton’s equations,
are reversible. Then where does irreversibility come from? It comes from order
going to disorder, but we do not understand this until we know the origin of the
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order. Why is it that the situations we find ourselves in every day are always
out of equilibrium? One possible explanation is the following. Look again at
our box of mixed white and black molecules. Now it is possible, if we wait long
enough, by sheer, grossly improbable, but possible, accident, that the distribution
of molecules gets to be mostly white on one side and mostly black on the other.
After that, as times goes on and accidents continue, they get more mixed up
again.

Thus one possible explanation of the high degree of order in the present-day
world is that it is just a question of luck. Perhaps our universe happened to
have had a fluctuation of some kind in the past, in which things got somewhat
separated, and now they are running back together again. This kind of theory is
not unsymmetrical, because we can ask what the separated gas looks like either
a little in the future or a little in the past. In either case, we see a grey smear at
the interface, because the molecules are mixing again. No matter which way we
run time, the gas mixes. So this theory would say the irreversibility is just one
of the accidents of life.

We would like to argue that this is not the case. Suppose we do not look at
the whole box at once, but only at a piece of the box. Then, at a certain moment,
suppose we discover a certain amount of order. In this little piece, white and
black are separate. What should we deduce about the condition in places where
we have not yet looked? If we really believe that the order arose from complete
disorder by a fluctuation, we must surely take the most likely fluctuation which
could produce it, and the most likely condition is not that the rest of it has
also become disentangled! Therefore, from the hypothesis that the world is a
fluctuation, all of the predictions are that if we look at a part of the world we
have never seen before, we will find it mixed up, and not like the piece we just
looked at. If our order were due to a fluctuation, we would not expect order
anywhere but where we have just noticed it.

Now we assume the separation is because the past of the universe was really
ordered. It is not due to a fluctuation, but the whole thing used to be white and
black. This theory now predicts that there will be order in other places—the order
is not due to a fluctuation, but due to a much higher ordering at the beginning
of time. Then we would expect to find order in places where we have not yet
looked.

The astronomers, for example, have only looked at some of the stars. Every
day they turn their telescopes to other stars, and the new stars are doing the
same thing as the other stars. We therefore conclude that the universe is not a
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fluctuation, and that the order is a memory of conditions when things started.
This is not to say that we understand the logic of it. For some reason, the universe
at one time had a very low entropy for its energy content, and since then the
entropy has increased. So that is the way toward the future. That is the origin
of all irreversibility, that is what makes the processes of growth and decay, that
makes us remember the past and not the future, remember the things which are
closer to that moment in the history of the universe when the order was higher
than now, and why we are not able to remember things where the disorder is
higher than now, which we call the future. So, as we commented in an earlier
chapter, the entire universe is in a glass of wine, if we look at it closely enough.
In this case the glass of wine is complex, because there is water and glass and
light and everything else.

Another delight of our subject of physics is that even simple and idealized
things, like the ratchet and pawl, work only because they are part of the universe.
The ratchet and pawl works in only one direction because it has some ultimate
contact with the rest of the universe. If the ratchet and pawl were in a box and
isolated for some sufficient time, the wheel would be no more likely to go one way
than the other. But because we pull up the shades and let the light out, because
we cool off on the earth and get heat from the sun, the ratchets and pawls that
we make can turn one way. This one-wayness is interrelated with the fact that
the ratchet is part of the universe. It is part of the universe not only in the sense
that it obeys the physical laws of the universe, but its one-way behavior is tied to
the one-way behavior of the entire universe. It cannot be completely understood
until the mystery of the beginnings of the history of the universe are reduced
still further from speculation to scientific understanding.
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47

Sound. The wave equation

47-1 Waves

In this chapter we shall discuss the phenomenon of waves. This is a phe-
nomenon which appears in many contexts throughout physics, and therefore our
attention should be concentrated on it not only because of the particular example
considered here, which is sound, but also because of the much wider application
of the ideas in all branches of physics.

It was pointed out when we studied the harmonic oscillator that there are
not only mechanical examples of oscillating systems but electrical ones as well.
Waves are related to oscillating systems, except that wave oscillations appear not
only as time-oscillations at one place, but propagate in space as well.

We have really already studied waves. When we studied light, in learning
about the properties of waves in that subject, we paid particular attention to the
interference in space of waves from several sources at different locations and all
at the same frequency. There are two important wave phenomena that we have
not yet discussed which occur in light, i.e., electromagnetic waves, as well as in
any other form of waves. The first of these is the phenomenon of interference
in time rather than interference in space. If we have two sources of sound which
have slightly different frequencies and if we listen to both at the same time,
then sometimes the waves come with the crests together and sometimes with
the crest and trough together (see Fig. 47-1). The rising and falling of the sound
that results is the phenomenon of beats or, in other words, of interference in
time. The second phenomenon involves the wave patterns which result when
the waves are confined within a given volume and reflect back and forth from
walls.

These effects could have been discussed, of course, for the case of electromag-
netic waves. The reason for not having done this is that by using one example we
would not generate the feeling that we are actually learning about many different
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Fig. 47-1. Interference in time of two sound sources with slightly
different frequencies, resulting in beats.

subjects at the same time. In order to emphasize the general applicability of
waves beyond electrodynamics, we consider here a different example, in particular
sound waves.

Other examples of waves are water waves consisting of long swells that we see
coming in to the shore, or the smaller water waves consisting of surface tension
ripples. As another example, there are two kinds of elastic waves in solids; a
compressional (or longitudinal) wave in which the particles of the solid oscillate
back and forth along the direction of propagation of the wave (sound waves in a
gas are of this kind), and a transverse wave in which the particles of the solid
oscillate in a direction perpendicular to the direction of propagation. Earthquake
waves contain elastic waves of both kinds, generated by a motion at some place
in the earth’s crust.

Still another example of waves is found in modern physics. These are waves
which give the probability amplitude of finding a particle at a given place—the
“matter waves” which we have already discussed. Their frequency is proportional
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to the energy and their wave number is proportional to the momentum. They
are the waves of quantum mechanics.

In this chapter we shall consider only waves for which the velocity is inde-
pendent of the wavelength. This is, for example, the case for light in a vacuum.
The speed of light is then the same for radiowaves, blue light, green light, or
for any other wavelength. Because of this behavior, when we began to describe
the wave phenomenon we did not notice at first that we had wave propagation.
Instead, we said that if a charge is moved at one place, the electric field at a
distance x was proportional to the acceleration, not at the time t, but at the
earlier time t − x/c. Therefore if we were to picture the electric field in space
at some instant of time, as in Fig. 47-2, the electric field at a time t later would
have moved the distance ct, as indicated in the figure. Mathematically, we can
say that in the one-dimensional example we are taking, the electric field is a
function of x− ct. We see that at t = 0, it is some function of x. If we consider
a later time, we need only to increase x somewhat to get the same value of the
electric field. For example, if the maximum field occurred at x = 3 at time zero,
then to find the new position of the maximum field at time t we need

x− ct = 3 or x = 3 + ct.

We see that this kind of function represents the propagation of a wave.
Such a function, f(x− ct), then represents a wave. We may summarize this

description of a wave by saying simply that

f(x− ct) = f(x+ ∆x− c(t+ ∆t)),

x

ct

Fig. 47-2. The solid curve shows what the electric field might be like
at some instant of time and the dashed curve shows what the electric
field is at a time t later.
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when ∆x = c∆t. There is, of course, another possibility, i.e., that instead of
a source to the left as indicated in Fig. 47-2, we have a source on the right, so
that the wave propagates toward negative x. Then the wave would be described
by g(x+ ct).

There is the additional possibility that more than one wave exists in space
at the same time, and so the electric field is the sum of the two fields, each one
propagating independently. This behavior of electric fields may be described
by saying that if f1(x − ct) is a wave, and if f2(x − ct) is another wave, then
their sum is also a wave. This is called the principle of superposition. The same
principle is valid in sound.

We are familiar with the fact that if a sound is produced, we hear with
complete fidelity the same sequence of sounds as was generated. If we had high
frequencies travelling faster than low frequencies, a short, sharp noise would be
heard as a succession of musical sounds. Similarly, if red light travelled faster
than blue light, a flash of white light would be seen first as red, then as white,
and finally as blue. We are familiar with the fact that this is not the case. Both
sound and light travel with a speed in air which is very nearly independent of
frequency. Examples of wave propagation-for which this independence is not true
will be considered in Chapter 48.

In the case of light (electromagnetic waves) we gave a rule which determined
the electric field at a point as a result of the acceleration of a charge. One might
expect now that what we should do is give a rule whereby some quality of the
air, say the pressure, is determined at a given distance from a source in terms
of the source motion, delayed by the travel time of the sound. In the case of
light this procedure was acceptable because all that we knew was that a charge
at one place exerts a force on another charge at another place. The details of
propagation from the one place to the other were not absolutely essential. In
the case of sound, however, we know that it propagates through the air between
the source and the hearer, and it is certainly a natural question to ask what,
at any given moment, the pressure of the air is. We would like, in addition, to
know exactly how the air moves. In the case of electricity we could accept a
rule, since we could say that we do not yet know the laws of electricity, but we
cannot make the same remark with regard to sound. We would not be satisfied
with a rule stating how the sound pressure moves through the air, because the
process ought to be understandable as a consequence of the laws of mechanics.
In short, sound is a branch of mechanics, and so it is to be understood in terms
of Newton’s laws. The propagation of sound from one place to another is merely
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a consequence of mechanics and the properties of gases, if it propagates in a gas,
or of the properties of liquids or solids, if it propagates through such mediums.
Later we shall derive the properties of light and its wave propagation in a similar
way from the laws of electrodynamics.

47-2 The propagation of sound

We shall give a derivation of the properties of the propagation of sound
between the source and the receiver as a consequence of Newton’s laws, and we
shall not consider the interaction with the source and the receiver. Ordinarily
we emphasize a result rather than a particular derivation of it. In this chapter
we take the opposite view. The point here, in a certain sense, is the derivation
itself. This problem of explaining new phenomena in terms of old ones, when
we know the laws of the old ones, is perhaps the greatest art of mathematical
physics. The mathematical physicist has two problems: one is to find solutions,
given the equations, and the other is to find the equations which describe a new
phenomenon. The derivation here is an example of the second kind of problem.

We shall take the simplest example here—the propagation of sound in one
dimension. To carry out such a derivation it is necessary first to have some
kind of understanding of what is going on. Fundamentally what is involved is
that if an object is moved at one place in the air, we observe that there is a
disturbance which travels through the air. If we ask what kind of disturbance,
we would say that we would expect that the motion of the object produces a
change of pressure. Of course, if the object is moved gently, the air merely flows
around it, but what we are concerned with is a rapid motion, so that there is not
sufficient time for such a flow. Then, with the motion, the air is compressed and a
change of pressure is produced which pushes on additional air. This air is in turn
compressed, which leads again to an extra pressure, and a wave is propagated.

We now want to formulate such a process. We have to decide what variables
we need. In our particular problem we would need to know how much the air has
moved, so that the air displacement in the sound wave is certainly one relevant
variable. In addition we would like to describe how the air density changes as it
is displaced. The air pressure also changes, so this is another variable of interest.
Then, of course, the air has a velocity, so that we shall have to describe the
velocity of the air particles. The air particles also have accelerations—but as we
list these many variables we soon realize that the velocity and acceleration would
be known if we knew how the air displacement varies with time.

47-5



As we said, we shall consider the wave in one dimension. We can do this
if we are sufficiently far from the source that what we call the wavefronts are
very nearly planes. We thus make our argument simpler by taking the least
complicated example. We shall then be able to say that the displacement, χ,
depends only on x and t, and not on y and z. Therefore the description of the
air is given by χ(x, t).

Is this description complete? It would appear to be far from complete, for we
know none of the details of how the air molecules are moving. They are moving
in all directions, and this state of affairs is certainly not described by means of
this function χ(x, t). From the point of view of kinetic theory, if we have a higher
density of molecules at one place and a lower density adjacent to that place,
the molecules would move away from the region of higher density to the one of
lower density, so as to equalize this difference. Apparently we would not get an
oscillation and there would be no sound. What is necessary to get the sound
wave is this situation: as the molecules rush out of the region of higher density
and higher pressure, they give momentum to the molecules in the adjacent region
of lower density. For sound to be generated, the regions over which the density
and pressure change must be much larger than the distance the molecules travel
before colliding with other molecules. This distance is the mean free path and
the distance between pressure crests and troughs must be much larger than this.
Otherwise the molecules would move freely from the crest to the trough and
immediately smear out the wave.

It is clear that we are going to describe the gas behavior on a scale large
compared with the mean free path, and so the properties of the gas will not be
described in terms of the individual molecules. The displacement, for example,
will be the displacement of the center of mass of a small element of the gas, and
the pressure or density will be the pressure or density in this region. We shall
call the pressure P and the density ρ, and they will be functions of x and t. We
must keep in mind that this description is an approximation which is valid only
when these gas properties do not vary too rapidly with distance.

47-3 The wave equation

The physics of the phenomenon of sound waves thus involves three features:

I. The gas moves and changes the density.
II. The change in density corresponds to a change in pressure.
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III. Pressure inequalities generate gas motion.

Let us consider II first. For a gas, a liquid, or a solid, the pressure is some
function of the density. Before the sound wave arrives, we have equilibrium,
with a pressure P0 and a corresponding density ρ0. A pressure P in the medium
is connected to the density by some characteristic relation P = f(ρ) and, in
particular, the equilibrium pressure P0 is given by P0 = f(ρ0). The changes of
pressure in sound from the equilibrium value are extremely small. A convenient
unit for measuring pressure is the bar , where 1 bar = 105 N/m2. The pressure of
1 standard atmosphere is very nearly 1 bar: 1 atm = 1.0133 bars. In sound we
use a logarithmic scale of intensities since the sensitivity of the ear is roughly
logarithmic. This scale is the decibel scale, in which the acoustic pressure level
for the pressure amplitude P is defined as

I (acoustic pressure level) = 20 log10(P/Pref) in dB, (47.1)

where the reference pressure Pref = 2 × 10−10 bar. A pressure amplitude of
P = 103Pref = 2 × 10−7 bar* corresponds to a moderately intense sound of
60 decibels. We see that the pressure changes in sound are extremely small
compared with the equilibrium, or mean, pressure of 1 atm. The displacements
and the density changes are correspondingly extremely small. In explosions we
do not have such small changes; the excess pressures produced can be greater
than 1 atm. These large pressure changes lead to new effects which we shall
consider later. In sound we do not often consider acoustic intensity levels over
100 dB; 120 dB is a level which is painful to the ear. Therefore, for sound, if we
write

P = P0 + Pe, ρ = ρ0 + ρe, (47.2)

we shall always have the pressure change Pe very small compared with P0 and
the density change ρe very small compared with ρ0. Then

P0 + Pe = f(ρ0 + ρe) = f(ρ0) + ρef
′(ρ0), (47.3)

where P0 = f(ρ0) and f ′(ρ0) stands for the derivative of f(ρ) evaluated at ρ = ρ0.
We can take the second step in this equality only because ρe is very small. We find
in this way that the excess pressure Pe is proportional to the excess density ρe,

* With this choice of Pref, the P is not the peak pressure in the sound wave but the
“root-mean-square” pressure, which is 1/(2)1/2 times the peak pressure.
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and we may call the proportionality factor κ:

Pe = κρe, where κ = f ′(ρ0) = (dP/dρ)0. (47.4)

The relation we needed for II is this very simple one.

OLD VOLUME NEW VOLUME

x x+∆x x+χ(x, t) (x+∆x)+χ(x+∆x, t)

χ(x, t)

χ(x+∆x, t)

Fig. 47-3. The displacement of the air at x is χ(x, t), and at x + ∆x

it is χ(x + ∆x, t). The original volume of the air for a unit area of the
plane wave is ∆x ; the new volume is ∆x + χ(x + ∆x, t)− χ(x, t).

Let us now consider I. We shall suppose that the position of a portion of
air undisturbed by the sound wave is x and the displacement at the time t due
to the sound is χ(x, t), so that its new position is x + χ(x, t), as in Fig. 47-3.
Now the undisturbed position of a nearby portion of air is x+ ∆x, and its new
position is x+ ∆x+ χ(x+ ∆x, t). We can now find the density changes in the
following way. Since we are limiting ourselves to plane waves, we can take a unit
area perpendicular to the x-direction, which is the direction of propagation of
the sound wave. The amount of air, per unit area, in ∆x is then ρ0 ∆x, where ρ0
is the undisturbed, or equilibrium, air density. This air, when displaced by the
sound wave, now lies between x+ χ(x, t) and x+ ∆x+ χ(x+ ∆x, t), so that we
have the same matter in this interval that was in ∆x when undisturbed. If ρ is
the new density, then

ρ0 ∆x = ρ[x+ ∆x+ χ(x+ ∆x, t)− x− χ(x, t)]. (47.5)

Since ∆x is small, we can write χ(x + ∆x, t) − χ(x, t) = (∂χ/∂x) ∆x. This
derivative is a partial derivative, since χ depends on the time as well as on x.
Our equation then is

ρ0 ∆x = ρ

(
∂χ

∂x
∆x+ ∆x

)
(47.6)
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or
ρ0 = (ρ0 + ρe)

∂χ

∂x
+ ρ0 + ρe. (47.7)

Now in sound waves all changes are small so that ρe is small, χ is small, and
∂χ/∂x is also small. Therefore in the relation that we have just found,

ρe = −ρ0
∂χ

∂x
− ρe

∂χ

∂x
, (47.8)

we can neglect ρe ∂χ/∂x compared with ρ0 ∂χ/∂x. Thus we get the relation we
needed for I:

ρe = −ρ0
∂χ

∂x
. (I) (47.9)

This equation is what we would expect physically. If the displacements vary with
x, then there will be density changes. The sign is also right: if the displacement χ
increases with x, so that the air is stretched out, the density must go down.

We now need the third equation, which is the equation of the motion produced
by the pressure. If we know the relation between the force and the pressure, we
can then get the equation of motion. If we take a thin slab of air of length ∆x
and of unit area perpendicular to x, then the mass of air in this slab is ρ0 ∆x and
it has the acceleration ∂2χ/∂t2, so the mass times the acceleration for this slab
of matter is ρ0 ∆x(∂2χ/∂t2). (It makes no difference for small ∆x whether the
acceleration ∂2χ/∂t2 is evaluated at an edge of the slab or at some intermediate
position.) If now we find the force on this matter for a unit area perpendicular to x,
it will then be equal to ρ0 ∆x(∂2χ/∂t2). We have the force in the +x-direction,
at x, of amount P (x, t) per unit area, and we have the force in the opposite
direction, at x+ ∆x, of amount P (x+ ∆x, t) per unit area (Fig. 47-4):

P (x, t)− P (x+ ∆x, t) = −∂P
∂x

∆x = −∂Pe
∂x

∆x, (47.10)

x

P (x, t) P (x + ∆x, t)

∆x

Fig. 47-4. The net force in the positive x-direction produced by the
pressure acting on unit area perpendicular to x is −(∂P/∂x) ∆x .
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since ∆x is small and since the only part of P which changes is the excess
pressure Pe. We now have III:

ρ0
∂2χ

∂t2
= −∂Pe

∂x
, (III) (47.11)

and so we have enough equations to interconnect things and reduce down to one
variable, say to χ. We can eliminate Pe from III by using II, so that we get

ρ0
∂2χ

∂t2
= −κ ∂ρe

∂x
, (47.12)

and then we can use I to eliminate ρe. In this way we find that ρ0 cancels out
and that we are left with

∂2χ

∂t2
= κ

∂2χ

∂x2 . (47.13)

We shall call c2s = κ, so that we can write

∂2χ

∂x2 = 1
c2s

∂2χ

∂t2
. (47.14)

This is the wave equation which describes the behavior of sound in matter.

47-4 Solutions of the wave equation

We now can see whether this equation really does describe the essential
properties of sound waves in matter. We want to deduce that a sound pulse,
or disturbance, will move with a constant speed. We want to verify that two
different pulses can move through each other—the principle of superposition. We
also want to verify that sound can go either to the right or to the left. All these
properties should be contained in this one equation.

We have remarked that any plane-wave disturbance which moves with a
constant velocity v has the form f(x− vt). Now we have to see whether χ(x, t) =
f(x− vt) is a solution of the wave equation. When we calculate ∂χ/∂x, we get
the derivative of the function, ∂χ/∂x = f ′(x − vt). Differentiating once more,
we find

∂2χ

∂x2 = f ′′(x− vt). (47.15)
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The differentiation of this same function with respect to t gives −v times
the derivative of the function, or ∂χ/∂t = −vf ′(x − vt), and the second time
derivative is

∂2χ

∂t2
= v2f ′′(x− vt). (47.16)

It is evident that f(x − vt) will satisfy the wave equation provided the wave
velocity v is equal to cs.

We find, therefore, from the laws of mechanics that any sound disturbance
propagates with the velocity cs, and in addition we find that

cs = κ1/2 = (dP/dρ)1/2
0 ,

and so we have related the wave velocity to a property of the medium.
If we consider a wave travelling in the opposite direction, so that χ(x, t) =

g(x+ vt), it is easy to see that such a disturbance also satisfies the wave equation.
The only difference between such a wave and one travelling from left to right
is in the sign of v, but whether we have x+ vt or x− vt as the variable in the
function does not affect the sign of ∂2χ/∂t2, since it involves only v2. It follows
that we have a solution for waves propagating in either direction with speed cs.

An extremely interesting question is that of superposition. Suppose one
solution of the wave equation has been found, say χ1. This means that the second
derivative of χ1 with respect to x is equal to 1/c2s times the second derivative
of χ1 with respect to t. Now any other solution χ2 has this same property. If we
superpose these two solutions, we have

χ(x, t) = χ1(x, t) + χ2(x, t), (47.17)

and we wish to verify that χ(x, t) is also a wave, i.e., that χ satisfies the wave
equation. We can easily prove this result, since we have

∂2χ

∂x2 = ∂2χ1

∂x2 + ∂2χ2

∂x2 (47.18)

and, in addition,
∂2χ

∂t2
= ∂2χ1

∂t2
+ ∂2χ2

∂t2
. (47.19)

It follows that ∂2χ/∂x2 = (1/c2s) ∂2χ/∂t2, so we have verified the principle of
superposition. The proof of the principle of superposition follows from the fact
that the wave equation is linear in χ.
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We can now expect that a plane light wave propagating in the x-direction,
polarized so that the electric field is in the y-direction, will satisfy the wave
equation

∂2Ey
∂x2 = 1

c2
∂2Ey
∂t2

, (47.20)

where c is the speed of light. This wave equation is one of the consequences of
Maxwell’s equations. The equations of electrodynamics will lead to the wave
equation for light just as the equations of mechanics lead to the wave equation
for sound.

47-5 The speed of sound

Our deduction of the wave equation for sound has given us a formula which
connects the wave speed with the rate of change of pressure with the density at
the normal pressure:

c2s =
(
dP

dρ

)
0
. (47.21)

In evaluating this rate of change, it is essential to know how the temperature
varies. In a sound wave, we would expect that in the region of compression the
temperature would be raised, and that in the region of rarefaction the temperature
would be lowered. Newton was the first to calculate the rate of change of pressure
with density, and he supposed that the temperature remained unchanged. He
argued that the heat was conducted from one region to the other so rapidly that
the temperature could not rise or fall. This argument gives the isothermal speed
of sound, and it is wrong. The correct deduction was given later by Laplace,
who put forward the opposite idea—that the pressure and temperature change
adiabatically in a sound wave. The heat flow from the compressed region to the
rarefied region is negligible so long as the wavelength is long compared with the
mean free path. Under this condition the slight amount of heat flow in a sound
wave does not affect the speed, although it gives a small absorption of the sound
energy. We can expect correctly that this absorption increases as the wavelength
approaches the mean free path, but these wavelengths are smaller by factors of
about a million than the wavelengths of audible sound.

The actual variation of pressure with density in a sound wave is the one that
allows no heat flow. This corresponds to the adiabatic variation, which we found
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to be PV γ = const, where V was the volume. Since the density ρ varies inversely
with V , the adiabatic connection between P and ρ is

P = const ργ , (47.22)

from which we get dP/dρ = γP/ρ. We then have for the speed of sound the
relation

c2s = γP

ρ
. (47.23)

We can also write c2s = γPV/ρV and make use of the relation PV = NkT .
Further, we see that ρV is the mass of gas, which can also be expressed as Nm,
or as µ per mole, where m is the mass of a molecule and µ is the molecular
weight. In this way we find that

c2s = γkT

m
= γRT

µ
, (47.24)

from which it is evident that the speed of sound depends only on the gas temper-
ature and not on the pressure or the density. We also have observed that

kT = 1
3m〈v

2〉, (47.25)

where 〈v2〉 is the mean square of the speed of the molecules. It follows that
c2s = (γ/3)〈v2〉, or

cs =
(
γ

3

)1/2
vav. (47.26)

This equation states that the speed of sound is some number which is roughly
1/(3)1/2 times some average speed, vav, of the molecules (the square root of the
mean square velocity). In other words, the speed of sound is of the same order of
magnitude as the speed of the molecules, and is actually somewhat less than this
average speed.

Of course we could expect such a result, because a disturbance like a change
in pressure is, after all, propagated by the motion of the molecules. However,
such an argument does not tell us the precise propagation speed; it could have
turned out that sound was carried primarily by the fastest molecules, or by the
slowest molecules. It is reasonable and satisfying that the speed of sound is
roughly 1

2 of the average molecular speed vav.
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48

Beats

48-1 Adding two waves

Some time ago we discussed in considerable detail the properties of light
waves and their interference—that is, the effects of the superposition of two waves
from different sources. In all these analyses we assumed that the frequencies
of the sources were all the same. In this chapter we shall discuss some of the
phenomena which result from the interference of two sources which have different
frequencies.

It is easy to guess what is going to happen. Proceeding in the same way as we
have done previously, suppose we have two equal oscillating sources of the same
frequency whose phases are so adjusted, say, that the signals arrive in phase at
some point P . At that point, if it is light, the light is very strong; if it is sound,
it is very loud; or if it is electrons, many of them arrive. On the other hand, if
the arriving signals were 180◦ out of phase, we would get no signal at P , because
the net amplitude there is then a minimum. Now suppose that someone twists
the “phase knob” of one of the sources and changes the phase at P back and
forth, say, first making it 0◦ and then 180◦, and so on. Of course, we would then
find variations in the net signal strength. Now we also see that if the phase of
one source is slowly changing relative to that of the other in a gradual, uniform
manner, starting at zero, going up to ten, twenty, thirty, forty degrees, and so
on, then what we would measure at P would be a series of strong and weak
“pulsations,” because when the phase shifts through 360◦ the amplitude returns
to a maximum. Of course, to say that one source is shifting its phase relative to
another at a uniform rate is the same as saying that the number of oscillations
per second is slightly different for the two.

So we know the answer: if we have two sources at slightly different frequencies
we should find, as a net result, an oscillation with a slowly pulsating intensity.
That is all there really is to the subject!
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cos 10πt

cos 8πt

Fig. 48-1. The superposition of two cosine waves with frequencies in
the ratio 8 : 10. The precise repetition of the pattern within each “beat”
is not typical of the general case.

It is very easy to formulate this result mathematically also. Suppose, for
example, that we have two waves, and that we do not worry for the moment
about all the spatial relations, but simply analyze what arrives at P . From one
source, let us say, we would have cosω1t, and from the other source, cosω2t,
where the two ω’s are not exactly the same. Of course the amplitudes may not
be the same, either, but we can solve the general problem later; let us first take
the case where the amplitudes are equal. Then the total amplitude at P is the
sum of these two cosines. If we plot the amplitudes of the waves against the time,
as in Fig. 48-1, we see that where the crests coincide we get a strong wave, and
where a trough and crest coincide we get practically zero, and then when the
crests coincide again we get a strong wave again.

Mathematically, we need only to add two cosines and rearrange the result
somehow. There exist a number of useful relations among cosines which are not
difficult to derive. Of course we know that

ei(a+b) = eiaeib, (48.1)

and that eia has a real part, cos a, and an imaginary part, sin a. If we take the
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real part of ei(a+b), we get cos (a+ b). If we multiply out:

eiaeib = (cos a+ i sin a)(cos b+ i sin b),

we get cos a cos b− sin a sin b, plus some imaginary parts. But we now need only
the real part, so we have

cos (a+ b) = cos a cos b− sin a sin b. (48.2)

Now if we change the sign of b, since the cosine does not change sign while the
sine does, the same equation, for negative b, is

cos (a− b) = cos a cos b+ sin a sin b. (48.3)

If we add these two equations together, we lose the sines and we learn that the
product of two cosines is half the cosine of the sum, plus half the cosine of the
difference:

cos a cos b = 1
2 cos (a+ b) + 1

2 cos (a− b). (48.4)

Now we can also reverse the formula and find a formula for cosα+ cosβ if we
simply let α = a+ b and β = a− b. That is, a = 1

2 (α+ β) and b = 1
2 (α− β), so

that
cosα+ cosβ = 2 cos 1

2 (α+ β) cos 1
2 (α− β). (48.5)

Now we can analyze our problem. The sum of cosω1t and cosω2t is

cosω1t+ cosω2t = 2 cos 1
2 (ω1 + ω2)t cos 1

2 (ω1 − ω2)t. (48.6)

Now let us suppose that the two frequencies are nearly the same, so that 1
2 (ω1+ω2)

is the average frequency, and is more or less the same as either. But ω1 − ω2
is much smaller than ω1 or ω2 because, as we suppose, ω1 and ω2 are nearly
equal. That means that we can represent the solution by saying that there is
a high-frequency cosine wave more or less like the ones we started with, but
that its “size” is slowly changing—its “size” is pulsating with a frequency which
appears to be 1

2 (ω1 − ω2). But is this the frequency at which the beats are
heard? Although (48.6) says that the amplitude goes as cos 1

2 (ω1 − ω2)t, what it
is really telling us is that the high-frequency oscillations are contained between
two opposed cosine curves (shown dotted in Fig. 48-1). On this basis one could
say that the amplitude varies at the frequency 1

2 (ω1 − ω2), but if we are talking
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about the intensity of the wave we must think of it as having twice this frequency.
That is, the modulation of the amplitude, in the sense of the strength of its
intensity, is at frequency ω1 − ω2, although the formula tells us that we multiply
by a cosine wave at half that frequency. The technical basis for the difference
is that the high frequency-wave has a little different phase relationship in the
second half-cycle.

Ignoring this small complication, we may conclude that if we add two waves of
frequency ω1 and ω2, we will get a net resulting wave of average frequency 1

2 (ω1 +
ω2) which oscillates in strength with a frequency ω1 − ω2.

If the two amplitudes are different, we can do it all over again by multiplying
the cosines by different amplitudes A1 and A2, and do a lot of mathematics,
rearranging, and so on, using equations like (48.2)–(48.5). However, there are
other, easier ways of doing the same analysis. For example, we know that it
is much easier to work with exponentials than with sines and cosines and that
we can represent A1 cosω1t as the real part of A1e

iω1t. The other wave would
similarly be the real part of A2e

iω2t. If we add the two, we get A1e
iω1t +A2e

iω2t.
If we then factor out the average frequency, we have

A1e
iω1t +A2e

iω2t = ei(ω1+ω2)t/2[A1e
i(ω1−ω2)t/2 +A2e

−i(ω1−ω2)t/2]. (48.7)

Again we have the high-frequency wave with a modulation at the lower frequency.

48-2 Beat notes and modulation

If we are now asked for the intensity of the wave of Eq. (48.7), we can either
take the absolute square of the left side, or of the right side. Let us take the left
side. The intensity then is

I = A2
1 +A2

2 + 2A1A2 cos (ω1 − ω2)t. (48.8)

We see that the intensity swells and falls at a frequency ω1−ω2, varying between
the limits (A1 +A2)2 and (A1 −A2)2. If A1 6= A2, the minimum intensity is not
zero.

One more way to represent this idea is by means of a drawing, like Fig. 48-2.
We draw a vector of length A1, rotating at a frequency ω1, to represent one of
the waves in the complex plane. We draw another vector of length A2, going
around at a frequency ω2, to represent the second wave. If the two frequencies
are exactly equal, their resultant is of fixed length as it keeps revolving, and we
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Fig. 48-2. The resultant of two complex vectors of equal frequency.
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Fig. 48-3. The resultant of two complex vectors of unequal frequency,
as seen in the rotating frame of reference of one vector. Nine successive
positions of the slowly rotating vector are shown.

get a definite, fixed intensity from the two. But if the frequencies are slightly
different, the two complex vectors go around at different speeds. Figure 48-3
shows what the situation looks like relative to the vector A1e

iω1t. We see that
A2 is turning slowly away from A1, and so the amplitude that we get by adding
the two is first strong, and then, as it opens out, when it gets to the 180◦ relative
position the resultant gets particularly weak, and so on. As the vectors go around,
the amplitude of the sum vector gets bigger and smaller, and the intensity thus
pulsates. It is a relatively simple idea, and there are many different ways of
representing the same thing.

The effect is very easy to observe experimentally. In the case of acoustics, we
may arrange two loudspeakers driven by two separate oscillators, one for each
loudspeaker, so that they each make a tone. We thus receive one note from one
source and a different note from the other source. If we make the frequencies
exactly the same, the resulting effect will have a definite strength at a given space
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location. If we then de-tune them a little bit, we hear some variations in the
intensity. The farther they are de-tuned, the more rapid are the variations of sound.
The ear has some trouble following variations more rapid than ten or so per second.

We may also see the effect on an oscilloscope which simply displays the sum
of the currents to the two speakers. If the frequency of pulsing is relatively low,
we simply see a sinusoidal wave train whose amplitude pulsates, but as we make
the pulsations more rapid we see the kind of wave shown in Fig. 48-1. As we go
to greater frequency differences, the “bumps” move closer together. Also, if the
amplitudes are not equal and we make one signal stronger than the other, then
we get a wave whose amplitude does not ever become zero, just as we expect.
Everything works the way it should, both acoustically and electrically.

The opposite phenomenon occurs too! In radio transmission using so-called
amplitude modulation (am), the sound is broadcast by the radio station as
follows: the radio transmitter has an ac electric oscillation which is at a very
high frequency, for example 800 kilocycles per second, in the broadcast band.
If this carrier signal is turned on, the radio station emits a wave which is of
uniform amplitude at 800,000 oscillations a second. The way the “information”
is transmitted, the useless kind of information about what kind of car to buy, is
that when somebody talks into a microphone the amplitude of the carrier signal
is changed in step with the vibrations of sound entering the microphone.

If we take as the simplest mathematical case the situation where a soprano
is singing a perfect note, with perfect sinusoidal oscillations of her vocal cords,
then we get a signal whose strength is alternating as shown in Fig. 48-4. The
audiofrequency alternation is then recovered in the receiver; we get rid of the
carrier wave and just look at the envelope which represents the oscillations of the
vocal cords, or the sound of the singer. The loudspeaker then makes corresponding
vibrations at the same frequency in the air, and the listener is then essentially

Fig. 48-4. A modulated carrier wave. In this schematic sketch,
ωc/ωm = 5. In an actual radiowave, ωc/ωm ∼ 100.
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unable to tell the difference, so they say. Because of a number of distortions and
other subtle effects, it is, in fact, possible to tell whether we are listening to a
radio or to a real soprano; otherwise the idea is as indicated above.

48-3 Side bands

Mathematically, the modulated wave described above would be expressed as

S = (1 + b cosωmt) cosωct, (48.9)

where ωc represents the frequency of the carrier and ωm is the frequency of the
audio tone. Again we use all those theorems about the cosines, or we can use eiθ;
it makes no difference—it is easier with eiθ, but it is the same thing. We then get

S = cosωct+ 1
2b cos (ωc + ωm)t+ 1

2b cos (ωc − ωm)t. (48.10)

So, from another point of view, we can say that the output wave of the system
consists of three waves added in superposition: first, the regular wave at the
frequency ωc, that is, at the carrier frequency, and then two new waves at two
new frequencies. One is the carrier frequency plus the modulation frequency, and
the other is the carrier frequency minus the modulation frequency. If, therefore,
we make some kind of plot of the intensity being generated by the generator as
a function of frequency, we would find a lot of intensity at the frequency of the
carrier, naturally, but when a singer started to sing, we would suddenly also find
intensity proportional to the strength of the singer, b2, at frequency ωc + ωm
and ωc − ωm, as shown in Fig. 48-5. These are called side bands; when there is
a modulated signal from the transmitter, there are side bands. If there is more
than one note at the same time, say ωm and ωm′ , there are two instruments

ω

I

ωc − ωm ωc ωc + ωm

Fig. 48-5. The frequency spectrum of a carrier wave ωc modulated
by a single cosine wave ωm.
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playing; or if there is any other complicated cosine wave, then, of course, we can
see from the mathematics that we get some more waves that correspond to the
frequencies ωc ± ωm′ .

Therefore, when there is a complicated modulation that can be represented as
the sum of many cosines,* we find that the actual transmitter is transmitting over
a range of frequencies, namely the carrier frequency plus or minus the maximum
frequency that the modulation signal contains.

Although at first we might believe that a radio transmitter transmits only
at the nominal frequency of the carrier, since there are big, superstable crystal
oscillators in there, and everything is adjusted to be at precisely 800 kilocycles,
the moment someone announces that they are at 800 kilocycles, he modulates
the 800 kilocycles, and so they are no longer precisely at 800 kilocycles! Suppose
that the amplifiers are so built that they are able to transmit over a good range
of the ear’s sensitivity (the ear can hear up to 20,000 cycles per second, but
usually radio transmitters and receivers do not work beyond 10,000, so we do
not hear the highest parts), then, when the man speaks, his voice may contain
frequencies ranging up, say, to 10,000 cycles, so the transmitter is transmitting
frequencies which may range from 790 to 810 kilocycles per second. Now if there
were another station at 795 kc/sec, there would be a lot of confusion. Also, if we
made our receiver so sensitive that it picked up only 800, and did not pick up the
10 kilocycles on either side, we would not hear what the man was saying, because
the information would be on these other frequencies! Therefore it is absolutely
essential to keep the stations a certain distance apart, so that their side bands
do not overlap and, also, the receiver must not be so selective that it does not
permit reception of the side bands as well as of the main nominal frequency. In
the case of sound, this problem does not really cause much trouble. We can hear
over a ±20 kc/sec range, and we have usually from 500 to 1500 kc/sec in the
broadcast band, so there is plenty of room for lots of stations.

The television problem is more difficult. As the electron beam goes across
the face of the picture tube, there are various little spots of light and dark. That

* A slight side remark: In what circumstances can a curve be represented as a sum of a lot
of cosines? Answer: In all ordinary circumstances, except for certain cases the mathematicians
can dream up. Of course, the curve must have only one value at a given point, and it must
not be a crazy curve which jumps an infinite number of times in an infinitesimal distance, or
something like that. But aside from such restrictions any reasonable curve (one that a singer is
going to be able to make by shaking her vocal cords) can always be compounded by adding
cosine waves together.
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“light” and “dark” is the “signal.” Now ordinarily the beam scans over the whole
picture, 500 lines, approximately, in a thirtieth of a second. Let us consider
that the resolution of the picture vertically and horizontally is more or less the
same, so that there are the same number of spots per inch along a scan line.
We want to be able to distinguish dark from light, dark from light, dark from
light, over, say, 500 lines. In order to be able to do this with cosine waves, the
shortest wavelength needed thus corresponds to a wavelength, from maximum
to maximum, of one 250th of the screen size. So we have 250× 500× 30 pieces
of information per second. The highest frequency that we are going to carry,
therefore, is close to 4 megacycles per second. Actually, to keep the television
stations apart, we have to use a little bit more than this, about 6 mc/sec; part
of it is used to carry the sound signal, and other information. So, television
channels are 6 megacycles per second wide. It certainly would not be possible
to transmit tv on an 800 kc/sec carrier, since we cannot modulate at a higher
frequency than the carrier.

At any rate, the television band starts at 54 megacycles. The first transmission
channel, which is channel 2 (!), has a frequency range from 54 to 60 mc/sec,
which is 6 mc/sec wide. “But,” one might say, “we have just proved that there
were side bands on both sides, and therefore it should be twice that wide.” It
turns out that the radio engineers are rather clever. If we analyze the modulation
signal using not just cosine terms, but cosine and sine terms, to allow for phase
differences, we then see that there is a definite, invariant relationship between
the side band on the high-frequency side and the side band on the low-frequency
side. What we mean is that there is no new information on that other side band.
So what is done is to suppress one side band, and the receiver is wired inside
such that the information which is missing is reconstituted by looking at the
single side band and the carrier. Single side-band transmission is a clever scheme
for decreasing the band widths needed to transmit information.

48-4 Localized wave trains

The next subject we shall discuss is the interference of waves in both space
and time. Suppose that we have two waves travelling in space. We know, of
course, that we can represent a wave travelling in space by ei(ωt−kx). This might
be, for example, the displacement in a sound wave. This is a solution of the
wave equation provided that ω2 = k2c2, where c is the speed of propagation of
the wave. In this case we can write it as e−ik(x−ct), which is of the general form
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f(x− ct). Therefore this must be a wave which is travelling at this velocity, ω/k,
and that is c and everything is all right.

Now we want to add two such waves together. Suppose we have a wave that is
travelling with one frequency, and another wave travelling with another frequency.
We leave to the reader to consider the case where the amplitudes are different; it
makes no real difference. Thus we want to add ei(ω1t−k1x) + ei(ω2t−k2x). We can
add these by the same kind of mathematics we used when we added signal waves.
Of course, if c is the same for both, this is easy, since it is the same as what we
did before:

eiω1(t−x/c) + eiω2(t−x/c) = eiω1t
′
+ eiω2t

′
, (48.11)

except that t′ = t− x/c is the variable instead of t. So we get the same kind of
modulations, naturally, but we see, of course, that those modulations are moving
along with the wave. In other words, if we added two waves, but these waves
were not just oscillating, but also moving in space, then the resultant wave would
move along also, at the same speed.

Now we would like to generalize this to the case of waves in which the
relationship between the frequency and the wave number k is not so simple.
Example: material having an index of refraction. We have already studied the
theory of the index of refraction in Chapter 31, where we found that we could
write k = nω/c, where n is the index of refraction. As an interesting example,
for x-rays we found that the index n is

n = 1− Nq2
e

2ε0mω2 . (48.12)

We actually derived a more complicated formula in Chapter 31, but this one is
as good as any, as an example.

Incidentally, we know that even when ω and k are not linearly proportional,
the ratio ω/k is certainly the speed of propagation for the particular frequency
and wave number. We call this ratio the phase velocity; it is the speed at which
the phase, or the nodes of a single wave, would move along:

vp = ω

k
. (48.13)

This phase velocity, for the case of x-rays in glass, is greater than the speed of
light in vacuum (since n in 48.12 is less than 1), and that is a bit bothersome,
because we do not think we can send signals faster than the speed of light!
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What we are going to discuss now is the interference of two waves in which ω
and k have a definite formula relating them. The above formula for n says that
k is given as a definite function of ω. To be specific, in this particular problem,
the formula for k in terms of ω is

k = ω

c
− a

ωc
, (48.14)

where a = Nq2
e/2ε0m, a constant. At any rate, for each frequency there is a

definite wave number, and we want to add two such waves together.
Let us do it just as we did in Eq. (48.7):

ei(ω1t−k1x) + ei(ω2t−k2x) = ei[(ω1+ω2)t−(k1+k2)x]/2

× {ei[(ω1−ω2)t−(k1−k2)x]/2 + e−i[(ω1−ω2)t−(k1−k2)x]/2}. (48.15)

So we have a modulated wave again, a wave which travels with the mean frequency
and the mean wave number, but whose strength is varying with a form which
depends on the difference frequency and the difference wave number.

Now let us take the case that the difference between the two waves is relatively
small. Let us suppose that we are adding two waves whose frequencies are nearly
equal; then (ω1 + ω2)/2 is practically the same as either one of the ω’s, and
similarly for (k1 + k2)/2. Thus the speed of the wave, the fast oscillations,
the nodes, is still essentially ω/k. But look, the speed of propagation of the
modulation is not the same! How much do we have to change x to account for a
certain amount of t? The speed of this modulation wave is the ratio

vM = ω1 − ω2

k1 − k2
. (48.16)

The speed of modulation is sometimes called the group velocity. If we take the
case that the difference in frequency is relatively small, and the difference in
wave number is then also relatively small, then this expression approaches, in
the limit,

vg = dω

dk
. (48.17)

In other words, for the slowest modulation, the slowest beats, there is a definite
speed at which they travel which is not the same as the phase speed of the
waves—what a mysterious thing!
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The group velocity is the derivative of ω with respect to k, and the phase
velocity is ω/k.

Let us see if we can understand why. Consider two waves, again of slightly
different wavelength, as in Fig. 48-1. They are out of phase, in phase, out of
phase, and so on. Now these waves represent, really, the waves in space travelling
with slightly different frequencies also. Now because the phase velocity, the
velocity of the nodes of these two waves, is not precisely the same, something
new happens. Suppose we ride along with one of the waves and look at the other
one; if they both went at the same speed, then the other wave would stay right
where it was relative to us, as we ride along on this crest. We ride on that crest
and right opposite us we see a crest; if the two velocities are equal the crests stay
on top of each other. But it is not so that the two velocities are really equal.
There is only a small difference in frequency and therefore only a small difference
in velocity, but because of that difference in velocity, as we ride along the other
wave moves slowly forward, say, or behind, relative to our wave. So as time goes
on, what happens to the node? If we move one wave train just a shade forward,
the node moves forward (or backward) a considerable distance. That is, the sum
of these two waves has an envelope, and as the waves travel along, the envelope
rides on them at a different speed. The group velocity is the speed at which
modulated signals would be transmitted.

If we made a signal, i.e., some kind of change in the wave that one could
recognize when he listened to it, a kind of modulation, then that modulation
would travel at the group velocity, provided that the modulations were relatively
slow. (When they are fast, it is much more difficult to analyze.)

Now we may show (at long last), that the speed of propagation of x-rays in a
block of carbon is not greater than the speed of light, although the phase velocity
is greater than the speed of light. In order to do that, we must find dω/dk, which
we get by differentiating (48.14): dk/dω = 1/c + a/ω2c. The group velocity,
therefore, is the reciprocal of this, namely,

vg = c

1 + a/ω2 , (48.18)

which is smaller than c! So although the phases can travel faster than the speed
of light, the modulation signals travel slower, and that is the resolution of the
apparent paradox! Of course, if we have the simple case that ω = kc, then dω/dk
is also c. So when all the phases have the same velocity, naturally the group has
the same velocity.
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48-5 Probability amplitudes for particles

Let us now consider one more example of the phase velocity which is extremely
interesting. It has to do with quantum mechanics. We know that the amplitude
to find a particle at a place can, in some circumstances, vary in space and time,
let us say in one dimension, in this manner:

ψ = Aei(ωt−kx), (48.19)

where ω is the frequency, which is related to the classical idea of the energy
through E = ~ω, and k is the wave number, which is related to the momentum
through p = ~k. We would say the particle had a definite momentum p if the
wave number were exactly k, that is, a perfect wave which goes on with the
same amplitude everywhere. Equation (48.19) gives the amplitude, and if we
take the absolute square, we get the relative probability for finding the particle
as a function of position and time. This is a constant, which means that the
probability is the same to find a particle anywhere. Now suppose, instead, that
we have a situation where we know that the particle is more likely to be at one
place than at another. We would represent such a situation by a wave which has
a maximum and dies out on either side (Fig. 48-6). (It is not quite the same as a
wave like (48.1) which has a series of maxima, but it is possible, by adding several
waves of nearly the same ω and k together, to get rid of all but one maximum.)

x

ψ(x)

Fig. 48-6. A localized wave train.

Now in those circumstances, since the square of (48.19) represents the chance
of finding a particle somewhere, we know that at a given instant the particle
is most likely to be near the center of the “lump,” where the amplitude of the
wave is maximum. If now we wait a few moments, the waves will move, and
after some time the “lump” will be somewhere else. If we knew that the particle
originally was situated somewhere, classically, we would expect that it would
later be elsewhere as a matter of fact, because it has a speed, after all, and a
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momentum. The quantum theory, then, will go into the correct classical theory
for the relationship of momentum, energy, and velocity only if the group velocity,
the velocity of the modulation, is equal to the velocity that we would obtain
classically for a particle of the same momentum.

It is now necessary to demonstrate that this is, or is not, the case. According
to the classical theory, the energy is related to the velocity through an equation
like

E = mc2√
1− v2/c2

. (48.20)

Similarly, the momentum is
p = mv√

1− v2/c2
. (48.21)

That is the classical theory, and as a consequence of the classical theory, by
eliminating v, we can show that

E2 − p2c2 = m2c4.

That is the four-dimensional grand result that we have talked and talked about,
that pµpµ = m2; that is the relation between energy and momentum in the
classical theory. Now that means, since these E’s and p’s are going to become
ω’s and k’s, by substitution of E = ~ω and p = ~k, that for quantum mechanics
it is necessary that

~2ω2

c2
− ~2k2 = m2c2. (48.22)

This, then, is the relationship between the frequency and the wave number of a
quantum-mechanical amplitude wave representing a particle of mass m. From
this equation we can deduce that ω is

ω = c
√
k2 +m2c2/~2.

The phase velocity, ω/k, is here again faster than the speed of light!
Now let us look at the group velocity. The group velocity should be dω/dk,

the speed at which the modulations move. We have to differentiate a square root,
which is not very difficult. The derivative is

dω

dk
= kc√

k2 +m2c2/~2
.
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Now the square root is, after all, ω/c, so we could write this as dω/dk = c2k/ω.
Further, k/ω is p/E, so

vg = c2p

E
.

But from (48.20) and (48.21), c2p/E = v, the velocity of the particle, according to
classical mechanics. So we see that whereas the fundamental quantum-mechanical
relationship E = ~ω and p = ~k, for the identification of ω and k with the classical
E and p, only produces the equation ω2−k2c2 = m2c4/~2, now we also understand
the relationships (48.20) and (48.21) which connected E and p to the velocity. Of
course the group velocity must be the velocity of the particle if the interpretation
is going to make any sense. If we think the particle is over here at one time,
and then ten minutes later we think it is over there, as the quantum mechanics
said, the distance traversed by the “lump,” divided by the time interval, must
be, classically, the velocity of the particle.

48-6 Waves in three dimensions

We shall now bring our discussion of waves to a close with a few general
remarks about the wave equation. These remarks are intended to give some
view of the future—not that we can understand everything exactly just now, but
rather to see what things are going to look like when we study waves a little
more. First of all, the wave equation for sound in one dimension was

∂2χ

∂x2 = 1
c2
∂2χ

∂t2
,

where c is the speed of whatever the wave is—in the case of sound, it is the sound
speed; in the case of light, it is the speed of light. We showed that for a sound
wave the displacements would propagate themselves at a certain speed. But
the excess pressure also propagates at a certain speed, and so does the excess
density. So we should expect that the pressure would satisfy the same equation,
as indeed it does. We shall leave it to the reader to prove that it does. Hint:
ρe is proportional to the rate of change of χ with respect to x. Therefore if we
differentiate the wave equation with respect to x, we will immediately discover
that ∂χ/∂x satisfies the same equation. That is to say, ρe satisfies the same
equation. But Pe is proportional to ρe, and therefore Pe does too. So the pressure,
the displacements, everything, satisfy the same wave equation.
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Usually one sees the wave equation for sound written in terms of pressure
instead of in terms of displacement, because the pressure is a scalar and has no
direction. But the displacement is a vector and has direction, and it is thus easier
to analyze the pressure.

The next matter we discuss has to do with the wave equation in three
dimensions. We know that the sound wave solution in one dimension is ei(ωt−kx),
with ω = kcs, but we also know that in three dimensions a wave would be
represented by ei(ωt−kxx−kyy−kzz), where, in this case, ω2 = k2cs, which is, of
course, (k2

x + k2
y + k2

z)c2s. Now what we want to do is to guess what the correct
wave equation in three dimensions is. Naturally, for the case of sound this can be
deduced by going through the same dynamic argument in three dimensions that
we made in one dimension. But we shall not do that; instead we just write down
what comes out: the equation for the pressure (or displacement, or anything) is

∂2Pe
∂x2 + ∂2Pe

∂y2 + ∂2Pe
∂z2 = 1

c2s

∂2Pe
∂t2

. (48.23)

That this is true can be verified by substituting in ei(ωt−k·r). Clearly, every time
we differentiate with respect to x, we multiply by −ikx. If we differentiate twice,
it is equivalent to multiplying by −k2

x, so the first term would become −k2
xPe,

for that wave. Similarly, the second term becomes −k2
yPe, and the third term

becomes −k2
zPe. On the right, we get −(ω2/c2s)Pe. Then, if we take away the Pe’s

and change the sign, we see that the relationship between k and ω is the one
that we want.

Working backwards again, we cannot resist writing down the grand equation
which corresponds to the dispersion equation (48.22) for quantum-mechanical
waves. If φ represents the amplitude for finding a particle at position x, y, z, at
the time t, then the great equation of quantum mechanics for free particles is
this:

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 −
1
c2
∂2φ

∂t2
= m2c2

~2 φ. (48.24)

First of all, the relativity character of this expression is suggested by the ap-
pearance of x, y, z and t in the nice combination relativity usually involves.
Second, it is a wave equation which, if we try a plane wave, would produce as
a consequence that −k2 + ω2/c2 = m2c2/~2, which is the right relationship for
quantum mechanics. There is still another great thing contained in the wave
equation: the fact that any superposition of waves is also a solution. So this
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equation contains all of the quantum mechanics and the relativity that we have
been discussing so far, at least so long as it deals with a single particle in empty
space with no external potentials or forces on it!

48-7 Normal modes

Now we turn to another example of the phenomenon of beats which is rather
curious and a little different. Imagine two equal pendulums which have, between
them, a rather weak spring connection. They are made as nearly as possible the
same length. If we pull one aside and let go, it moves back and forth, and it pulls
on the connecting spring as it moves back and forth, and so it really is a machine
for generating a force which has the natural frequency of the other pendulum.
Therefore, as a consequence of the theory of resonance, which we studied before,
when we put a force on something at just the right frequency, it will drive it. So,
sure enough, one pendulum moving back and forth drives the other. However, in
this circumstance there is a new thing happening, because the total energy of the
system is finite, so when one pendulum pours its energy into the other to drive
it, it finds itself gradually losing energy, until, if the timing is just right along
with the speed, it loses all its energy and is reduced to a stationary condition!
Then, of course, it is the other pendulum ball that has all the energy and the
first one which has none, and as time goes on we see that it works also in the
opposite direction, and that the energy is passed back into the first ball; this is a
very interesting and amusing phenomenon. We said, however, that this is related
to the theory of beats, and we must now explain how we can analyze this motion
from the point of view of the theory of beats.

We note that the motion of either of the two balls is an oscillation which has
an amplitude which changes cyclically. Therefore the motion of one of the balls is
presumably analyzable in a different way, in that it is the sum of two oscillations,
present at the same time but having two slightly different frequencies. Therefore
it ought to be possible to find two other motions in this system, and to claim
that what we saw was a superposition of the two solutions, because this is of
course a linear system. Indeed, it is easy to find two ways that we could start
the motion, each one of which is a perfect, single-frequency motion—absolutely
periodic. The motion that we started with before was not strictly periodic, since
it did not last; soon one ball was passing energy to the other and so changing its
amplitude; but there are ways of starting the motion so that nothing changes and,
of course, as soon as we see it we understand why. For example, if we made both
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pendulums go together, then, since they are of the same length and the spring is
not then doing anything, they will of course continue to swing like that for all
time, assuming no friction and that everything is perfect. On the other hand,
there is another possible motion which also has a definite frequency: that is, if
we move the pendulums oppositely, pulling them aside exactly equal distances,
then again they would be in absolutely periodic motion. We can appreciate that
the spring just adds a little to the restoring force that the gravity supplies, that
is all, and the system just keeps oscillating at a slightly higher frequency than
in the first case. Why higher? Because the spring is pulling, in addition to the
gravitation, and it makes the system a little “stiffer,” so that the frequency of
this motion is just a shade higher than that of the other.

Thus this system has two ways in which it can oscillate with unchanging
amplitude: it can either oscillate in a manner in which both pendulums go the
same way and oscillate all the time at one frequency, or they could go in opposite
directions at a slightly higher frequency.

Now the actual motion of the thing, because the system is linear, can be
represented as a superposition of the two. (The subject of this chapter, remember,
is the effects of adding two motions with different frequencies.) So think what
would happen if we combined these two solutions. If at t = 0 the two motions
are started with equal amplitude and in the same phase, the sum of the two
motions means that one ball, having been impressed one way by the first motion
and the other way by the second motion, is at zero, while the other ball, having
been displaced the same way in both motions, has a large amplitude. As time
goes on, however, the two basic motions proceed independently, so the phase
of one relative to the other is slowly shifting. That means, then, that after a
sufficiently long time, when the time is enough that one motion could have gone
“900 1

2” oscillations, while the other went only “900,” the relative phase would be
just reversed with respect to what it was before. That is, the large-amplitude
motion will have fallen to zero, and in the meantime, of course, the initially
motionless ball will have attained full strength!

So we see that we could analyze this complicated motion either by the idea
that there is a resonance and that one passes energy to the other, or else by the
superposition of two constant-amplitude motions at two different frequencies.
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49

Modes

49-1 The reflection of waves

This chapter will consider some of the remarkable phenomena which are a
result of confining waves in some finite region. We will be led first to discover a few
particular facts about vibrating strings, for example, and then the generalization
of these facts will give us a principle which is probably the most far-reaching
principle of mathematical physics.

Our first example of confining waves will be to confine a wave at one boundary.
Let us take the simple example of a one-dimensional wave on a string. One could
equally well consider sound in one dimension against a wall, or other situations
of a similar nature, but the example of a string will be sufficient for our present
purposes. Suppose that the string is held at one end, for example by fastening
it to an “infinitely solid” wall. This can be expressed mathematically by saying
that the displacement y of the string at the position x = 0 must be zero, because
the end does not move. Now if it were not for the wall, we know that the general
solution for the motion is the sum of two functions, F (x− ct) and G(x+ ct), the
first representing a wave travelling one way in the string, and the second a wave
travelling the other way in the string:

y = F (x− ct) +G(x+ ct) (49.1)

is the general solution for any string. But we have next to satisfy the condition
that the string does not move at one end. If we put x = 0 in Eq. (49.1) and
examine y for any value of t, we get y = F (−ct) +G(+ct). Now if this is to be
zero for all times, it means that the function G(ct) must be −F (−ct). In other
words, G of anything must be −F of minus that same thing. If this result is put
back into Eq. (49.1), we find that the solution for the problem is

y = F (x− ct)− F (−x− ct). (49.2)

It is easy to check that we will get y = 0 if we set x = 0.
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x

Fixed End
F (x + ct)

−F (−x + ct)

Fig. 49-1. Reflection of a wave as a superposition of two travelling waves.

Figure 49-1 shows a wave travelling in the negative x-direction near x = 0,
and a hypothetical wave travelling in the other direction reversed in sign and on
the other side of the origin. We say hypothetical because, of course, there is no
string to vibrate on that side of the origin. The total motion of the string is to be
regarded as the sum of these two waves in the region of positive x. As they reach
the origin, they will always cancel at x = 0, and finally the second (reflected)
wave will be the only one to exist for positive x and it will, of course, be travelling
in the opposite direction. These results are equivalent to the following statement:
if a wave reaches the clamped end of a string, it will be reflected with a change
in sign. Such a reflection can always be understood by imagining that what is
coming to the end of the string comes out upside down from behind the wall.
In short, if we assume that the string is infinite and that whenever we have a
wave going one way we have another one going the other way with the stated
symmetry, the displacement at x = 0 will always be zero and it would make no
difference if we clamped the string there.

The next point to be discussed is the reflection of a periodic wave. Suppose that
the wave represented by F (x− ct) is a sine wave and has been reflected; then the
reflected wave −F (−x−ct) is also a sine wave of the same frequency, but travelling
in the opposite direction. This situation can be most simply described by using
the complex function notation: F (x−ct) = eiω(t−x/c) and F (−x−ct) = eiω(t+x/c).
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It can be seen that if these are substituted in (49.2) and if x is set equal to 0,
then y = 0 for all values of t, so it satisfies the necessary condition. Because of
the properties of exponentials, this can be written in a simpler form:

y = eiωt(e−iωx/c − eiωx/c) = −2ieiωt sin (ωx/c). (49.3)

There is something interesting and new here, in that this solution tells us that
if we look at any fixed x, the string oscillates at frequency ω. No matter where
this point is, the frequency is the same! But there are some places, in particular
wherever sin (ωx/c) = 0, where there is no displacement at all. Furthermore, if
at any time t we take a snapshot of the vibrating string, the picture will be a
sine wave. However, the displacement of this sine wave will depend upon the
time t. From inspection of Eq. (49.3) we can see that the length of one cycle of
the sine wave is equal to the wavelength of either of the superimposed waves:

λ = 2πc/ω. (49.4)

The points where there is no motion satisfy the condition sin (ωx/c) = 0, which
means that (ωx/c) = 0, π, 2π, . . . , nπ, . . . These points are called nodes. Between
any two successive nodes, every point moves up and down sinusoidally, but the
pattern of motion stays fixed in space. This is the fundamental characteristic of
what we call a mode. If one can find a pattern of motion which has the property
that at any point the object moves perfectly sinusoidally, and that all points
move at the same frequency (though some will move more than others), then we
have what is called a mode.

49-2 Confined waves, with natural frequencies

The next interesting problem is to consider what happens if the string is
held at both ends, say at x = 0 and x = L. We can begin with the idea of the
reflection of waves, starting with some kind of a bump moving in one direction.
As time goes on, we would expect the bump to get near one end, and as time
goes still further it will become a kind of little wobble, because it is combining
with the reversed-image bump which is coming from the other side. Finally the
original bump will disappear and the image bump will move in the other direction
to repeat the process at the other end. This problem has an easy solution, but
an interesting question is whether we can have a sinusoidal motion (the solution
just described is periodic, but of course it is not sinusoidally periodic). Let us try
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to put a sinusoidally periodic wave on a string. If the string is tied at one end,
we know it must look like our earlier solution (49.3). If it is tied at the other
end, it has to look the same at the other end. So the only possibility for periodic
sinusoidal motion is that the sine wave must neatly fit into the string length. If
it does not fit into the string length, then it is not a natural frequency at which
the string can continue to oscillate. In short, if the string is started with a sine
wave shape that just fits in, then it will continue to keep that perfect shape of a
sine wave and will oscillate harmonically at some frequency.

Mathematically, we can write sin kx for the shape, where k is equal to the
factor (ω/c) in Eqs. (49.3) and (49.4), and this function will be zero at x = 0.
However, it must also be zero at the other end. The significance of this is that k
is no longer arbitrary, as was the case for the half-open string. With the string
closed at both ends, the only possibility is that sin (kL) = 0, because this is the
only condition that will keep both ends fixed. Now in order for a sine to be zero,
the angle must be either 0, π, 2π, or some other integral multiple of π. The
equation

kL = nπ (49.5)

will, therefore, give any one of the possible k’s, depending on what integer is put
in. For each of the k’s there is a certain frequency ω, which, according to (49.3),
is simply

ω = kc = nπc/L. (49.6)

So we have found the following: that a string has a property that it can have
sinusoidal motions, but only at certain frequencies. This is the most important
characteristic of confined waves. No matter how complicated the system is, it
always turns out that there are some patterns of motion which have a perfect
sinusoidal time dependence, but with frequencies that are a property of the
particular system and the nature of its boundaries. In the case of the string we
have many different possible frequencies, each one, by definition, corresponding
to a mode, because a mode is a pattern of motion which repeats itself sinusoidally.
Figure 49-2 shows the first three modes for a string. For the first mode the
wavelength λ is 2L. This can be seen if one continues the wave out to x = 2L
to obtain one complete cycle of the sine wave. The angular frequency ω is 2πc
divided by the wavelength, in general, and in this case, since λ is 2L, the frequency
is πc/L, which is in agreement with (49.6) with n = 1. Let us call the first mode
frequency ω1. Now the next mode shows two loops with one node in the middle.
For this mode the wavelength, then, is simply L. The corresponding value of k is
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Fig. 49-2. The first three modes of a vibrating string.

twice as great and the frequency is twice as large; it is 2ω1. For the third mode
it is 3ω1, and so on. So all the different frequencies of the string are multiples,
1, 2, 3, 4, and so on, of the lowest frequency ω1.

Returning now to the general motion of the string, it turns out that any
possible motion can always be analyzed by asserting that more than one mode
is operating at the same time. In fact, for general motion an infinite number of
modes must be excited at the same time. To get some idea of this, let us illustrate
what happens when there are two modes oscillating at the same time: Suppose
that we have the first mode oscillating as shown by the sequence of pictures in
Fig. 49-3, which illustrates the deflection of the string for equally spaced time
intervals extending through half a cycle of the lowest frequency.

Now, at the same time, we suppose that there is an oscillation of the second
mode also. Figure 49-3 also shows a sequence of pictures of this mode, which
at the start is 90◦ out of phase with the first mode. This means that at the
start it has no displacement, but the two halves of the string have oppositely
directed velocities. Now we recall a general principle relating to linear systems:
if there are any two solutions, then their sum is also a solution. Therefore a third
possible motion of the string would be a displacement obtained by adding the
two solutions shown in Fig. 49-3. The result, also shown in the figure, begins
to suggest the idea of a bump running back and forth between the ends of the
string, although with only two modes we cannot make a very good picture of it;
more modes are needed. This result is, in fact, a special case of a great principle
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Fig. 49-3. Two modes combine to give a travelling wave.

for linear systems:

Any motion at all can be analyzed by assuming that it is the sum of the
motions of all the different modes, combined with appropriate amplitudes and
phases.

The importance of the principle derives from the fact that each mode is very
simple—it is nothing but a sinusoidal motion in time. It is true that even the
general motion of a string is not really very complicated, but there are other
systems, for example the whipping of an airplane wing, in which the motion
is much more complicated. Nevertheless, even with an airplane wing, we find
there is a certain particular way of twisting which has one frequency and other
ways of twisting that have other frequencies. If these modes can be found, then
the complete motion can always be analyzed as a superposition of harmonic
oscillations (except when the whipping is of such degree that the system can no
longer be considered as linear).

49-3 Modes in two dimensions

The next example to be considered is the interesting situation of modes in
two dimensions. Up to this point we have talked only about one-dimensional
situations—a stretched string or sound waves in a tube. Ultimately we should
consider three dimensions, but an easier step will be that to two dimensions.
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Fig. 49-4. Vibrating rectangular plate.

Consider for definiteness a rectangular rubber drumhead which is confined so as to
have no displacement anywhere on the rectangular edge, and let the dimensions of
the rectangle be a and b, as shown in Fig. 49-4. Now the question is, what are the
characteristics of the possible motion? We can start with the same procedure used
for the string. If we had no confinement at all, we would expect waves travelling
along with some kind of wave motion. For example, (eiωt)(e−ikxx+ikyy) would
represent a sine wave travelling in some direction which depends on the relative
values of kx and ky. Now how can we make the x-axis, that is, the line y = 0, a
node? Using the ideas developed for the one-dimensional string, we can imagine
another wave represented by the complex function (−eiωt)(e−ikxx−ikyy). The
superposition of these waves will give zero displacement at y = 0 regardless of
the values of x and t. (Although these functions are defined for negative y where
there is no drumhead to vibrate, this can be ignored, since the displacement is
truly zero at y = 0.) In this case we can look upon the second function as the
reflected wave.

However, we want a nodal line at y = b as well as at y = 0. How do we
do that? The solution is related to something we did when studying reflection
from crystals. These waves which cancel each other at y = 0 will do the same
at y = b only if 2b sin θ is an integral multiple of λ, where θ is the angle shown in
Fig. 49-4:

mλ = 2b sin θ, m = 0, 1, 2, . . . (49.7)
Now in the same way we can make the y-axis a nodal line by adding two

more functions −(eiωt)(e+ikxx+ikyy) and +(eiωt)(e+ikxx−ikyy), each representing
a reflection of one of the other two waves from the x = 0 line. The condition for
a nodal line at x = a is similar to the one for y = b. It is that 2a cos θ must also
be an integral multiple of λ:

nλ = 2a cos θ. (49.8)
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Then the final result is that the waves bouncing about in the box produce a
standing-wave pattern, that is, a definite mode.

So we must satisfy the above two conditions if we are to have a mode. Let
us first find the wavelength. This can be obtained by eliminating the angle θ
from (49.7) and (49.8) to obtain the wavelength in terms of a, b, n and m.
The easiest way to do that is to divide both sides of the respective equations
by 2b and 2a, square them, and add the two equations together. The result
is sin2 θ + cos2 θ = 1 = (nλ/2a)2 + (mλ/2b)2, which can be solved for λ:

1
λ2 = n2

4a2 + m2

4b2 . (49.9)

In this way we have determined the wavelength in terms of two integers, and
from the wavelength we immediately get the frequency ω, because, as we know,
the frequency is equal to 2πc divided by the wavelength.

This result is interesting and important enough that we should deduce it by
a purely mathematical analysis instead of by an argument about the reflections.
Let us represent the vibration by a superposition of four waves chosen so that
the four lines x = 0, x = a, y = 0, and y = b are all nodes. In addition we shall
require that all waves have the same frequency, so that the resulting motion
will represent a mode. From our earlier treatment of light reflection we know
that (eiωt)(e−ikxx+ikyy) represents a wave travelling in the direction indicated in
Fig. 49-4. Equation (49.6), that is, k = ω/c, still holds, provided

k2 = k2
x + k2

y. (49.10)

It is clear from the figure that kx = k cos θ and ky = k sin θ.
Now our equation for the displacement, say φ, of the rectangular drumhead

takes on the grand form

φ = [eiωt][e(−ikxx+ikyy)−e(+ikxx+ikyy)−e(−ikxx−ikyy) +e(+ikxx−ikyy)]. (49.11a)

Although this looks rather a mess, the sum of these things now is not very hard.
The exponentials can be combined to give sine functions, so that the displacement
turns out to be

φ = [4 sin kxx sin kyy][eiωt]. (49.11b)

In other words, it is a sinusoidal oscillation, all right, with a pattern that is also
sinusoidal in both the x- and the y-direction. Our boundary conditions are of
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course satisfied at x = 0 and y = 0. We also want φ to be zero when x = a and
when y = b. Therefore we have to put in two other conditions: kxa must be an
integral multiple of π, and kyb must be another integral multiple of π. Since we
have seen that kx = k cos θ and ky = k sin θ, we immediately get equations (49.7)
and (49.8) and from these the final result (49.9).

Now let us take as an example a rectangle whose width is twice the height. If
we take a = 2b and use Eqs. (49.4) and (49.9), we can calculate the frequencies
of all of the modes:

ω2 =
(
πc

b

)2 4m2 + n2

4 . (49.12)

Table 49-1 lists a few of the simple modes and also shows their shape in a
qualitative way.

The most important point to be emphasized about this particular case is that
the frequencies are not multiples of each other, nor are they multiples of any
number. The idea that the natural frequencies are harmonically related is not
generally true. It is not true for a system of more than one dimension, nor is
it true for one-dimensional systems which are more complicated than a string
with uniform density and tension. A simple example of the latter is a hanging
chain in which the tension is higher at the top than at the bottom. If such a
chain is set in harmonic oscillation, there are various modes and frequencies, but
the frequencies are not simple multiples of any number, nor are the mode shapes
sinusoidal.

The modes of more complicated systems are still more elaborate. For example,
inside the mouth we have a cavity above the vocal cords, and by moving the
tongue and the lips, and so forth, we make an open-ended pipe or a closed-ended
pipe of different diameters and shapes; it is a terribly complicated resonator, but
it is a resonator nevertheless. Now when one talks with the vocal cords, they are
made to produce some kind of tone. The tone is rather complicated and there
are many sounds coming out, but the cavity of the mouth further modifies that
tone because of the various resonant frequencies of the cavity. For instance, a
singer can sing various vowels, a, or o, or oo, and so forth, at the same pitch, but
they sound different because the various harmonics are in resonance in this cavity
to different degrees. The very great importance of the resonant frequencies of a
cavity in modifying the voice sounds can be demonstrated by a simple experiment.
Since the speed of sound goes as the reciprocal of the square root of the density,
the speed of sound may be varied by using different gases. If one uses helium
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Table 49-1

Mode shape m n (ω/ω0)2 ω/ω0

+ 1 1 1.25 1.12

+ − 1 2 2.00 1.41

+ − + 1 3 3.25 1.80

−
+

2 1 4.25 2.06

+ −
− +

2 2 5.00 2.24

instead of air, so that the density is lower, the speed of sound is much higher,
and all the frequencies of a cavity will be raised. Consequently if one fills one’s
lungs with helium before speaking, the character of his voice will be drastically
altered even though the vocal cords may still be vibrating at the same frequency.

49-4 Coupled pendulums

Finally we should emphasize that not only do modes exist for complicated
continuous systems, but also for very simple mechanical systems. A good example
is the system of two coupled pendulums discussed in the preceding chapter. In
that chapter it was shown that the motion could be analyzed as a superposition
of two harmonic motions with different frequencies. So even this system can
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be analyzed in terms of harmonic motions or modes. The string has an infinite
number of modes and the two-dimensional surface also has an infinite number of
modes. In a sense it is a double infinity, if we know how to count infinities. But
a simple mechanical thing which has only two degrees of freedom, and requires
only two variables to describe it, has only two modes.

y x

Fig. 49-5. Two coupled pendulums.

Let us make a mathematical analysis of these two modes for the case where
the pendulums are of equal length. Let the displacement of one be x, and the
displacement of the other be y, as shown in Fig. 49-5. Without a spring, the force
on the first mass is proportional to the displacement of that mass, because of
gravity. There would be, if there were no spring, a certain natural frequency ω0
for this one alone. The equation of motion without a spring would be

m
d2x

dt2
= −mω2

0x. (49.13)

The other pendulum would swing in the same way if there were no spring. In
addition to the force of restoration due to gravitation, there is an additional force
pulling the first mass. That force depends upon the excess distance of x over y
and is proportional to that difference, so it is some constant which depends on
the geometry, times (x− y). The same force in reverse sense acts on the second
mass. The equations of motion that have to be solved are therefore

m
d2x

dt2
= −mω2

0x− k(x− y), m
d2y

dt2
= −mω2

0y − k(y − x). (49.14)

In order to find a motion in which both of the masses move at the same
frequency, we must determine how much each mass moves. In other words,
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pendulum x and pendulum y will oscillate at the same frequency, but their
amplitudes must have certain values, A and B, whose relation is fixed. Let us
try this solution:

x = Aeiωt, y = Beiωt. (49.15)
If these are substituted in Eqs. (49.14) and similar terms are collected, the results
are (

ω2 − ω2
0 −

k

m

)
A = − k

m
B,(

ω2 − ω2
0 −

k

m

)
B = − k

m
A.

(49.16)

The equations as written have had the common factor eiωt removed and have
been divided by m.

Now we see that we have two equations for what looks like two unknowns.
But there really are not two unknowns, because the whole size of the motion is
something that we cannot determine from these equations. The above equations
can determine only the ratio of A to B, but they must both give the same ratio.
The necessity for both of these equations to be consistent is a requirement that
the frequency be something very special.

In this particular case this can be worked out rather easily. If the two equations
are multiplied together, the result is(

ω2 − ω2
0 −

k

m

)2
AB =

(
k

m

)2
AB. (49.17)

The term AB can be removed from both sides unless A and B are zero, which
means there is no motion at all. If there is motion, then the other terms must
be equal, giving a quadratic equation to solve. The result is that there are two
possible frequencies:

ω2
1 = ω2

0 , ω2
2 = ω2

0 + 2k
m
. (49.18)

Furthermore, if these values of frequency are substituted back into Eq. (49.16),
we find that for the first frequency A = B, and for the second frequency A = −B.
These are the “mode shapes,” as can be readily verified by experiment.

It is clear that in the first mode, where A = B, the spring is never stretched,
and both masses oscillate at the frequency ω0, as though the spring were absent.
In the other solution, where A = −B, the spring contributes a restoring force
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and raises the frequency. A more interesting case results if the pendulums have
different lengths. The analysis is very similar to that given above, and is left as
an exercise for the reader.

49-5 Linear systems

Now let us summarize the ideas discussed above, which are all aspects of what
is probably the most general and wonderful principle of mathematical physics.
If we have a linear system whose character is independent of the time, then
the motion does not have to have any particular simplicity, and in fact may
be exceedingly complex, but there are very special motions, usually a series
of special motions, in which the whole pattern of motion varies exponentially
with the time. For the vibrating systems that we are talking about now, the
exponential is imaginary, and instead of saying “exponentially” we might prefer
to say “sinusoidally” with time. However, one can be more general and say that
the motions will vary exponentially with the time in very special modes, with very
special shapes. The most general motion of the system can always be represented
as a superposition of motions involving each of the different exponentials.

This is worth stating again for the case of sinusoidal motion: a linear system
need not be moving in a purely sinusoidal motion, i.e., at a definite single
frequency, but no matter how it does move, this motion can be represented as a
superposition of pure sinusoidal motions. The frequency of each of these motions
is a characteristic of the system, and the pattern or waveform of each motion is
also a characteristic of the system. The general motion in any such system can
be characterized by giving the strength and the phase of each of these modes,
and adding them all together. Another way of saying this is that any linear
vibrating system is equivalent to a set of independent harmonic oscillators, with
the natural frequencies corresponding to the modes.

We conclude this chapter by remarking on the connection of modes with
quantum mechanics. In quantum mechanics the vibrating object, or the thing
that varies in space, is the amplitude of a probability function that gives the
probability of finding an electron, or system of electrons, in a given configuration.
This amplitude function can vary in space and time, and satisfies, in fact, a
linear equation. But in quantum mechanics there is a transformation, in that
what we call frequency of the probability amplitude is equal, in the classical
idea, to energy. Therefore we can translate the principle stated above to this
case by taking the word frequency and replacing it with energy. It becomes
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something like this: a quantum-mechanical system, for example an atom, need
not have a definite energy, just as a simple mechanical system does not have to
have a definite frequency; but no matter how the system behaves, its behavior
can always be represented as a superposition of states of definite energy. The
energy of each state is a characteristic of the atom, and so is the pattern of
amplitude which determines the probability of finding particles in different places.
The general motion can be described by giving the amplitude of each of these
different energy states. This is the origin of energy levels in quantum mechanics.
Since quantum mechanics is represented by waves, in the circumstance in which
the electron does not have enough energy to ultimately escape from the proton,
they are confined waves. Like the confined waves of a string, there are definite
frequencies for the solution of the wave equation for quantum mechanics. The
quantum-mechanical interpretation is that these are definite energies. Therefore
a quantum-mechanical system, because it is represented by waves, can have
definite states of fixed energy; examples are the energy levels of various atoms.
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50

Harmonics

50-1 Musical tones

Pythagoras is said to have discovered the fact that two similar strings under
the same tension and differing only in length, when sounded together give an
effect that is pleasant to the ear if the lengths of the strings are in the ratio of
two small integers. If the lengths are as one is to two, they then correspond to
the octave in music. If the lengths are as two is to three, they correspond to the
interval between C and G, which is called a fifth. These intervals are generally
accepted as “pleasant” sounding chords.

Pythagoras was so impressed by this discovery that he made it the basis of a
school—Pythagoreans they were called—which held mystic beliefs in the great
powers of numbers. It was believed that something similar would be found out
about the planets—or “spheres.” We sometimes hear the expression: “the music
of the spheres.” The idea was that there would be some numerical relationships
between the orbits of the planets or between other things in nature. People
usually think that this is just a kind of superstition held by the Greeks. But
is it so different from our own scientific interest in quantitative relationships?
Pythagoras’ discovery was the first example, outside geometry, of any numerical
relationship in nature. It must have been very surprising to suddenly discover
that there was a fact of nature that involved a simple numerical relationship.
Simple measurements of lengths gave a prediction about something which had
no apparent connection to geometry—the production of pleasant sounds. This
discovery led to the extension that perhaps a good tool for understanding nature
would be arithmetic and mathematical analysis. The results of modern science
justify that point of view.

Pythagoras could only have made his discovery by making an experimental
observation. Yet this important aspect does not seem to have impressed him. If
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it had, physics might have had a much earlier start. (It is always easy to look
back at what someone else has done and to decide what he should have done!)

We might remark on a third aspect of this very interesting discovery: that
the discovery had to do with two notes that sound pleasant to the ear. We may
question whether we are any better off than Pythagoras in understanding why
only certain sounds are pleasant to our ear. The general theory of aesthetics is
probably no further advanced now than in the time of Pythagoras. In this one
discovery of the Greeks, there are the three aspects: experiment, mathematical
relationships, and aesthetics. Physics has made great progress on only the first
two parts. This chapter will deal with our present-day understanding of the
discovery of Pythagoras.

Among the sounds that we hear, there is one kind that we call noise. Noise
corresponds to a sort of irregular vibration of the eardrum that is produced by the
irregular vibration of some object in the neighborhood. If we make a diagram to
indicate the pressure of the air on the eardrum (and, therefore, the displacement
of the drum) as a function of time, the graph which corresponds to a noise might
look like that shown in Fig. 50-1(a). (Such a noise might correspond roughly
to the sound of a stamped foot.) The sound of music has a different character.
Music is characterized by the presence of more-or-less sustained tones—or musical

(a) A NOISE

TIME

PRESSURE

(b) A MUSICAL TONE

TIME

PRESSURE

T

Fig. 50-1. Pressure as a function of time for (a) a noise, and (b) a
musical tone.
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“notes.” (Musical instruments may make noises as well!) The tone may last for a
relatively short time, as when a key is pressed on a piano, or it may be sustained
almost indefinitely, as when a flute player holds a long note.

What is the special character of a musical note from the point of view of the
pressure in the air? A musical note differs from a noise in that there is a periodicity
in its graph. There is some uneven shape to the variation of the air pressure with
time, and the shape repeats itself over and over again. An example of a pressure-
time function that would correspond to a musical note is shown in Fig. 50-1(b).

Musicians will usually speak of a musical tone in terms of three characteristics:
the loudness, the pitch, and the “quality.” The “loudness” is found to correspond
to the magnitude of the pressure changes. The “pitch” corresponds to the period
of time for one repetition of the basic pressure function. (“Low” notes have
longer periods than “high” notes.) The “quality” of a tone has to do with the
differences we may still be able to hear between two notes of the same loudness
and pitch. An oboe, a violin, or a soprano are still distinguishable even when
they sound notes of the same pitch. The quality has to do with the structure of
the repeating pattern.

Let us consider, for a moment, the sound produced by a vibrating string. If
we pluck the string, by pulling it to one side and releasing it, the subsequent
motion will be determined by the motions of the waves we have produced. We
know that these waves will travel in both directions, and will be reflected at the
ends. They will slosh back and forth for a long time. No matter how complicated
the wave is, however, it will repeat itself. The period of repetition is just the
time T required for the wave to travel two full lengths of the string. For that
is just the time required for any wave, once started, to reflect off each end and
return to its starting position, and be proceeding in the original direction. The
time is the same for waves which start out in either direction. Each point on the
string will, then, return to its starting position after one period, and again one
period later, etc. The sound wave produced must also have the same repetition.
We see why a plucked string produces a musical tone.

50-2 The Fourier series

We have discussed in the preceding chapter another way of looking at the
motion of a vibrating system. We have seen that a string has various natural
modes of oscillation, and that any particular kind of vibration that may be set
up by the starting conditions can be thought of as a combination—in suitable
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proportions—of several of the natural modes, oscillating together. For a string we
found that the normal modes of oscillation had the frequencies ω0, 2ω0, 3ω0, . . .
The most general motion of a plucked string, therefore, is composed of the
sum of a sinusoidal oscillation at the fundamental frequency ω0, another at the
second harmonic frequency 2ω0, another at the third harmonic 3ω0, etc. Now the
fundamental mode repeats itself every period T1 = 2π/ω0. The second harmonic
mode repeats itself every T2 = 2π/2ω0. It also repeats itself every T1 = 2T2,
after two of its periods. Similarly, the third harmonic mode repeats itself after a
time T1 which is 3 of its periods. We see again why a plucked string repeats its
whole pattern with a periodicity of T1. It produces a musical tone.

We have been talking about the motion of the string. But the sound, which
is the motion of the air, is produced by the motion of the string, so its vibrations
too must be composed of the same harmonics—though we are no longer thinking
about the normal modes of the air. Also, the relative strength of the harmonics
may be different in the air than in the string, particularly if the string is “coupled”
to the air via a sounding board. The efficiency of the coupling to the air is
different for different harmonics.

If we let f(t) represent the air pressure as a function of time for a musical tone
[such as that in Fig. 50-1(b)], then we expect that f(t) can be written as the sum
of a number of simple harmonic functions of time—like cosωt—for each of the
various harmonic frequencies. If the period of the vibration is T , the fundamental
angular frequency will be ω = 2π/T , and the harmonics will be 2ω, 3ω, etc.

There is one slight complication. For each frequency we may expect that the
starting phases will not necessarily be the same for all frequencies. We should,
therefore, use functions like cos (ωt+ φ). It is, however, simpler to use instead
both the sine and cosine functions for each frequency. We recall that

cos (ωt+ φ) = (cosφ cosωt− sinφ sinωt) (50.1)

and since φ is a constant, any sinusoidal oscillation at the frequency ω can be
written as the sum of a term with cosωt and another term with sinωt.

We conclude, then, that any function f(t) that is periodic with the period T
can be written mathematically as

f(t) = a0

+ a1 cos ωt+ b1 sin ωt

+ a2 cos 2ωt+ b2 sin 2ωt
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+ a3 cos 3ωt+ b3 sin 3ωt
+ · · · + · · · (50.2)

where ω = 2π/T and the a’s and b’s are numerical constants which tell us how
much of each component oscillation is present in the oscillation f(t). We have
added the “zero-frequency” term a0 so that our formula will be completely general,
although it is usually zero for a musical tone. It represents a shift of the average
value (that is, the “zero” level) of the sound pressure. With it our formula can
take care of any case. The equality of Eq. (50.2) is represented schematically
in Fig. 50-2. (The amplitudes, an and bn, of the harmonic functions must be
suitably chosen. They are shown schematically and without any particular scale
in the figure.) The series (50.2) is called the Fourier series for f(t).
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a2

etc.

b1

b2

etc.

Fig. 50-2. Any periodic function f (t) is equal to a sum of simple
harmonic functions.

We have said that any periodic function can be made up in this way. We
should correct that and say that any sound wave, or any function we ordinarily
encounter in physics, can be made up of such a sum. The mathematicians can
invent functions which cannot be made up of simple harmonic functions—for
instance, a function that has a “reverse twist” so that it has two values for some
values of t! We need not worry about such functions here.
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50-3 Quality and consonance

Now we are able to describe what it is that determines the “quality” of a
musical tone. It is the relative amounts of the various harmonics—the values of
the a’s and b’s. A tone with only the first harmonic is a “pure” tone. A tone with
many strong harmonics is a “rich” tone. A violin produces a different proportion
of harmonics than does an oboe.

We can “manufacture” various musical tones if we connect several “oscillators”
to a loudspeaker. (An oscillator usually produces a nearly pure simple harmonic
function.) We should choose the frequencies of the oscillators to be ω, 2ω, 3ω, etc.
Then by adjusting the volume control on each oscillator, we can add in any
amount we wish of each harmonic—thereby producing tones of different quality.
An electric organ works in much this way. The “keys” select the frequency of
the fundamental oscillator and the “stops” are switches that control the relative
proportions of the harmonics. By throwing these switches, the organ can be
made to sound like a flute, or an oboe, or a violin.

It is interesting that to produce such “artificial” tones we need only one
oscillator for each frequency—we do not need separate oscillators for the sine
and cosine components. The ear is not very sensitive to the relative phases of
the harmonics. It pays attention mainly to the total of the sine and cosine parts
of each frequency. Our analysis is more accurate than is necessary to explain
the subjective aspect of music. The response of a microphone or other physical
instrument does depend on the phases, however, and our complete analysis may
be needed to treat such cases.

The “quality” of a spoken sound also determines the vowel sounds that we
recognize in speech. The shape of the mouth determines the frequencies of the
natural modes of vibration of the air in the mouth. Some of these modes are
set into vibration by the sound waves from the vocal chords. In this way, the
amplitudes of some of the harmonics of the sound are increased with respect
to others. When we change the shape of our mouth, harmonics of different
frequencies are given preference. These effects account for the difference between
an “e–e–e” sound and an “a–a–a” sound.

We all know that a particular vowel sound—say “e–e–e”—still “sounds like”
the same vowel whether we say (or sing) it at a high or a low pitch. From
the mechanism we describe, we would expect that particular frequencies are
emphasized when we shape our mouth for an “e–e–e,” and that they do not
change as we change the pitch of our voice. So the relation of the important
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harmonics to the fundamental—that is, the “quality”—changes as we change
pitch. Apparently the mechanism by which we recognize speech is not based on
specific harmonic relationships.

What should we say now about Pythagoras’ discovery? We understand that
two similar strings with lengths in the ratio of 2 to 3 will have fundamental
frequencies in the ratio 3 to 2. But why should they “sound pleasant” together?
Perhaps we should take our clue from the frequencies of the harmonics. The
second harmonic of the lower shorter string will have the same frequency as the
third harmonic of the longer string. (It is easy to show—or to believe—that a
plucked string produces strongly the several lowest harmonics.)

Perhaps we should make the following rules. Notes sound consonant when
they have harmonics with the same frequency. Notes sound dissonant if their
upper harmonics have frequencies near to each other but far enough apart that
there are rapid beats between the two. Why beats do not sound pleasant, and
why unison of the upper harmonics does sound pleasant, is something that we
do not know how to define or describe. We cannot say from this knowledge of
what sounds good, what ought, for example, to smell good. In other words, our
understanding of it is not anything more general than the statement that when
they are in unison they sound good. It does not permit us to deduce anything
more than the properties of concordance in music.

It is easy to check on the harmonic relationships we have described by some
simple experiments with a piano. Let us label the 3 successive C’s near the middle
of the keyboard by C, C′, and C′′, and the G’s just above by G, G′, and G′′.
Then the fundamentals will have relative frequencies as follows:

C –2 G – 3
C′ –4 G′ – 6
C′′–8 G′′–12

These harmonic relationships can be demonstrated in the following way: Suppose
we press C′ slowly—so that it does not sound but we cause the damper to be
lifted. If we then sound C, it will produce its own fundamental and some second
harmonic. The second harmonic will set the strings of C′ into vibration. If we
now release C (keeping C′ pressed) the damper will stop the vibration of the C
strings, and we can hear (softly) the note C′ as it dies away. In a similar way, the
third harmonic of C can cause a vibration of G′. Or the sixth of C (now getting
much weaker) can set up a vibration in the fundamental of G′′.
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A somewhat different result is obtained if we press G quietly and then sound
C′. The third harmonic of C′ will correspond to the fourth harmonic of G, so
only the fourth harmonic of G will be excited. We can hear (if we listen closely)
the sound of G′′, which is two octaves above the G we have pressed! It is easy to
think up many more combinations for this game.

We may remark in passing that the major scale can be defined just by the
condition that the three major chords (F–A–C); (C–E–G); and (G–B–D) each
represent tone sequences with the frequency ratio (4 : 5 : 6). These ratios—plus
the fact that an octave (C–C′, B–B′, etc.) has the ratio 1 : 2—determine the
whole scale for the “ideal” case, or for what is called “just intonation.” Keyboard
instruments like the piano are not usually tuned in this manner, but a little
“fudging” is done so that the frequencies are approximately correct for all possible
starting tones. For this tuning, which is called “tempered,” the octave (still 1 : 2)
is divided into 12 equal intervals for which the frequency ratio is (2)1/12. A fifth
no longer has the frequency ratio 3/2, but 27/12 = 1.499, which is apparently
close enough for most ears.

We have stated a rule for consonance in terms of the coincidence of harmonics.
Is this coincidence perhaps the reason that two notes are consonant? One worker
has claimed that two pure tones—tones carefully manufactured to be free of
harmonics—do not give the sensations of consonance or dissonance as the relative
frequencies are placed at or near the expected ratios. (Such experiments are
difficult because it is difficult to manufacture pure tones, for reasons that we
shall see later.) We cannot still be certain whether the ear is matching harmonics
or doing arithmetic when we decide that we like a sound.

50-4 The Fourier coefficients

Let us return now to the idea that any note—that is, a periodic sound—can
be represented by a suitable combination of harmonics. We would like to show
how we can find out what amount of each harmonic is required. It is, of course,
easy to compute f(t), using Eq. (50.2), if we are given all the coefficients a and b.
The question now is, if we are given f(t) how can we know what the coefficients
of the various harmonic terms should be? (It is easy to make a cake from a recipe;
but can we write down the recipe if we are given a cake?)

Fourier discovered that it was not really very difficult. The term a0 is certainly
easy. We have already said that it is just the average value of f(t) over one period
(from t = 0 to t = T ). We can easily see that this is indeed so. The average value
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of a sine or cosine function over one period is zero. Over two, or three, or any
whole number of periods, it is also zero. So the average value of all of the terms
on the right-hand side of Eq. (50.2) is zero, except for a0. (Recall that we must
choose ω = 2π/T .)

Now the average of a sum is the sum of the averages. So the average of f(t)
is just the average of a0. But a0 is a constant, so its average is just the same as
its value. Recalling the definition of an average, we have

a0 = 1
T

∫ T

0
f(t) dt. (50.3)

The other coefficients are only a little more difficult. To find them we can
use a trick discovered by Fourier. Suppose we multiply both sides of Eq. (50.2)
by some harmonic function—say by cos 7ωt. We have then

f(t) · cos 7ωt = a0 · cos 7ωt
+ a1 cos ωt · cos 7ωt+ b1 sin ωt · cos 7ωt
+ a2 cos 2ωt · cos 7ωt+ b2 sin 2ωt · cos 7ωt
+ · · · + · · ·
+ a7 cos 7ωt · cos 7ωt+ b7 sin 7ωt · cos 7ωt
+ · · · + · · · (50.4)

Now let us average both sides. The average of a0 cos 7ωt over the time T is
proportional to the average of a cosine over 7 whole periods. But that is just
zero. The average of almost all of the rest of the terms is also zero. Let us look
at the a1 term. We know, in general, that

cosA cosB = 1
2 cos (A+B) + 1

2 cos (A−B). (50.5)

The a1 term becomes
1
2a1(cos 8ωt+ cos 6ωt). (50.6)

We thus have two cosine terms, one with 8 full periods in T and the other with 6.
They both average to zero. The average of the a1 term is therefore zero.

For the a2 term, we would find a2 cos 9ωt and a2 cos 5ωt, each of which also
averages to zero. For the a9 term, we would find cos 16ωt and cos (−2ωt). But
cos (−2ωt) is the same as cos 2ωt, so both of these have zero averages. It is clear
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that all of the a terms will have a zero average except one. And that one is the
a7 term. For this one we have

1
2a7(cos 14ωt+ cos 0). (50.7)

The cosine of zero is one, and its average, of course, is one. So we have the result
that the average of all of the a terms of Eq. (50.4) equals 1

2a7.
The b terms are even easier. When we multiply by any cosine term like cosnωt,

we can show by the same method that all of the b terms have the average value
zero.

We see that Fourier’s “trick” has acted like a sieve. When we multiply
by cos 7ωt and average, all terms drop out except a7, and we find that

Average [f(t) · cos 7ωt] = a7/2, (50.8)
or

a7 = 2
T

∫ T

0
f(t) · cos 7ωt dt. (50.9)

We shall leave it for the reader to show that the coefficient b7 can be obtained
by multiplying Eq. (50.2) by sin 7ωt and averaging both sides. The result is

b7 = 2
T

∫ T

0
f(t) · sin 7ωt dt. (50.10)

Now what is true for 7 we expect is true for any integer. So we can summarize
our proof and result in the following more elegant mathematical form. If m and n
are integers other than zero, and if ω = 2π/T , then

I.
∫ T

0
sinnωt cosmωt dt = 0. (50.11)

II.
∫ T

0
cosnωt cosmωt dt =

III.
∫ T

0
sinnωt sinmωt dt =


{

0 if n 6= m.

T/2 if n = m.
(50.12)

IV. f(t) = a0 +
∞∑
n=1

an cosnωt+
∞∑
n=1

bn sinnωt. (50.13)
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V. a0 = 1
T

∫ T

0
f(t) dt. (50.14)

an = 2
T

∫ T

0
f(t) · cosnωt dt. (50.15)

bn = 2
T

∫ T

0
f(t) · sinnωt dt. (50.16)

In earlier chapters it was convenient to use the exponential notation for
representing simple harmonic motion. Instead of cosωt we used Re eiωt, the real
part of the exponential function. We have used cosine and sine functions in this
chapter because it made the derivations perhaps a little clearer. Our final result
of Eq. (50.13) can, however, be written in the compact form

f(t) = Re
∞∑
n=0

âne
inωt, (50.17)

where ân is the complex number an − ibn (with b0 = 0). If we wish to use the
same notation throughout, we can write also

ân = 2
T

∫ T

0
f(t)e−inωt dt (n ≥ 1). (50.18)

We now know how to “analyze” a periodic wave into its harmonic components.
The procedure is called Fourier analysis, and the separate terms are called
Fourier components. We have not shown, however, that once we find all of the
Fourier components and add them together, we do indeed get back our f(t). The
mathematicians have shown, for a wide class of functions, in fact for all that are
of interest to physicists, that if we can do the integrals we will get back f(t).
There is one minor exception. If the function f(t) is discontinuous, i.e., if it jumps
suddenly from one value to another, the Fourier sum will give a value at the
breakpoint halfway between the upper and lower values at the discontinuity. So
if we have the strange function f(t) = 0, 0 ≤ t < t0, and f(t) = 1 for t0 ≤ t ≤ T ,
the Fourier sum will give the right value everywhere except at t0, where it will
have the value 1

2 instead of 1. It is rather unphysical anyway to insist that a
function should be zero up to t0, but 1 right at t0. So perhaps we should make
the “rule” for physicists that any discontinuous function (which can only be a
simplification of a real physical function) should be defined with halfway values
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Fig. 50-3. Square-wave function.

at the discontinuities. Then any such function—with any finite number of such
jumps—as well as all other physically interesting functions, are given correctly
by the Fourier sum.

As an exercise, we suggest that the reader determine the Fourier series for the
function shown in Fig. 50-3. Since the function cannot be written in an explicit
algebraic form, you will not be able to do the integrals from zero to T in the
usual way. The integrals are easy, however, if we separate them into two parts:
the integral from zero to T/2 (over which f(t) = 1) and the integral from T/2
to T (over which f(t) = −1). The result should be

f(t) = 4
π

(sinωt+ 1
3 sin 3ωt+ 1

5 sin 5ωt+ · · · ), (50.19)

where ω = 2π/T . We thus find that our square wave (with the particular phase
chosen) has only odd harmonics, and their amplitudes are in inverse proportion
to their frequencies.

Let us check that Eq. (50.19) does indeed give us back f(t) for some value
of t. Let us choose t = T/4, or ωt = π/2. We have

f(t) = 4
π

(
sin π2 + 1

3 sin 3π
2 + 1

5 sin 5π
2 + · · ·

)
(50.20)

= 4
π

(
1− 1

3 + 1
5 −

1
7 ± · · ·

)
. (50.21)

The series* has the value π/4, and we find that f(t) = 1.

* The series can be evaluated in the following way. First we remark that
∫ x

0 [dx/(1 + x2)] =
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50-5 The energy theorem

The energy in a wave is proportional to the square of its amplitude. For a wave
of complex shape, the energy in one period will be proportional to

∫ T
0 f2(t) dt.

We can also relate this energy to the Fourier coefficients. We write∫ T

0
f2(t) dt =

∫ T

0

[
a0 +

∞∑
n=1

an cosnωt+
∞∑
n=1

bn sinnωt
]2
dt. (50.22)

When we expand the square of the bracketed term we will get all possible cross
terms, such as a5 cos 5ωt ·b7 cos 7ωt. We have shown above, however, [Eqs. (50.11)
and (50.12)] that the integrals of all such terms over one period is zero. We have
left only the square terms like a2

5 cos2 5ωt. The integral of any cosine squared or
sine squared over one period is equal to T/2, so we get∫ T

0
f2(t) dt = Ta2

0 + T

2 (a2
1 + a2

2 + · · ·+ b21 + b22 + · · · )

= Ta2
0 + T

2

∞∑
n=1

(a2
n + b2n). (50.23)

This equation is called the “energy theorem,” and says that the total energy
in a wave is just the sum of the energies in all of the Fourier components. For
example, applying this theorem to the series (50.19), since [f(t)]2 = 1 we get

T = T

2 ·
(

4
π

)2(
1 + 1

32 + 1
52 + 1

72 + · · ·
)
,

so we learn that the sum of the squares of the reciprocals of the odd integers is π2/8.
In a similar way, by first obtaining the Fourier series for the function f(t) =
(t−T/2)2 and using the energy theorem, we can prove that 1 + 1/24 + 1/34 + · · ·
is π4/90, a result we needed in Chapter 45.

50-6 Nonlinear responses

Finally, in the theory of harmonics there is an important phenomenon which
should be remarked upon because of its practical importance—that of nonlinear
tan−1 x. Second, we expand the integrand in a series 1/(1 + x2) = 1 − x2 + x4 − x6 ± · · · We
integrate the series term by term (from zero to x) to obtain tan−1 x = x−x3/3+x5/5−x7/7±· · ·
Setting x = 1, we have the stated result, since tan−1 1 = π/4.
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effects. In all the systems that we have been considering so far, we have supposed
that everything was linear, that the responses to forces, say the displacements or
the accelerations, were always proportional to the forces. Or that the currents in
the circuits were proportional to the voltages, and so on. We now wish to consider
cases where there is not a strict proportionality. We think, at the moment, of
some device in which the response, which we will call xout at the time t, is
determined by the input xin at the time t. For example, xin might be the force
and xout might be the displacement. Or xin might be the current and xout the
voltage. If the device is linear, we would have

xout(t) = Kxin(t), (50.24)

where K is a constant independent of t and of xin. Suppose, however, that the
device is nearly, but not exactly, linear, so that we can write

xout(t) = K[xin(t) + εx2
in(t)], (50.25)

where ε is small in comparison with unity. Such linear and nonlinear responses
are shown in the graphs of Fig. 50-4.

(a) LINEAR

xin

xout

xout = Kxin

(b) NONLINEAR

xin

xout

xout = K(xin + εx
2
in)

Fig. 50-4. Linear and nonlinear responses.

Nonlinear responses have several important practical consequences. We shall
discuss some of them now. First we consider what happens if we apply a pure
tone at the input. We let xin = cosωt. If we plot xout as a function of time we get
the solid curve shown in Fig. 50-5. The dashed curve gives, for comparison, the
response of a linear system. We see that the output is no longer a cosine function.
It is more peaked at the top and flatter at the bottom. We say that the output
is distorted. We know, however, that such a wave is no longer a pure tone, that
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t

xout

NONLINEAR

LINEAR

Fig. 50-5. The response of a nonlinear device to the input cosωt. A
linear response is shown for comparison.

it will have harmonics. We can find what the harmonics are. Using xin = cosωt
with Eq. (50.25), we have

xout(t) = K(cosωt+ ε cos2 ωt). (50.26)

From the equality cos2 θ = 1
2 (1 + cos 2θ), we have

xout(t) = K
(

cosωt+ ε

2 + ε

2 cos 2ωt
)
. (50.27)

The output has not only a component at the fundamental frequency, that was
present at the input, but also has some of its second harmonic. There has also
appeared at the output a constant term K(ε/2), which corresponds to the shift
of the average value, shown in Fig. 50-5. The process of producing a shift of the
average value is called rectification.

A nonlinear response will rectify and will produce harmonics of the frequencies
at its input. Although the nonlinearity we assumed produced only second
harmonics, nonlinearities of higher order—those which have terms like x3

in and x4
in,

for example—will produce harmonics higher than the second.
Another effect which results from a nonlinear response is modulation. If

our input function contains two (or more) pure tones, the output will have
not only their harmonics, but still other frequency components. Let xin =
A cosω1t+B cosω2t, where now ω1 and ω2 are not intended to be in a harmonic
relation. In addition to the linear term (which is K times the input) we shall
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have a component in the output given by

xout = Kε(A cosω1t+B cosω2t)2 (50.28)
= Kε(A2 cos2 ω1t+B2 cos2 ω2t+ 2AB cosω1t cosω2t). (50.29)

The first two terms in the parentheses of Eq. (50.29) are just those which gave
the constant terms and second harmonic terms we found above. The last term is
new.

We can look at this new “cross term” AB cosω1t cosω2t in two ways. First,
if the two frequencies are widely different (for example, if ω1 is much greater
than ω2) we can consider that the cross term represents a cosine oscillation of
varying amplitude. That is, we can think of the factors in this way:

AB cosω1t cosω2t = C(t) cosω1t, (50.30)
with

C(t) = AB cosω2t. (50.31)

We say that the amplitude of cosω1t is modulated with the frequency ω2.
Alternatively, we can write the cross term in another way:

AB cosω1t cosω2t = AB

2 [cos (ω1 + ω2)t+ cos (ω1 − ω2)t]. (50.32)

We would now say that two new components have been produced, one at the
sum frequency (ω1 + ω2), another at the difference frequency (ω1 − ω2).

We have two different, but equivalent, ways of looking at the same result.
In the special case that ω1 � ω2, we can relate these two different views by
remarking that since (ω1 + ω2) and (ω1 − ω2) are near to each other we would
expect to observe beats between them. But these beats have just the effect of
modulating the amplitude of the average frequency ω1 by one-half the difference
frequency 2ω2. We see, then, why the two descriptions are equivalent.

In summary, we have found that a nonlinear response produces several effects:
rectification, generation of harmonics, and modulation, or the generation of
components with sum and difference frequencies.

We should notice that all these effects (Eq. 50.29) are proportional not only to
the nonlinearity coefficient ε, but also to the product of two amplitudes—either
A2, B2, or AB. We expect these effects to be much more important for strong
signals than for weak ones.
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The effects we have been describing have many practical applications. First,
with regard to sound, it is believed that the ear is nonlinear. This is believed
to account for the fact that with loud sounds we have the sensation that we
hear harmonics and also sum and difference frequencies even if the sound waves
contain only pure tones.

The components which are used in sound-reproducing equipment—amplifiers,
loudspeakers, etc.—always have some nonlinearity. They produce distortions
in the sound—they generate harmonics, etc.—which were not present in the
original sound. These new components are heard by the ear and are apparently
objectionable. It is for this reason that “Hi-Fi” equipment is designed to be as
linear as possible. (Why the nonlinearities of the ear are not “objectionable” in
the same way, or how we even know that the nonlinearity is in the loudspeaker
rather than in the ear is not clear!)

Nonlinearities are quite necessary, and are, in fact, intentionally made large in
certain parts of radio transmitting and receiving equipment. In an am transmitter
the “voice” signal (with frequencies of some kilocycles per second) is combined
with the “carrier” signal (with a frequency of some megacycles per second) in a
nonlinear circuit called a modulator, to produce the modulated oscillation that
is transmitted. In the receiver, the components of the received signal are fed
to a nonlinear circuit which combines the sum and difference frequencies of the
modulated carrier to generate again the voice signal.

When we discussed the transmission of light, we assumed that the induced
oscillations of charges were proportional to the electric field of the light—that the
response was linear. That is indeed a very good approximation. It is only within
the last few years that light sources have been devised (lasers) which produce an
intensity of light strong enough so that nonlinear effects can be observed. It is
now possible to generate harmonics of light frequencies. When a strong red light
passes through a piece of glass, a little bit of blue light—second harmonic—comes
out!
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51

Waves

51-1 Bow waves

Although we have finished our quantitative analyses of waves, this added
chapter on the subject is intended to give some appreciation, qualitatively, for
various phenomena that are associated with waves, which are too complicated
to analyze in detail here. Since we have been dealing with waves for several
chapters, more properly the subject might be called “some of the more complex
phenomena associated with waves.”

The first topic to be discussed concerns the effects that are produced by
a source of waves which is moving faster than the wave velocity, or the phase
velocity. Let us first consider waves that have a definite velocity, like sound and
light. If we have a source of sound which is moving faster than the speed of
sound, then something like this happens: Suppose at a given moment a sound
wave is generated from the source at point x1 in Fig. 51-1; then, in the next

x1 x2 x3 v

θr1 r2r3

Fig. 51-1. The shock wave front lies on a cone with apex at the
source and half-angle θ = sin−1 cw/v .
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moment, as the source moves to x2, the wave from x1 expands by a radius r1
smaller than the distance that the source moves; and, of course, another wave
starts from x2. When the sound source has moved still farther, to x3, and a wave
is starting there, the wave from x2 has now expanded to r2, and the one from x1
has expanded to r3. Of course the thing is done continuously, not in steps, and
therefore, we have a series of wave circles with a common tangent line which
goes through the center of the source. We see that instead of a source generating
spherical waves, as it would if it were standing still, it generates a wavefront
which forms a cone in three dimensions, or a pair of lines in two dimensions. The
angle of the cone is very easy to figure out. In a given amount of time the source
moves a distance, say x3 − x1, proportional to v, the velocity of the source. In
the meantime the wavefront has moved out a distance r3, proportional to cw, the
speed of the wave. Therefore it is clear that the half-angle of opening has a sine
equal to the ratio of the speed of the waves, divided by the speed of the source,
and this sine has a solution only if cw is less than v, or the speed of the object is
faster than the speed of the wave:

sin θ = cw
v
. (51.1)

Incidentally, although we implied that it is necessary to have a source of
sound, it turns out, very interestingly, that once the object is moving faster than
the speed of sound, it will make sound. That is, it is not necessary that it have a
certain tone vibrational character. Any object moving through a medium faster
than the speed at which the medium carries waves will generate waves on each
side, automatically, just from the motion itself. This is simple in the case of
sound, but it also occurs in the case of light. At first one might think nothing can
move faster than the speed of light. However, light in glass has a phase velocity
less than the speed of light in a vacuum, and it is possible to shoot a charged
particle of very high energy through a block of glass such that the particle velocity
is close to the speed of light in a vacuum, while the speed of light in the glass may
be only 2

3 the speed of light in the vacuum. A particle moving faster than the
speed of light in the medium will produce a conical wave of light with its apex at
the source, like the wave wake from a boat (which is from the same effect, as a
matter of fact). By measuring the cone angle, we can determine the speed of the
particle. This is used technically to determine the speeds of particles as one of
the methods of determining their energy in high-energy research. The direction
of the light is all that needs to be measured.
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Fig. 51-2. A shock wave induced in a gas by a projectile moving faster
than sound.

This light is sometimes called Cherenkov radiation, because it was first ob-
served by Cherenkov. How intense this light should be was analyzed theoretically
by Frank and Tamm. The 1958 Nobel Prize for physics was awarded jointly to
all three for this work.

The corresponding circumstances in the case of sound are illustrated in
Fig. 51-2, which is a photograph of an object moving through a gas at a speed
greater than the speed of sound. The changes in pressure produce a change in
refractive index, and with a suitable optical system the edges of the waves can be
made visible. We see that the object moving faster than the speed of sound does,
indeed, produce a conical wave. But closer inspection reveals that the surface is
actually curved. It is straight asymptotically, but it is curved near the apex, and
we have now to discuss how that can be, which brings us to the second topic of
this chapter.

51-2 Shock waves

Wave speed often depends on the amplitude, and in the case of sound the speed
depends upon the amplitude in the following way. An object moving through the
air has to move the air out of the way, so the disturbance produced in this case
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is some kind of a pressure step, with the pressure higher behind the wavefront
than in the undisturbed region not yet reached by the wave (running along at the
normal speed, say). But the air that is left behind, after the wavefront passes, has
been compressed adiabatically, and therefore the temperature is increased. Now
the speed of sound increases with the temperature, so the speed in the region
behind the jump is faster than in the air in front. That means that any other
disturbance that is made behind this step, say by a continuous pushing of the body,
or any other disturbance, will ride faster than the front, the speed increasing with
higher pressure. Figure 51-3 illustrates the situation, with some little bumps of
pressure added to the pressure contour to aid visualization. We see that the higher
pressure regions at the rear overtake the front as time goes on, until ultimately
the compressional wave develops a sharp front. If the strength is very high,
“ultimately” means right away; if it as rather weak, it takes a long time; it may be,
in fact, that the sound is spreading and dying out before it has time to do this.

Distance
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t1 t2 > t1 t3 > t2a

b
c

a

b
c

a
b
c

Fig. 51-3. Wavefront “snapshots” at successive instants in time.

The sounds we make in talking are extremely weak relative to the atmospheric
pressure—only 1 part in a million or so. But for pressure changes of the order
of 1 atmosphere, the wave velocity increases by about twenty percent, and the
wavefront sharpens up at a correspondingly high rate. In nature nothing happens
infinitely rapidly, presumably, and what we call a “sharp” front has, actually,
a very slight thickness; it is not infinitely steep. The distances over which it is
varying are of the order of one mean free path, in which the theory of the wave
equation begins to fail because we did not consider the structure of the gas.

Now, referring again to Fig. 51-2, we see that the curvature can be understood
if we appreciate that the pressures near the apex are higher than they are farther
back, and so the angle θ is greater. That is, the curve is the result of the fact that
the speed depends upon the strength of the wave. Therefore the wave from an
atomic bomb explosion travels much faster than the speed of sound for a while,
until it gets so far out that it is weakened to such an extent from spreading that
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the pressure bump is small compared with atmospheric pressure. The speed of
the bump then approaches the speed of sound in the gas into which it is going.
(Incidentally, it always turns out that the speed of the shock is higher than the
speed of sound in the gas ahead, but is lower than the speed of sound in the gas
behind. That is, impulses from the back will arrive at the front, but the front
rides into the medium in which it is going faster than the normal speed of signals.
So one cannot tell, acoustically, that the shock is coming until it is too late. The
light from the bomb arrives first, but one cannot tell that the shock is coming
until it arrives, because there is no sound signal coming ahead of it.)

This is a very interesting phenomenon, this piling up of waves, and the main
point on which it depends is that after a wave is present, the speed of the resulting
wave should be higher. Another example of the same phenomenon is the following.
Consider water flowing in a long channel with finite width and finite depth. If
a piston, or a wall across the channel, is moved along the channel fast enough,
water piles up, like snow before a snow plow. Now suppose the situation is as
shown in Fig. 51-4, with a sudden step in water height somewhere in the channel.
It can be demonstrated that long waves in a channel travel faster in deeper water
than they do in shallow water. Therefore any new bumps or irregularities in
energy supplied by the piston run off forward and pile up at the front. Again,
ultimately what we have is just water with a sharp front, theoretically. However,

Figure 51-4
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as Fig. 51-4 shows, there are complications. Pictured is a wave coming up a
channel; the piston is at the far right end of the channel. At first it might have
appeared like a well-behaved wave, as one might expect, but farther along the
channel, it has become sharper and sharper until the events pictured occurred.
There is a terrible churning at the surface, as the pieces of water fall down, but
it is essentially a very sharp rise with no disturbance of the water ahead.

Actually water is much more complicated than sound. However, just to
illustrate a point, we will try to analyze the speed of such a so-called bore, in
a channel. The point here is not that this is of any basic importance for our
purposes—it is not a great generalization—it is only to illustrate that the laws of
mechanics that we already know are capable of explaining the phenomenon.

(a)

v

u

(b)

x1 x2 x3 x4

h2

h1

v ∆t u ∆t

Fig. 51-5. Two cross sections of a bore in a channel, with (b) at an
interval ∆t later than (a).

Imagine, for a moment, that the water does look something like Fig. 51-5(a),
that water at the higher height h2 is moving with a velocity v, and that the front
is moving with velocity u into undisturbed water which is at height h1. We would
like to determine the speed at which the front moves. In a time ∆t a vertical
plane initially at x1 moves a distance v∆t to x2, while the front of the wave has
moved u∆t.

Now we apply the equations of conservation of matter and momentum. First,
the former: Per unit channel width, we see that the amount h2v∆t of matter
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that has moved past x1 (shown shaded) is compensated by the other shaded
region, which amounts to (h2 − h1)u∆t. So, dividing by ∆t, vh2 = u(h2 − h1).
That does not yet give us enough, because although we have h2 and h1, we do
not know either u or v; we are trying to get both of them.

Now the next step is to use conservation of momentum. We have not discussed
the problems of water pressure, or anything in hydrodynamics, but it is clear
anyway that the pressure of water at a given depth is just enough to hold up
the column of water above it. Therefore the pressure of water is equal to ρ, the
density of water, times g, times the depth below the surface. Since the pressure
increases linearly with depth, the average pressure over the plane at x1, say,
is 1

2ρgh2, which is also the average force per unit width and per unit height
pushing the plane toward x2. So we multiply by another h2 to get the total force
which is acting on the water pushing from the left. On the other hand, there is
pressure in the water on the right also, exerting an opposite force on the region
in question, which is, by the same kind of analysis, 1

2ρgh
2
1. Now we must balance

the forces against the rate of change of the momentum. Thus we have to figure
out how much more momentum there is in situation (b) in Fig. 51-5 than there
was in (a). We see that the additional mass that has acquired the speed v is
just ρh2u∆t − ρh2v∆t (per unit width), and multiplying this by v gives the
additional momentum to be equated to the impulse F ∆t:

(ρh2u∆t− ρh2v∆t)v = ( 1
2ρgh

2
2 − 1

2ρgh
2
1) ∆t.

If we eliminate v from this equation by substituting vh2 = u(h2 − h1), already
found, and simplify, we get finally that u2 = gh2(h1 + h2)/2h1.

If the height difference is very small, so that h1 and h2 are nearly equal, this
says that the velocity =

√
gh. As we will see later, that is only true provided the

wavelength of the wave is longer than the depth of the channel.
We could also do the analogous thing for sound waves—including the conser-

vation of internal energy, not the conservation of entropy, because the shock is
irreversible. In fact, if one checks the conservation of energy in the bore problem,
one finds that energy is not conserved. If the height difference is small, it is
almost perfectly conserved, but as soon as the height difference becomes very
appreciable, there is a net loss of energy. This is manifested as the falling water
and the churning shown in Fig. 51-4.

In shock waves there is a corresponding apparent loss of energy, from the
point of view of adiabatic reactions. The energy in the sound wave, behind the
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shock, goes into heating of the gas after shock passes, corresponding to churning
of the water in the bore. In working it out, three equations for the sound case
turn out to be necessary for solution, and the temperature behind the shock is
not the same as the temperature in front, as we have seen.

If we try to make a bore that is upside down (h2 < h1), then we find that the
energy loss per second is negative. Since energy is not available from anywhere,
that bore cannot then maintain itself; it is unstable. If we were to start a wave
of that sort, it would flatten out, because the speed dependence on height that
resulted in sharpening in the case we discussed would now have the opposite
effect.

51-3 Waves in solids

The next kind of waves to be discussed are the more complicated waves in
solids. We have already discussed sound waves in gas and in liquid, and there
is a direct analog to a sound wave in a solid. If a sudden push is applied to
a solid, it is compressed. It resists the compression, and a wave analogous to
sound is started. However there is another kind of wave that is possible in a
solid, and which is not possible in a fluid. If a solid is distorted by pushing it
sideways (called shearing), then it tries to pull itself back. That is by definition
what distinguishes a solid from a liquid: if we distort a liquid (internally), hold
it a minute so that it calms down, and then let go, it will stay that way, but if
we take a solid and push it, like shearing a piece of “Jello,” and let it go, it flies
back and starts a shear wave, travelling in the same way the compressions travel.
In all cases, the shear wave speed is less than the speed of longitudinal waves.
The shear waves are somewhat more analogous, so far as their polarizations are
concerned, to light waves. Sound has no polarization, it is just a pressure wave.
Light has a characteristic orientation perpendicular to its direction of travel.

In a solid, the waves are of both kinds. First, there is a compression wave,
analogous to sound, that runs at one speed. If the solid is not crystalline, then a
shear wave polarized in any direction will propagate at a characteristic speed.
(Of course all solids are crystalline, but if we use a block made up of microcrystals
of all orientations, the crystal anisotropies average out.)

Another interesting question concerning sound waves is the following: What
happens if the wavelength in a solid gets shorter, and shorter, and shorter? How
short can it get? It is interesting that it cannot get any shorter than the space
between the atoms, because if there is supposed to be a wave in which one
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point goes up and the next down, etc., the shortest possible wavelength is clearly
the atom spacing. In terms of the modes of oscillation, we say that there are
longitudinal modes, and transverse modes, long wave modes, short wave modes.
As we consider wavelengths comparable to the spacing between the atoms, then
the speeds are no longer constant; there is a dispersion effect where the velocity
is not independent of the wave number. But, ultimately, the highest mode of
transverse waves would be that in which every atom is doing the opposite of
neighboring atoms.

Now from the point of view of atoms, the situation is like the two pendulums
that we were talking about, for which there are two modes, one in which they
both go together, and the other in which they go apart. It is possible to analyze
the solid waves another way, in terms of a system of coupled harmonic oscillators,
like an enormous number of pendulums, with the highest mode such that they
oscillate oppositely, and lower modes with different relationships of the timing.

The shortest wavelengths are so short that they are not usually available
technically. However they are of great interest because, in the theory of thermo-
dynamics of a solid, the heat properties of a solid, for example specific heats, can
be analyzed in terms of the properties of the short sound waves. Going to the
extreme of sound waves of ever shorter wavelength, one necessarily comes to the
individual motions of the atoms; the two things are the same ultimately.

A very interesting example of sound waves in a solid, both longitudinal and
transverse, are the waves that are in the solid earth. Who makes the noises we do
not know, but inside the earth, from time to time, there are earthquakes—some
rock slides past some other rock. That is like a little noise. So waves like sound
waves start out from such a source very much longer in wavelength than one
usually considers in sound waves, but still they are sound waves, and they travel
around in the earth. The earth is not homogeneous, however, and the properties,
of pressure, density, compressibility, and so on, change with depth, and therefore
the speed varies with depth. Then the waves do not travel in straight lines—there
is a kind of index of refraction and they go in curves. The longitudinal waves
and the transverse waves have different speeds, so there are different solutions for
the different speeds. Therefore if we place a seismograph at some location and
watch the way the thing jiggles after there has been an earthquake somewhere
else, then we do not just get an irregular jiggling. We might get a jiggling, and
a quieting down, and then another jiggling—what happens depends upon the
location. If it were close enough, we would first receive longitudinal waves from
the disturbance, and then, a few moments later, transverse waves, because they
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Fig. 51-6. Schematic of the earth, showing paths of longitudinal and
transverse sound waves.

travel more slowly. By measuring the time difference between the two, we can
tell how far away the earthquake is, if we know enough about the speeds and
composition of the interior regions involved.

An example of the behavior pattern of waves in the earth is shown in Fig. 51-6.
The two kinds of waves are represented by different symbols. If there were an
earthquake at the place marked “source,” the transverse waves and longitudinal
waves would arrive at different times at the station by the most direct routes,
and there would also be reflections at discontinuities, resulting in other paths
and times. It turns out that there is a core in the earth which does not carry
transverse waves. If the station is opposite the source, transverse waves still
arrive, but the timing is not right. What happens is that the transverse wave
comes to the core, and whenever the transverse waves come to a surface which
is oblique, between two materials, two new waves are generated, one transverse
and one longitudinal. But inside the core of the earth, a transverse wave is not
propagated (or at least, there is no evidence for it, only for a longitudinal wave);
it comes out again in both forms and comes to the station.

It is from the behavior of these earthquake waves that it has been determined
that transverse waves cannot be propagated within the inner circle. This means
that the center of the earth is liquid in the sense that it cannot propagate
transverse waves. The only way we know what is inside the earth is by studying
earthquakes. So, by using a large number of observations of many earthquakes
at different stations, the details have been worked out—the speed, the curves,
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etc. are all known. We know what the speeds of various kinds of waves are
at every depth. Knowing that, therefore, it is possible to figure out what the
normal modes of the earth are, because we know the speed of propagation of
sound waves—in other words, the elastic properties of both kinds of waves at
every depth. Suppose the earth were distorted into an ellipsoid and let go. It is
just a matter of superposing waves travelling around in the ellipsoid to determine
the period and shapes in a free mode. We have figured out that if there is a
disturbance, there are a lot of modes, from the lowest, which is ellipsoidal, to
higher modes with more structure.

The Chilean earthquake of May 1960 made a loud enough “noise” that the
signals went around the earth many times, and new seismographs of great delicacy
were made just in time to determine the frequencies of the fundamental modes
of the earth and to compare them with the values that were calculated from the
theory of sound with the known velocities, as measured from the independent
earthquakes. The result of this experiment is illustrated in Fig. 51-7, which is a
plot of the strength of the signal versus the frequency of its oscillation (a Fourier
analysis). Note that at certain particular frequencies there is much more being
received than at other frequencies; there are very definite maxima. These are
the natural frequencies of the earth, because these are the main frequencies at
which the earth can oscillate. In other words, if the entire motion of the earth is
made up of many different modes, we would expect to obtain, for each station,
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irregular bumpings which indicate a superposition of many frequencies. If we
analyze this in terms of frequencies, we should be able to find the characteristic
frequencies of the earth. The vertical dark lines in the figure are the calculated
frequencies, and we find a remarkable agreement, an agreement due to the fact
that the theory of sound is right for the inside of the earth.

FREQUENCY IN CYCLES PER MINUTE
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Fig. 51-8. High-resolution analysis of one of the seismograph records,
showing spectral doublet.

A very curious point is revealed in Fig. 51-8, which shows a very careful
measurement, with better resolution of the lowest mode, the ellipsoidal mode of
the earth. Note that it is not a single maximum, but a double one, 54.7 minutes
and 53.1 minutes—slightly different. The reason for the two different frequencies
was not known at the time that it was measured, although it may have been
found in the meantime. There are at least two possible explanations: One would
be that there may be asymmetry in the earth’s distribution, which would result
in two similar modes. Another possibility, which is even more interesting, is this:
Imagine the waves going around the earth in two directions from the source.
The speeds will not be equal because of effects of the rotation of the earth in
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the equations of motion, which have not been taken into account in making the
analysis. Motion in a rotating system is modified by Coriolis forces, and these
may cause the observed splitting.

Regarding the method by which these quakes have been analyzed, what is
obtained on the seismograph is not a curve of amplitude as a function of frequency,
but displacement as a function of time, always a very irregular tracing. To find
the amount of all the different sine waves for all different frequencies, we know
that the trick is to multiply the data by a sine wave of a given frequency and
integrate, i.e., average it, and in the average all other frequencies disappear. The
figures were thus plots of the integrals found when the data were multiplied by
sine waves of different cycles per minute, and integrated.

51-4 Surface waves

Now, the next waves of interest, that are easily seen by everyone and which
are usually used as an example of waves in elementary courses, are water waves.
As we shall soon see, they are the worst possible example, because they are in
no respects like sound and light; they have all the complications that waves can
have. Let us start with long water waves in deep water. If the ocean is considered
infinitely deep and a disturbance is made on the surface, waves are generated. All
kinds of irregular motions occur, but the sinusoidal type motion, with a very small
disturbance, might look like the common smooth ocean waves coming in toward
the shore. Now with such a wave, the water, of course, on the average, is standing
still, but the wave moves. What is the motion, is it transverse or longitudinal? It
must be neither; it is not transverse, nor is it longitudinal. Although the water
at a given place is alternately trough or hill, it cannot simply be moving up and
down, by the conservation of water. That is, if it goes down, where is the water
going to go? The water is essentially incompressible. The speed of compression
of waves—that is, sound in the water—is much, much higher, and we are not
considering that now. Since water is incompressible on this scale, as a hill comes
down the water must move away from the region. What actually happens is that
particles of water near the surface move approximately in circles. When smooth
swells are coming, a person floating in a tire can look at a nearby object and
see it going in a circle. So it is a mixture of longitudinal and transverse, to add
to the confusion. At greater depths in the water the motions are smaller circles
until, reasonably far down, there is nothing left of the motion (Fig. 51-9).
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Wave direction
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Fig. 51-9. Deep-water waves are formed from particles moving in
circles. Note the systematic phase shifts from circle to circle. How
would a floating object move?

To find the velocity of such waves is an interesting problem: it must be some
combination of the density of the water, the acceleration of gravity, which is the
restoring force that makes the waves, and possibly of the wavelength and of the
depth. If we take the case where the depth goes to infinity, it will no longer
depend on the depth. Whatever formula we are going to get for the velocity of
the phases of the waves must combine the various factors to make the proper
dimensions, and if we try this in various ways, we find only one way to combine
the density, g, and λ in order to make a velocity, namely,

√
gλ, which does not

include the density at all. Actually, this formula for the phase velocity is not
exactly right, but a complete analysis of the dynamics, which we will not go into,
shows that the factors are as we have them, except for

√
2π:

vphase =
√
gλ/2π (for gravity waves).

It is interesting that the long waves go faster than the short waves. Thus if a
boat makes waves far out, because there is some sports-car driver in a motorboat
travelling by, then after a while the waves come to shore with slow sloshings at
first and then more and more rapid sloshings, because the first waves that come
are long. The waves get shorter and shorter as the time goes on, because the
velocities go as the square root of the wavelength.

One may object, “That is not right, we must look at the group velocity in
order to figure it out!” Of course that is true. The formula for the phase velocity
does not tell us what is going to arrive first; what tells us is the group velocity.
So we have to work out the group velocity, and it is left as a problem to show
it to be one-half of the phase velocity, assuming that the velocity goes as the
square root of the wavelength, which is all that is needed. The group velocity
also goes as the square root of the wavelength. How can the group velocity go
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half as fast as the phase? If one looks at the bunch of waves that are made by a
boat travelling along, following a particular crest, he finds that it moves forward
in the group and gradually gets weaker and dies out in the front, and mystically
and mysteriously a weak one in the back works its way forward and gets stronger.
In short, the waves are moving through the group while the group is only moving
at half the speed that the waves are moving.

Fig. 51-10. The wake of a boat.

Because the group velocities and phase velocities are not equal, then the
waves that are produced by an object moving through are no longer simply a
cone, but it is much more interesting. We can see that in Fig. 51-10, which
shows the waves produced by an object moving through the water. Note that it
is quite different than what we would have for sound, in which the velocity is
independent of wavelength, where we would have wavefronts only along the cone,
travelling outward. Instead of that, we have waves in the back with fronts moving
parallel to the motion of the boat, and then we have little waves on the sides at
other angles. This entire pattern of waves can, with ingenuity, be analyzed by
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knowing only this: that the phase velocity is proportional to the square root of
the wavelength. The trick is that the pattern of waves is stationary relative to
the (constant-velocity) boat; any other pattern would get lost from the boat.

The water waves that we have been considering so far were long waves in
which the force of restoration is due to gravitation. But when waves get very
short in the water, the main restoring force is capillary attraction, i.e., the energy
of the surface, the surface tension. For surface tension waves, it turns out that
the phase velocity is

vphase =
√

2πT/λρ (for ripples),

where T is the surface tension and ρ the density. It is the exact opposite: the
phase velocity is higher, the shorter the wavelength, when the wavelength gets
very small. When we have both gravity and capillary action, as we always do,
we get the combination of these two together:

vphase =
√
Tk/ρ+ g/k,

where k = 2π/λ is the wave number. So the velocity of the waves of water is really
quite complicated. The phase velocity as a function of the wavelength is shown
in Fig. 51-11; for very short waves it is fast, for very long waves it is fast, and
there is a minimum speed at which the waves can go. The group velocity can be
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Fig. 51-11. Phase velocity vs. wavelength for water.
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calculated from the formula: it goes to 3
2 the phase velocity for ripples and 1

2 the
phase velocity for gravity waves. To the left of the minimum the group velocity
is higher than the phase velocity; to the right, the group velocity is less than the
phase velocity. There are a number of interesting phenomena associated with
these facts. In the first place, since the group velocity is increasing so rapidly as
the wavelength goes down, if we make a disturbance there will be a slowest end of
the disturbance going at the minimum speed with the corresponding wavelength,
and then in front, going at higher speed, will be a short wave and a very long
wave. It is very hard to see the long ones, but it is easy to see the short ones in
a water tank.

So we see that the ripples often used to illustrate simple waves are quite
interesting and complicated; they do not have a sharp wavefront at all, as is the
case for simple waves like sound and light. The main wave has little ripples which
run out ahead. A sharp disturbance in the water does not produce a sharp wave
because of the dispersion. First come the very fine waves. Incidentally, if an
object moves through the water at a certain speed, a rather complicated pattern
results, because all the different waves are going at different speeds. One can
demonstrate this with a tray of water and see that the fastest ones are the fine
capillary waves. There are slowest waves, of a certain kind, which go behind. By
inclining the bottom, one sees that where the depth is lower, the speed is lower.
If a wave comes in at an angle to the line of maximum slope, it bends and tends
to follow that line. In this way one can show various things, and we conclude
that waves are more complicated in water than in air.

The speed of long waves in water with circulational motions is slower when
the depth is less, faster in deep water. Thus as water comes toward a beach
where the depth lessens, the waves go slower. But where the water is deeper, the
waves are faster, so we get the effects of shock waves. This time, since the wave
is not so simple, the shocks are much more contorted, and the wave over-curves
itself, in the familiar way shown in Fig. 51-12. This is what happens when waves
come into the shore, and the real complexities in nature are well revealed in such
a circumstance. No one has yet been able to figure out what shape the wave
should take as it breaks. It is easy enough when the waves are small, but when
one gets large and breaks, then it is much more complicated.

An interesting feature about capillary waves can be seen in the disturbances
made by an object moving through the water. From the point of view of the
object itself, the water is flowing past, and the waves which ultimately sit around
it are always the waves which have just the right speed to stay still with the
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Fig. 51-12. A water wave.

object in the water. Similarly, around an object in a stream, with the stream
flowing by, the pattern of waves is stationary, and at just the right wavelengths to
go at the same speed as the water going by. But if the group velocity is less than
the phase velocity, then the disturbances propagate out backwards in the stream,
because the group velocity is not quite enough to keep up with the stream. If
the group velocity is faster than the velocity of the phase, the pattern of waves
will appear in front of the object. If one looks closely at objects in a stream, one
can see that there are little ripples in front and long “slurps” in the back.

Another interesting feature of this sort can be observed in pouring liquids. If
milk is poured fast enough out of a bottle, for instance, a large number of lines
can be seen crossing both ways in the outgoing stream. They are waves starting
from the disturbance at the edges and running out, much like the waves about an
object in a stream. There are effects from both sides which produce the crossed
pattern.

We have investigated some of the interesting properties of waves and the
various complications of dependence of phase velocity on wavelength, the speed of
the waves on depth, and so forth, that produce the really complex, and therefore
interesting, phenomena of nature.
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52

Symmetry in Physical Laws

52-1 Symmetry operations

The subject of this chapter is what we may call symmetry in physical laws. We
have already discussed certain features of symmetry in physical laws in connection
with vector analysis (Chapter 11), the theory of relativity (Chapter 16), and
rotation (Chapter 20).

Why should we be concerned with symmetry? In the first place, symmetry is
fascinating to the human mind, and everyone likes objects or patterns that are in
some way symmetrical. It is an interesting fact that nature often exhibits certain
kinds of symmetry in the objects we find in the world around us. Perhaps the
most symmetrical object imaginable is a sphere, and nature is full of spheres—
stars, planets, water droplets in clouds. The crystals found in rocks exhibit many
different kinds of symmetry, the study of which tells us some important things
about the structure of solids. Even the animal and vegetable worlds show some
degree of symmetry, although the symmetry of a flower or of a bee is not as
perfect or as fundamental as is that of a crystal.

But our main concern here is not with the fact that the objects of nature
are often symmetrical. Rather, we wish to examine some of the even more
remarkable symmetries of the universe—the symmetries that exist in the basic
laws themselves which govern the operation of the physical world.

First, what is symmetry? How can a physical law be “symmetrical”? The
problem of defining symmetry is an interesting one and we have already noted
that Weyl gave a good definition, the substance of which is that a thing is
symmetrical if there is something we can do to it so that after we have done it,
it looks the same as it did before. For example, a symmetrical vase is of such
a kind that if we reflect or turn it, it will look the same as it did before. The
question we wish to consider here is what we can do to physical phenomena, or
to a physical situation in an experiment, and yet leave the result the same. A
list of the known operations under which various physical phenomena remain
invariant is shown in Table 52-1.
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Table 52-1

Symmetry Operations

Translation in space
Translation in time
Rotation through a fixed angle
Uniform velocity in a straight

line (Lorentz transformation)
Reversal of time
Reflection of space
Interchange of identical atoms

or identical particles
Quantum-mechanical phase
Matter-antimatter (charge conjugation)

52-2 Symmetry in space and time

The first thing we might try to do, for example, is to translate the phenomenon
in space. If we do an experiment in a certain region, and then build another
apparatus at another place in space (or move the original one over) then, whatever
went on in one apparatus, in a certain order in time, will occur in the same way
if we have arranged the same condition, with all due attention to the restrictions
that we mentioned before: that all of those features of the environment which
make it not behave the same way have also been moved over—we talked about
how to define how much we should include in those circumstances, and we shall
not go into those details again.

In the same way, we also believe today that displacement in time will have
no effect on physical laws. (That is, as far as we know today—all of these things
are as far as we know today!) That means that if we build a certain apparatus
and start it at a certain time, say on Thursday at 10:00 a.m., and then build
the same apparatus and start it, say, three days later in the same condition, the
two apparatuses will go through the same motions in exactly the same way as
a function of time no matter what the starting time, provided again, of course,
that the relevant features of the environment are also modified appropriately in
time. That symmetry means, of course, that if one bought General Motors stock
three months ago, the same thing would happen to it if he bought it now!
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We have to watch out for geographical differences too, for there are, of course,
variations in the characteristics of the earth’s surface. So, for example, if we
measure the magnetic field in a certain region and move the apparatus to some
other region, it may not work in precisely the same way because the magnetic
field is different, but we say that is because the magnetic field is associated with
the earth. We can imagine that if we move the whole earth and the equipment,
it would make no difference in the operation of the apparatus.

Another thing that we discussed in considerable detail was rotation in space:
if we turn an apparatus at an angle it works just as well, provided we turn
everything else that is relevant along with it. In fact, we discussed the problem of
symmetry under rotation in space in some detail in Chapter 11, and we invented
a mathematical system called vector analysis to handle it as neatly as possible.

On a more advanced level we had another symmetry—the symmetry under
uniform velocity in a straight line. That is to say—a rather remarkable effect—
that if we have a piece of apparatus working a certain way and then take the
same apparatus and put it in a car, and move the whole car, plus all the relevant
surroundings, at a uniform velocity in a straight line, then so far as the phenomena
inside the car are concerned there is no difference: all the laws of physics appear
the same. We even know how to express this more technically, and that is that the
mathematical equations of the physical laws must be unchanged under a Lorentz
transformation. As a matter of fact, it was a study of the relativity problem that
concentrated physicists’ attention most sharply on symmetry in physical laws.

Now the above-mentioned symmetries have all been of a geometrical nature,
time and space being more or less the same, but there are other symmetries of a
different kind. For example, there is a symmetry which describes the fact that
we can replace one atom by another of the same kind; to put it differently, there
are atoms of the same kind. It is possible to find groups of atoms such that if we
change a pair around, it makes no difference—the atoms are identical. Whatever
one atom of oxygen of a certain type will do, another atom of oxygen of that type
will do. One may say, “That is ridiculous, that is the definition of equal types!”
That may be merely the definition, but then we still do not know whether there
are any “atoms of the same type”; the fact is that there are many, many atoms of
the same type. Thus it does mean something to say that it makes no difference
if we replace one atom by another of the same type. The so-called elementary
particles of which the atoms are made are also identical particles in the above
sense—all electrons are the same; all protons are the same; all positive pions are
the same; and so on.
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After such a long list of things that can be done without changing the
phenomena, one might think we could do practically anything; so let us give
some examples to the contrary, just to see the difference. Suppose that we ask:
“Are the physical laws symmetrical under a change of scale?” Suppose we build a
certain piece of apparatus, and then build another apparatus five times bigger in
every part, will it work exactly the same way? The answer is, in this case, no!
The wavelength of light emitted, for example, by the atoms inside one box of
sodium atoms and the wavelength of light emitted by a gas of sodium atoms five
times in volume is not five times longer, but is in fact exactly the same as the
other. So the ratio of the wavelength to the size of the emitter will change.

Another example: we see in the newspaper, every once in a while pictures
of a great cathedral made with little matchsticks—a tremendous work of art
by some retired fellow who keeps gluing matchsticks together. It is much more
elaborate and wonderful than any real cathedral. If we imagine that this wooden
cathedral were actually built on the scale of a real cathedral, we see where the
trouble is; it would not last—the whole thing would collapse because of the fact
that scaled-up matchsticks are just not strong enough. “Yes,” one might say,
“but we also know that when there is an influence from the outside, it also must
be changed in proportion!” We are talking about the ability of the object to
withstand gravitation. So what we should do is first to take the model cathedral
of real matchsticks and the real earth, and then we know it is stable. Then we
should take the larger cathedral and take a bigger earth. But then it is even
worse, because the gravitation is increased still more!

Today, of course, we understand the fact that phenomena depend on the
scale on the grounds that matter is atomic in nature, and certainly if we built an
apparatus that was so small there were only five atoms in it, it would clearly be
something we could not scale up and down arbitrarily. The scale of an individual
atom is not at all arbitrary—it is quite definite.

The fact that the laws of physics are not unchanged under a change of scale
was discovered by Galileo. He realized that the strengths of materials were not
in exactly the right proportion to their sizes, and he illustrated this property
that we were just discussing, about the cathedral of matchsticks, by drawing two
bones, the bone of one dog, in the right proportion for holding up his weight,
and the imaginary bone of a “super dog” that would be, say, ten or a hundred
times bigger—that bone was a big, solid thing with quite different proportions.
We do not know whether he ever carried the argument quite to the conclusion
that the laws of nature must have a definite scale, but he was so impressed with
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this discovery that he considered it to be as important as the discovery of the
laws of motion, because he published them both in the same volume, called “On
Two New Sciences.”

Another example in which the laws are not symmetrical, that we know quite
well, is this: a system in rotation at a uniform angular velocity does not give the
same apparent laws as one that is not rotating. If we make an experiment and then
put everything in a space ship and have the space ship spinning in empty space,
all alone at a constant angular velocity, the apparatus will not work the same way
because, as we know, things inside the equipment will be thrown to the outside,
and so on, by the centrifugal or Coriolis forces, etc. In fact, we can tell that the
earth is rotating by using a so-called Foucault pendulum, without looking outside.

Next we mention a very interesting symmetry which is obviously false, i.e.,
reversibility in time. The physical laws apparently cannot be reversible in time,
because, as we know, all obvious phenomena are irreversible on a large scale:
“The moving finger writes, and having writ, moves on.” So far as we can tell, this
irreversibility is due to the very large number of particles involved, and if we
could see the individual molecules, we would not be able to discern whether the
machinery was working forward or backwards. To make it more precise: we build
a small apparatus in which we know what all the atoms are doing, in which we
can watch them jiggling. Now we build another apparatus like it, but which starts
its motion in the final condition of the other one, with all the velocities precisely
reversed. It will then go through the same motions, but exactly in reverse. Putting
it another way: if we take a motion picture, with sufficient detail, of all the inner
works of a piece of material and shine it on a screen and run it backwards, no
physicist will be able to say, “That is against the laws of physics, that is doing
something wrong!” If we do not see all the details, of course, the situation will be
perfectly clear. If we see the egg splattering on the sidewalk and the shell cracking
open, and so on, then we will surely say, “That is irreversible, because if we run the
moving picture backwards the egg will all collect together and the shell will go back
together, and that is obviously ridiculous!” But if we look at the individual atoms
themselves, the laws look completely reversible. This is, of course, a much harder
discovery to have made, but apparently it is true that the fundamental physical
laws, on a microscopic and fundamental level, are completely reversible in time!

52-3 Symmetry and conservation laws
The symmetries of the physical laws are very interesting at this level, but they

turn out, in the end, to be even more interesting and exciting when we come to

52-5



quantum mechanics. For a reason which we cannot make clear at the level of the
present discussion—a fact that most physicists still find somewhat staggering, a
most profound and beautiful thing, is that, in quantum mechanics, for each of the
rules of symmetry there is a corresponding conservation law; there is a definite
connection between the laws of conservation and the symmetries of physical laws.
We can only state this at present, without any attempt at explanation.

The fact, for example, that the laws are symmetrical for translation in space
when we add the principles of quantum mechanics, turns out to mean that
momentum is conserved.

That the laws are symmetrical under translation in time means, in quantum
mechanics, that energy is conserved.

Invariance under rotation through a fixed angle in space corresponds to the
conservation of angular momentum. These connections are very interesting and
beautiful things, among the most beautiful and profound things in physics.

Incidentally, there are a number of symmetries which appear in quantum
mechanics which have no classical analog, which have no method of description
in classical physics. One of these is as follows: If ψ is the amplitude for some
process or other, we know that the absolute square of ψ is the probability that
the process will occur. Now if someone else were to make his calculations, not
with this ψ, but with a ψ′ which differs merely by a change in phase (let ∆ be
some constant, and multiply ei∆ times the old ψ), the absolute square of ψ′,
which is the probability of the event, is then equal to the absolute square of ψ:

ψ′ = ψei∆; |ψ′|2 = |ψ|2. (52.1)

Therefore the physical laws are unchanged if the phase of the wave function
is shifted by an arbitrary constant. That is another symmetry. Physical laws
must be of such a nature that a shift in the quantum-mechanical phase makes
no difference. As we have just mentioned, in quantum mechanics there is a
conservation law for every symmetry. The conservation law which is connected
with the quantum-mechanical phase seems to be the conservation of electrical
charge. This is altogether a very interesting business!

52-4 Mirror reflections

Now the next question, which is going to concern us for most of the rest of
this chapter, is the question of symmetry under reflection in space. The problem
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is this: Are the physical laws symmetrical under reflection? We may put it this
way: Suppose we build a piece of equipment, let us say a clock, with lots of
wheels and hands and numbers; it ticks, it works, and it has things wound up
inside. We look at the clock in the mirror. How it looks in the mirror is not the
question. But let us actually build another clock which is exactly the same as
the first clock looks in the mirror—every time there is a screw with a right-hand
thread in one, we use a screw with a left-hand thread in the corresponding
place of the other; where one is marked “2” on the face, we mark a “ 2” on
the face of the other; each coiled spring is twisted one way in one clock and
the other way in the mirror-image clock; when we are all finished, we have two
clocks, both physical, which bear to each other the relation of an object and its
mirror image, although they are both actual, material objects, we emphasize.
Now the question is: If the two clocks are started in the same condition, the
springs wound to corresponding tightnesses, will the two clocks tick and go
around, forever after, as exact mirror images? (This is a physical question, not
a philosophical question.) Our intuition about the laws of physics would suggest
that they would.

We would suspect that, at least in the case of these clocks, reflection in space
is one of the symmetries of physical laws, that if we change everything from
“right” to “left” and leave it otherwise the same, we cannot tell the difference. Let
us, then, suppose for a moment that this is true. If it is true, then it would be
impossible to distinguish “right” and “left” by any physical phenomenon, just as
it is, for example, impossible to define a particular absolute velocity by a physical
phenomenon. So it should be impossible, by any physical phenomenon, to define
absolutely what we mean by “right” as opposed to “left,” because the physical
laws should be symmetrical.

Of course, the world does not have to be symmetrical. For example, using
what we may call “geography,” surely “right” can be defined. For instance, we
stand in New Orleans and look at Chicago, and Florida is to our right (when our
feet are on the ground!). So we can define “right” and “left” by geography. Of
course, the actual situation in any system does not have to have the symmetry
that we are talking about; it is a question of whether the laws are symmetrical—in
other words, whether it is against the physical laws to have a sphere like the
earth with “left-handed dirt” on it and a person like ourselves standing looking
at a city like Chicago from a place like New Orleans, but with everything the
other way around, so Florida is on the other side. It clearly seems not impossible,
not against the physical laws, to have everything changed left for right.
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Another point is that our definition of “right” should not depend on history.
An easy way to distinguish right from left is to go to a machine shop and pick
up a screw at random. The odds are it has a right-hand thread—not necessarily,
but it is much more likely to have a right-hand thread than a left-hand one. This
is a question of history or convention, or the way things happen to be, and is
again not a question of fundamental laws. As we can well appreciate, everyone
could have started out making left-handed screws!

So we must try to find some phenomenon in which “right hand” is involved
fundamentally. The next possibility we discuss is the fact that polarized light
rotates its plane of polarization as it goes through, say, sugar water. As we saw
in Chapter 33, it rotates, let us say, to the right in a certain sugar solution. That
is a way of defining “right-hand,” because we may dissolve some sugar in the
water and then the polarization goes to the right. But sugar has come from living
things, and if we try to make the sugar artificially, then we discover that it does
not rotate the plane of polarization! But if we then take that same sugar which
is made artificially and which does not rotate the plane of polarization, and put
bacteria in it (they eat some of the sugar) and then filter out the bacteria, we
find that we still have sugar left (almost half as much as we had before), and this
time it does rotate the plane of polarization, but the other way! It seems very
confusing, but is easily explained.

Take another example: One of the substances which is common to all living
creatures and that is fundamental to life is protein. Proteins consist of chains of
amino acids. Figure 52-1 shows a model of an amino acid that comes out of a
protein. This amino acid is called alanine, and the molecular arrangement would
look like that in Fig. 52-1(a) if it came out of a protein of a real living thing.
On the other hand, if we try to make alanine from carbon dioxide, ethane, and
ammonia (and we can make it, it is not a complicated molecule), we discover that
we are making equal amounts of this molecule and the one shown in Fig. 52-1(b)!
The first molecule, the one that comes from the living thing, is called L-alanine.
The other one, which is the same chemically, in that it has the same kinds of atoms
and the same connections of the atoms, is a “right-hand” molecule, compared
with the “left-hand” L-alanine, and it is called D-alanine. The interesting thing is
that when we make alanine at home in a laboratory from simple gases, we get an
equal mixture of both kinds. However, the only thing that life uses is L-alanine.
(This is not exactly true. Here and there in living creatures there is a special use
for D-alanine, but it is very rare. All proteins use L-alanine exclusively.) Now
if we make both kinds, and we feed the mixture to some animal which likes to

52-8



Fig. 52-1. (a) L-alanine (left), and (b) D-alanine (right).

“eat,” or use up, alanine, it cannot use D-alanine, so it only uses the L-alanine;
that is what happened to our sugar—after the bacteria eat the sugar that works
well for them, only the “wrong” kind is left! (Left-handed sugar tastes sweet, but
not the same as right-handed sugar.)

So it looks as though the phenomena of life permit a distinction between
“right” and “left,” or chemistry permits a distinction, because the two molecules
are chemically different. But no, it does not! So far as physical measurements can
be made, such as of energy, the rates of chemical reactions, and so on, the two
kinds work exactly the same way if we make everything else in a mirror image
too. One molecule will rotate light to the right, and the other will rotate it to
the left in precisely the same amount, through the same amount of fluid. Thus,
so far as physics is concerned, these two amino acids are equally satisfactory. So
far as we understand things today, the fundamentals of the Schrödinger equation
have it that the two molecules should behave in exactly corresponding ways, so
that one is to the right as the other is to the left. Nevertheless, in life it is all
one way!

It is presumed that the reason for this is the following. Let us suppose, for
example, that life is somehow at one moment in a certain condition in which
all the proteins in some creatures have left-handed amino acids, and all the
enzymes are lopsided—every substance in the living creature is lopsided—it is
not symmetrical. So when the digestive enzymes try to change the chemicals in
the food from one kind to another, one kind of chemical “fits” into the enzyme,
but the other kind does not (like Cinderella and the slipper, except that it is a
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“left foot” that we are testing). So far as we know, in principle, we could build
a frog, for example, in which every molecule is reversed, everything is like the
“left-hand” mirror image of a real frog; we have a left-hand frog. This left-hand
frog would go on all right for a while, but he would find nothing to eat, because
if he swallows a fly, his enzymes are not built to digest it. The fly has the wrong
“kind” of amino acids (unless we give him a left-hand fly). So as far as we know,
the chemical and life processes would continue in the same manner if everything
were reversed.

If life is entirely a physical and chemical phenomenon, then we can understand
that the proteins are all made in the same corkscrew only from the idea that
at the very beginning some living molecules, by accident, got started and a few
won. Somewhere, once, one organic molecule was lopsided in a certain way,
and from this particular thing the “right” happened to evolve in our particular
geography; a particular historical accident was one-sided, and ever since then the
lopsidedness has propagated itself. Once having arrived at the state that it is in
now, of course, it will always continue—all the enzymes digest the right things,
manufacture the right things: when the carbon dioxide and the water vapor,
and so on, go in the plant leaves, the enzymes that make the sugars make them
lopsided because the enzymes are lopsided. If any new kind of virus or living
thing were to originate at a later time, it would survive only if it could “eat” the
kind of living matter already present. Thus it, too, must be of the same kind.

There is no conservation of the number of right-handed molecules. Once
started, we could keep increasing the number of right-handed molecules. So the
presumption is, then, that the phenomena in the case of life do not show a lack
of symmetry in physical laws, but do show, on the contrary, the universal nature
and the commonness of ultimate origin of all creatures on earth, in the sense
described above.

52-5 Polar and axial vectors

Now we go further. We observe that in physics there are a lot of other places
where we have “right” and “left” hand rules. As a matter of fact, when we
learned about vector analysis we learned about the right-hand rules we have to
use in order to get the angular momentum, torque, magnetic field, and so on, to
come out right. The force on a charge moving in a magnetic field, for example,
is F = qv ×B. In a given situation, in which we know F , v, and B, isn’t that
equation enough to define right-handedness? As a matter of fact, if we go back
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and look at where the vectors came from, we know that the “right-hand rule”
was merely a convention; it was a trick. The original quantities, like the angular
momenta and the angular velocities, and things of this kind, were not really
vectors at all! They are all somehow associated with a certain plane, and it is just
because there are three dimensions in space that we can associate the quantity
with a direction perpendicular to that plane. Of the two possible directions, we
chose the “right-hand” direction.

So if the laws of physics are symmetrical, we should find that if some demon
were to sneak into all the physics laboratories and replace the word “right” for
“left” in every book in which “right-hand rules” are given, and instead we were to
use all “left-hand rules,” uniformly, then it should make no difference whatever
in the physical laws.

r r

Fig. 52-2. A step in space and its mirror image.

Let us give an illustration. There are two kinds of vectors. There are “honest”
vectors, for example a step r in space. If in our apparatus there is a piece here
and something else there, then in a mirror apparatus there will be the image
piece and the image something else, and if we draw a vector from the “piece”
to the “something else,” one vector is the mirror image of the other (Fig. 52-2).
The vector arrow changes its head, just as the whole space turns inside out; such
a vector we call a polar vector.

But the other kind of vector, which has to do with rotations, is of a different
nature. For example, suppose that in three dimensions something is rotating
as shown in Fig. 52-3. Then if we look at it in a mirror, it will be rotating as
indicated, namely, as the mirror image of the original rotation. Now we have
agreed to represent the mirror rotation by the same rule, it is a “vector” which,
on reflection, does not change about as the polar vector does, but is reversed
relative to the polar vectors and to the geometry of the space; such a vector is
called an axial vector .

Now if the law of reflection symmetry is right in physics, then it must be true
that the equations must be so designed that if we change the sign of each axial
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Fig. 52-3. A rotating wheel and its mirror image. Note that the
angular velocity “vector” is not reversed in direction.

vector and each cross-product of vectors, which would be what corresponds to
reflection, nothing will happen. For instance, when we write a formula which says
that the angular momentum is L = r×p, that equation is all right, because if we
change to a left-hand coordinate system, we change the sign of L, but p and r
do not change; the cross-product sign is changed, since we must change from a
right-hand rule to a left-hand rule. As another example, we know that the force
on a charge moving in a magnetic field is F = qv ×B, but if we change from a
right- to a left-handed system, since F and v are known to be polar vectors the
sign change required by the cross-product must be cancelled by a sign change
in B, which means that B must be an axial vector. In other words, if we make
such a reflection, B must go to −B. So if we change our coordinates from right
to left, we must also change the poles of magnets from north to south.

Let us see how that works in an example. Suppose that we have two magnets,
as in Fig. 52-4. One is a magnet with the coils going around a certain way, and
with current in a given direction. The other magnet looks like the reflection
of the first magnet in a mirror—the coil will wind the other way, everything
that happens inside the coil is exactly reversed, and the current goes as shown.
Now, from the laws for the production of magnetic fields, which we do not know
yet officially, but which we most likely learned in high school, it turns out that

S N

a

B

a′

B′

Fig. 52-4. A magnet and its mirror image.
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the magnetic field is as shown in the figure. In one case the pole is a south
magnetic pole, while in the other magnet the current is going the other way and
the magnetic field is reversed—it is a north magnetic pole. So we see that when
we go from right to left we must indeed change from north to south!

Never mind changing north to south; these too are mere conventions. Let us
talk about phenomena. Suppose, now, that we have an electron moving through
one field, going into the page. Then, if we use the formula for the force, v ×B
(remember the charge is minus), we find that the electron will deviate in the
indicated direction according to the physical law. So the phenomenon is that we
have a coil with a current going in a specified sense and an electron curves in a
certain way—that is the physics—never mind how we label everything.

Now let us do the same experiment with a mirror: we send an electron through
in a corresponding direction and now the force is reversed, if we calculate it from
the same rule, and that is very good because the corresponding motions are then
mirror images!

52-6 Which hand is right?

So the fact of the matter is that in studying any phenomenon there are always
two right-hand rules, or an even number of them, and the net result is that the
phenomena always look symmetrical. In short, therefore, we cannot tell right
from left if we also are not able to tell north from south. However, it may seem
that we can tell the north pole of a magnet. The north pole of a compass needle,
for example, is one that points to the north. But of course that is again a local
property that has to do with geography of the earth; that is just like talking
about in which direction is Chicago, so it does not count. If we have seen compass
needles, we may have noticed that the north-seeking pole is a sort of bluish color.
But that is just due to the man who painted the magnet. These are all local,
conventional criteria.

However, if a magnet were to have the property that if we looked at it closely
enough we would see small hairs growing on its north pole but not on its south
pole, if that were the general rule, or if there were any unique way to distinguish
the north from the south pole of a magnet, then we could tell which of the two
cases we actually had, and that would be the end of the law of reflection symmetry.

To illustrate the whole problem still more clearly, imagine that we were talking
to a Martian, or someone very far away, by telephone. We are not allowed to
send him any actual samples to inspect; for instance, if we could send light, we
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could send him right-hand circularly polarized light and say, “That is right-hand
light—just watch the way it is going.” But we cannot give him anything, we can
only talk to him. He is far away, or in some strange location, and he cannot see
anything we can see. For instance, we cannot say, “Look at Ursa major; now
see how those stars are arranged. What we mean by ‘right’ is . . . ” We are only
allowed to telephone him.

Now we want to tell him all about us. Of course, first we start defining
numbers, and say, “Tick, tick, two, tick, tick, tick, three, . . . ,” so that gradually
he can understand a couple of words, and so on. After a while we may become
very familiar with this fellow, and he says, “What do you guys look like?” We start
to describe ourselves, and say, “Well, we are six feet tall.” He says, “Wait a minute,
what is six feet?” Is it possible to tell him what six feet is? Certainly! We say, “You
know about the diameter of hydrogen atoms—we are 17,000,000,000 hydrogen
atoms high!” That is possible because physical laws are not invariant under
change of scale, and therefore we can define an absolute length. And so we define
the size of the body, and tell him what the general shape is—it has prongs with
five bumps sticking out on the ends, and so on, and he follows us along, and we
finish describing how we look on the outside, presumably without encountering
any particular difficulties. He is even making a model of us as we go along. He
says, “My, you are certainly very handsome fellows; now what is on the inside?”
So we start to describe the various organs on the inside, and we come to the
heart, and we carefully describe the shape of it, and say, “Now put the heart on
the left side.” He says, “Duhhh—the left side?” Now our problem is to describe
to him which side the heart goes on without his ever seeing anything that we see,
and without our ever sending any sample to him of what we mean by “right”—no
standard right-handed object. Can we do it?

52-7 Parity is not conserved!

It turns out that the laws of gravitation, the laws of electricity and magnetism,
nuclear forces, all satisfy the principle of reflection symmetry, so these laws, or
anything derived from them, cannot be used. But associated with the many
particles that are found in nature there is a phenomenon called beta decay, or weak
decay. One of the examples of weak decay, in connection with a particle discovered
in about 1954, posed a strange puzzle. There was a certain charged particle
which disintegrated into three π-mesons, as shown schematically in Fig. 52-5.
This particle was called, for a while, a τ -meson. Now in Fig. 52-5 we also see
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Fig. 52-5. A schematic diagram of the disintegration of a τ+ and
a θ+ particle.

another particle which disintegrates into two mesons; one must be neutral, from
the conservation of charge. This particle was called a θ-meson. So on the one
hand we have a particle called a τ , which disintegrates into three π-mesons, and
a θ, which disintegrates into two π-mesons. Now it was soon discovered that
the τ and the θ are almost equal in mass; in fact, within the experimental error,
they are equal. Next, the length of time it took for them to disintegrate into
three π’s and two π’s was found to be almost exactly the same; they live the
same length of time. Next, whenever they were made, they were made in the
same proportions, say, 14 percent τ ’s to 86 percent θ’s.

Anyone in his right mind realizes immediately that they must be the same
particle, that we merely produce an object which has two different ways of
disintegrating—not two different particles. This object that can disintegrate in
two different ways has, therefore, the same lifetime and the same production
ratio (because this is simply the ratio of the odds with which it disintegrates into
these two kinds).

However, it was possible to prove (and we cannot here explain at all how),
from the principle of reflection symmetry in quantum mechanics, that it was
impossible to have these both come from the same particle—the same particle
could not disintegrate in both of these ways. The conservation law corresponding
to the principle of reflection symmetry is something which has no classical analog,
and so this kind of quantum-mechanical conservation was called the conservation
of parity. So, it was a result of the conservation of parity or, more precisely, from
the symmetry of the quantum-mechanical equations of the weak decays under
reflection, that the same particle could not go into both, so it must be some kind
of coincidence of masses, lifetimes, and so on. But the more it was studied, the
more remarkable the coincidence, and the suspicion gradually grew that possibly
the deep law of the reflection symmetry of nature may be false.

As a result of this apparent failure, the physicists Lee and Yang suggested
that other experiments be done in related decays to try to test whether the law
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was correct in other cases. The first such experiment was carried out by Miss Wu
from Columbia, and was done as follows. Using a very strong magnet at a very
low temperature, it turns out that a certain isotope of cobalt, which disintegrates
by emitting an electron, is magnetic, and if the temperature is low enough that
the thermal oscillations do not jiggle the atomic magnets about too much, they
line up in the magnetic field. So the cobalt atoms will all line up in this strong
field. They then disintegrate, emitting an electron, and it was discovered that
when the atoms were lined up in a field whose B vector points upward, most of
the electrons were emitted in a downward direction.

If one is not really “hep” to the world, such a remark does not sound like
anything of significance, but if one appreciates the problems and interesting
things in the world, then he sees that it is a most dramatic discovery: When
we put cobalt atoms in an extremely strong magnetic field, more disintegration
electrons go down than up. Therefore if we were to put it in a corresponding
experiment in a “mirror,” in which the cobalt atoms would be lined up in the
opposite direction, they would spit their electrons up, not down; the action is
unsymmetrical. The magnet has grown hairs! The south pole of a magnet is of
such a kind that the electrons in a β-disintegration tend to go away from it; that
distinguishes, in a physical way, the north pole from the south pole.

After this, a lot of other experiments were done: the disintegration of the π
into µ and ν; µ into an electron and two neutrinos; nowadays, the Λ into proton
and π; disintegration of Σ’s; and many other disintegrations. In fact, in almost
all cases where it could be expected, all have been found not to obey reflection
symmetry! Fundamentally, the law of reflection symmetry, at this level in physics,
is incorrect.

In short, we can tell a Martian where to put the heart: we say, “Listen, build
yourself a magnet, and put the coils in, and put the current on, and then take
some cobalt and lower the temperature. Arrange the experiment so the electrons
go from the foot to the head, then the direction in which the current goes through
the coils is the direction that goes in on what we call the right and comes out on
the left.” So it is possible to define right and left, now, by doing an experiment of
this kind.

There are a lot of other features that were predicted. For example, it turns out
that the spin, the angular momentum, of the cobalt nucleus before disintegration
is 5 units of ~, and after disintegration it is 4 units. The electron carries spin
angular momentum, and there is also a neutrino involved. It is easy to see from
this that the electron must carry its spin angular momentum aligned along its
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direction of motion, the neutrino likewise. So it looks as though the electron is
spinning to the left, and that was also checked. In fact, it was checked right here
at Caltech by Boehm and Wapstra, that the electrons spin mostly to the left.
(There were some other experiments that gave the opposite answer, but they
were wrong!)

The next problem, of course, was to find the law of the failure of parity
conservation. What is the rule that tells us how strong the failure is going to
be? The rule is this: it occurs only in these very slow reactions, called weak
decays, and when it occurs, the rule is that the particles which carry spin, like
the electron, neutrino, and so on, come out with a spin tending to the left. That
is a lopsided rule; it connects a polar vector velocity and an axial vector angular
momentum, and says that the angular momentum is more likely to be opposite
to the velocity than along it.

Now that is the rule, but today we do not really understand the whys and
wherefores of it. Why is this the right rule, what is the fundamental reason
for it, and how is it connected to anything else? At the moment we have been
so shocked by the fact that this thing is unsymmetrical that we have not been
able to recover enough to understand what it means with regard to all the other
rules. However, the subject is interesting, modern, and still unsolved, so it seems
appropriate that we discuss some of the questions associated with it.

52-8 Antimatter

The first thing to do when one of the symmetries is lost is to immediately go
back over the list of known or assumed symmetries and ask whether any of the
others are lost. Now we did not mention one operation on our list, which must
necessarily be questioned, and that is the relation between matter and antimatter.
Dirac predicted that in addition to electrons there must be another particle, called
the positron (discovered at Caltech by Anderson), that is necessarily related
to the electron. All the properties of these two particles obey certain rules of
correspondence: the energies are equal; the masses are equal; the charges are
reversed; but, more important than anything, the two of them, when they come
together, can annihilate each other and liberate their entire mass in the form
of energy, say γ-rays. The positron is called an antiparticle to the electron,
and these are the characteristics of a particle and its antiparticle. It was clear
from Dirac’s argument that all the rest of the particles in the world should also
have corresponding antiparticles. For instance, for the proton there should be an
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antiproton, which is now symbolized by a p. The p would have a negative electrical
charge and the same mass as a proton, and so on. The most important feature,
however, is that a proton and an antiproton coming together can annihilate each
other. The reason we emphasize this is that people do not understand it when we
say there is a neutron and also an antineutron, because they say, “A neutron is
neutral, so how can it have the opposite charge?” The rule of the “anti” is not just
that it has the opposite charge, it has a certain set of properties, the whole lot of
which are opposite. The antineutron is distinguished from the neutron in this way:
if we bring two neutrons together, they just stay as two neutrons, but if we bring
a neutron and an antineutron together, they annihilate each other with a great
explosion of energy being liberated, with various π-mesons, γ-rays, and whatnot.

Now if we have antineutrons, antiprotons, and antielectrons, we can make
antiatoms, in principle. They have not been made yet, but it is possible in
principle. For instance, a hydrogen atom has a proton in the center with an
electron going around outside. Now imagine that somewhere we can make an
antiproton with a positron going around, would it go around? Well, first of all,
the antiproton is electrically negative and the antielectron is electrically positive,
so they attract each other in a corresponding manner—the masses are all the
same; everything is the same. It is one of the principles of the symmetry of
physics, the equations seem to show, that if a clock, say, were made of matter on
one hand, and then we made the same clock of antimatter, it would run in this
way. (Of course, if we put the clocks together, they would annihilate each other,
but that is different.)

An immediate question then arises. We can build, out of matter, two clocks,
one which is “left-hand” and one which is “right-hand.” For example, we could
build a clock which is not built in a simple way, but has cobalt and magnets and
electron detectors which detect the presence of β-decay electrons and count them.
Each time one is counted, the second hand moves over. Then the mirror clock,
receiving fewer electrons, will not run at the same rate. So evidently we can
make two clocks such that the left-hand clock does not agree with the right-hand
one. Let us make, out of matter, a clock which we call the standard or right-hand
clock. Now let us make, also out of matter, a clock which we call the left-hand
clock. We have just discovered that, in general, these two will not run the same
way; prior to that famous physical discovery, it was thought that they would.
Now it was also supposed that matter and antimatter were equivalent. That is, if
we made an antimatter clock, right-hand, the same shape, then it would run the
same as the right-hand matter clock, and if we made the same clock to the left it
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would run the same. In other words, in the beginning it was believed that all
four of these clocks were the same; now of course we know that the right-hand
and left-hand matter are not the same. Presumably, therefore, the right-handed
antimatter and the left-handed antimatter are not the same.

So the obvious question is, which goes with which, if either? In other words,
does the right-handed matter behave the same way as the right-handed antimatter?
Or does the right-handed matter behave the same as the left-handed antimatter?
β-decay experiments, using positron decay instead of electron decay, indicate
that this is the interconnection: matter to the “right” works the same way as
antimatter to the “left.”

Therefore, at long last, it is really true that right and left symmetry is still
maintained! If we made a left-hand clock, but made it out of the other kind of
matter, antimatter instead of matter, it would run in the same way. So what has
happened is that instead of having two independent rules in our list of symmetries,
two of these rules go together to make a new rule, which says that matter to the
right is symmetrical with antimatter to the left.

So if our Martian is made of antimatter and we give him instructions to make
this “right” handed model like us, it will, of course, come out the other way
around. What would happen when, after much conversation back and forth, we
each have taught the other to make space ships and we meet halfway in empty
space? We have instructed each other on our traditions, and so forth, and the
two of us come rushing out to shake hands. Well, if he puts out his left hand,
watch out!

52-9 Broken symmetries
The next question is, what can we make out of laws which are nearly symmet-

rical? The marvelous thing about it all is that for such a wide range of important,
strong phenomena—nuclear forces, electrical phenomena, and even weak ones
like gravitation—over a tremendous range of physics, all the laws for these seem
to be symmetrical. On the other hand, this little extra piece says, “No, the laws
are not symmetrical!” How is it that nature can be almost symmetrical, but not
perfectly symmetrical? What shall we make of this? First, do we have any other
examples? The answer is, we do, in fact, have a few other examples. For instance,
the nuclear part of the force between proton and proton, between neutron and
neutron, and between neutron and proton, is all exactly the same—there is a
symmetry for nuclear forces, a new one, that we can interchange neutron and
proton—but it evidently is not a general symmetry, for the electrical repulsion
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between two protons at a distance does not exist for neutrons. So it is not
generally true that we can always replace a proton with a neutron, but only to a
good approximation. Why good? Because the nuclear forces are much stronger
than the electrical forces. So this is an “almost” symmetry also. So we do have
examples in other things.

We have, in our minds, a tendency to accept symmetry as some kind of
perfection. In fact it is like the old idea of the Greeks that circles were perfect,
and it was rather horrible to believe that the planetary orbits were not circles,
but only nearly circles. The difference between being a circle and being nearly
a circle is not a small difference, it is a fundamental change so far as the mind
is concerned. There is a sign of perfection and symmetry in a circle that is not
there the moment the circle is slightly off—that is the end of it—it is no longer
symmetrical. Then the question is why it is only nearly a circle—that is a much
more difficult question. The actual motion of the planets, in general, should
be ellipses, but during the ages, because of tidal forces, and so on, they have
been made almost symmetrical. Now the question is whether we have a similar
problem here. The problem from the point of view of the circles is if they were
perfect circles there would be nothing to explain, that is clearly simple. But since
they are only nearly circles, there is a lot to explain, and the result turned out
to be a big dynamical problem, and now our problem is to explain why they are
nearly symmetrical by looking at tidal forces and so on.

So our problem is to explain where symmetry comes from. Why is nature
so nearly symmetrical? No one has any idea why. The only thing we might
suggest is something like this: There is a gate in Japan, a gate in Neiko, which is
sometimes called by the Japanese the most beautiful gate in all Japan; it was
built in a time when there was great influence from Chinese art. This gate is
very elaborate, with lots of gables and beautiful carving and lots of columns and
dragon heads and princes carved into the pillars, and so on. But when one looks
closely he sees that in the elaborate and complex design along one of the pillars,
one of the small design elements is carved upside down; otherwise the thing is
completely symmetrical. If one asks why this is, the story is that it was carved
upside down so that the gods will not be jealous of the perfection of man. So
they purposely put an error in there, so that the gods would not be jealous and
get angry with human beings.

We might like to turn the idea around and think that the true explanation
of the near symmetry of nature is this: that God made the laws only nearly
symmetrical so that we should not be jealous of His perfection!
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of circularly polarized light, 33-18
Orbital ∼, III-19-2

Angular velocity, 18-4 f
Anomalous dispersion, 31-14
Anomalous refraction, 33-15 ff
Antiferromagnetic material, II-37-23
Antimatter, 52-17 ff, III-11-27
Antiparticle, 2-12, III-11-23
Antiproton, III-11-23
Argon, III-19-30 f
Associated Legendre functions, III-19-16
Astronomy and physics, 3-10 ff
Atom, 1-3 ff

Metastable ∼, 42-17
Rutherford-Bohr model, II-5-4
Stability of ∼s, II-5-4 f
Thomson model, II-5-4

Atomic clock, 5-10, III-9-22
Atomic currents, II-13-9 ff, II-32-6 f,

II-36-4 ff
Atomic hypothesis, 1-3 ff
Atomic orbits, II-1-15
Atomic particles, 2-12 ff
Atomic polarizability, II-32-3
Atomic processes, 1-8 ff

and parity conservation, III-18-5
Attenuation, 31-15
Avogadro’s number, 41-18, II-8-9
Axial vector, 20-6, 52-10 ff, 52-17

B
Bar (unit), 47-7
Barkhausen effect, II-37-19
Baryons, III-11-23
Base states, III-5-13 ff, III-12-1 ff
of the world, III-8-8 ff

Battery, II-22-13
Benzene molecule, III-10-17 ff, III-15-11 ff
Bernoulli’s theorem, II-40-10 ff
Bessel function, II-23-11, II-23-14,

II-23-19, II-24-7
Betatron, II-17-8 f, II-29-15
Binocular vision, 36-6, 36-8 f
Biology and physics, 3-3 ff
Biot-Savart law, II-14-18 f, II-21-13
Birefringence, 33-4 ff, 33-16
Birefringent material, 33-16 ff, II-33-6,

II-39-14
Blackbody radiation, 41-5 ff
Blackbody spectrum, III-4-15 ff
Bohr magneton, II-34-19, II-35-18, II-37-2,

III-12-19, III-34-19, III-35-18
Bohr radius, 38-12, III-2-12, III-19-5,

III-19-9
Boltzmann energy, II-36-24
Boltzmann factor, III-14-8
Boltzmann’s constant, 41-18, II-7-14,

III-14-7
Boltzmann’s law, 40-4 f
Boltzmann theory, III-21-13
Boron, III-19-30
Bose particles, III-4-1 ff, III-15-10 f
Boundary layer, II-41-15
Boundary-value problems, II-7-2
Boyle’s law, 40-16
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“Boys” camera, II-9-21
Bragg-Nye crystal model, II-30-22 ff
Breaking-drop theory, II-9-18 f
Bremsstrahlung, 34-12 f
Brewster’s angle, 33-10
Brownian motion, 1-16, 6-8, 41-1 ff, 46-2 f,

46-9
Brush discharge, II-9-20
Bulk modulus, II-38-6

C
Calculus
Differential ∼, II-2-1 ff
Integral ∼, II-3-1 ff
of variations, II-19-6

Cantilever beam, II-38-19
Capacitance, 23-9
Mutual ∼, II-22-38

Capacitor, 23-8, II-22-5 ff
at high frequencies, II-23-4 ff
Parallel-plate ∼, 14-16 f, II-6-22 ff,

II-8-5
Capacity, II-6-23
of a condenser, II-8-4

Capillary action, 51-16
Carnot cycle, 44-8 ff, 45-4, 45-7
Carriers
Negative ∼, III-14-3
Positive ∼, III-14-3

Carrier signal, 48-6
Catalyst, 42-13
Cavendish’s experiment, 7-15 ff
Cavity resonators, II-23-1 ff
Cells
Cone ∼, 35-2 ff, 35-9, 35-14, 35-17 f,

36-2 f, 36-8
Rod ∼, 35-2 ff, 35-9, 35-17 f, 36-8,

36-10 ff, III-13-16
Center of mass, 18-1 ff, 19-1 ff

Centrifugal force, 7-9, 12-18, 16-3, 19-13 f,
20-14, 43-7, 52-5, II-34-12, II-41-18,
III-19-20, III-19-25, III-34-12

Centripetal force, 19-15 f
Charge
Conservation of ∼, 4-14, II-13-2 ff
Image ∼, II-6-17
Line of ∼, II-5-6 f
Motion of ∼, II-29-1 ff
on electron, 12-12
Point ∼, II-1-3
Polarization ∼s, II-10-6 ff
Sheet of ∼, II-5-7 ff
Sphere of ∼, II-5-10 f

Charged conductor, II-6-14 f, II-8-4 ff
Charge separation in a thunder cloud,

II-9-14 ff
Chemical bonds, II-30-5 f
Chemical energy, 4-3
Chemical kinetics, 42-11 ff
Chemical reaction, 1-12 ff
Chemistry and physics, 3-1 ff
Cherenkov radiation, 51-3
Chlorophyll molecule, III-15-20
Chromatic aberration, 27-13
Chromaticity, 35-11 f
Circuit elements, II-23-1 ff
Active ∼, II-22-9
Passive ∼, II-22-9

Circuits
Alternating-current ∼, II-22-1 ff
Equivalent ∼, II-22-22 ff

Circular motion, 21-6 ff
Circular polarization, 33-3
Circulation, II-1-8, II-3-14 ff
Classical electron radius, 32-6, II-28-5
Classical limit, III-7-16 ff
Clausius-Clapeyron equation, 45-10 ff
Clausius-Mossotti equation, II-11-13 ff,

II-32-11
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Cleavage plane, II-30-3
Clebsch-Gordan coefficients, III-18-29,

III-18-34
Coaxial line, II-24-2
Coefficient
Absorption ∼, II-32-13
Clebsch-Gordan ∼s, III-18-29, III-18-34
Drag ∼, II-41-11
Einstein ∼s, III-9-25
of coupling, II-17-25
of friction, 12-6
of viscosity, II-41-2

Collision, 16-10
Elastic ∼, 10-13 f

Collision cross section, 43-5 f
Colloidal particles, II-7-13 ff
Color vision, 35-1 ff, 36-1 ff

Physiochemistry of ∼, 35-15 ff
Commutation rule, III-20-24
Complex impedance, 23-12
Complex numbers, 22-11 ff

and harmonic motion, 23-1 ff
Complex variable, II-7-3 ff
Compound (insect) eye, 36-12 ff
Compression
Adiabatic ∼, 39-8
Isothermal ∼, 44-10

Condensor
Energy of a ∼, II-8-4 ff
Parallel-plate ∼, II-6-22 ff, II-8-5

Conduction band, III-14-2
Conductivity, II-32-16
Ionic ∼, 43-9 ff
Thermal ∼, II-2-16, II-12-3, II-12-6

of a gas, 43-16 f
Conductor, II-1-3
Cone cells, 35-2 ff, 35-9, 35-14, 35-17 f,

36-2 f, 36-8
Conservation

of angular momentum, 4-13, 18-11 ff,
20-8

of baryon number, III-11-23
of charge, 4-14, II-13-2 ff
of energy, 3-3, 4-1 ff, II-27-1 ff, II-42-24,

III-7-9 ff
of linear momentum, 4-13, 10-1 ff
of strangeness, III-11-21

Conservative force, 14-5 ff
Constant
Boltzmann’s ∼, 41-18, II-7-14, III-14-7
Dielectric ∼, II-10-1 ff
Gravitational ∼, 7-17
Planck’s ∼, 4-13, 5-19, 17-14, 37-18,

II-15-16, II-19-18 f, II-28-17,
III-1-18, III-20-24, III-21-2

Stefan-Boltzmann ∼, 45-14
Constrained motion, 14-4 f
Contraction hypothesis, 15-8 f
Coriolis force, 19-14 ff, 20-8, 51-13, 52-5,

II-34-12, III-34-12
Cornea, 35-1, 36-5 f, 36-18
Cornu’s spiral, 30-16
Cosmic rays, 2-9, II-9-4
Cosmic synchrotron radiation, 34-10 ff
Couette flow, II-41-17 ff
Coulomb’s law, 28-1, 28-3, II-1-4 f, II-1-11,

II-4-3 ff, II-4-8, II-4-12, II-4-19,
II-5-11 ff

Coupling, coefficient of, II-17-25
Covalent bonds, II-30-5
Cross product, II-2-14, II-31-14 f
Cross section, 5-15
Collision ∼, 43-5 f
Nuclear ∼, 5-15
Scattering ∼, 32-12
Thomson scattering ∼, 32-13

Crystal, II-30-1 ff
Geometry of ∼s, II-30-1 ff
Ionic ∼, II-8-8 ff
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Molecular ∼, II-30-5
Crystal diffraction, 38-8 ff, III-2-8 ff
Crystal lattice, II-30-7 ff
Cubic ∼, II-30-17
Hexagonal ∼, II-30-16
Imperfections in a ∼, III-13-16 ff
Monoclinic ∼, II-30-16
Orthorhombic ∼, II-30-17
Propagation in a ∼, III-13-1 ff
Tetragonal ∼, II-30-17
Triclinic ∼, II-30-15
Trigonal ∼, II-30-16

Cubic lattice, II-30-17
Curie point, II-37-7, II-37-20, II-37-26
Curie’s law, II-11-9
Curie temperature, II-36-29, II-36-31,

II-37-2, II-37-6, II-37-23
Curie-Weiss law, II-11-20
Curl operator, II-2-15, II-3-1
Current
Ampèrian ∼, II-36-4
Atomic ∼s, II-13-9 ff, II-32-6 f, II-36-4 ff
Eddy ∼, II-16-11
Electric ∼, II-13-2 ff

in the atmosphere, II-9-4 ff
Induced ∼s, II-16-10 ff

Current density, II-13-2
Curtate cycloid, 34-5, 34-8
Curvature
in three-dimensional space, II-42-11 ff
Intrinsic ∼, II-42-11
Mean ∼, II-42-14
Negative ∼, II-42-11
Positive ∼, II-42-11

Curved space, II-42-1 ff
Cutoff frequency, II-22-30
Cyclotron, II-29-10, II-29-15
Cytosine, 3-9

D
D’Alembertian operator, II-25-13
Damped oscillation, 24-4 ff
Debye length, II-7-15
Definite energy, states of, III-13-5 ff
Degrees of freedom, 25-3, 39-19, 40-1
Demagnetization, adiabatic, II-35-18 f,

III-35-18 f
Density, 1-6

Current ∼, II-13-2
Energy ∼, II-27-3
Probability ∼, 6-13, 6-15, III-16-9

Derivative, 8-9 f
Partial ∼, 14-15

Diamagnetism, II-34-1 ff, II-34-9 ff,
III-34-1 ff, III-34-9 ff

Diamond lattice, III-14-1
Dielectric, II-10-1 ff, II-11-1 ff
Dielectric constant, II-10-1 ff
Differential calculus, 8-7, II-2-1 ff
Diffraction, 30-1 ff
by a screen, 31-17 ff
X-ray ∼, 30-14, 38-9, II-8-9, II-30-3,

III-2-9
Diffraction grating, 30-6 ff
Resolving power of a ∼, 30-10 f

Diffusion, 43-1 ff
Molecular ∼, 43-11 ff
of neutrons, II-12-12 ff

Dipole
Electric ∼, II-6-2 ff
Magnetic ∼, II-14-13 ff
Molecular ∼, II-11-1
Oscillating ∼, II-21-8 ff

Dipole moment, 12-9, II-6-5
Magnetic ∼, II-14-15

Dipole potential, II-6-8 ff
Dipole radiator, 28-7 ff, 29-6 ff
Dirac equation, 20-11
Dislocations, II-30-19
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and crystal growth, II-30-20 f
Screw ∼, II-30-20 f
Slip ∼, II-30-20

Dispersion, 31-10 ff
Anomalous ∼, 31-14
Normal ∼, 31-14

Dispersion equation, 31-10
Distance, 5-1 ff
Distance measurement
by the color-brightness relationship of

stars, 5-12
by triangulation, 5-10 ff

Distribution
Normal (Gaussian) ∼, 6-15, III-16-12,

III-16-14
Probability ∼, 6-13 ff

Divergence
of four-vectors, II-25-11

Divergence operator, II-2-14, II-3-1
DNA, 3-8 ff
Domain, II-37-11
Donor site, III-14-9
Doppler effect, 17-14, 23-18, 34-13 ff,

38-11, II-42-21, III-2-11, III-12-15
Dot product, II-2-9
of four-vectors, II-25-6

Double stars, 7-10
Drag coefficient, II-41-11
“Dry” water, II-40-1 ff
Dyes, III-10-21 f
Dynamical (p-) momentum, III-21-8
Dynamics, 9-1 ff
Development of ∼, 7-4
of rotation, 18-5 f
Relativistic ∼, 15-15 ff

E
Eddy current, II-16-11
Effect
Barkhausen ∼, II-37-19

Doppler ∼, 17-14, 23-18, 34-13 ff, 38-11,
II-42-21, III-2-11, III-12-15

Hall ∼, III-14-12 ff
Kerr ∼, 33-8
Meissner ∼, III-21-14 ff, III-21-22
Mössbauer ∼, II-42-24
Purkinje ∼, 35-4

Effective mass, III-13-12
Efficiency of an ideal engine, 44-13 ff
Eigenstates, III-11-38
Eigenvalues, III-11-38
Einstein coefficients, III-4-15, III-9-25
Einstein-Podolsky-Rosen paradox,

III-18-16
Einstein’s equation of motion, II-42-30
Einstein’s field equation, II-42-29
Elastica, curves of the, II-38-25
Elastic collision, 10-13 f
Elastic constants, II-39-9, II-39-19 ff
Elastic energy, 4-3, 4-11 f
Elasticity, II-38-1 ff
Elasticity tensor, II-39-6 ff
Elastic materials, II-39-1 ff
Electret, II-11-16
Electrical energy, 4-3, 4-12, 10-15,

II-15-5 ff
Electrical forces, 2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electric charge density, II-2-15, III-21-10
Electric current, II-13-2 ff
in the atmosphere, II-9-4 ff

Electric current density, II-2-15
Electric dipole, II-6-2 ff
Electric dipole matrix element, III-9-25
Electric field, 2-6, 12-11 ff, II-1-4 ff,

II-6-1 ff, II-7-1 ff
Relativity of ∼, II-13-13 ff

Electric flux, II-1-8
Electric generator, II-16-1 ff, II-22-9 ff
Electric motor, II-16-1 ff
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Electric potential, II-4-6 ff
Electric susceptibility, II-10-7
Electrodynamics, II-1-5
Electromagnetic energy, 29-3 f
Electromagnetic field, 2-3, 2-7, 10-15 f
Electromagnetic mass, II-28-1 ff
Electromagnetic radiation, 26-1, 28-1 ff
Electromagnetic waves, 2-7, II-21-1 ff
Electromagnetism, II-1-1 ff
Laws of ∼, II-1-9 ff

Electromotive force (EMF), II-16-5
Electron, 2-6, 37-2, 37-7 ff, III-1-1,

III-1-6 ff
Charge on ∼, 12-12
Classical ∼ radius, 32-6, II-28-5

Electron cloud, 6-20
Electron configuration, III-19-29
Electronic polarization, II-11-2 ff
Electron microscope, II-29-9 f
Electron-ray tube, 12-15
Electron volt (unit), 34-7
Electrostatic energy, II-8-1 ff
in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Electrostatic equations
with dielectrics, II-10-10 ff

Electrostatic field, II-5-1 ff, II-7-1 ff
Energy in the ∼, II-8-18 ff
of a grid, II-7-17 ff

Electrostatic lens, II-29-5 ff
Electrostatic potential, equations of the,

II-6-1 f
Electrostatics, II-4-1 ff, II-5-1 ff
Ellipse, 7-2
Emission of photons, III-4-13 ff
Emissivity, II-6-28
Energy, 4-1 ff, II-22-24 ff
Activation ∼, 3-6, 42-12 f

Boltzmann ∼, II-36-24
Chemical ∼, 4-3
Conservation of ∼, 3-3, 4-1 ff, II-27-1 ff,

II-42-24, III-7-9 ff
Elastic ∼, 4-3, 4-11 f
Electrical ∼, 4-3, 4-12, 10-15, II-15-5 ff
Electromagnetic ∼, 29-3 f
Electrostatic ∼, II-8-1 ff

in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Field ∼, II-27-1 ff
Gravitational ∼, 4-3 ff
Heat ∼, 4-3, 4-11 f, 10-15
in the electrostatic field, II-8-18 ff
Kinetic ∼, 1-13, 2-10, 4-3, 4-10 f

and temperature, 39-10 ff
Magnetic ∼, II-17-22 ff
Mass ∼, 4-3, 4-12
Mechanical ∼, II-15-5 ff
Nuclear ∼, 4-3
of a condensor, II-8-4 ff
Potential ∼, 4-7, 13-1 ff, 14-1 ff,

III-7-9 ff
Radiant ∼, 4-3, 4-12, 7-20, 10-15
Relativistic ∼, 16-1 ff
Rotational kinetic ∼, 19-12 ff
Rydberg ∼, III-10-6, III-19-5
Wall ∼, II-37-11

Energy density, II-27-3
Energy diagram, III-14-2
Energy flux, II-27-3
Energy level diagram, III-14-6
Energy levels, 38-13 ff, III-2-13 ff,

III-12-12 ff
of a harmonic oscillator, 40-17 f

Energy theorem, 50-13
Enthalpy, 45-9
Entropy, 44-19 ff, 46-9 ff
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Equation
Clausius-Mossotti ∼, II-11-13 ff,

II-32-11
Diffusion ∼

Heat ∼,
Neutron ∼, II-12-13

Dirac ∼, 20-11
Dispersion ∼, 31-10
Einstein’s field ∼, II-42-29
Einstein’s ∼ of motion, II-42-30
Laplace ∼, II-7-2
Maxwell’s ∼s, 46-12, 47-12, II-2-1,

II-2-15, II-4-1 f, II-6-1, II-7-11,
II-8-20, II-10-11, II-13-7, II-13-13,
II-13-22, II-15-24 f, II-18-1 ff,
II-22-1 f, II-22-13 f, II-22-16,
II-22-23, II-23-6, II-23-13 f,
II-23-20 f, II-24-9, II-25-12,
II-25-15, II-25-19, II-26-3, II-26-20,
II-26-23, II-27-5, II-27-8, II-27-13,
II-27-17, II-28-1, II-32-7, II-33-2,
II-33-5 ff, II-33-12 f, II-33-16,
II-34-14, II-36-2, II-36-5, II-36-11,
II-36-26, II-38-4, II-39-14, II-42-29,
III-34-14

for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and
charges, II-21-1 ff

Solving ∼, II-18-17 ff
Poisson ∼, II-6-2
Saha ∼, 42-9
Schrödinger ∼, II-15-21, II-41-20,

III-16-6, III-16-18 ff
for the hydrogen atom, III-19-1 ff
in a classical context, III-21-1 ff

Wave ∼, 47-1 ff, II-18-17 ff

Equilibrium, 1-12
Equipotential surfaces, II-4-20 ff
Equivalent circuits, II-22-22 ff
Ethylene molecule, III-15-13
Euclidean geometry, 1-1, 12-4, 12-19, 17-4
Euler force, II-38-23
Evaporation, 1-10, 1-12
of a liquid, 40-5 ff, 42-1 ff

Excess radius, II-42-9 ff, II-42-13 ff,
II-42-29

Exchange force, II-37-3
Excited state, II-8-14, III-13-15
Exciton, III-13-16
Exclusion principle, III-4-23 ff
Expansion
Adiabatic ∼, 44-10
Isothermal ∼, 44-10

Exponential atmosphere, 40-1 ff
Eye
Compound (insect) ∼, 36-12 ff
Human ∼, 35-1 ff

F
Farad (unit), 25-14, II-6-24
Faraday’s law of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Fermat’s principle, 26-5, 26-7, 26-9, 26-11,

26-13 ff, 26-17 f
Fermi (unit), 5-18
Fermi particles, III-4-1 ff, III-15-11
Ferrites, II-37-25 f
Ferroelectricity, II-11-17 ff
Ferromagnetic insulators, II-37-25
Ferromagnetic materials, II-37-19 ff
Ferromagnetism, II-36-1 ff, II-37-1 ff
Field, 14-12 ff

Electric ∼, 2-6, 12-11 ff, II-1-4 ff,
II-6-1 ff, II-7-1 ff

Electromagnetic ∼, 2-3, 2-7, 10-15 f
Electrostatic ∼, II-5-1 ff, II-7-1 ff
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of a grid, II-7-17 ff
Flux of a vector ∼, II-3-4 ff
Gravitational ∼, 12-13 ff, 13-13 ff
in a cavity, II-5-17 ff
Magnetic ∼, 12-15 ff, II-1-4 ff, II-13-1 f,

II-14-1 ff
of steady currents, II-13-6 ff

Magnetizing ∼, II-36-15
of a charged conductor, II-6-14 f
of a conductor, II-5-16 f
Relativity of electric ∼, II-13-13 ff
Relativity of magnetic ∼, II-13-13 ff
Scalar ∼, II-2-3 ff
Superposition of ∼s, 12-15
Two-dimensional ∼s, II-7-3 ff
Vector ∼, II-1-8 f, II-2-3 ff

Field-emission microscope, II-6-27 ff
Field energy, II-27-1 ff
of a point charge, II-28-1 f

Field index, II-29-13
Field-ion microscope, II-6-27 ff
Field lines, II-4-20 ff
Field momentum, II-27-1 ff
of a moving charge, II-28-3 f

Field strength, II-1-6
Filter, II-22-30 ff
Flow
Fluid ∼, II-12-16 ff
Heat ∼, II-2-16 ff, II-12-2 ff
Irrotational ∼, II-12-16 ff, II-40-9 ff
Steady ∼, II-40-10 ff
Viscous ∼, II-41-6 ff

Fluid flow, II-12-16 ff
Flux, II-4-12 ff
Electric ∼, II-1-8
Energy ∼, II-27-3
of a vector field, II-3-4 ff

Flux quantization, III-21-16 ff
Flux rule, II-17-1
Focal length

of a lens, 27-7 ff
of a spherical surface, 27-2 ff

Focus, 26-11, 27-4
Force
Centrifugal ∼, 7-9, 12-18, 16-3, 19-13 f,

20-14, 43-7, 52-5, II-34-12, II-41-18,
III-19-20, III-19-25, III-34-12

Centripetal ∼, 19-15 f
Components of ∼, 9-4 ff
Conservative ∼, 14-5 ff
Coriolis ∼, 19-14 ff, 20-8, 51-13, 52-5,

II-34-12, III-34-12
Electrical ∼s, 2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electromotive ∼ (EMF), II-16-5
Euler ∼, II-38-23
Exchange ∼, II-37-3
Gravitational ∼, 2-4
Lorentz ∼, II-13-1, II-15-25
Magnetic ∼, 12-15 ff, II-1-4, II-13-1

on a current, II-13-5 f
Molecular ∼s, 12-9 ff
Moment of ∼, 18-8
Nonconservative ∼, 14-10 ff
Nuclear ∼s, 12-20 f, II-1-2 f, II-8-12 f,

II-28-18, II-28-20 ff, III-10-10 ff
Pseudo ∼, 12-17 ff

Fortune teller, 17-8
Foucault pendulum, 16-3
Fourier analysis, 25-7, 50-3 ff, 50-8 ff
Fourier theorem, II-7-17
Fourier transforms, 25-7
Four-potential, II-25-15
Four-vector algebra, 17-12 ff
Four-vectors, 15-14 f, 17-8 ff, II-25-1 ff
Fovea, 35-2 f, 35-5, 35-18
Frequency
Angular ∼, 21-5, 29-4, 29-6, 49-4
Larmor ∼, II-34-12, III-34-12
of oscillation, 2-7
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Plasma ∼, II-7-12, II-32-18 ff
Fresnel’s reflection formulas, 33-15
Friction, 10-7, 12-4 ff

Coefficient of ∼, 12-6
Origin of ∼, 12-9

G
Galilean relativity, 10-5, 10-11
Galilean transformation, 12-18, 15-4
Gallium, III-19-32 f
Galvanometer, II-1-17, II-16-2
Gamma rays, 2-8
Garnets, II-37-25 f
Gauss (unit), 34-7, II-36-12
Gaussian distribution, 6-15, III-16-12,

III-16-14
Gauss’ law, II-4-18 f
Applications of ∼, II-5-1 ff
for field lines, II-4-21

Gauss’ theorem, II-3-8 ff, III-21-7
Generator
Alternating-current ∼, II-17-11 ff
Electric ∼, II-16-1 ff, II-22-9 ff
Van de Graaff ∼, II-5-19, II-8-14

Geology and physics, 3-12 f
Geometrical optics, 26-2, 27-1 ff
Gradient operator, II-2-8 ff, II-3-1
Gravitation, 2-4, 7-1 ff, 12-2, II-42-1
Theory of ∼, II-42-28 ff

Gravitational acceleration, 9-6
Gravitational constant, 7-17
Gravitational energy, 4-3 ff
Gravitational field, 12-13 ff, 13-13 ff
Gravitational force, 2-4
Gravity, 13-5 ff, II-42-17 ff
Acceleration of ∼, 9-6

Greeks’ difficulties with speed, 8-4 f
Green’s function, 25-8
Ground state, II-8-14, III-7-3
Group velocity, 48-11 f

Guanine, 3-9
Gyroscope, 20-9 ff

H
Haidinger’s brush, 36-14
Hall effect, III-14-12 ff
Hamiltonian, III-8-16
Hamiltonian matrix, III-8-1 ff
Hamilton’s first principal function,

II-19-16
Harmonic motion, 21-6 ff, 23-1 ff
Harmonic oscillator, 10-1, 21-1 ff
Energy levels of a ∼, 40-17 f
Forced ∼, 21-9 ff, 23-4 ff

Harmonics, 50-1 ff
Heat, 1-5, 13-5

Specific ∼, 40-13 ff, II-37-7
and the failure of classical physics,
40-16 ff

at constant volume, 45-3
Heat conduction, II-3-10 ff
Heat diffusion equation, II-3-10 ff
Heat energy, 4-3, 4-11 f, 10-15
Heat engines, 44-1 ff
Heat flow, II-2-16 ff, II-12-2 ff
Helium, 1-8, 3-11 f, 49-9 f, III-19-27
Liquid ∼, III-4-22 f

Helmholtz’s theorem, II-40-22 f
Henry (unit), 25-13
Hermitian adjoint, III-20-5
Hexagonal lattice, II-30-16
High-voltage breakdown, II-6-25 ff
Hooke’s law, 12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Human eye, 35-1 ff
Hydrodynamics, II-40-5 ff
Hydrogen, III-19-26 f
Hyperfine splitting in ∼, III-12-1 ff

Hydrogen atom, III-19-1 ff

Index-10



Hydrogen molecular ion, III-10-1 ff
Hydrogen molecule, III-10-13 ff
Hydrogen wave functions, III-19-21 ff
Hydrostatic pressure, II-40-1
Hydrostatics, II-40-1 ff
Hyperfine splitting in hydrogen, III-12-1 ff
Hysteresis curve, II-37-10 ff
Hysteresis loop, II-36-16

I
Ideal gas law, 39-16 ff
Identical particles, III-3-16 ff, III-4-1 ff
Illumination, II-12-20 ff
Image charge, II-6-17
Impedance, 25-15 f, II-22-1 ff
Complex ∼, 23-12
of a vacuum, 32-3

Impure semiconductors, III-14-8 ff
Incidence, angle of, 26-6, II-33-1
Inclined plane, 4-7
Independent particle approximation,

III-15-1 ff
Index
Field ∼, II-29-13
of refraction, 31-1 ff, II-32-1 ff

Induced currents, II-16-10 ff
Inductance, 23-10, II-16-7 ff, II-17-16 ff,

II-22-3 f
Mutual ∼, II-17-16 ff, II-22-36 f
Self-∼, II-16-8, II-17-20 ff

Induction, laws of, II-17-1 ff
Inductor, 25-13
Inertia, 2-4, 7-20
Moment of ∼, 18-12 f, 19-1 ff
Principle of ∼, 9-1

Infrared radiation, 2-8, 23-14, 26-1
Insulator, II-1-3, II-10-1
Integral, 8-11 ff
Line ∼, II-3-1 ff

Integral calculus, II-3-1 ff

Interference, 28-10 ff, 29-1 ff
and diffraction, 30-1
Two-slit ∼, III-3-8 ff

Interfering amplitudes, III-5-16 ff
Interfering waves, 37-6, III-1-6
Interferometer, 15-8
Ion, 1-11
Ionic bonds, II-30-5
Ionic conductivity, 43-9 ff
Ionic crystal, II-8-8 ff
Ionic polarizability, II-11-17
Ionization energy, 42-8

of hydrogen, 38-12, III-2-12
Ionosphere, II-7-9, II-7-12, II-9-6, II-32-22
Irreversibility, 46-9 ff
Irrotational flow, II-12-16 ff, II-40-9 ff
Isotherm, II-2-5
Isothermal atmosphere, 40-3
Isothermal compression, 44-10
Isothermal expansion, 44-10
Isothermal surfaces, II-2-5
Isotopes, 3-7, 3-12, 39-17

J
Johnson noise, 41-4, 41-14
Josephson junction, III-21-25 ff
Joule (unit), 13-5
Joule heating, 24-3

K
Kármán vortex street, II-41-13
Kepler’s laws, 7-2 f, 7-5, 7-7, 9-1, 18-11
Kerr cell, 33-8
Kerr effect, 33-8
Kilocalorie (unit), II-8-9
Kinematic (mv-) momentum, III-21-8
Kinetic energy, 1-13, 2-10, 4-3, 4-10 f

and temperature, 39-10 ff
Rotational ∼, 19-12 ff

Kinetic theory

Index-11



Applications of ∼, 42-1 ff
of gases, 39-1 ff

Kirchhoff’s laws, 25-16, II-22-14 ff,
II-22-27

Kronecker delta, II-31-10
Krypton, III-19-32 f

L
Lagrangian, II-19-15
Lamé elastic constants, II-39-9
Lamb-Retherford measurement, II-5-14
Landé g-factor, II-34-6, III-34-6
Laplace equation, II-7-2
Laplacian operator, II-2-20
Larmor frequency, II-34-12, III-34-12
Larmor’s theorem, II-34-11 ff, III-34-11 ff
Laser, 5-4, 32-9, 42-17 f, 50-17, III-9-21
Law
Ampère’s ∼, II-13-6 ff
Applications of Gauss’ ∼, II-5-1 ff
Biot-Savart ∼, II-14-18 f, II-21-13
Boltzmann’s ∼, 40-4 f
Boyle’s ∼, 40-16
Coulomb’s ∼, 28-1, 28-3, II-1-4 f,

II-1-11, II-4-3 ff, II-4-8, II-4-12,
II-4-19, II-5-11 ff

Curie’s ∼, II-11-9
Curie-Weiss ∼, II-11-20
Faraday’s ∼ of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Gauss’ ∼, II-4-18 f

for field lines, II-4-21
Hooke’s ∼, 12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Ideal gas ∼, 39-16 ff
Kepler’s ∼s, 7-2 f, 7-5, 7-7, 9-1, 18-11
Kirchhoff’s ∼s, 25-16, II-22-14 ff,

II-22-27
Lenz’s ∼, II-16-9 f, II-34-2, III-34-2

Newton’s ∼s, 2-9, 7-10, 7-12, 9-1 ff,
10-1 f, 10-5, 11-3 f, 11-7 f, 12-1 f,
12-4, 12-18, 12-20, 13-1, 14-10,
15-1 ff, 15-5, 15-16, 16-4, 16-13 f,
18-1, 19-4, 20-1, 28-5, 39-1, 39-3,
39-17, 41-2, 46-1, 46-9, 47-4 f,
II-7-9, II-19-2, II-42-1, II-42-28

in vector notation, 11-13 ff
of reflection, 26-3
Ohm’s ∼, 23-9, 25-12, 43-11, II-19-26,

III-14-12
Rayleigh’s ∼, 41-10
Snell’s ∼, 26-5, 26-7, 26-14, 31-4, II-33-1

Laws
of electromagnetism, II-1-9 ff
of induction, II-17-1 ff

Least action, principle of, II-19-1 ff
Least time, principle of, 26-1 ff
Legendre functions, associated, III-19-16
Legendre polynomials, III-18-23, III-19-16
Lens
Electrostatic ∼, II-29-5 ff
Magnetic ∼, II-29-7 ff
Quadrupole ∼, II-7-6, II-29-15 f

Lens formula, 27-11
Lenz’s rule, II-16-9 f, II-34-2, III-34-2
Liénard-Wiechert potentials, II-21-16 ff
Light, 2-7, II-21-1 ff
Absorption of ∼, III-9-23 ff
Momentum of ∼, 34-20 ff
Polarized ∼, 32-15
Reflection of ∼, II-33-1 ff
Refraction of ∼, II-33-1 ff
Scattering of ∼, 32-1 ff
Speed of ∼, 15-1, II-18-16 f

Light cone, 17-6
Lightning, II-9-21 ff
Light pressure, 34-20
Light waves, 48-1
Linear momentum
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Conservation of ∼, 4-13, 10-1 ff
Linear systems, 25-1 ff
Linear transformation, 11-11
Line integral, II-3-1 ff
Line of charge, II-5-6 f
Liquid helium, III-4-22 f
Lithium, III-19-27 f
Lodestone, II-1-20, II-37-27
Logarithms, 22-3
Lorentz contraction, 15-13
Lorentz force, II-13-1, II-15-25
Lorentz formula, II-21-21 ff
Lorentz group, II-25-5
Lorentz transformation, 15-4 f, 17-1,

34-15, 52-3, II-25-1
of fields, II-26-1 ff

Lorenz condition, II-25-15
Lorenz gauge, II-18-20, II-25-15

M
Mach number, II-41-11
Magenta, III-10-21
Magnetic dipole, II-14-13 ff
Magnetic dipole moment, II-14-15
Magnetic energy, II-17-22 ff
Magnetic field, 12-15 ff, II-1-4 ff, II-13-1 f,

II-14-1 ff
of steady currents, II-13-6 ff
Relativity of ∼, II-13-13 ff

Magnetic force, 12-15 ff, II-1-4, II-13-1
on a current, II-13-5 f

Magnetic induction, 12-17
Magnetic lens, II-29-7 ff
Magnetic materials, II-37-1 ff
Magnetic moments, II-34-4 ff, III-11-8,

III-34-4 ff
Magnetic resonance, II-35-1 ff, III-35-1 ff
Nuclear ∼, II-35-19 ff, III-35-19 ff

Magnetic susceptibility, II-35-14, III-35-14
Magnetism, 2-7, II-34-1 ff, III-34-1 ff

Dia∼, II-34-1 ff, II-34-9 ff, III-34-1 ff,
III-34-9 ff

Ferro∼, II-36-1 ff, II-37-1 ff
Para∼, II-34-1 ff, II-35-1 ff, III-34-1 ff,

III-35-1 ff
Magnetization currents, II-36-1 ff
Magnetizing field, II-36-15
Magnetostatics, II-4-2, II-13-1 ff
Magnetostriction, II-37-12, II-37-21
Magnification, 27-10 f
Magnons, III-15-6
Maser, 42-17
Ammonia ∼, III-9-1 ff

Mass, 9-2, 15-1
Center of ∼, 18-1 ff, 19-1 ff
Effective ∼, III-13-12
Electromagnetic ∼, II-28-1 ff
Relativistic ∼, 16-9 ff

Mass energy, 4-3, 4-12
Mass-energy equivalence, 15-17 ff
Mathematics and physics, 3-1
Matrix, III-5-9
Matrix algebra, III-5-24, III-11-5,

III-20-28
Maxwell’s demon, 46-8 f
Maxwell’s equations, 15-3 ff, 25-5, 25-8,

46-12, 47-12, II-2-1, II-2-15,
II-4-1 f, II-6-1, II-7-11, II-8-20,
II-10-11, II-13-7, II-13-13, II-13-22,
II-15-24 f, II-18-1 ff, II-22-1 f,
II-22-13 f, II-22-16, II-22-23,
II-23-6, II-23-13 f, II-23-20 f,
II-24-9, II-25-12, II-25-15, II-25-19,
II-26-3, II-26-20, II-26-23, II-27-5,
II-27-8, II-27-13, II-27-17, II-28-1,
II-32-7, II-33-2, II-33-5, II-33-7 ff,
II-33-12 f, II-33-16, II-34-14,
II-36-2, II-36-5, II-36-11, II-36-26,
II-38-4, II-39-14, II-42-29, III-10-12,
III-21-11, III-21-24, III-34-14
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for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and

charges, II-21-1 ff
Solving ∼, II-18-17 ff

Mean free path, 43-4 ff
Mean square distance, 6-9, 41-15
Mechanical energy, II-15-5 ff
Meissner effect, III-21-14 ff, III-21-22
Metastable atom, 42-17
Meter (unit), 5-18
MeV (unit), 2-14
Michelson-Morley experiment, 15-5 ff,

15-13
Microscope
Electron ∼, II-29-9 f
Field-emission ∼, II-6-27 ff
Field-ion ∼, II-6-27 ff

Minkowski space, II-31-23
Modes, 49-1 ff
Normal ∼, 48-17 f

Mole (unit), 39-17
Molecular crystal, II-30-5
Molecular diffusion, 43-11 ff
Molecular dipole, II-11-1
Molecular forces, 12-9 ff
Molecular motion, 41-1
Molecule, 1-4
Nonpolar ∼, II-11-1
Polar ∼, II-11-1, II-11-5 ff

Mössbauer effect, II-42-24
Moment
Dipole ∼, 12-9, II-6-5
of force, 18-8
of inertia, 18-12 f, 19-1 ff

Momentum, 9-1 ff, 38-3 ff, III-2-3 ff

Angular ∼, 18-8 ff, 20-1, III-18-1 ff,
III-20-22 ff

Composition of ∼, III-18-25 ff
Conservation of ∼, 4-13, 18-11 ff, 20-8
of a rigid body, 20-14

Conservation of angular ∼,
Conservation of linear ∼, 4-13, 10-1 ff
Dynamical (p-) ∼, III-21-8
Field ∼, II-27-1 ff
in quantum mechanics, 10-16 f
Kinematic (mv-) ∼, III-21-8
of light, 34-20 ff
Relativistic ∼, 10-14 ff, 16-1 ff

Momentum operator, III-20-4, III-20-15 ff
Momentum spectrometer, II-29-2
Momentum spectrum, II-29-4
Monatomic gas, 39-7 ff, 39-11, 39-17 f,

40-13 f
Monoclinic lattice, II-30-16
Motion, 5-1 f, 8-1 ff
Brownian ∼, 1-16, 6-8, 41-1 ff, 46-2 f,

46-9
Circular ∼, 21-6 ff
Constrained ∼, 14-4 f
Harmonic ∼, 21-6 ff, 23-1 ff
of charge, II-29-1 ff
Orbital ∼, II-34-5, III-34-5
Parabolic ∼, 8-17
Perpetual ∼, 46-3
Planetary ∼, 7-1 ff, 9-11 ff, 13-9

Motor, electric, II-16-1 ff
Moving charge, field momentum of,

II-28-3 f
Muscle
Smooth ∼, 14-3
Striated (skeletal) ∼, 14-3

Music, 50-2
Mutual capacitance, II-22-38
Mutual inductance, II-17-16 ff, II-22-36 f
mv-momentum, III-21-8
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N
Nabla operator (∇), II-2-12 ff
Negative carriers, III-14-3
Neon, III-19-30
Nernst heat theorem, 44-22
Neutral K-meson, III-11-21 ff
Neutral pion, III-10-11
Neutron diffusion equation, II-12-13
Neutrons, 2-6
Diffusion of ∼, II-12-12 ff

Newton (unit), 11-10
Newton ·meter (unit), 13-5
Newton’s laws, 2-9, 7-10, 7-12, 9-1 ff,

10-1 f, 10-5, 11-3 f, 11-7 f, 12-1 f,
12-4, 12-18, 12-20, 13-1, 14-10,
15-1 ff, 15-5, 15-16, 16-4, 16-13 f,
18-1, 19-4, 20-1, 28-5, 39-1, 39-3,
39-17, 41-2, 46-1, 46-9, 47-4 f,
II-7-9, II-19-2, II-42-1, II-42-28

in vector notation, 11-13 ff
Nodes, 49-3
Noise, 50-2
Nonconservative force, 14-10 ff
Nonpolar molecule, II-11-1
Normal dispersion, 31-14
Normal distribution, 6-15, III-16-12,

III-16-14
Normal modes, 48-17 f
n-type semiconductor, III-14-10
Nuclear cross section, 5-15
Nuclear energy, 4-3
Nuclear forces, 12-20 f, II-1-2 f, II-8-12 f,

II-28-18, II-28-20 ff, III-10-10 ff
Nuclear g-factor, II-34-6, III-34-6
Nuclear interactions, II-8-14
Nuclear magnetic resonance, II-35-19 ff,

III-35-19 ff
Nucleon, III-11-5
Nucleus, 2-6, 2-9 f, 2-12 ff
Numerical analysis, 9-11

Nutation, 20-12 f

O
Oersted (unit), II-36-12
Ohm (unit), 25-12
Ohm’s law, 23-9, 25-12, 43-11, II-19-26,

III-14-12
One-dimensional lattice, III-13-1 ff
Operator, III-8-7, III-20-1 ff
Algebraic ∼, III-20-4
Curl ∼, II-2-15, II-3-1
D’Alembertian ∼, II-25-13
Divergence ∼, II-2-14, II-3-1
Gradient ∼, II-2-8 ff, II-3-1
Laplacian ∼, II-2-20
Momentum ∼, III-20-4, III-20-15 ff
Nabla ∼ (∇), II-2-12 ff
Vector ∼, II-2-12

Optic axis, 33-5
Optic nerve, 35-3
Optics, 26-1 ff
Geometrical ∼, 26-2, 27-1 ff

Orbital angular momentum, III-19-2
Orbital motion, II-34-5, III-34-5
Orientation polarization, II-11-5 ff
Oriented magnetic moment, II-35-7,

III-35-7
Orthorhombic lattice, II-30-17
Oscillating dipole, II-21-8 ff
Oscillation
Amplitude of ∼, 21-6
Damped ∼, 24-4 ff
Frequency of ∼, 2-7
Periodic ∼, 9-7
Period of ∼, 21-4
Phase of ∼, 21-6
Plasma ∼s, II-7-9 ff

Oscillator, 5-4
Forced harmonic ∼, 21-9 ff, 23-4 ff
Harmonic ∼, 10-1, 21-1 ff
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P
Pappus, theorem of, 19-6 f
Parabolic antenna, 30-12 f
Parabolic motion, 8-17
Parallel-axis theorem, 19-9
Parallel-plate capacitor, 14-16 f, II-6-22 ff,

II-8-5
Paramagnetism, II-34-1 ff, II-35-1 ff,

III-34-1 ff, III-35-1 ff
Paraxial rays, 27-3
Partial derivative, 14-15
Particles
Bose ∼, III-4-1 ff, III-15-10 f
Fermi ∼, III-4-1 ff, III-15-11
Identical ∼, III-3-16 ff, III-4-1 ff
Spin-one ∼, III-5-1 ff
Spin one-half ∼, III-6-1 ff, III-12-1 ff

Precession of ∼, III-7-18 ff
Pascal’s triangle, 6-7
Passive circuit element, II-22-9
Pauli exclusion principle, II-36-31
Pauli spin exchange operator, III-12-12,

III-15-3
Pauli spin matrices, III-11-1 ff
Pendulum, 5-3

Coupled ∼s, 49-10 ff
Pendulum clock, 5-3
Periodic table, 2-14, 3-2, III-19-25 ff
Period of oscillation, 21-4
Permalloy, II-37-22
Permeability, II-36-18
Relative ∼, II-36-18

Perpetual motion, 46-3
Phase of oscillation, 21-6
Phase shift, 21-6
Phase velocity, 48-10, 48-12
Photon, 2-11, 17-14, 26-2, 37-13, III-1-12

Absorption of ∼s, III-4-13 ff
Emission of ∼s, III-4-13 ff
Polarization states of the ∼, III-11-15 ff

Photosynthesis, 3-4
Physics
Astronomy and ∼, 3-10 ff
before 1920, 2-4 ff
Biology and ∼, 3-3 ff
Chemistry and ∼, 3-1 ff
Geology and ∼, 3-12 f
Mathematics and ∼, 3-1
Psychology and ∼, 3-13 f
Relationship to other sciences, 3-1 ff

Piezoelectricity, II-11-16, II-31-23
Planck’s constant, 4-13, 5-19, 17-14, 37-18,

II-15-16, II-19-18 f, II-28-17,
III-1-18, III-20-24, III-21-2

Plane lattice, II-30-12
Planetary motion, 7-1 ff, 9-11 ff, 13-9
Plane waves, II-20-1 ff
Plasma, II-7-9
Plasma frequency, II-7-12, II-32-18 ff
Plasma oscillations, II-7-9 ff
p-momentum, III-21-8
Poincaré stress, II-28-7 f
Point charge, II-1-3
Electrostatic energy of a ∼, II-8-22 f
Field energy of a ∼, II-28-1 f

Poisson equation, II-6-2
Poisson’s ratio, II-38-3, II-38-6, II-38-21
Polarization, 33-1 ff
Circular ∼, 33-3
Electronic ∼, II-11-2 ff
of matter, II-32-1 ff
of scattered light, 33-4
Orientation ∼, II-11-5 ff

Polarization charges, II-10-6 ff
Polarization vector, II-10-4 ff
Polarized light, 32-15
Polar molecule, II-11-1, II-11-5 ff
Polar vector, 20-6, 52-10 ff
Positive carriers, III-14-3
Potassium, III-19-31 f
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Potential
Four-∼, II-25-15
Quadrupole ∼, II-6-14
Vector ∼, II-14-1 ff, II-15-1 ff

of known currents, II-14-5 ff
Potential energy, 4-7, 13-1 ff, 14-1 ff,

III-7-9 ff
Potential gradient of the atmosphere,

II-9-1 ff
Power, 13-4
Poynting vector, II-27-9
Precession
Angle of ∼, II-34-7, III-34-7
of atomic magnets, II-34-7 ff, III-34-7 ff

Pressure, 1-6
Hydrostatic ∼, II-40-1
Light ∼, 34-20
of a gas, 39-3 ff
Radiation ∼, 34-20

Principal quantum number, III-19-22
Principle
Exclusion ∼, III-4-23 ff
of equivalence, II-42-17 ff
of inertia, 9-1
of least action, II-19-1 ff
of superposition, II-1-5, II-4-4
of virtual work, 4-10
Uncertainty ∼, 2-9 f, 6-17 ff, 7-21,

37-14 f, 37-18 ff, 38-5, 38-11 f,
38-15, III-1-14, III-1-17 ff, III-2-5,
III-2-10 ff, III-2-15

and stability of atoms, II-1-2, II-5-5
Probability, 6-1 ff
Probability amplitudes, 37-16, III-1-16,

III-3-1 ff, III-16-1 ff
Probability density, 6-13, 6-15, III-16-9
Probability distribution, 6-13 ff, III-16-9
Propagation, in a crystal lattice, III-13-1 ff
Propagation factor, II-22-31
Protons, 2-6

Proton spin, II-8-12
Pseudo force, 12-17 ff
Psychology and physics, 3-13 f
p-type semiconductor, III-14-10
Purkinje effect, 35-4
Pyroelectricity, II-11-16

Q
Quadrupole lens, II-7-6, II-29-15 f
Quadrupole potential, II-6-14
Quantized magnetic states, II-35-1 ff,

III-35-1 ff
Quantum electrodynamics, 2-12 f, 2-17,

28-5, 42-16
and point charges, II-28-16

Quantum mechanical resonance, III-10-6
Quantum mechanics, 2-3, 2-9 ff, 6-17 ff,

37-1 ff, 38-1 ff, III-1-1 ff, III-2-1 ff,
III-3-1 ff

and vector potential, II-15-14 ff,
III-21-2 f

Momentum in ∼, 10-16 f
Quantum numbers, III-12-25

R
Rabi molecular-beam method, II-35-7 ff,

III-35-7 ff
Radiant energy, 4-3, 4-12, 7-20, 10-15
Radiation
Blackbody ∼, 41-5 ff
Bremsstrahlung, 34-12 f
Cherenkov ∼, 51-3
Cosmic rays, 2-9, II-9-4
Cosmic synchrotron ∼, 34-10 ff
Electromagnetic ∼, 26-1, 28-1 ff
Gamma rays, 2-8
Infrared ∼, 2-8, 23-14, 26-1
Light, 2-7
Relativistic effects in ∼, 34-1 ff
Synchrotron ∼, 34-6 ff
Ultraviolet ∼, 2-8, 26-1
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X-rays, 2-8, 26-1, 31-11, 34-8, 48-10,
48-12

Radiation damping, 32-1 ff
Radiation pressure, 34-20
Radiation resistance, 32-1 ff
Radioactive clock, 5-6 ff
Radioactive isotopes, 3-7, 5-8, 52-16
Radius
Bohr ∼, 38-12, III-2-12, III-19-5,

III-19-9
Classical electron ∼, 32-6, II-28-5
Excess ∼, II-42-9 ff, II-42-13 ff, II-42-29

Random walk, 6-8 ff, 41-14 ff
Ratchet and pawl machine, 46-1 ff
Rayleigh’s criterion, 30-11
Rayleigh’s law, 41-10
Rayleigh waves, II-38-16
Reactance, II-22-25 f
Reciprocity principle, 26-9, 30-12
Rectification, 50-15
Rectifier, II-22-34
Reflected waves, II-33-14 ff
Reflection, 26-3 ff

Angle of ∼, 26-6, II-33-1
of light, II-33-1 ff
Total internal ∼, II-33-22 ff

Refraction, 26-3 ff
Anomalous ∼, 33-15 ff
Index of ∼, 31-1 ff, II-32-1 ff
of light, II-33-1 ff

Relative permeability, II-36-18
Relativistic dynamics, 15-15 ff
Relativistic energy, 16-1 ff
Relativistic mass, 16-9 ff
Relativistic momentum, 10-14 ff, 16-1 ff
Relativity
Galilean ∼, 10-5, 10-11
of electric field, II-13-13 ff
of magnetic field, II-13-13 ff
Special theory of ∼, 15-1 ff

Theory of ∼, 7-20 f, 17-1
Resistance, 23-9
Resistor, 23-9, 41-4 f, 41-14, II-22-7 f
Resolving power, 27-14 f

of a diffraction grating, 30-10 f
Resonance, 23-1 ff
Electrical ∼, 23-8 ff
in nature, 23-12 ff
Quantum mechanical ∼, III-10-6
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About Richard Feynman

Born in 1918 in New York City, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important part in the
Manhattan Project at Los Alamos during World War II. Subsequently, he taught
at Cornell and at the California Institute of Technology. In 1965 he received the
Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger, for
his work in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such
as beta decay. In later years Feynman played a key role in the development of
quark theory by putting forward his parton model of high energy proton collision
processes.

Beyond these achievements, Dr. Feynman introduced basic new computa-
tional techniques and notations into physics—above all, the ubiquitous Feynman
diagrams that, perhaps more than any other formalism in recent scientific history,
have changed the way in which basic physical processes are conceptualized and
calculated.

Feynman was a remarkably effective educator. Of all his numerous awards,
he was especially proud of the Oersted Medal for Teaching, which he won in
1972. The Feynman Lectures on Physics, originally published in 1963, were
described by a reviewer in Scientific American as “tough, but nourishing and full
of flavor. After 25 years it is the guide for teachers and for the best of beginning
students.” In order to increase the understanding of physics among the lay public,
Dr. Feynman wrote The Character of Physical Law and QED: The Strange
Theory of Light and Matter. He also authored a number of advanced publications
that have become classic references and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility
of the O-rings to cold, an elegant experiment which required nothing more than
a glass of ice water and a C-clamp. Less well known were Dr. Feynman’s efforts
on the California State Curriculum Committee in the 1960s, where he protested
the mediocrity of textbooks.
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A recital of Richard Feynman’s myriad scientific and educational accomplish-
ments cannot adequately capture the essence of the man. As any reader of
even his most technical publications knows, Feynman’s lively and multi-sided
personality shines through all his work. Besides being a physicist, he was at
various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo
player, and even a decipherer of Mayan Hieroglyphics. Perpetually curious about
his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.
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Preface to the New Millennium Edition

Nearly fifty years have passed since Richard Feynman taught the introductory
physics course at Caltech that gave rise to these three volumes, The Feynman
Lectures on Physics. In those fifty years our understanding of the physical
world has changed greatly, but The Feynman Lectures on Physics has endured.
Feynman’s lectures are as powerful today as when first published, thanks to
Feynman’s unique physics insights and pedagogy. They have been studied
worldwide by novices and mature physicists alike; they have been translated
into at least a dozen languages with more than 1.5 millions copies printed in the
English language alone. Perhaps no other set of physics books has had such wide
impact, for so long.

This New Millennium Edition ushers in a new era for The Feynman Lectures
on Physics (FLP): the twenty-first century era of electronic publishing. FLP
has been converted to eFLP, with the text and equations expressed in the LATEX
electronic typesetting language, and all figures redone using modern drawing
software.

The consequences for the print version of this edition are not startling; it
looks almost the same as the original red books that physics students have known
and loved for decades. The main differences are an expanded and improved index,
the correction of 885 errata found by readers over the five years since the first
printing of the previous edition, and the ease of correcting errata that future
readers may find. To this I shall return below.

The eBook Version of this edition, and the Enhanced Electronic Version are
electronic innovations. By contrast with most eBook versions of 20th century tech-
nical books, whose equations, figures and sometimes even text become pixellated
when one tries to enlarge them, the LATEX manuscript of the New Millennium
Edition makes it possible to create eBooks of the highest quality, in which all
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features on the page (except photographs) can be enlarged without bound and
retain their precise shapes and sharpness. And the Enhanced Electronic Version,
with its audio and blackboard photos from Feynman’s original lectures, and its
links to other resources, is an innovation that would have given Feynman great
pleasure.

Memories of Feynman’s Lectures

These three volumes are a self-contained pedagogical treatise. They are also a
historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
required of all Caltech freshmen and sophomores regardless of their majors.

Readers may wonder, as I have, how Feynman’s lectures impacted the students
who attended them. Feynman, in his Preface to these volumes, offered a somewhat
negative view. “I don’t think I did very well by the students,” he wrote. Matthew
Sands, in his memoir in Feynman’s Tips on Physics expressed a far more positive
view. Out of curiosity, in spring 2005 I emailed or talked to a quasi-random set
of 17 students (out of about 150) from Feynman’s 1961–63 class—some who had
great difficulty with the class, and some who mastered it with ease; majors in
biology, chemistry, engineering, geology, mathematics and astronomy, as well as
in physics.

The intervening years might have glazed their memories with a euphoric tint,
but about 80 percent recall Feynman’s lectures as highlights of their college years.
“It was like going to church.” The lectures were “a transformational experience,”
“the experience of a lifetime, probably the most important thing I got from
Caltech.” “I was a biology major but Feynman’s lectures stand out as a high
point in my undergraduate experience . . . though I must admit I couldn’t do
the homework at the time and I hardly turned any of it in.” “I was among the
least promising of students in this course, and I never missed a lecture. . . . I
remember and can still feel Feynman’s joy of discovery. . . . His lectures had an
. . . emotional impact that was probably lost in the printed Lectures.”

By contrast, several of the students have negative memories due largely to two
issues: (i) “You couldn’t learn to work the homework problems by attending the
lectures. Feynman was too slick—he knew tricks and what approximations could
be made, and had intuition based on experience and genius that a beginning
student does not possess.” Feynman and colleagues, aware of this flaw in the
course, addressed it in part with materials that have been incorporated into
Feynman’s Tips on Physics: three problem-solving lectures by Feynman, and
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a set of exercises and answers assembled by Robert B. Leighton and Rochus
Vogt. (ii) “The insecurity of not knowing what was likely to be discussed in
the next lecture, the lack of a text book or reference with any connection to
the lecture material, and consequent inability for us to read ahead, were very
frustrating. . . . I found the lectures exciting and understandable in the hall, but
they were Sanskrit outside [when I tried to reconstruct the details].” This problem,
of course, was solved by these three volumes, the printed version of The Feynman
Lectures on Physics. They became the textbook from which Caltech students
studied for many years thereafter, and they live on today as one of Feynman’s
greatest legacies.

A History of Errata

The Feynman Lectures on Physics was produced very quickly by Feynman
and his co-authors, Robert B. Leighton and Matthew Sands, working from
and expanding on tape recordings and blackboard photos of Feynman’s course
lectures* (both of which are incorporated into the Enhanced Electronic Version
of this New Millennium Edition). Given the high speed at which Feynman,
Leighton and Sands worked, it was inevitable that many errors crept into the first
edition. Feynman accumulated long lists of claimed errata over the subsequent
years—errata found by students and faculty at Caltech and by readers around
the world. In the 1960’s and early 70’s, Feynman made time in his intense life
to check most but not all of the claimed errata for Volumes I and II, and insert
corrections into subsequent printings. But Feynman’s sense of duty never rose
high enough above the excitement of discovering new things to make him deal
with the errata in Volume III.† After his untimely death in 1988, lists of errata
for all three volumes were deposited in the Caltech Archives, and there they lay
forgotten.

In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
Feynman) informed me of the old errata and a new long list compiled by Ralph’s

* For descriptions of the genesis of Feynman’s lectures and of these volumes, see Feynman’s
Preface and the Forewords to each of the three volumes, and also Matt Sands’ Memoir in
Feynman’s Tips on Physics, and the Special Preface to the Commemorative Edition of FLP,
written in 1989 by David Goodstein and Gerry Neugebauer, which also appears in the 2005
Definitive Edition.

† In 1975, he started checking errata for Volume III but got distracted by other things and
never finished the task, so no corrections were made.
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friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition
of The Feynman Lectures with all errata corrected, and publish it alongside a new
volume of auxiliary material, Feynman’s Tips on Physics, which he and Gottlieb
were preparing.

Feynman was my hero and a close personal friend. When I saw the lists of
errata and the content of the proposed new volume, I quickly agreed to oversee
this project on behalf of Caltech (Feynman’s long-time academic home, to which
he, Leighton and Sands had entrusted all rights and responsibilities for The
Feynman Lectures). After a year and a half of meticulous work by Gottlieb, and
careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who vetted
all errata plus the new volume), the 2005 Definitive Edition of The Feynman
Lectures on Physics was born, with about 200 errata corrected and accompanied
by Feynman’s Tips on Physics by Feynman, Gottlieb and Leighton.

I thought that edition was going to be “Definitive”. What I did not antic-
ipate was the enthusiastic response of readers around the world to an appeal
from Gottlieb to identify further errata, and submit them via a website that
Gottlieb created and continues to maintain, The Feynman Lectures Website,
www.feynmanlectures.info. In the five years since then, 965 new errata have
been submitted and survived the meticulous scrutiny of Gottlieb, Hartl, and Nate
Bode (an outstanding Caltech physics graduate student, who succeeded Hartl
as Caltech’s vetter of errata). Of these, 965 vetted errata, 80 were corrected in
the fourth printing of the Definitive Edition (August 2006) and the remaining
885 are corrected in the first printing of this New Millennium Edition (332 in
volume I, 263 in volume II, and 200 in volume III). For details of the errata, see
www.feynmanlectures.info.

Clearly, making The Feynman Lectures on Physics error-free has become a
world-wide community enterprise. On behalf of Caltech I thank the 50 readers
who have contributed since 2005 and the many more who may contribute over the
coming years. The names of all contributors are posted at www.feynmanlectures.
info/flp_errata.html.

Almost all the errata have been of three types: (i) typographical errors
in prose; (ii) typographical and mathematical errors in equations, tables and
figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and missing
subscripts, summation signs, parentheses and terms in equations; (iii) incorrect
cross references to chapters, tables and figures. These kinds of errors, though
not terribly serious to a mature physicist, can be frustrating and confusing to
Feynman’s primary audience: students.
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It is remarkable that among the 1165 errata corrected under my auspices,
only several do I regard as true errors in physics. An example is Volume II,
page 5-9, which now says “. . . no static distribution of charges inside a closed
grounded conductor can produce any [electric] fields outside” (the word grounded
was omitted in previous editions). This error was pointed out to Feynman by a
number of readers, including Beulah Elizabeth Cox, a student at The College of
William and Mary, who had relied on Feynman’s erroneous passage in an exam.
To Ms. Cox, Feynman wrote in 1975,* “Your instructor was right not to give
you any points, for your answer was wrong, as he demonstrated using Gauss’s
law. You should, in science, believe logic and arguments, carefully drawn, and
not authorities. You also read the book correctly and understood it. I made a
mistake, so the book is wrong. I probably was thinking of a grounded conducting
sphere, or else of the fact that moving the charges around in different places
inside does not affect things on the outside. I am not sure how I did it, but I
goofed. And you goofed, too, for believing me.”

How this New Millennium Edition Came to Be

Between November 2005 and July 2006, 340 errata were submitted to The
Feynman Lectures Website www.feynmanlectures.info. Remarkably, the bulk
of these came from one person: Dr. Rudolf Pfeiffer, then a physics postdoctoral
fellow at the University of Vienna, Austria. The publisher, Addison Wesley, fixed
80 errata, but balked at fixing more because of cost: the books were being printed
by a photo-offset process, working from photographic images of the pages from
the 1960s. Correcting an error involved re-typesetting the entire page, and to
ensure no new errors crept in, the page was re-typeset twice by two different
people, then compared and proofread by several other people—a very costly
process indeed, when hundreds of errata are involved.

Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
formulated a plan aimed at facilitating the repair of all errata, and also aimed
at producing eBook and enhanced electronic versions of The Feynman Lectures
on Physics. They proposed their plan to me, as Caltech’s representative, in
2007. I was enthusiastic but cautious. After seeing further details, including a
one-chapter demonstration of the Enhanced Electronic Version, I recommended

* Pages 288–289 of Perfectly Reasonable Deviations from the Beaten Track, The Letters of
Richard P. Feynman, ed. Michelle Feynman (Basic Books, New York, 2005).
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that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the execution of
their plan. The plan was approved by three successive chairs of Caltech’s Division
of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew Lange, and
Tom Soifer—and the complex legal and contractual details were worked out by
Caltech’s Intellectual Property Counsel, Adam Cochran. With the publication of
this New Millennium Edition, the plan has been executed successfully, despite
its complexity. Specifically:

Pfeiffer and Gottlieb have converted into LATEX all three volumes of FLP
(and also more than 1000 exercises from the Feynman course for incorporation
into Feynman’s Tips on Physics). The FLP figures were redrawn in modern
electronic form in India, under guidance of the FLP German translator, Henning
Heinze, for use in the German edition. Gottlieb and Pfeiffer traded non-exclusive
use of their LATEX equations in the German edition (published by Oldenbourg)
for non-exclusive use of Heinze’s figures in this New Millennium English edition.
Pfeiffer and Gottlieb have meticulously checked all the LATEX text and equations
and all the redrawn figures, and made corrections as needed. Nate Bode and
I, on behalf of Caltech, have done spot checks of text, equations, and figures;
and remarkably, we have found no errors. Pfeiffer and Gottlieb are unbelievably
meticulous and accurate. Gottlieb and Pfeiffer arranged for John Sullivan at the
Huntington Library to digitize the photos of Feynman’s 1962–64 blackboards,
and for George Blood Audio to digitize the lecture tapes—with financial support
and encouragement from Caltech Professor Carver Mead, logistical support from
Caltech Archivist Shelley Erwin, and legal support from Cochran.

The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
rights to publish the print edition, and in the 1990s, rights to distribute the audio
of Feynman’s lectures and a variant of an electronic edition. In the 2000s, through
a sequence of acquisitions of those licenses, the print rights were transferred to
the Pearson publishing group, while rights to the audio and the electronic version
were transferred to the Perseus publishing group. Cochran, with the aid of Ike
Williams, an attorney who specializes in publishing, succeeded in uniting all of
these rights with Perseus (Basic Books), making possible this New Millennium
Edition.

Acknowledgments

On behalf of Caltech, I thank the many people who have made this New
Millennium Edition possible. Specifically, I thank the key people mentioned

x



above: Ralph Leighton, Michael Gottlieb, Tom Tombrello, Michael Hartl, Rudolf
Pfeiffer, Henning Heinze, Adam Cochran, Carver Mead, Nate Bode, Shelley Erwin,
Andrew Lange, Tom Soifer, Ike Williams, and the 50 people who submitted errata
(listed at www.feynmanlectures.info). And I also thank Michelle Feynman
(daughter of Richard Feynman) for her continuing support and advice, Alan Rice
for behind-the-scenes assistance and advice at Caltech, Stephan Puchegger and
Calvin Jackson for assistance and advice to Pfeiffer about conversion of FLP to
LATEX, Michael Figl, Manfred Smolik, and Andreas Stangl for discussions about
corrections of errata; and the Staff of Perseus/Basic Books, and (for previous
editions) the staff of Addison Wesley.

Kip S. Thorne
The Feynman Professor of Theoretical Physics, Emeritus
California Institute of Technology October 2010

xi

www.feynmanlectures.info


L E C T U R E S  O N

P H Y S I C S
MAINLY ELECTROMAGNETISM AND MATTER

RICHARD P. FEYNMAN
Richard Chace Tolman Professor of Theoretical Physics
California Institute of Technology

ROBERT B. LEIGHTON
Professor of Physics
California Institute of Technology

MATTHEW SANDS
Professor of Physics
California Institute of Technology



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright © 1964 

 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

————————— 

Printed in the United States of America 

 

 
ALL RIGHTS RESERVED. THIS BOOK, OR PARTS THEREOF 

MAY NOT BE REPRODUCED IN ANY FORM WITHOUT 

WRITTEN PERMISSION OF THE COPYRIGHT HOLDER. 

 

 

Library of Congress Catalog Card No. 63-20717 

 

Sixth printing, February 1977 

 
ISBN 0-201-02117-X-P 

     0-201-02011-4-H 

               BBCCDDEEFFGG-MU-898 

 



Feynman’s Preface

These are the lectures in physics that I gave last year and the year before
to the freshman and sophomore classes at Caltech. The lectures are, of course,
not verbatim—they have been edited, sometimes extensively and sometimes less
so. The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain
the interest of the very enthusiastic and rather smart students coming out of
the high schools and into Caltech. They have heard a lot about how interesting
and exciting physics is—the theory of relativity, quantum mechanics, and other
modern ideas. By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new, modern ideas
presented to them. They were made to study inclined planes, electrostatics, and
so forth, and after two years it was quite stultifying. The problem was whether
or not we could make a course which would save the more advanced and excited
student by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of
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applications of the ideas and concepts in various directions outside the main line
of attack. For this reason, though, I tried very hard to make all the statements
as accurate as possible, to point out in every case where the equations and ideas
fitted into the body of physics, and how—when they learned more—things would
be modified. I also felt that for such students it is important to indicate what
it is that they should—if they are sufficiently clever—be able to understand by
deduction from what has been said before, and what is being put in as something
new. When new ideas came in, I would try either to deduce them if they were
deducible, or to explain that it was a new idea which hadn’t any basis in terms of
things they had already learned and which was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew something
when they came out of high school—such things as geometrical optics, simple
chemistry ideas, and so on. I also didn’t see that there was any reason to make the
lectures in a definite order, in the sense that I would not be allowed to mention
something until I was ready to discuss it in detail. There was a great deal of
mention of things to come, without complete discussions. These more complete
discussions would come later when the preparation became more advanced.
Examples are the discussions of inductance, and of energy levels, which are at
first brought in in a very qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material
in the lecture at all. For such students I wanted there to be at least a central
core or backbone of material which he could get. Even if he didn’t understand
everything in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to
understand everything, but only the central and most direct features. It takes,
of course, a certain intelligence on his part to see which are the central theorems
and central ideas, and which are the more advanced side issues and applications
which he may understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty, and
I don’t know how good the lectures really are. The whole thing was essentially
an experiment. And if I did it again I wouldn’t do it the same way—I hope I
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.
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In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on
the properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I would go back
to that original idea. But since it was not planned that I would be giving these
lectures again, it was suggested that it might be a good idea to try to give an
introduction to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until
their third year for quantum mechanics. On the other hand, the argument was
made that many of the students in our course study physics as a background for
their primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—
especially in its more complex applications, such as in electrical engineering
and chemistry—the full machinery of the differential equation approach is not
actually used. So I tried to describe the principles of quantum mechanics in
a way which wouldn’t require that one first know the mathematics of partial
differential equations. Even for a physicist I think that is an interesting thing
to try to do—to present quantum mechanics in this reverse fashion—for several
reasons which may be apparent in the lectures themselves. However, I think that
the experiment in the quantum mechanics part was not completely successful—in
large part because I really did not have enough time at the end (I should, for
instance, have had three or four more lectures in order to deal more completely
with such matters as energy bands and the spatial dependence of amplitudes).
Also, I had never presented the subject this way before, so the lack of feedback was
particularly serious. I now believe the quantum mechanics should be given at a
later time. Maybe I’ll have a chance to do it again someday. Then I’ll do it right.

The reason there are no lectures on how to solve problems is because there
were recitation sections. Although I did put in three lectures in the first year on
how to solve problems, they are not included here. Also there was a lecture on
inertial guidance which certainly belongs after the lecture on rotating systems,
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but which was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by
the students. When I look at the way the majority of the students handled the
problems on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen students who—very
surprisingly—understood almost everything in all of the lectures, and who were
quite active in working with the material and worrying about the many points
in an excited and interested way. These people have now, I believe, a first-rate
background in physics—and they are, after all, the ones I was trying to get at.
But then, “The power of instruction is seldom of much efficacy except in those
happy dispositions where it is almost superfluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a
direct individual relationship between a student and a good teacher—a situation
in which the student discusses the ideas, thinks about the things, and talks about
the things. It’s impossible to learn very much by simply sitting in a lecture, or
even by simply doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find some substitute for
the ideal. Perhaps my lectures can make some contribution. Perhaps in some
small place where there are individual teachers and students, they may get some
inspiration or some ideas from the lectures. Perhaps they will have fun thinking
them through—or going on to develop some of the ideas further.

Richard P. Feynman
June, 1963
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Foreword

For some forty years Richard P. Feynman focussed his curiosity on the
mysterious workings of the physical world, and bent his intellect to searching out
the order in its chaos. Now, he has given two years of his ability and his energy
to his Lectures on Physics for beginning students. For them he has distilled the
essence of his knowledge, and has created in terms they can hope to grasp a
picture of the physicist’s universe. To his lectures he has brought the brilliance
and clarity of his thought, the originality and vitality of his approach, and the
contagious enthusiasm of his delivery. It was a joy to behold.

The first year’s lectures formed the basis for the first volume of this set of
books. We have tried in this the second volume to make some kind of a record of
a part of the second year’s lectures—which were given to the sophomore class
during the 1962–1963 academic year. The rest of the second year’s lectures will
make up Volume III.

Of the second year of lectures, the first two-thirds were devoted to a fairly
complete treatment of the physics of electricity and magnetism. Its presentation
was intended to serve a dual purpose. We hoped, first, to give the students a
complete view of one of the great chapters of physics—from the early gropings
of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron
theory of material properties, and ending with the still unsolved dilemmas of the
electromagnetic self-energy. And we hoped, second, by introducing at the outset
the calculus of vector fields, to give a solid introduction to the mathematics of
field theories. To emphasize the general utility of the mathematical methods,
related subjects from other parts of physics were sometimes analyzed together
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with their electric counterparts. We continually tried to drive home the generality
of the mathematics. (“The same equations have the same solutions.”) And we
emphasized this point by the kinds of exercises and examinations we gave with
the course.

Following the electromagnetism there are two chapters each on elasticity and
fluid flow. In the first chapter of each pair, the elementary and practical aspects
are treated. The second chapter on each subject attempts to give an overview of
the whole complex range of phenomena which the subject can lead to. These
four chapters can well be omitted without serious loss, since they are not at all a
necessary preparation for Volume III.

The last quarter, approximately, of the second year was dedicated to an
introduction to quantum mechanics. This material has been put into the third
volume.

In this record of the Feynman Lectures we wished to do more than provide a
transcription of what was said. We hoped to make the written version as clear an
exposition as possible of the ideas on which the original lectures were based. For
some of the lectures this could be done by making only minor adjustments of the
wording in the original transcript. For others of the lectures a major reworking
and rearrangement of the material was required. Sometimes we felt we should
add some new material to improve the clarity or balance of the presentation.
Throughout the process we benefitted from the continual help and advice of
Professor Feynman.

The translation of over 1,000,000 spoken words into a coherent text on a tight
schedule is a formidable task, particularly when it is accompanied by the other
onerous burdens which come with the introduction of a new course—preparing for
recitation sections, and meeting students, designing exercises and examinations,
and grading them, and so on. Many hands—and heads—were involved. In some
instances we have, I believe, been able to render a faithful image—or a tenderly
retouched portrait—of the original Feynman. In other instances we have fallen
far short of this ideal. Our successes are owed to all those who helped. The
failures, we regret.

As explained in detail in the Foreword to Volume I, these lectures were
but one aspect of a program initiated and supervised by the Physics Course
Revision Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands)
at the California Institute of Technology, and supported financially by the Ford
Foundation. In addition, the following people helped with one aspect or another of
the preparation of textual material for this second volume: T. K. Caughey, M. L.
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Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, W. J. Karzas,
R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, F. L. Warren, W.
Whaling, C. H. Wilts, and B. Zimmerman. Others contributed indirectly through
their work on the course: J. Blue, G. F. Chapline, M. J. Clauser, R. Dolen, H. H.
Hill, and A. M. Title. Professor Gerry Neugebauer contributed in all aspects
of our task with a diligence and devotion far beyond the dictates of duty. The
story of physics you find here would, however, not have been, except for the
extraordinary ability and industry of Richard P. Feynman.

Matthew Sands
March, 1964
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1

Electromagnetism

Review: Chapter 12, Vol. I, Characteristics of Force

1-1 Electrical forces

Consider a force like gravitation which varies predominantly inversely as the
square of the distance, but which is about a billion-billion-billion-billion times
stronger. And with another difference. There are two kinds of “matter,” which we
can call positive and negative. Like kinds repel and unlike kinds attract—unlike
gravity where there is only attraction. What would happen?

A bunch of positives would repel with an enormous force and spread out in all
directions. A bunch of negatives would do the same. But an evenly mixed bunch
of positives and negatives would do something completely different. The opposite
pieces would be pulled together by the enormous attractions. The net result
would be that the terrific forces would balance themselves out almost perfectly,
by forming tight, fine mixtures of the positive and the negative, and between two
separate bunches of such mixtures there would be practically no attraction or
repulsion at all.

There is such a force: the electrical force. And all matter is a mixture of
positive protons and negative electrons which are attracting and repelling with
this great force. So perfect is the balance, however, that when you stand near
someone else you don’t feel any force at all. If there were even a little bit of
unbalance you would know it. If you were standing at arm’s length from someone
and each of you had one percent more electrons than protons, the repelling force
would be incredible. How great? Enough to lift the Empire State Building? No!
To lift Mount Everest? No! The repulsion would be enough to lift a “weight”
equal to that of the entire earth!

With such enormous forces so perfectly balanced in this intimate mixture, it
is not hard to understand that matter, trying to keep its positive and negative
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charges in the finest balance, can have a great stiffness and strength. The Empire
State Building, for example, swings less than one inch in the wind because the
electrical forces hold every electron and proton more or less in its proper place.
On the other hand, if we look at matter on a scale small enough that we see only
a few atoms, any small piece will not, usually, have an equal number of positive
and negative charges, and so there will be strong residual electrical forces. Even
when there are equal numbers of both charges in two neighboring small pieces,
there may still be large net electrical forces because the forces between individual
charges vary inversely as the square of the distance. A net force can arise if a
negative charge of one piece is closer to the positive than to the negative charges
of the other piece. The attractive forces can then be larger than the repulsive
ones and there can be a net attraction between two small pieces with no excess
charges. The force that holds the atoms together, and the chemical forces that
hold molecules together, are really electrical forces acting in regions where the
balance of charge is not perfect, or where the distances are very small.

You know, of course, that atoms are made with positive protons in the nucleus
and with electrons outside. You may ask: “If this electrical force is so terrific,
why don’t the protons and electrons just get on top of each other? If they want
to be in an intimate mixture, why isn’t it still more intimate?” The answer has to
do with the quantum effects. If we try to confine our electrons in a region that is
very close to the protons, then according to the uncertainty principle they must
have some mean square momentum which is larger the more we try to confine
them. It is this motion, required by the laws of quantum mechanics, that keeps
the electrical attraction from bringing the charges any closer together.

There is another question: “What holds the nucleus together”? In a nucleus
there are several protons, all of which are positive. Why don’t they push them-
selves apart? It turns out that in nuclei there are, in addition to electrical forces,
nonelectrical forces, called nuclear forces, which are greater than the electrical
forces and which are able to hold the protons together in spite of the electrical
repulsion. The nuclear forces, however, have a short range—their force falls off
much more rapidly than 1/r2. And this has an important consequence. If a
nucleus has too many protons in it, it gets too big, and it will not stay together.
An example is uranium, with 92 protons. The nuclear forces act mainly between
each proton (or neutron) and its nearest neighbor, while the electrical forces act
over larger distances, giving a repulsion between each proton and all of the others
in the nucleus. The more protons in a nucleus, the stronger is the electrical
repulsion, until, as in the case of uranium, the balance is so delicate that the
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nucleus is almost ready to fly apart from the repulsive electrical force. If such a
nucleus is just “tapped” lightly (as can be done by sending in a slow neutron), it
breaks into two pieces, each with positive charge, and these pieces fly apart by
electrical repulsion. The energy which is liberated is the energy of the atomic
bomb. This energy is usually called “nuclear” energy, but it is really “electrical”
energy released when electrical forces have overcome the attractive nuclear forces.

We may ask, finally, what holds a negatively charged electron together (since
it has no nuclear forces). If an electron is all made of one kind of substance, each
part should repel the other parts. Why, then, doesn’t it fly apart? But does the
electron have “parts”? Perhaps we should say that the electron is just a point
and that electrical forces only act between different point charges, so that the
electron does not act upon itself. Perhaps. All we can say is that the question of
what holds the electron together has produced many difficulties in the attempts
to form a complete theory of electromagnetism. The question has never been
answered. We will entertain ourselves by discussing this subject some more in
later chapters.

As we have seen, we should expect that it is a combination of electrical forces
and quantum-mechanical effects that will determine the detailed structure of
materials in bulk, and, therefore, their properties. Some materials are hard, some
are soft. Some are electrical “conductors”—because their electrons are free to
move about; others are “insulators”—because their electrons are held tightly to
individual atoms. We shall consider later how some of these properties come
about, but that is a very complicated subject, so we will begin by looking at the
electrical forces only in simple situations. We begin by treating only the laws of
electricity—including magnetism, which is really a part of the same subject.
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We have said that the electrical force, like a gravitational force, decreases
inversely as the square of the distance between charges. This relationship is
called Coulomb’s law. But it is not precisely true when charges are moving—the
electrical forces depend also on the motions of the charges in a complicated
way. One part of the force between moving charges we call the magnetic force.
It is really one aspect of an electrical effect. That is why we call the subject
“electromagnetism.”

There is an important general principle that makes it possible to treat elec-
tromagnetic forces in a relatively simple way. We find, from experiment, that the
force that acts on a particular charge—no matter how many other charges there
are or how they are moving—depends only on the position of that particular
charge, on the velocity of the charge, and on the amount of charge. We can write
the force F on a charge q moving with a velocity v as

F = q(E + v ×B). (1.1)

We call E the electric field and B the magnetic field at the location of the charge.
The important thing is that the electrical forces from all the other charges in the
universe can be summarized by giving just these two vectors. Their values will
depend on where the charge is, and may change with time. Furthermore, if we
replace that charge with another charge, the force on the new charge will be just
in proportion to the amount of charge so long as all the rest of the charges in
the world do not change their positions or motions. (In real situations, of course,
each charge produces forces on all other charges in the neighborhood and may
cause these other charges to move, and so in some cases the fields can change if
we replace our particular charge by another.)

We know from Vol. I how to find the motion of a particle if we know the force
on it. Equation (1.1) can be combined with the equation of motion to give

d

dt

[
mv

(1− v2/c2)1/2

]
= F = q(E + v ×B). (1.2)

So if E and B are given, we can find the motions. Now we need to know how
the E’s and B’s are produced.

One of the most important simplifying principles about the way the fields are
produced is this: Suppose a number of charges moving in some manner would
produce a field E1, and another set of charges would produce E2. If both sets of
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charges are in place at the same time (keeping the same locations and motions
they had when considered separately), then the field produced is just the sum

E = E1 +E2. (1.3)

This fact is called the principle of superposition of fields. It holds also for magnetic
fields.

This principle means that if we know the law for the electric and magnetic
fields produced by a single charge moving in an arbitrary way, then all the laws of
electrodynamics are complete. If we want to know the force on charge A we need
only calculate the E and B produced by each of the charges B, C, D, etc., and
then add the E’s and B’s from all the charges to find the fields, and from them
the forces acting on charge A. If it had only turned out that the field produced
by a single charge was simple, this would be the neatest way to describe the laws
of electrodynamics. We have already given a description of this law (Chapter 28,
Vol. I) and it is, unfortunately, rather complicated.

It turns out that the form in which the laws of electrodynamics are simplest
are not what you might expect. It is not simplest to give a formula for the force
that one charge produces on another. It is true that when charges are standing
still the Coulomb force law is simple, but when charges are moving about the
relations are complicated by delays in time and by the effects of acceleration,
among others. As a result, we do not wish to present electrodynamics only
through the force laws between charges; we find it more convenient to consider
another point of view—a point of view in which the laws of electrodynamics
appear to be the most easily manageable.

1-2 Electric and magnetic fields

First, we must extend, somewhat, our ideas of the electric and magnetic
vectors, E and B. We have defined them in terms of the forces that are felt by a
charge. We wish now to speak of electric and magnetic fields at a point even when
there is no charge present. We are saying, in effect, that since there are forces
“acting on” the charge, there is still “something” there when the charge is removed.
If a charge located at the point (x, y, z) at the time t feels the force F given
by Eq. (1.1) we associate the vectors E and B with the point in space (x, y, z).
We may think of E(x, y, z, t) and B(x, y, z, t) as giving the forces that would be
experienced at the time t by a charge located at (x, y, z), with the condition that
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placing the charge there did not disturb the positions or motions of all the other
charges responsible for the fields.

Following this idea, we associate with every point (x, y, z) in space two vectors
E and B, which may be changing with time. The electric and magnetic fields are,
then, viewed as vector functions of x, y, z, and t. Since a vector is specified by
its components, each of the fields E(x, y, z, t) and B(x, y, z, t) represents three
mathematical functions of x, y, z, and t.

It is precisely because E (or B) can be specified at every point in space that
it is called a “field.” A “field” is any physical quantity which takes on different
values at different points in space. Temperature, for example, is a field—in this
case a scalar field, which we write as T (x, y, z). The temperature could also
vary in time, and we would say the temperature field is time-dependent, and
write T (x, y, z, t). Another example is the “velocity field” of a flowing liquid. We
write v(x, y, z, t) for the velocity of the liquid at each point in space at the time t.
It is a vector field.

Returning to the electromagnetic fields—although they are produced by
charges according to complicated formulas, they have the following important
characteristic: the relationships between the values of the fields at one point and
the values at a nearby point are very simple. With only a few such relationships
in the form of differential equations we can describe the fields completely. It
is in terms of such equations that the laws of electrodynamics are most simply
written.

There have been various inventions to help the mind visualize the behavior of
fields. The most correct is also the most abstract: we simply consider the fields
as mathematical functions of position and time. We can also attempt to get a
mental picture of the field by drawing vectors at many points in space, each of
which gives the field strength and direction at that point. Such a representation
is shown in Fig. 1-1. We can go further, however, and draw lines which are
everywhere tangent to the vectors—which, so to speak, follow the arrows and
keep track of the direction of the field. When we do this we lose track of the
lengths of the vectors, but we can keep track of the strength of the field by
drawing the lines far apart when the field is weak and close together when it is
strong. We adopt the convention that the number of lines per unit area at right
angles to the lines is proportional to the field strength. This is, of course, only an
approximation, and it will require, in general, that new lines sometimes start up
in order to keep the number up to the strength of the field. The field of Fig. 1-1
is represented by field lines in Fig. 1-2.
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Fig. 1-1. A vector field may be represented by drawing a set of arrows
whose magnitudes and directions indicate the values of the vector field
at the points from which the arrows are drawn.

Fig. 1-2. A vector field can be represented by drawing lines which are
tangent to the direction of the field vector at each point, and by drawing
the density of lines proportional to the magnitude of the field vector.
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1-3 Characteristics of vector fields

There are two mathematically important properties of a vector field which
we will use in our description of the laws of electricity from the field point of
view. Suppose we imagine a closed surface of some kind and ask whether we
are losing “something” from the inside; that is, does the field have a quality of
“outflow”? For instance, for a velocity field we might ask whether the velocity is
always outward on the surface or, more generally, whether more fluid flows out
(per unit time) than comes in. We call the net amount of fluid going out through
the surface per unit time the “flux of velocity” through the surface. The flow
through an element of a surface is just equal to the component of the velocity
perpendicular to the surface times the area of the surface. For an arbitrary closed
surface, the net outward flow—or flux—is the average outward normal component
of the velocity, times the area of the surface:

Flux = (average normal component) · (surface area). (1.4)

In the case of an electric field, we can mathematically define something
analogous to an outflow, and we again call it the flux, but of course it is not the
flow of any substance, because the electric field is not the velocity of anything. It
turns out, however, that the mathematical quantity which is the average normal
component of the field still has a useful significance. We speak, then, of the
electric flux—also defined by Eq. (1.4). Finally, it is also useful to speak of the
flux not only through a completely closed surface, but through any bounded
surface. As before, the flux through such a surface is defined as the average
normal component of a vector times the area of the surface. These ideas are
illustrated in Fig. 1-3.

There is a second property of a vector field that has to do with a line, rather
than a surface. Suppose again that we think of a velocity field that describes the
flow of a liquid. We might ask this interesting question: Is the liquid circulating?
By that we mean: Is there a net rotational motion around some loop? Suppose
that we instantaneously freeze the liquid everywhere except inside of a tube
which is of uniform bore, and which goes in a loop that closes back on itself as
in Fig. 1-4. Outside of the tube the liquid stops moving, but inside the tube it
may keep on moving because of the momentum in the trapped liquid—that is,
if there is more momentum heading one way around the tube than the other.
We define a quantity called the circulation as the resulting speed of the liquid in
the tube times its circumference. We can again extend our ideas and define the
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Vector

Surface

Component perpendicular
to the surface

Fig. 1-3. The flux of a vector field through a surface is defined as the
average value of the normal component of the vector times the area of
the surface.

“circulation” for any vector field (even when there isn’t anything moving). For
any vector field the circulation around any imagined closed curve is defined as
the average tangential component of the vector (in a consistent sense) multiplied
by the circumference of the loop (Fig. 1-5):

Circulation = (average tangential component) · (distance around). (1.5)

You will see that this definition does indeed give a number which is proportional
to the circulation velocity in the quickly frozen tube described above.

With just these two ideas—flux and circulation—we can describe all the laws
of electricity and magnetism at once. You may not understand the significance
of the laws right away, but they will give you some idea of the way the physics of
electromagnetism will be ultimately described.

1-4 The laws of electromagnetism

The first law of electromagnetism describes the flux of the electric field:

The flux of E through any closed surface = the net charge inside
ε0

, (1.6)
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(a)

(b)

Tube

(c)

solid

liquid

Fig. 1-4. (a) The velocity field in a liquid. Imagine a tube of uniform
cross section that follows an arbitrary closed curve as in (b). If the liquid
were suddenly frozen everywhere except inside the tube, the liquid in the
tube would circulate as shown in (c).

where ε0 is a convenient constant. (The constant ε0 is usually read as “epsilon-
zero” or “epsilon-naught”.) If there are no charges inside the surface, even though
there are charges nearby outside the surface, the average normal component of E
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Fig. 1-5. The circulation of a vector field is the average tangential
component of the vector (in a consistent sense) times the circumference
of the loop.

is zero, so there is no net flux through the surface. To show the power of this
type of statement, we can show that Eq. (1.6) is the same as Coulomb’s law,
provided only that we also add the idea that the field from a single charge is
spherically symmetric. For a point charge, we draw a sphere around the charge.
Then the average normal component is just the value of the magnitude of E at
any point, since the field must be directed radially and have the same strength
for all points on the sphere. Our rule now says that the field at the surface of the
sphere, times the area of the sphere—that is, the outgoing flux—is proportional
to the charge inside. If we were to make the radius of the sphere bigger, the area
would increase as the square of the radius. The average normal component of
the electric field times that area must still be equal to the same charge inside,
and so the field must decrease as the square of the distance—we get an “inverse
square” field.

If we have an arbitrary stationary curve in space and measure the circulation
of the electric field around the curve, we will find that it is not, in general, zero
(although it is for the Coulomb field). Rather, for electricity there is a second
law that states: for any surface S (not closed) whose edge is the curve C,

Circulation of E around C = − d

dt
(flux of B through S). (1.7)

We can complete the laws of the electromagnetic field by writing two corre-
sponding equations for the magnetic field B:

Flux of B through any closed surface = 0. (1.8)
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For a surface S bounded by the curve C,

c2(circulation of B around C) = d

dt
(flux of E through S)

+ flux of electric current through S
ε0

. (1.9)

The constant c2 that appears in Eq. (1.9) is the square of the velocity of light.
It appears because magnetism is in reality a relativistic effect of electricity. The
constant ε0 has been stuck in to make the units of electric current come out in a
convenient way.

Equations (1.6) through (1.9), together with Eq. (1.1), are all the laws of
electrodynamics*. As you remember, the laws of Newton were very simple to
write down, but they had a lot of complicated consequences and it took us a long
time to learn about them all. These laws are not nearly as simple to write down,
which means that the consequences are going to be more elaborate and it will
take us quite a lot of time to figure them all out.

We can illustrate some of the laws of electrodynamics by a series of small ex-
periments which show qualitatively the interrelationships of electric and magnetic
fields. You have experienced the first term of Eq. (1.1) when combing your hair,
so we won’t show that one. The second part of Eq. (1.1) can be demonstrated
by passing a current through a wire which hangs above a bar magnet, as shown
in Fig. 1-6. The wire will move when a current is turned on because of the
force F = qv×B. When a current exists, the charges inside the wire are moving,
so they have a velocity v, and the magnetic field from the magnet exerts a force
on them, which results in pushing the wire sideways.

When the wire is pushed to the left, we would expect that the magnet must
feel a push to the right. (Otherwise we could put the whole thing on a wagon
and have a propulsion system that didn’t conserve momentum!) Although the
force is too small to make movement of the bar magnet visible, a more sensitively
supported magnet, like a compass needle, will show the movement.

How does the wire push on the magnet? The current in the wire produces a
magnetic field of its own that exerts forces on the magnet. According to the last
term in Eq. (1.9), a current must have a circulation of B—in this case, the lines
of B are loops around the wire, as shown in Fig. 1-7. This B-field is responsible
for the force on the magnet.

* We need only to add a remark about some conventions for the sign of the circulation.
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Fig. 1-6. A bar magnet gives a field B at a wire. When there is a
current along the wire, the wire moves because of the force F = qv ×B.

Equation (1.9) tells us that for a fixed current through the wire the circulation
of B is the same for any curve that surrounds the wire. For curves—say circles—
that are farther away from the wire, the circumference is larger, so the tangential
component of B must decrease. You can see that we would, in fact, expect B to
decrease linearly with the distance from a long straight wire.

Now, we have said that a current through a wire produces a magnetic field,
and that when there is a magnetic field present there is a force on a wire carrying
a current. Then we should also expect that if we make a magnetic field with a
current in one wire, it should exert a force on another wire which also carries
a current. This can be shown by using two hanging wires as shown in Fig. 1-8.
When the currents are in the same direction, the two wires attract, but when
the currents are opposite, they repel.

In short, electrical currents, as well as magnets, make magnetic fields. But
wait, what is a magnet, anyway? If magnetic fields are produced by moving
charges, is it not possible that the magnetic field from a piece of iron is really the
result of currents? It appears to be so. We can replace the bar magnet of our
experiment with a coil of wire, as shown in Fig. 1-9. When a current is passed
through the coil—as well as through the straight wire above it—we observe a
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Fig. 1-7. The magnetic field of the wire exerts a force on the magnet.
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Fig. 1-8. Two wires, carrying current, exert forces on each other.
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motion of the wire exactly as before, when we had a magnet instead of a coil. In
other words, the current in the coil imitates a magnet. It appears, then, that a
piece of iron acts as though it contains a perpetual circulating current. We can,
in fact, understand magnets in terms of permanent currents in the atoms of the
iron. The force on the magnet in Fig. 1-7 is due to the second term in Eq. (1.1).

COIL OF WIRE

current
in coil

B
(from coil)

F
(on wire)

TO
+TERMINAL

TO
−TERMINAL

cu
rr
en
t

Fig. 1-9. The bar magnet of Fig. 1-6 can be replaced by a coil carrying
an electrical current. A similar force acts on the wire.

Where do the currents come from? One possibility would be from the motion
of the electrons in atomic orbits. Actually, that is not the case for iron, although
it is for some materials. In addition to moving around in an atom, an electron also
spins about on its own axis—something like the spin of the earth—and it is the
current from this spin that gives the magnetic field in iron. (We say “something
like the spin of the earth” because the question is so deep in quantum mechanics
that the classical ideas do not really describe things too well.) In most substances,
some electrons spin one way and some spin the other, so the magnetism cancels
out, but in iron—for a mysterious reason which we will discuss later—many of
the electrons are spinning with their axes lined up, and that is the source of the
magnetism.

Since the fields of magnets are from currents, we do not have to add any
extra term to Eqs. (1.8) or (1.9) to take care of magnets. We just take all
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currents, including the circulating currents of the spinning electrons, and then
the law is right. You should also notice that Eq. (1.8) says that there are no
magnetic “charges” analogous to the electrical charges appearing on the right
side of Eq. (1.6). None has been found.

The first term on the right-hand side of Eq. (1.9) was discovered theoretically
by Maxwell and is of great importance. It says that changing electric fields
produce magnetic effects. In fact, without this term the equation would not
make sense, because without it there could be no currents in circuits that are
not complete loops. But such currents do exist, as we can see in the following
example. Imagine a capacitor made of two flat plates. It is being charged by
a current that flows toward one plate and away from the other, as shown in
Fig. 1-10. We draw a curve C around one of the wires and fill it in with a surface
which crosses the wire, as shown by the surface S1 in the figure. According to
Eq. (1.9), the circulation of B around C (times c2) is given by the current in the
wire (divided by ε0). But what if we fill in the curve with a different surface S2,
which is shaped like a bowl and passes between the plates of the capacitor, staying
always away from the wire? There is certainly no current through this surface.
But, surely, just changing the location of an imaginary surface is not going to
change a real magnetic field! The circulation of B must be what it was before.
The first term on the right-hand side of Eq. (1.9) does, indeed, combine with the
second term to give the same result for the two surfaces S1 and S2. For S2 the
circulation of B is given in terms of the rate of change of the flux of E between

Current Current

Curve C

Surface S1 Surface S2

+ −

E

B

B
B

B

Fig. 1-10. The circulation of B around the curve C is given either by
the current passing through the surface S1, or by the rate of change of
the flux of E through the surface S2.
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the plates of the capacitor. And it works out that the changing E is related to
the current in just the way required for Eq. (1.9) to be correct. Maxwell saw
that it was needed, and he was the first to write the complete equation.

With the setup shown in Fig. 1-6 we can demonstrate another of the laws of
electromagnetism. We disconnect the ends of the hanging wire from the battery
and connect them to a galvanometer which tells us when there is a current through
the wire. When we push the wire sideways through the magnetic field of the
magnet, we observe a current. Such an effect is again just another consequence of
Eq. (1.1)—the electrons in the wire feel the force F = qv×B. The electrons have
a sidewise velocity because they move with the wire. This v with a vertical B
from the magnet results in a force on the electrons directed along the wire, which
starts the electrons moving toward the galvanometer.

Suppose, however, that we leave the wire alone and move the magnet. We
guess from relativity that it should make no difference, and indeed, we observe
a similar current in the galvanometer. How does the magnetic field produce
forces on charges at rest? According to Eq. (1.1) there must be an electric
field. A moving magnet must make an electric field. How that happens is said
quantitatively by Eq. (1.7). This equation describes many phenomena of great
practical interest, such as those that occur in electric generators and transformers.

The most remarkable consequence of our equations is that the combination of
Eq. (1.7) and Eq. (1.9) contains the explanation of the radiation of electromagnetic
effects over large distances. The reason is roughly something like this: suppose
that somewhere we have a magnetic field which is increasing because, say, a
current is turned on suddenly in a wire. Then by Eq. (1.7) there must be a
circulation of an electric field. As the electric field builds up to produce its
circulation, then according to Eq. (1.9) a magnetic circulation will be generated.
But the building up of this magnetic field will produce a new circulation of the
electric field, and so on. In this way fields work their way through space without
the need of charges or currents except at their source. That is the way we see
each other! It is all in the equations of the electromagnetic fields.

1-5 What are the fields?

We now make a few remarks on our way of looking at this subject. You
may be saying: “All this business of fluxes and circulations is pretty abstract.
There are electric fields at every point in space; then there are these ‘laws.’
But what is actually happening? Why can’t you explain it, for instance, by
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whatever it is that goes between the charges.” Well, it depends on your prejudices.
Many physicists used to say that direct action with nothing in between was
inconceivable. (How could they find an idea inconceivable when it had already
been conceived?) They would say: “Look, the only forces we know are the direct
action of one piece of matter on another. It is impossible that there can be
a force with nothing to transmit it.” But what really happens when we study
the “direct action” of one piece of matter right against another? We discover
that it is not one piece right against the other; they are slightly separated, and
there are electrical forces acting on a tiny scale. Thus we find that we are going
to explain so-called direct-contact action in terms of the picture for electrical
forces. It is certainly not sensible to try to insist that an electrical force has to
look like the old, familiar, muscular push or pull, when it will turn out that the
muscular pushes and pulls are going to be interpreted as electrical forces! The
only sensible question is what is the most convenient way to look at electrical
effects. Some people prefer to represent them as the interaction at a distance
of charges, and to use a complicated law. Others love the field lines. They draw
field lines all the time, and feel that writing E’s and B’s is too abstract. The
field lines, however, are only a crude way of describing a field, and it is very
difficult to give the correct, quantitative laws directly in terms of field lines. Also,
the ideas of the field lines do not contain the deepest principle of electrodynamics,
which is the superposition principle. Even though we know how the field lines
look for one set of charges and what the field lines look like for another set of
charges, we don’t get any idea about what the field line patterns will look like
when both sets are present together. From the mathematical standpoint, on the
other hand, superposition is easy—we simply add the two vectors. The field
lines have some advantage in giving a vivid picture, but they also have some
disadvantages. The direct interaction way of thinking has great advantages when
thinking of electrical charges at rest, but has great disadvantages when dealing
with charges in rapid motion.

The best way is to use the abstract field idea. That it is abstract is unfor-
tunate, but necessary. The attempts to try to represent the electric field as the
motion of some kind of gear wheels, or in terms of lines, or of stresses in some
kind of material have used up more effort of physicists than it would have taken
simply to get the right answers about electrodynamics. It is interesting that the
correct equations for the behavior of light were worked out by MacCullagh in 1839.
But people said to him: “Yes, but there is no real material whose mechanical
properties could possibly satisfy those equations, and since light is an oscillation
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that must vibrate in something, we cannot believe this abstract equation business.”
If people had been more open-minded, they might have believed in the right
equations for the behavior of light a lot earlier than they did.

In the case of the magnetic field we can make the following point: Suppose
that you finally succeeded in making up a picture of the magnetic field in terms
of some kind of lines or of gear wheels running through space. Then you try to
explain what happens to two charges moving in space, both at the same speed
and parallel to each other. Because they are moving, they will behave like two
currents and will have a magnetic field associated with them (like the currents in
the wires of Fig. 1-8). An observer who was riding along with the two charges,
however, would see both charges as stationary, and would say that there is no
magnetic field. The “gear wheels” or “lines” disappear when you ride along with
the object! All we have done is to invent a new problem. How can the gear
wheels disappear?! The people who draw field lines are in a similar difficulty.
Not only is it not possible to say whether the field lines move or do not move
with charges—they may disappear completely in certain coordinate frames.

What we are saying, then, is that magnetism is really a relativistic effect. In
the case of the two charges we just considered, travelling parallel to each other, we
would expect to have to make relativistic corrections to their motion, with terms
of order v2/c2. These corrections must correspond to the magnetic force. But
what about the force between the two wires in our experiment (Fig. 1-8). There
the magnetic force is the whole force. It didn’t look like a “relativistic correction.”
Also, if we estimate the velocities of the electrons in the wire (you can do this
yourself), we find that their average speed along the wire is about 0.01 centimeter
per second. So v2/c2 is about 10−25. Surely a negligible “correction.” But no!
Although the magnetic force is, in this case, 10−25 of the “normal” electrical
force between the moving electrons, remember that the “normal” electrical forces
have disappeared because of the almost perfect balancing out—because the wires
have the same number of protons as electrons. The balance is much more precise
than one part in 1025, and the small relativistic term which we call the magnetic
force is the only term left. It becomes the dominant term.

It is the near-perfect cancellation of electrical effects which allowed relativity
effects (that is, magnetism) to be studied and the correct equations—to or-
der v2/c2—to be discovered, even though physicists didn’t know that’s what was
happening. And that is why, when relativity was discovered, the electromagnetic
laws didn’t need to be changed. They—unlike mechanics—were already correct
to a precision of v2/c2.
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1-6 Electromagnetism in science and technology

Let us end this chapter by pointing out that among the many phenomena
studied by the Greeks there were two very strange ones: that if you rubbed a
piece of amber you could lift up little pieces of papyrus, and that there was a
strange rock from the island of Magnesia which attracted iron. It is amazing to
think that these were the only phenomena known to the Greeks in which the
effects of electricity or magnetism were apparent. The reason that these were
the only phenomena that appeared is due primarily to the fantastic precision
of the balancing of charges that we mentioned earlier. Study by scientists who
came after the Greeks uncovered one new phenomenon after another that were
really some aspect of these amber and/or lodestone effects. Now we realize that
the phenomena of chemical interaction and, ultimately, of life itself are to be
understood in terms of electromagnetism.

At the same time that an understanding of the subject of electromagnetism was
being developed, technical possibilities that defied the imagination of the people
that came before were appearing: it became possible to signal by telegraph over
long distances, and to talk to another person miles away without any connections
between, and to run huge power systems—a great water wheel, connected by
filaments over hundreds of miles to another engine that turns in response to the
master wheel—many thousands of branching filaments—ten thousand engines in
ten thousand places running the machines of industries and homes—all turning
because of the knowledge of the laws of electromagnetism.

Today we are applying even more subtle effects. The electrical forces, enormous
as they are, can also be very tiny, and we can control them and use them in very
many ways. So delicate are our instruments that we can tell what a man is doing
by the way he affects the electrons in a thin metal rod hundreds of miles away.
All we need to do is to use the rod as an antenna for a television receiver!

From a long view of the history of mankind—seen from, say, ten thousand
years from now—there can be little doubt that the most significant event of the
19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.
The American Civil War will pale into provincial insignificance in comparison
with this important scientific event of the same decade.
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2

Differential Calculus of Vector Fields

Review: Chapter 11, Vol. I, Vectors

2-1 Understanding physics

The physicist needs a facility in looking at problems from several points of
view. The exact analysis of real physical problems is usually quite complicated,
and any particular physical situation may be too complicated to analyze directly
by solving the differential equation. But one can still get a very good idea of
the behavior of a system if one has some feel for the character of the solution
in different circumstances. Ideas such as the field lines, capacitance, resistance,
and inductance are, for such purposes, very useful. So we will spend much of our
time analyzing them. In this way we will get a feel as to what should happen in
different electromagnetic situations. On the other hand, none of the heuristic
models, such as field lines, is really adequate and accurate for all situations.
There is only one precise way of presenting the laws, and that is by means of
differential equations. They have the advantage of being fundamental and, so
far as we know, precise. If you have learned the differential equations you can
always go back to them. There is nothing to unlearn.

It will take you some time to understand what should happen in different
circumstances. You will have to solve the equations. Each time you solve
the equations, you will learn something about the character of the solutions.
To keep these solutions in mind, it will be useful also to study their meaning
in terms of field lines and of other concepts. This is the way you will really
“understand” the equations. That is the difference between mathematics and
physics. Mathematicians, or people who have very mathematical minds, are often
led astray when “studying” physics because they lose sight of the physics. They
say: “Look, these differential equations—the Maxwell equations—are all there is
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to electrodynamics; it is admitted by the physicists that there is nothing which is
not contained in the equations. The equations are complicated, but after all they
are only mathematical equations and if I understand them mathematically inside
out, I will understand the physics inside out.” Only it doesn’t work that way.
Mathematicians who study physics with that point of view—and there have been
many of them—usually make little contribution to physics and, in fact, little to
mathematics. They fail because the actual physical situations in the real world
are so complicated that it is necessary to have a much broader understanding of
the equations.

What it means really to understand an equation—that is, in more than a
strictly mathematical sense—was described by Dirac. He said: “I understand
what an equation means if I have a way of figuring out the characteristics of its
solution without actually solving it.” So if we have a way of knowing what should
happen in given circumstances without actually solving the equations, then
we “understand” the equations, as applied to these circumstances. A physical
understanding is a completely unmathematical, imprecise, and inexact thing, but
absolutely necessary for a physicist.

Ordinarily, a course like this is given by developing gradually the physical
ideas—by starting with simple situations and going on to more and more compli-
cated situations. This requires that you continuously forget things you previously
learned—things that are true in certain situations, but which are not true in
general. For example, the “law” that the electrical force depends on the square
of the distance is not always true. We prefer the opposite approach. We prefer
to take first the complete laws, and then to step back and apply them to simple
situations, developing the physical ideas as we go along. And that is what we
are going to do.

Our approach is completely opposite to the historical approach in which one
develops the subject in terms of the experiments by which the information was
obtained. But the subject of physics has been developed over the past 200 years
by some very ingenious people, and as we have only a limited time to acquire
our knowledge, we cannot possibly cover everything they did. Unfortunately
one of the things that we shall have a tendency to lose in these lectures is the
historical, experimental development. It is hoped that in the laboratory some of
this lack can be corrected. You can also fill in what we must leave out by reading
the Encyclopedia Britannica, which has excellent historical articles on electricity
and on other parts of physics. You will also find historical information in many
textbooks on electricity and magnetism.
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2-2 Scalar and vector fields—T and h

We begin now with the abstract, mathematical view of the theory of electricity
and magnetism. The ultimate idea is to explain the meaning of the laws given in
Chapter 1. But to do this we must first explain a new and peculiar notation that
we want to use. So let us forget electromagnetism for the moment and discuss
the mathematics of vector fields. It is of very great importance, not only for
electromagnetism, but for all kinds of physical circumstances. Just as ordinary
differential and integral calculus is so important to all branches of physics, so
also is the differential calculus of vectors. We turn to that subject.

Listed below are a few facts from the algebra of vectors. It is assumed that
you already know them.

A · B = scalar = AxBx +AyBy +AzBz (2.1)

A×B = vector (2.2)
(A×B)z = AxBy −AyBx
(A×B)x = AyBz −AzBy
(A×B)y = AzBx −AxBz

A×A = 0 (2.3)

A · (A×B) = 0 (2.4)

A · (B ×C) = (A×B) ·C (2.5)

A× (B ×C) = B(A ·C)−C(A ·B) (2.6)

Also we will want to use the two following equalities from the calculus:

∆f(x, y, z) = ∂f

∂x
∆x+ ∂f

∂y
∆y + ∂f

∂z
∆z, (2.7)

∂2f

∂x ∂y
= ∂2f

∂y ∂x
. (2.8)

The first equation (2.7) is, of course, true only in the limit that ∆x, ∆y, and ∆z
go toward zero.

The simplest possible physical field is a scalar field. By a field, you remember,
we mean a quantity which depends upon position in space. By a scalar field we
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merely mean a field which is characterized at each point by a single number—a
scalar. Of course the number may change in time, but we need not worry about
that for the moment. We will talk about what the field looks like at a given
instant. As an example of a scalar field, consider a solid block of material which
has been heated at some places and cooled at others, so that the temperature of
the body varies from point to point in a complicated way. Then the temperature
will be a function of x, y, and z, the position in space measured in a rectangular
coordinate system. Temperature is a scalar field.

One way of thinking about scalar fields is to imagine “contours” which are
imaginary surfaces drawn through all points for which the field has the same
value, just as contour lines on a map connect points with the same height. For
a temperature field the contours are called “isothermal surfaces” or isotherms.
Figure 2-1 illustrates a temperature field and shows the dependence of T on x
and y when z = 0. Several isotherms are drawn.

There are also vector fields. The idea is very simple. A vector is given for each
point in space. The vector varies from point to point. As an example, consider a
rotating body. The velocity of the material of the body at any point is a vector

x

y

0

h

T (x, y , z)

T = 40◦

T = 30◦

T = 20◦

T = 10◦

Hot

Cold

Cold

Fig. 2-1. Temperature T is an example of a scalar field. With each
point (x, y , z) in space there is associated a number T (x, y , z). All
points on the surface marked T = 20◦ (shown as a curve at z = 0)
are at the same temperature. The arrows are samples of the heat flow
vector h.
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ROTATION

Fig. 2-2. The velocity of the atoms in a rotating object is an example
of a vector field.

which is a function of position (Fig. 2-2). As a second example, consider the flow
of heat in a block of material. If the temperature in the block is high at one
place and low at another, there will be a flow of heat from the hotter places to
the colder. The heat will be flowing in different directions in different parts of
the block. The heat flow is a directional quantity which we call h. Its magnitude
is a measure of how much heat is flowing. Examples of the heat flow vector are
also shown in Fig. 2-1.

Let’s make a more precise definition of h: The magnitude of the vector heat
flow at a point is the amount of thermal energy that passes, per unit time and
per unit area, through an infinitesimal surface element at right angles to the
direction of flow. The vector points in the direction of flow (see Fig. 2-3). In
symbols: If ∆J is the thermal energy that passes per unit time through the
surface element ∆a, then

h = ∆J
∆a ef , (2.9)

where ef is a unit vector in the direction of flow.
The vector h can be defined in another way—in terms of its components. We

ask how much heat flows through a small surface at any angle with respect to the
flow. In Fig. 2-4 we show a small surface ∆a2 inclined with respect to ∆a1, which
is perpendicular to the flow. The unit vector n is normal to the surface ∆a2. The
angle θ between n and h is the same as the angle between the surfaces (since h
is normal to ∆a1). Now what is the heat flow per unit area through ∆a2? The

2-6



x

y

z

T1

T2

h

∆a

heat flow

Fig. 2-3. Heat flow is a vector field. The vector h points along the
direction of the flow. Its magnitude is the energy transported per unit
time across a surface element oriented perpendicular to the flow, divided
by the area of the surface element.

n

h

θ

∆a1

∆a2

Fig. 2-4. The heat flow through ∆a2 is the same as through ∆a1.
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flow through ∆a2 is the same as through ∆a1; only the areas are different. In
fact, ∆a1 = ∆a2 cos θ. The heat flow through ∆a2 is

∆J
∆a2

= ∆J
∆a1

cos θ = h · n. (2.10)

We interpret this equation: the heat flow (per unit time and per unit area) through
any surface element whose unit normal is n, is given by h · n. Equally, we could
say: the component of the heat flow perpendicular to the surface element ∆a2
is h · n. We can, if we wish, consider that these statements define h. We will be
applying the same ideas to other vector fields.

2-3 Derivatives of fields—the gradient

When fields vary in time, we can describe the variation by giving their
derivatives with respect to t. We want to describe the variations with position
in a similar way, because we are interested in the relationship between, say, the
temperature in one place and the temperature at a nearby place. How shall
we take the derivative of the temperature with respect to position? Do we
differentiate the temperature with respect to x? Or with respect to y, or z?

Useful physical laws do not depend upon the orientation of the coordinate
system. They should, therefore, be written in a form in which either both sides
are scalars or both sides are vectors. What is the derivative of a scalar field,
say ∂T/∂x? Is it a scalar, or a vector, or what? It is neither a scalar nor a
vector, as you can easily appreciate, because if we took a different x-axis, ∂T/∂x
would certainly be different. But notice: We have three possible derivatives:
∂T/∂x, ∂T/∂y, and ∂T/∂z. Since there are three kinds of derivatives and we
know that it takes three numbers to form a vector, perhaps these three derivatives
are the components of a vector:(

∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
?= a vector. (2.11)

Of course it is not generally true that any three numbers form a vector. It is
true only if, when we rotate the coordinate system, the components of the vector
transform among themselves in the correct way. So it is necessary to analyze
how these derivatives are changed by a rotation of the coordinate system. We
shall show that (2.11) is indeed a vector. The derivatives do transform in the
correct way when the coordinate system is rotated.
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We can see this in several ways. One way is to ask a question whose answer
is independent of the coordinate system, and try to express the answer in an
“invariant” form. For instance, if S = A ·B, and if A and B are vectors, we
know—because we proved it in Chapter 11 of Vol. I—that S is a scalar. We
know that S is a scalar without investigating whether it changes with changes in
coordinate systems. It can’t, because it’s a dot product of two vectors. Similarly,
if we have three numbers B1, B2, and B3 and we find out that for every vector A

AxB1 +AyB2 +AzB3 = S, (2.12)

where S is the same for any coordinate system, then it must be that the three
numbers B1, B2, B3 are the components Bx, By, Bz of some vector B.

Now let’s think of the temperature field. Suppose we take two points P1
and P2, separated by the small interval ∆R. The temperature at P1 is T1 and
at P2 is T2, and the difference ∆T = T2 − T1. The temperatures at these real,
physical points certainly do not depend on what axis we choose for measuring
the coordinates. In particular, ∆T is a number independent of the coordinate
system. It is a scalar.

If we choose some convenient set of axes, we could write T1 = T (x, y, z) and
T2 = T (x+ ∆x, y + ∆y, z + ∆z), where ∆x, ∆y, and ∆z are the components of
the vector ∆R (Fig. 2-5). Remembering Eq. (2.7), we can write

∆T = ∂T

∂x
∆x+ ∂T

∂y
∆y + ∂T

∂z
∆z. (2.13)

x

y

z

P1

P2
∆R

∆x

∆y

∆z

∆x
∆z

∆y

∆z

Fig. 2-5. The vector ∆R, whose components are ∆x , ∆y , and ∆z .
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The left side of Eq. (2.13) is a scalar. The right side is the sum of three products
with ∆x, ∆y, and ∆z, which are the components of a vector. It follows that the
three numbers

∂T

∂x
,
∂T

∂y
,
∂T

∂z

are also the x-, y-, and z-components of a vector. We write this new vector
with the symbol ∇T . The symbol ∇ (called “del”) is an upside-down ∆, and
is supposed to remind us of differentiation. People read ∇T in various ways:
“del-T ,” or “gradient of T ,” or “gradT ;”*

gradT =∇T =
(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
. (2.14)

Using this notation, we can rewrite Eq. (2.13) in the more compact form

∆T =∇T ·∆R. (2.15)

In words, this equation says that the difference in temperature between two
nearby points is the dot product of the gradient of T and the vector displacement
between the points. The form of Eq. (2.15) also illustrates clearly our proof above
that ∇T is indeed a vector.

Perhaps you are still not convinced? Let’s prove it in a different way. (Al-
though if you look carefully, you may be able to see that it’s really the same proof
in a longer-winded form!) We shall show that the components of ∇T transform
in just the same way that components of R do. If they do, ∇T is a vector
according to our original definition of a vector in Chapter 11 of Vol. I. We take a
new coordinate system x′, y′, z′, and in this new system we calculate ∂T/∂x′,
∂T/∂y′, and ∂T/∂z′. To make things a little simpler, we let z = z′, so that we
can forget about the z-coordinate. (You can check out the more general case for
yourself.)

We take an x′y′-system rotated an angle θ with respect to the xy-system, as
in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are

x′ = x cos θ + y sin θ, (2.16)
y′ = −x sin θ + y cos θ. (2.17)

* In our notation, the expression (a, b, c) represents a vector with components a, b, and c. If
you like to use the unit vectors i, j, and k, you may write

∇T = i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z
.
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x

y

x ′

y ′
(a)

x

y

x ′
y ′

θ

P1

x

y

x ′

y ′
(b)

∆x

∆x ′ ∆y ′

P1 P2
θ

Fig. 2-6. (a) Transformation to a rotated coordinate system. (b) Spe-
cial case of an interval ∆R parallel to the x-axis.

Or, solving for x and y,
x = x′ cos θ − y′ sin θ, (2.18)

y = x′ sin θ + y′ cos θ. (2.19)

If any pair of numbers transforms with these equations in the same way that x
and y do, they are the components of a vector.

Now let’s look at the difference in temperature between the two nearby points
P1 and P2, chosen as in Fig. 2-6(b). If we calculate with the x- and y-coordinates,
we would write

∆T = ∂T

∂x
∆x (2.20)

—since ∆y is zero.
What would a computation in the prime system give? We would have written

∆T = ∂T

∂x′
∆x′ + ∂T

∂y′
∆y′. (2.21)

Looking at Fig. 2-6(b), we see that

∆x′ = ∆x cos θ (2.22)
and

∆y′ = −∆x sin θ, (2.23)

since ∆y′ is negative when ∆x is positive. Substituting these in Eq. (2.21), we
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find that
∆T = ∂T

∂x′
∆x cos θ − ∂T

∂y′
∆x sin θ (2.24)

=
(
∂T

∂x′
cos θ − ∂T

∂y′
sin θ

)
∆x. (2.25)

Comparing Eq. (2.25) with (2.20), we see that
∂T

∂x
= ∂T

∂x′
cos θ − ∂T

∂y′
sin θ. (2.26)

This equation says that ∂T/∂x is obtained from ∂T/∂x′ and ∂T/∂y′, just as x
is obtained from x′ and y′ in Eq. (2.18). So ∂T/∂x is the x-component of a
vector. The same kind of arguments would show that ∂T/∂y and ∂T/∂z are y-
and z-components. So ∇T is definitely a vector. It is a vector field derived from
the scalar field T .

2-4 The operator ∇
Now we can do something that is extremely amusing and ingenious—and

characteristic of the things that make mathematics beautiful. The argument
that gradT , or ∇T , is a vector did not depend upon what scalar field we were
differentiating. All the arguments would go the same if T were replaced by any
scalar field. Since the transformation equations are the same no matter what
we differentiate, we could just as well omit the T and replace Eq. (2.26) by the
operator equation

∂

∂x
= ∂

∂x′
cos θ − ∂

∂y′
sin θ. (2.27)

We leave the operators, as Jeans said, “hungry for something to differentiate.”
Since the differential operators themselves transform as the components of a

vector should, we can call them components of a vector operator . We can write

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (2.28)

which means, of course,

∇x = ∂

∂x
, ∇y = ∂

∂y
, ∇z = ∂

∂z
. (2.29)

We have abstracted the gradient away from the T—that is the wonderful idea.
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You must always remember, of course, that ∇ is an operator. Alone, it means
nothing. If ∇ by itself means nothing, what does it mean if we multiply it by a
scalar—say T—to get the product T∇? (One can always multiply a vector by a
scalar.) It still does not mean anything. Its x-component is

T
∂

∂x
, (2.30)

which is not a number, but is still some kind of operator. However, according to
the algebra of vectors we would still call T∇ a vector.

Now let’s multiply ∇ by a scalar on the other side, so that we have the
product (∇T ). In ordinary algebra

TA = AT, (2.31)

but we have to remember that operator algebra is a little different from ordinary
vector algebra. With operators we must always keep the sequence right, so
that the operations make proper sense. You will have no difficulty if you just
remember that the operator ∇ obeys the same convention as the derivative
notation. What is to be differentiated must be placed on the right of the ∇. The
order is important.

Keeping in mind this problem of order, we understand that T∇ is an operator,
but the product ∇T is no longer a hungry operator; the operator is completely
satisfied. It is indeed a physical vector having a meaning. It represents the
spatial rate of change of T . The x-component of ∇T is how fast T changes in
the x-direction. What is the direction of the vector ∇T? We know that the rate
of change of T in any direction is the component of ∇T in that direction (see
Eq. 2.15). It follows that the direction of ∇T is that in which it has the largest
possible component—in other words, the direction in which T changes the fastest.
The gradient of T has the direction of the steepest uphill slope (in T ).

2-5 Operations with ∇

Can we do any other algebra with the vector operator∇? Let us try combining
it with a vector. We can combine two vectors by making a dot product. We
could make the products

(a vector) ·∇, or ∇ · (a vector).
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The first one doesn’t mean anything yet, because it is still an operator. What
it might ultimately mean would depend on what it is made to operate on. The
second product is some scalar field. (A ·B is always a scalar.)

Let’s try the dot product of ∇ with a vector field we know, say h. We write
out the components:

∇ · h = ∇xhx +∇yhy +∇zhz (2.32)
or

∇ · h = ∂hx
∂x

+ ∂hy
∂y

+ ∂hz
∂z

. (2.33)

The sum is invariant under a coordinate transformation. If we were to choose a
different system (indicated by primes), we would have*

∇′ · h = ∂hx′

∂x′
+ ∂hy′

∂y′
+ ∂hz′

∂z′
, (2.34)

which is the same number as would be gotten from Eq. (2.33), even though it
looks different. That is,

∇′ · h =∇ · h (2.35)
for every point in space. So ∇ · h is a scalar field, which must represent some
physical quantity. You should realize that the combination of derivatives in ∇ ·h
is rather special. There are all sorts of other combinations like ∂hy/∂x, which
are neither scalars nor components of vectors.

The scalar quantity ∇ · (a vector) is extremely useful in physics. It has been
given the name the divergence. For example,

∇ · h = divh = “divergence of h.” (2.36)

As we did for ∇T , we can ascribe a physical significance to ∇ · h. We shall,
however, postpone that until later.

First, we wish to see what else we can cook up with the vector operator ∇.
What about a cross product? We must expect that

∇× h = a vector. (2.37)

* We think of h as a physical quantity that depends on position in space, and not strictly
as a mathematical function of three variables. When h is “differentiated” with respect to
x, y, and z, or with respect to x′, y′, and z′, the mathematical expression for h must first be
expressed as a function of the appropriate variables.
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It is a vector whose components we can write by the usual rule for cross products
(see Eq. 2.2):

(∇× h)z = ∇xhy −∇yhx = ∂hy
∂x
− ∂hx

∂y
. (2.38)

Similarly,

(∇× h)x = ∇yhz −∇zhy = ∂hz
∂y
− ∂hy

∂z
(2.39)

and
(∇× h)y = ∇zhx −∇xhz = ∂hx

∂z
− ∂hz

∂x
. (2.40)

The combination ∇× h is called “the curl of h.” The reason for the name
and the physical meaning of the combination will be discussed later.

Summarizing, we have three kinds of combinations with ∇:

∇T = gradT = a vector,
∇ · h = divh = a scalar,
∇× h = curlh = a vector.

Using these combinations, we can write about the spatial variations of fields in
a convenient way—in a way that is general, in that it doesn’t depend on any
particular set of axes.

As an example of the use of our vector differential operator ∇, we write a set
of vector equations which contain the same laws of electromagnetism that we
gave in words in Chapter 1. They are called Maxwell’s equations.

Maxwell’s Equations

(1) ∇ ·E = ρ

ε0

(2) ∇×E = −∂B
∂t

(3) ∇ ·B = 0

(4) c2∇×B = ∂E

∂t
+ j

ε0

(2.41)

where ρ (rho), the “electric charge density,” is the amount of charge per unit
volume, and j, the “electric current density,” is the rate at which charge flows
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through a unit area per second. These four equations contain the complete
classical theory of the electromagnetic field. You see what an elegantly simple
form we can get with our new notation!

2-6 The differential equation of heat flow

Let us give another example of a law of physics written in vector notation. The
law is not a precise one, but for many metals and a number of other substances
that conduct heat it is quite accurate. You know that if you take a slab of
material and heat one face to temperature T2 and cool the other to a different
temperature T1 the heat will flow through the material from T2 to T1 [Fig. 2-7(a)].
The heat flow is proportional to the area A of the faces, and to the temperature
difference. It is also inversely proportional to d, the distance between the plates.
(For a given temperature difference, the thinner the slab the greater the heat
flow.) Letting J be the thermal energy that passes per unit time through the
slab, we write

J = κ(T2 − T1) A
d
. (2.42)

The constant of proportionality κ (kappa) is called the thermal conductivity.
What will happen in a more complicated case? Say in an odd-shaped block of

material in which the temperature varies in peculiar ways? Suppose we look at a
tiny piece of the block and imagine a slab like that of Fig. 2-7(a) on a miniature
scale. We orient the faces parallel to the isothermal surfaces, as in Fig. 2-7(b),
so that Eq. (2.42) is correct for the small slab.

If the area of the small slab is ∆A, the heat flow per unit time is

∆J = κ∆T ∆A
∆s , (2.43)

where ∆s is the thickness of the slab. Now ∆J/∆A we have defined earlier as
the magnitude of h, whose direction is the heat flow. The heat flow will be from
T1 + ∆T toward T1 and so it will be perpendicular to the isotherms, as drawn
in Fig. 2-7(b). Also, ∆T/∆s is just the rate of change of T with position. And
since the position change is perpendicular to the isotherms, our ∆T/∆s is the
maximum rate of change. It is, therefore, just the magnitude of ∇T . Now since
the direction of ∇T is opposite to that of h, we can write (2.43) as a vector
equation:

h = −κ∇T. (2.44)
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(a)

T1T2

Heat
Flow

Area A

d

(b)

∆s

h

Area ∆A

ISOTHERMALS

T1 + ∆T T1

Fig. 2-7. (a) Heat flow through a slab. (b) An infinitesimal slab
parallel to an isothermal surface in a large block.
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(The minus sign is necessary because heat flows “downhill” in temperature.)
Equation (2.44) is the differential equation of heat conduction in bulk materials.
You see that it is a proper vector equation. Each side is a vector if κ is just a
number. It is the generalization to arbitrary cases of the special relation (2.42) for
rectangular slabs. Later we should learn to write all sorts of elementary physics
relations like (2.42) in the more sophisticated vector notation. This notation is
useful not only because it makes the equations look simpler. It also shows most
clearly the physical content of the equations without reference to any arbitrarily
chosen coordinate system.

2-7 Second derivatives of vector fields

So far we have had only first derivatives. Why not second derivatives? We
could have several combinations:

(a) ∇ · (∇T )
(b) ∇× (∇T )
(c) ∇(∇ · h)
(d) ∇ · (∇× h)
(e) ∇× (∇× h)

(2.45)

You can check that these are all the possible combinations.
Let’s look first at the second one, (b). It has the same form as

A× (AT ) = (A×A)T = 0,

since A×A is always zero. So we should have

curl(gradT ) =∇× (∇T ) = 0. (2.46)

We can see how this equation comes about if we go through once with the
components:

[∇× (∇T )]z = ∇x(∇T )y −∇y(∇T )x

= ∂

∂x

(
∂T

∂y

)
− ∂

∂y

(
∂T

∂x

)
, (2.47)

which is zero (by Eq. 2.8). It goes the same for the other components. So
∇× (∇T ) = 0, for any temperature distribution—in fact, for any scalar function.
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Now let us take another example. Let us see whether we can find another
zero. The dot product of a vector with a cross product which contains that vector
is zero:

A · (A×B) = 0, (2.48)
becauseA×B is perpendicular toA, and so has no components in the directionA.
The same combination appears in (d) of (2.45), so we have

∇ · (∇× h) = div(curlh) = 0. (2.49)

Again, it is easy to show that it is zero by carrying through the operations with
components.

Now we are going to state two mathematical theorems that we will not prove.
They are very interesting and useful theorems for physicists to know.

In a physical problem we frequently find that the curl of some quantity—say
of the vector field A—is zero. Now we have seen (Eq. 2.46) that the curl of a
gradient is zero, which is easy to remember because of the way the vectors work.
It could certainly be, then, that A is the gradient of some quantity, because then
its curl would necessarily be zero. The interesting theorem is that if the curlA
is zero, then A is always the gradient of something—there is some scalar field ψ
(psi) such that A is equal to gradψ. In other words, we have the

Theorem:
If ∇×A = 0
there is a ψ

such that A =∇ψ. (2.50)

There is a similar theorem if the divergence of A is zero. We have seen in
Eq. (2.49) that the divergence of a curl of something is always zero. If you come
across a vector field D for which divD is zero, then you can conclude that D is
the curl of some vector field C.

Theorem:
If ∇ ·D = 0
there is a C

such that D =∇×C. (2.51)

In looking at the possible combinations of two ∇ operators, we have found
that two of them always give zero. Now we look at the ones that are not zero.
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Take the combination ∇ · (∇T ), which was first on our list. It is not, in general,
zero. We write out the components:

∇T = i∇xT + j∇yT + k∇zT.
Then

∇ · (∇T ) = ∇x(∇xT ) +∇y(∇yT ) +∇z(∇zT )

= ∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 , (2.52)

which would, in general, come out to be some number. It is a scalar field.
You see that we do not need to keep the parentheses, but can write, without

any chance of confusion,

∇ · (∇T ) =∇ ·∇T = (∇ ·∇)T = ∇2T. (2.53)

We look at ∇2 as a new operator. It is a scalar operator. Because it appears
often in physics, it has been given a special name—the Laplacian.

Laplacian = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (2.54)

Since the Laplacian is a scalar operator, we may operate with it on a vector—by
which we mean the same operation on each component in rectangular coordinates:

∇2h = (∇2hx,∇2hy,∇2hz).

Let’s look at one more possibility: ∇ × (∇ × h), which was (e) in the
list (2.45). Now the curl of the curl can be written differently if we use the vector
equality (2.6):

A× (B ×C) = B(A ·C)−C(A ·B). (2.55)
In order to use this formula, we should replace A and B by the operator ∇ and
put C = h. If we do that, we get

∇× (∇× h) =∇(∇ · h)− h(∇ ·∇) . . . ???

Wait a minute! Something is wrong. The first two terms are vectors all right (the
operators are satisfied), but the last term doesn’t come out to anything. It’s still
an operator. The trouble is that we haven’t been careful enough about keeping
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the order of our terms straight. If you look again at Eq. (2.55), however, you see
that we could equally well have written it as

A× (B ×C) = B(A ·C)− (A ·B)C. (2.56)

The order of terms looks better. Now let’s make our substitution in (2.56). We
get

∇× (∇× h) =∇(∇ · h)− (∇ ·∇)h. (2.57)
This form looks all right. It is, in fact, correct, as you can verify by computing
the components. The last term is the Laplacian, so we can equally well write

∇× (∇× h) =∇(∇ · h)−∇2h. (2.58)

We have had something to say about all of the combinations in our list of
double ∇’s, except for (c), ∇(∇ · h). It is a possible vector field, but there is
nothing special to say about it. It’s just some vector field which may occasionally
come up.

It will be convenient to have a table of our conclusions:

(a) ∇ · (∇T ) = ∇2T = a scalar field
(b) ∇× (∇T ) = 0
(c) ∇(∇ · h) = a vector field
(d) ∇ · (∇× h) = 0
(e) ∇× (∇× h) =∇(∇ · h)−∇2h

(f) (∇ ·∇)h = ∇2h = a vector field

(2.59)

You may notice that we haven’t tried to invent a new vector operator (∇×∇).
Do you see why?

2-8 Pitfalls

We have been applying our knowledge of ordinary vector algebra to the algebra
of the operator ∇. We have to be careful, though, because it is possible to go
astray. There are two pitfalls which we will mention, although they will not
come up in this course. What would you say about the following expression, that
involves the two scalar functions ψ and φ (phi):

(∇ψ)× (∇φ)?
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You might want to say: it must be zero because it’s just like

(Aa)× (Ab),

which is zero because the cross product of two equal vectors A×A is always zero.
But in our example the two operators ∇ are not equal! The first one operates
on one function, ψ; the other operates on a different function, φ. So although
we represent them by the same symbol ∇, they must be considered as different
operators. Clearly, the direction of ∇ψ depends on the function ψ, so it is not
likely to be parallel to ∇φ:

(∇ψ)× (∇φ) 6= 0 (generally).

Fortunately, we won’t have to use such expressions. (What we have said doesn’t
change the fact that ∇ ×∇ψ = 0 for any scalar field, because here both ∇’s
operate on the same function.)

Pitfall number two (which, again, we need not get into in our course) is the
following: The rules that we have outlined here are simple and nice when we
use rectangular coordinates. For example, if we have ∇2h and we want the
x-component, it is

(∇2h)x =
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
hx = ∇2hx. (2.60)

The same expression would not work if we were to ask for the radial component
of ∇2h. The radial component of ∇2h is not equal to ∇2hr. The reason is that
when we are dealing with the algebra of vectors, the directions of the vectors are
all quite definite. But when we are dealing with vector fields, their directions
are different at different places. If we try to describe a vector field in, say, polar
coordinates, what we call the “radial” direction varies from point to point. So
we can get into a lot of trouble when we start to differentiate the components.
For example, even for a constant vector field, the radial component changes from
point to point.

It is usually safest and simplest just to stick to rectangular coordinates
and avoid trouble, but there is one exception worth mentioning: Since the
Laplacian ∇2, is a scalar, we can write it in any coordinate system we want to
(for example, in polar coordinates). But since it is a differential operator, we
should use it only on vectors whose components are in a fixed direction—that
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means rectangular coordinates. So we shall express all of our vector fields in
terms of their x-, y-, and z-components when we write our vector differential
equations out in components.
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3

Vector Integral Calculus

3-1 Vector integrals; the line integral of ∇ψ
We found in Chapter 2 that there were various ways of taking derivatives of

fields. Some gave vector fields; some gave scalar fields. Although we developed
many different formulas, everything in Chapter 2 could be summarized in one
rule: the operators ∂/∂x, ∂/∂y, and ∂/∂z are the three components of a vector
operator ∇. We would now like to get some understanding of the significance
of the derivatives of fields. We will then have a better feeling for what a vector
field equation means.

We have already discussed the meaning of the gradient operation (∇ on a
scalar). Now we turn to the meanings of the divergence and curl operations. The
interpretation of these quantities is best done in terms of certain vector integrals
and equations relating such integrals. These equations cannot, unfortunately, be
obtained from vector algebra by some easy substitution, so you will just have to
learn them as something new. Of these integral formulas, one is practically trivial,
but the other two are not. We will derive them and explain their implications.
The equations we shall study are really mathematical theorems. They will be
useful not only for interpreting the meaning and the content of the divergence and
the curl, but also in working out general physical theories. These mathematical
theorems are, for the theory of fields, what the theorem of the conservation of
energy is to the mechanics of particles. General theorems like these are important
for a deeper understanding of physics. You will find, though, that they are not
very useful for solving problems—except in the simplest cases. It is delightful,
however, that in the beginning of our subject there will be many simple problems
which can be solved with the three integral formulas we are going to treat. We
will see, however, as the problems get harder, that we can no longer use these
simple methods.

We take up first an integral formula involving the gradient. The relation
contains a very simple idea: Since the gradient represents the rate of change of a
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(1)

(2)

Curve Γ

ds

rψ

Fig. 3-1. The terms used in Eq. (3.1). The vector ∇ψ is evaluated
at the line elements ds.

field quantity, if we integrate that rate of change, we should get the total change.
Suppose we have the scalar field ψ(x, y, z). At any two points (1) and (2), the
function ψ will have the values ψ(1) and ψ(2), respectively. [We use a convenient
notation, in which (2) represents the point (x2, y2, z2) and ψ(2) means the same
thing as ψ(x2, y2, z2).] If Γ (gamma) is any curve joining (1) and (2), as in Fig. 3-1,
the following relation is true:

Theorem 1.

ψ(2)− ψ(1) =
∫ (2)

(1)
along Γ

(∇ψ) · ds . (3.1)

The integral is a line integral, from (1) to (2) along the curve Γ, of the dot product
of ∇ψ—a vector—with ds—another vector which is an infinitesimal line element
of the curve Γ (directed away from (1) and toward (2)).

First, we should review what we mean by a line integral. Consider a scalar
function f(x, y, z), and the curve Γ joining two points (1) and (2). We mark off
the curve at a number of points and join these points by straight-line segments,
as shown in Fig. 3-2. Each segment has the length ∆si, where i is an index that
runs 1, 2, 3, . . . By the line integral∫ (2)

(1)
along Γ

f ds

we mean the limit of the sum ∑
i
fi∆si,
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(1)

(2)

Curve Γ

a b

c
∆s1

∆s2

∆s3

∆si

rψ
(rψ)t

Fig. 3-2. The line integral is the limit of a sum.

where fi is the value of the function at the ith segment. The limiting value is
what the sum approaches as we add more and more segments (in a sensible way,
so that the largest ∆si → 0).

The integral in our theorem, Eq. (3.1), means the same thing, although it
looks a little different. Instead of f , we have another scalar—the component
of ∇ψ in the direction of ∆s. If we write (∇ψ)t for this tangential component,
it is clear that

(∇ψ)t ∆s = (∇ψ) ·∆s. (3.2)

The integral in Eq. (3.1) means the sum of such terms.
Now let’s see why Eq. (3.1) is true. In Chapter 2, we showed that the

component of ∇ψ along a small displacement ∆R was the rate of change of ψ
in the direction of ∆R. Consider the line segment ∆s from (1) to point a in
Fig. 3-2. According to our definition,

∆ψ1 = ψ(a)− ψ(1) = (∇ψ)1 ·∆s1. (3.3)
Also, we have

ψ(b)− ψ(a) = (∇ψ)2 ·∆s2, (3.4)

where, of course, (∇ψ)1 means the gradient evaluated at the segment ∆s1,
and (∇ψ)2, the gradient evaluated at ∆s2. If we add Eqs. (3.3) and (3.4), we get

ψ(b)− ψ(1) = (∇ψ)1 ·∆s1 + (∇ψ)2 ·∆s2. (3.5)

You can see that if we keep adding such terms, we get the result

ψ(2)− ψ(1) =
∑

i
(∇ψ)i ·∆si. (3.6)
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The left-hand side doesn’t depend on how we choose our intervals—if (1) and (2)
are kept always the same—so we can take the limit of the right-hand side. We
have therefore proved Eq. (3.1).

You can see from our proof that just as the equality doesn’t depend on how
the points a b, c, . . . , are chosen, similarly it doesn’t depend on what we choose
for the curve Γ to join (1) and (2). Our theorem is correct for any curve from (1)
to (2).

One remark on notation: You will see that there is no confusion if we write,
for convenience,

(∇ψ) · ds =∇ψ · ds. (3.7)

With this notation, our theorem is

Theorem 1.

ψ(2)− ψ(1) =
∫ (2)

(1)
any curve from

(1) to (2)

∇ψ · ds . (3.8)

3-2 The flux of a vector field

Before we consider our next integral theorem—a theorem about the divergence
—we would like to study a certain idea which has an easily understood physical
significance in the case of heat flow. We have defined the vector h, which
represents the heat that flows through a unit area in a unit time. Suppose that
inside a block of material we have some closed surface S which encloses the
volume V (Fig. 3-3). We would like to find out how much heat is flowing out of
this volume. We can, of course, find it by calculating the total heat flow out of
the surface S.

We write da for the area of an element of the surface. The symbol stands for
a two-dimensional differential. If, for instance, the area happened to be in the
xy-plane we would have

da = dx dy.

Later we shall have integrals over volume and for these it is convenient to consider
a differential volume that is a little cube. So when we write dV we mean

dV = dx dy dz.
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h

n

da

Closed
Surface S

Volume V

Fig. 3-3. The closed surface S defines the volume V . The unit
vector n is the outward normal to the surface element da, and h is the
heat-flow vector at the surface element.

Some people like to write d2a instead of da to remind themselves that it is
kind of a second-order quantity. They would also write d3V instead of dV . We
will use the simpler notation, and assume that you can remember that an area
has two dimensions and a volume has three.

The heat flow out through the surface element da is the area times the
component of h perpendicular to da. We have already defined n as a unit vector
pointing outward at right angles to the surface (Fig. 3-3). The component of h
that we want is

hn = h · n. (3.9)
The heat flow out through da is then

h · n da. (3.10)

To get the total heat flow through any surface we sum the contributions from all
the elements of the surface. In other words, we integrate (3.10) over the whole
surface:

Total heat flow outward through S =
∫
S

h · n da. (3.11)

We are also going to call this surface integral “the flux of h through the
surface.” Originally the word flux meant flow, so that the surface integral just
means the flow of h through the surface. We may think: h is the “current density”
of heat flow and the surface integral of it is the total heat current directed out of
the surface; that is, the thermal energy per unit time (joules per second).
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We would like to generalize this idea to the case where the vector does not
represent the flow of anything; for instance, it might be the electric field. We can
certainly still integrate the normal component of the electric field over an area if
we wish. Although it is not the flow of anything, we still call it the “flux.” We say

Flux of E through the surface S =
∫
S

E · n da. (3.12)

We generalize the word “flux” to mean the “surface integral of the normal
component” of a vector. We will also use the same definition even when the
surface considered is not a closed one, as it is here.

Returning to the special case of heat flow, let us take a situation in which
heat is conserved. For example, imagine some material in which after an initial
heating no further heat energy is generated or absorbed. Then, if there is a net
heat flow out of a closed surface, the heat content of the volume inside must
decrease. So, in circumstances in which heat would be conserved, we say that∫

S

h · n da = −dQ
dt
, (3.13)

where Q is the heat inside the surface. The heat flux out of S is equal to minus
the rate of change with respect to time of the total heat Q inside of S. This
interpretation is possible because we are speaking of heat flow and also because
we supposed that the heat was conserved. We could not, of course, speak of the
total heat inside the volume if heat were being generated there.

Now we shall point out an interesting fact about the flux of any vector.
You may think of the heat flow vector if you wish, but what we say will be
true for any vector field C. Imagine that we have a closed surface S that
encloses the volume V . We now separate the volume into two parts by some
kind of a “cut,” as in Fig. 3-4. Now we have two closed surfaces and volumes.
The volume V1 is enclosed in the surface S1, which is made up of part of the
original surface Sa and of the surface of the cut, Sab. The volume V2 is enclosed
by S2, which is made up of the rest of the original surface Sb and closed off
by the cut Sab. Now consider the following question: Suppose we calculate the
flux out through surface S1 and add to it the flux through surface S2. Does
the sum equal the flux through the whole surface that we started with? The
answer is yes. The flux through the part of the surfaces Sab common to both
S1 and S2 just exactly cancels out. For the flux of the vector C out of V1 we can
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n1n2

C

C

cut

Sab

Sa Sb

V1 V2

Fig. 3-4. A volume V contained inside the surface S is divided into
two pieces by a “cut” at the surface Sab. We now have the volume V1

enclosed in the surface S1 = Sa +Sab and the volume V2 enclosed in the
surface S2 = Sb + Sab.

write

Flux through S1 =
∫
Sa

C · n da+
∫
Sab

C · n1 da, (3.14)

and for the flux out of V2,

Flux through S2 =
∫
Sb

C · n da+
∫
Sab

C · n2 da. (3.15)

Note that in the second integral we have written n1 for the outward normal
for Sab when it belongs to S1, and n2 when it belongs to S2, as shown in Fig. 3-4.
Clearly, n1 = −n2, so that∫

Sab

C · n1 da = −
∫
Sab

C · n2 da. (3.16)

If we now add Eqs. (3.14) and (3.15), we see that the sum of the fluxes through
S1 and S2 is just the sum of two integrals which, taken together, give the flux
through the original surface S = Sa + Sb.
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We see that the flux through the complete outer surface S can be considered
as the sum of the fluxes from the two pieces into which the volume was broken.
We can similarly subdivide again—say by cutting V1 into two pieces. You see
that the same arguments apply. So for any way of dividing the original volume,
it must be generally true that the flux through the outer surface, which is the
original integral, is equal to a sum of the fluxes out of all the little interior pieces.

3-3 The flux from a cube; Gauss’ theorem

We now take the special case of a small cube* and find an interesting formula
for the flux out of it. Consider a cube whose edges are lined up with the axes
as in Fig. 3-5. Let us suppose that the coordinates of the corner nearest the
origin are x, y, z. Let ∆x be the length of the cube in the x-direction, ∆y be
the length in the y-direction, and ∆z be the length in the z-direction. We wish
to find the flux of a vector field C through the surface of the cube. We shall do
this by making a sum of the fluxes through each of the six faces. First, consider
the face marked 1 in the figure. The flux outward on this face is the negative of
the x-component of C, integrated over the area of the face. This flux is

−
∫
Cx dy dz.

Since we are considering a small cube, we can approximate this integral by the
value of Cx at the center of the face—which we call the point (1)—multiplied by

(x, y , z)
(x + ∆x, y , z)

(x, y + ∆y, z)

(x, y , z + ∆z)

∆x

∆y

∆z

1 2

3

4

5

6

n n′

C

Cx

C′

Fig. 3-5. Computation of the flux of C out of a small cube.

* The following development applies equally well to any rectangular parallelepiped.
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the area of the face, ∆y∆z:

Flux out of 1 = −Cx(1) ∆y∆z.

Similarly, for the flux out of face 2, we write

Flux out of 2 = Cx(2) ∆y∆z.

Now Cx(1) and Cx(2) are, in general, slightly different. If ∆x is small enough,
we can write

Cx(2) = Cx(1) + ∂Cx
∂x

∆x.

There are, of course, more terms, but they will involve (∆x)2 and higher powers,
and so will be negligible if we consider only the limit of small ∆x. So the flux
through face 2 is

Flux out of 2 =
[
Cx(1) + ∂Cx

∂x
∆x
]

∆y∆z.

Summing the fluxes for faces 1 and 2, we get

Flux out of 1 and 2 = ∂Cx
∂x

∆x∆y∆z.

The derivative should really be evaluated at the center of face 1; that is, at
[x, y + (∆y/2), z + (∆z/2)]. But in the limit of an infinitesimal cube, we make a
negligible error if we evaluate it at the corner (x, y, z).

Applying the same reasoning to each of the other pairs of faces, we have

Flux out of 3 and 4 = ∂Cy
∂y

∆x∆y∆z

and
Flux out of 5 and 6 = ∂Cz

∂z
∆x∆y∆z.

The total flux through all the faces is the sum of these terms. We find that∫
cube

C · n da =
(
∂Cx
∂x

+ ∂Cy
∂y

+ ∂Cz
∂z

)
∆x∆y∆z,
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and the sum of the derivatives is just ∇ ·C. Also, ∆x∆y∆z = ∆V , the volume
of the cube. So we can say that for an infinitesimal cube∫

surface

C · n da = (∇ ·C) ∆V. (3.17)

We have shown that the outward flux from the surface of an infinitesimal cube is
equal to the divergence of the vector multiplied by the volume of the cube. We
now see the “meaning” of the divergence of a vector. The divergence of a vector
at the point P is the flux—the outgoing “flow” of C—per unit volume, in the
neighborhood of P .

We have connected the divergence ofC to the flux ofC out of each infinitesimal
volume. For any finite volume we can use the fact we proved above—that the
total flux from a volume is the sum of the fluxes out of each part. We can, that
is, integrate the divergence over the entire volume. This gives us the theorem
that the integral of the normal component of any vector over any closed surface
can also be written as the integral of the divergence of the vector over the volume
enclosed by the surface. This theorem is named after Gauss.

Gauss’ Theorem. ∫
S

C · n da =
∫
V

∇ ·C dV, (3.18)

where S is any closed surface and V is the volume inside it.

3-4 Heat conduction; the diffusion equation

Let’s consider an example of the use of this theorem, just to get familiar with
it. Suppose we take again the case of heat flow in, say, a metal. Suppose we
have a simple situation in which all the heat has been previously put in and the
body is just cooling off. There are no sources of heat, so that heat is conserved.
Then how much heat is there inside some chosen volume at any time? It must
be decreasing by just the amount that flows out of the surface of the volume. If
our volume is a little cube, we would write, following Eq. (3.17),

Heat out =
∫
cube

h · n da =∇ · h∆V. (3.19)
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But this must equal the rate of loss of the heat inside the cube. If q is the heat
per unit volume, the heat in the cube is q∆V , and the rate of loss is

− ∂

∂t
(q∆V ) = −∂q

∂t
∆V. (3.20)

Comparing (3.19) and (3.20), we see that

− ∂q

∂t
=∇ · h. (3.21)

Take careful note of the form of this equation; the form appears often in
physics. It expresses a conservation law—here the conservation of heat. We have
expressed the same physical fact in another way in Eq. (3.13). Here we have the
differential form of a conservation equation, while Eq. (3.13) is the integral form.

We have obtained Eq. (3.21) by applying Eq. (3.13) to an infinitesimal cube.
We can also go the other way. For a big volume V bounded by S, Gauss’ law
says that ∫

S

h · n da =
∫
V

∇ · h dV. (3.22)

Using (3.21), the integral on the right-hand side is found to be just −dQ/dt, and
again we have Eq. (3.13).

Now let’s consider a different case. Imagine that we have a block of material
and that inside it there is a very tiny hole in which some chemical reaction is
taking place and generating heat. Or we could imagine that there are some wires
running into a tiny resistor that is being heated by an electric current. We shall
suppose that the heat is generated practically at a point, and let W represent
the energy liberated per second at that point. We shall suppose that in the rest
of the volume heat is conserved, and that the heat generation has been going on
for a long time—so that now the temperature is no longer changing anywhere.
The problem is: What does the heat vector h look like at various places in the
metal? How much heat flow is there at each point?

We know that if we integrate the normal component of h over a closed surface
that encloses the source, we will always get W . All the heat that is being
generated at the point source must flow out through the surface, since we have
supposed that the flow is steady. We have the difficult problem of finding a vector
field which, when integrated over any surface, always gives W . We can, however,
find the field rather easily by taking a somewhat special surface. We take a
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h

R

Block of metal

Source
of heat

Fig. 3-6. In the region near a point source of heat, the heat flow is
radially outward.

sphere of radius R, centered at the source, and assume that the heat flow is radial
(Fig. 3-6). Our intuition tells us that h should be radial if the block of material
is large and we don’t get too close to the edges, and it should also have the same
magnitude at all points on the sphere. You see that we are adding a certain
amount of guesswork—usually called “physical intuition”—to our mathematics
in order to find the answer.

When h is radial and spherically symmetric, the integral of the normal
component of h over the area is very simple, because the normal component
is just the magnitude of h and is constant. The area over which we integrate
is 4πR2. We have then that ∫

S

h · n da = h · 4πR2 (3.23)

(where h is the magnitude of h). This integral should equal W , the rate at which
heat is produced at the source. We get

h = W

4πR2 ,

or
h = W

4πR2 er, (3.24)

where, as usual, er represents a unit vector in the radial direction. Our result
says that h is proportional toW and varies inversely as the square of the distance
from the source.
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The result we have just obtained applies to the heat flow in the vicinity of
a point source of heat. Let’s now try to find the equations that hold in the
most general kind of heat flow, keeping only the condition that heat is conserved.
We will be dealing only with what happens at places outside of any sources or
absorbers of heat.

The differential equation for the conduction of heat was derived in Chapter 2.
According to Eq. (2.44),

h = −κ∇T. (3.25)

(Remember that this relationship is an approximate one, but fairly good for
some materials like metals.) It is applicable, of course, only in regions of the
material where there is no generation or absorption of heat. We derived above
another relation, Eq. (3.21), that holds when heat is conserved. If we combine
that equation with (3.25), we get

−∂q
∂t

=∇ · h = −∇ · (κ∇T ),
or

∂q

∂t
= κ∇ ·∇T = κ∇2T, (3.26)

if κ is a constant. You remember that q is the amount of heat in a unit volume
and ∇ ·∇ = ∇2 is the Laplacian operator

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

If we now make one more assumption we can obtain a very interesting equation.
We assume that the temperature of the material is proportional to the heat content
per unit volume—that is, that the material has a definite specific heat. When
this assumption is valid (as it often is), we can write

∆q = cv ∆T
or

∂q

∂t
= cv

∂T

∂t
. (3.27)

The rate of change of heat is proportional to the rate of change of temperature.
The constant of proportionality cv is, here, the specific heat per unit volume of
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the material. Using Eq. (3.27) with (3.26), we get

∂T

∂t
= κ

cv
∇2T. (3.28)

We find that the time rate of change of T—at every point—is proportional to
the Laplacian of T , which is the second derivative of its spatial dependence. We
have a differential equation—in x, y, z, and t—for the temperature T .

The differential equation (3.28) is called the heat diffusion equation. It is
often written as

∂T

∂t
= D∇2T, (3.29)

where D is called the diffusion constant, and is here equal to κ/cv.
The diffusion equation appears in many physical problems—in the diffusion of

gases, in the diffusion of neutrons, and in others. We have already discussed the
physics of some of these phenomena in Chapter 43 of Vol. I. Now you have the
complete equation that describes diffusion in the most general possible situation.
At some later time we will take up ways of solving the diffusion equation to find
how the temperature varies in particular cases. We turn back now to consider
other theorems about vector fields.

3-5 The circulation of a vector field

We wish now to look at the curl in somewhat the same way we looked at the
divergence. We obtained Gauss’ theorem by considering the integral over a surface,
although it was not obvious at the beginning that we were going to be dealing
with the divergence. How did we know that we were supposed to integrate over a
surface in order to get the divergence? It was not at all clear that this would be
the result. And so with an apparent equal lack of justification, we shall calculate
something else about a vector and show that it is related to the curl. This time
we calculate what is called the circulation of a vector field. If C is any vector field,
we take its component along a curved line and take the integral of this component
all the way around a complete loop. The integral is called the circulation of the
vector field around the loop. We have already considered a line integral of ∇ψ
earlier in this chapter. Now we do the same kind of thing for any vector field C.

Let Γ be any closed loop in space—imaginary, of course. An example is given
in Fig. 3-7. The line integral of the tangential component of C around the loop
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Fig. 3-7. The circulation of C around the curve Γ is the line integral
of Ct , the tangential component of C.

is written as ∮
Γ
Ct ds =

∮
Γ
C · ds. (3.30)

You should note that the integral is taken all the way around, not from one point
to another as we did before. The little circle on the integral sign is to remind
us that the integral is to be taken all the way around. This integral is called
the circulation of the vector field around the curve Γ. The name came originally
from considering the circulation of a liquid. But the name—like flux—has been
extended to apply to any field even when there is no material “circulating.”

Playing the same kind of game we did with the flux, we can show that the
circulation around a loop is the sum of the circulations around two partial loops.
Suppose we break up our curve of Fig. 3-7 into two loops, by joining two points
(1) and (2) on the original curve by some line that cuts across as shown in Fig. 3-8.
There are now two loops, Γ1 and Γ2. Γ1 is made up of Γa, which is that part of
the original curve to the left of (1) and (2), plus Γab, the “short cut.” Γ2 is made
up of the rest of the original curve plus the short cut.

The circulation around Γ1 is the sum of an integral along Γa and along Γab.
Similarly, the circulation around Γ2 is the sum of two parts, one along Γb and the
other along Γab. The integral along Γab will have, for the curve Γ2, the opposite
sign from what it has for Γ1, because the direction of travel is opposite—we must
take both our line integrals with the same “sense” of rotation.

Following the same kind of argument we used before, you can see that the
sum of the two circulations will give just the line integral around the original

3-15



(1)

(2)

Γ1
Γ2

Γa
ΓbΓab

ds2

ds1

Fig. 3-8. The circulation around the whole loop is the sum of the
circulations around the two loops: Γ1 = Γa + Γab and Γ2 = Γb + Γab.

curve Γ. The parts due to Γab cancel. The circulation around the one part plus
the circulation around the second part equals the circulation about the outer
line. We can continue the process of cutting the original loop into any number
of smaller loops. When we add the circulations of the smaller loops, there is
always a cancellation of the parts on their adjacent portions, so that the sum is
equivalent to the circulation around the original single loop.

Now let us suppose that the original loop is the boundary of some surface.
There are, of course, an infinite number of surfaces which all have the original
loops as the boundary. Our results will not, however, depend on which surface
we choose. First, we break our original loop into a number of small loops that
all lie on the surface we have chosen, as in Fig. 3-9. No matter what the shape
of the surface, if we choose our small loops small enough, we can assume that
each of the small loops will enclose an area which is essentially flat. Also, we can

Loop Γ

Fig. 3-9. Some surface bounded by the loop Γ is chosen. The surface
is divided into a number of small areas, each approximately a square.
The circulation around Γ is the sum of the circulations around the little
loops.
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choose our small loops so that each is very nearly a square. Now we can calculate
the circulation around the big loop Γ by finding the circulations around all of
the little squares and then taking their sum.

3-6 The circulation around a square; Stokes’ theorem

How shall we find the circulation for each little square? One question is, how
is the square oriented in space? We could easily make the calculation if it had a
special orientation. For example, if it were in one of the coordinate planes. Since
we have not assumed anything as yet about the orientation of the coordinate
axes, we can just as well choose the axes so that the one little square we are
concentrating on at the moment lies in the xy-plane, as in Fig. 3-10. If our result
is expressed in vector notation, we can say that it will be the same no matter
what the particular orientation of the plane.

We want now to find the circulation of the field C around our little square. It
will be easy to do the line integral if we make the square small enough that the
vector C doesn’t change much along any one side of the square. (The assumption
is better the smaller the square, so we are really talking about infinitesimal
squares.) Starting at the point (x, y)—the lower left corner of the figure—we go

x

y

(x, y)

∆x

∆y

C

Cx

CCy

1

2

3

4

Fig. 3-10. Computing the circulation of C around a small square.
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around in the direction indicated by the arrows. Along the first side—marked (1)—
the tangential component is Cx(1) and the distance is ∆x. The first part of the
integral is Cx(1) ∆x. Along the second leg, we get Cy(2) ∆y. Along the third, we
get −Cx(3) ∆x, and along the fourth, −Cy(4) ∆y. The minus signs are required
because we want the tangential component in the direction of travel. The whole
line integral is then∮

C · ds = Cx(1) ∆x+ Cy(2) ∆y − Cx(3) ∆x− Cy(4) ∆y. (3.31)

Now let’s look at the first and third pieces. Together they are

[Cx(1)− Cx(3)] ∆x. (3.32)

You might think that to our approximation the difference is zero. That is true
to the first approximation. We can be more accurate, however, and take into
account the rate of change of Cx. If we do, we may write

Cx(3) = Cx(1) + ∂Cx
∂y

∆y. (3.33)

If we included the next approximation, it would involve terms in (∆y)2, but since
we will ultimately think of the limit as ∆y → 0, such terms can be neglected.
Putting (3.33) together with (3.32), we find that

[Cx(1)− Cx(3)] ∆x = −∂Cx
∂y

∆x∆y. (3.34)

The derivative can, to our approximation, be evaluated at (x, y).
Similarly, for the other two terms in the circulation, we may write

Cy(2) ∆y − Cy(4) ∆y = ∂Cy
∂x

∆x∆y. (3.35)

The circulation around our square is then(
∂Cy
∂x
− ∂Cx

∂y

)
∆x∆y, (3.36)

which is interesting, because the two terms in the parentheses are just the z-
component of the curl. Also, we note that ∆x∆y is the area of our square. So
we can write our circulation (3.36) as

(∇×C)z ∆a.
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But the z-component really means the component normal to the surface element.
We can, therefore, write the circulation around a differential square in an invariant
vector form: ∮

C · ds = (∇×C)n ∆a = (∇×C) · n∆a. (3.37)

Our result is: the circulation of any vector C around an infinitesimal square
is the component of the curl of C normal to the surface, times the area of the
square.

C

ds Loop Γ

Surface S

n

∇× C

Fig. 3-11. The circulation of C around Γ is the surface integral of the
normal component of ∇× C.

The circulation around any loop Γ can now be easily related to the curl of
the vector field. We fill in the loop with any convenient surface S, as in Fig. 3-11,
and add the circulations around a set of infinitesimal squares in this surface. The
sum can be written as an integral. Our result is a very useful theorem called
Stokes’ theorem (after Mr. Stokes).

Stokes’ Theorem. ∮
Γ
C · ds =

∫
S

(∇×C)n da, (3.38)

where S is any surface bounded by Γ.
We must now speak about a convention of signs. In Fig. 3-10 the z-axis would

point toward you in a “usual”—that is, “right-handed”—system of axes. When
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we took our line integral with a “positive” sense of rotation, we found that the
circulation was equal to the z-component of ∇×C. If we had gone around the
other way, we would have gotten the opposite sign. Now how shall we know,
in general, what direction to choose for the positive direction of the “normal”
component of ∇×C? The “positive” normal must always be related to the sense
of rotation, as in Fig. 3-10. It is indicated for the general case in Fig. 3-11.

One way of remembering the relationship is by the “right-hand rule.” If you
make the fingers of your right hand go around the curve Γ, with the fingertips
pointed in the direction of the positive sense of ds, then your thumb points in
the direction of the positive normal to the surface S.

3-7 Curl-free and divergence-free fields

We would like, now, to consider some consequences of our new theorems. Take
first the case of a vector whose curl is everywhere zero. Then Stokes’ theorem
says that the circulation around any loop is zero. Now if we choose two points
(1) and (2) on a closed curve (Fig. 3-12), it follows that the line integral of the
tangential component from (1) to (2) is independent of which of the two possible
paths is taken. We can conclude that the integral from (1) to (2) can depend
only on the location of these points—that is to say, it is some function of position
only. The same logic was used in Chapter 14 of Vol. I, where we proved that
if the integral around a closed loop of some quantity is always zero, then that
integral can be represented as the difference of a function of the position of the
two ends. This fact allowed us to invent the idea of a potential. We proved,

C

(1)

(2)

a

b

Fig. 3-12. If ∇× C is zero, the circulation around the closed curve Γ

is zero. The line integral from (1) to (2) along a must be the same as
the line integral along b.
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furthermore, that the vector field was the gradient of this potential function (see
Eq. 14.13 of Vol. I).

It follows that any vector field whose curl is zero is equal to the gradient of
some scalar function. That is, if ∇×C = 0, everywhere, there is some ψ (psi)
for which C =∇ψ—a useful idea. We can, if we wish, describe this special kind
of vector field by means of a scalar field.

Let’s show something else. Suppose we have any scalar field φ (phi). If we
take its gradient, ∇φ, the integral of this vector around any closed loop must be
zero. Its line integral from point (1) to point (2) is [φ(2)− φ(1)]. If (1) and (2)
are the same points, our Theorem 1, Eq. (3.8), tells us that the line integral is
zero: ∮

loop

∇φ · ds = 0.

Using Stokes’ theorem, we can conclude that∫
(∇× (∇φ))n da = 0

over any surface. But if the integral is zero over any surface, the integrand must
be zero. So

∇× (∇φ) = 0, always.
We proved the same result in Section 2-7 by vector algebra.

Let’s look now at a special case in which we fill in a small loop Γ with a
large surface S, as indicated in Fig. 3-13. We would like, in fact, to see what
happens when the loop shrinks down to a point, so that the surface boundary
disappears—the surface becomes closed. Now if the vector C is everywhere finite,
the line integral around Γ must go to zero as we shrink the loop—the integral is
roughly proportional to the circumference of Γ, which goes to zero. According to
Stokes’ theorem, the surface integral of (∇×C)n must also vanish. Somehow,
as we close the surface we add in contributions that cancel out what was there
before. So we have a new theorem:∫

any closed
surface

(∇×C)n da = 0. (3.39)

Now this is interesting, because we already have a theorem about the surface
integral of a vector field. Such a surface integral is equal to the volume integral
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Loop Γ

Surface S

n

∇× C

Fig. 3-13. Going to the limit of a closed surface, we find that the
surface integral of (∇× C)n must vanish.

of the divergence of the vector, according to Gauss’ theorem (Eq. 3.18). Gauss’
theorem, applied to ∇×C, says∫

closed
surface

(∇×C)n da =
∫

volume
inside

∇ · (∇×C) dV. (3.40)

So we conclude that the second integral must also be zero:∫
any

volume

∇ · (∇×C) dV = 0, (3.41)

and this is true for any vector field C whatever. Since Eq. (3.41) is true for any
volume, it must be true that at every point in space the integrand is zero. We
have

∇ · (∇×C) = 0, always.

But this is the same result we got from vector algebra in Section 2-7. Now we
begin to see how everything fits together.

3-8 Summary

Let us summarize what we have found about the vector calculus. These are
really the salient points of Chapters 2 and 3:

1. The operators ∂/∂x, ∂/∂y, and ∂/∂z can be considered as the three com-
ponents of a vector operator ∇, and the formulas which result from vector
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algebra by treating this operator as a vector are correct:

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.

2. The difference of the values of a scalar field at two points is equal to the line
integral of the tangential component of the gradient of that scalar along
any curve at all between the first and second points:

ψ(2)− ψ(1) =
∫ (2)

(1)
any curve

∇ψ · ds. (3.42)

3. The surface integral of the normal component of an arbitrary vector over a
closed surface is equal to the integral of the divergence of the vector over
the volume interior to the surface:∫

closed
surface

C · n da =
∫

volume
inside

∇ ·C dV. (3.43)

4. The line integral of the tangential component of an arbitrary vector around
a closed loop is equal to the surface integral of the normal component of
the curl of that vector over any surface which is bounded by the loop:∫

boundary

C · ds =
∫

surface

(∇×C) · n da. (3.44)
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4

Electrostatics

Review: Chapters 13 and 14, Vol. I, Work and Potential Energy

4-1 Statics

We begin now our detailed study of the theory of electromagnetism. All of
electromagnetism is contained in the Maxwell equations.

Maxwell’s equations:
∇ ·E = ρ

ε0
, (4.1)

∇×E = −∂B
∂t

, (4.2)

c2∇×B = ∂E

∂t
+ j

ε0
, (4.3)

∇ ·B = 0. (4.4)

The situations that are described by these equations can be very complicated.
We will consider first relatively simple situations, and learn how to handle them
before we take up more complicated ones. The easiest circumstance to treat is
one in which nothing depends on the time—called the static case. All charges
are permanently fixed in space, or if they do move, they move as a steady flow
in a circuit (so ρ and j are constant in time). In these circumstances, all of the
terms in the Maxwell equations which are time derivatives of the field are zero.
In this case, the Maxwell equations become:

Electrostatics:
∇ ·E = ρ

ε0
, (4.5)

∇×E = 0. (4.6)
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ε0c
2 =

107

4π
1

4πε0
≈ 9× 109

[ε0] = coulomb2/newton·meter2

Magnetostatics:
∇×B = j

ε0c2
, (4.7)

∇ ·B = 0. (4.8)

You will notice an interesting thing about this set of four equations. It can
be separated into two pairs. The electric field E appears only in the first two,
and the magnetic field B appears only in the second two. The two fields are
not interconnected. This means that electricity and magnetism are distinct
phenomena so long as charges and currents are static. The interdependence of E
and B does not appear until there are changes in charges or currents, as when a
condensor is charged, or a magnet moved. Only when there are sufficiently rapid
changes, so that the time derivatives in Maxwell’s equations become significant,
will E and B depend on each other.

Now if you look at the equations of statics you will see that the study of
the two subjects we call electrostatics and magnetostatics is ideal from the
point of view of learning about the mathematical properties of vector fields.
Electrostatics is a neat example of a vector field with zero curl and a given
divergence. Magnetostatics is a neat example of a field with zero divergence
and a given curl. The more conventional—and you may be thinking, more
satisfactory—way of presenting the theory of electromagnetism is to start first
with electrostatics and thus to learn about the divergence. Magnetostatics and
the curl are taken up later. Finally, electricity and magnetism are put together.
We have chosen to start with the complete theory of vector calculus. Now we
shall apply it to the special case of electrostatics, the field of E given by the first
pair of equations.

We will begin with the simplest situations—ones in which the positions of all
charges are specified. If we had only to study electrostatics at this level (as we
shall do in the next two chapters), life would be very simple—in fact, almost trivial.
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Everything can be obtained from Coulomb’s law and some integration, as you
will see. In many real electrostatic problems, however, we do not know, initially,
where the charges are. We know only that they have distributed themselves in
ways that depend on the properties of matter. The positions that the charges take
up depend on the E field, which in turn depends on the positions of the charges.
Then things can get quite complicated. If, for instance, a charged body is brought
near a conductor or insulator, the electrons and protons in the conductor or
insulator will move around. The charge density ρ in Eq. (4.5) may have one
part that we know about, from the charge that we brought up; but there will
be other parts from charges that have moved around in the conductor. And all
of the charges must be taken into account. One can get into some rather subtle
and interesting problems. So although this chapter is to be on electrostatics, it
will not cover the more beautiful and subtle parts of the subject. It will treat
only the situation where we can assume that the positions of all the charges are
known. Naturally, you should be able to do that case before you try to handle
the other ones.

4-2 Coulomb’s law; superposition

It would be logical to use Eqs. (4.5) and (4.6) as our starting points. It will
be easier, however, if we start somewhere else and come back to these equations.
The results will be equivalent. We will start with a law that we have talked
about before, called Coulomb’s law, which says that between two charges at rest
there is a force directly proportional to the product of the charges and inversely
proportional to the square of the distance between. The force is along the straight
line from one charge to the other.

Coulomb’s law:
F 1 = 1

4πε0
q1q2

r2
12
e12 = −F 2. (4.9)

F 1 is the force on charge q1, e12 is the unit vector in the direction to q1 from q2,
and r12 is the distance between q1 and q2. The force F 2 on q2 is equal and
opposite to F 1.

The constant of proportionality, for historical reasons, is written as 1/4πε0.
In the system of units which we use—the mks system—it is defined as exactly
10−7 times the speed of light squared. Now since the speed of light is approximately
3× 108 meters per second, the constant is approximately 9× 109, and the unit
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turns out to be newton·meter2 per coulomb2 or volt·meter per coulomb.
1

4πε0
= 10−7c2 (by definition)

= 9.0× 109 (by experiment). (4.10)
Unit: newton·meter2/coulomb2,

or volt·meter/coulomb.

When there are more than two charges present—the only really interesting
times—we must supplement Coulomb’s law with one other fact of nature: the
force on any charge is the vector sum of the Coulomb forces from each of the
other charges. This fact is called “the principle of superposition.” That’s all
there is to electrostatics. If we combine the Coulomb law and the principle of
superposition, there is nothing else. Equations (4.5) and (4.6)—the electrostatic
equations—say no more and no less.

When applying Coulomb’s law, it is convenient to introduce the idea of an
electric field. We say that the field E(1) is the force per unit charge on q1 (due
to all other charges). Dividing Eq. (4.9) by q1, we have, for one other charge
besides q1,

E(1) = 1
4πε0

q2

r2
12
e12. (4.11)

Also, we consider that E(1) describes something about the point (1) even if q1
were not there—assuming that all other charges keep their same positions. We
say: E(1) is the electric field at the point (1).

The electric field E is a vector, so by Eq. (4.11) we really mean three equa-
tions—one for each component. Writing out explicitly the x-component, Eq. (4.11)
means

Ex(x1, y1, z1) = q2

4πε0
x1 − x2

[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2 , (4.12)

and similarly for the other components.
If there are many charges present, the field E at any point (1) is a sum of

the contributions from each of the other charges. Each term of the sum will look
like (4.11) or (4.12). Letting qj be the magnitude of the jth charge, and r1j the
displacement from qj to the point (1), we write

E(1) =
∑
j

1
4πε0

qj
r2
1j
e1j . (4.13)
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Which means, of course,

Ex(x1, y1, z1) =
∑
j

1
4πε0

qj(x1 − xj)
[(x1 − xj)2 + (y1 − yj)2 + (z1 − zj)2]3/2 , (4.14)

and so on.
Often it is convenient to ignore the fact that charges come in packages like

electrons and protons, and think of them as being spread out in a continuous
smear—or in a “distribution,” as it is called. This is O.K. so long as we are
not interested in what is happening on too small a scale. We describe a charge
distribution by the “charge density,” ρ(x, y, z). If the amount of charge in a small
volume ∆V2 located at the point (2) is ∆q2, then ρ is defined by

∆q2 = ρ(2)∆V2. (4.15)

To use Coulomb’s law with such a description, we replace the sums of Eqs.
(4.13) or (4.14) by integrals over all volumes containing charges. Then we have

E(1) = 1
4πε0

∫
all

space

ρ(2)e12 dV2

r2
12

. (4.16)

Some people prefer to write
e12 = r12

r12
,

where r12 is the vector displacement to (1) from (2), as shown in Fig. 4-1. The
integral for E is then written as

E(1) = 1
4πε0

∫
all

space

ρ(2)r12 dV2

r3
12

. (4.17)

When we want to calculate something with these integrals, we usually have
to write them out in explicit detail. For the x-component of either Eq. (4.16)
or (4.17), we would have

Ex(x1, y1, z1) =
∫
all

space

(x1 − x2)ρ(x2, y2, z2) dx2 dy2 dz2

4πε0[(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]3/2 . (4.18)
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ρ(x, y , z)

(1), (x1, y1, z1)

(2), (x2, y2, z2)

r12

dV2

Fig. 4-1. The electric field E at point (1), from a charge distribution,
is obtained from an integral over the distribution. Point (1) could also
be inside the distribution.

We are not going to use this formula much. We write it here only to emphasize
the fact that we have completely solved all the electrostatic problems in which
we know the locations of all of the charges. Given the charges, what are the
fields? Answer : Do this integral. So there is nothing to the subject; it is just a
case of doing complicated integrals over three dimensions—strictly a job for a
computing machine!

With our integrals we can find the fields produced by a sheet of charge, from a
line of charge, from a spherical shell of charge, or from any specified distribution.
It is important to realize, as we go on to draw field lines, to talk about potentials,
or to calculate divergences, that we already have the answer here. It is merely a
matter of it being sometimes easier to do an integral by some clever guesswork
than by actually carrying it out. The guesswork requires learning all kinds of
strange things. In practice, it might be easier to forget trying to be clever and
always to do the integral directly instead of being so smart. We are, however,
going to try to be smart about it. We shall go on to discuss some other features
of the electric field.

4-3 Electric potential

First we take up the idea of electric potential, which is related to the work
done in carrying a charge from one point to another. There is some distribution
of charge, which produces an electric field. We ask about how much work it
would take to carry a small charge from one place to another. The work done
against the electrical forces in carrying a charge along some path is the negative
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F

ds
q

a

b

one path

another
path

Fig. 4-2. The work done in carrying a charge from a to b is the
negative of the integral of F · ds along the path taken.

of the component of the electrical force in the direction of the motion, integrated
along the path. If we carry a charge from point a to point b,

W = −
∫ b

a

F · ds,

where F is the electrical force on the charge at each point, and ds is the differential
vector displacement along the path. (See Fig. 4-2.)

It is more interesting for our purposes to consider the work that would be
done in carrying one unit of charge. Then the force on the charge is numerically
the same as the electric field. Calling the work done against electrical forces in
this case W (unit), we write

W (unit) = −
∫ b

a

E · ds. (4.19)

Now, in general, what we get with this kind of an integral depends on the path
we take. But if the integral of (4.19) depended on the path from a to b, we could
get work out of the field by carrying the charge to b along one path and then
back to a on the other. We would go to b along the path for which W is smaller
and back along the other, getting out more work than we put in.

There is nothing impossible, in principle, about getting energy out of a field.
We shall, in fact, encounter fields where it is possible. It could be that as you
move a charge you produce forces on the other part of the “machinery.” If the
“machinery” moved against the force it would lose energy, thereby keeping the
total energy in the world constant. For electrostatics, however, there is no such
“machinery.” We know what the forces back on the sources of the field are. They
are the Coulomb forces on the charges responsible for the field. If the other charges
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are fixed in position—as we assume in electrostatics only—these back forces can
do no work on them. There is no way to get energy from them—provided, of
course, that the principle of energy conservation works for electrostatic situations.
We believe that it will work, but let’s just show that it must follow from Coulomb’s
law of force.

(a)

+
q

a

a′

b

(b)

+
q

a

a′

a′′

b

Fig. 4-3. In carrying a test charge from a to b the same work is done
along either path.

We consider first what happens in the field due to a single charge q. Let
point a be at the distance ra from q, and point b at rb. Now we carry a different
charge, which we will call the “test” charge, and whose magnitude we choose to
be one unit, from a to b. Let’s start with the easiest possible path to calculate.
We carry our test charge first along the arc of a circle, then along a radius, as
shown in part (a) of Fig. 4-3. Now on that particular path it is child’s play to
find the work done (otherwise we wouldn’t have picked it). First, there is no
work done at all on the path from a to a′. The field is radial (from Coulomb’s
law), so it is at right angles to the direction of motion. Next, on the path from
a′ to b, the field is in the direction of motion and varies as 1/r2. Thus the work
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done on the test charge in carrying it from a to b would be

−
∫ b

a

E · ds = − q

4πε0

∫ b

a′

dr

r2 = − q

4πε0

(
1
ra
− 1
rb

)
. (4.20)

Now let’s take another easy path. For instance, the one shown in part (b)
of Fig. 4-3. It goes for awhile along an arc of a circle, then radially for awhile,
then along an arc again, then radially, and so on. Every time we go along the
circular parts, we do no work. Every time we go along the radial parts, we must
just integrate 1/r2. Along the first radial stretch, we integrate from ra to ra′ ,
then along the next radial stretch from ra′ to ra′′ , and so on. The sum of all
these integrals is the same as a single integral directly from ra to rb. We get the
same answer for this path that we did for the first path we tried. It is clear that
we would get the same answer for any path which is made up of an arbitrary
number of the same kinds of pieces.

What about smooth paths? Would we get the same answer? We discussed
this point previously in Chapter 13 of Vol. I. Applying the same arguments used
there, we can conclude that work done in carrying a unit charge from a to b is
independent of the path.

W (unit)

a→ b

}
= −

∫ b

aany
path

E · ds.

Since the work done depends only on the endpoints, it can be represented as
the difference between two numbers. We can see this in the following way. Let’s
choose a reference point P0 and agree to evaluate our integral by using a path
that always goes by way of point P0. Let φ(a) stand for the work done against
the field in going from P0 to point a, and let φ(b) be the work done in going
from P0 to point b (Fig. 4-4). The work in going to P0 from a (on the way to b)
is the negative of φ(a), so we have that

−
∫ b

a

E · ds = φ(b)− φ(a). (4.21)

Since only the difference in the function φ at two points is ever involved, we
do not really have to specify the location of P0. Once we have chosen some
reference point, however, a number φ is determined for any point in space; φ is
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a

b

P0

W (a→ b) = φ(b)− φ(a)

W (P0 → a) = φ(a)

W (P0 → b) = φ(b)

Fig. 4-4. The work done in going along any path from a to b is the
negative of the work from some point P0 to a plus the work from P0

to b.

then a scalar field. It is a function of x, y, z. We call this scalar function the
electrostatic potential at any point.

Electrostatic potential:

φ(P ) = −
∫ P

P0

E · ds. (4.22)

For convenience, we will often take the reference point at infinity. Then, for a
single charge at the origin, the potential φ is given for any point (x, y, z)—using
Eq. (4.20):

φ(x, y, z) = q

4πε0
1
r
. (4.23)

The electric field from several charges can be written as the sum of the electric
field from the first, from the second, from the third, etc. When we integrate
the sum to find the potential we get a sum of integrals. Each of the integrals
is the negative of the potential from one of the charges. We conclude that
the potential φ from a lot of charges is the sum of the potentials from all the
individual charges. There is a superposition principle also for potentials. Using
the same kind of arguments by which we found the electric field from a group of
charges and for a distribution of charges, we can get the complete formulas for
the potential φ at a point we call (1):

φ(1) =
∑
j

1
4πε0

qj
r1j

, (4.24)

φ(1) = 1
4πε0

∫
all

space

ρ(2) dV2

r12
. (4.25)
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Remember that the potential φ has a physical significance: it is the potential
energy which a unit charge would have if brought to the specified point in space
from some reference point.

4-4 E = −∇φ

Who cares about φ? Forces on charges are given by E, the electric field. The
point is that E can be obtained easily from φ—it is as easy, in fact, as taking a
derivative. Consider two points, one at x and one at (x+ ∆x), but both at the
same y and z, and ask how much work is done in carrying a unit charge from
one point to the other. The path is along the horizontal line from x to x+ ∆x.
The work done is the difference in the potential at the two points:

∆W = φ(x+ ∆x, y, z)− φ(x, y, z) = ∂φ

∂x
∆x.

But the work done against the field for the same path is

∆W = −
∫
E · ds = −Ex ∆x.

We see that
Ex = −∂φ

∂x
. (4.26)

Similarly, Ey = −∂φ/∂y, Ez = −∂φ/∂z, or, summarizing with the notation of
vector analysis,

E = −∇φ. (4.27)

This equation is the differential form of Eq. (4.22). Any problem with specified
charges can be solved by computing the potential from (4.24) or (4.25) and
using (4.27) to get the field. Equation (4.27) also agrees with what we found
from vector calculus: that for any scalar field φ∫ b

a

∇φ · ds = φ(b)− φ(a). (4.28)

According to Eq. (4.25) the scalar potential φ is given by a three-dimensional
integral similar to the one we had for E. Is there any advantage to computing φ
rather than E? Yes. There is only one integral for φ, while there are three
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integrals for E—because it is a vector. Furthermore, 1/r is usually a little easier
to integrate than x/r3. It turns out in many practical cases that it is easier to
calculate φ and then take the gradient to find the electric field, than it is to
evaluate the three integrals for E. It is merely a practical matter.

There is also a deeper physical significance to the potential φ. We have
shown that E of Coulomb’s law is obtained from E = − gradφ, when φ is given
by (4.22). But if E is equal to the gradient of a scalar field, then we know from
the vector calculus that the curl of E must vanish:

∇×E = 0. (4.29)

But that is just our second fundamental equation of electrostatics, Eq. (4.6). We
have shown that Coulomb’s law gives an E field that satisfies that condition. So
far, everything is all right.

We had really proved that ∇×E was zero before we defined the potential.
We had shown that the work done around a closed path is zero. That is, that∮

E · ds = 0

for any path. We saw in Chapter 3 that for any such field ∇×E must be zero
everywhere. The electric field in electrostatics is an example of a curl-free field.

You can practice your vector calculus by proving that ∇ × E is zero in a
different way—by computing the components of ∇×E for the field of a point
charge, as given by Eq. (4.11). If you get zero, the superposition principle says
you would get zero for the field of any charge distribution.

We should point out an important fact. For any radial force the work done
is independent of the path, and there exists a potential. If you think about
it, the entire argument we made above to show that the work integral was
independent of the path depended only on the fact that the force from a single
charge was radial and spherically symmetric. It did not depend on the fact that
the dependence on distance was as 1/r2—there could have been any r dependence.
The existence of a potential, and the fact that the curl of E is zero, comes really
only from the symmetry and direction of the electrostatic forces. Because of this,
Eq. (4.28)—or (4.29)—can contain only part of the laws of electricity.

4-5 The flux of E

We will now derive a field equation that depends specifically and directly on
the fact that the force law is inverse square. That the field varies inversely as
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the square of the distance seems, for some people, to be “only natural,” because
“that’s the way things spread out.” Take a light source with light streaming out:
the amount of light that passes through a surface cut out by a cone with its
apex at the source is the same no matter at what radius the surface is placed. It
must be so if there is to be conservation of light energy. The amount of light per
unit area—the intensity—must vary inversely as the area cut by the cone, i. e.,
inversely as the square of the distance from the source. Certainly the electric field
should vary inversely as the square of the distance for the same reason! But there
is no such thing as the “same reason” here. Nobody can say that the electric field
measures the flow of something like light which must be conserved. If we had
a “model” of the electric field in which the electric field vector represented the
direction and speed—say the current—of some kind of little “bullets” which were
flying out, and if our model required that these bullets were conserved, that none
could ever disappear once it was shot out of a charge, then we might say that
we can “see” that the inverse square law is necessary. On the other hand, there
would necessarily be some mathematical way to express this physical idea. If the
electric field were like conserved bullets going out, then it would vary inversely
as the square of the distance and we would be able to describe that behavior by
an equation—which is purely mathematical. Now there is no harm in thinking
this way, so long as we do not say that the electric field is made out of bullets,
but realize that we are using a model to help us find the right mathematics.

Suppose, indeed, that we imagine for a moment that the electric field did
represent the flow of something that was conserved—everywhere, that is, except
at charges. (It has to start somewhere!) We imagine that whatever it is flows out
of a charge into the space around. If E were the vector of such a flow (as h is for
heat flow), it would have a 1/r2 dependence near a point source. Now we wish
to use this model to find out how to state the inverse square law in a deeper or
more abstract way, rather than simply saying “inverse square.” (You may wonder
why we should want to avoid the direct statement of such a simple law, and want
instead to imply the same thing sneakily in a different way. Patience! It will
turn out to be useful.)

We ask: What is the “flow” of E out of an arbitrary closed surface in the
neighborhood of a point charge? First let’s take an easy surface—the one shown
in Fig. 4-5. If the E field is like a flow, the net flow out of this box should
be zero. That is what we get if by the “flow” from this surface we mean the
surface integral of the normal component of E—that is, the flux of E. On the
radial faces, the normal component is zero. On the spherical faces, the normal
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Closed Surface S

a

Ea b

Eb

+

Point Charge

Fig. 4-5. The flux of E out of the surface S is zero.

component En is just the magnitude of E—minus for the smaller face and plus
for the larger face. The magnitude of E decreases as 1/r2, but the surface area is
proportional to r2, so the product is independent of r. The flux of E into face a
is just cancelled by the flux out of face b. The total flow out of S is zero, which
is to say that for this surface ∫

S

En da = 0. (4.30)

Next we show that the two end surfaces may be tilted with respect to the radial
line without changing the integral (4.30). Although it is true in general, for our
purposes it is only necessary to show that this is true when the end surfaces are
small, so that they subtend a small angle from the source—in fact, an infinitesimal
angle. In Fig. 4-6 we show a surface S whose “sides” are radial, but whose “ends”
are tilted. The end surfaces are not small in the figure, but you are to imagine
the situation for very small end surfaces. Then the field E will be sufficiently
uniform over the surface that we can use just its value at the center. When we
tilt the surface by an angle θ, the area is increased by the factor 1/ cos θ. But En,
the component of E normal to the surface, is decreased by the factor cos θ. The
product En ∆a is unchanged. The flux out of the whole surface S is still zero.

Now it is easy to see that the flux out of a volume enclosed by any surface S
must be zero. Any volume can be thought of as made up of pieces, like that in
Fig. 4-6. The surface will be subdivided completely into pairs of end surfaces,
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Surface S

E

En

θ

∆a

+

Point Charge

Fig. 4-6. The flux of E out of the surface S is zero.

and since the fluxes in and out of these end surfaces cancel by pairs, the total
flux out of the surface will be zero. The idea is illustrated in Fig. 4-7. We have
the completely general result that the total flux of E out of any surface S in the
field of a point charge is zero.

But notice! Our proof works only if the surface S does not surround the
charge. What would happen if the point charge were inside the surface? We

+

E

En

Surface S

Fig. 4-7. Any volume can be thought of as completely made up of
infinitesimal truncated cones. The flux of E from one end of each conical
segment is equal and opposite to the flux from the other end. The total
flux from the surface S is therefore zero.
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q

aEa

b

Eb

Fig. 4-8. If a charge is inside a surface, the flux out is not zero.

could still divide our surface into pairs of areas that are matched by radial lines
through the charge, as shown in Fig. 4-8. The fluxes through the two surfaces
are still equal—by the same arguments as before—only now they have the same
sign. The flux out of a surface that surrounds a charge is not zero. Then what
is it? We can find out by a little trick. Suppose we “remove” the charge from
the “inside” by surrounding the charge by a little surface S′ totally inside the
original surface S, as shown in Fig. 4-9. Now the volume enclosed between the
two surfaces S and S′ has no charge in it. The total flux out of this volume
(including that through S′) is zero, by the arguments we have given above. The
arguments tell us, in fact, that the flux into the volume through S′ is the same
as the flux outward through S.

We can choose any shape we wish for S′, so let’s make it a sphere centered
on the charge, as in Fig. 4-10. Then we can easily calculate the flux through it.

Point Charge
q

Surface
S

Surface
S′

Fig. 4-9. The flux through S is the same as the flux through S′.
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+ q

E

S′

Fig. 4-10. The flux through a spherical surface containing a point
charge q is q/ε0.

If the radius of the little sphere is r, the value of E everywhere on its surface is

1
4πε0

q

r2 ,

and is directed always normal to the surface. We find the total flux through S′ if
we multiply this normal component of E by the surface area:

Flux through the surface S′ =
(

1
4πε0

q

r2

)
(4πr2) = q

ε0
, (4.31)

a number independent of the radius of the sphere! We know then that the flux
outward through S is also q/ε0—a value independent of the shape of S so long
as the charge q is inside.

We can write our conclusions as follows:∫
any surface S

En da =

0; q outside S
q

ε0
; q inside S

(4.32)

Let’s return to our “bullet” analogy and see if it makes sense. Our theorem
says that the net flow of bullets through a surface is zero if the surface does
not enclose the gun that shoots the bullets. If the gun is enclosed in a surface,
whatever size and shape it is, the number of bullets passing through is the same—
it is given by the rate at which bullets are generated at the gun. It all seems
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quite reasonable for conserved bullets. But does the model tell us anything more
than we get simply by writing Eq. (4.32)? No one has succeeded in making these
“bullets” do anything else but produce this one law. After that, they produce
nothing but errors. That is why today we prefer to represent the electromagnetic
field purely abstractly.

4-6 Gauss’ law; the divergence of E

Our nice result, Eq. (4.32), was proved for a single point charge. Now suppose
that there are two charges, a charge q1 at one point and a charge q2 at another.
The problem looks more difficult. The electric field whose normal component we
integrate for the flux is the field due to both charges. That is, if E1 represents
the electric field that would have been produced by q1 alone, and E2 represents
the electric field produced by q2 alone, the total electric field is E = E1 +E2.
The flux through any closed surface S is∫

S

(E1n + E2n) da =
∫
S

E1n da+
∫
S

E2n da. (4.33)

The flux with both charges present is the flux due to a single charge plus the
flux due to the other charge. If both charges are outside S, the flux through S
is zero. If q1 is inside S but q2 is outside, then the first integral gives q1/ε0 and
the second integral gives zero. If the surface encloses both charges, each will
give its contribution and we have that the flux is (q1 + q2)/ε0. The general rule
is clearly that the total flux out of a closed surface is equal to the total charge
inside, divided by ε0.

Our result is an important general law of the electrostatic field, called Gauss’
law.

Gauss’ law: ∫
any closed
surface S

En da = sum of charges inside
ε0

, (4.34)

or ∫
any closed
surface S

E · n da = Qint

ε0
, (4.35)
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where
Qint =

∑
inside S

qi. (4.36)

If we describe the location of charges in terms of a charge density ρ, we can
consider that each infinitesimal volume dV contains a “point” charge ρ dV . The
sum over all charges is then the integral

Qint =
∫

volume
inside S

ρ dV. (4.37)

From our derivation you see that Gauss’ law follows from the fact that the
exponent in Coulomb’s law is exactly two. A 1/r3 field, or any 1/rn field with
n 6= 2, would not give Gauss’ law. So Gauss’ law is just an expression, in
a different form, of the Coulomb law of forces between two charges. In fact,
working back from Gauss’ law, you can derive Coulomb’s law. The two are quite
equivalent so long as we keep in mind the rule that the forces between charges
are radial.

We would now like to write Gauss’ law in terms of derivatives. To do this, we
apply Gauss’ law to an infinitesimal cubical surface. We showed in Chapter 3
that the flux of E out of such a cube is ∇ ·E times the volume dV of the cube.
The charge inside of dV , by the definition of ρ, is equal to ρ dV , so Gauss’ law
gives

∇ ·E dV = ρ dV

ε0
,

or
∇ ·E = ρ

ε0
. (4.38)

The differential form of Gauss’ law is the first of our fundamental field equations
of electrostatics, Eq. (4.5). We have now shown that the two equations of
electrostatics, Eqs. (4.5) and (4.6), are equivalent to Coulomb’s law of force. We
will now consider one example of the use of Gauss’ law. (We will come later to
many more examples.)

4-7 Field of a sphere of charge

One of the difficult problems we had when we studied the theory of gravi-
tational attractions was to prove that the force produced by a solid sphere of
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matter was the same at the surface of the sphere as it would be if all the matter
were concentrated at the center. For many years Newton didn’t make public
his theory of gravitation, because he couldn’t be sure this theorem was true.
We proved the theorem in Chapter 13 of Vol. I by doing the integral for the
potential and then finding the gravitational force by using the gradient. Now we
can prove the theorem in a most simple fashion. Only this time we will prove
the corresponding theorem for a uniform sphere of electrical charge. (Since the
laws of electrostatics are the same as those of gravitation, the same proof could
be done for the gravitational field.)

We ask: What is the electric field E at a point P anywhere outside the surface
of a sphere filled with a uniform distribution of charge? Since there is no “special”
direction, we can assume that E is everywhere directed away from the center of
the sphere. We consider an imaginary surface that is spherical and concentric
with the sphere of charge, and that passes through the point P (Fig. 4-11). For
this surface, the flux outward is∫

En da = E · 4πR2.

Gauss’ law tells us that this flux is equal to the total charge Q of the sphere
(over ε0):

E · 4πR2 = Q

ε0
,

or
E = 1

4πε0
Q

R2 , (4.39)

which is the same formula we would have for a point charge Q. We have proved
Newton’s problem more easily than by doing the integral. It is, of course, a false
kind of easiness—it has taken you some time to be able to understand Gauss’
law, so you may think that no time has really been saved. But after you have
used the theorem more and more, it begins to pay. It is a question of efficiency.

4-8 Field lines; equipotential surfaces

We would like now to give a geometrical description of the electrostatic field.
The two laws of electrostatics, one that the flux is proportional to the charge
inside and the other that the electric field is the gradient of a potential, can also
be represented geometrically. We illustrate this with two examples.
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a
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P

E

Fig. 4-11. Using Gauss’ law to find the field of a uniform sphere of charge.

First, we take the field of a point charge. We draw lines in the direction of
the field—lines which are always tangent to the field, as in Fig. 4-12. These are
called field lines. The lines show everywhere the direction of the electric vector.
But we also wish to represent the magnitude of the vector. We can make the
rule that the strength of the electric field will be represented by the “density” of
the lines. By the density of the lines we mean the number of lines per unit area
through a surface perpendicular to the lines. With these two rules we can have
a picture of the electric field. For a point charge, the density of the lines must
decrease as 1/r2. But the area of a spherical surface perpendicular to the lines
at any radius r increases as r2, so if we always keep the same number of lines
for all distances from the charge, the density will remain in proportion to the
magnitude of the field. We can guarantee that there are the same number of
lines at every distance if we insist that the lines be continuous—that once a line
is started from the charge, it never stops. In terms of the field lines, Gauss’ law
says that lines should start only at plus charges and stop at minus charges. The
number which leave a charge q must be equal to q/ε0.

Now, we can find a similar geometrical picture for the potential φ. The easiest
way to represent the potential is to draw surfaces on which φ is a constant. We
call them equipotential surfaces—surfaces of equal potential. Now what is the
geometrical relationship of the equipotential surfaces to the field lines? The
electric field is the gradient of the potential. The gradient is in the direction
of the most rapid change of the potential, and is therefore perpendicular to an
equipotential surface. If E were not perpendicular to the surface, it would have
a component in the surface. The potential would be changing in the surface, but
then it wouldn’t be an equipotential. The equipotential surfaces must then be
everywhere at right angles to the electric field lines.
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Fig. 4-12. Field lines and equipotential surfaces for a positive point charge.

For a point charge all by itself, the equipotential surfaces are spheres centered
at the charge. We have shown in Fig. 4-12 the intersection of these spheres with
a plane through the charge.

As a second example, we consider the field near two equal charges, a positive
one and a negative one. To get the field is easy. The field is the superposition of
the fields from each of the two charges. So, we can take two pictures like Fig. 4-12
and superimpose them—impossible! Then we would have field lines crossing each
other, and that’s not possible, because E can’t have two directions at the same
point. The disadvantage of the field-line picture is now evident. By geometrical
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arguments it is impossible to analyze in a very simple way where the new lines
go. From the two independent pictures, we can’t get the combined picture. The
principle of superposition, a simple and deep principle about electric fields, does
not have, in the field-line picture, an easy representation.

The field-line picture has its uses, however, so we might still like to draw
the picture for a pair of equal (and opposite) charges. If we calculate the fields
from Eq. (4.13) and the potentials from (4.24), we can draw the field lines and
equipotentials. Figure 4-13 shows the result. But we first had to solve the
problem mathematically!

A Note about Units

Quantity Unit
F newton
Q coulomb
L meter
W joule
ρ ∼ Q/L3 coulomb/meter3

1/ε0 ∼ FL2/Q2 newton·meter2/coulomb2

E ∼ F/Q newton/coulomb
φ ∼W/Q joule/coulomb = volt
E ∼ φ/L volt/meter
1/ε0 ∼ EL2/Q volt·meter/coulomb
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5

Application of Gauss’ Law

5-1 Electrostatics is Gauss’ law plus . . .

There are two laws of electrostatics: that the flux of the electric field from a
volume is proportional to the charge inside—Gauss’ law, and that the circulation
of the electric field is zero—E is a gradient. From these two laws, all the
predictions of electrostatics follow. But to say these things mathematically is
one thing; to use them easily, and with a certain amount of ingenuity, is another.
In this chapter we will work through a number of calculations which can be
made with Gauss’ law directly. We will prove theorems and describe some effects,
particularly in conductors, that can be understood very easily from Gauss’ law.
Gauss’ law by itself cannot give the solution of any problem because the other
law must be obeyed too. So when we use Gauss’ law for the solution of particular
problems, we will have to add something to it. We will have to presuppose, for
instance, some idea of how the field looks—based, for example, on arguments of
symmetry. Or we may have to introduce specifically the idea that the field is the
gradient of a potential.

5-2 Equilibrium in an electrostatic field

Consider first the following question: When can a point charge be in stable
mechanical equilibrium in the electric field of other charges? As an example,
imagine three negative charges at the corners of an equilateral triangle in a
horizontal plane. Would a positive charge placed at the center of the triangle
remain there? (It will be simpler if we ignore gravity for the moment, although
including it would not change the results.) The force on the positive charge is
zero, but is the equilibrium stable? Would the charge return to the equilibrium
position if displaced slightly? The answer is no.

There are no points of stable equilibrium in any electrostatic field—except
right on top of another charge. Using Gauss’ law, it is easy to see why. First, for
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a charge to be in equilibrium at any particular point P0, the field must be zero.
Second, if the equilibrium is to be a stable one, we require that if we move the
charge away from P0 in any direction, there should be a restoring force directed
opposite to the displacement. The electric field at all nearby points must be
pointing inward—toward the point P0. But that is in violation of Gauss’ law if
there is no charge at P0, as we can easily see.

P0
Imaginary
surface
surrounding P0

Fig. 5-1. If P0 were a position of stable equilibrium for a positive
charge, the electric field everywhere in the neighborhood would point
toward P0.

Consider a tiny imaginary surface that encloses P0, as in Fig. 5-1. If the
electric field everywhere in the vicinity is pointed toward P0, the surface integral
of the normal component is certainly not zero. For the case shown in the figure,
the flux through the surface must be a negative number. But Gauss’ law says
that the flux of electric field through any surface is proportional to the total
charge inside. If there is no charge at P0, the field we have imagined violates
Gauss’ law. It is impossible to balance a positive charge in empty space—at
a point where there is not some negative charge. A positive charge can be in
equilibrium if it is in the middle of a distributed negative charge. Of course,
the negative charge distribution would have to be held in place by other than
electrical forces!

Our result has been obtained for a point charge. Does the same conclusion
hold for a complicated arrangement of charges held together in fixed relative
positions—with rods, for example? We consider the question for two equal charges
fixed on a rod. Is it possible that this combination can be in equilibrium in some
electrostatic field? The answer is again no. The total force on the rod cannot be
restoring for displacements in every direction.

Call F the total force on the rod in any position—F is then a vector field.
Following the argument used above, we conclude that at a position of stable
equilibrium, the divergence of F must be a negative number. But the total force
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on the rod is the first charge times the field at its position, plus the second charge
times the field at its position:

F = q1E1 + q2E2. (5.1)

The divergence of F is given by

∇ · F = q1(∇ ·E1) + q2(∇ ·E2).

If each of the two charges q1 and q2 is in free space, both ∇ ·E1 and ∇ ·E2 are
zero, and ∇ · F is zero—not negative, as would be required for equilibrium. You
can see that an extension of the argument shows that no rigid combination of any
number of charges can have a position of stable equilibrium in an electrostatic
field in free space.

+ + +

Hollow
Tube

Fig. 5-2. A charge can be in equilibrium if there are mechanical
constraints.

Now we have not shown that equilibrium is forbidden if there are pivots or
other mechanical constraints. As an example, consider a hollow tube in which a
charge can move back and forth freely, but not sideways. Now it is very easy to
devise an electric field that points inward at both ends of the tube if it is allowed
that the field may point laterally outward near the center of the tube. We simply
place positive charges at each end of the tube, as in Fig. 5-2. There can now be
an equilibrium point even though the divergence of E is zero. The charge, of
course, would not be in stable equilibrium for sideways motion were it not for
“nonelectrical” forces from the tube walls.

5-3 Equilibrium with conductors

There is no stable spot in the field of a system of fixed charges. What about
a system of charged conductors? Can a system of charged conductors produce a

5-3



field that will have a stable equilibrium point for a point charge? (We mean at
a point other than on a conductor, of course.) You know that conductors have
the property that charges can move freely around in them. Perhaps when the
point charge is displaced slightly, the other charges on the conductors will move
in a way that will give a restoring force to the point charge? The answer is still
no—although the proof we have just given doesn’t show it. The proof for this
case is more difficult, and we will only indicate how it goes.

First, we note that when charges redistribute themselves on the conductors,
they can only do so if their motion decreases their total potential energy. (Some
energy is lost to heat as they move in the conductor.) Now we have already
shown that if the charges producing a field are stationary, there is, near any
zero point P0 in the field, some direction for which moving a point charge away
from P0 will decrease the energy of the system (since the force is away from P0).
Any readjustment of the charges on the conductors can only lower the potential
energy still more, so (by the principle of virtual work) their motion will only
increase the force in that particular direction away from P0, and not reverse it.

Our conclusions do not mean that it is not possible to balance a charge by
electrical forces. It is possible if one is willing to control the locations or the sizes
of the supporting charges with suitable devices. You know that a rod standing
on its point in a gravitational field is unstable, but this does not prove that it
cannot be balanced on the end of a finger. Similarly, a charge can be held in
one spot by electric fields if they are variable. But not with a passive—that is, a
static—system.

5-4 Stability of atoms

If charges cannot be held stably in position, it is surely not proper to imagine
matter to be made up of static point charges (electrons and protons) governed
only by the laws of electrostatics. Such a static configuration is impossible; it
would collapse!

It was once suggested that the positive charge of an atom could be distributed
uniformly in a sphere, and the negative charges, the electrons, could be at rest
inside the positive charge, as shown in Fig. 5-3. This was the first atomic model,
proposed by Thomson. But Rutherford concluded from the experiment of Geiger
and Marsden that the positive charges were very much concentrated, in what he
called the nucleus. Thomson’s static model had to be abandoned. Rutherford and
Bohr then suggested that the equilibrium might be dynamic, with the electrons
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Fig. 5-3. The Thomson model of an atom.
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Fig. 5-4. The Rutherford-Bohr model of an atom.

revolving in orbits, as shown in Fig. 5-4. The electrons would be kept from falling
in toward the nucleus by their orbital motion. We already know at least one
difficulty with this picture. With such motion, the electrons would be accelerating
(because of the circular motion) and would, therefore, be radiating energy. They
would lose the kinetic energy required to stay in orbit, and would spiral in toward
the nucleus. Again unstable!

The stability of the atoms is now explained in terms of quantum mechanics.
The electrostatic forces pull the electron as close to the nucleus as possible, but
the electron is compelled to stay spread out in space over a distance given by
the uncertainty principle. If it were confined in too small a space, it would have
a great uncertainty in momentum. But that means that it would have a high
expected energy—which it would use to escape from the electrical attraction.
The net result is an electrical equilibrium not too different from the idea of
Thomson—only it is the negative charge that is spread out (because the mass of
the electron is so much smaller than the mass of the proton).
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5-5 The field of a line charge

Gauss’ law can be used to solve a number of electrostatic field problems
involving a special symmetry—usually spherical, cylindrical, or planar symmetry.
In the remainder of this chapter we will apply Gauss’ law to a few such problems.
The ease with which these problems can be solved may give the misleading
impression that the method is very powerful, and that one should be able to go
on to many other problems. It is unfortunately not so. One soon exhausts the
list of problems that can be solved easily with Gauss’ law. In later chapters we
will develop more powerful methods for investigating electrostatic fields.

As our first example, we consider a system with cylindrical symmetry. Suppose
that we have a very long, uniformly charged rod. By this we mean that electric
charges are distributed uniformly along an indefinitely long straight line, with the
charge λ per unit length. We wish to know the electric field. The problem can,
of course, be solved by integrating the contribution to the field from every part
of the line. We are going to do it without integrating, by using Gauss’ law and
some guesswork. First, we surmise that the electric field will be directed radially
outward from the line. Any axial component from charges on one side would be
accompanied by an equal axial component from charges on the other side. The re-
sult could only be a radial field. It also seems reasonable that the field should have
the same magnitude at all points equidistant from the line. This is obvious. (It
may not be easy to prove, but it is true if space is symmetric—as we believe it is.)

We can use Gauss’ law in the following way. We consider an imaginary surface
in the shape of a cylinder coaxial with the line, as shown in Fig. 5-5. According
to Gauss’ law, the total flux of E from this surface is equal to the charge inside
divided by ε0. Since the field is assumed to be normal to the surface, the normal
component is the magnitude of the field. Let’s call it E. Also, let the radius of
the cylinder be r, and its length be taken as one unit, for convenience. The flux
through the cylindrical surface is equal to E times the area of the surface, which
is 2πr. The flux through the two end faces is zero because the electric field is
tangential to them. The total charge inside our surface is just λ, because the
length of the line inside is one unit. Gauss’ law then gives

E · 2πr = λ/ε0,

E = λ

2πε0r
. (5.2)
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Fig. 5-5. A cylindrical gaussian surface coaxial with a line charge.

The electric field of a line charge depends inversely on the first power of the
distance from the line.

5-6 A sheet of charge; two sheets

As another example, we will calculate the field from a uniform plane sheet
of charge. Suppose that the sheet is infinite in extent and that the charge per
unit area is σ. We are going to take another guess. Considerations of symmetry
lead us to believe that the field direction is everywhere normal to the plane, and
if we have no field from any other charges in the world, the fields must be the
same (in magnitude) on each side. This time we choose for our Gaussian surface
a rectangular box that cuts through the sheet, as shown in Fig. 5-6. The two
faces parallel to the sheet will have equal areas, say A. The field is normal to
these two faces, and parallel to the other four. The total flux is E times the area
of the first face, plus E times the area of the opposite face—with no contribution
from the other four faces. The total charge enclosed in the box is σA. Equating
the flux to the charge inside, we have

EA+ EA = σA

ε0
,

from which
E = σ

2ε0
, (5.3)

a simple but important result.
You may remember that the same result was obtained in an earlier chapter

by an integration over the entire surface. Gauss’ law gives us the answer, in this
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Fig. 5-6. The electric field near a uniformly charged sheet can be
found by applying Gauss’ law to an imaginary box.

instance, much more quickly (although it is not as generally applicable as the
earlier method).

We emphasize that this result applies only to the field due to the charges on
the sheet. If there are other charges in the neighborhood, the total field near the
sheet would be the sum of (5.3) and the field of the other charges. Gauss’ law
would then tell us only that

E1 + E2 = σ

ε0
, (5.4)

where E1 and E2 are the fields directed outward on each side of the sheet.
The problem of two parallel sheets with equal and opposite charge densities,

+σ and −σ, is equally simple if we assume again that the outside world is
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quite symmetric. Either by superposing two solutions for a single sheet or by
constructing a gaussian box that includes both sheets, it is easily seen that the
field is zero outside of the two sheets (Fig. 5-7a). By considering a box that
includes only one surface or the other, as in (b) or (c) of the figure, it can be
seen that the field between the sheets must be twice what it is for a single sheet.
The result is

E (between the sheets) =σ/ε0, (5.5)

E (outside) = 0. (5.6)
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Fig. 5-7. The field between two charged sheets is σ/ε0.
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5-7 A sphere of charge; a spherical shell

We have already (in Chapter 4) used Gauss’ law to find the field outside a
uniformly charged spherical region. The same method can also give us the field
at points inside the sphere. For example, the computation can be used to obtain
a good approximation to the field inside an atomic nucleus. In spite of the fact
that the protons in a nucleus repel each other, they are, because of the strong
nuclear forces, spread nearly uniformly throughout the body of the nucleus.

Suppose that we have a sphere of radius R filled uniformly with charge. Let ρ
be the charge per unit volume. Again using arguments of symmetry, we assume
the field to be radial and equal in magnitude at all points at the same distance
from the center. To find the field at the distance r from the center, we take a
spherical gaussian surface of radius r (r < R), as shown in Fig. 5-8. The flux out
of this surface is

4πr2E.

The charge inside our gaussian surface is the volume inside times ρ, or
4
3πr

3ρ.

r

R

E UNIFORM
CHARGE
DENSITY

r

E

∝ r ∝
1

r2

Fig. 5-8. Gauss’ law can be used to find the field inside a uniformly
charged sphere.
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Using Gauss’ law, it follows that the magnitude of the field is given by

E = ρr

3ε0
(r < R). (5.7)

You can see that this formula gives the proper result for r = R. The electric field
is proportional to the radius and is directed radially outward.

The arguments we have just given for a uniformly charged sphere can be
applied also to a thin spherical shell of charge. Assuming that the field is
everywhere radial and is spherically symmetric, one gets immediately from Gauss’
law that the field outside the shell is like that of a point charge, while the field
everywhere inside the shell is zero. (A gaussian surface inside the shell will
contain no charge.)

5-8 Is the field of a point charge exactly 1/r2?

If we look in a little more detail at how the field inside the shell gets to be
zero, we can see more clearly why it is that Gauss’ law is true only because
the Coulomb force depends exactly on the square of the distance. Consider any
point P inside a uniform spherical shell of charge. Imagine a small cone whose
apex is at P and which extends to the surface of the sphere, where it cuts out
a small surface area ∆a1, as in Fig. 5-9. An exactly symmetric cone diverging
from the opposite side of P would cut out the surface area ∆a2. If the distances
from P to these two elements of area are r1 and r2, the areas are in the ratio

∆a2

∆a1
= r2

2
r2
1
.

(You can show this by geometry for any point P inside the sphere.)
If the surface of the sphere is uniformly charged, the charge ∆q on each of

the elements of area is proportional to the area, so

∆q2

∆q1
= ∆a2

∆a1
.

Coulomb’s law then says that the magnitudes of the fields produced at P by
these two surface elements are in the ratio

E2

E1
= ∆q2/r

2
2

∆q1/r2
1

= 1.
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Fig. 5-9. The field is zero at any point P inside a spherical shell of
charge.

The fields cancel exactly. Since all parts of the surface can be paired off in the
same way, the total field at P is zero. But you can see that it would not be so if
the exponent of r in Coulomb’s law were not exactly two.

The validity of Gauss’ law depends upon the inverse square law of Coulomb.
If the force law were not exactly the inverse square, it would not be true that the
field inside a uniformly charged sphere would be exactly zero. For instance, if
the force varied more rapidly, like, say, the inverse cube of r, that portion of the
surface which is nearer to an interior point would produce a field which is larger
than that which is farther away, resulting in a radial inward field for a positive
surface charge. These conclusions suggest an elegant way of finding out whether
the inverse square law is precisely correct. We need only determine whether or
not the field inside of a uniformly charged spherical shell is precisely zero.

It is lucky that such a method exists. It is usually difficult to measure a
physical quantity to high precision—a one percent result may not be too difficult,
but how would one go about measuring, say, Coulomb’s law to an accuracy of
one part in a billion? It is almost certainly not possible with the best available
techniques to measure the force between two charged objects with such an
accuracy. But by determining only that the electric fields inside a charged sphere
are smaller than some value we can make a highly accurate measurement of
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the correctness of Gauss’ law, and hence of the inverse square dependence of
Coulomb’s law. What one does, in effect, is compare the force law to an ideal
inverse square. Such comparisons of things that are equal, or nearly so, are
usually the bases of the most precise physical measurements.

How shall we observe the field inside a charged sphere? One way is to try
to charge an object by touching it to the inside of a spherical conductor. You
know that if we touch a small metal ball to a charged object and then touch
it to an electrometer the meter will become charged and the pointer will move
from zero (Fig. 5-10a). The ball picks up charge because there are electric fields
outside the charged sphere that cause charges to run onto (or off) the little ball.
If you do the same experiment by touching the little ball to the inside of the
charged sphere, you find that no charge is carried to the electrometer. With such
an experiment you can easily show that the field inside is, at most, a few percent
of the field outside, and that Gauss’ law is at least approximately correct.

It appears that Benjamin Franklin was the first to notice that the field inside
a conducting shell is zero. The result seemed strange to him. When he reported
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Fig. 5-10. The electric field is zero inside a closed conducting shell.
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his observation to Priestley, the latter suggested that it might be connected
with an inverse square law, since it was known that a spherical shell of matter
produced no gravitational field inside. But Coulomb didn’t measure the inverse
square dependence until 18 years later, and Gauss’ law came even later still.

Gauss’ law has been checked carefully by putting an electrometer inside a
large sphere and observing whether any deflections occur when the sphere is
charged to a high voltage. A null result is always obtained. Knowing the geometry
of the apparatus and the sensitivity of the meter, it is possible to compute the
minimum field that would be observed. From this number it is possible to place
an upper limit on the deviation of the exponent from two. If we write that the
electrostatic force depends on r−2+ε, we can place an upper bound on ε. By this
method Maxwell determined that ε was less than 1/10,000. The experiment was
repeated and improved upon in 1936 by Plimpton and Lawton. They found that
Coulomb’s exponent differs from two by less than one part in a billion.

Now that brings up an interesting question: How accurate do we know this
Coulomb law to be in various circumstances? The experiments we just described
measure the dependence of the field on distance for distances of some tens of
centimeters. But what about the distances inside an atom—in the hydrogen
atom, for instance, where we believe the electron is attracted to the nucleus
by the same inverse square law? It is true that quantum mechanics must be
used for the mechanical part of the behavior of the electron, but the force is the
usual electrostatic one. In the formulation of the problem, the potential energy
of an electron must be known as a function of distance from the nucleus, and
Coulomb’s law gives a potential which varies inversely with the first power of the
distance. How accurately is the exponent known for such small distances? As
a result of very careful measurements in 1947 by Lamb and Retherford on the
relative positions of the energy levels of hydrogen, we know that the exponent is
correct again to one part in a billion on the atomic scale—that is, at distances of
the order of one angstrom (10−8 centimeter).

The accuracy of the Lamb-Retherford measurement was possible again because
of a physical “accident.” Two of the states of a hydrogen atom are expected to
have almost identical energies only if the potential varies exactly as 1/r. A
measurement was made of the very slight difference in energies by finding the
frequency ω of the photons that are emitted or absorbed in the transition from one
state to the other, using for the energy difference ∆E = ~ω. Computations showed
that ∆E would have been noticeably different from what was observed if the
exponent in the force law 1/r2 differed from 2 by as much as one part in a billion.
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Is the same exponent correct at still shorter distances? From measurements
in nuclear physics it is found that there are electrostatic forces at typical nuclear
distances—at about 10−13 centimeter—and that they still vary approximately
as the inverse square. We shall look at some of the evidence in a later chapter.
Coulomb’s law is, we know, still valid, at least to some extent, at distances of
the order of 10−13 centimeter.

How about 10−14 centimeter? This range can be investigated by bombarding
protons with very energetic electrons and observing how they are scattered.
Results to date seem to indicate that the law fails at these distances. The
electrical force seems to be about 10 times too weak at distances less than
10−14 centimeter. Now there are two possible explanations. One is that the
Coulomb law does not work at such small distances; the other is that our objects,
the electrons and protons, are not point charges. Perhaps either the electron or
proton, or both, is some kind of a smear. Most physicists prefer to think that the
charge of the proton is smeared. We know that protons interact strongly with
mesons. This implies that a proton will, from time to time, exist as a neutron
with a π+ meson around it. Such a configuration would act—on the average—like
a little sphere of positive charge. We know that the field from a sphere of charge
does not vary as 1/r2 all the way into the center. It is quite likely that the proton
charge is smeared, but the theory of pions is still quite incomplete, so it may also
be that Coulomb’s law fails at very small distances. The question is still open.

One more point: The inverse square law is valid at distances like one meter
and also at 10−10 m; but is the coefficient 1/4πε0 the same? The answer is yes;
at least to an accuracy of 15 parts in a million.

We go back now to an important matter that we slighted when we spoke of the
experimental verification of Gauss’ law. You may have wondered how the exper-
iment of Maxwell or of Plimpton and Lawton could give such an accuracy unless
the spherical conductor they used was a perfect sphere. An accuracy of one part in
a billion is really something to achieve, and you might well ask whether they could
make a sphere which was that precise. There are certain to be slight irregularities
in any real sphere and if there are irregularities, will they not produce fields inside?
We wish to show now that it is not necessary to have a perfect sphere. It is possible,
in fact, to show that there is no field inside a closed conducting shell of any shape.
In other words, the experiments depended on 1/r2, but had nothing to do with the
surface being a sphere (except that with a sphere it is easier to calculate what the
fields would be if Coulomb had been wrong), so we take up that subject now. To
show this, it is necessary to know some of the properties of electrical conductors.
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5-9 The fields of a conductor

An electrical conductor is a solid that contains many “free” electrons. The
electrons can move around freely in the material, but cannot leave the surface.
In a metal there are so many free electrons that any electric field will set large
numbers of them into motion. Either the current of electrons so set up must
be continually kept moving by external sources of energy, or the motion of the
electrons will cease as they discharge the sources producing the initial field. In
“electrostatic” situations, we do not consider continuous sources of current (they
will be considered later when we study magnetostatics), so the electrons move
only until they have arranged themselves to produce zero electric field everywhere
inside the conductor. (This usually happens in a small fraction of a second.) If
there were any field left, this field would urge still more electrons to move; the
only electrostatic solution is that the field is everywhere zero inside.

Now consider the interior of a charged conducting object. (By “interior” we
mean in the metal itself.) Since the metal is a conductor, the interior field must
be zero, and so the gradient of the potential φ is zero. That means that φ does
not vary from point to point. Every conductor is an equipotential region, and its
surface is an equipotential surface. Since in a conducting material the electric
field is everywhere zero, the divergence of E is zero, and by Gauss’ law the charge
density in the interior of the conductor must be zero.

If there can be no charges in a conductor, how can it ever be charged? What
do we mean when we say a conductor is “charged”? Where are the charges? The
answer is that they reside at the surface of the conductor, where there are strong
forces to keep them from leaving—they are not completely “free.” When we study
solid-state physics, we shall find that the excess charge of any conductor is on the
average within one or two atomic layers of the surface. For our present purposes,
it is accurate enough to say that if any charge is put on, or in, a conductor it all
accumulates on the surface; there is no charge in the interior of a conductor.

We note also that the electric field just outside the surface of a conductor
must be normal to the surface. There can be no tangential component. If there
were a tangential component, the electrons would move along the surface; there
are no forces preventing that. Saying it another way: we know that the electric
field lines must always go at right angles to an equipotential surface.

We can also, using Gauss’ law, relate the field strength just outside a conductor
to the local density of the charge at the surface. For a gaussian surface, we take a
small cylindrical box half inside and half outside the surface, like the one shown
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Fig. 5-11. The electric field just outside the surface of a conductor is
proportional to the local surface density of charge.

in Fig. 5-11. There is a contribution to the total flux of E only from the side of
the box outside the conductor. The field just outside the surface of a conductor
is then

Outside a conductor:
E = σ

ε0
, (5.8)

where σ is the local surface charge density.
Why does a sheet of charge on a conductor produce a different field than

just a sheet of charge? In other words, why is (5.8) twice as large as (5.3)? The
reason, of course, is that we have not said for the conductor that there are no
“other” charges around. There must, in fact, be some to make E = 0 in the
conductor. The charges in the immediate neighborhood of a point P on the
surface do, in fact, give a field Elocal = σlocal/2ε0 both inside and outside the
surface. But all the rest of the charges on the conductor “conspire” to produce
an additional field at the point P equal in magnitude to Elocal. The total field
inside goes to zero and the field outside to 2Elocal = σ/ε0.

5-10 The field in a cavity of a conductor

We return now to the problem of the hollow container—a conductor with a
cavity. There is no field in the metal, but what about in the cavity? We shall
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Fig. 5-12. What is the field in an empty cavity of a conductor, for
any shape?

show that if the cavity is empty then there are no fields in it, no matter what the
shape of the conductor or the cavity—say for the one in Fig. 5-12. Consider a
gaussian surface, like S in Fig. 5-12, that encloses the cavity but stays everywhere
in the conducting material. Everywhere on S the field is zero, so there is no flux
through S and the total charge inside S is zero. For a spherical shell, one could
then argue from symmetry that there could be no charge inside. But, in general,
we can only say that there are equal amounts of positive and negative charge on
the inner surface of the conductor. There could be a positive surface charge on
one part and a negative one somewhere else, as indicated in Fig. 5-12. Such a
thing cannot be ruled out by Gauss’ law.

What really happens, of course, is that any equal and opposite charges on the
inner surface would slide around to meet each other, cancelling out completely. We
can show that they must cancel completely by using the law that the circulation
of E is always zero (electrostatics). Suppose there were charges on some parts
of the inner surface. We know that there would have to be an equal number of
opposite charges somewhere else. Now any lines of E would have to start on the
positive charges and end on the negative charges (since we are considering only
the case that there are no free charges in the cavity). Now imagine a loop Γ that
crosses the cavity along a line of force from some positive charge to some negative
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charge, and returns to its starting point via the conductor (as in Fig. 5-12). The
integral along such a line of force from the positive to the negative charges would
not be zero. The integral through the metal is zero, since E = 0. So we would
have ∮

E · ds 6= 0???

But the line integral of E around any closed loop in an electrostatic field is always
zero. So there can be no fields inside the empty cavity, nor any charges on the
inside surface.

You should notice carefully one important qualification we have made. We
have always said “inside an empty” cavity. If some charges are placed at some
fixed locations in the cavity—as on an insulator or on a small conductor insulated
from the main one—then there can be fields in the cavity. But then that is not
an “empty” cavity.

We have shown that if a cavity is completely enclosed by a conductor, no static
distribution of charges outside can ever produce any fields inside. This explains
the principle of “shielding” electrical equipment by placing it in a metal can. The
same arguments can be used to show that no static distribution of charges inside
a closed grounded conductor can produce any fields outside. Shielding works
both ways! In electrostatics—but not in varying fields—the fields on the two
sides of a closed grounded conducting shell are completely independent.

Now you see why it was possible to check Coulomb’s law to such a great
precision. The shape of the hollow shell used doesn’t matter. It doesn’t need to be
spherical; it could be square! If Gauss’ law is exact, the field inside is always zero.
Now you also understand why it is safe to sit inside the high-voltage terminal
of a million-volt Van de Graaff generator, without worrying about getting a
shock—because of Gauss’ law.
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6

The Electric Field in Various Circumstances

Review: Chapter 23, Vol. I, Resonance

6-1 Equations of the electrostatic potential

This chapter will describe the behavior of the electric field in a number of
different circumstances. It will provide some experience with the way the electric
field behaves, and will describe some of the mathematical methods which are
used to find this field.

We begin by pointing out that the whole mathematical problem is the solution
of two equations, the Maxwell equations for electrostatics:

∇ ·E = ρ

ε0
, (6.1)

∇×E = 0. (6.2)

In fact, the two can be combined into a single equation. From the second equation,
we know at once that we can describe the field as the gradient of a scalar (see
Section 3-7):

E = −∇φ. (6.3)
We may, if we wish, completely describe any particular electric field in terms

of its potential φ. We obtain the differential equation that φ must obey by
substituting Eq. (6.3) into (6.1), to get

∇ ·∇φ = − ρ

ε0
. (6.4)

The divergence of the gradient of φ is the same as ∇2 operating on φ:

∇ ·∇φ = ∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 , (6.5)
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so we write Eq. (6.4) as
∇2φ = − ρ

ε0
. (6.6)

The operator ∇2 is called the Laplacian, and Eq. (6.6) is called the Poisson
equation. The entire subject of electrostatics, from a mathematical point of view,
is merely a study of the solutions of the single equation (6.6). Once φ is obtained
by solving Eq. (6.6) we can find E immediately from Eq. (6.3).

We take up first the special class of problems in which ρ is given as a function
of x, y, z. In that case the problem is almost trivial, for we already know the
solution of Eq. (6.6) for the general case. We have shown that if ρ is known at
every point, the potential at point (1) is

φ(1) =
∫
ρ(2) dV2

4πε0r12
, (6.7)

where ρ(2) is the charge density, dV2 is the volume element at point (2), and r12
is the distance between points (1) and (2). The solution of the differential
equation (6.6) is reduced to an integration over space. The solution (6.7) should
be especially noted, because there are many situations in physics that lead to
equations like

∇2(something) = (something else),

and Eq. (6.7) is a prototype of the solution for any of these problems.
The solution of electrostatic field problems is thus completely straightforward

when the positions of all the charges are known. Let’s see how it works in a few
examples.

6-2 The electric dipole

First, take two point charges, +q and −q, separated by the distance d. Let
the z-axis go through the charges, and pick the origin halfway between, as shown
in Fig. 6-1. Then, using (4.24), the potential from the two charges is given by

φ(x, y, z)

= 1
4πε0

[
q√

[z − (d/2)]2 + x2 + y2
+ −q√

[z + (d/2)]2 + x2 + y2

]
. (6.8)
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y

z

P (x, y , z)

+q

−q
d

θ

Fig. 6-1. A dipole: two charges +q and −q the distance d apart.

We are not going to write out the formula for the electric field, but we can always
calculate it once we have the potential. So we have solved the problem of two
charges.

There is an important special case in which the two charges are very close
together—which is to say that we are interested in the fields only at distances
from the charges large in comparison with their separation. We call such a close
pair of charges a dipole. Dipoles are very common.

A “dipole” antenna can often be approximated by two charges separated by a
small distance—if we don’t ask about the field too close to the antenna. (We are
usually interested in antennas with moving charges; then the equations of statics
do not really apply, but for some purposes they are an adequate approximation.)

More important perhaps, are atomic dipoles. If there is an electric field in any
material, the electrons and protons feel opposite forces and are displaced relative
to each other. In a conductor, you remember, some of the electrons move to
the surfaces, so that the field inside becomes zero. In an insulator the electrons
cannot move very far; they are pulled back by the attraction of the nucleus. They
do, however, shift a little bit. So although an atom, or molecule, remains neutral
in an external electric field, there is a very tiny separation of its positive and
negative charges and it becomes a microscopic dipole. If we are interested in the

6-3



fields of these atomic dipoles in the neighborhood of ordinary-sized objects, we
are normally dealing with distances large compared with the separations of the
pairs of charges.

H H

O

+ +

−

Fig. 6-2. The water molecule H2O. The hydrogen atoms have slightly
less than their share of the electron cloud; the oxygen, slightly more.

In some molecules the charges are somewhat separated even in the absence
of external fields, because of the form of the molecule. In a water molecule, for
example, there is a net negative charge on the oxygen atom and a net positive
charge on each of the two hydrogen atoms, which are not placed symmetrically
but as in Fig. 6-2. Although the charge of the whole molecule is zero, there is
a charge distribution with a little more negative charge on one side and a little
more positive charge on the other. This arrangement is certainly not as simple
as two point charges, but when seen from far away the system acts like a dipole.
As we shall see a little later, the field at large distances is not sensitive to the
fine details.

Let’s look, then, at the field of two opposite charges with a small separation d.
If d becomes zero, the two charges are on top of each other, the two potentials
cancel, and there is no field. But if they are not exactly on top of each other, we
can get a good approximation to the potential by expanding the terms of (6.8) in
a power series in the small quantity d (using the binomial expansion). Keeping
terms only to first order in d, we can write

(
z − d

2

)2
≈ z2 − zd.

It is convenient to write
x2 + y2 + z2 = r2.
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Then (
z − d

2

)2
+ x2 + y2 ≈ r2 − zd = r2

(
1− zd

r2

)
,

and
1√

[z − (d/2)]2 + x2 + y2
≈ 1√

r2[1− (zd/r2)]
= 1
r

(
1− zd

r2

)−1/2
.

Using the binomial expansion again for [1− (zd/r2)]−1/2—and throwing away
terms with the square or higher powers of d—we get

1
r

(
1 + 1

2
zd

r2

)
.

Similarly,
1√

[z + (d/2)]2 + x2 + y2
≈ 1
r

(
1− 1

2
zd

r2

)
.

The difference of these two terms gives for the potential

φ(x, y, z) = 1
4πε0

z

r3 qd. (6.9)

The potential, and hence the field, which is its derivative, is proportional to qd,
the product of the charge and the separation. This product is defined as the
dipole moment of the two charges, for which we will use the symbol p (do not
confuse with momentum!):

p = qd. (6.10)
Equation (6.9) can also be written as

φ(x, y, z) = 1
4πε0

p cos θ
r2 , (6.11)

since z/r = cos θ, where θ is the angle between the axis of the dipole and
the radius vector to the point (x, y, z)—see Fig. 6-1. The potential of a dipole
decreases as 1/r2 for a given direction from the axis (whereas for a point charge
it goes as 1/r). The electric field E of the dipole will then decrease as 1/r3.

We can put our formula into a vector form if we define p as a vector whose
magnitude is p and whose direction is along the axis of the dipole, pointing from
−q toward +q. Then

p cos θ = p · er, (6.12)
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p er

r

P

θ

Fig. 6-3. Vector notation for a dipole.

where er is the unit radial vector (Fig. 6-3). We can also represent the point
(x, y, z) by r. Then

Dipole potential:
φ(r) = 1

4πε0
p · er
r2 = 1

4πε0
p · r
r3 (6.13)

This formula is valid for a dipole with any orientation and position if r represents
the vector from the dipole to the point of interest.

If we want the electric field of the dipole we can get it by taking the gradient
of φ. For example, the z-component of the field is −∂φ/∂z. For a dipole oriented
along the z-axis we can use (6.9):

−∂φ
∂z

= − p

4πε0
∂

∂z

(
z

r3

)
= − p

4πε0

(
1
r3 −

3z2

r5

)
,

or

Ez = p

4πε0
3 cos2 θ − 1

r3 . (6.14)

The x- and y-components are

Ex = p

4πε0
3zx
r5 , Ey = p

4πε0
3zy
r5 .

These two can be combined to give one component directed perpendicular to the
z-axis, which we will call the transverse component E⊥:

E⊥ =
√
E2
x + E2

y = p

4πε0
3z
r5

√
x2 + y2
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or
E⊥ = p

4πε0
3 cos θ sin θ

r3 . (6.15)

The transverse component E⊥ is in the xy-plane and points directly away from
the axis of the dipole. The total field, of course, is

E =
√
E2
z + E2

⊥.

The dipole field varies inversely as the cube of the distance from the dipole.
On the axis, at θ = 0, it is twice as strong as at θ = 90◦. At both of these special
angles the electric field has only a z-component, but of opposite sign at the two
places (Fig. 6-4).

pE
r

θ
E⊥

Ez E

Fig. 6-4. The electric field of a dipole.

6-3 Remarks on vector equations

This is a good place to make a general remark about vector analysis. The
fundamental proofs can be expressed by elegant equations in a general form, but
in making various calculations and analyses it is always a good idea to choose the
axes in some convenient way. Notice that when we were finding the potential of a
dipole we chose the z-axis along the direction of the dipole, rather than at some
arbitrary angle. This made the work much easier. But then we wrote the equations
in vector form so that they would no longer depend on any particular coordinate
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system. After that, we are allowed to choose any coordinate system we wish,
knowing that the relation is, in general, true. It clearly doesn’t make any sense to
bother with an arbitrary coordinate system at some complicated angle when you
can choose a neat system for the particular problem—provided that the result
can finally be expressed as a vector equation. So by all means take advantage
of the fact that vector equations are independent of any coordinate system.

On the other hand, if you are trying to calculate the divergence of a vector,
instead of just looking at ∇ ·E and wondering what it is, don’t forget that it
can always be spread out as

∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

.

If you can then work out the x-, y-, and z-components of the electric field
and differentiate them, you will have the divergence. There often seems to be
a feeling that there is something inelegant—some kind of defeat involved—in
writing out the components; that somehow there ought always to be a way to
do everything with the vector operators. There is often no advantage to it. The
first time we encounter a particular kind of problem, it usually helps to write out
the components to be sure we understand what is going on. There is nothing
inelegant about putting numbers into equations, and nothing inelegant about
substituting the derivatives for the fancy symbols. In fact, there is often a certain
cleverness in doing just that. Of course when you publish a paper in a professional
journal it will look better—and be more easily understood—if you can write
everything in vector form. Besides, it saves print.

6-4 The dipole potential as a gradient

We would like to point out a rather amusing thing about the dipole formula,
Eq. (6.13). The potential can also be written as

φ = − 1
4πε0

p ·∇
(

1
r

)
. (6.16)

If you calculate the gradient of 1/r, you get

∇
(

1
r

)
= − r

r3 = −er
r2 ,

and Eq. (6.16) is the same as Eq. (6.13).
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How did we think of that? We just remembered that er/r2 appeared in the
formula for the field of a point charge, and that the field was the gradient of a
potential which has a 1/r dependence.

There is a physical reason for being able to write the dipole potential in the
form of Eq. (6.16). Suppose we have a point charge q at the origin. The potential
at the point P at (x, y, z) is

φ0 = q

r
.

(Let’s leave off the 1/4πε0 while we make these arguments; we can stick it in at
the end.) Now if we move the charge +q up a distance ∆z, the potential at P
will change a little, by, say, ∆φ+. How much is ∆φ+? Well, it is just the amount
that the potential would change if we were to leave the charge at the origin and
move P downward by the same distance ∆z (Fig. 6-5). That is,

∆φ+ = −∂φ0

∂z
∆z,

where by ∆z we mean the same as d/2. So, using φ0 = q/r, we have that the

x

y

z

O

∆z

P

P ′
∆z

Fig. 6-5. The potential at P from a point charge at ∆z above the
origin is the same as the potential at P ′ (∆z below P ) from the same
charge at the origin.
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potential from the positive charge is

φ+ = q

r
− ∂

∂z

(
q

r

)
d

2 . (6.17)

Applying the same reasoning for the potential from the negative charge, we
can write

φ− = −q
r

+ ∂

∂z

(
−q
r

)
d

2 . (6.18)

The total potential is the sum of (6.17) and (6.18):

φ = φ+ + φ− = − ∂

∂z

(
q

r

)
d (6.19)

= − ∂

∂z

(
1
r

)
qd

For other orientations of the dipole, we could represent the displacement of
the positive charge by the vector ∆r+. We should then write the equation above
Eq. (6.17) as

∆φ+ = −∇φ0 ·∆r+,

where ∆r+ is then to be replaced by d/2. Completing the derivation as before,
Eq. (6.19) would then become

φ = −∇
(

1
r

)
· qd.

This is the same as Eq. (6.16), if we replace qd = p, and put back the 1/4πε0.
Looking at it another way, we see that the dipole potential, Eq. (6.13), can be
interpreted as

φ = −p ·∇Φ0, (6.20)

where Φ0 = 1/4πε0r is the potential of a unit point charge.
Although we can always find the potential of a known charge distribution

by an integration, it is sometimes possible to save time by getting the answer
with a clever trick. For example, one can often make use of the superposition
principle. If we are given a charge distribution that can be made up of the sum
of two distributions for which the potentials are already known, it is easy to find
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the desired potential by just adding the two known ones. One example of this is
our derivation of (6.20), another is the following.

Suppose we have a spherical surface with a distribution of surface charge that
varies as the cosine of the polar angle. The integration for this distribution is fairly
messy. But, surprisingly, such a distribution can be analyzed by superposition.
For imagine a sphere with a uniform volume density of positive charge, and
another sphere with an equal uniform volume density of negative charge, originally
superposed to make a neutral—that is, uncharged—sphere. If the positive sphere
is then displaced slightly with respect to the negative sphere, the body of the
uncharged sphere would remain neutral, but a little positive charge will appear on
one side, and some negative charge will appear on the opposite side, as illustrated
in Fig. 6-6. If the relative displacement of the two spheres is small, the net charge
is equivalent to a surface charge (on a spherical surface), and the surface charge
density will be proportional to the cosine of the polar angle.

+

+ +

+ + +

+ +

+

−
− −

− − −

− −
−

+
+ +

− −−

(a) + (b) = (c)

Fig. 6-6. Two uniformly charged spheres, superposed with a slight
displacement, are equivalent to a nonuniform distribution of surface
charge.

Now if we want the potential from this distribution, we do not need to do an
integral. We know that the potential from each of the spheres of charge is—for
points outside the sphere—the same as from a point charge. The two displaced
spheres are like two point charges; the potential is just that of a dipole.

In this way you can show that a charge distribution on a sphere of radius a
with a surface charge density

σ = σ0 cos θ
produces a field outside the sphere which is just that of a dipole whose moment is

p = 4πσ0a
3

3 .
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It can also be shown that inside the sphere the field is constant, with the value

E = σ0

3ε0
.

If θ is the angle from the positive z-axis, the electric field inside the sphere is in
the negative z-direction. The example we have just considered is not as artificial
as it may appear; we will encounter it again in the theory of dielectrics.

6-5 The dipole approximation for an arbitrary distribution

The dipole field appears in another circumstance both interesting and im-
portant. Suppose that we have an object that has a complicated distribution
of charge—like the water molecule (Fig. 6-2)—and we are interested only in
the fields far away. We will show that it is possible to find a relatively simple
expression for the fields which is appropriate for distances large compared with
the size of the object.

We can think of our object as an assembly of point charges qi in a certain
limited region, as shown in Fig. 6-7. (We can, later, replace qi by ρ dV if we
wish.) Let each charge qi be located at the displacement di from an origin chosen
somewhere in the middle of the group of charges. What is the potential at the
point P , located at R, where R is much larger than the maximum di? The

+ −

+
+

−
+

−
+

−

P

qi

di

ri

R

Fig. 6-7. Computation of the potential at a point P at a large distance
from a set of charges.

6-12



potential from the whole collection is given by

φ = 1
4πε0

∑
i

qi
ri
, (6.21)

where ri is the distance from P to the charge qi (the length of the vector R−di).
Now if the distance from the charges to P , the point of observation, is enormous,
each of the ri’s can be approximated by R. Each term becomes qi/R, and we
can take 1/R out as a factor in front of the summation. This gives us the simple
result

φ = 1
4πε0

1
R

∑
i

qi = Q

4πε0R
, (6.22)

where Q is just the total charge of the whole object. Thus we find that for points
far enough from any lump of charge, the lump looks like a point charge. The
result is not too surprising.

But what if there are equal numbers of positive and negative charges? Then
the total charge Q of the object is zero. This is not an unusual case; in fact, as
we know, objects are usually neutral. The water molecule is neutral, but the
charges are not all at one point, so if we are close enough we should be able to see
some effects of the separate charges. We need a better approximation than (6.22)
for the potential from an arbitrary distribution of charge in a neutral object.
Equation (6.21) is still precise, but we can no longer just set ri = R. We need
a more accurate expression for ri. If the point P is at a large distance, ri will
differ from R to an excellent approximation by the projection of d on R, as can
be seen from Fig. 6-7. (You should imagine that P is really farther away than
is shown in the figure.) In other words, if eR is the unit vector in the direction
of R, then our next approximation to ri is

ri ≈ R− di · eR. (6.23)

What we really want is 1/ri, which, since di � R, can be written to our
approximation as

1
ri
≈ 1
R

(
1 + di · eR

R

)
. (6.24)

Substituting this in (6.21), we get that the potential is

φ = 1
4πε0

(
Q

R
+
∑
i

qi
di · eR
R2 + · · ·

)
. (6.25)
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The three dots indicate the terms of higher order in di/R that we have neglected.
These, as well as the ones we have already obtained, are successive terms in a
Taylor expansion of 1/ri about 1/R in powers of di/R.

The first term in (6.25) is what we got before; it drops out if the object is
neutral. The second term depends on 1/R2, just as for a dipole. In fact, if we
define

p =
∑
i

qidi (6.26)

as a property of the charge distribution, the second term of the potential (6.25)
is

φ = 1
4πε0

p · eR
R2 , (6.27)

precisely a dipole potential. The quantity p is called the dipole moment of the
distribution. It is a generalization of our earlier definition, and reduces to it for
the special case of two point charges.

Our result is that, far enough away from any mess of charges that is as a
whole neutral, the potential is a dipole potential. It decreases as 1/R2 and varies
as cos θ—and its strength depends on the dipole moment of the distribution of
charge. It is for these reasons that dipole fields are important, since the simple
case of a pair of point charges is quite rare.

The water molecule, for example, has a rather strong dipole moment. The
electric fields that result from this moment are responsible for some of the
important properties of water. For many molecules, for example CO2, the dipole
moment vanishes because of the symmetry of the molecule. For them we should
expand still more accurately, obtaining another term in the potential which
decreases as 1/R3, and which is called a quadrupole potential. We will discuss
such cases later.

6-6 The fields of charged conductors

We have now finished with the examples we wish to cover of situations in
which the charge distribution is known from the start. It has been a problem
without serious complications, involving at most some integrations. We turn now
to an entirely new kind of problem, the determination of the fields near charged
conductors.

Suppose that we have a situation in which a total charge Q is placed on an
arbitrary conductor. Now we will not be able to say exactly where the charges
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are. They will spread out in some way on the surface. How can we know how
the charges have distributed themselves on the surface? They must distribute
themselves so that the potential of the surface is constant. If the surface were
not an equipotential, there would be an electric field inside the conductor, and
the charges would keep moving until it became zero. The general problem of this
kind can be solved in the following way. We guess at a distribution of charge and
calculate the potential. If the potential turns out to be constant everywhere on
the surface, the problem is finished. If the surface is not an equipotential, we have
guessed the wrong distribution of charges, and should guess again—hopefully
with an improved guess! This can go on forever, unless we are judicious about
the successive guesses.

The question of how to guess at the distribution is mathematically difficult.
Nature, of course, has time to do it; the charges push and pull until they all
balance themselves. When we try to solve the problem, however, it takes us so
long to make each trial that that method is very tedious. With an arbitrary
group of conductors and charges the problem can be very complicated, and in
general it cannot be solved without rather elaborate numerical methods. Such
numerical computations, these days, are set up on a computing machine that
will do the work for us, once we have told it how to proceed.

On the other hand, there are a lot of little practical cases where it would be
nice to be able to find the answer by some more direct method—without having
to write a program for a computer. Fortunately, there are a number of cases
where the answer can be obtained by squeezing it out of Nature by some trick or
other. The first trick we will describe involves making use of solutions we have
already obtained for situations in which charges have specified locations.

6-7 The method of images

We have solved, for example, the field of two point charges. Figure 6-8 shows
some of the field lines and equipotential surfaces we obtained by the computations
in Chapter 4. Now consider the equipotential surface marked A. Suppose we
were to shape a thin sheet of metal so that it just fits this surface. If we place it
right at the surface and adjust its potential to the proper value, no one would
ever know it was there, because nothing would be changed.

But notice! We have really solved a new problem. We have a situation in
which the surface of a curved conductor with a given potential is placed near a
point charge. If the metal sheet we placed at the equipotential surface eventually
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A

B

Fig. 6-8. The field lines and equipotentials for two point charges.

+q

CONDUCTOR

Fig. 6-9. The field outside a conductor shaped like the equipotential A
of Fig. 6-8.
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closes on itself (or, in practice, if it goes far enough) we have the kind of situation
considered in Section 5-10, in which our space is divided into two regions, one
inside and one outside a closed conducting shell. We found there that the fields
in the two regions are quite independent of each other. So we would have the
same fields outside our curved conductor no matter what is inside. We can even
fill up the whole inside with conducting material. We have found, therefore, the
fields for the arrangement of Fig. 6-9. In the space outside the conductor the
field is just like that of two point charges, as in Fig. 6-8. Inside the conductor,
it is zero. Also—as it must be—the electric field just outside the conductor is
normal to the surface.

Thus we can compute the fields in Fig. 6-9 by computing the field due to q
and to an imaginary point charge −q at a suitable point. The point charge we
“imagine” existing behind the conducting surface is called an image charge.

In books you can find long lists of solutions for hyperbolic-shaped conductors
and other complicated looking things, and you wonder how anyone ever solved
these terrible shapes. They were solved backwards! Someone solved a simple
problem with given charges. He then saw that some equipotential surface showed
up in a new shape, and he wrote a paper in which he pointed out that the field
outside that particular shape can be described in a certain way.

6-8 A point charge near a conducting plane

As the simplest application of the use of this method, let’s make use of the
plane equipotential surface B of Fig. 6-8. With it, we can solve the problem of a
charge in front of a conducting sheet. We just cross out the left-hand half of the
picture. The field lines for our solution are shown in Fig. 6-10. Notice that the
plane, since it was halfway between the two charges, has zero potential. We have
solved the problem of a positive charge next to a grounded conducting sheet.

We have now solved for the total field, but what about the real charges that
are responsible for it? There are, in addition to our positive point charge, some
induced negative charges on the conducting sheet that have been attracted by
the positive charge (from large distances away). Now suppose that for some
technical reason—or out of curiosity—you would like to know how the negative
charges are distributed on the surface. You can find the surface charge density
by using the result we worked out in Section 5-9 with Gauss’ law. The normal
component of the electric field just outside a conductor is equal to the density of
surface charge σ divided by ε0. We can obtain the density of charge at any point
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on the surface by working backwards from the normal component of the electric
field at the surface. We know that, because we know the field everywhere.

Consider a point on the surface at the distance ρ from the point directly
beneath the positive charge (Fig. 6-10). The electric field at this point is normal
to the surface and is directed into it. The component normal to the surface of
the field from the positive point charge is

En+ = − 1
4πε0

aq

(a2 + ρ2)3/2 . (6.28)

To this we must add the electric field produced by the negative image charge.
That just doubles the normal component (and cancels all others), so the charge
density σ at any point on the surface is

σ(ρ) = ε0E(ρ) = − 2aq
4π(a2 + ρ2)3/2 . (6.29)

An interesting check on our work is to integrate σ over the whole surface. We
find that the total induced charge is −q, as it should be.

One further question: Is there a force on the point charge? Yes, because there
is an attraction from the induced negative surface charge on the plate. Now that
we know what the surface charges are (from Eq. 6.29), we could compute the
force on our positive point charge by an integral. But we also know that the force
acting on the positive charge is exactly the same as it would be with the negative
image charge instead of the plate, because the fields in the neighborhood are
the same in both cases. The point charge feels a force toward the plate whose
magnitude is

F = 1
4πε0

q2

(2a)2 . (6.30)

We have found the force much more easily than by integrating over all the negative
charges.

6-9 A point charge near a conducting sphere

What other surfaces besides a plane have a simple solution? The next most
simple shape is a sphere. Let’s find the fields around a grounded metal sphere
which has a point charge q near it, as shown in Fig. 6-11. Now we must look for
a simple physical situation which gives a sphere for an equipotential surface. If
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b

P

r1r2

Fig. 6-11. The point charge q induces charges on a grounded con-
ducting sphere whose fields are those of an image charge q′ placed at
the point shown.

we look around at problems people have already solved, we find that someone
has noticed that the field of two unequal point charges has an equipotential that
is a sphere. Aha! If we choose the location of an image charge—and pick the
right amount of charge—maybe we can make the equipotential surface fit our
sphere. Indeed, it can be done with the following prescription.

Assume that you want the equipotential surface to be a sphere of radius a
with its center at the distance b from the charge q. Put an image charge of
strength q′ = −q(a/b) on the line from the charge to the center of the sphere,
and at a distance a2/b from the center. The sphere will be at zero potential.

The mathematical reason stems from the fact that a sphere is the locus of all
points for which the distances from two points are in a constant ratio. Referring
to Fig. 6-11, the potential at P from q and q′ is proportional to

q

r1
+ q′

r2
.

The potential will thus be zero at all points for which

q′

r2
= − q

r1
or r2

r1
= −q

′

q
.

If we place q′ at the distance a2/b from the center, the ratio r2/r1 has the constant
value a/b. Then if

q′

q
= −a

b
(6.31)

the sphere is an equipotential. Its potential is, in fact, zero.
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What happens if we are interested in a sphere that is not at zero potential?
That would be so only if its total charge happens accidentally to be q′. Of course
if it is grounded, the charges induced on it would have to be just that. But what
if it is insulated, and we have put no charge on it? Or if we know that the total
charge Q has been put on it? Or just that it has a given potential not equal
to zero? All these questions are easily answered. We can always add a point
charge q′′ at the center of the sphere. The sphere still remains an equipotential
by superposition; only the magnitude of the potential will be changed.

If we have, for example, a conducting sphere which is initially uncharged and
insulated from everything else, and we bring near to it the positive point charge q,
the total charge of the sphere will remain zero. The solution is found by using
an image charge q′ as before, but, in addition, adding a charge q′′ at the center
of the sphere, choosing

q′′ = −q′ = a

b
q. (6.32)

The fields everywhere outside the sphere are given by the superposition of the
fields of q, q′, and q′′. The problem is solved.

We can see now that there will be a force of attraction between the sphere and
the point charge q. It is not zero even though there is no charge on the neutral
sphere. Where does the attraction come from? When you bring a positive charge
up to a conducting sphere, the positive charge attracts negative charges to the
side closer to itself and leaves positive charges on the surface of the far side. The
attraction by the negative charges exceeds the repulsion from the positive charges;
there is a net attraction. We can find out how large the attraction is by computing
the force on q in the field produced by q′ and q′′. The total force is the sum of the
attractive force between q and a charge q′ = −(a/b)q, at the distance b− (a2/b),
and the repulsive force between q and a charge q′′ = +(a/b)q at the distance b.

Those who were entertained in childhood by the baking powder box which
has on its label a picture of a baking powder box which has on its label a picture
of a baking powder box which has . . . may be interested in the following problem.
Two equal spheres, one with a total charge of +Q and the other with a total
charge of −Q, are placed at some distance from each other. What is the force
between them? The problem can be solved with an infinite number of images.
One first approximates each sphere by a charge at its center. These charges will
have image charges in the other sphere. The image charges will have images, etc.,
etc., etc. The solution is like the picture on the box of baking powder—and it
converges pretty fast.
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Fig. 6-12. A parallel-plate condenser.

6-10 Condensers; parallel plates

We take up now another kind of a problem involving conductors. Consider two
large metal plates which are parallel to each other and separated by a distance
small compared with their width. Let’s suppose that equal and opposite charges
have been put on the plates. The charges on each plate will be attracted by the
charges on the other plate, and the charges will spread out uniformly on the inner
surfaces of the plates. The plates will have surface charge densities +σ and −σ,
respectively, as in Fig. 6-12. From Chapter 5 we know that the field between the
plates is σ/ε0, and that the field outside the plates is zero. The plates will have
different potentials φ1 and φ2. For convenience we will call the difference V ; it is
often called the “voltage”:

φ1 − φ2 = V.

(You will find that sometimes people use V for the potential, but we have chosen
to use φ.)

The potential difference V is the work per unit charge required to carry a
small charge from one plate to the other, so that

V = Ed = σ

ε0
d = d

ε0A
Q, (6.33)

where ±Q is the total charge on each plate, A is the area of the plates, and d is
the separation.

We find that the voltage is proportional to the charge. Such a proportionality
between V and Q is found for any two conductors in space if there is a plus
charge on one and an equal minus charge on the other. The potential difference
between them—that is, the voltage—will be proportional to the charge. (We are
assuming that there are no other charges around.)

Why this proportionality? Just the superposition principle. Suppose we know
the solution for one set of charges, and then we superimpose two such solutions.
The charges are doubled, the fields are doubled, and the work done in carrying a
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unit charge from one point to the other is also doubled. Therefore the potential
difference between any two points is proportional to the charges. In particular,
the potential difference between the two conductors is proportional to the charges
on them. Someone originally wrote the equation of proportionality the other way.
That is, they wrote

Q = CV,

where C is a constant. This coefficient of proportionality is called the capacity,
and such a system of two conductors is called a condenser.* For our parallel-plate
condenser

C = ε0A

d
(parallel plates). (6.34)

This formula is not exact, because the field is not really uniform everywhere
between the plates, as we assumed. The field does not just suddenly quit at the
edges, but really is more as shown in Fig. 6-13. The total charge is not σA, as we
have assumed—there is a little correction for the effects at the edges. To find out
what the correction is, we will have to calculate the field more exactly and find

Fig. 6-13. The electric field near the edge of two parallel plates.

* Some people think the words “capacitance” and “capacitor” should be used, instead of
“capacity” and “condensor.” We have decided to use the older terminology, because it is still
more commonly heard in the physics laboratory—even if not in textbooks!
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out just what does happen at the edges. That is a complicated mathematical
problem which can, however, be solved by techniques which we will not describe
now. The result of such calculations is that the charge density rises somewhat
near the edges of the plates. This means that the capacity of the plates is a little
higher than we computed.

We have talked about the capacity for two conductors only. Sometimes people
talk about the capacity of a single object. They say, for instance, that the capacity
of a sphere of radius a is 4πε0a. What they imagine is that the other terminal is
another sphere of infinite radius—that when there is a charge +Q on the sphere,
the opposite charge, −Q, is on an infinite sphere. One can also speak of capacities
when there are three or more conductors, a discussion we shall, however, defer.

Suppose that we wish to have a condenser with a very large capacity. We
could get a large capacity by taking a very big area and a very small separation.
We could put waxed paper between sheets of aluminum foil and roll it up. (If
we seal it in plastic, we have a typical radio-type condenser.) What good is it?
It is good for storing charge. If we try to store charge on a ball, for example,
its potential rises rapidly as we charge it up. It may even get so high that the
charge begins to escape into the air by way of sparks. But if we put the same
charge on a condenser whose capacity is very large, the voltage developed across
the condenser will be small.

In many applications in electronic circuits, it is useful to have something
which can absorb or deliver large quantities of charge without changing its
potential much. A condenser (or “capacitor”) does just that. There are also
many applications in electronic instruments and in computers where a condenser
is used to get a specified change in voltage in response to a particular change
in charge. We have seen a similar application in Chapter 23, Vol. I, where we
described the properties of resonant circuits.

From the definition of C, we see that its unit is one coulomb/volt. This unit
is also called a farad. Looking at Eq. (6.34), we see that one can express the
units of ε0 as farad/meter, which is the unit most commonly used. Typical sizes
of condensers run from one micro-microfarad (1 picofarad) to millifarads. Small
condensers of a few picofarads are used in high-frequency tuned circuits, and
capacities up to hundreds or thousands of microfarads are found in power-supply

ε0 ≈
1

36π × 109 farad/meter
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filters. A pair of plates one square centimeter in area with a one millimeter
separation have a capacity of roughly one micro-microfarad.

6-11 High-voltage breakdown

We would like now to discuss qualitatively some of the characteristics of the
fields around conductors. If we charge a conductor that is not a sphere, but one
that has on it a point or a very sharp end, as, for example, the object sketched
in Fig. 6-14, the field around the point is much higher than the field in the other
regions. The reason is, qualitatively, that charges try to spread out as much as
possible on the surface of a conductor, and the tip of a sharp point is as far away
as it is possible to be from most of the surface. Some of the charges on the plate
get pushed all the way to the tip. A relatively small amount of charge on the tip
can still provide a large surface density; a high charge density means a high field
just outside.

CONDUCTOR

Fig. 6-14. The electric field near a sharp point on a conductor is very
high.

One way to see that the field is highest at those places on a conductor where
the radius of curvature is smallest is to consider the combination of a big sphere
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WIRE

Fig. 6-15. The field of a pointed object can be approximated by that
of two spheres at the same potential.

and a little sphere connected by a wire, as shown in Fig. 6-15. It is a somewhat
idealized version of the conductor of Fig. 6-14. The wire will have little influence
on the fields outside; it is there to keep the spheres at the same potential. Now,
which ball has the biggest field at its surface? If the ball on the left has the
radius a and carries a charge Q, its potential is about

φ1 = 1
4πε0

Q

a
.

(Of course the presence of one ball changes the charge distribution on the other,
so that the charges are not really spherically symmetric on either. But if we are
interested only in an estimate of the fields, we can use the potential of a spherical
charge.) If the smaller ball, whose radius is b, carries the charge q, its potential
is about

φ2 = 1
4πε0

q

b
.

But φ1 = φ2, so
Q

a
= q

b
.

On the other hand, the field at the surface (see Eq. 5.8) is proportional to the
surface charge density, which is like the total charge over the radius squared. We
get that

Ea
Eb

= Q/a2

q/b2
= b

a
. (6.35)

Therefore the field is higher at the surface of the small sphere. The fields are in
the inverse proportion of the radii.
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This result is technically very important, because air will break down if the
electric field is too great. What happens is that a loose charge (electron, or ion)
somewhere in the air is accelerated by the field, and if the field is very great,
the charge can pick up enough speed before it hits another atom to be able to
knock an electron off that atom. As a result, more and more ions are produced.
Their motion constitutes a discharge, or spark. If you want to charge an object
to a high potential and not have it discharge itself by sparks in the air, you must
be sure that the surface is smooth, so that there is no place where the field is
abnormally large.

6-12 The field-emission microscope

There is an interesting application of the extremely high electric field which
surrounds any sharp protuberance on a charged conductor. The field-emission
microscope depends for its operation on the high fields produced at a sharp
metal point.* It is built in the following way. A very fine needle, with a tip

TO
VACUUM
PUMP

FLUORESCENT
COATING

METAL
POINT

GLASS BULB

GROUND

E

± HIGH VOLTAGE

Fig. 6-16. Field-emission microscope.

* See E. W. Müller: “The field-ion microscope,” Advances in Electronics and Electron
Physics, 13, 83–179 (1960). Academic Press, New York.
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whose diameter is about 1000 angstroms, is placed at the center of an evacuated
glass sphere (Fig. 6-16). The inner surface of the sphere is coated with a thin
conducting layer of fluorescent material, and a very high potential difference is
applied between the fluorescent coating and the needle.

Let’s first consider what happens when the needle is negative with respect to
the fluorescent coating. The field lines are highly concentrated at the sharp point.
The electric field can be as high as 40 million volts per centimeter. In such intense
fields, electrons are pulled out of the surface of the needle and accelerated across
the potential difference between the needle and the fluorescent layer. When they
arrive there they cause light to be emitted, just as in a television picture tube.

The electrons which arrive at a given point on the fluorescent surface are, to
an excellent approximation, those which leave the other end of the radial field
line, because the electrons will travel along the field line passing from the point
to the surface. Thus we see on the surface some kind of an image of the tip of
the needle. More precisely, we see a picture of the emissivity of the surface of the
needle—that is the ease with which electrons can leave the surface of the metal
tip. If the resolution were high enough, one could hope to resolve the positions
of the individual atoms on the tip of the needle. With electrons, this resolution
is not possible for the following reasons. First, there is quantum-mechanical
diffraction of the electron waves which blurs the image. Second, due to the
internal motions of the electrons in the metal they have a small sideways initial
velocity when they leave the needle, and this random transverse component of
the velocity causes some smearing of the image. The combination of these two
effects limits the resolution to 25 Å or so.

If, however, we reverse the polarity and introduce a small amount of helium gas
into the bulb, much higher resolutions are possible. When a helium atom collides
with the tip of the needle, the intense field there strips an electron off the helium
atom, leaving it positively charged. The helium ion is then accelerated outward
along a field line to the fluorescent screen. Since the helium ion is so much heavier
than an electron, the quantum-mechanical wavelengths are much smaller. If the
temperature is not too high, the effect of the thermal velocities is also smaller
than in the electron case. With less smearing of the image a much sharper picture
of the point is obtained. It has been possible to obtain magnifications up to
2,000,000 times with the positive ion field-emission microscope—a magnification
ten times better than is obtained with the best electron microscope.

Figure 6-17 is an example of the results which were obtained with a field-ion
microscope, using a tungsten needle. The center of a tungsten atom ionizes a
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Fig. 6-17. Image produced by a field-emission microscope. [Courtesy
of Erwin W. Müller, Research Prof. of Physics, Pennsylvania State
University.]

helium atom at a slightly different rate than the spaces between the tungsten
atoms. The pattern of spots on the fluorescent screen shows the arrangement of
the individual atoms on the tungsten tip. The reason the spots appear in rings
can be understood by visualizing a large box of balls packed in a rectangular
array, representing the atoms in the metal. If you cut an approximately spherical
section out of this box, you will see the ring pattern characteristic of the atomic
structure. The field-ion microscope provided human beings with the means of
seeing atoms for the first time. This is a remarkable achievement, considering
the simplicity of the instrument.
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7

The Electric Field in Various Circumstances
(Continued)

7-1 Methods for finding the electrostatic field

This chapter is a continuation of our consideration of the characteristics of
electric fields in various particular situations. We shall first describe some of
the more elaborate methods for solving problems with conductors. It is not
expected that these more advanced methods can be mastered at this time. Yet
it may be of interest to have some idea about the kinds of problems that can
be solved, using techniques that may be learned in more advanced courses.
Then we take up two examples in which the charge distribution is neither fixed
nor is carried by a conductor, but instead is determined by some other law of
physics.

As we found in Chapter 6, the problem of the electrostatic field is fundamen-
tally simple when the distribution of charges is specified; it requires only the
evaluation of an integral. When there are conductors present, however, compli-
cations arise because the charge distribution on the conductors is not initially
known; the charge must distribute itself on the surface of the conductor in such
a way that the conductor is an equipotential. The solution of such problems is
neither direct nor simple.

We have looked at an indirect method of solving such problems, in which we
find the equipotentials for some specified charge distribution and replace one of
them by a conducting surface. In this way we can build up a catalog of special
solutions for conductors in the shapes of spheres, planes, etc. The use of images,
described in Chapter 6, is an example of an indirect method. We shall describe
another in this chapter.

If the problem to be solved does not belong to the class of problems for which
we can construct solutions by the indirect method, we are forced to solve the
problem by a more direct method. The mathematical problem of the direct
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method is the solution of Laplace’s equation,

∇2φ = 0, (7.1)

subject to the condition that φ is a suitable constant on certain boundaries—the
surfaces of the conductors. Problems which involve the solution of a differential
field equation subject to certain boundary conditions are called boundary-value
problems. They have been the object of considerable mathematical study. In the
case of conductors having complicated shapes, there are no general analytical
methods. Even such a simple problem as that of a charged cylindrical metal can
closed at both ends—a beer can—presents formidable mathematical difficulties.
It can be solved only approximately, using numerical methods. The only general
methods of solution are numerical.

There are a few problems for which Eq. (7.1) can be solved directly. For
example, the problem of a charged conductor having the shape of an ellip-
soid of revolution can be solved exactly in terms of known special functions.
The solution for a thin disc can be obtained by letting the ellipsoid become
infinitely oblate. In a similar manner, the solution for a needle can be ob-
tained by letting the ellipsoid become infinitely prolate. However, it must be
stressed that the only direct methods of general applicability are the numerical
techniques.

Boundary-value problems can also be solved by measurements of a physical
analog. Laplace’s equation arises in many different physical situations: in steady-
state heat flow, in irrotational fluid flow, in current flow in an extended medium,
and in the deflection of an elastic membrane. It is frequently possible to set up
a physical model which is analogous to an electrical problem which we wish to
solve. By the measurement of a suitable analogous quantity on the model, the
solution to the problem of interest can be determined. An example of the analog
technique is the use of the electrolytic tank for the solution of two-dimensional
problems in electrostatics. This works because the differential equation for the
potential in a uniform conducting medium is the same as it is for a vacuum.

There are many physical situations in which the variations of the physical
fields in one direction are zero, or can be neglected in comparison with the
variations in the other two directions. Such problems are called two-dimensional;
the field depends on two coordinates only. For example, if we place a long charged
wire along the z-axis, then for points not too far from the wire the electric field
depends on x and y, but not on z; the problem is two-dimensional. Since in a
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two-dimensional problem ∂φ/∂z = 0, the equation for φ in free space is

∂2φ

∂x2 + ∂2φ

∂y2 = 0. (7.2)

Because the two-dimensional equation is comparatively simple, there is a wide
range of conditions under which it can be solved analytically. There is, in fact,
a very powerful indirect mathematical technique which depends on a theorem
from the mathematics of functions of a complex variable, and which we will now
describe.

7-2 Two-dimensional fields; functions of the complex variable

The complex variable z is defined as

z = x+ iy.

(Do not confuse z with the z-coordinate, which we ignore in the following discussion
because we assume there is no z-dependence of the fields.) Every point in x and y
then corresponds to a complex number z. We can use z as a single (complex)
variable, and with it write the usual kinds of mathematical functions F (z). For
example,

F (z) = z2,

or
F (z) = 1/z3,

or
F (z) = z ln z,

and so forth.
Given any particular F (z) we can substitute z = x+iy, and we have a function

of x and y—with real and imaginary parts. For example,

z2 = (x+ iy)2 = x2 − y2 + 2ixy. (7.3)

Any function F (z) can be written as a sum of a pure real part and a pure
imaginary part, each part a function of x and y:

F (z) = U(x, y) + iV (x, y), (7.4)
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where U(x, y) and V (x, y) are real functions. Thus from any complex function F (z)
two new functions U(x, y) and V (x, y) can be derived. For example, F (z) = z2

gives us the two functions
U(x, y) = x2 − y2, (7.5)

and
V (x, y) = 2xy. (7.6)

Now we come to a miraculous mathematical theorem which is so delightful
that we shall leave a proof of it for one of your courses in mathematics. (We
should not reveal all the mysteries of mathematics, or that subject matter would
become too dull.) It is this. For any “ordinary function” (mathematicians will
define it better) the functions U and V automatically satisfy the relations

∂U

∂x
= ∂V

∂y
, (7.7)

∂V

∂x
= −∂U

∂y
. (7.8)

It follows immediately that each of the functions U and V satisfy Laplace’s
equation:

∂2U

∂x2 + ∂2U

∂y2 = 0, (7.9)

∂2V

∂x2 + ∂2V

∂y2 = 0, (7.10)

These equations are clearly true for the functions of (7.5) and (7.6).
Thus, starting with any ordinary function, we can arrive at two functions

U(x, y) and V (x, y), which are both solutions of Laplace’s equation in two
dimensions. Each function represents a possible electrostatic potential. We can
pick any function F (z) and it should represent some electric field problem—in
fact, two problems, because U and V each represent solutions. We can write
down as many solutions as we wish—by just making up functions—then we just
have to find the problem that goes with each solution. It may sound backwards,
but it’s a possible approach.

As an example, let’s see what physics the function F (z) = z2 gives us. From
it we get the two potential functions of (7.5) and (7.6). To see what problem the
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Fig. 7-1. Two sets of orthogonal curves which can represent equipo-
tentials in a two-dimensional electrostatic field.

function U belongs to, we solve for the equipotential surfaces by setting U = A,
a constant:

x2 − y2 = A.

This is the equation of a rectangular hyperbola. For various values of A, we
get the hyperbolas shown in Fig. 7-1. When A = 0, we get the special case of
diagonal straight lines through the origin.

Such a set of equipotentials corresponds to the field at an inside right-angle
corner of a conductor. If we have two electrodes shaped like those in Fig. 7-2,
which are held at different potentials, the field near the corner marked C will
look just like the field above the origin in Fig. 7-1. The solid lines are the
equipotentials, and the broken lines at right angles correspond to lines of E.
Whereas at points or protuberances the electric field tends to be high, it tends
to be low in dents or hollows.
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C

Fig. 7-2. The field near the point C is the same as that in Fig. 7-1.

The solution we have found also corresponds to that for a hyperbola-shaped
electrode near a right-angle corner, or for two hyperbolas at suitable potentials.
You will notice that the field of Fig. 7-1 has an interesting property. The x-
component of the electric field, Ex, is given by

Ex = −∂φ
∂x

= −2x.

The electric field is proportional to the distance from the axis. This fact is used to
make devices (called quadrupole lenses) that are useful for focusing particle beams
(see Section 29-7). The desired field is usually obtained by using four hyperbola
shaped electrodes, as shown in Fig. 7-3. For the electric field lines in Fig. 7-3,
we have simply copied from Fig. 7-1 the set of broken-line curves that represent
V = constant. We have a bonus! The curves for V = constant are orthogonal to
the ones for U = constant because of the equations (7.7) and (7.8). Whenever
we choose a function F (z), we get from U and V both the equipotentials and
field lines. And you will remember that we have solved either of two problems,
depending on which set of curves we call the equipotentials.
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Fig. 7-3. The field in a quadrupole lens.

As a second example, consider the function

F (z) = √z. (7.11)
If we write

z = x+ iy = ρeiθ,

where
ρ =

√
x2 + y2

and
tan θ = y/x,

then
F (z) = ρ1/2eiθ/2

= ρ1/2
(

cos θ2 + i sin θ2

)
,

from which

F (z) =
[

(x2 + y2)1/2 + x

2

]1/2
+ i

[
(x2 + y2)1/2 − x

2

]1/2
. (7.12)

The curves for U(x, y) = A and V (x, y) = B, using U and V from Eq. (7.12),
are plotted in Fig. 7-4. Again, there are many possible situations that could be
described by these fields. One of the most interesting is the field near the edge
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Fig. 7-4. Curves of constant U(x, y) and V (x, y) from Eq. (7.12).
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Fig. 7-5. The electric field near the edge of a thin grounded plate.
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of a thin plate. If the line B = 0—to the right of the y-axis—represents a thin
charged plate, the field lines near it are given by the curves for various values
of A. The physical situation is shown in Fig. 7-5.

Further examples are
F (z) = z2/3, (7.13)

which yields the field outside a rectangular corner

F (z) = ln z, (7.14)

which yields the field for a line charge, and

F (z) = 1/z, (7.15)

which gives the field for the two-dimensional analog of an electric dipole, i.e., two
parallel line charges with opposite polarities, very close together.

We will not pursue this subject further in this course, but should emphasize
that although the complex variable technique is often powerful, it is limited to
two-dimensional problems; and also, it is an indirect method.

7-3 Plasma oscillations

We consider now some physical situations in which the field is determined
neither by fixed charges nor by charges on conducting surfaces, but by a com-
bination of two physical phenomena. In other words, the field will be governed
simultaneously by two sets of equations: (1) the equations from electrostatics
relating electric fields to charge distribution, and (2) an equation from another
part of physics that determines the positions or motions of the charges in the
presence of the field.

The first example that we will discuss is a dynamic one in which the motion
of the charges is governed by Newton’s laws. A simple example of such a
situation occurs in a plasma, which is an ionized gas consisting of ions and free
electrons distributed over a region in space. The ionosphere—an upper layer of
the atmosphere—is an example of such a plasma. The ultraviolet rays from the
sun knock electrons off the molecules of the air, creating free electrons and ions.
In such a plasma the positive ions are very much heavier than the electrons, so
we may neglect the ionic motion, in comparison to that of the electrons.

Let n0 be the density of electrons in the undisturbed, equilibrium state.
Assuming the molecules are singly ionized, this must also be the density of
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positive ions, since the plasma is electrically neutral (when undisturbed). Now
we suppose that the electrons are somehow moved from equilibrium and ask what
happens. If the density of the electrons in one region is increased, they will repel
each other and tend to return to their equilibrium positions. As the electrons
move toward their original positions they pick up kinetic energy, and instead of
coming to rest in their equilibrium configuration, they overshoot the mark. They
will oscillate back and forth. The situation is similar to what occurs in sound
waves, in which the restoring force is the gas pressure. In a plasma, the restoring
force is the electrical force on the electrons.

To simplify the discussion, we will worry only about a situation in which
the motions are all in one dimension, say x. Let us suppose that the electrons
originally at x are, at the instant t, displaced from their equilibrium positions
by a small amount s(x, t). Since the electrons have been displaced, their density
will, in general, be changed. The change in density is easily calculated. Referring
to Fig. 7-6, the electrons initially contained between the two planes a and b have
moved and are now contained between the planes a′ and b′. The number of
electrons that were between a and b is proportional to n0∆x; the same number
are now contained in the space whose width is ∆x+∆s. The density has changed
to

n = n0∆x
∆x+ ∆s = n0

1 + (∆s/∆x) . (7.16)

If the change in density is small, we can write [using the binomial expansion

x ∆x

s s + ∆s

x + s ∆x + ∆s

a b

a′ b′

Fig. 7-6. Motion in a plasma wave. The electrons at the plane a
move to a′, and those at b move to b′.
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for (1 + ε)−1]

n = n0

(
1− ∆s

∆x

)
. (7.17)

We assume that the positive ions do not move appreciably (because of the much
larger inertia), so their density remains n0. Each electron carries the charge −qe,
so the average charge density at any point is given by

ρ = −(n− n0)qe,
or

ρ = n0qe
ds

dx
(7.18)

(where we have written the differential form for ∆s/∆x).
The charge density is related to the electric field by Maxwell’s equations, in

particular,
∇ ·E = ρ

ε0
. (7.19)

If the problem is indeed one-dimensional (and if there are no other fields but the
one due to the displacements of the electrons), the electric field E has a single
component Ex. Equation (7.19), together with (7.18), gives

∂Ex
∂x

= n0qe
ε0

∂s

∂x
. (7.20)

Integrating Eq. (7.20) gives
Ex = n0qe

ε0
s+K. (7.21)

Since Ex = 0 when s = 0, the integration constant K is zero.
The force on an electron in the displaced position is

Fx = −n0q
2
e

ε0
s, (7.22)

a restoring force proportional to the displacement s of the electron. This leads
to a harmonic oscillation of the electrons. The equation of motion of a displaced
electron is

me
d2s

dt2
= −n0q

2
e

ε0
s. (7.23)
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We find that s will vary harmonically. Its time variation will be as cosωpt,
or—using the exponential notation of Vol. I—as

eiωpt. (7.24)

The frequency of oscillation ωp is determined from (7.23):

ω2
p = n0q

2
e

ε0me
, (7.25)

and is called the plasma frequency. It is a characteristic number of the plasma.
When dealing with electron charges many people prefer to express their

answers in terms of a quantity e2 defined by

e2 = q2
e

4πε0
= 2.3068× 10−28 newton·meter2. (7.26)

Using this convention, Eq. (7.25) becomes

ω2
p = 4πe2n0

me
, (7.27)

which is the form you will find in most books.
Thus we have found that a disturbance of a plasma will set up free oscillations

of the electrons about their equilibrium positions at the natural frequency ωp,
which is proportional to the square root of the density of the electrons. The
plasma electrons behave like a resonant system, such as those we described in
Chapter 23 of Vol. I.

This natural resonance of a plasma has some interesting effects. For example,
if one tries to propagate a radiowave through the ionosphere, one finds that it can
penetrate only if its frequency is higher than the plasma frequency. Otherwise the
signal is reflected back. We must use high frequencies if we wish to communicate
with a satellite in space. On the other hand, if we wish to communicate with a
radio station beyond the horizon, we must use frequencies lower than the plasma
frequency, so that the signal will be reflected back to the earth.

Another interesting example of plasma oscillations occurs in metals. In a
metal we have a contained plasma of positive ions, and free electrons. The
density n0 is very high, so ωp is also. But it should still be possible to ob-
serve the electron oscillations. Now, according to quantum mechanics, a har-
monic oscillator with a natural frequency ωp has energy levels which are sep-
arated by the energy increment ~ωp. If, then, one shoots electrons through,
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say, an aluminum foil, and makes very careful measurements of the electron
energies on the other side, one might expect to find that the electrons some-
times lose the energy ~ωp to the plasma oscillations. This does indeed happen.
It was first observed experimentally in 1936 that electrons with energies of
a few hundred to a few thousand electron volts lost energy in jumps when
scattering from or going through a thin metal foil. The effect was not under-
stood until 1953 when Bohm and Pines* showed that the observations could
be explained in terms of quantum excitations of the plasma oscillations in the
metal.

7-4 Colloidal particles in an electrolyte

We turn to another phenomenon in which the locations of charges are governed
by a potential that arises in part from the same charges. The resulting effects
influence in an important way the behavior of colloids. A colloid consists of a
suspension in water of small charged particles which, though microscopic, from
an atomic point of view are still very large. If the colloidal particles were not
charged, they would tend to coagulate into large lumps; but because of their
charge, they repel each other and remain in suspension.

Now if there is also some salt dissolved in the water, it will be dissociated
into positive and negative ions. (Such a solution of ions is called an electrolyte.)
The negative ions are attracted to the colloid particles (assuming their charge
is positive) and the positive ions are repelled. We will determine how the ions
which surround such a colloidal particle are distributed in space.

To keep the ideas simple, we will again solve only a one-dimensional case. If we
think of a colloidal particle as a sphere having a very large radius—on an atomic
scale!—we can then treat a small part of its surface as a plane. (Whenever one is
trying to understand a new phenomenon it is a good idea to take a somewhat
oversimplified model; then, having understood the problem with that model, one
is better able to proceed to tackle the more exact calculation.)

We suppose that the distribution of ions generates a charge density ρ(x), and
an electrical potential φ, related by the electrostatic law ∇2φ = −ρ/ε0 or, for
fields that vary in only one dimension, by

d2φ

dx2 = − ρ

ε0
. (7.28)

* For some recent work and a bibliography see C. J. Powell and J. B. Swann, Phys. Rev.
115, 869 (1959).
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Now supposing there were such a potential φ(x), how would the ions distribute
themselves in it? This we can determine by the principles of statistical mechanics.
Our problem then is to determine φ so that the resulting charge density from
statistical mechanics also satisfies (7.28).

According to statistical mechanics (see Chapter 40, Vol. I), particles in thermal
equilibrium in a force field are distributed in such a way that the density n of
particles at the position x is given by

n(x) = n0e
−U(x)/kT , (7.29)

where U(x) is the potential energy, k is Boltzmann’s constant, and T is the
absolute temperature.

We assume that the ions carry one electronic charge, positive or negative. At
the distance x from the surface of a colloidal particle, a positive ion will have
potential energy qeφ(x), so that

U(x) = qeφ(x).

The density of positive ions, n+, is then

n+(x) = n0e
−qeφ(x)/kT .

Similarly, the density of negative ions is

n−(x) = n0e
+qeφ(x)/kT .

The total charge density is

ρ = qen+ − qen−,
or

ρ = qen0(e−qeφ/kT − e+qeφ/kT ). (7.30)

Combining this with Eq. (7.28), we find that the potential φ must satisfy

d2φ

dx2 = −qen0

ε0
(e−qeφ/kT − e+qeφ/kT ). (7.31)

This equation is readily solved in general [multiply both sides by 2(dφ/dx), and
integrate with respect to x], but to keep the problem as simple as possible, we
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will consider here only the limiting case in which the potentials are small or the
temperature T is high. The case where φ is small corresponds to a dilute solution.
For these cases the exponent is small, and we can approximate

e±qeφ/kT = 1± qeφ

kT
. (7.32)

Equation (7.31) then gives
d2φ

dx2 = +2n0q
2
e

ε0kT
φ(x). (7.33)

Notice that this time the sign on the right is positive. The solutions for φ are
not oscillatory, but exponential.

The general solution of Eq. (7.33) is

φ = Ae−x/D +Be+x/D, (7.34)
with

D2 = ε0kT

2n0q2
e

. (7.35)

The constants A and B must be determined from the conditions of the problem.
In our case, B must be zero; otherwise the potential would go to infinity for
large x. So we have that

φ = Ae−x/D, (7.36)
in which A is the potential at x = 0, the surface of the colloidal particle.

The potential decreases by a factor 1/e each time the distance increases by D,
as shown in the graph of Fig. 7-7. The number D is called the Debye length, and
is a measure of the thickness of the ion sheath that surrounds a large charged
particle in an electrolyte. Equation (7.35) says that the sheath gets thinner with
increasing concentration of the ions (n0) or with decreasing temperature.

The constant A in Eq. (7.36) is easily obtained if we know the surface charge
density σ on the colloid particle. We know that

En = Ex(0) = σ

ε0
. (7.37)

But E is also the gradient of φ:

Ex(0) = − ∂φ

∂x

∣∣∣∣
0

= +A

D
, (7.38)
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Fig. 7-7. The variation of the potential near the surface of a colloidal
particle. D is the Debye length.

from which we get

A = σD

ε0
. (7.39)

Using this result in (7.36), we find (by taking x = 0) that the potential of the
colloidal particle is

φ(0) = σD

ε0
. (7.40)

You will notice that this potential is the same as the potential difference across a
condenser with a plate spacing D and a surface charge density σ.

We have said that the colloidal particles are kept apart by their electrical
repulsion. But now we see that the field a little way from the surface of a particle
is reduced by the ion sheath that collects around it. If the sheaths get thin
enough, the particles have a good chance of knocking against each other. They
will then stick, and the colloid will coagulate and precipitate out of the liquid.
From our analysis, we understand why adding enough salt to a colloid should
cause it to precipitate out. The process is called “salting out a colloid.”
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Another interesting example is the effect that a salt solution has on protein
molecules. A protein molecule is a long, complicated, and flexible chain of amino
acids. The molecule has various charges on it, and it sometimes happens that
there is a net charge, say negative, which is distributed along the chain. Because
of mutual repulsion of the negative charges, the protein chain is kept stretched
out. Also, if there are other similar chain molecules present in the solution,
they will be kept apart by the same repulsive effects. We can, therefore, have
a suspension of chain molecules in a liquid. But if we add salt to the liquid
we change the properties of the suspension. As salt is added to the solution,
decreasing the Debye distance, the chain molecules can approach one another,
and can also coil up. If enough salt is added to the solution, the chain molecules
will precipitate out of the solution. There are many chemical effects of this kind
that can be understood in terms of electrical forces.

7-5 The electrostatic field of a grid

As our last example, we would like to describe another interesting property of
electric fields. It is one which is made use of in the design of electrical instruments,
in the construction of vacuum tubes, and for other purposes. This is the character
of the electric field near a grid of charged wires. To make the problem as simple
as possible, let us consider an array of parallel wires lying in a plane, the wires
being infinitely long and with a uniform spacing between them.

If we look at the field a large distance above the plane of the wires, we see
a constant electric field, just as though the charge were uniformly spread over
a plane. As we approach the grid of wires, the field begins to deviate from the
uniform field we found at large distances from the grid. We would like to estimate
how close to the grid we have to be in order to see appreciable variations in
the potential. Figure 7-8 shows a rough sketch of the equipotentials at various
distances from the grid. The closer we get to the grid, the larger the variations.
As we travel parallel to the grid, we observe that the field fluctuates in a periodic
manner.

Now we have seen (Chapter 50, Vol. I) that any periodic quantity can be
expressed as a sum of sine waves (Fourier’s theorem). Let’s see if we can find a
suitable harmonic function that satisfies our field equations.

If the wires lie in the xy-plane and run parallel to the y-axis, then we might
try terms like

φ(x, z) = Fn(z) cos 2πnx
a

, (7.41)
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Fig. 7-8. Equipotential surfaces above a uniform grid of charged wires.

where a is the spacing of the wires and n is the harmonic number. (We have
assumed long wires, so there should be no variation with y.) A complete solution
would be made up of a sum of such terms for n = 1, 2, 3, . . . .

If this is to be a valid potential, it must satisfy Laplace’s equation in the
region above the wires (where there are no charges). That is,

∂2φ

∂x2 + ∂2φ

∂z2 = 0.

Trying this equation on the φ in (7.41), we find that

− 4π2n2

a2 Fn(z) cos 2πnx
a

+ d2Fn
dz2 cos 2πnx

a
= 0, (7.42)

or that Fn(z) must satisfy
d2Fn
dz2 = 4πn2

a2 Fn. (7.43)

So we must have
Fn = Ane

−z/z0 , (7.44)
where

z0 = a

2πn. (7.45)

We have found that if there is a Fourier component of the field of harmonic n, that
component will decrease exponentially with a characteristic distance z0 = a/2πn.
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For the first harmonic (n = 1), the amplitude falls by the factor e−2π (a large
decrease) each time we increase z by one grid spacing a. The other harmonics fall
off even more rapidly as we move away from the grid. We see that if we are only
a few times the distance a away from the grid, the field is very nearly uniform,
i.e., the oscillating terms are small. There would, of course, always remain the
“zero harmonic” field

φ0 = −E0z

to give the uniform field at large z. For a complete solution, we would combine
this term with a sum of terms like (7.41) with Fn from (7.44). The coefficients An
would be adjusted so that the total sum would, when differentiated, give an
electric field that would fit the charge density λ of the grid wires.

The method we have just developed can be used to explain why electrostatic
shielding by means of a screen is often just as good as with a solid metal sheet.
Except within a distance from the screen a few times the spacing of the screen
wires, the fields inside a closed screen are zero. We see why copper screen—
lighter and cheaper than copper sheet—is often used to shield sensitive electrical
equipment from external disturbing fields.
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8

Electrostatic Energy

Review: Chapter 4, Vol. I, Conservation of Energy
Chapters 13 and 14, Vol. I, Work and Potential Energy

8-1 The electrostatic energy of charges. A uniform sphere

In the study of mechanics, one of the most interesting and useful discoveries
was the law of the conservation of energy. The expressions for the kinetic and
potential energies of a mechanical system helped us to discover connections
between the states of a system at two different times without having to look into
the details of what was occurring in between. We wish now to consider the energy
of electrostatic systems. In electricity also the principle of the conservation of
energy will be useful for discovering a number of interesting things.

The law of the energy of interaction in electrostatics is very simple; we have,
in fact, already discussed it. Suppose we have two charges q1 and q2 separated by
the distance r12. There is some energy in the system, because a certain amount
of work was required to bring the charges together. We have already calculated
the work done in bringing two charges together from a large distance. It is

q1q2

4πε0r12
. (8.1)

We also know, from the principle of superposition, that if we have many charges
present, the total force on any charge is the sum of the forces from the others. It
follows, therefore, that the total energy of a system of a number of charges is the
sum of terms due to the mutual interaction of each pair of charges. If qi and qj
are any two of the charges and rij is the distance between them (Fig. 8-1), the
energy of that particular pair is

qiqj
4πε0rij

. (8.2)
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qi

qj

ri j

Fig. 8-1. The electrostatic energy of a system of particles is the sum
of the electrostatic energy of each pair.

The total electrostatic energy U is the sum of the energies of all possible pairs of
charges:

U =
∑

all pairs

qiqj
4πε0rij

. (8.3)

If we have a distribution of charge specified by a charge density ρ, the sum of
Eq. (8.3) is, of course, to be replaced by an integral.

We shall concern ourselves with two aspects of this energy. One is the
application of the concept of energy to electrostatic problems; the other is the
evaluation of the energy in different ways. Sometimes it is easier to compute the
work done for some special case than to evaluate the sum in Eq. (8.3), or the
corresponding integral. As an example, let us calculate the energy required to
assemble a sphere of charge with a uniform charge density. The energy is just
the work done in gathering the charges together from infinity.

Imagine that we assemble the sphere by building up a succession of thin
spherical layers of infinitesimal thickness. At each stage of the process, we gather
a small amount of charge and put it in a thin layer from r to r+ dr. We continue
the process until we arrive at the final radius a (Fig. 8-2). If Qr is the charge of
the sphere when it has been built up to the radius r, the work done in bringing
a charge dQ to it is

dU = Qr dQ

4πε0r
. (8.4)
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dr

r

a

Fig. 8-2. The energy of a uniform sphere of charge can be computed
by imagining that it is assembled from successive spherical shells.

If the density of charge in the sphere is ρ, the charge Qr is

Qr = ρ · 4
3 πr

3,

and the charge dQ is
dQ = ρ · 4πr2 dr.

Equation (8.4) becomes

dU = 4πρ2r4 dr

3ε0
. (8.5)

The total energy required to assemble the sphere is the integral of dU from r = 0
to r = a, or

U = 4πρ2a5

15ε0
. (8.6)

Or if we wish to express the result in terms of the total charge Q of the sphere,

U = 3
5

Q2

4πε0a
. (8.7)

The energy is proportional to the square of the total charge and inversely propor-
tional to the radius. We can also interpret Eq. (8.7) as saying that the average
of (1/rij) for all pairs of points in the sphere is 6/5a.
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8-2 The energy of a condenser. Forces on charged conductors

We consider now the energy required to charge a condenser. If the charge Q
has been taken from one of the conductors of a condenser and placed on the
other, the potential difference between them is

V = Q

C
, (8.8)

where C is the capacity of the condenser. How much work is done in charging
the condenser? Proceeding as for the sphere, we imagine that the condenser
has been charged by transferring charge from one plate to the other in small
increments dQ. The work required to transfer the charge dQ is

dU = V dQ.

Taking V from Eq. (8.8), we write

dU = QdQ

C
.

Or integrating from zero charge to the final charge Q, we have

U = 1
2
Q2

C
. (8.9)

This energy can also be written as

U = 1
2CV

2. (8.10)

Recalling that the capacity of a conducting sphere (relative to infinity) is

Csphere = 4πε0a,

we can immediately get from Eq. (8.9) the energy of a charged sphere,

U = 1
2

Q2

4πε0a
. (8.11)

This, of course, is also the energy of a thin spherical shell of total charge Q and
is just 5/6 of the energy of a uniformly charged sphere, Eq. (8.7).

8-4



We now consider applications of the idea of electrostatic energy. Consider
the following questions: What is the force between the plates of a condenser?
Or what is the torque about some axis of a charged conductor in the presence
of another with opposite charge? Such questions are easily answered by using
our result Eq. (8.9) for electrostatic energy of a condenser, together with the
principle of virtual work (Chapters 4, 13, and 14 of Vol. I).

Let’s use this method for determining the force between the plates of a
parallel-plate condenser. If we imagine that the spacing of the plates is increased
by the small amount ∆z, then the mechanical work done from the outside in
moving the plates would be

∆W = F ∆z, (8.12)

where F is the force between the plates. This work must be equal to the change
in the electrostatic energy of the condenser.

By Eq. (8.9), the energy of the condenser was originally

U = 1
2
Q2

C
.

The change in energy (if we do not let the charge change) is

∆U = 1
2 Q

2 ∆
(

1
C

)
. (8.13)

Equating (8.12) and (8.13), we have

F ∆z = Q2

2 ∆
(

1
C

)
. (8.14)

This can also be written as

F ∆z = − Q2

2C2 ∆C. (8.15)

The force, of course, results from the attraction of the charges on the plates, but
we see that we do not have to worry in detail about how they are distributed;
everything we need is taken care of in the capacity C.

It is easy to see how the idea is extended to conductors of any shape, and for
other components of the force. In Eq. (8.14), we replace F by the component we
are looking for, and we replace ∆z by a small displacement in the corresponding
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direction. Or if we have an electrode with a pivot and we want to know the
torque τ , we write the virtual work as

∆W = τ ∆θ,

where ∆θ is a small angular displacement. Of course, ∆(1/C) must be the change
in 1/C which corresponds to ∆θ. We could, in this way, find the torque on the
movable plates in a variable condenser of the type shown in Fig. 8-3.

φ1

φ2

Fig. 8-3. What is the torque on a variable capacitor?

Returning to the special case of a parallel-plate condenser, we can use the
formula we derived in Chapter 6 for the capacity:

1
C

= d

ε0A
, (8.16)

where A is the area of each plate. If we increase the separation by ∆z,

∆
(

1
C

)
= ∆z
ε0A

.

From Eq. (8.14) we get that the force between the plates is

F = Q2

2ε0A
. (8.17)

Let’s look at Eq. (8.17) a little more closely and see if we can tell how the
force arises. If for the charge on one plate we write

Q = σA,
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Eq. (8.17) can be rewritten as

F = 1
2 Q

σ

ε0
.

Or, since the electric field between the plates is

E0 = σ

ε0
,

then
F = 1

2QE0. (8.18)

One would immediately guess that the force acting on one plate is the charge Q
on the plate times the field acting on the charge. But we have a surprising factor
of one-half. The reason is that E0 is not the field at the charges. If we imagine
that the charge at the surface of the plate occupies a thin layer, as indicated in
Fig. 8-4, the field will vary from zero at the inner boundary of the layer to E0 in
the space outside of the plate. The average field acting on the surface charges
is E0/2. That is why the factor one-half is in Eq. (8.18).

CONDUCTING
PLATE

LAYER OF
SURFACE
CHARGE σ

E

|E| E0

Fig. 8-4. The field at the surface of a conductor varies from zero
to E0 = σ/ε0, as one passes through the layer of surface charge.
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You should notice that in computing the virtual work we have assumed that
the charge on the condenser was constant—that it was not electrically connected
to other objects, and so the total charge could not change.

Suppose we had imagined that the condenser was held at a constant potential
difference as we made the virtual displacement. Then we should have taken

U = 1
2CV

2

and in place of Eq. (8.15) we would have had

F∆z = 1
2V

2 ∆C,

which gives a force equal in magnitude to the one in Eq. (8.15) (because V = Q/C),
but with the opposite sign! Surely the force between the condenser plates doesn’t
reverse in sign as we disconnect it from its charging source. Also, we know
that two plates with opposite electrical charges must attract. The principle of
virtual work has been incorrectly applied in the second case—we have not taken
into account the virtual work done on the charging source. That is, to keep
the potential constant at V as the capacity changes, a charge V ∆C must be
supplied by a source of charge. But this charge is supplied at a potential V , so
the work done by the electrical system which keeps the potential constant is
V 2 ∆C. The mechanical work F ∆z plus this electrical work V 2 ∆C together
make up the change in the total energy 1

2V
2 ∆C of the condenser. Therefore

F ∆z is − 1
2V

2 ∆C, as before.

8-3 The electrostatic energy of an ionic crystal

We now consider an application of the concept of electrostatic energy in
atomic physics. We cannot easily measure the forces between atoms, but we are
often interested in the energy differences between one atomic arrangement and
another, as, for example, the energy of a chemical change. Since atomic forces are
basically electrical, chemical energies are in large part just electrostatic energies.

Let’s consider, for example, the electrostatic energy of an ionic lattice. An
ionic crystal like NaCl consists of positive and negative ions which can be thought
of as rigid spheres. They attract electrically until they begin to touch; then there is
a repulsive force which goes up very rapidly if we try to push them closer together.

For our first approximation, therefore, we imagine a set of rigid spheres that
represent the atoms in a salt crystal. The structure of the lattice has been
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Na Cl

2.81 Å

Fig. 8-5. Cross section of a salt crystal on an atomic scale. The
checkerboard arrangement of Na and Cl ions is the same in the two
cross sections perpendicular to the one shown. (See Vol. I, Fig. 1-7.)

determined by x-ray diffraction. It is a cubic lattice—like a three-dimensional
checkerboard. Figure 8-5 shows a cross-sectional view. The spacing of the ions is
2.81 Å (= 2.81× 10−8 cm).

If our picture of this system is correct, we should be able to check it by
asking the following question: How much energy will it take to pull all these
ions apart—that is, to separate the crystal completely into ions? This energy
should be equal to the heat of vaporization of NaCl plus the energy required to
dissociate the molecules into ions. This total energy to separate NaCl to ions
is determined experimentally to be 7.92 electron volts per molecule. Using the
conversion

1 eV = 1.602× 10−19 joule,
and Avogadro’s number for the number of molecules in a mole,

N0 = 6.02× 1023,

the energy of dissociation can also be given as

W = 7.64× 105 joules/mole.

Physical chemists prefer for an energy unit the kilocalorie, which is 4190 joules;
so that 1 eV per molecule is 23 kilocalories per mole. A chemist would then say
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that the dissociation energy of NaCl is

W = 183 kcal/mole.

Can we obtain this chemical energy theoretically by computing how much
work it would take to pull apart the crystal? According to our theory, this work is
the sum of the potential energies of all the pairs of ions. The easiest way to figure
out this sum is to pick out a particular ion and compute its potential energy with
each of the other ions. That will give us twice the energy per ion, because the
energy belongs to the pairs of charges. If we want the energy to be associated
with one particular ion, we should take half the sum. But we really want the
energy per molecule, which contains two ions, so that the sum we compute will
give directly the energy per molecule.

The energy of an ion with one of its nearest neighbors is e2/a, where e2 =
q2
e/4πε0 and a is the center-to-center spacing between ions. (We are considering
monovalent ions.) This energy is 5.12 eV, which we already see is going to give
us a result of the correct order of magnitude. But it is still a long way from the
infinite sum of terms we need.

Let’s begin by summing all the terms from the ions along a straight line.
Considering that the ion marked Na in Fig. 8-5 is our special ion, we shall consider
first those ions on a horizontal line with it. There are two nearest Cl ions with
negative charges, each at the distance a. Then there are two positive ions at the
distance 2a, etc. Calling the energy of this sum U1, we write

U1 = e2

a

(
−2

1 + 2
2 −

2
3 + 2

4 ∓ · · ·
)

= −2e2

a

(
1− 1

2 + 1
3 −

1
4 ± · · ·

)
. (8.19)

The series converges slowly, so it is difficult to evaluate numerically, but it is
known to be equal to ln 2. So

U1 = −2e2

a
ln 2 = −1.386 e

2

a
. (8.20)

Now consider the next adjacent line of ions above. The nearest is negative
and at the distance a. Then there are two positives at the distance

√
2 a. The
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next pair are at the distance
√

5 a, the next at
√

10 a, and so on. So for the whole
line we get the series

e2

a

(
−1

1 + 2√
2
− 2√

5
+ 2√

10
∓ · · ·

)
. (8.21)

There are four such lines: above, below, in front, and in back. Then there are
the four lines which are the nearest lines on diagonals, and on and on.

If you work patiently through for all the lines, and then take the sum, you
find that the grand total is

U = −1.747 e
2

a
,

which is just somewhat more than what we obtained in (8.20) for the first line.
Using e2/a = 5.12 eV, we get

U = −8.94 eV.

Our answer is about 10% above the experimentally observed energy. It shows
that our idea that the whole lattice is held together by electrical Coulomb forces
is fundamentally correct. This is the first time that we have obtained a specific
property of a macroscopic substance from a knowledge of atomic physics. We
will do much more later. The subject that tries to understand the behavior of
bulk matter in terms of the laws of atomic behavior is called solid-state physics.

Now what about the error in our calculation? Why is it not exactly right?
It is because of the repulsion between the ions at close distances. They are not
perfectly rigid spheres, so when they are close together they are partly squashed.
They are not very soft, so they squash only a little bit. Some energy, however,
is used in deforming them, and when the ions are pulled apart this energy is
released. The actual energy needed to pull the ions apart is a little less than the
energy that we calculated; the repulsion helps in overcoming the electrostatic
attraction.

Is there any way we can make an allowance for this contribution? We could
if we knew the law of the repulsive force. We are not ready to analyze the
details of this repulsive mechanism, but we can get some idea of its characteristics
from some large-scale measurements. From a measurement of the compressibility
of the whole crystal, it is possible to obtain a quantitative idea of the law of
repulsion between the ions and therefore of its contribution to the energy. In this
way it has been found that this contribution must be 1/9.4 of the contribution
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from the electrostatic attraction and, of course, of opposite sign. If we subtract
this contribution from the pure electrostatic energy, we obtain 7.99 eV for the
dissociation energy per molecule. It is much closer to the observed result of
7.92 eV, but still not in perfect agreement. There is one more thing we haven’t
taken into account: we have made no allowance for the kinetic energy of the
crystal vibrations. If a correction is made for this effect, very good agreement
with the experimental number is obtained. The ideas are then correct; the major
contribution to the energy of a crystal like NaCl is electrostatic.

8-4 Electrostatic energy in nuclei

We will now take up another example of electrostatic energy in atomic physics,
the electrical energy of atomic nuclei. Before we do this we will have to discuss
some properties of the main forces (called nuclear forces) that hold the protons and
neutrons together in a nucleus. In the early days of the discovery of nuclei—and
of the neutrons and protons that make them up—it was hoped that the law of the
strong, nonelectrical part of the force between, say, a proton and another proton
would have some simple law, like the inverse square law of electricity. For once one
had determined this law of force, and the corresponding ones between a proton and
a neutron, and a neutron and a neutron, it would be possible to describe theoret-
ically the complete behavior of these particles in nuclei. Therefore a big program
was started for the study of the scattering of protons, in the hope of finding the
law of force between them; but after thirty years of effort, nothing simple has
emerged. A considerable knowledge of the force between proton and proton has
been accumulated, but we find that the force is as complicated as it can possibly be.

What we mean by “as complicated as it can be” is that the force depends on
as many things as it possibly can.

First, the force is not a simple function of the distance between the two
protons. At large distances there is an attraction, but at closer distances there is
a repulsion. The distance dependence is a complicated function, still imperfectly
known.

Second, the force depends on the orientation of the protons’ spin. The protons
have a spin, and any two interacting protons may be spinning with their angular
momenta in the same direction or in opposite directions. And the force is different
when the spins are parallel from what it is when they are antiparallel, as in (a)
and (b) of Fig. 8-6. The difference is quite large; it is not a small effect.
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c d

e f

Fig. 8-6. The force between two protons depends on every possible
parameter.

Third, the force is considerably different when the separation of the two
protons is in the direction parallel to their spins, as in (c) and (d) of Fig. 8-6,
than it is when the separation is in a direction perpendicular to the spins, as in
(a) and (b).

Fourth, the force depends, as it does in magnetism, on the velocity of the
protons, only much more strongly than in magnetism. And this velocity-dependent
force is not a relativistic effect; it is strong even at speeds much less than the
speed of light. Furthermore, this part of the force depends on other things besides
the magnitude of the velocity. For instance, when a proton is moving near another
proton, the force is different when the orbital motion has the same direction of
rotation as the spin, as in (e) of Fig. 8-6, than when it has the opposite direction
of rotation, as in (f). This is called the “spin orbit” part of the force.

The force between a proton and a neutron and between a neutron and a
neutron are also equally complicated. To this day we do not know the machinery
behind these forces—that is to say, any simple way of understanding them.

There is, however, one important way in which the nucleon forces are simpler
than they could be. That is that the nuclear force between two neutrons is the
same as the force between a proton and a neutron, which is the same as the
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force between two protons! If, in any nuclear situation, we replace a proton
by a neutron (or vice versa), the nuclear interactions are not changed. The
“fundamental reason” for this equality is not known, but it is an example of an
important principle that can be extended also to the interaction laws of other
strongly interacting particles—such as the π-mesons and the “strange” particles.

This fact is nicely illustrated by the locations of the energy levels in similar
nuclei. Consider a nucleus like B11 (boron-eleven), which is composed of five
protons and six neutrons. In the nucleus the eleven particles interact with one
another in a most complicated dance. Now, there is one configuration of all the
possible interactions which has the lowest possible energy; this is the normal
state of the nucleus, and is called the ground state. If the nucleus is disturbed
(for example, by being struck by a high-energy proton or other particle) it can be
put into any number of other configurations, called excited states, each of which
will have a characteristic energy that is higher than that of the ground state. In
nuclear physics research, such as is carried on with Van de Graaff generator (for
example, in Caltech’s Kellogg and Sloan Laboratories), the energies and other
properties of these excited states are determined by experiment. The energies of
the fifteen lowest known excited states of B11 are shown in a one-dimensional
graph on the left half of Fig. 8-7. The lowest horizontal line represents the ground
state. The first excited state has an energy 2.14 MeV higher than the ground
state, the next an energy 4.46 MeV higher than the ground state, and so on.
The study of nuclear physics attempts to find an explanation for this rather
complicated pattern of energies; there is as yet, however, no complete general
theory of such nuclear energy levels.

If we replace one of the neutrons in B11 with a proton, we have the nucleus of
an isotope of carbon, C11. The energies of the lowest sixteen excited states of C11

have also been measured; they are shown in the right half of Fig. 8-7. (The broken
lines indicate levels for which the experimental information is questionable.)

Looking at Fig. 8-7, we see a striking similarity between the pattern of the
energy levels in the two nuclei. The first excited states are about 2 MeV above
the ground states. There is a large gap of about 2.3 MeV to the second excited
state, then a small jump of only 0.5 MeV to the third level. Again, between
the fourth and fifth levels, a big jump; but between the fifth and sixth a tiny
separation of the order of 0.1 MeV. And so on. After about the tenth level, the
correspondence seems to become lost, but can still be seen if the levels are labeled
with their other defining characteristics—for instance, their angular momentum
and what they do to lose their extra energy.
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Fig. 8-7. The energy levels of B11 and C11 (energies in MeV). The
ground state of C11 is 1.982 MeV higher than that of B11.

The striking similarity of the pattern of the energy levels of B11 and C11 is
surely not just a coincidence. It must reveal some physical law. It shows, in fact,
that even in the complicated situation in a nucleus, replacing a neutron by a
proton makes very little change. This can mean only that the neutron-neutron
and proton-proton forces must be nearly identical. Only then would we expect
the nuclear configurations with five protons and six neutrons to be the same as
with six protons and five neutrons.

Notice that the properties of these two nuclei tell us nothing about the
neutron-proton force; there are the same number of neutron-proton combinations
in both nuclei. But if we compare two other nuclei, such as C14, which has six
protons and eight neutrons, with N14, which has seven of each, we find a similar
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correspondence of energy levels. So we can conclude that the p-p, n-n, and p-n
forces are identical in all their complexities. There is an unexpected principle in
the laws of nuclear forces. Even though the force between each pair of nuclear
particles is very complicated, the force between the three possible different pairs
is the same.

But there are some small differences. The levels do not correspond exactly;
also, the ground state of C11 has an absolute energy (its mass) which is higher
than the ground state of B11 by 1.982 MeV. All the other levels are also higher
in absolute energy by this same amount. So the forces are not exactly equal. But
we know very well that the complete forces are not exactly equal; there is an
electrical force between two protons because each has a positive charge, while
between two neutrons there is no such electrical force. Can we perhaps explain
the differences between B11 and C11 by the fact that the electrical interaction
of the protons is different in the two cases? Perhaps even the remaining minor
differences in the levels are caused by electrical effects? Since the nuclear forces
are so much stronger than the electrical force, electrical effects would have only
a small perturbing effect on the energies of the levels.

In order to check this idea, or rather to find out what the consequences of this
idea are, we first consider the difference in the ground-state energies of the two
nuclei. To take a very simple model, we suppose that the nuclei are spheres of
radius r (to be determined), containing Z protons. If we consider that a nucleus
is like a sphere with uniform charge density, we would expect the electrostatic
energy (from Eq. 8.7) to be

U = 3
5

(Zqe)2

4πε0r
. (8.22)

where qe is the elementary charge of the proton. Since Z is five for B11 and six
for C11, their electrostatic energies would be different.

With such a small number of protons, however, Eq. (8.22) is not quite correct.
If we compute the electrical energy between all pairs of protons, considered as
points which we assume to be nearly uniformly distributed throughout the sphere,
we find that in Eq. (8.22) the quantity Z2 should be replaced by Z(Z − 1), so
the energy is

U = 3
5
Z(Z − 1)q2

e

4πε0r
= 3

5
Z(Z − 1)e2

r
. (8.23)

If we knew the nuclear radius r, we could use (8.23) to find the electrostatic
energy difference between B11 and C11. But let’s do the opposite; let’s instead
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use the observed energy difference to compute the radius, assuming that the
energy difference is all electrostatic in origin.

That is, however, not quite right. The energy difference of 1.982 MeV between
the ground states of B11 and C11 includes the rest energies—that is, the en-
ergy mc2—of all the particles. In going from B11 to C11, we replace a neutron by
a proton and an electron, which have less mass. So part of the energy difference
is the difference in the rest energies of a neutron and that of a proton plus an
electron, which is 0.784 MeV. The difference, to be accounted for by electrostatic
energy, is thus more than 1.982 MeV; it is

1.982 MeV + 0.784 MeV = 2.766 MeV.

Using this energy in Eq. (8.23), for the radius of either B11 or C11 we find

r = 3.12× 10−13 cm. (8.24)

Does this number have any meaning? To see whether it does, we should
compare it with some other determination of the radius of these nuclei. For
example, we can make another measurement of the radius of a nucleus by seeing
how it scatters fast particles. From such measurements it has been found, in fact,
that the density of matter in all nuclei is nearly the same, i.e., their volumes are
proportional to the number of particles they contain. If we let A be the number
of protons and neutrons in a nucleus (a number very nearly proportional to its
mass), it is found that its radius is given by

r = A1/3r0, (8.25)
where

r0 = 1.2× 10−13 cm. (8.26)

From these measurements we find that the radius of a B11 (or a C11) nucleus
is expected to be

r = (11)1/3(1.2× 10−13) cm = 2.7× 10−13 cm.

Comparing this result with (8.24), we see that our assumptions that the energy
difference between B11 and C11 is electrostatic is fairly good; the discrepancy is
only about 15% (not bad for our first nuclear computation!).

The reason for the discrepancy is probably the following. According to the
current understanding of nuclei, an even number of nuclear particles—in the case
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of B11, five neutrons together with five protons—makes a kind of core; when one
more particle is added to this core, it revolves around on the outside to make a
new spherical nucleus, rather than being absorbed. If this is so, we should have
taken a different electrostatic energy for the additional proton. We should have
taken the excess energy of C11 over B11 to be just

ZBq
2
e

4πε0r

which is the energy needed to add one more proton to the outside of the core.
This number is just 5/6 of what Eq. (8.23) predicts, so the new prediction for the
radius is 5/6 of (8.24), which is in much closer agreement with what is directly
measured.

We can draw two conclusions from this agreement. One is that the electrical
laws appear to be working at dimensions as small as 10−13 cm. The other is that
we have verified the remarkable coincidence that the nonelectrical part of the
forces between proton and proton, neutron and neutron, and proton and neutron
are all equal.

8-5 Energy in the electrostatic field

We now consider other methods of calculating electrostatic energy. They
can all be derived from the basic relation Eq. (8.3), the sum, over all pairs of
charges, of the mutual energies of each charge-pair. First we wish to write an
expression for the energy of a charge distribution. As usual, we consider that
each volume element dV contains the element of charge ρ dV . Then Eq. (8.3)
should be written

U = 1
2

∫
all

space

ρ(1)ρ(2)
4πε0r12

dV1dV2. (8.27)

Notice the factor 1
2 , which is introduced because in the double integral over

dV1 and dV2 we have counted all pairs of charge elements twice. (There is no
convenient way of writing an integral that keeps track of the pairs so that each
pair is counted only once.) Next we notice that the integral over dV2 in (8.27) is
just the potential at (1). That is,∫

ρ(2)
4πε0r12

dV2 = φ(1),
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so that (8.27) can be written as

U = 1
2

∫
ρ(1)φ(1) dV1.

Or, since the point (2) no longer appears, we can simply write

U = 1
2

∫
ρφ dV. (8.28)

This equation can be interpreted as follows. The potential energy of the
charge ρ dV is the product of this charge and the potential at the same point.
The total energy is therefore the integral over φρ dV . But there is again the
factor 1

2 . It is still required because we are counting energies twice. The mutual
energies of two charges is the charge of one times the potential at it due to the
other. Or, it can be taken as the second charge times the potential at it from
the first. Thus for two point charges we would write

U = q1φ(1) = q1
q2

4πε0r12
or

U = q2φ(2) = q2
q1

4πε0r12
.

Notice that we could also write

U = 1
2 [q1φ(1) + q2φ(2)]. (8.29)

The integral in (8.28) corresponds to the sum of both terms in the brackets
of (8.29). That is why we need the factor 1

2 .
An interesting question is: Where is the electrostatic energy located? One

might also ask: Who cares? What is the meaning of such a question? If there is
a pair of interacting charges, the combination has a certain energy. Do we need
to say that the energy is located at one of the charges or the other, or at both,
or in between? These questions may not make sense because we really know only
that the total energy is conserved. The idea that the energy is located somewhere
is not necessary.

Yet suppose that it did make sense to say, in general, that energy is located at a
certain place, as it does for heat energy. We might then extend our principle of the
conservation of energy with the idea that if the energy in a given volume changes,
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we should be able to account for the change by the flow of energy into or out of that
volume. You realize that our early statement of the principle of the conservation of
energy is still perfectly all right if some energy disappears at one place and appears
somewhere else far away without anything passing (that is, without any special
phenomena occurring) in the space between. We are, therefore, now discussing an
extension of the idea of the conservation of energy. We might call it a principle of
the local conservation of energy. Such a principle would say that the energy in any
given volume changes only by the amount that flows into or out of the volume. It
is indeed possible that energy is conserved locally in such a way. If it is, we would
have a much more detailed law than the simple statement of the conservation of
total energy. It does turn out that in nature energy is conserved locally. We can
find formulas for where the energy is located and how it travels from place to place.

There is also a physical reason why it is imperative that we be able to say
where energy is located. According to the theory of gravitation, all mass is a
source of gravitational attraction. We also know, by E = mc2, that mass and
energy are equivalent. All energy is, therefore, a source of gravitational force.
If we could not locate the energy, we could not locate all the mass. We would
not be able to say where the sources of the gravitational field are located. The
theory of gravitation would be incomplete.

If we restrict ourselves to electrostatics there is really no way to tell where the
energy is located. The complete Maxwell equations of electrodynamics give us
much more information (although even then the answer is, strictly speaking, not
unique.) We will therefore discuss this question in detail again in a later chapter.
We will give you now only the result for the particular case of electrostatics. The
energy is located in space, where the electric field is. This seems reasonable
because we know that when charges are accelerated they radiate electric fields.
We would like to say that when light or radiowaves travel from one point to
another, they carry their energy with them. But there are no charges in the
waves. So we would like to locate the energy where the electromagnetic field is
and not at the charges from which it came. We thus describe the energy, not in
terms of the charges, but in terms of the fields they produce. We can, in fact,
show that Eq. (8.28) is numerically equal to

U = ε0
2

∫
E ·E dV. (8.30)

We can then interpret this formula as saying that when an electric field is present,
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E

dV

Fig. 8-8. Each volume element dV = dx dy dz in an electric field
contains the energy (ε0/2)E2 dV .

there is located in space an energy whose density (energy per unit volume) is

u = ε0
2 E ·E = ε0E

2

2 . (8.31)

This idea is illustrated in Fig. 8-8.
To show that Eq. (8.30) is consistent with our laws of electrostatics, we begin

by introducing into Eq. (8.28) the relation between ρ and φ that we obtained in
Chapter 6:

ρ = −ε0∇2φ.

We get

U = −ε02

∫
φ∇2φdV. (8.32)

Writing out the components of the integrand, we see that

φ∇2φ = φ

(
∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2

)
= ∂

∂x

(
φ
∂φ

∂x

)
−
(
∂φ

∂x

)2
+ ∂

∂y

(
φ
∂φ

∂y

)
−
(
∂φ

∂y

)2
+ ∂

∂z

(
φ
∂φ

∂z

)
−
(
∂φ

∂z

)2

=∇ · (φ∇φ)− (∇φ) · (∇φ). (8.33)
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Our energy integral is then

U = ε0
2

∫
(∇φ) · (∇φ) dV − ε0

2

∫
∇ · (φ∇φ) dV.

We can use Gauss’ theorem to change the second integral into a surface integral:∫
vol.

∇ · (φ∇φ) dV =
∫

surface

(φ∇φ) · n da. (8.34)

We evaluate the surface integral in the case that the surface goes to infinity
(so the volume integrals become integrals over all space), supposing that all the
charges are located within some finite distance. The simple way to proceed is to
take a spherical surface of enormous radius R whose center is at the origin of
coordinates. We know that when we are very far away from all charges, φ varies
as 1/R and ∇φ as 1/R2. (Both will decrease even faster with R if there the
net charge in the distribution is zero.) Since the surface area of the large sphere
increases as R2, we see that the surface integral falls off as (1/R)(1/R2)R2 = (1/R)
as the radius of the sphere increases. So if we include all space in our integration
(R→∞), the surface integral goes to zero and we have that

U = ε0
2

∫
all

space

(∇φ) · (∇φ) dV = ε0
2

∫
all

space

E ·E dV. (8.35)

We see that it is possible for us to represent the energy of any charge distribution
as being the integral over an energy density located in the field.

8-6 The energy of a point charge

Our new relation, Eq. (8.35), says that even a single point charge q will have
some electrostatic energy. In this case, the electric field is given by

E = q

4πε0r2 .

So the energy density at the distance r from the charge is

ε0E
2

2 = q2

32π2ε0r4 .
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We can take for an element of volume a spherical shell of thickness dr and
area 4πr2. The total energy is

U =
∞∫

r=0

q2

8πε0r2 dr = − q2

8πε0
1
r

∣∣∣∣r=∞
r=0

. (8.36)

Now the limit at r = ∞ gives no difficulty. But for a point charge we are
supposed to integrate down to r = 0, which gives an infinite integral. Equa-
tion (8.35) says that there is an infinite amount of energy in the field of a point
charge, although we began with the idea that there was energy only between
point charges. In our original energy formula for a collection of point charges
(Eq. 8.3), we did not include any interaction energy of a charge with itself. What
has happened is that when we went over to a continuous distribution of charge
in Eq. (8.27), we counted the energy of interaction of every infinitesimal charge
with all other infinitesimal charges. The same account is included in Eq. (8.35),
so when we apply it to a finite point charge, we are including the energy it would
take to assemble that charge from infinitesimal parts. You will notice, in fact,
that we would also get the result in Eq. (8.36) if we used our expression (8.11)
for the energy of a charged sphere and let the radius tend toward zero.

We must conclude that the idea of locating the energy in the field is inconsistent
with the assumption of the existence of point charges. One way out of the difficulty
would be to say that elementary charges, such as an electron, are not points but
are really small distributions of charge. Alternatively, we could say that there
is something wrong in our theory of electricity at very small distances, or with
the idea of the local conservation of energy. There are difficulties with either
point of view. These difficulties have never been overcome; they exist to this
day. Sometime later, when we have discussed some additional ideas, such as the
momentum in an electromagnetic field, we will give a more complete account of
these fundamental difficulties in our understanding of nature.
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9

Electricity in the Atmosphere

Reference: Chalmers, J. Alan, Atmospheric Electricity, Pergamon Press, Lon-
don (1957).

9-1 The electric potential gradient of the atmosphere

On an ordinary day over flat desert country, or over the sea, as one goes
upward from the surface of the ground the electric potential increases by about
100 volts per meter. Thus there is a vertical electric field E of 100 volts/m in
the air. The sign of the field corresponds to a negative charge on the earth’s
surface. This means that outdoors the potential at the height of your nose is
200 volts higher than the potential at your feet! You might ask: “Why don’t we
just stick a pair of electrodes out in the air one meter apart and use the 100 volts
to power our electric lights?” Or you might wonder: “If there is really a potential
difference of 200 volts between my nose and my feet, why is it I don’t get a shock
when I go out into the street?”

We will answer the second question first. Your body is a relatively good
conductor. If you are in contact with the ground, you and the ground will tend to
make one equipotential surface. Ordinarily, the equipotentials are parallel to the
surface, as shown in Fig. 9-1(a), but when you are there, the equipotentials are
distorted, and the field looks somewhat as shown in Fig. 9-1(b). So you still have
very nearly zero potential difference between your head and your feet. There are
charges that come from the earth to your head, changing the field. Some of them
may be discharged by ions collected from the air, but the current of these is very
small because air is a poor conductor.

How can we measure such a field if the field is changed by putting something
there? There are several ways. One way is to place an insulated conductor at
some distance above the ground and leave it there until it is at the same potential
as the air. If we leave it long enough, the very small conductivity in the air will
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Fig. 9-1. (a) The potential distribution above the earth. (b) The
potential distribution near a man in an open flat place.
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let the charges leak off (or onto) the conductor until it comes to the potential at
its level. Then we can bring it back to the ground, and measure the shift of its
potential as we do so. A faster way is to let the conductor be a bucket of water
with a small leak. As the water drops out, it carries away any excess charges
and the bucket will approach the same potential as the air. (The charges, as you
know, reside on the surface, and as the drops come off “pieces of surface” break
off.) We can measure the potential of the bucket with an electrometer.

(a)

E

GROUND

CONNECTION
TO GROUND METAL PLATE A

− − − − − − − − − − − − − − − − − −

(b)

E

GROUND

COVER PLATE B

− − − −
− − − − − − − − − −

− − − −

Fig. 9-2. (a) A grounded metal plate will have the same surface charge
as the earth. (b) If the plate is covered with a grounded conductor it
will have no surface charge.

There is another way to directly measure the potential gradient. Since there
is an electric field, there is a surface charge on the earth (σ = ε0E). If we place
a flat metal plate at the earth’s surface and ground it, negative charges appear
on it (Fig. 9-2a). If this plate is now covered by another grounded conducting
cover B, the charges will appear on the cover, and there will be no charges on the
original plate A. If we measure the charge that flows from plate A to the ground
(by, say, a galvanometer in the grounding wire) as we cover it, we can find the
surface charge density that was there, and therefore also find the electric field.

Having suggested how we can measure the electric field in the atmosphere, we
now continue our description of it. Measurements show, first of all, that the field
continues to exist, but gets weaker, as one goes up to high altitudes. By about
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50 kilometers, the field is very small, so most of the potential change (the integral
of E) is at lower altitudes. The total potential difference from the surface of the
earth to the top of the atmosphere is about 400,000 volts.

9-2 Electric currents in the atmosphere

Another thing that can be measured, in addition to the potential gradient, is
the current in the atmosphere. The current density is small—about 10 micromi-
croamperes crosses each square meter parallel to the earth. The air is evidently
not a perfect insulator, and because of this conductivity, a small current—caused
by the electric field we have just been describing—passes from the sky down to
the earth.

Why does the atmosphere have conductivity? Here and there among the air
molecules there is an ion—a molecule of oxygen, say, which has acquired an extra
electron, or perhaps lost one. These ions do not stay as single molecules; because
of their electric field they usually accumulate a few other molecules around them.
Each ion then becomes a little lump which, along with other lumps, drifts in the
field—moving slowly upward or downward—making the observed current. Where
do the ions come from? It was first guessed that the ions were produced by the
radioactivity of the earth. (It was known that the radiation from radioactive
materials would make air conducting by ionizing the air molecules.) Particles
like β-rays coming out of the atomic nuclei are moving so fast that they tear
electrons from the atoms, leaving ions behind. This would imply, of course, that
if we were to go to higher altitudes, we should find less ionization, because the
radioactivity is all in the dirt on the ground—in the traces of radium, uranium,
potassium, etc.

To test this theory, some physicists carried an experiment up in balloons
to measure the ionization of the air (Hess, in 1912) and discovered that the
opposite was true—the ionization per unit volume increased with altitude! (The
apparatus was like that of Fig. 9-3. The two plates were charged periodically to
the potential V . Due to the conductivity of the air, the plates slowly discharged;
the rate of discharge was measured with the electrometer.) This was a most
mysterious result—the most dramatic finding in the entire history of atmospheric
electricity. It was so dramatic, in fact, that it required a branching off of an
entirely new subject—cosmic rays. Atmospheric electricity itself remained less
dramatic. Ionization was evidently being produced by something from outside
the earth; the investigation of this source led to the discovery of the cosmic
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Fig. 9-3. Measuring the conductivity of air due to the motion of ions.

rays. We will not discuss the subject of cosmic rays now, except to say that they
maintain the supply of ions. Although the ions are being swept away all the time,
new ones are being created by the cosmic-ray particles coming from the outside.

To be precise, we must say that besides the ions made of molecules, there are
also other kinds of ions. Tiny pieces of dirt, like extremely fine bits of dust, float
in the air and become charged. They are sometimes called “nuclei.” For example,
when a wave breaks in the sea, little bits of spray are thrown into the air. When
one of these drops evaporates, it leaves an infinitesimal crystal of NaCl floating
in the air. These tiny crystals can then pick up charges and become ions; they
are called “large ions.”

The small ions—those formed by cosmic rays—are the most mobile. Because
they are so small, they move rapidly through the air—with a speed of about
1 cm/sec in a field of 100 volts/meter, or 1 volt/cm. The much bigger and heavier
ions move much more slowly. It turns out that if there are many “nuclei,” they will
pick up the charges from the small ions. Then, since the “large ions” move so slowly
in a field, the total conductivity is reduced. The conductivity of air, therefore, is
quite variable, since it is very sensitive to the amount of “dirt” there is in it. There
is much more of such dirt over land—where the winds can blow up dust or where
man throws all kinds of pollution into the air—than there is over water. It is not
surprising that from day to day, from moment to moment, from place to place,
the conductivity near the earth’s surface varies enormously. The voltage gradient
observed at any particular place on the earth’s surface also varies greatly because
roughly the same current flows down from high altitudes in different places, and
the varying conductivity near the earth results in a varying voltage gradient.

The conductivity of the air due to the drifting of ions also increases rapidly
with altitude—for two reasons. First of all, the ionization from cosmic rays
increases with altitude. Secondly, as the density of air goes down, the mean free
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path of the ions increases, so that they can travel farther in the electric field before
they have a collision—resulting in a rapid increase of conductivity as one goes up.

Although the electric current-density in the air is only a few micromicroam-
peres per square meter, there are very many square meters on the earth’s surface.
The total electric current reaching the earth’s surface at any time is very nearly
constant at 1800 amperes. This current, of course, is “positive”—it carries plus
charges to the earth. So we have a voltage supply of 400,000 volts with a current
of 1800 amperes—a power of 700 megawatts!

With such a large current coming down, the negative charge on the earth
should soon be discharged. In fact, it should take only about half an hour to
discharge the entire earth. But the atmospheric electric field has already lasted
more than a half-hour since its discovery. How is it maintained? What maintains
the voltage? And between what and the earth? There are many questions.

The earth is negative, and the potential in the air is positive. If you go high
enough, the conductivity is so great that horizontally there is no more chance
for voltage variations. The air, for the scale of times that we are talking about,
becomes effectively a conductor. This occurs at a height in the neighborhood
of 50 kilometers. This is not as high as what is called the “ionosphere,” in
which there are very large numbers of ions produced by photoelectricity from the
sun. Nevertheless, for our discussions of atmospheric electricity, the air becomes
sufficiently conductive at about 50 kilometers that we can imagine that there is
practically a perfect conducting surface at this height, from which the currents
come down. Our picture of the situation is shown in Fig. 9-4. The problem is:
How is the positive charge maintained there? How is it pumped back? Because
if it comes down to the earth, it has to be pumped back somehow. That was one
of the greatest puzzles of atmospheric electricity for quite a while.

+

−

HIGH
CONDUCTIVITY

CURRENT
≈ 10−12
Amps/m2400,000

VOLTS

50,000m

SEA LEVEL

EARTH’S SURFACE

Fig. 9-4. Typical electrical conditions in a clear atmosphere.
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Fig. 9-5. The average daily variation of the atmospheric potential
gradient on a clear day over the oceans; referred to Greenwich time.

Each piece of information we can get should give a clue or, at least, tell
you something about it. Here is an interesting phenomenon: If we measure
the current (which is more stable than the potential gradient) over the sea, for
instance, or in careful conditions, and average very carefully so that we get rid of
the irregularities, we discover that there is still a daily variation. The average of
many measurements over the oceans has a variation with time roughly as shown
in Fig. 9-5. The current varies by about ±15 percent, and it is largest at 7:00 p.m.
in London. The strange part of the thing is that no matter where you measure
the current—in the Atlantic Ocean, the Pacific Ocean, or the Arctic Ocean—it is
at its peak value when the clocks in London say 7:00 p.m.! All over the world the
current is at its maximum at 7:00 p.m. London time and it is at a minimum at
4:00 a.m. London time. In other words, it depends upon the absolute time on the
earth, not upon the local time at the place of observation. In one respect this is not
mysterious; it checks with our idea that there is a very high conductivity laterally
at the top, because that makes it impossible for the voltage difference from the
ground to the top to vary locally. Any potential variations should be worldwide,
as indeed they are. What we now know, therefore, is that the voltage at the “top”
surface is dropping and rising by 15 percent with the absolute time on the earth.

9-3 Origin of the atmospheric currents

We must next talk about the source of the large negative currents which
must be flowing from the “top” to the surface of the earth to keep charging it
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up negatively. Where are the batteries that do this? The “battery” is shown in
Fig. 9-6. It is the thunderstorm and its lightning. It turns out that the bolts of
lightning do not “discharge” the potential we have been talking about (as you
might at first guess). Lightning storms carry negative charges to the earth. When
a lightning bolt strikes, nine times out of ten it brings down negative charges to
the earth in large amounts. It is the thunderstorms throughout the world that
are charging the earth with an average of 1800 amperes, which is then being
discharged through regions of fair weather.

Fig. 9-6. The mechanism that generates atmospheric electric field.
[Photo by William L. Widmayer.]

There are about 40,000 thunderstorms per day all over the earth, and we
can think of them as batteries pumping the electricity to the upper layer and
maintaining the voltage difference. Then take into account the geography of the
earth—there are thunderstorms in the afternoon in Brazil, tropical thunderstorms
in Africa, and so forth. People have made estimates of how much lightning is
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striking world-wide at any time, and perhaps needless to say, their estimates
more or less agree with the voltage difference measurements: the total amount
of thunderstorm activity is highest on the whole earth at about 7:00 p.m. in
London. However, the thunderstorm estimates are very difficult to make and were
made only after it was known that the variation should have occurred. These
things are very difficult because we don’t have enough observations on the seas
and over all parts of the world to know the number of thunderstorms accurately.
But those people who think they “do it right” obtain the result that there are
about 100 lightning flashes per second world-wide with a peak in the activity at
7:00 p.m. Greenwich Mean Time.

In order to understand how these batteries work, we will look at a thunderstorm
in detail. What is going on inside a thunderstorm? We will describe this insofar
as it is known. As we get into this marvelous phenomenon of real nature—instead
of the idealized spheres of perfect conductors inside of other spheres that we can
solve so neatly—we discover that we don’t know very much. Yet it is really quite
exciting. Anyone who has been in a thunderstorm has enjoyed it, or has been
frightened, or at least has had some emotion. And in those places in nature where
we get an emotion, we find that there is generally a corresponding complexity
and mystery about it. It is not going to be possible to describe exactly how a
thunderstorm works, because we do not yet know very much. But we will try to
describe a little bit about what happens.

9-4 Thunderstorms

In the first place, an ordinary thunderstorm is made up of a number of “cells”
fairly close together, but almost independent of each other. So it is best to
analyze one cell at a time. By a “cell” we mean a region with a limit area in the
horizontal direction in which all of the basic processes occur. Usually there are
several cells side by side, and in each one about the same thing is happening,
although perhaps with a different timing. Figure 9-7 indicates in an idealized
fashion what such a cell looks like in the early stage of the thunderstorm. It turns
out that in a certain place in the air, under certain conditions which we shall
describe, there is a general rising of the air, with higher and higher velocities
near the top. As the warm, moist air at the bottom rises, it cools and the water
vapor in it condenses. In the figure the little stars indicate snow and the dots
indicate rain, but because the updraft currents are great enough and the drops
are small enough, the snow and rain do not come down at this stage. This is the
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Fig. 9-7. A thunderstorm cell in the early stages of development.
[From U.S. Department of Commerce Weather Bureau Report, June
1949.]

beginning stage, and not the real thunderstorm yet—in the sense that we don’t
have anything happening at the ground. At the same time that the warm air
rises, there is an entrainment of air from the sides—an important point which
was neglected for many years. Thus it is not just the air from below which is
rising, but also a certain amount of other air from the sides.

Why does the air rise like this? As you know, when you go up in altitude
the air is colder. The ground is heated by the sun, and the re-radiation of heat
to the sky comes from water vapor high in the atmosphere; so at high altitudes
the air is cold—very cold—whereas lower down it is warm. You may say, “Then
it’s very simple. Warm air is lighter than cold; therefore the combination is
mechanically unstable and the warm air rises.” Of course, if the temperature
is different at different heights, the air is unstable thermodynamically. Left to
itself infinitely long, the air would all come to the same temperature. But it is
not left to itself; the sun is always shining (during the day). So the problem is
indeed not one of thermodynamic equilibrium, but of mechanical equilibrium.
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Fig. 9-8. Atmospheric temperature. (a) Static atmosphere; (b) adia-
batic cooling of dry air; (c) adiabatic cooling of wet air; (d) wet air with
some mixing of ambient air.

Suppose we plot—as in Fig. 9-8—the temperature of the air against height above
the ground. In ordinary circumstances we would get a decrease along a curve
like the one labeled (a); as the height goes up, the temperature goes down. How
can the atmosphere be stable? Why doesn’t the hot air below simply rise up
into the cold air? The answer is this: if the air were to go up, its pressure would
go down, and if we consider a particular parcel of air going up, it would be
expanding adiabatically. (There would be no heat coming in or out because in
the large dimensions considered here, there isn’t time for much heat flow.) Thus
the parcel of air would cool as it rises. Such an adiabatic process would give a
temperature-height relationship like curve (b) in Fig. 9-8. Any air which rose
from below would be colder than the environment it goes into. Thus there is no
reason for the hot air below to rise; if it were to rise, it would cool to a lower
temperature than the air already there, would be heavier than the air there, and
would just want to come down again. On a good, bright day with very little
humidity there is a certain rate at which the temperature in the atmosphere falls,
and this rate is, in general, lower than the “maximum stable gradient,” which is
represented by curve (b). The air is in stable mechanical equilibrium.

On the other hand, if we think of a parcel of air that contains a lot of water
vapor being carried up into the air, its adiabatic cooling curve will be different.
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As it expands and cools, the water vapor in it will condense, and the condensing
water will liberate heat. Moist air, therefore, does not cool nearly as much as dry
air does. So if air that is wetter than the average starts to rise, its temperature
will follow a curve like (c) in Fig. 9-8. It will cool off somewhat, but will still
be warmer than the surrounding air at the same level. If we have a region of
warm moist air and something starts it rising, it will always find itself lighter and
warmer than the air around it and will continue to rise until it gets to enormous
heights. This is the machinery that makes the air in the thunderstorm cell rise.

For many years the thunderstorm cell was explained simply in this manner.
But then measurements showed that the temperature of the cloud at different
heights was not nearly as high as indicated by curve (c). The reason is that as
the moist air “bubble” goes up, it entrains air from the environment and is cooled
off by it. The temperature-versus-height curve looks more like curve (d), which
is much closer to the original curve (a) than to curve (c).

After the convection just described gets under way, the cross section of
a thunderstorm cell looks like Fig. 9-9. We have what is called a “mature”
thunderstorm. There is a very rapid updraft which, in this stage, goes up to
about 10,000 to 15,000 meters—sometimes even much higher. The thunderheads,
with their condensation, climb way up out of the general cloud bank, carried by
an updraft that is usually about 60 miles an hour. As the water vapor is carried
up and condenses, it forms tiny drops which are rapidly cooled to temperatures
below zero degrees. They should freeze, but do not freeze immediately—they
are “supercooled.” Water and other liquids will usually cool well below their
freezing points before crystallizing if there are no “nuclei” present to start the
crystallization process. Only if there is some small piece of material present, like
a tiny crystal of NaCl, will the water drop freeze into a little piece of ice. Then
the equilibrium is such that the water drops evaporate and the ice crystals grow.
Thus at a certain point there is a rapid disappearance of the water and a rapid
buildup of ice. Also, there may be direct collisions between the water drops and
the ice—collisions in which the supercooled water becomes attached to the ice
crystals, which causes it to suddenly crystallize. So at a certain point in the
cloud expansion there is a rapid accumulation of large ice particles.

When the ice particles are heavy enough, they begin to fall through the rising
air—they get too heavy to be supported any longer in the updraft. As they come
down, they draw a little air with them and start a downdraft. And surprisingly
enough, it is easy to see that once the downdraft is started, it will maintain itself.
The air now drives itself down!
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Fig. 9-9. A mature thunderstorm cell. [From U.S. Department of
Commerce Weather Bureau Report, June 1949.]

Notice that the curve (d) in Fig. 9-8 for the actual distribution of temperature
in the cloud is not as steep as curve (c), which applies to wet air. So if we
have wet air falling, its temperature will drop with the slope of curve (c) and
will go below the temperature of the environment if it gets down far enough, as
indicated by curve (e) in the figure. The moment it does that, it is denser than
the environment and continues to fall rapidly. You say, “That is perpetual motion.
First, you argue that the air should rise, and when you have it up there, you
argue equally well that the air should fall.” But it isn’t perpetual motion. When
the situation is unstable and the warm air should rise, then clearly something
has to replace the warm air. It is equally true that cold air coming down would
energetically replace the warm air, but you realize that what is coming down is
not the original air. The early arguments, that had a particular cloud without
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entrainment going up and then coming down, had some kind of a puzzle. They
needed the rain to maintain the downdraft—an argument which is hard to believe.
As soon as you realize that there is a lot of original air mixed in with the rising
air, the thermodynamic argument shows that there can be a descent of the cold
air which was originally at some great height. This explains the picture of the
active thunderstorm sketched in Fig. 9-9.

As the air comes down, rain begins to come out of the bottom of the thun-
derstorm. In addition, the relatively cold air spreads out when it arrives at the
earth’s surface. So just before the rain comes there is a certain little cold wind
that gives us a forewarning of the coming storm. In the storm itself there are
rapid and irregular gusts of air, there is an enormous turbulence in the cloud,
and so on. But basically we have an updraft, then a downdraft—in general, a
very complicated process.

The moment at which precipitation starts is the same moment that the large
downdraft begins and is the same moment, in fact, when the electrical phenomena
arise. Before we describe lightning, however, we can finish the story by looking
at what happens to the thunderstorm cell after about one-half an hour to an
hour. The cell looks as shown in Fig. 9-10. The updraft stops because there is
no longer enough warm air to maintain it. The downward precipitation continues
far a while, the last little bits of water come out, and things get quieter and
quieter—although there are small ice crystals left way up in the air. Because
the winds at very great altitude are in different directions, the top of the cloud
usually spreads into an anvil shape. The cell comes to the end of its life.

9-5 The mechanism of charge separation

We want now to discuss the most important aspect for our purposes—the
development of the electrical charges. Experiments of various kinds—including
flying airplanes through thunderstorms (the pilots who do this are brave men!)—
tell us that the charge distribution in a thunderstorm cell is something like that
shown in Fig. 9-11. The top of the thunderstorm has a positive charge, and the
bottom a negative one—except for a small local region of positive charge in the
bottom of the cloud, which has caused everybody a lot of worry. No one seems to
know why it is there, how important it is—whether it is a secondary effect of the
positive rain coming down, or whether it is an essential part of the machinery.
Things would be much simpler if it weren’t there. Anyway, the predominantly
negative charge at the bottom and the positive charge at the top have the correct
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Fig. 9-10. The late phase of a thunderstorm cell. [From U.S. Depart-
ment of Commerce Weather Bureau Report, June 1949.]

sign for the battery needed to drive the earth negative. The positive charges are 6
or 7 kilometers up in the air, where the temperature is about −20◦C, whereas the
negative charges are 3 or 4 kilometers high, where the temperature is between
zero and −10◦C.

The charge at the bottom of the cloud is large enough to produce potential
differences of 20, or 30, or even 100 million volts between the cloud and the
earth—much bigger than the 0.4 million volts from the “sky” to the ground in a
clear atmosphere. These large voltages break down the air and create giant arc
discharges. When the breakdown occurs the negative charges at the bottom of
the thunderstorm are carried down to the earth in the lightning strokes.

Now we will describe in some detail the character of the lightning. First
of all, there are large voltage differences around, so that the air breaks down.
There are lightning strokes between one piece of a cloud and another piece of
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Fig. 9-11. The distribution of electrical charges in a mature thun-
derstorm cell. [From U.S. Department of Commerce Weather Bureau
Report, June 1949.]

a cloud, or between one cloud and another cloud, or between a cloud and the
earth. In each of the independent discharge flashes—the kind of lightning strokes
you see there are approximately 20 or 30 coulombs of charge brought down.
One question is: How long does it take for the cloud to regenerate the 20 or
30 coulombs which are taken away by the lightning bolt? This can be seen by
measuring, far from a cloud, the electric field produced by the cloud’s dipole
moment. In such measurements you see a sudden decrease in the field when the
lightning strikes, and then an exponential return to the previous value with a
time constant which is slightly different for different cases but which is in the
neighborhood of 5 seconds. It takes a thunderstorm only 5 seconds after each
lightning stroke to build its charge up again. That doesn’t necessarily mean
that another stroke is going to occur in exactly 5 seconds every time, because,
of course, the geometry is changed, and so on. The strokes occur more or less
irregularly, but the important point is that it takes about 5 seconds to recreate
the original condition. Thus there are approximately 4 amperes of current in
the generating machine of the thunderstorm. This means that any model made
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to explain how this storm generates its electricity must be one with plenty of
juice—it must be a big, rapidly operating device.
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FIg. 9-12. A jet of water with an electric field near the nozzle.

Before we go further we shall consider something which is almost certainly
completely irrelevant, but nevertheless interesting, because it does show the effect
of an electric field on water drops. We say that it may be irrelevant because it
relates to an experiment one can do in the laboratory with a stream of water
to show the rather strong effects of the electric field on drops of water. In a
thunderstorm there is no stream of water; there is a cloud of condensing ice and
drops of water. So the question of the mechanisms at work in a thunderstorm
is probably not at all related to what you can see in the simple experiment we
will describe. If you take a small nozzle connected to a water faucet and direct it
upward at a steep angle, as in Fig. 9-12, the water will come out in a fine stream
that eventually breaks up into a spray of fine drops. If you now put an electric
field across the stream at the nozzle (by bringing up a charged rod, for example),
the form of the stream will change. With a weak electric field you will find that
the stream breaks up into a smaller number of large-sized drops. But if you apply
a stronger field, the stream breaks up into many, many fine drops—smaller than
before.* With a weak electric field there is a tendency to inhibit the breakup of

* A handy way to observe the sizes of the drops is to let the stream fall on a large thin
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the stream into drops. With a stronger field, however, there is an increase in the
tendency to separate into drops.

The explanation of these effects is probably the following. If we have the
stream of water coming out of the nozzle and we put a small electric field across
it one side of the water gets slightly positive and the other side gets slightly
negative. Then, when the stream breaks, the drops on one side may be positive,
and those on the other side may be negative. They will attract each other and
will have a tendency to stick together more than they would have before—the
stream doesn’t break up as much. On the other hand, if the field is stronger, the
charge in each one of the drops gets much larger, and there is a tendency for
the charge itself to help break up the drops through their own repulsion. Each
drop will break into many smaller ones, each carrying a charge, so that they are
all repelled, and spread out so rapidly. So as we increase the field, the stream
becomes more finely separated. The only point we wish to make is that in certain
circumstances electric fields can have considerable influence on the drops. The
exact machinery by which something happens in a thunderstorm is not at all
known, and is not at all necessarily related to what we have just described. We
have included it just so that you will appreciate the complexities that could come
into play. In fact, nobody has a theory applicable to clouds based on that idea.

We would like to describe two theories which have been invented to account for
the separation of the charges in a thunderstorm. All the theories involve the idea
that there should be some charge on the precipitation particles and a different
charge in the air. Then by the movement of the precipitation particles—the
water or the ice—through the air there is a separation of electric charge. The
only question is: How does the charging of the drops begin? One of the older
theories is called the “breaking-drop” theory. Somebody discovered that if you
have a drop of water that breaks into two pieces in a windstream, there is positive
charge on the water and negative charge in the air. This breaking-drop theory
has several disadvantages, among which the most serious is that the sign is wrong.
Second, in the large number of temperate-zone thunderstorms which do exhibit
lightning, the precipitation effects at high altitudes are in ice, not in water.

From what we have just said, we note that if we could imagine some way
for the charge to be different at the top and bottom of a drop and if we could
also see some reason why drops in a high-speed airstream would break up into
unequal pieces—a large one in the front and a smaller one in the back because of

metal plate. The larger drops make a louder noise.
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the motion through the air or something—we would have a theory. (Different
from any known theory!) Then the small drops would not fall through the air
as fast as the big ones, because of the air resistance, and we would get a charge
separation. You see, it is possible to concoct all kinds of possibilities.
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Fig. 9-13. C. T. R. Wilson’s theory of charge separation in a thun-
dercloud.

One of the more ingenious theories, which is more satisfactory in many respects
than the breaking-drop theory, is due to C. T. R. Wilson. We will describe it,
as Wilson did, with reference to water drops, although the same phenomenon
would also work with ice. Suppose we have a water drop that is falling in the
electric field of about 100 volts per meter toward the negatively charged earth.
The drop will have an induced dipole moment—with the bottom of the drop
positive and the top of the drop negative, as drawn in Fig. 9-13. Now there are
in the air the “nuclei” that we mentioned earlier—the large slow-moving ions.
(The fast ions do not have an important effect here.) Suppose that as a drop
comes down, it approaches a large ion. If the ion is positive, it is repelled by the
positive bottom of the drop and is pushed away. So it does not become attached
to the drop. If the ion were to approach from the top, however, it might attach
to the negative, top side. But since the drop is falling through the air, there
is an air drift relative to it, going upwards, which carries the ions away if their
motion through the air is slow enough. Thus the positive ions cannot attach at
the top either. This would apply, you see, only to the large, slow-moving ions.
The positive ions of this type will not attach themselves either to the front or
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the back of a falling drop. On the other hand, as the large, slow, negative ions
are approached by a drop, they will be attracted and will be caught. The drop
will acquire negative charge—the sign of the charge having been determined by
the original potential difference on the entire earth—and we get the right sign.
Negative charge will be brought down to the bottom part of the cloud by the
drops, and the positively charged ions which are left behind will be blown to the
top of the cloud by the various updraft currents. The theory looks pretty good,
and it at least gives the right sign. Also it doesn’t depend on having liquid drops.
We will see, when we learn about polarization in a dielectric, that pieces of ice
will do the same thing. They also will develop positive and negative charges on
their extremities when they are in an electric field.

There are, however, some problems even with this theory. First of all, the
total charge involved in a thunderstorm is very high. After a short time, the
supply of large ions would get used up. So Wilson and others have had to propose
that there are additional sources of the large ions. Once the charge separation
starts, very large electric fields are developed, and in these large fields there may
be places where the air will become ionized. If there is a highly charged point,
or any small object like a drop, it may concentrate the field enough to make a
“brush discharge.” When there is a strong enough electric field—let us say it is
positive—electrons will fall into the field and will pick up a lot of speed between
collisions. Their speed will be such that in hitting another atom they will tear
electrons off at that atom, leaving positive charges behind. These new electrons
also pick up speed and collide with more electrons. So a kind of chain reaction or
avalanche occurs, and there is a rapid accumulation of ions. The positive charges
are left near their original positions, so the net effect is to distribute the positive
charge on the point into a region around the point. Then, of course, there is
no longer a strong field, and the process stops. This is the character of a brush
discharge. It is possible that the fields may become strong enough in the cloud
to produce a little bit of brush discharge; there may also be other mechanisms,
once the thing is started, to produce a large amount of ionization. But nobody
knows exactly how it works. So the fundamental origin of lightning is really not
thoroughly understood. We know it comes from the thunderstorms. (And we
know, of course, that thunder comes from the lightning—from the thermal energy
released by the bolt.)

At least we can understand, in part, the origin of atmospheric electricity. Due
to the air currents, ions, and water drops on ice particles in a thunderstorm,
positive and negative charges are separated. The positive charges are carried
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upward to the top of the cloud (see Fig. 9-11), and the negative charges are
dumped into the ground in lightning strokes. The positive charges leave the top
of the cloud, enter the high-altitude layers of more highly conducting air, and
spread throughout the earth. In regions of clear weather, the positive charges in
this layer are slowly conducted to the earth by the ions in the air—ions formed
by cosmic rays, by the sea, and by man’s activities. The atmosphere is a busy
electrical machine!

9-6 Lightning

The first evidence of what happens in a lightning stroke was obtained in
photographs taken with a camera held by hand and moved back and forth with
the shutter open—while pointed toward a place where lightning was expected.
The first photographs obtained this way showed clearly that lightning strokes are
usually multiple discharges along the same path. Later, the “Boys” camera, which
has two lenses mounted 180◦ apart on a rapidly rotating disc, was developed.
The image made by each lens moves across the film—the picture is spread out in
time. If, for instance, the stroke repeats, there will be two images side by side.
By comparing the images of the two lenses, it is possible to work out the details
of the time sequence of the flashes. Figure 9-14 shows a photograph taken with
a “Boys” camera.

We will now describe the lightning. Again, we don’t understand exactly how
it works. We will give a qualitative description of what it looks like, but we won’t
go into any details of why it does what it appears to do. We will describe only the
ordinary case of the cloud with a negative bottom over flat country. Its potential
is much more negative than the earth underneath, so negative electrons will be
accelerated toward the earth. What happens is the following. It all starts with a
thing called a “step leader,” which is not as bright as the stroke of lightning. On
the photographs one can see a little bright spot at the beginning that starts from
the cloud and moves downward very rapidly—at a sixth of the speed of light!
It goes only about 50 meters and stops. It pauses for about 50 microseconds,
and then takes another step. It pauses again and then goes another step, and
so on. It moves in a series of steps toward the ground, along a path like that
shown in Fig. 9-15. In the leader there are negative charges from the cloud; the
whole column is full of negative charge. Also, the air is becoming ionized by the
rapidly moving charges that produce the leader, so the air becomes a conductor
along the path traced out. The moment the leader touches the ground, we have
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Fig. 9-14. Photograph of a lightning flash taken with a “Boys” camera.
[From Schonland, Malan, and Collens, Proc. Roy. Soc. London, Vol. 152
(1935).

a conducting “wire” that runs all the way up to the cloud and is full of negative
charge. Now, at last, the negative charge of the cloud can simply escape and
run out. The electrons at the bottom of the leader are the first ones to realize
this; they dump out, leaving positive charge behind that attracts more negative
charge from higher up in the leader, which in its turn pours out, etc. So finally
all the negative charge in a part of the cloud runs out along the column in a
rapid and energetic way. So the lightning stroke you see runs upwards from the
ground, as indicated in Fig. 9-16. In fact, this main stroke—by far the brightest
part—is called the return stroke. It is what produces the very bright light, and
the heat, which by causing a rapid expansion of the air makes the thunder clap.

The current in a lightning stroke is about 10,000 amperes at its peak, and it
carries down about 20 coulombs.

But we are still not finished. After a time of, perhaps, a few hundredths of
a second, when the return stroke has disappeared, another leader comes down.
But this time there are no pauses. It is called a “dart leader” this time, and it
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Fig. 9-15. The formation of the “step leader.”

goes all the way down—from top to bottom in one swoop. It goes full steam on
exactly the old track, because there is enough debris there to make it the easiest
route. The new leader is again full of negative charge. The moment it touches
the ground—zing!—there is a return stroke going straight up along the path. So
you see the lightning strike again, and again, and again. Sometimes it strikes
only once or twice, sometimes five or ten times—once as many as 42 times on
the same track was seen—but always in rapid succession.

Sometimes things get even more complicated. For instance, after one of its
pauses the leader may develop a branch by sending out two steps—both toward
the ground but in somewhat different directions, as shown in Fig. 9-15. What
happens then depends on whether one branch reaches the ground definitely
before the other. If that does happen, the bright return stroke (of negative charge
dumping into the ground) works its way up along the branch that touches the
ground, and when it reaches and passes the branching point on its way up to
the cloud, a bright stroke appears to go down the other branch. Why? Because
negative charge is dumping out and that is what lights up the bolt. This charge
begins to move at the top of the secondary branch, emptying successive, longer

9-23



+ + + + + + + + + + +

−

−

−

−

−

−

−
− − − −

−

−
−

Fig. 9-16. The return lightning stroke runs back up the path made by
the leader.

pieces of the branch, so the bright lightning bolt appears to work its way down
that branch, at the same time as it works up toward the cloud. If, however,
one of these extra leader branches happens to have reached the ground almost
simultaneously with the original leader, it can sometimes happen that the dart
leader of the second stroke will take the second branch. Then you will see the
first main flash in one place and the second flash in another place. It is a variant
of the original idea.

Also, our description is oversimplified for the region very near the ground.
When the step leader gets to within a hundred meters or so from the ground,
there is evidence that a discharge rises from the ground to meet it. Presumably,
the field gets big enough for a brush-type discharge to occur. If, for instance,
there is a sharp object, like a building with a point at the top, then as the leader
comes down nearby the fields are so large that a discharge starts from the sharp
point and reaches up to the leader. The lightning tends to strike such a point.

It has apparently been known for a long time that high objects are struck by
lightning. There is a quotation of Artabanus, the advisor to Xerxes, giving his
master advice on a contemplated attack on the Greeks—during Xerxes’ campaign
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to bring the entire known world under the control of the Persians. Artabanus
said, “See how God with his lightning always smites the bigger animals and will
not suffer them to wax insolent, while these of a lesser bulk chafe him not. How
likewise his bolts fall ever on the highest houses and tallest trees.” And then he
explains the reason: “So, plainly, doth he love to bring down everything that
exalts itself.”

Do you think—now that you know a true account of lightning striking tall
trees—that you have a greater wisdom in advising kings on military matters than
did Artabanus 2400 years ago? Do not exalt yourself. You could only do it less
poetically.
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10

Dielectrics

10-1 The dielectric constant

Here we begin to discuss another of the peculiar properties of matter under
the influence of the electric field. In an earlier chapter we considered the behavior
of conductors, in which the charges move freely in response to an electric field
to such points that there is no field left inside a conductor. Now we will discuss
insulators, materials which do not conduct electricity. One might at first believe
that there should be no effect whatsoever. However, using a simple electroscope
and a parallel-plate capacitor, Faraday discovered that this was not so. His
experiments showed that the capacitance of such a capacitor is increased when
an insulator is put between the plates. If the insulator completely fills the space
between the plates, the capacitance is increased by a factor κ which depends
only on the nature of the insulating material. Insulating materials are also called
dielectrics; the factor κ is then a property of the dielectric, and is called the
dielectric constant. The dielectric constant of a vacuum is, of course, unity.

Our problem now is to explain why there is any electrical effect if the insu-
lators are indeed insulators and do not conduct electricity. We begin with the
experimental fact that the capacitance is increased and try to reason out what
might be going on. Consider a parallel-plate capacitor with some charges on
the surfaces of the conductors, let us say negative charge on the top plate and
positive charge on the bottom plate. Suppose that the spacing between the plates
is d and the area of each plate is A. As we have proved earlier, the capacitance is

C = ε0A

d
, (10.1)

and the charge and voltage on the capacitor are related by

Q = CV. (10.2)
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Now the experimental fact is that if we put a piece of insulating material like
lucite or glass between the plates, we find that the capacitance is larger. That
means, of course, that the voltage is lower for the same charge. But the voltage
difference is the integral of the electric field across the capacitor; so we must
conclude that inside the capacitor, the electric field is reduced even though the
charges on the plates remain unchanged.

CONDUCTOR

DIELECTRIC

CONDUCTOR

− − − − − − − − − − − − − − − − − − −

+ + + + + + + + + +

− − − − − − − − − −

+ + + + + + + + + + + + + + + + + + +

σfree

σfree

σpolE

E0

S

Fig. 10-1. A parallel-plate capacitor with a dielectric. The lines of E
are shown.

Now how can that be? We have a law due to Gauss that tells us that the
flux of the electric field is directly related to the enclosed charge. Consider the
gaussian surface S shown by broken lines in Fig. 10-1. Since the electric field is
reduced with the dielectric present, we conclude that the net charge inside the
surface must be lower than it would be without the material. There is only one
possible conclusion, and that is that there must be positive charges on the surface
of the dielectric. Since the field is reduced but is not zero, we would expect this
positive charge to be smaller than the negative charge on the conductor. So the
phenomena can be explained if we could understand in some way that when a
dielectric material is placed in an electric field there is positive charge induced
on one surface and negative charge induced on the other.

We would expect that to happen for a conductor. For example, suppose that
we had a capacitor with a plate spacing d, and we put between the plates a
neutral conductor whose thickness is b, as in Fig. 10-2. The electric field induces
a positive charge on the upper surface and a negative charge on the lower surface,
so there is no field inside the conductor. The field in the rest of the space is the
same as it was without the conductor, because it is the surface density of charge
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Fig. 10-2. If we put a conducting plate in the gap of a parallel-plate
condenser, the induced charges reduce the field in the conductor to zero.

divided by ε0; but the distance over which we have to integrate to get the voltage
(the potential difference) is reduced. The voltage is

V = σ

ε0
(d− b).

The resulting equation for the capacitance is like Eq. (10.1), with (d− b) substi-
tuted for d:

C = ε0A

d[1− (b/d)] . (10.3)

The capacitance is increased by a factor which depends upon (b/d), the proportion
of the volume which is occupied by the conductor.

This gives us an obvious model for what happens with dielectrics—that inside
the material there are many little sheets of conducting material. The trouble
with such a model is that it has a specific axis, the normal to the sheets, whereas
most dielectrics have no such axis. However, this difficulty can be eliminated if we
assume that all insulating materials contain small conducting spheres separated
from each other by insulation, as shown in Fig. 10-3. The phenomenon of the

Fig. 10-3. A model of a dielectric: small conducting spheres embedded
in an idealized insulator.
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dielectric constant is explained by the effect of the charges which would be induced
on each sphere. This is one of the earliest physical models of dielectrics used to
explain the phenomenon that Faraday observed. More specifically, it was assumed
that each of the atoms of a material was a perfect conductor, but insulated from
the others. The dielectric constant κ would depend on the proportion of space
which was occupied by the conducting spheres. This is not, however, the model
that is used today.

10-2 The polarization vector P

If we follow the above analysis further, we discover that the idea of regions of
perfect conductivity and insulation is not essential. Each of the small spheres
acts like a dipole, the moment of which is induced by the external field. The only
thing that is essential to the understanding of dielectrics is that there are many
little dipoles induced in the material. Whether the dipoles are induced because
there are tiny conducting spheres or for any other reason is irrelevant.

Why should a field induce a dipole moment in an atom if the atom is not
a conducting sphere? This subject will be discussed in much greater detail in
the next chapter, which will be about the inner workings of dielectric materials.
However, we give here one example to illustrate a possible mechanism. An atom
has a positive charge on the nucleus, which is surrounded by negative electrons.
In an electric field, the nucleus will be attracted in one direction and the electrons
in the other. The orbits or wave patterns of the electrons (or whatever picture
is used in quantum mechanics) will be distorted to some extent, as shown in
Fig. 10-4; the center of gravity of the negative charge will be displaced and will
no longer coincide with the positive charge of the nucleus. We have already
discussed such distributions of charge. If we look from a distance, such a neutral
configuration is equivalent, to a first approximation, to a little dipole.

It seems reasonable that if the field is not too enormous, the amount of induced
dipole moment will be proportional to the field. That is, a small field will displace
the charges a little bit and a larger field will displace them further—and in
proportion to the field—unless the displacement gets too large. For the remainder
of this chapter, it will be supposed that the dipole moment is exactly proportional
to the field.

We will now assume that in each atom there are charges q separated by a
distance δ, so that qδ is the dipole moment per atom. (We use δ because we are
already using d for the plate separation.) If there are N atoms per unit volume,
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Fig. 10-4. An atom in an electric field has its distribution of electrons
displaced with respect to the nucleus.

there will be a dipole moment per unit volume equal to Nqδ. This dipole moment
per unit volume will be represented by a vector, P . Needless to say, it is in the
direction of the individual dipole moments, i.e., in the direction of the charge
separation δ:

P = Nqδ. (10.4)

In general, P will vary from place to place in the dielectric. However, at any
point in the material, P is proportional to the electric field E. The constant of
proportionality, which depends on the ease with which the electron are displaced,
will depend on the kinds of atoms in the material.

What actually determines how this constant of proportionality behaves, how
accurately it is constant for very large fields, and what is going on inside different
materials, we will discuss at a later time. For the present, we will simply suppose
that there exists a mechanism by which a dipole moment is induced which is
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proportional to the electric field.

10-3 Polarization charges

Now let us see what this model gives for the theory of a condenser with a
dielectric. First consider a sheet of material in which there is a certain dipole
moment per unit volume. Will there be on the average any charge density
produced by this? Not if P is uniform. If the positive and negative charges being
displaced relative to each other have the same average density, the fact that they
are displaced does not produce any net charge inside the volume. On the other
hand, if P were larger at one place and smaller at another, that would mean
that more charge would be moved into some region than away from it; we would
then expect to get a volume density of charge. For the parallel-plate condenser,
we suppose that P is uniform, so we need to look only at what happens at the
surfaces. At one surface the negative charges, the electrons, have effectively
moved out a distance δ; at the other surface they have moved in, leaving some
positive charge effectively out a distance δ. As shown in Fig. 10-5, we will have a
surface density of charge, which will be called the surface polarization charge.

δ

+ + + + + + + + +

± ± ± ± ± ± ± ± ±

− − − − − − − − −

P

Fig. 10-5. A dielectric slab in a uniform field. The positive charges
displaced the distance δ with respect to the negatives.

This charge can be calculated as follows. If A is the area of the plate, the
number of electrons that appear at the surface is the product of A and N , the
number per unit volume, and the displacement δ, which we assume here is
perpendicular to the surface. The total charge is obtained by multiplying by the
electronic charge qe. To get the surface density of the polarization charge induced
on the surface, we divide by A. The magnitude of the surface charge density is

σpol = Nqeδ.
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But this is just equal to the magnitude P of the polarization vector P , Eq. (10.4):

σpol = P. (10.5)

The surface density of charge is equal to the polarization inside the material. The
surface charge is, of course, positive on one surface and negative on the other.

Now let us assume that our slab is the dielectric of a parallel-plate capacitor.
The plates of the capacitor also have a surface charge, which we will call σfree,
because they can move “freely” anywhere on the conductor. This is, of course, the
charge that we put on when we charged the capacitor. It should be emphasized
that σpol exists only because of σfree. If σfree is removed by discharging the
capacitor, then σpol will disappear, not by going out on the discharging wire, but
by moving back into the material—by the relaxation of the polarization inside
the material.

We can now apply Gauss’ law to the gaussian surface S in Fig. 10-1. The
electric field E in the dielectric is equal to the total surface charge density divided
by ε0. It is clear that σpol and σfree have opposite signs, so

E = σfree − σpol
ε0

. (10.6)

Note that the field E0 between the metal plate and the surface of the dielectric
is higher than the field E; it corresponds to σfree alone. But here we are concerned
with the field inside the dielectric which, if the dielectric nearly fills the gap, is
the field over nearly the whole volume. Using Eq. (10.5), we can write

E = σfree − P
ε0

. (10.7)

This equation doesn’t tell us what the electric field is unless we know what P
is. Here, however, we are assuming that P depends on E—in fact, that it is
proportional to E. This proportionality is usually written as

P = χε0E. (10.8)

The constant χ (Greek “khi”) is called the electric susceptibility of the dielectric.
Then Eq. (10.7) becomes

E = σfree
ε0

1
(1 + χ) , (10.9)

which gives us the factor 1/(1 + χ) by which the field is reduced.
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The voltage between the plates is the integral of the electric field. Since the
field is uniform, the integral is just the product of E and the plate separation d.
We have that

V = Ed = σfreed

ε0(1 + χ) .

The total charge on the capacitor is σfreeA, so that the capacitance defined
by (10.2) becomes

C = ε0A(1 + χ)
d

= κε0A

d
. (10.10)

We have explained the observed facts. When a parallel-plate capacitor is
filled with a dielectric, the capacitance is increased by the factor

κ = 1 + χ, (10.11)

which is a property of the material. Our explanation, of course, is not complete
until we have explained—as we will do later—how the atomic polarization comes
about.

Let’s now consider something a little bit more complicated—the situation
in which the polarization P is not everywhere the same. As mentioned earlier,
if the polarization is not constant, we would expect in general to find a charge
density in the volume, because more charge might come into one side of a small
volume element than leaves it on the other. How can we find out how much
charge is gained or lost from a small volume?

First let’s compute how much charge moves across any imaginary surface
when the material is polarized. The amount of charge that goes across a surface
is just P times the surface area if the polarization is normal to the surface. Of
course, if the polarization is tangential to the surface, no charge moves across it.

Following the same arguments we have already used, it is easy to see that
the charge moved across any surface element is proportional to the component
of P perpendicular to the surface. Compare Fig. 10-6 with Fig. 10-5. We see
that Eq. (10.5) should, in the general case, be written

σpol = P · n. (10.12)

If we are thinking of an imagined surface element inside the dielectric,
Eq. (10.12) gives the charge moved across the surface but doesn’t result in
a net surface charge, because there are equal and opposite contributions from
the dielectric on the two sides of the surface.
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Fig. 10-6. The charge moved across an element of an imaginary
surface in a dielectric is proportional to the component of P normal to
the surface.
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Fig. 10-7. A nonuniform polarization P can result in a net charge in
the body of a dielectric.
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The displacements of the charges can, however, result in a volume charge
density. The total charge displaced out of any volume V by the polarization
is the integral of the outward normal component of P over the surface S that
bounds the volume (see Fig. 10-7). An equal excess charge of the opposite sign
is left behind. Denoting the net charge inside V by ∆Qpol we write

∆Qpol = −
∫
S

P · n da. (10.13)

We can attribute ∆Qpol to a volume distribution of charge with the density ρpol,
and so

∆Qpol =
∫
V

ρpol dV. (10.14)

Combining the two equations yields∫
V

ρpol dV = −
∫
S

P · n da. (10.15)

We have a kind of Gauss’ theorem that relates the charge density from polarized
materials to the polarization vector P . We can see that it agrees with the
result we got for the surface polarization charge or the dielectric in a parallel-
plate capacitor. Using Eq. (10.15) with the gaussian surface of Fig. 10-1, the
surface integral gives P ∆A, and the charge inside is σpol ∆A, so we get again
that σpol = P .

Just as we did for Gauss’ law of electrostatics, we can convert Eq. (10.15) to
a differential form—using Gauss’ mathematical theorem:∫

S

P · n da =
∫
V

∇ · P dV.

We get
ρpol = −∇ · P . (10.16)

If there is a nonuniform polarization, its divergence gives the net density of charge
appearing in the material. We emphasize that this is a perfectly real charge
density; we call it “polarization charge” only to remind ourselves how it got there.

10-4 The electrostatic equations with dielectrics
Now let’s combine the above result with our theory of electrostatics. The

fundamental equation is
∇ ·E = ρ

ε0
. (10.17)
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The ρ here is the density of all electric charges. Since it is not easy to keep track
of the polarization charges, it is convenient to separate ρ into two parts. Again
we call ρpol the charges due to nonuniform polarizations, and call ρfree all the
rest. Usually ρfree is the charge we put on conductors, or at known places in
space. Equation (10.17) then becomes

∇ ·E = ρfree + ρpol
ε0

= ρfree −∇ · P
ε0

or

∇ ·
(
E + P

ε0

)
= ρfree

ε0
. (10.18)

Of course, the equation for the curl of E is unchanged:

∇×E = 0. (10.19)

Taking P from Eq. (10.8), we get the simpler equation

∇ · [(1 + χ)E] =∇ · (κE) = ρfree
ε0

. (10.20)

These are the equations of electrostatics when there are dielectrics. They don’t,
of course, say anything new, but they are in a form which is more convenient for
computation in cases where ρfree is known and the polarization P is proportional
to E.

Notice that we have not taken the dielectric “constant,” κ, out of the divergence.
That is because it may not be the same everywhere. If it has everywhere the same
value, it can be factored out and the equations are just those of electrostatics with
the charge density ρfree divided by κ. In the form we have given, the equations
apply to the general case where different dielectrics may be in different places in
the field. Then the equations may be quite difficult to solve.

There is a matter of some historical importance which should be mentioned
here. In the early days of electricity, the atomic mechanism of polarization was
not known and the existence of ρpol was not appreciated. The charge ρfree was
considered to be the entire charge density. In order to write Maxwell’s equations
in a simple form, a new vector D was defined to be equal to a linear combination
of E and P :

D = ε0E + P . (10.21)
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As a result, Eqs. (10.18) and (10.19) were written in an apparently very simple
form:

∇ ·D = ρfree, ∇×E = 0. (10.22)
Can one solve these? Only if a third equation is given for the relationship between
D and E. When Eq. (10.8) holds, this relationship is

D = ε0(1 + χ)E = κε0E. (10.23)

This equation was usually written

D = εE, (10.24)

where ε is still another constant for describing the dielectric property of materials.
It is called the “permittivity.” (Now you see why we have ε0 in our equations, it
is the “permittivity of empty space.”) Evidently,

ε = κε0 = (1 + χ)ε0. (10.25)

Today we look upon these matters from another point of view, namely, that
we have simpler equations in a vacuum, and if we exhibit in every case all the
charges, whatever their origin, the equations are always correct. If we separate
some of the charges away for convenience, or because we do not want to discuss
what is going on in detail, then we can, if we wish, write our equations in any
other form that may be convenient.

One more point should be emphasized. An equation like D = εE is an
attempt to describe a property of matter. But matter is extremely complicated,
and such an equation is in fact not correct. For instance, if E gets too large,
then D is no longer proportional to E. For some substances, the proportionality
breaks down even with relatively small fields. Also, the “constant” of propor-
tionality may depend on how fast E changes with time. Therefore this kind of
equation is a kind of approximation, like Hooke’s law. It cannot be a deep and
fundamental equation. On the other hand, our fundamental equations for E,
(10.17) and (10.19), represent our deepest and most complete understanding of
electrostatics.

10-5 Fields and forces with dielectrics

We will now prove some rather general theorems for electrostatics in situations
where dielectrics are present. We have seen that the capacitance of a parallel-plate
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capacitor is increased by a definite factor if it is filled with a dielectric. We can
show that this is true for a capacitor of any shape, provided the entire region in
the neighborhood of the two conductors is filled with a uniform linear dielectric.
Without the dielectric, the equations to be solved are

∇ ·E0 = ρfree
ε0

and ∇×E0 = 0.

With the dielectric present, the first of these equations is modified; we have
instead the equations

∇ · (κE) = ρfree
ε0

and ∇×E = 0. (10.26)

Now since we are taking κ to be everywhere the same, the last two equations
can be written as

∇ · (κE) = ρfree
ε0

and ∇× (κE) = 0. (10.27)

We therefore have the same equations for κE as for E0, so they have the
solution κE = E0. In other words, the field is everywhere smaller, by the
factor 1/κ, than in the case without the dielectric. Since the voltage difference is
a line integral of the field, the voltage is reduced by this same factor. Since the
charge on the electrodes of the capacitor has been taken the same in both cases,
Eq. (10.2) tells us that the capacitance, in the case of an everywhere uniform
dielectric, is increased by the factor κ.

Let us now ask what the force would be between two charged conductors
in a dielectric. We consider a liquid dielectric that is homogeneous everywhere.
We have seen earlier that one way to obtain the force is to differentiate the
energy with respect to the appropriate distance. If the conductors have equal and
opposite charges, the energy U = Q2/2C, where C is their capacitance. Using
the principle of virtual work, any component is given by a differentiation; for
example,

Fx = −∂U
∂x

= −Q
2

2
∂

∂x

(
1
C

)
. (10.28)

Since the dielectric increases the capacity by a factor κ, all forces will be reduced
by this same factor.

One point should be emphasized. What we have said is true only if the
dielectric is a liquid. Any motion of conductors that are embedded in a solid
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dielectric changes the mechanical stress conditions of the dielectric and alters its
electrical properties, as well as causing some mechanical energy change in the
dielectric. Moving the conductors in a liquid does not change the liquid. The
liquid moves to a new place but its electrical characteristics are not changed.

Many older books on electricity start with the “fundamental” law that the
force between two charges is

F = q1q2

4πε0κr2 , (10.29)

a point of view which is thoroughly unsatisfactory. For one thing, it is not true
in general; it is true only for a world filled with a liquid. Secondly, it depends
on the fact that κ is a constant, which is only approximately true for most real
materials. It is much better to start with Coulomb’s law for charges in a vacuum,
which is always right (for stationary charges).

What does happen in a solid? This is a very difficult problem which has not
been solved, because it is, in a sense, indeterminate. If you put charges inside
a dielectric solid, there are many kinds of pressures and strains. You cannot
deal with virtual work without including also the mechanical energy required to
compress the solid, and it is a difficult matter, generally speaking, to make a
unique distinction between the electrical forces and the mechanical forces due
to the solid material itself. Fortunately, no one ever really needs to know the
answer to the question proposed. He may sometimes want to know how much
strain there is going to be in a solid, and that can be worked out. But it is much
more complicated than the simple result we got for liquids.

A surprisingly complicated problem in the theory of dielectrics is the following:
Why does a charged object pick up little pieces of dielectric? If you comb your
hair on a dry day, the comb readily picks up small scraps of paper. If you thought
casually about it, you probably assumed the comb had one charge on it and the
paper had the opposite charge on it. But the paper is initially electrically neutral.
It hasn’t any net charge, but it is attracted anyway. It is true that sometimes the
paper will come up to the comb and then fly away, repelled immediately after
it touches the comb. The reason is, of course, that when the paper touches the
comb, it picks up some negative charges and then the like charges repel. But
that doesn’t answer the original question. Why did the paper come toward the
comb in the first place?

The answer has to do with the polarization of a dielectric when it is placed
in an electric field. There are polarization charges of both signs, which are
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attracted and repelled by the comb. There is a net attraction, however, because
the field nearer the comb is stronger than the field farther away—the comb is
not an infinite sheet. Its charge is localized. A neutral piece of paper will not be
attracted to either plate inside the parallel plates of a capacitor. The variation
of the field is an essential part of the attraction mechanism.

E

F

DIELECTRIC
OBJECT

−
− − − − −

−
+
+
+ + + +

+

Fig. 10-8. A dielectric object in a nonuniform field feels a force toward
regions of higher field strength.

As illustrated in Fig. 10-8, a dielectric is always drawn from a region of weak
field toward a region of stronger field. In fact, one can prove that for small
objects the force is proportional to the gradient of the square of the electric
field. Why does it depend on the square of the field? Because the induced
polarization charges are proportional to the fields, and for given charges the
forces are proportional to the field. However, as we have just indicated, there will
be a net force only if the square of the field is changing from point to point. So
the force is proportional to the gradient of the square of the field. The constant
of proportionality involves, among other things, the dielectric constant of the
object, and it also depends upon the size and shape of the object.

There is a related problem in which the force on a dielectric can be worked
out quite accurately. If we have a parallel-plate capacitor with a dielectric
slab only partially inserted, as shown in Fig. 10-9, there will be a force driving
the sheet in. A detailed examination of the force is quite complicated; it is
related to nonuniformities in the field near the edges of the dielectric and the
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Fig. 10-9. The force on a dielectric sheet in a parallel-plate capacitor
can be computed by applying the principle of energy conservation.

plates. However, if we do not look at the details, but merely use the principle of
conservation of energy, we can easily calculate the force. We can find the force
from the formula we derived earlier. Equation (10.28) is equivalent to

Fx = −∂U
∂x

= +V 2

2
∂C

∂x
. (10.30)

We need only find out how the capacitance varies with the position of the dielectric
slab.

Let’s suppose that the total length of the plates is L, that the width of the
plates is W , that the plate separation and dielectric thickness are d, and that
the distance to which the dielectric has been inserted is x. The capacitance is
the ratio of the total free charge on the plates to the voltage between the plates.
We have seen above that for a given voltage V the surface charge density of free
charge is κε0V/d. So the total charge on the plates is

Q = κε0V

d
xW + ε0V

d
(L− x)W,

from which we get the capacitance:

C = ε0W

d
(κx+ L− x). (10.31)

Using (10.30), we have

Fx = V 2

2
ε0W

d
(κ− 1). (10.32)

Now this equation is not particularly useful for anything unless you happen to
need to know the force in such circumstances. We only wished to show that
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the theory of energy can often be used to avoid enormous complications in
determining the forces on dielectric materials—as there would be in the present
case.

Our discussion of the theory of dielectrics has dealt only with electrical
phenomena, accepting the fact that the material has a polarization which is
proportional to the electric field. Why there is such a proportionality is perhaps
of greater interest to physics. Once we understand the origin of the dielectric
constants from an atomic point of view, we can use electrical measurements of
the dielectric constants in varying circumstances to obtain detailed information
about atomic or molecular structure. This aspect will be treated in part in the
next chapter.
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11

Inside Dielectrics

Review: Chapter 31, Vol. I, The Origin of the Refractive Index
Chapter 40, Vol. I, The Principles of Statistical Mechanics

11-1 Molecular dipoles

In this chapter we are going to discuss why it is that materials are dielectric.
We said in the last chapter that we could understand the properties of electrical
systems with dielectrics once we appreciated that when an electric field is applied
to a dielectric it induces a dipole moment in the atoms. Specifically, if the
electric field E induces an average dipole moment per unit volume P , then κ,
the dielectric constant, is given by

κ− 1 = P

ε0E
. (11.1)

We have already discussed how this equation is applied; now we have to
discuss the mechanism by which polarization arises when there is an electric field
inside a material. We begin with the simplest possible example—the polarization
of gases. But even gases already have complications: there are two types. The
molecules of some gases, like oxygen, which has a symmetric pair of atoms in each
molecule, have no inherent dipole moment. But the molecules of others, like water
vapor (which has a nonsymmetric arrangement of hydrogen and oxygen atoms)
carry a permanent electric dipole moment. As we pointed out in Chapter 6, there
is in the water vapor molecule an average plus charge on the hydrogen atoms
and a negative charge on the oxygen. Since the center of gravity of the negative
charge and the center of gravity of the positive charge do not coincide, the total
charge distribution of the molecule has a dipole moment. Such a molecule is
called a polar molecule. In oxygen, because of the symmetry of the molecule, the
centers of gravity of the positive and negative charges are the same, so it is a
nonpolar molecule. It does, however, become a dipole when placed in an electric
field. The forms of the two types of molecules are sketched in Fig. 11-1.
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Fig. 11-1. (a) An oxygen molecule with zero dipole moment. (b) The
water molecule has a permanent dipole moment p0.

11-2 Electronic polarization

We will first discuss the polarization of non polar molecules. We can start with
the simplest case of a monatomic gas (for instance, helium). When an atom of
such a gas is in an electric field, the electrons are pulled one way by the field while
the nucleus is pulled the other way, as shown in Fig. 10-4. Although the atoms
are very stiff with respect to the electrical forces we can apply experimentally,
there is a slight net displacement of the centers of charge, and a dipole moment
is induced. For small fields, the amount of displacement, and so also the dipole
moment, is proportional to the electric field. The displacement of the electron
distribution which produces this kind of induced dipole moment is called electronic
polarization.

We have already discussed the influence of an electric field on an atom in
Chapter 31 of Vol. I, when we were dealing with the theory of the index of
refraction. If you think about it for a moment, you will see that what we must
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do now is exactly the same as we did then. But now we need worry only about
fields that do not vary with time, while the index of refraction depended on
time-varying fields.

In Chapter 31 of Vol. I we supposed that when an atom is placed in an
oscillating electric field the center of charge of the electrons obeys the equation

m
d2x

dt2
+mω2

0x = qeE. (11.2)

The first term is the electron mass times its acceleration and the second is a
restoring force, while the right-hand side is the force from the outside electric
field. If the electric field varies with the frequency ω, Eq. (11.2) has the solution

x = qeE

m(ω2
0 − ω2) , (11.3)

which has a resonance at ω = ω0. When we previously found this solution, we
interpreted it as saying that ω0 was the frequency at which light (in the optical
region or in the ultraviolet, depending on the atom) was absorbed. For our
purposes, however, we are interested only in the ease of constant fields, i.e.,
for ω = 0, so we can disregard the acceleration term in (11.2), and we find that
the displacement is

x = qeE

mω2
0
. (11.4)

From this we see that the dipole moment p of a single atom is

p = qex = q2
eE

mω2
0
. (11.5)

In this theory the dipole moment p is indeed proportional to the electric field.
People usually write

p = αε0E. (11.6)
(Again the ε0 is put in for historical reasons.) The constant α is called the
polarizability of the atom, and has the dimensions L3. It is a measure of how
easy it is to induce a moment in an atom with an electric field. Comparing (11.5)
and (11.6), our simple theory says that

α = q2
e

ε0mω2
0

= 4πe2

mω2
0
. (11.7)
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If there are N atoms in a unit volume, the polarization P—the dipole moment
per unit volume—is given by

P = Np = Nαε0E. (11.8)

Putting (11.1) and (11.8) together, we get

κ− 1 = P

ε0E
= Nα (11.9)

or, using (11.7),

κ− 1 = 4πNe2

mω2
0
. (11.10)

From Eq. (11.10) we would predict that the dielectric constant κ of different
gases should depend on the density of the gas and on the frequency ω0 of its
optical absorption.

Our formula is, of course, only a very rough approximation, because in
Eq. (11.2) we have taken a model which ignores the complications of quantum
mechanics. For example, we have assumed that an atom has only one resonant
frequency, when it really has many. To calculate properly the polarizability α of
atoms we must use the complete quantum-mechanical theory, but the classical
ideas above give us a reasonable estimate.

Let’s see if we can get the right order of magnitude for the dielectric constant
of some substance. Suppose we try hydrogen. We have once estimated (Chap-
ter 38, Vol. I) that the energy needed to ionize the hydrogen atom should be
approximately

E ≈ 1
2
me4

~2 . (11.11)

For an estimate of the natural frequency ω0, we can set this energy equal to ~ω0—
the energy of an atomic oscillator whose natural frequency is ω0. We get

ω0 ≈
1
2
me4

~3 .

If we now use this value of ω0 in Eq. (11.7), we find for the electronic polarizability

α ≈ 16π
[

~2

me2

]3
. (11.12)
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The quantity (~2/me2) is the radius of the ground-state orbit of a Bohr atom (see
Chapter 38, Vol. I) and equals 0.528 angstroms. In a gas at standard pressure and
temperature (1 atmosphere, 0◦C) there are 2.69× 1019 atoms/cm3, so Eq. (11.9)
gives us

κ = 1 + (2.69× 1019)16π(0.528× 10−8)3 = 1.00020. (11.13)

The dielectric constant for hydrogen gas is measured to be

κexp = 1.00026.

We see that our theory is about right. We should not expect any better, because
the measurements were, of course, made with normal hydrogen gas, which
has diatomic molecules, not single atoms. We should not be surprised if the
polarization of the atoms in a molecule is not quite the same as that of the
separate atoms. The molecular effect, however, is not really that large. An exact
quantum-mechanical calculation of α for hydrogen atoms gives a result about
12% higher than (11.12) (the 16π is changed to 18π), and therefore predicts a
dielectric constant somewhat closer to the observed one. In any case, it is clear
that our model of a dielectric is fairly good.

Another check on our theory is to try Eq. (11.12) on atoms which have a
higher frequency of excitation. For instance, it takes about 24.6 electron volts to
pull the electron off helium, compared with the 13.6 electron volts required to
ionize hydrogen. We would, therefore, expect that the absorption frequency ω0
for helium would be about twice as big as for hydrogen and that α would be
one-quarter as large. We expect that

κhelium ≈ 1.000050.
Experimentally,

κhelium = 1.000068,

so you see that our rough estimates are coming out on the right track. So we
have understood the dielectric constant of nonpolar gas, but only qualitatively,
because we have not yet used a correct atomic theory of the motions of the atomic
electrons.

11-3 Polar molecules; orientation polarization

Next we will consider a molecule which carries a permanent dipole moment p0—
such as a water molecule. With no electric field, the individual dipoles point
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(a)

p0

(b)

E

Fig. 11-2. (a) In a gas of polar molecules, the individual moments
are oriented at random; the average moment in a small volume is zero.
(b) When there is an electric field, there is some average alignment of
the molecules.

in random directions, so the net moment per unit volume is zero. But when
an electric field is applied, two things happen: First, there is an extra dipole
moment induced because of the forces on the electrons; this part gives just the
same kind of electronic polarizability we found for a nonpolar molecule. For very
accurate work, this effect should, of course, be included, but we will neglect it
for the moment. (It can always be added in at the end.) Second, the electric
field tends to line up the individual dipoles to produce a net moment per unit
volume. If all the dipoles in a gas were to line up, there would be a very large
polarization, but that does not happen. At ordinary temperatures and electric
fields the collisions of the molecules in their thermal motion keep them from lining
up very much. But there is some net alignment, and so some polarization (see
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Fig. 11-3. The energy of a dipole p0 in the field E is −p0 · E.

Fig. 11-2). The polarization that does occur can be computed by the methods of
statistical mechanics we described in Chapter 40 of Vol. I.

To use this method we need to know the energy of a dipole in an electric
field. Consider a dipole of moment p0 in an electric field, as shown in Fig. 11-3.
The energy of the positive charge is qφ(1), and the energy of the negative charge
is −qφ(2). Thus the energy of the dipole is

U = qφ(1)− qφ(2) = qd ·∇φ,
or

U = −p0 ·E = −p0E cos θ, (11.14)

where θ is the angle between p0 and E. As we would expect, the energy is lower
when the dipoles are lined up with the field.

We now find out how much lining up occurs by using the methods of statistical
mechanics. We found in Chapter 40 of Vol. I that in a state of thermal equilibrium,
the relative number of molecules with the potential energy U is proportional to

e−U/kT , (11.15)

where U(x, y, z) is the potential energy as a function of position. The same
arguments would say that using Eq. (11.14) for the potential energy as a function
of angle, the number of molecules at θ per unit solid angle is proportional
to e−U/kT .

Letting n(θ) be the number of molecules per unit solid angle at θ, we have

n(θ) = n0e
+p0E cos θ/kT . (11.16)
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For normal temperatures and fields, the exponent is small, so we can approximate
by expanding the exponential:

n(θ) = n0

(
1 + p0E cos θ

kT

)
. (11.17)

We can find n0 if we integrate (11.17) over all angles; the result should be
just N , the total number of molecules per unit volume. The average value of cos θ
over all angles is zero, so the integral is just n0 times the total solid angle 4π.
We get

n0 = N

4π . (11.18)

We see from (11.17) that there will be more molecules oriented along the field
(cos θ = 1) than against the field (cos θ = −1). So in any small volume containing
many molecules there will be a net dipole moment per unit volume—that is, a
polarization P . To calculate P , we want the vector sum of all the molecular
moments in a unit volume. Since we know that the result is going to be in the
direction of E, we will just sum the components in that direction (the components
at right angles to E will sum to zero):

P =
∑
unit

volume

p0 cos θi.

We can evaluate the sum by integrating over the angular distribution. The
solid angle at θ is 2π sin θ dθ, so

P =
∫ π

0
n(θ)p0 cos θ 2π sin θ dθ. (11.19)

Substituting for n(θ) from (11.17), we have

P = −N2

∫ −1

1

(
1 + p0E

kT
cos θ

)
p0 cos θ d(cos θ),

which is easily integrated to give

P = Np2
0E

3kT . (11.20)
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The polarization is proportional to the field E, so there will be normal dielectric
behavior. Also, as we expect, the polarization depends inversely on the temper-
ature, because at higher temperatures there is more disalignment by collisions.
This 1/T dependence is called Curie’s law. The permanent moment p0 appears
squared for the following reason: In a given electric field, the aligning force
depends upon p0, and the mean moment that is produced by the lining up is
again proportional to p0. The average induced moment is proportional to p2

0.
We should now try to see how well Eq. (11.20) agrees with experiment. Let’s

look at the case of steam. Since we don’t know what p0 is, we cannot compute P
directly, but Eq. (11.20) does predict that κ − 1 should vary inversely as the
temperature, and this we should check.

From (11.20) we get

κ− 1 = P

ε0E
= Np2

0
3ε0kT

, (11.21)

so κ − 1 should vary in direct proportion to the density N , and inversely as
the absolute temperature. The dielectric constant has been measured at several
different pressures and temperatures, chosen such that the number of molecules
in a unit volume remained fixed.* [Notice that if the measurements had all been
taken at constant pressure, the number of molecules per unit volume would
decrease linearly with increasing temperature and κ − 1 would vary as T−2

instead of as T−1.] In Fig. 11-4 we plot the experimental observations for κ− 1
as a function of 1/T . The dependence predicted by (11.21) is followed quite well.

There is another characteristic of the dielectric constant of polar molecules—
its variation with the frequency of the applied field. Due to the moment of inertia
of the molecules, it takes a certain amount of time for the heavy molecules to turn
toward the direction of the field. So if we apply frequencies in the high microwave
region or above, the polar contribution to the dielectric constant begins to fall
away because the molecules cannot follow. In contrast to this, the electronic
polarizability still remains the same up to optical frequencies, because of the
smaller inertia in the electrons.

11-4 Electric fields in cavities of a dielectric

We now turn to an interesting but complicated question—the problem of the
dielectric constant in dense materials. Suppose that we take liquid helium or liquid

* Sänger, Steiger, and Gächter, Helvetica Physica Acta 5, 200 (1932).
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Fig. 11-4. Experimental measurements of the dielectric constant of
water vapor at various temperatures.

argon or some other nonpolar material. We still expect electronic polarization.
But in a dense material, P can be large, so the field on an individual atom will
be influenced by the polarization of the atoms in its close neighborhood. The
question is, what electric field acts on the individual atom?

Imagine that the liquid is put between the plates of a condenser. If the
plates are charged they will produce an electric field in the liquid. But there
are also charges in the individual atoms, and the total field E is the sum of
both of these effects. This true electric field varies very, very rapidly from
point to point in the liquid. It is very high inside the atoms—particularly
right next to the nucleus—and relatively small between the atoms. The po-
tential difference between the plates is the line integral of this total field. If
we ignore all the fine-grained variations, we can think of an average electric
field E, which is just V/d. (This is the field we were using in the last chap-
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Fig. 11-5. The field in a slot cut in a dielectric depends on the shape
and orientation of the slot.

ter.) We should think of this field as the average over a space containing many
atoms.

Now you might think that an “average” atom in an “average” location would
feel this average field. But it is not that simple, as we can show by considering
what happens if we imagine different-shaped holes in a dielectric. For instance,
suppose that we cut a slot in a polarized dielectric, with the slot oriented parallel
to the field, as shown in part (a) of Fig. 11-5. Since we know that ∇×E = 0,
the line integral of E around the curve, Γ, which goes as shown in (b) of the
figure, should be zero. The field inside the slot must give a contribution which
just cancels the part from the field outside. Therefore the field E0 actually found
in the center of a long thin slot is equal to E, the average electric field found in
the dielectric.

Now consider another slot whose large sides are perpendicular to E, as shown
in part (c) of Fig. 11-5. In this case, the field E0 in the slot is not the same as E
because polarization charges appear on the surfaces. If we apply Gauss’ law to a
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surface S drawn as in (d) of the figure, we find that the field E0 in the slot is
given by

E0 = E + P

ε0
, (11.22)

where E is again the electric field in the dielectric. (The gaussian surface
contains the surface polarization charge σpol = P .) We mentioned in Chapter 10
that ε0E + P is often called D, so ε0E0 = D0 is equal to D in the dielectric.

Earlier in the history of physics, when it was supposed to be very important
to define every quantity by direct experiment, people were delighted to discover
that they could define what they meant by E and D in a dielectric without
having to crawl around between the atoms. The average field E is numerically
equal to the field E0 that would be measured in a slot cut parallel to the field.
And the field D could be measured by finding E0 in a slot cut normal to the
field. But nobody ever measures them that way anyway, so it was just one of
those philosophical things.

For most liquids which are not too complicated in structure, we could expect
that an atom finds itself, on the average, surrounded by the other atoms in what
would be a good approximation to a spherical hole. And so we should ask: “What
would be the field in a spherical hole?” We can find out by noticing that if we
imagine carving out a spherical hole in a uniformly polarized material, we are just
removing a sphere of polarized material. (We must imagine that the polarization
is “frozen in” before we cut out the hole.) By superposition, however, the fields
inside the dielectric, before the sphere was removed, is the sum of the fields from
all charges outside the spherical volume plus the fields from the charges within
the polarized sphere. That is, if we call E the field in the uniform dielectric, we
can write

E = Ehole + Eplug, (11.23)

where Ehole is the field in the hole and Eplug is the field inside a sphere which
is uniformly polarized (see Fig. 11-6). The fields due to a uniformly polarized
sphere are shown in Fig. 11-7. The electric field inside the sphere is uniform, and
its value is

Eplug = − P

3ε0
. (11.24)

Using (11.23), we get

Ehole = E + P

3ε0
. (11.25)
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Fig. 11-6. The field at any point A in a dielectric can be considered
as the sum of the field in a spherical hole plus the field due to a spherical
plug.

+
+ + + +

+

−
− − − −

−

a

E P

DIPOLE FIELD
OUTSIDE

Fig. 11-7. The electric field of a uniformly polarized sphere.

The field in a spherical cavity is greater than the average field by the amount P/3ε0.
(The spherical hole gives a field 1/3 of the way between a slot parallel to the field
and a slot perpendicular to the field.)

11-5 The dielectric constant of liquids; the Clausius-Mossotti equation

In a liquid we expect that the field which will polarize an individual atom
is more like Ehole than just E. If we use the Ehole of (11.25) for the polarizing
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field in Eq. (11.6), then Eq. (11.8) becomes

P = Nαε0

(
E + P

3ε0

)
, (11.26)

or
P = Nα

1− (Nα/3) ε0E. (11.27)

Remembering that κ− 1 is just P/ε0E, we have

κ− 1 = Nα

1− (Nα/3) , (11.28)

which gives us the dielectric constant of a liquid in terms of α, the atomic
polarizability. This is called the Clausius-Mossotti equation.

Whenever Nα is very small, as it is for a gas (because the density N is small),
then the term Nα/3 can be neglected compared with 1, and we get our old result,
Eq. (11.9), that

κ− 1 = Nα. (11.29)

Let’s compare Eq. (11.28) with some experimental results. It is first necessary
to look at gases for which, using the measurement of κ, we can find α from
Eq. (11.29). For instance, for carbon disulfide at zero degrees centigrade the
dielectric constant is 1.0029, so Nα is 0.0029. Now the density of the gas is easily
worked out and the density of the liquid can be found in handbooks. At 20◦C, the
density of liquid CS2 is 381 times higher than the density of the gas at 0◦C. This
means that N is 381 times higher in the liquid than it is in the gas so, that—if
we make the approximation that the basic atomic polarizability of the carbon
disulfide doesn’t change when it is condensed into a liquid—Nα in the liquid
is equal to 381 times 0.0029, or 1.11. Notice that the Nα/3 term amounts to
almost 0.4, so it is quite significant. With these numbers we predict a dielectric
constant of 2.76, which agrees reasonably well with the observed value of 2.64.

In Table 11-1 we give some experimental data on various materials (taken from
the Handbook of Chemistry and Physics), together with the dielectric constants
calculated from Eq. (11.28) in the way just described. The agreement between
observation and theory is even better for argon and oxygen than for CS2—and not
so good for carbon tetrachloride. On the whole, the results show that Eq. (11.28)
works very well.
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Our derivation of Eq. (11.28) is valid only for electronic polarization in liquids.
It is not right for a polar molecule like H2O. If we go through the same calculations
for water, we get 13.2 for Nα, which means that the dielectric constant for the
liquid is negative, while the observed value of κ is 80. The problem has to do
with the correct treatment of the permanent dipoles, and Onsager has pointed
out the right way to go. We do not have the time to treat the case now, but
if you are interested it is discussed in Kittel’s book, Introduction to Solid State
Physics.

11-6 Solid dielectrics

Now we turn to the solids. The first interesting fact about solids is that there
can be a permanent polarization built in—which exists even without applying an
electric field. An example occurs with a material like wax, which contains long
molecules having a permanent dipole moment. If you melt some wax and put a
strong electric field on it when it is a liquid, so that the dipole moments get partly
lined up, they will stay that way when the liquid freezes. The solid material will
have a permanent polarization which remains when the field is removed. Such a
solid is called an electret.

An electret has permanent polarization charges on its surface. It is the
electrical analog of a magnet. It is not as useful, though, because free charges
from the air are attracted to its surfaces, eventually cancelling the polarization
charges. The electret is “discharged” and there are no visible external fields.

A permanent internal polarization P is also found occurring naturally in
some crystalline substances. In such crystals, each unit cell of the lattice has an
identical permanent dipole moment, as drawn in Fig. 11-8. All the dipoles point
in the same direction, even with no applied electric field. Many complicated
crystals have, in fact, such a polarization; we do not normally notice it because
the external fields are discharged, just as for the electrets.

If these internal dipole moments of a crystal are changed, however, external
fields appear because there is not time for stray charges to gather and cancel
the polarization charges. If the dielectric is in a condenser, free charges will be
induced on the electrodes. For example, the moments can change when a dielectric
is heated, because of thermal expansion. The effect is called pyroelectricity.
Similarly, if we change the stresses in a crystal—for instance, if we bend it—
again the moment may change a little bit, and a small electrical effect, called
piezoelectricity, can be detected.
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Fig. 11-8. A complex crystal lattice can have a permanent intrinsic
polarization P .

For crystals that do not have a permanent moment, one can work out a
theory of the dielectric constant that involves the electronic polarizability of the
atoms. It goes much the same as for liquids. Some crystals also have rotatable
dipoles inside, and the rotation of these dipoles will also contribute to κ. In ionic
crystals such as NaCl there is also ionic polarizability. The crystal consists of a
checkerboard of positive and negative ions, and in an electric field the positive
ions are pulled one way and the negatives the other; there is a net relative motion
of the plus and minus charges, and so a volume polarization. We could estimate
the magnitude of the ionic polarizability from our knowledge of the stiffness of
salt crystals, but we will not go into that subject here.

11-7 Ferroelectricity; BaTiO3

We want to describe now one special class of crystals which have, just by
accident almost, a built-in permanent moment. The situation is so marginal
that if we increase the temperature a little bit they lose the permanent moment
completely. On the other hand, if they are nearly cubic crystals, so that their
moments can be turned in different directions, we can detect a large change in
the moment when an applied electric field is changed. All the moments flip over
and we get a large effect. Substances which have this kind of permanent moment
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are called ferroelectric, after the corresponding ferromagnetic effects which were
first discovered in iron.

We would like to explain how ferroelectricity works by describing a partic-
ular example of a ferroelectric material. There are several ways in which the
ferroelectric property can originate; but we will take up only one mysterious
case—that of barium titanate, BaTiO3. This material has a crystal lattice whose
basic cell is sketched in Fig. 11-9. It turns out that above a certain temperature,
specifically 118◦C, barium titanate is an ordinary dielectric with an enormous
dielectric constant. Below this temperature, however, it suddenly takes on a
permanent moment.

In working out the polarization of solid material, we must first find what are
the local fields in each unit cell. We must include the fields from the polarization
itself, just as we did for the case of a liquid. But a crystal is not a homogeneous
liquid, so we cannot use for the local field what we would get in a spherical
hole. If you work it out for a crystal, you find that the factor 1/3 in Eq. (11.24)
becomes slightly different, but not far from 1/3. (For a simple cubic crystal, it

Ti+4 Ba+2 O−2

4 Å

Fig. 11-9. The unit cell of BaTiO3. The atoms really fill up most of
the space; for clarity, only the positions of their centers are shown.
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is just 1/3.) We will, therefore, assume for our preliminary discussion that the
factor is 1/3 for BaTiO3.

Now when we wrote Eq. (11.28) you may have wondered what would happen
if Nα became greater than 3. It appears as though κ would become negative. But
that surely cannot be right. Let’s see what should happen if we were gradually
to increase α in a particular crystal. As α gets larger, the polarization gets
bigger, making a bigger local field. But a bigger local field will polarize each
atom more, raising the local fields still more. If the “give” of the atoms is enough,
the process keeps going; there is a kind of feedback that causes the polarization
to increase without limit—assuming that the polarization of each atom increases
in proportion to the field. The “runaway” condition occurs when Nα = 3. The
polarization does not become infinite, of course, because the proportionality
between the induced moment and the electric field breaks down at high fields, so
that our formulas are no longer correct. What happens is that the lattice gets
“locked in” with a high, self-generated, internal polarization.

In the case of BaTiO3, there is, in addition to an electronic polarization, also
a rather large ionic polarization, presumed to be due to titanium ions which can
move a little within the cubic lattice. The lattice resists large motions, so after
the titanium has gone a little way, it jams up and stops. But the crystal cell is
then left with a permanent dipole moment.

In most crystals, this is really the situation for all temperatures that can be
reached. The very interesting thing about barium titanate is that there is such
a delicate condition that if Nα is decreased just a little bit it comes unstuck.
Since N decreases with increasing temperature—because of thermal expansion—
we can vary Nα by varying the temperature. Below the critical temperature
it is just barely stuck, so it is easy—by applying an external field—to shift the
polarization and have it lock in a different direction.

Let’s see if we can analyze what happens in more detail. We call Tc the
critical temperature at which Nα is exactly 3. As the temperature increases, N
goes down a little bit because of the expansion of the lattice. Since the expansion
is small, we can say that near the critical temperature

Nα = 3− β(T − Tc), (11.30)

where β is a small constant, of the same order of magnitude as the thermal
expansion coefficient, or about 10−5 to 10−6 per degree C. Now if we substitute
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this relation into Eq. (11.28), we get that

κ− 1 = 3− β(T − Tc)
β(T − Tc)/3

.

Since we have assumed that β(T − Tc) is small compared with one, we can
approximate this formula by

κ− 1 = 9
β(T − Tc)

. (11.31)

This relation is right, of course, only for T > Tc. We see that just above
the critical temperature κ is enormous. Because Nα is so close to 3, there
is a tremendous magnification effect, and the dielectric constant can easily be
as high as 50,000 to 100,000. It is also very sensitive to temperature. For
increases in temperature, the dielectric constant goes down inversely as the
temperature, but, unlike the case of a dipolar gas, for which κ− 1 goes inversely
as the absolute temperature, for ferroelectrics it varies inversely as the difference
between the absolute temperature and the critical temperature (this law is called
the Curie-Weiss law).

When we lower the temperature to the critical temperature, what happens?
If we imagine a lattice of unit cells like that in Fig. 11-9, we see that it is possible
to pick out chains of ions along vertical lines. One of them consists of alternating
oxygen and titanium ions. There are other lines made up of either barium or
oxygen ions, but the spacing along these lines is greater. We make a simple
model to imitate this situation by imagining, as shown in Fig. 11-10(a), a series
of chains of ions. Along what we call the main chain, the separation of the ions
is a, which is half the lattice constant; the lateral distance between identical
chains is 2a. There are less-dense chains in between which we will ignore for the
moment. To make the analysis a little easier, we will also suppose that all the
ions on the main chain are identical. (It is not a serious simplification because
all the important effects will still appear. This is one of the tricks of theoretical
physics. One does a different problem because it is easier to figure out the first
time—then when one understands how the thing works, it is time to put in all
the complications.)

Now let’s try to find out what would happen with our model. We suppose
that the dipole moment of each atom is p and we wish to calculate the field at
one of the atoms of the chain. We must find the sum of the fields from all the
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(a)

a

2a

(b)

Fig. 11-10. Models of a ferroelectric: (a) corresponds to an antiferro-
electric, and (b) to a normal ferroelectric.

other atoms. We will first calculate the field from the dipoles in only one vertical
chain; we will talk about the other chains later. The field at the distance r from
a dipole in a direction along its axis is given by

E = 1
4πε0

2p
r3 . (11.32)

At any given atom, the dipoles at equal distances above and below it give fields
in the same direction, so for the whole chain we get

Echain = p

4πε0
2
a3 ·

(
2 + 2

8 + 2
27 + 2

64 + · · ·
)

= p

ε0

0.383
a3 . (11.33)

It is not too hard to show that if our model were like a completely cubic crystal—
that is, if the next identical lines were only the distance a away—the number 0.383
would be changed to 1/3. In other words, if the next lines were at the distance a
they would contribute only −0.050 unit to our sum. However, the next main chain
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we are considering is at the distance 2a and, as you remember from Chapter 7,
the field from a periodic structure dies off exponentially with distance. Therefore
these lines contribute much less than −0.050 and we can just ignore all the other
chains.

It is necessary now to find out what polarizability α is needed to make the
runaway process work. Suppose that the induced moment p of each atom of the
chain is proportional to the field on it, as in Eq. (11.6). We get the polarizing
field on the atom from Echain using Eq. (11.32). So we have the two equations

p = αε0Echain

and
Echain = 0.383

a3
p

ε0
.

There are two solutions: Echain and p both zero, or

α = a3

0.383 ,

with Echain and p both finite. Thus if α is as large as a3/0.383, a permanent
polarization sustained by its own field will set in. This critical equality must be
reached for barium titanate at just the temperature Tc. (Notice that if α were
larger than the critical value for small fields, it would decrease at larger fields
and at equilibrium the same equality we have found would hold.)

For BaTiO3, the spacing a is 2 × 10−8 cm, so we must expect that α =
21.8× 10−24 cm3. We can compare this with the known polarizabilities of the
individual atoms. For oxygen, α = 30.2× 10−24 cm3; we’re on the right track!
But for titanium, α = 2.4× 10−24 cm3; rather small. To use our model we should
probably take the average. (We could work out the chain again for alternating
atoms, but the result would be about the same.) So α(average) = 16.3×10−24 cm3,
which is not high enough to give a permanent polarization.

But wait a moment! We have so far only added up the electronic polarizabilities.
There is also some ionic polarization due to the motion of the titanium ion. All
we need is an ionic polarizability of 9.2×10−24 cm3. (A more precise computation
using alternating atoms shows that actually 11.9 × 10−24 cm3 is needed.) To
understand the properties of BaTiO3, we have to assume that such an ionic
polarizability exists.

Why the titanium ion in barium titanate should have that much ionic polariz-
ability is not known. Furthermore, why, at a lower temperature, it polarizes along
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the cube diagonal and the face diagonal equally well is not clear. If we figure
out the actual size of the spheres in Fig. 11-9, and ask whether the titanium is a
little bit loose in the box formed by its neighboring oxygen atoms—which is what
you would hope, so that it could be easily shifted—you find quite the contrary.
It fits very tightly. The barium atoms are slightly loose, but if you let them be
the ones that move, it doesn’t work out. So you see that the subject is really not
one-hundred percent clear; there are still mysteries we would like to understand.

Returning to our simple model of Fig. 11-10(a), we see that the field from one
chain would tend to polarize the neighboring chain in the opposite direction, which
means that although each chain would be locked, there would be no net permanent
moment per unit volume! (Although there would be no external electric effects,
there are still certain thermodynamic effects one could observe.) Such systems
exist, and are called antiferroelectric. So what we have explained is really an
antiferroelectric. Barium titanate, however, is really like the arrangement in
Fig. 11-10(b). The oxygen-titanium chains are all polarized in the same direction
because there are intermediate chains of atoms in between. Although the atoms
in these chains are not very polarizable, or very dense, they will be somewhat
polarized, in the direction antiparallel to the oxygen-titanium chains. The small
fields produced at the next oxygen-titanium chain will get it started parallel to
the first. So BaTiO3 is really ferroelectric, and it is because of the atoms in
between. You may be wondering: “But what about the direct effect between the
two O-Ti chains?” Remember, though, the direct effect dies off exponentially
with the separation; the effect of the chain of strong dipoles at 2a can be less
than the effect of a chain of weak ones at the distance a.

This completes our rather detailed report on our present understanding of
the dielectric constants of gases, of liquids, and of solids.
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12

Electrostatic Analogs

12-1 The same equations have the same solutions

The total amount of information which has been acquired about the physical
world since the beginning of scientific progress is enormous, and it seems almost
impossible that any one person could know a reasonable fraction of it. But it is
actually quite possible for a physicist to retain a broad knowledge of the physical
world rather than to become a specialist in some narrow area. The reasons for
this are threefold: First, there are great principles which apply to all the different
kinds of phenomena—such as the principles of the conservation of energy and
of angular momentum. A thorough understanding of such principles gives an
understanding of a great deal all at once. Second, there is the fact that many
complicated phenomena, such as the behavior of solids under compression, really
basically depend on electrical and quantum-mechanical forces, so that if one
understands the fundamental laws of electricity and quantum mechanics, there is
at least some possibility of understanding many of the phenomena that occur
in complex situations. Finally, there is a most remarkable coincidence: The
equations for many different physical situations have exactly the same appearance.
Of course, the symbols may be different—one letter is substituted for another—
but the mathematical form of the equations is the same. This means that having
studied one subject, we immediately have a great deal of direct and precise
knowledge about the solutions of the equations of another.

We are now finished with the subject of electrostatics, and will soon go on to
study magnetism and electrodynamics. But before doing so, we would like to
show that while learning electrostatics we have simultaneously learned about a
large number of other subjects. We will find that the equations of electrostatics
appear in several other places in physics. By a direct translation of the solutions
(of course the same mathematical equations must have the same solutions) it is
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possible to solve problems in other fields with the same ease—or with the same
difficulty—as in electrostatics.

The equations of electrostatics, we know, are

∇ · (κE) = ρfree
ε0

, (12.1)

∇×E = 0. (12.2)

(We take the equations of electrostatics with dielectrics so as to have the most
general situation.) The same physics can be expressed in another mathematical
form:

E = −∇φ, (12.3)

∇ · (κ∇φ) = −ρfree
ε0

. (12.4)

Now the point is that there are many physics problems whose mathematical equa-
tions have the same form. There is a potential (φ) whose gradient multiplied by a
scalar function (κ) has a divergence equal to another scalar function (−ρfree/ε0).

Whatever we know about electrostatics can immediately be carried over into
that other subject, and vice versa. (It works both ways, of course—if the other
subject has some particular characteristics that are known, then we can apply
that knowledge to the corresponding electrostatic problem.) We want to consider
a series of examples from different subjects that produce equations of this form.

12-2 The flow of heat; a point source near an infinite plane boundary

We have discussed one example earlier (Section 3-4)—the flow of heat. Imagine
a block of material, which need not be homogeneous but may consist of different
materials at different places, in which the temperature varies from point to point.
As a consequence of these temperature variations there is a flow of heat, which
can be represented by the vector h. It represents the amount of heat energy
which flows per unit time through a unit area perpendicular to the flow. The
divergence of h represents the rate per unit volume at which heat is leaving a
region:

∇ · h = rate of heat out per unit volume.

(We could, of course, write the equation in integral form—just as we did in
electrostatics with Gauss’ law—which would say that the flux through a surface
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is equal to the rate of change of heat energy inside the material. We will not
bother to translate the equations back and forth between the differential and the
integral forms, because it goes exactly the same as in electrostatics.)

The rate at which heat is generated or absorbed at various places depends,
of course, on the problem. Suppose, for example, that there is a source of heat
inside the material (perhaps a radioactive source, or a resistor heated by an
electrical current). Let us call s the heat energy produced per unit volume per
second by this source. There may also be losses (or gains) of thermal energy to
other internal energies in the volume. If u is the internal energy per unit volume,
−du/dt will also be a “source” of heat energy. We have, then,

∇ · h = s− du

dt
. (12.5)

We are not going to discuss just now the complete equation in which things
change with time, because we are making an analogy to electrostatics, where
nothing depends on the time. We will consider only steady heat-flow problems,
in which constant sources have produced an equilibrium state. In these cases,

∇ · h = s. (12.6)

It is, of course, necessary to have another equation, which describes how the
heat flows at various places. In many materials the heat current is approximately
proportional to the rate of change of the temperature with position: the larger
the temperature difference, the more the heat current. As we have seen, the
vector heat current is proportional to the temperature gradient. The constant of
proportionality K, a property of the material, is called the thermal conductivity.

h = −K∇T. (12.7)

If the properties of the material vary from place to place, then K = K(x, y, z),
a function of position. [Equation (12.7) is not as fundamental as (12.5), which
expresses the conservation of heat energy, since the former depends upon a special
property of the substance.] If now we substitute Eq. (12.7) into Eq. (12.6) we
have

∇ · (K∇T ) = −s, (12.8)

which has exactly the same form as (12.4). Steady heat-flow problems and
electrostatic problems are the same. The heat flow vector h corresponds to E,
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and the temperature T corresponds to φ. We have already noticed that a point
heat source produces a temperature field which varies as 1/r and a heat flow
which varies as 1/r2. This is nothing more than a translation of the statements
from electrostatics that a point charge generates a potential which varies as 1/r
and an electric field which varies as 1/r2. We can, in general, solve static heat
problems as easily as we can solve electrostatic problems.

K

a
br

h

T1

T2

(a)

K

a
br

E

φ1

φ2

(b)

Fig. 12-1. (a) Heat flow in a cylindrical geometry. (b) The corre-
sponding electrical problem.

Consider a simple example. Suppose that we have a cylinder of radius a at
the temperature T1, maintained by the generation of heat in the cylinder. (It
could be, for example, a wire carrying a current, or a pipe with steam condensing
inside.) The cylinder is covered with a concentric sheath of insulating material
which has a conductivity K. Say the outside radius of the insulation is b and the
outside is kept at temperature T2 (Fig. 12-1a). We want to find out at what rate
heat will be lost by the wire, or steampipe, or whatever it is in the center. Let
the total amount of heat lost from a length L of the pipe be called G—which is
what we are trying to find.

How can we solve this problem? We have the differential equations, but
since these are the same as those of electrostatics, we have really already solved
the mathematical problem. The analogous problem is that of a conductor of
radius a at the potential φ1, separated from another conductor of radius b at the
potential φ2, with a concentric layer of dielectric material in between, as drawn
in Fig. 12-1(b). Now since the heat flow h corresponds to the electric field E,
the quantity G that we want to find corresponds to the flux of the electric field
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from a unit length (in other words, to the electric charge per unit length over ε0).
We have solved the electrostatic problem by using Gauss’ law. We follow the
same procedure for our heat-flow problem.

From the symmetry of the situation, we know that h depends only on the
distance from the center. So we enclose the pipe in a gaussian cylinder of length L
and radius r. From Gauss’ law, we know that the heat flow h multiplied by the
area 2πrL of the surface must be equal to the total amount of heat generated
inside, which is what we are calling G:

2πrLh = G or h = G

2πrL. (12.9)

The heat flow is proportional to the temperature gradient:

h = −K∇T,

or, in this case, the radial component of h is

h = −K dT

dr
.

This, together with (12.9), gives

dT

dr
= − G

2πKLr . (12.10)

Integrating from r = a to r = b, we get

T2 − T1 = − G

2πKL ln b

a
. (12.11)

Solving for G, we find

G = 2πKL(T1 − T2)
ln(b/a) . (12.12)

This result corresponds exactly to the result for the charge on a cylindrical
condenser:

Q = 2πε0L(φ1 − φ2)
ln(b/a) .

The problems are the same, and they have the same solutions. From our knowledge
of electrostatics, we also know how much heat is lost by an insulated pipe.
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Let’s consider another example of heat flow. Suppose we wish to know the
heat flow in the neighborhood of a point source of heat located a little way
beneath the surface of the earth, or near the surface of a large metal block. The
localized heat source might be an atomic bomb that was set off underground,
leaving an intense source of heat, or it might correspond to a small radioactive
source inside a block of iron—there are numerous possibilities.

We will treat the idealized problem of a point heat source of strength G
at the distance a beneath the surface of an infinite block of uniform material
whose thermal conductivity is K. And we will neglect the thermal conductivity
of the air outside the material. We want to determine the distribution of the
temperature on the surface of the block. How hot is it right above the source
and at various places on the surface of the block?

How shall we solve it? It is like an electrostatic problem with two materials
with different dielectric coefficients κ on opposite sides of a plane boundary. Aha!
Perhaps it is the analog of a point charge near the boundary between a dielectric
and a conductor, or something similar. Let’s see what the situation is near the
surface. The physical condition is that the normal component of h on the surface
is zero, since we have assumed there is no heat flow out of the block. We should
ask: In what electrostatic problem do we have the condition that the normal
component of the electric field E (which is the analog of h) is zero at a surface?
There is none!

That is one of the things that we have to watch out for. For physical reasons,
there may be certain restrictions in the kinds of mathematical conditions which
arise in any one subject. So if we have analyzed the differential equation only for
certain limited cases, we may have missed some kinds of solutions that can occur
in other physical situations. For example, there is no material with a dielectric
constant of zero, whereas a vacuum does have zero thermal conductivity. So
there is no electrostatic analogy for a perfect heat insulator. We can, however,
still use the same methods. We can try to imagine what would happen if the
dielectric constant were zero. (Of course, the dielectric constant is never zero in
any real situation. But we might have a case in which there is a material with a
very high dielectric constant, so that we could neglect the dielectric constant of
the air outside.)

How shall we find an electric field that has no component perpendicular to the
surface? That is, one which is always tangent at the surface? You will notice that
our problem is opposite to the one of a point charge near a plane conductor. There
we wanted the field to be perpendicular to the surface, because the conductor
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was all at the same potential. In the electrical problem, we invented a solution by
imagining a point charge behind the conducting plate. We can use the same idea
again. We try to pick an “image source” that will automatically make the normal
component of the field zero at the surface. The solution is shown in Fig. 12-2.
An image source of the same sign and the same strength placed at the distance a
above the surface will cause the field to be always horizontal at the surface. The
normal components of the two sources cancel out.

a

a

K

K = 0

h
T = Constant

ρ0 a 2a

T

SURFACE
TEMPERATURE

Fig. 12-2. The heat flow and isothermals near a point heat source at
the distance a below the surface of a good thermal conductor.

Thus our heat flow problem is solved. The temperature everywhere is the
same, by direct analogy, as the potential due to two equal point charges! The
temperature T at the distance r from a single point source G in an infinite
medium is

T = G

4πKr . (12.13)

(This, of course, is just the analog of φ = q/4πε0R.) The temperature for a point
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source, together with its image source, is

T = G

4πKr1
+ G

4πKr2
. (12.14)

This formula gives us the temperature everywhere in the block. Several isothermal
surfaces are shown in Fig. 12-2. Also shown are lines of h, which can be obtained
from h = −K∇T .

We originally asked for the temperature distribution on the surface. For a
point on the surface at the distance ρ from the axis, r1 = r2 =

√
ρ2 + a2, so

T (surface) = 1
4πK

2G√
ρ2 + a2

. (12.15)

This function is also shown in the figure. The temperature is, naturally, higher
right above the source than it is farther away. This is the kind of problem that
geophysicists often need to solve. We now see that it is the same kind of thing
we have already been solving for electricity.

12-3 The stretched membrane

Now let us consider a completely different physical situation which, nev-
ertheless, gives the same equations again. Consider a thin rubber sheet—a
membrane—which has been stretched over a large horizontal frame (like a drum-
head). Suppose now that the membrane is pushed up in one place and down in
another; as shown in Fig. 12-3. Can we describe the shape of the surface? We
will show how the problem can be solved when the deflections of the membrane
are not too large.

There are forces in the sheet because it is stretched. If we were to make a
small cut anywhere, the two sides of the cut would pull apart (see Fig. 12-4). So
there is a surface tension in the sheet, analogous to the one-dimensional tension
in a stretched string. We define the magnitude of the surface tension τ as the
force per unit length which will just hold together the two sides of a cut such as
one of those shown in Fig. 12-4.

Suppose now that we look at a vertical cross section of the membrane. It will
appear as a curve, like the one in Fig. 12-5. Let u be the vertical displacement
of the membrane from its normal position, and x and y the coordinates in the
horizontal plane. (The cross section shown is parallel to the x-axis.)
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A

B

Fig. 12-3. A thin rubber sheet stretched over a cylindrical frame (like
a drumhead). If the sheet is pushed up at A and down at B, what is
the shape of the surface?

τ

τ

τ

τ

τ

τ

Fig. 12-4. The surface tension τ of a stretched rubber sheet is the
force per unit length across a line.
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x

u

SHEET

1

2∆x

τ1

τ2

θ1

θ2

Fig. 12-5. Cross section of the deflected sheet.

Consider a little piece of the surface of length ∆x and width ∆y. There will
be forces on the piece from the surface tension along each edge. The force along
edge 1 of the figure will be τ1 ∆y, directed tangent to the surface—that is, at
the angle θ1 from the horizontal. Along edge 2, the force will be τ2 ∆y at the
angle θ2. (There will be similar forces on the other two edges of the piece, but
we will forget them for the moment.) The net upward force on the piece from
edges 1 and 2 is

∆F = τ2 ∆y sin θ2 − τ1 ∆y sin θ1.

We will limit our considerations to small distortions of the membrane, i.e., to
small slopes: we can then replace sin θ by tan θ, which can be written as ∂u/∂x.
The force is then

∆F =
[
τ2

(
∂u

∂x

)
2
− τ1

(
∂u

∂x

)
1

]
∆y.

The quantity in brackets can be equally well written (for small ∆x) as

∂

∂x

(
τ
∂u

∂x

)
∆x;

then

∆F = ∂

∂x

(
τ
∂u

∂x

)
∆x∆y.

There will be another contribution to ∆F from the forces on the other two
edges; the total is evidently

∆F =
[
∂

∂x

(
τ
∂u

∂x

)
+ ∂

∂y

(
τ
∂u

∂y

)]
∆x∆y. (12.16)
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The distortions of the diaphragm are caused by external forces. Let’s let f
represent the upward force per unit area on the sheet (a kind of “pressure”) from
the external forces. When the membrane is in equilibrium (the static case), this
force must be balanced by the internal force we have just computed, Eq. (12.16).
That is

f = − ∆F
∆x∆y .

Equation (12.16) can then be written

f = −∇ · (τ∇u), (12.17)

where by ∇ we now mean, of course, the two-dimensional gradient operator
(∂/∂x, ∂/∂y). We have the differential equation that relates u(x, y) to the applied
forces f(x, y) and the surface tension τ(x, y), which may, in general, vary from
place to place in the sheet. (The distortions of a three-dimensional elastic body
are also governed by similar equations, but we will stick to two-dimensions.) We
will worry only about the case in which the tension τ is constant throughout the
sheet. We can then write for Eq. (12.17),

∇2u = −f
τ
. (12.18)

We have another equation that is the same as for electrostatics!—only this
time, limited to two-dimensions. The displacement u corresponds to φ, and f/τ
corresponds to ρ/ε0. So all the work we have done for infinite plane charged
sheets, or long parallel wires, or charged cylinders is directly applicable to the
stretched membrane.

Suppose we push the membrane at some points up to a definite height—that
is, we fix the value of u at some places. That is the analog of having a definite
potential at the corresponding places in an electrical situation. So, for instance,
we may make a positive “potential” by pushing up on the membrane with an
object having the cross-sectional shape of the corresponding cylindrical conductor.
For example, if we push the sheet up with a round rod, the surface will take
on the shape shown in Fig. 12-6. The height u is the same as the electrostatic
potential φ of a charged cylindrical rod. It falls off as ln(1/r). (The slope, which
corresponds to the electric field E, drops off as 1/r.)

The stretched rubber sheet has often been used as a way of solving complicated
electrical problems experimentally. The analogy is used backwards! Various rods
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u

Fig. 12-6. Cross section of a stretched rubber sheet pushed up by
a round rod. The function u(x, y) is the same as the electric poten-
tial φ(x, y) near a very long charges rod.

and bars are pushed against the sheet to heights that correspond to the potentials
of a set of electrodes. Measurements of the height then give the electrical potential
for the electrical situation. The analogy has been carried even further. If little
balls are placed on the membrane, their motion corresponds approximately to the
motion of electrons in the corresponding electric field. One can actually watch
the “electrons” move on their trajectories. This method was used to design the
complicated geometry of many photomultiplier tubes (such as the ones used for
scintillation counters, and the one used for controlling the headlight beams on
Cadillacs). The method is still used, but the accuracy is limited. For the most
accurate work, it is better to determine the fields by numerical methods, using
the large electronic computing machines.

12-4 The diffusion of neutrons; a uniform spherical source in a homogeneous
medium

We take another example that gives the same kind of equation, this time
having to do with diffusion. In Chapter 43 of Vol. I we considered the diffusion
of ions in a single gas, and of one gas through another. This time, let’s take
a different example—the diffusion of neutrons in a material like graphite. We
choose to speak of graphite (a pure form of carbon) because carbon doesn’t
absorb slow neutrons. In it the neutrons are free to wander around. They travel
in a straight line for several centimeters, on the average, before being scattered by
a nucleus and deflected into a new direction. So if we have a large block—many
meters on a side—the neutrons initially at one place will diffuse to other places.
We want to find a description of their average behavior—that is, their average
flow.
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Let N(x, y, z) ∆V be the number of neutrons in the element of volume ∆V
at the point (x, y, z). Because of their motion, some neutrons will be leaving ∆V ,
and others will be coming in. If there are more neutrons in one region than in
a nearby region, more neutrons will go from the first region to the second than
come back; there will be a net flow. Following the arguments of Chapter 43
in Vol. I, we describe the flow by a flow vector J . Its x-component Jx is the
net number of neutrons that pass in unit time a unit area perpendicular to the
x-direction. We found that

Jx = −D ∂N

∂x
, (12.19)

where the diffusion constant D is given in terms of the mean velocity v, and the
mean-free-path l between scatterings is given by

D = 1
3 lv.

The vector equation for J is
J = −D∇N. (12.20)

The rate at which neutrons flow across any surface element da is J · n da
(where, as usual, n is the unit normal). The net flow out of a volume element is
then (following the usual gaussian argument) ∇ · J dV . This flow would result
in a decrease with time of the number in ∆V unless neutrons are being created
in ∆V (by some nuclear process). If there are sources in the volume that generate
S neutrons per unit time in a unit volume, then the net flow out of ∆V will be
equal to (S − ∂N/∂t) ∆V . We have then that

∇ · J = S − ∂N

∂t
. (12.21)

Combining (12.21) with (12.20), we get the neutron diffusion equation

∇ · (−D∇N) = S − ∂N

∂t
. (12.22)

In the static case—where ∂N/∂t = 0—we have Eq. (12.4) all over again! We
can use our knowledge of electrostatics to solve problems about the diffusion of
neutrons. So let’s solve a problem. (You may wonder: Why do a problem if we
have already done all the problems in electrostatics? We can do it faster this
time because we have done the electrostatic problems!)
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Fig. 12-7. (a) Neutrons are produced uniformly throughout a sphere
of radius a in a large graphite block and diffuse outward. The neutron
density N is found as a function of r , the distance from the center of
the source. (b) The analogous electrostatic situation: a uniform sphere
of charge, where N corresponds to φ and J corresponds to E.

Suppose we have a block of material in which neutrons are being generated—
say by uranium fission—uniformly throughout a spherical region of radius a
(Fig. 12-7). We would like to know: What is the density of neutrons everywhere?
How uniform is the density of neutrons in the region where they are being
generated? What is the ratio of the neutron density at the center to the neutron
density at the surface of the source region? Finding the answers is easy. The
source density S0 replaces the charge density ρ, so our problem is the same as
the problem of a sphere of uniform charge density. Finding N is just like finding
the potential φ. We have already worked out the fields inside and outside of a
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uniformly charged sphere; we can integrate them to get the potential. Outside,
the potential is Q/4πε0r, with the total charge Q given by 4πa3ρ/3. So

φoutside = ρa3

3ε0r
. (12.23)

For points inside, the field is due only to the charge Q(r) inside the sphere of
radius r, Q(r) = 4πr3ρ/3, so

E = ρr

3ε0
. (12.24)

The field increases linearly with r. Integrating E to get φ, we have

φinside = −ρr
2

6ε0
+ a constant.

At the radius a, φinside must be the same as φoutside, so the constant must
be ρa2/2ε0. (We are assuming that φ is zero at large distances from the source,
which will correspond to N being zero for the neutrons.) Therefore,

φinside = ρ

3ε0

(
3a2

2 − r2

2

)
. (12.25)

We know immediately the neutron density in our other problem. The answer
is

Noutside = Sa3

3Dr , (12.26)

and

Ninside = S

3D

(
3a2

2 − r2

2

)
. (12.27)

N is shown as a function of r in Fig. 12-7.
Now what is the ratio of density at the center to that at the edge? At the

center (r = 0), it is proportional to 3a2/2. At the edge (r = a) it is proportional
to 2a2/2, so the ratio of densities is 3/2. A uniform source doesn’t produce a
uniform density of neutrons. You see, our knowledge of electrostatics gives us a
good start on the physics of nuclear reactors.

There are many physical circumstances in which diffusion plays a big part.
The motion of ions through a liquid, or of electrons through a semiconductor,
obeys the same equation. We find again and again the same equations.
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12-5 Irrotational fluid flow; the flow past a sphere

Let’s now consider an example which is not really a very good one, because the
equations we will use will not really represent the subject with complete generality
but only in an artificial idealized situation. We take up the problem of water
flow. In the case of the stretched sheet, our equations were an approximation
which was correct only for small deflections. For our consideration of water flow,
we will not make that kind of an approximation; we must make restrictions that
do not apply at all to real water. We treat only the case of the steady flow of an
incompressible, nonviscous, circulation-free liquid. Then we represent the flow by
giving the velocity v(r) as a function of position r. If the motion is steady (the
only case for which there is an electrostatic analog) v is independent of time. If
ρ is the density of the fluid, then ρv is the amount of mass which passes per unit
time through a unit area. By the conservation of matter, the divergence of ρv
will be, in general, the time rate of change of the mass of the material per unit
volume. We will assume that there are no processes for the continuous creation or
destruction of matter. The conservation of matter then requires that ∇ · ρv = 0.
(It should, in general, be equal to −∂ρ/∂t, but since our fluid is incompressible,
ρ cannot change.) Since ρ is everywhere the same, we can factor it out, and our
equation is simply

∇ · v = 0.
Good! We have electrostatics again (with no charges); it’s just like ∇ ·E = 0.

Not so! Electrostatics is not simply ∇ ·E = 0. It is a pair of equations. One
equation does not tell us enough; we need still an additional equation. To
match electrostatics, we should have also that the curl of v is zero. But that
is not generally true for real liquids. Most liquids will ordinarily develop some
circulation. So we are restricted to the situation in which there is no circulation
of the fluid. Such flow is often called irrotational. Anyway, if we make all our
assumptions, we can imagine a case of fluid flow that is analogous to electrostatics.
So we take

∇ · v = 0 (12.28)
and

∇× v = 0. (12.29)

We want to emphasize that the number of circumstances in which liquid
flow follows these equations is far from the great majority, but there are a few.
They must be cases in which we can neglect surface tension, compressibility,
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and viscosity, and in which we can assume that the flow is irrotational. These
assumptions are valid so rarely for real water that the mathematician John
von Neumann said that people who analyze Eqs. (12.28) and (12.29) are studying
“dry water”! (We take up the problem of fluid flow in more detail in Chapters 40
and 41.)

Because ∇×v = 0, the velocity of “dry water” can be written as the gradient
of some potential:

v = −∇ψ. (12.30)

What is the physical meaning of ψ? There isn’t any very useful meaning. The
velocity can be written as the gradient of a potential simply because the flow is
irrotational. And by analogy with electrostatics, ψ is called the velocity potential,
but it is not related to a potential energy in the way that φ is. Since the divergence
of v is zero, we have

∇ · (∇ψ) = ∇2ψ = 0. (12.31)

The velocity potential ψ obeys the same differential equation as the electrostatic
potential in free space (ρ = 0).

Let’s pick a problem in irrotational flow and see whether we can solve it by the
methods we have learned. Consider the problem of a spherical ball falling through
a liquid. If it is going too slowly, the viscous forces, which we are disregarding,
will be important. If it is going too fast, little whirlpools (turbulence) will appear
in its wake and there will be some circulation of the water. But if the ball is
going neither too fast nor too slow, it is more or less true that the water flow will
fit our assumptions, and we can describe the motion of the water by our simple
equations.

It is convenient to describe what happens in a frame of reference fixed in the
sphere. In this frame we are asking the question: How does water flow past a
sphere at rest when the flow at large distances is uniform? That is, when, far from
the sphere, the flow is everywhere the same. The flow near the sphere will be as
shown by the streamlines drawn in Fig. 12-8. These lines, always parallel to v,
correspond to lines of electric field. We want to get a quantitative description for
the velocity field, i.e., an expression for the velocity at any point P .

We can find the velocity from the gradient of ψ, so we first work out the
potential. We want a potential that satisfies Eq. (12.31) everywhere, and which
also satisfies two restrictions: (1) there is no flow in the spherical region inside the
surface of the ball, and (2) the flow is constant at large distances. To satisfy (1),
the component of v normal to the surface of the sphere must be zero. That
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Fig. 12-8. The velocity field of irrotational fluid flow past a sphere.

means that ∂ψ/∂r is zero at r = a. To satisfy (2), we must have ∂ψ/∂z = v0 at
all points where r � a. Strictly speaking, there is no electrostatic case which
corresponds exactly to our problem. It really corresponds to putting a sphere
of dielectric constant zero in a uniform electric field. If we had worked out the
solution to the problem of a sphere of a dielectric constant κ in a uniform field,
then by putting κ = 0 we would immediately have the solution to this problem.

We have not actually worked out this particular electrostatic problem in detail,
but let’s do it now. (We could work directly on the fluid problem with v and ψ,
but we will use E and φ because we are so used to them.)

The problem is: Find a solution of ∇2φ = 0 such that E = −∇φ is a constant,
say E0, for large r, and such that the radial component of E is equal to zero
at r = a. That is,

∂φ

∂r

∣∣∣∣
r=a

= 0. (12.32)

Our problem involves a new kind of boundary condition, not one for which φ
is a constant on a surface, but for which ∂φ/∂r is a constant. That is a little
different. It is not easy to get the answer immediately. First of all, without
the sphere, φ would be −E0z. Then E would be in the z-direction and have
the constant magnitude E0, everywhere. Now we have analyzed the case of a
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dielectric sphere which has a uniform polarization inside it, and we found that
the field inside such a polarized sphere is a uniform field, and that outside it
is the same as the field of a point dipole located at the center. So let’s guess
that the solution we want is a superposition of a uniform field plus the field of a
dipole. The potential of a dipole (Chapter 6) is pz/4πε0r3. Thus we assume that

φ = −E0z + pz

4πε0r3 . (12.33)

Since the dipole field falls off as 1/r3, at large distances we have just the field E0.
Our guess will automatically satisfy condition (2) above. But what do we take
for the dipole strength p? To find out, we may use the other condition on φ,
Eq. (12.32). We must differentiate φ with respect to r, but of course we must do
so at a constant angle θ, so it is more convenient if we first express φ in terms of
r and θ, rather than of z and r. Since z = r cos θ, we get

φ = −E0r cos θ + p cos θ
4πε0r2 . (12.34)

The radial component of E is

− ∂φ

∂r
= +E0 cos θ + p cos θ

2πε0r3 . (12.35)

This must be zero at r = a for all θ. This will be true if

p = −2πε0a3E0. (12.36)

Note carefully that if both terms in Eq. (12.35) had not had the same θ-
dependence, it would not have been possible to choose p so that (12.35) turned
out to be zero at r = a for all angles. The fact that it works out means that
we have guessed wisely in writing Eq. (12.33). Of course, when we made the
guess we were looking ahead; we knew that we would need another term that
(a) satisfied ∇2φ = 0 (any real field would do that), (b) dependent on cos θ, and
(c) fell to zero at large r. The dipole field is the only one that does all three.

Using (12.36), our potential is

φ = −E0 cos θ
(
r + a3

2r2

)
. (12.37)
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The solution of the fluid flow problem can be written simply as

ψ = −v0 cos θ
(
r + a3

2r2

)
. (12.38)

It is straightforward to find v from this potential. We will not pursue the matter
further.

12-6 Illumination; the uniform lighting of a plane

In this section we turn to a completely different physical problem—we want
to illustrate the great variety of possibilities. This time we will do something that
leads to the same kind of integral that we found in electrostatics. (If we have a
mathematical problem which gives us a certain integral, then we know something
about the properties of that integral if it is the same integral that we had to
do for another problem.) We take our example from illumination engineering.
Suppose there is a light source at the distance a above a plane surface. What
is the illumination of the surface? That is, what is the radiant energy per unit
time arriving at a unit area of the surface? (See Fig. 12-9.) We suppose that the
source is spherically symmetric, so that light is radiated equally in all directions.
Then the amount of radiant energy which passes through a unit area at right
angles to a light flow varies inversely as the square of the distance. It is evident

S

r

z

ρ

θ

I =
S

r2

In =
S

r2
cos θ

Fig. 12-9. The illumination In of a surface is the radiant energy per
unit time arriving at a unit area of the surface.
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that the intensity of the light in the direction normal to the flow is given by the
same kind of formula as for the electric field from a point source. If the light rays
meet the surface at an angle θ to the normal, then In, the energy arriving per
unit area of the surface, is only cos θ as great, because the same energy goes onto
an area larger by 1/ cos θ. If we call the strength of our light source S, then In,
the illumination of a surface, is

In = S

r2 er · n, (12.39)

where er is the unit vector from the source and n is the unit normal to the
surface. The illumination In corresponds to the normal component of the electric
field from a point charge of strength 4πε0S. Knowing that, we see that for any
distribution of light sources, we can find the answer by solving the corresponding
electrostatic problem. We calculate the vertical component of electric field on
the plane due to a distribution of charge in the same way as for that of the light
sources.*

Consider the following example. We wish for some special experimental
situation to arrange that the top surface of a table will have a very uniform
illumination. We have available long tubular fluorescent lights which radiate
uniformly along their lengths. We can illuminate the table by placing the
fluorescent tubes in a regular array on the ceiling, which is at the height z above
the table. What is the widest spacing b from tube to tube that we should use
if we want the surface illumination to be uniform to, say, within one part in
a thousand? Answer: (1) Find the electric field from a grid of wires with the
spacing b, each charged uniformly; (2) compute the vertical component of the
electric field; (3) find out what b must be so that the ripples of the field are not
more than one part in a thousand.

In Chapter 7 we saw that the electric field of a grid of charged wires could be
represented as a sum of terms, each one of which gave a sinusoidal variation of
the field with a period of b/n, where n is an integer. The amplitude of any one
of these terms is given by Eq. (7.44):

Fn = Ane
−2πnz/b.

* Since we are talking about incoherent sources whose intensities always add linearly, the
analogous electric charges will always have the same sign. Also, our analogy applies only to the
light energy arriving at the top of an opaque surface, so we must include in our integral only
the sources which shine on the surface (and, naturally, not sources located below the surface!).
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We need consider only n = 1, so long as we only want the field at points not
too close to the grid. For a complete solution, we would still need to determine
the coefficients An, which we have not yet done (although it is a straightforward
calculation). Since we need only A1, we can estimate that its magnitude is
roughly the same as that of the average field. The exponential factor would
then give us directly the relative amplitude of the variations. If we want this
factor to be 10−3, we find that b must be 0.91z. If we make the spacing of the
fluorescent tubes 3/4 of the distance to the ceiling, the exponential factor is
then 1/4000, and we have a safety factor of 4, so we are fairly sure that we will
have the illumination constant to one part in a thousand. (An exact calculation
shows that A1 is really twice the average field, so that b ≈ 0.83z.) It is somewhat
surprising that for such a uniform illumination the allowed separation of the
tubes comes out so large.

12-7 The “underlying unity” of nature

In this chapter, we wished to show that in learning electrostatics you have
learned at the same time how to handle many subjects in physics, and that by
keeping this in mind, it is possible to learn almost all of physics in a limited
number of years.

However, a question surely suggests itself at the end of such a discussion:
Why are the equations from different phenomena so similar? We might say:
“It is the underlying unity of nature.” But what does that mean? What could
such a statement mean? It could mean simply that the equations are similar for
different phenomena; but then, of course, we have given no explanation. The
“underlying unity” might mean that everything is made out of the same stuff,
and therefore obeys the same equations. That sounds like a good explanation,
but let us think. The electrostatic potential, the diffusion of neutrons, heat
flow—are we really dealing with the same stuff? Can we really imagine that
the electrostatic potential is physically identical to the temperature, or to the
density of particles? Certainly φ is not exactly the same as the thermal energy of
particles. The displacement of a membrane is certainly not like a temperature.
Why, then, is there “an underlying unity”?

A closer look at the physics of the various subjects shows, in fact, that the
equations are not really identical. The equation we found for neutron diffusion is
only an approximation that is good when the distance over which we are looking
is large compared with the mean free path. If we look more closely, we would see
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the individual neutrons running around. Certainly the motion of an individual
neutron is a completely different thing from the smooth variation we get from
solving the differential equation. The differential equation is an approximation,
because we assume that the neutrons are smoothly distributed in space.

Is it possible that this is the clue? That the thing which is common to all
the phenomena is the space, the framework into which the physics is put? As
long as things are reasonably smooth in space, then the important things that
will be involved will be the rates of change of quantities with position in space.
That is why we always get an equation with a gradient. The derivatives must
appear in the form of a gradient or a divergence; because the laws of physics are
independent of direction, they must be expressible in vector form. The equations of
electrostatics are the simplest vector equations that one can get which involve only
the spatial derivatives of quantities. Any other simple problem—or simplification
of a complicated problem—must look like electrostatics. What is common to
all our problems is that they involve space and that we have imitated what is
actually a complicated phenomenon by a simple differential equation.

That leads us to another interesting question. Is the same statement perhaps
also true for the electrostatic equations? Are they also correct only as a smoothed-
out imitation of a really much more complicated microscopic world? Could it
be that the real world consists of little X-ons which can be seen only at very
tiny distances? And that in our measurements we are always observing on such
a large scale that we can’t see these little X-ons, and that is why we get the
differential equations?

Our currently most complete theory of electrodynamics does indeed have
its difficulties at very short distances. So it is possible, in principle, that these
equations are smoothed-out versions of something. They appear to be correct
at distances down to about 10−14 cm, but then they begin to look wrong. It
is possible that there is some as yet undiscovered underlying “machinery,” and
that the details of an underlying complexity are hidden in the smooth-looking
equations—as is so in the “smooth” diffusion of neutrons. But no one has yet
formulated a successful theory that works that way.

Strangely enough, it turns out (for reasons that we do not at all understand)
that the combination of relativity and quantum mechanics as we know them
seems to forbid the invention of an equation that is fundamentally different
from Eq. (12.4), and which does not at the same time lead to some kind of
contradiction. Not simply a disagreement with experiment, but an internal
contradiction. As, for example, the prediction that the sum of the probabilities
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of all possible occurrences is not equal to unity, or that energies may sometimes
come out as complex numbers, or some other such idiocy. No one has yet made
up a theory of electricity for which ∇2φ = −ρ/ε0 is understood as a smoothed-out
approximation to a mechanism underneath, and which does not lead ultimately
to some kind of an absurdity. But, it must be added, it is also true that the
assumption that ∇2φ = −ρ/ε0 is valid for all distances, no matter how small,
leads to absurdities of its own (the electrical energy of an electron is infinite)—
absurdities from which no one yet knows an escape.
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13

Magnetostatics

Review: Chapter 15, Vol. I, The Special Theory of Relativity

13-1 The magnetic field

The force on an electric charge depends not only on where it is, but also
on how fast it is moving. Every point in space is characterized by two vector
quantities which determine the force on any charge. First, there is the electric
force, which gives a force component independent of the motion of the charge. We
describe it by the electric field, E. Second, there is an additional force component,
called the magnetic force, which depends on the velocity of the charge. This
magnetic force has a strange directional character: At any particular point in
space, both the direction of the force and its magnitude depend on the direction
of motion of the particle: at every instant the force is always at right angles
to the velocity vector; also, at any particular point, the force is always at right
angles to a fixed direction in space (see Fig. 13-1); and finally, the magnitude of
the force is proportional to the component of the velocity at right angles to this
unique direction. It is possible to describe all of this behavior by defining the
magnetic field vector B, which specifies both the unique direction in space and
the constant of proportionality with the velocity, and to write the magnetic force
as qv ×B. The total electromagnetic force on a charge can, then, be written as

F = q(E + v ×B). (13.1)

This is called the Lorentz force.
The magnetic force is easily demonstrated by bringing a bar magnet close to

a cathode-ray tube. The deflection of the electron beam shows that the presence
of the magnet results in forces on the electrons transverse to their direction of
motion, as we described in Chapter 12 of Vol. I.
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Fig. 13-1. The velocity-dependent component of the force on a
moving charge is at right angles to v and to the direction of B. It is
also proportional to the component of v at right angles to B, that is,
to v sin θ.

The unit of magnetic field B is evidently one newton·second per coulomb-
meter. The same unit is also one volt·second per meter2. It is also called one
weber per square meter.

13-2 Electric current; the conservation of charge

We consider first how we can understand the magnetic forces on wires carrying
electric currents. In order to do this, we define what is meant by the current
density. Electric currents are electrons or other charges in motion with a net drift
or flow. We can represent the charge flow by a vector which gives the amount
of charge passing per unit area and per unit time through a surface element at
right angles to the flow (just as we did for the case of heat flow). We call this the
current density and represent it by the vector j. It is directed along the motion
of the charges. If we take a small area ∆S at a given place in the material, the
amount of charge flowing across that area in a unit time is

j · n∆S, (13.2)

where n is the unit vector normal to ∆S.
The current density is related to the average flow velocity of the charges.

Suppose that we have a distribution of charges whose average motion is a drift
with the velocity v. As this distribution passes over a surface element ∆S, the
charge ∆q passing through the surface element in a time ∆t is equal to the charge
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Fig. 13-2. If a charge distribution of density ρ moves with the veloc-
ity v , the charge per unit time through ∆S is ρv · n∆S.

contained in a parallelepiped whose base is ∆S and whose height is v∆t, as
shown in Fig. 13-2. The volume of the parallelepiped is the projection of ∆S at
right angles to v times v∆t, which when multiplied by the charge density ρ will
give ∆q. Thus

∆q = ρv · n∆S∆t.
The charge per unit time is then ρv · n∆S, from which we get

j = ρv. (13.3)

If the charge distribution consists of individual charges, say electrons, each
with the charge q and moving with the mean velocity v, then the current density
is

j = Nqv. (13.4)
where N is the number of charges per unit volume.

The total charge passing per unit time through any surface S is called the
electric current, I. It is equal to the integral of the normal component of the flow
through all of the elements of the surface:

I =
∫
S

j · n dS (13.5)

(see Fig. 13-3).
The current I out of a closed surface S represents the rate at which charge

leaves the volume V enclosed by S. One of the basic laws of physics is that
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Fig. 13-3. The current I through the surface S is
∫
j · n dS.

electric charge is indestructible; it is never lost or created. Electric charges can
move from place to place but never appear from nowhere. We say that charge is
conserved. If there is a net current out of a closed surface, the amount of charge
inside must decrease by the corresponding amount (Fig. 13-4). We can, therefore,
write the law of the conservation of charge as∫

any closed
surface

j · n dS = − d

dt
(Qinside). (13.6)

The charge inside can be written as a volume integral of the charge density:

Qinside =
∫
V

inside S

ρ dV. (13.7)

j
n

CLOSED
SURFACE
S

Fig. 13-4. The integral of j · n over a closed surface is negative the
rate of change of the total charge Q inside.
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If we apply (13.6) to a small volume ∆V , we know that the left-hand integral
is ∇ · j∆V . The charge inside is ρ∆V , so the conservation of charge can also
be written as

∇ · j = −∂ρ
∂t

(13.8)

(Gauss’ mathematics once again!).

13-3 The magnetic force on a current

Now we are ready to find the force on a current-carrying wire in a magnetic
field. The current consists of charged particles moving with the velocity v along
the wire. Each charge feels a transverse force

F = qv ×B

(Fig. 13-5a). If there are N such charges per unit volume, the number in a small

∆L

I

B

(a)

F

q
v

∆L

I

B

(b)

j

∆F

Fig. 13-5. The magnetic force on a current-carrying wire is the sum
of the forces on the individual moving charges.

13-5



volume ∆V of the wire is N ∆V . The total magnetic force ∆F on the volume ∆V
is the sum of the forces on the individual charges, that is,

∆F = (N ∆V )(qv ×B).
But Nqv is just j, so

∆F = j ×B∆V (13.9)

(Fig. 13-5b). The force per unit volume is j ×B.
If the current is uniform across a wire whose cross-sectional area is A, we may

take as the volume element a cylinder with the base area A and the length ∆L.
Then

∆F = j ×BA∆L. (13.10)

Now we can call jA the vector current I in the wire. (Its magnitude is the
electric current in the wire, and its direction is along the wire.) Then

∆F = I ×B∆L. (13.11)

The force per unit length on a wire is I ×B.
This equation gives the important result that the magnetic force on a wire,

due to the movement of charges in it, depends only on the total current, and not
on the amount of charge carried by each particle—or even its sign! The magnetic
force on a wire near a magnet is easily shown by observing its deflection when a
current is turned on, as was described in Chapter 1 (see Fig. 1-6).

13-4 The magnetic field of steady currents; Ampère’s law

We have seen that there is a force on a wire in the presence of a magnetic field,
produced, say, by a magnet. From the principle that action equals reaction we
might expect that there should be a force on the source of the magnetic field, i.e.,
on the magnet, when there is a current through the wire.* There are indeed such
forces, as is seen by the deflection of a compass needle near a current-carrying
wire. Now we know that magnets feel forces from other magnets, so that means
that when there is a current in a wire, the wire itself generates a magnetic field.
Moving charges, then, produce a magnetic field. We would like now to try to
discover the laws that determine how such magnetic fields are created. The

* We will see later, however, that such assumptions are not generally correct for electromag-
netic forces!
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question is: Given a current, what magnetic field does it make? The answer to
this question was determined experimentally by three critical experiments and a
brilliant theoretical argument given by Ampère. We will pass over this interesting
historical development and simply say that a large number of experiments have
demonstrated the validity of Maxwell’s equations. We take them as our starting
point. If we drop the terms involving time derivatives in these equations we get
the equations of magnetostatics:

∇ ·B = 0 (13.12)
and

c2∇×B = j

ε0
. (13.13)

These equations are valid only if all electric charge densities are constant and
all currents are steady, so that the electric and magnetic fields are not changing
with time—all of the fields are “static.”

We may remark that it is rather dangerous to think that there is such a
thing as a static magnetic situation, because there must be currents in order to
get a magnetic field at all—and currents can come only from moving charges.
“Magnetostatics” is, therefore, an approximation. It refers to a special kind
of dynamic situation with large numbers of charges in motion, which we can
approximate by a steady flow of charge. Only then can we speak of a current
density j which does not change with time. The subject should more accurately
be called the study of steady currents. Assuming that all fields are steady, we drop
all terms in ∂E/∂t and ∂B/∂t from the complete Maxwell equations, Eqs. (2.41),
and obtain the two equations (13.12) and (13.13) above. Also notice that since
the divergence of the curl of any vector is necessarily zero, Eq. (13.13) requires
that ∇ · j = 0. This is true, by Eq. (13.8), only if ∂ρ/∂t is zero. But that must
be so if E is not changing with time, so our assumptions are consistent.

The requirement that ∇ · j = 0 means that we may only have charges which
flow in paths that close back on themselves. They may, for instance, flow in wires
that form complete loops—called circuits. The circuits may, of course, contain
generators or batteries that keep the charges flowing. But they may not include
condensers which are charging or discharging. (We will, of course, extend the
theory later to include dynamic fields, but we want first to take the simpler case
of steady currents.)

Now let us look at Eqs. (13.12) and (13.13) to see what they mean. The
first one says that the divergence of B is zero. Comparing it to the analogous
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equation in electrostatics, which says that ∇ ·E = −ρ/ε0, we can conclude that
there is no magnetic analog of an electric charge. There are no magnetic charges
from which lines of B can emerge. If we think in terms of “lines” of the vector
field B, they can never start and they never stop. Then where do they come
from? Magnetic fields “appear” in the presence of currents; they have a curl
proportional to the current density. Wherever there are currents, there are lines
of magnetic field making loops around the currents. Since lines of B do not begin
or end, they will often close back on themselves, making closed loops. But there
can also be complicated situations in which the lines are not simple closed loops.
But whatever they do, they never diverge from points. No magnetic charges have
ever been discovered, so∇ ·B = 0. This much is true not only for magnetostatics,
it is always true—even for dynamic fields.

The connection between the B field and currents is contained in Eq. (13.13).
Here we have a new kind of situation which is quite different from electrostatics,
where we had ∇ × E = 0. That equation meant that the line integral of E
around any closed path is zero: ∮

loop

E · ds = 0.

We got that result from Stokes’ theorem, which says that the integral around
any closed path of any vector field is equal to the surface integral of the normal
component of the curl of the vector (taken over any surface which has the closed
loop as its periphery). Applying the same theorem to the magnetic field vector
and using the symbols shown in Fig. 13-6, we get∮

Γ
B · ds =

∫
S

(∇×B) · n dS. (13.14)

Taking the curl of B from Eq. (13.13), we have∮
Γ
B · ds = 1

ε0c2

∫
S

j · n dS. (13.15)

The integral over S, according to (13.5), is the total current I through the
surface S. Since for steady currents the current through S is independent of
the shape of S, so long as it is bounded by the curve Γ, one usually speaks of
“the current through the loop Γ.” We have, then, a general law: the circulation
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Fig. 13-6. The line integral of the tangential component of B is equal
to the surface integral of the normal component of ∇× B.

of B around any closed curve is equal to the current I through the loop, divided
by ε0c2: ∮

Γ
B · ds = Ithrough Γ

ε0c2
. (13.16)

This law—called Ampère’s law—plays the same role in magnetostatics that Gauss’
law played in electrostatics. Ampère’s law alone does not determine B from
currents; we must, in general, also use ∇ ·B = 0. But, as we will see in the
next section, it can be used to find the field in special circumstances which have
certain simple symmetries.

13-5 The magnetic field of a straight wire and of a solenoid; atomic currents

We can illustrate the use of Ampère’s law by finding the magnetic field near
a wire. We ask: What is the field outside a long straight wire with a cylindrical
cross section? We will assume something which may not be at all evident, but
which is nevertheless true: that the field lines of B go around the wire in closed
circles. If we make this assumption, then Ampère’s law, Eq. (13.16), tells us
how strong the field is. From the symmetry of the problem, B has the same
magnitude at all points on a circle concentric with the wire (see Fig. 13-7). We
can then do the line integral of B · ds quite easily; it is just the magnitude of B
times the circumference. If r is the radius of the circle, then∮

B · ds = B · 2πr.
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Fig. 13-7. The magnetic field outside of a long wire carrying the
current I.

The total current through the loop is merely the current I in the wire, so

B · 2πr = I

ε0c2
,

or
B = 1

4πε0c2
2I
r
. (13.17)

The strength of the magnetic field drops off inversely as r, the distance from
the axis of the wire. We can, if we wish, write Eq. (13.17) in vector form.
Remembering that B is at right angles both to I and to r, we have

B = 1
4πε0c2

2I × er
r

. (13.18)

We have separated out the factor 1/4πε0c2, because it appears often. It is worth
remembering that it is exactly 10−7 (in the mks system), since an equation
like (13.17) is used to define the unit of current, the ampere. At one meter from
a current of one ampere the magnetic field is 2× 10−7 webers per square meter.

Since a current produces a magnetic field, it will exert a force on a nearby
wire which is also carrying a current. In Chapter 1 we described a simple
demonstration of the forces between two current-carrying wires. If the wires are
parallel, each is at right angles to the B field of the other; the wires should then
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be pushed either toward or away from each other. When currents are in the same
direction, the wires attract; when the currents are moving in opposite directions,
the wires repel.

L

B0

Γ

I

LINES
OF B0

Fig. 13-8. The magnetic field of a long solenoid.

Let’s take another example that can be analyzed by Ampère’s law if we add
some knowledge about the field. Suppose we have a long coil of wire wound in a
tight spiral, as shown by the cross sections in Fig. 13-8. Such a coil is called a
solenoid. We observe experimentally that when a solenoid is very long compared
with its diameter, the field outside is very small compared with the field inside.
Using just that fact, together with Ampère’s law, we can find the size of the field
inside.

Since the field stays inside (and has zero divergence), its lines must go along
parallel to the axis, as shown in Fig. 13-8. That being the case, we can use
Ampère’s law with the rectangular “curve” Γ shown in the figure. This loop goes
the distance L inside the solenoid, where the field is, say, B0, then goes at right
angles to the field, and returns along the outside, where the field is negligible.
The line integral of B for this curve is just B0L, and it must be 1/ε0c2 times the
total current through Γ, which is NI if there are N turns of the solenoid in the
length L. We have

B0L = NI

ε0c2
.

Or, letting n be the number of turns per unit length of the solenoid (that is,
n = N/L), we get

B0 = nI

ε0c2
. (13.19)
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Fig. 13-9. The magnetic field outside of a solenoid.

What happens to the lines of B when they get to the end of the solenoid?
Presumably, they spread out in some way and return to enter the solenoid at the
other end, as sketched in Fig. 13-9. Such a field is just what is observed outside
of a bar magnet. But what is a magnet anyway? Our equations say that B
comes from the presence of currents. Yet we know that ordinary bars of iron
(no batteries or generators) also produce magnetic fields. You might expect that
there should be some other terms on the right-hand side of (13.12) or (13.13) to
represent “the density of magnetic iron” or some such quantity. But there is no
such term. Our theory says that the magnetic effects of iron come from some
internal currents which are already taken care of by the j term.

Matter is very complex when looked at from a fundamental point of view—as
we saw when we tried to understand dielectrics. In order not to interrupt our
present discussion, we will wait until later to deal in detail with the interior
mechanisms of magnetic materials like iron: You will have to accept, for the
moment, that all magnetism is produced from currents, and that in a permanent
magnet there are permanent internal currents. In the case of iron, these currents
come from electrons spinning around their own axes. Every electron has such
a spin, which corresponds to a tiny circulating current. Of course, one electron
doesn’t produce much magnetic field, but in an ordinary piece of matter there are
billions and billions of electrons. Normally these spin and point every which way,
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so that there is no net effect. The miracle is that in a very few substances, like
iron, a large fraction of the electrons spin with their axes in the same direction—
for iron, two electrons of each atom take part in this cooperative motion. In a bar
magnet there are large numbers of electrons all spinning in the same direction
and, as we will see, their total effect is equivalent to a current circulating on the
surface of the bar. (This is quite analogous to what we found for dielectrics—that
a uniformly polarized dielectric is equivalent to a distribution of charges on its
surface.) It is, therefore, no accident that a bar magnet is equivalent to a solenoid.

13-6 The relativity of magnetic and electric fields

When we said that the magnetic force on a charge was proportional to its
velocity, you may have wondered: “What velocity? With respect to which
reference frame?” It is, in fact, clear from the definition of B given at the
beginning of this chapter that what this vector is will depend on what we choose
as a reference frame for our specification of the velocity of charges. But we have
said nothing about which is the proper frame for specifying the magnetic field.

It turns out that any inertial frame will do. We will also see that magnetism
and electricity are not independent things—that they should always be taken
together as one complete electromagnetic field. Although in the static case
Maxwell’s equations separate into two distinct pairs, one pair for electricity and
one pair for magnetism, with no apparent connection between the two fields,
nevertheless, in nature itself there is a very intimate relationship between them
that arises from the principle of relativity. Historically, the principle of relativity
was discovered after Maxwell’s equations. It was, in fact, the study of electricity
and magnetism which led ultimately to Einstein’s discovery of his principle of
relativity. But let’s see what our knowledge of relativity would tell us about
magnetic forces if we assume that the relativity principle is applicable—as it
is—to electromagnetism.

Suppose we think about what happens when a negative charge moves with
velocity v0 parallel to a current-carrying wire, as in Fig. 13-10. We will try to
understand what goes on in two reference frames: one fixed with respect to the
wire, as in part (a) of the figure, and one fixed with respect to the particle, as in
part (b). We will call the first frame S and the second S′.

In the S-frame, there is clearly a magnetic force on the particle. The force
is directed toward the wire, so if the charge were moving freely we would see it
curve in toward the wire. But in the S′-frame there can be no magnetic force
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Fig. 13-10. The interaction of a current-carrying wire and a particle
with the charge q as seen in two frames. In frame S (part a), the wire
is at rest; in frame S′ (part b), the charge is at rest.

on the particle, because its velocity is zero. Does it, therefore, stay where it is?
Would we see different things happening in the two systems? The principle of
relativity would say that in S′ we should also see the particle move closer to the
wire. We must try to understand why that would happen.

We return to our atomic description of a wire carrying a current. In a normal
conductor, like copper, the electric currents come from the motion of some of the
negative electrons—called the conduction electrons—while the positive nuclear
charges and the remainder of the electrons stay fixed in the body of the material.
We let the charge density of the conduction electrons be ρ− and their velocity
in S be v. The density of the charges at rest in S is ρ+, which must be equal to
the negative of ρ−, since we are considering an uncharged wire. There is thus no
electric field outside the wire, and the force on the moving particle is just

F = qv0 ×B.

Using the result we found in Eq. (13.18) for the magnetic field at the distance r
from the axis of a wire, we conclude that the force on the particle is directed
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toward the wire and has the magnitude

F = 1
4πε0c2

· 2Iqv0

r
.

Using Eqs. (13.3) and (13.5), the current I can be written as ρ−vA, where A is
the area of a cross section of the wire. Then

F = 1
4πε0c2

· 2qρ−Avv0

r
. (13.20)

We could continue to treat the general case of arbitrary velocities for v and v0,
but it will be just as good to look at the special case in which the velocity v0
of the particle is the same as the velocity v of the conduction electrons. So we
write v0 = v, and Eq. (13.20) becomes

F = q

2πε0
ρ−A

r

v2

c2
. (13.21)

Now we turn our attention to what happens in S′, in which the particle is at
rest and the wire is running past (toward the left in the figure) with the speed v.
The positive charges moving with the wire will make some magnetic field B′ at
the particle. But the particle is now at rest, so there is no magnetic force on it!
If there is any force on the particle, it must come from an electric field. It must
be that the moving wire has produced an electric field. But it can do that only if
it appears charged—it must be that a neutral wire with a current appears to be
charged when set in motion.

We must look into this. We must try to compute the charge density in the
wire in S′ from what we know about it in S. One might, at first, think they
are the same; but we know that lengths are changed between S and S′ (see
Chapter 15, Vol. I), so volumes will change also. Since the charge densities
depend on the volume occupied by charges, the densities will change, too.

Before we can decide about the charge densities in S′, we must know what
happens to the electric charge of a bunch of electrons when the charges are
moving. We know that the apparent mass of a particle changes by 1/

√
1− v2/c2.

Does its charge do something similar? No! Charges are always the same, moving
or not. Otherwise we would not always observe that the total charge is conserved.

Suppose that we take a block of material, say a conductor, which is initially
uncharged. Now we heat it up. Because the electrons have a different mass

13-15



than the protons, the velocities of the electrons and of the protons will change
by different amounts. If the charge of a particle depended on the speed of the
particle carrying it, in the heated block the charge of the electrons and protons
would no longer balance. A block would become charged when heated. As we
have seen earlier, a very small fractional change in the charge of all the electrons
in a block would give rise to enormous electric fields. No such effect has ever
been observed.

Also, we can point out that the mean speed of the electrons in matter depends
on its chemical composition. If the charge on an electron changed with speed,
the net charge in a piece of material would be changed in a chemical reaction.
Again, a straightforward calculation shows that even a very small dependence of
charge on speed would give enormous fields from the simplest chemical reactions.
No such effect is observed, and we conclude that the electric charge of a single
particle is independent of its state of motion.

So the charge q on a particle is an invariant scalar quantity, independent of
the frame of reference. That means that in any frame the charge density of a
distribution of electrons is just proportional to the number of electrons per unit
volume. We need only worry about the fact that the volume can change because
of the relativistic contraction of distances.

We now apply these ideas to our moving wire. If we take a length L0 of the
wire, in which there is a charge density ρ0 of stationary charges, it will contain the
total charge Q = ρ0L0A0. If the same charges are observed in a different frame
to be moving with velocity v, they will all be found in a piece of the material
with the shorter length

L = L0
√

1− v2/c2, (13.22)

but with the same area A0 (since dimensions transverse to the motion are
unchanged). See Fig. 13-11.

If we call ρ the density of charges in the frame in which they are moving, the
total charge Q will be ρLA0. This must also be equal to ρ0L0A0, because charge
is the same in any system, so that ρL = ρ0L0 or, from (13.22),

ρ = ρ0√
1− v2/c2

. (13.23)

The charge density of a moving distribution of charges varies in the same way as
the relativistic mass of a particle.
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Fig. 13-11. If a distribution of charged particles at rest has the charge
density ρ0, the same charges will have the density ρ = ρ0/

√
1− v 2/c2

when seen from a frame with the relative velocity v .

We now use this general result for the positive charge density ρ+ of our wire.
These charges are at rest in frame S. In S′, however, where the wire moves with
the speed v, the positive charge density becomes

ρ′+ = ρ+√
1− v2/c2

. (13.24)

The negative charges are at rest in S′. So they have their “rest density” ρ0 in
this frame. In Eq. (13.23) ρ0 = ρ′−, because they have the density ρ− when the
wire is at rest, i.e., in frame S, where the speed of the negative charges is v. For
the conduction electrons, we then have that

ρ− =
ρ′−√

1− v2/c2
, (13.25)

or
ρ′− = ρ−

√
1− v2/c2. (13.26)
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Now we can see why there are electric fields in S′—because in this frame the
wire has the net charge density ρ′ given by

ρ′ = ρ′+ + ρ′−.

Using (13.24) and (13.26), we have

ρ′ = ρ+√
1− v2/c2

+ ρ−
√

1− v2/c2.

Since the stationary wire is neutral, ρ− = −ρ+, and we have

ρ′ = ρ+
v2/c2√

1− v2/c2
. (13.27)

Our moving wire is positively charged and will produce an electric field E′ at the
external stationary particle. We have already solved the electrostatic problem of
a uniformly charged cylinder. The electric field at the distance r from the axis of
the cylinder is

E′ = ρ′A

2πε0r
= ρ+Av

2/c2

2πε0r
√

1− v2/c2
. (13.28)

The force on the negatively charged particle is toward the wire. We have, at
least, a force in the same direction from the two points of view; the electric force
in S′ has the same direction as the magnetic force in S.

The magnitude of the force in S′ is

F ′ = q

2πε0
ρ+A

r

v2/c2√
1− v2/c2

. (13.29)

Comparing this result for F ′ with our result for F in Eq. (13.21), we see that
the magnitudes of the forces are almost identical from the two points of view. In
fact,

F ′ = F√
1− v2/c2

, (13.30)

so for the small velocities we have been considering, the two forces are equal.
We can say that for low velocities, at least, we understand that magnetism and
electricity are just “two ways of looking at the same thing.”
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But things are even better than that. If we take into account the fact that
forces also transform when we go from one system to the other, we find that the
two ways of looking at what happens do indeed give the same physical result for
any velocity.

One way of seeing this is to ask a question like: What transverse momentum
will the particle have after the force has acted for a little while? We know from
Chapter 16 of Vol. I that the transverse momentum of a particle should be the
same in both the S- and S′-frames. Calling the transverse coordinate y, we want
to compare ∆py and ∆p′y. Using the relativistically correct equation of motion,
F = dp/dt, we expect that after the time ∆t our particle will have a transverse
momentum ∆py in the S-system given by

∆py = F ∆t. (13.31)

In the S′-system, the transverse momentum will be

∆p′y = F ′∆t′. (13.32)

We must, of course, compare ∆py and ∆p′y for corresponding time intervals ∆t
and ∆t′. We have seen in Chapter 15 of Vol. I that the time intervals referred
to a moving particle appear to be longer than those in the rest system of the
particle. Since our particle is initially at rest in S′, we expect, for small ∆t, that

∆t = ∆t′√
1− v2/c2

, (13.33)

and everything comes out O.K. From (13.31) and (13.32),

∆p′y
∆py

= F ′∆t′
F ∆t ,

which is just = 1 if we combine (13.30) and (13.33).
We have found that we get the same physical result whether we analyze the

motion of a particle moving along a wire in a coordinate system at rest with
respect to the wire, or in a system at rest with respect to the particle. In the first
instance, the force was purely “magnetic,” in the second, it was purely “electric.”
The two points of view are illustrated in Fig. 13-12 (although there is still a
magnetic field B′ in the second frame, it produces no forces on the stationary
particle).
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j

B

ρ = 0

S′

j ′

B′

ρ′ 6= 0

E′

Fig. 13-12. In frame S the charge density is zero and the current
density is j . There is only a magnetic field. In S′, there is a charge
density ρ′ and a different current density j ′. The magnetic field B′ is
different and there is an electric field E ′.

If we had chosen still another coordinate system, we would have found a
different mixture of E and B fields. Electric and magnetic forces are part of
one physical phenomenon—the electromagnetic interactions of particles. The
separation of this interaction into electric and magnetic parts depends very much
on the reference frame chosen for the description. But a complete electromagnetic
description is invariant; electricity and magnetism taken together are consistent
with Einstein’s relativity.

Since electric and magnetic fields appear in different mixtures if we change
our frame of reference, we must be careful about how we look at the fields E
and B. For instance, if we think of “lines” of E or B, we must not attach too
much reality to them. The lines may disappear if we try to observe them from a
different coordinate system. For example, in system S′ there are electric field
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lines, which we do not find “moving past us with velocity v in system S.” In
system S there are no electric field lines at all! Therefore it makes no sense to
say something like: When I move a magnet, it takes its field with it, so the lines
of B are also moved. There is no way to make sense, in general, out of the idea
of “the speed of a moving field line.” The fields are our way of describing what
goes on at a point in space. In particular, E and B tell us about the forces that
will act on a moving particle. The question “What is the force on a charge from
a moving magnetic field?” doesn’t mean anything precise. The force is given by
the values of E and B at the charge, and the formula (13.1) is not to be altered
if the source of E or B is moving (it is the values of E and B that will be altered
by the motion). Our mathematical description deals only with the fields as a
function of x, y, z, and t with respect to some inertial frame.

We will later be speaking of “a wave of electric and magnetic fields travelling
through space,” as, for instance, a light wave. But that is like speaking of a wave
travelling on a string. We don’t then mean that some part of the string is moving
in the direction of the wave, we mean that the displacement of the string appears
first at one place and later at another. Similarly, in an electromagnetic wave,
the wave travels; but the magnitude of the fields change. So in the future when
we—or someone else—speaks of a “moving” field, you should think of it as just a
handy, short way of describing a changing field in some circumstances.

13-7 The transformation of currents and charges

You may have worried about the simplification we made above when we
took the same velocity v for the particle and for the conduction electrons in the
wire. We could go back and carry through the analysis again for two different
velocities, but it is easier to simply notice that charge and current density are
the components of a four-vector (see Chapter 17, Vol. I).

We have seen that if ρ0 is the density of the charges in their rest frame, then
in a frame in which they have the velocity v, the density is

ρ = ρ0√
1− v2/c2

.

In that frame their current density is

j = ρv = ρ0v√
1− v2/c2

. (13.34)
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Now we know that the energy U and momentum p of a particle moving with
velocity v are given by

U = m0c
2√

1− v2/c2
, p = m0v√

1− v2/c2
,

where m0 is its rest mass. We also know that U and p form a relativistic four-
vector. Since ρ and j depend on the velocity v exactly as do U and p, we can
conclude that ρ and j are also the components of a relativistic four-vector. This
property is the key to a general analysis of the field of a wire moving with any
velocity, which we would need if we want to do the problem again with the
velocity v0 of the particle different from the velocity of the conduction electrons.

If we wish to transform ρ and j to a coordinate system moving with a
velocity u in the x-direction, we know that they transform just like t and (x, y, z),
so that we have (see Chapter 15, Vol. I)

x′ = x− ut√
1− u2/c2

, j′x = jx − uρ√
1− u2/c2

y′ = y, j′y = jy,

z′ = z, j′z = jz,

t′ = t− ux/c2√
1− u2/c2

, ρ′ = ρ− ujx/c2√
1− u2/c2

. (13.35)

With these equations we can relate charges and currents in one frame to those
in another. Taking the charges and currents in either frame, we can solve the
electromagnetic problem in that frame by using our Maxwell equations. The
result we obtain for the motions of particles will be the same no matter which
frame we choose. We will return at a later time to the relativistic transformations
of the electromagnetic fields.

13-8 Superposition; the right-hand rule

We will conclude this chapter by making two further points regarding the
subject of magnetostatics. First, our basic equations for the magnetic field,

∇ ·B = 0, ∇×B = j/c2ε0,
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are linear in B and j. That means that the principle of superposition also applies
to magnetic fields. The field produced by two different steady currents is the
sum of the individual fields from each current acting alone. Our second remark
concerns the right-hand rules which we have encountered (such as the right-hand
rule for the magnetic field produced by a current). We have also observed that
the magnetization of an iron magnet is to be understood from the spin of the
electrons in the material. The direction of the magnetic field of a spinning electron
is related to its spin axis by the same right-hand rule. Because B is determined
by a “handed” rule—involving either a cross product or a curl—it is called an
axial vector. (Vectors whose direction in space does not depend on a reference to
a right or left hand are called polar vectors. Displacement, velocity, force, and E,
for example, are polar vectors.)

Physically observable quantities in electromagnetism are not, however, right-
(or left-) handed. Electromagnetic interactions are symmetrical under reflection
(see Chapter 52, Vol. I). Whenever magnetic forces between two sets of currents are
computed, the result is invariant with respect to a change in the hand convention.
Our equations lead, independently of the right-hand convention, to the end result
that parallel currents attract, or that currents in opposite directions repel. (Try
working out the force using “left-hand rules.”) An attraction or repulsion is a
polar vector. This happens because in describing any complete interaction, we
use the right-hand rule twice—once to find B from currents, again to find the
force this B produces on a second current. Using the right-hand rule twice is
the same as using the left-hand rule twice. If we were to change our conventions
to a left-hand system all our B fields would be reversed, but all forces—or,
what is perhaps more relevant, the observed accelerations of objects—would be
unchanged.

Although physicists have recently found to their surprise that all the laws of
nature are not always invariant for mirror reflections, the laws of electromagnetism
do have such a basic symmetry.
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14

The Magnetic Field in Various Situations

14-1 The vector potential

In this chapter we continue our discussion of magnetic fields associated with
steady currents—the subject of magnetostatics. The magnetic field is related to
electric currents by our basic equations

∇ ·B = 0, (14.1)

c2∇×B = j

ε0
. (14.2)

We want now to solve these equations mathematically in a general way, that is,
without requiring any special symmetry or intuitive guessing. In electrostatics,
we found that there was a straightforward procedure for finding the field when
the positions of all electric charges are known: One simply works out the scalar
potential φ by taking an integral over the charges—as in Eq. (4.25). Then if one
wants the electric field, it is obtained from the derivatives of φ. We will now show
that there is a corresponding procedure for finding the magnetic field B if we
know the current density j of all moving charges.

In electrostatics we saw that (because the curl of E was always zero) it was
possible to represent E as the gradient of a scalar field φ. Now the curl of B
is not always zero, so it is not possible, in general, to represent it as a gradient.
However, the divergence of B is always zero, and this means that we can always
represent B as the curl of another vector field. For, as we saw in Section 2-8,
the divergence of a curl is always zero. Thus we can always relate B to a field
we will call A by

B =∇×A. (14.3)
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Or, by writing out the components,

Bx = (∇×A)x = ∂Az
∂y
− ∂Ay

∂z
,

By = (∇×A)y = ∂Ax
∂z
− ∂Az

∂x
,

Bz = (∇×A)z = ∂Ay
∂x
− ∂Ax

∂y
.

(14.4)

Writing B =∇×A guarantees that Eq. (14.1) is satisfied, since, necessarily,

∇ ·B =∇ · (∇×A) = 0.

The field A is called the vector potential.
You will remember that the scalar potential φ was not completely specified by

its definition. If we have found φ for some problem, we can always find another
potential φ′ that is equally good by adding a constant:

φ′ = φ+ C.

The new potential φ′ gives the same electric fields, since the gradient ∇C is zero;
φ′ and φ represent the same physics.

Similarly, we can have different vector potentials A which give the same
magnetic fields. Again, because B is obtained from A by differentiation, adding a
constant to A doesn’t change anything physical. But there is even more latitude
for A. We can add to A any field which is the gradient of some scalar field,
without changing the physics. We can show this as follows. Suppose we have
an A that gives correctly the magnetic field B for some real situation, and
ask in what circumstances some other new vector potential A′ will give the
same field B if substituted into (14.3). Then A and A′ must have the same
curl:

B =∇×A′ =∇×A.
Therefore

∇×A′ −∇×A =∇× (A′ −A) = 0.

But if the curl of a vector is zero it must be the gradient of some scalar field,
say ψ, so A′ −A =∇ψ. That means that if A is a satisfactory vector potential
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for a problem then, for any ψ, at all,

A′ = A+∇ψ (14.5)

will be an equally satisfactory vector potential, leading to the same field B.
It is usually convenient to take some of the “latitude” out of A by arbitrarily

placing some other condition on it (in much the same way that we found it
convenient—often—to choose to make the potential φ zero at large distances).
We can, for instance, restrict A by choosing arbitrarily what the divergence of A
must be. We can always do that without affecting B. This is because although
A′ and A have the same curl, and give the same B, they do not need to have
the same divergence. In fact, ∇ ·A′ = ∇ ·A+∇2ψ, and by a suitable choice
of ψ we can make ∇ ·A′ anything we wish.

What should we choose for ∇ ·A? The choice should be made to get the
greatest mathematical convenience and will depend on the problem we are doing.
For magnetostatics, we will make the simple choice

∇ ·A = 0. (14.6)

(Later, when we take up electrodynamics, we will change our choice.) Our complete
definition* of A is then, for the moment, ∇×A = B and ∇ ·A = 0.

To get some experience with the vector potential, let’s look first at what it is
for a uniform magnetic field B0. Taking our z-axis in the direction of B0, we
must have

Bx = ∂Az
∂y
− ∂Ay

∂z
= 0,

By = ∂Ax
∂z
− ∂Az

∂x
= 0,

Bz = ∂Ay
∂x
− ∂Ax

∂y
= B0.

(14.7)

By inspection, we see that one possible solution of these equations is

Ay = xB0, Ax = 0, Az = 0.

* Our definition still does not uniquely determine A. For a unique specification we would
also have to say something about how the field A behaves on some boundary, or at large
distances. It is sometimes convenient, for example, to choose a field which goes to zero at large
distances.
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Or we could equally well take

Ax = −yB0, Ay = 0, Az = 0.

Still another solution is a linear combination of the two:

Ax = − 1
2yB0, Ay = 1

2xB0, Az = 0. (14.8)

It is clear that for any particular field B, the vector potential A is not unique;
there are many possibilities.

The third solution, Eq. (14.8), has some interesting properties. Since the
x-component is proportional to −y and the y-component is proportional to +x,
A must be at right angles to the vector from the z-axis, which we will call r′ (the
“prime” is to remind us that it is not the vector displacement from the origin).
Also, the magnitude of A is proportional to

√
x2 + y2 and, hence, to r′. So A

can be simply written (for our uniform field) as

A = 1
2B0 × r′. (14.9)

x

y

Ax

AyA

A

A

r ′

r ′

r ′

Fig. 14-1. A uniform magnetic field B in the z-direction corresponds
to a vector potential A that rotates about the z-axis, with the magni-
tude A = Br ′/2 (r ′ is the displacement from the z-axis).
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The vector potential A has the magnitude B0r
′/2 and rotates about the z-axis as

shown in Fig. 14-1. If, for example, the B field is the axial field inside a solenoid,
then the vector potential circulates in the same sense as do the currents of the
solenoid.

The vector potential for a uniform field can be obtained in another way. The
circulation of A on any closed loop Γ can be related to the surface integral
of ∇×A by Stokes’ theorem, Eq. (3.38):∮

Γ
A · ds =

∫
inside Γ

(∇×A) · n da. (14.10)

But the integral on the right is equal to the flux of B through the loop, so∮
Γ
A · ds =

∫
inside Γ

B · n da. (14.11)

So the circulation of A around any loop is equal to the flux of B through the
loop. If we take a circular loop, of radius r′ in a plane perpendicular to a uniform
field B, the flux is just

πr′2B.

If we choose our origin on an axis of symmetry, so that we can take A as
circumferential and a function only of r′, the circulation will be∮

A · ds = 2πr′A = πr′2B.

We get, as before,

A = Br′

2 .

In the example we have just given, we have calculated the vector potential from
the magnetic field, which is opposite to what one normally does. In complicated
problems it is usually easier to solve for the vector potential, and then determine
the magnetic field from it. We will now show how this can be done.

14-2 The vector potential of known currents
Since B is determined by currents, so also is A. We want now to find A in

terms of the currents. We start with our basic equation (14.2):

c2∇×B = j

ε0
,
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which means, of course, that

c2∇× (∇×A) = j

ε0
. (14.12)

This equation is for magnetostatics what the equation

∇ ·∇φ = − ρ

ε0
(14.13)

was for electrostatics.
Our equation (14.12) for the vector potential looks even more like that for φ

if we rewrite ∇× (∇×A) using the vector identity Eq. (2.58):

∇× (∇×A) =∇(∇ ·A)−∇2A. (14.14)

Since we have chosen to make ∇ ·A = 0 (and now you see why), Eq. (14.12)
becomes

∇2A = − j

ε0c2
. (14.15)

This vector equation means, of course, three equations:

∇2Ax = − jx
ε0c2

, ∇2Ay = − jy
ε0c2

, ∇2Az = − jz
ε0c2

. (14.16)

And each of these equations is mathematically identical to

∇2φ = − ρ

ε0
. (14.17)

All we have learned about solving for potentials when ρ is known can be used for
solving for each component of A when j is known!

We have seen in Chapter 4 that a general solution for the electrostatic
equation (14.17) is

φ(1) = 1
4πε0

∫
ρ(2) dV2

r12
.

So we know immediately that a general solution for Ax is

Ax(1) = 1
4πε0c2

∫
jx(2) dV2

r12
, (14.18)
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1

2

dV2

r12

Fig. 14-2. The vector potential A at point 1 is given by an integral
over the current elements j dV at all points 2.

and similarly for Ay and Az. (Figure 14-2 will remind you of our conventions for
r12 and dV2.) We can combine the three solutions in the vector form

A(1) = 1
4πε0c2

∫
j(2) dV2

r12
, (14.19)

(You can verify if you wish, by direct differentiation of components, that this
integral for A satisfies ∇ ·A = 0 so long as ∇ · j = 0, which, as we saw, must
happen for steady currents.)

We have, then, a general method for finding the magnetic field of steady
currents. The principle is: the x-component of vector potential arising from a
current density j is the same as the electric potential φ that would be produced
by a charge density ρ equal to jx/c2—and similarly for the y- and z-components.
(This principle works only with components in fixed directions. The “radial”
component of A does not come in the same way from the “radial” component
of j, for example.) So from the vector current density j, we can find A using
Eq. (14.19)—that is, we find each component of A by solving three imaginary
electrostatic problems for the charge distributions ρ1 = jx/c

2, ρ2 = jy/c
2,

and ρ3 = jz/c
2. Then we getB by taking various derivatives ofA to obtain∇×A.

It’s a little more complicated than electrostatics, but the same idea. We will now
illustrate the theory by solving for the vector potential in a few special cases.

14-3 A straight wire

For our first example, we will again find the field of a straight wire—which we
solved in the last chapter by using Eq. (14.2) and some arguments of symmetry.
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P
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j

I

Fig. 14-3. A long cylindrical wire along the z-axis with a uniform
current density j .

We take a long straight wire of radius a, carrying the steady current I. Unlike
the charge on a conductor in the electrostatic case, a steady current in a wire
is uniformly distributed throughout the cross section of the wire. If we choose
our coordinates as shown in Fig. 14-3, the current density vector j has only a
z-component. Its magnitude is

jz = I

πa2 (14.20)

inside the wire, and zero outside.
Since jx and jy are both zero, we have immediately

Ax = 0, Ay = 0.

To get Az we can use our solution for the electrostatic potential φ of a wire with a
uniform charge density ρ = jz/c

2. For points outside an infinite charged cylinder,
the electrostatic potential is

φ = − λ

2πε0
ln r′,
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where r′ =
√
x2 + y2 and λ is the charge per unit length, πa2ρ. So Az must be

Az = − πa2jz
2πε0c2

ln r′

for points outside a long wire carrying a uniform current. Since πa2jz = I, we
can also write

Az = − I

2πε0c2
ln r′ (14.21)

Now we can find B from (14.4). There are only two of the six derivatives
that are not zero. We get

Bx = − I

2πε0c2
∂

∂y
ln r′ = − I

2πε0c2
y

r′2
, (14.22)

By = I

2πε0c2
∂

∂x
ln r′ = I

2πε0c2
x

r′2
, (14.23)

Bz = 0.

We get the same result as before:B circles around the wire, and has the magnitude

B = 1
4πε0c2

2I
r′
. (14.24)

14-4 A long solenoid

Next, we consider again the infinitely long solenoid with a circumferential
current on the surface of nI per unit length. (We imagine there are n turns of
wire per unit length, carrying the current I, and we neglect the slight pitch of
the winding.)

Just as we have defined a “surface charge density” σ, we define here a “surface
current density” J equal to the current per unit length on the surface of the
solenoid (which is, of course, just the average j times the thickness of the thin
winding). The magnitude of J is, here, nI. This surface current (see Fig. 14-4)
has the components:

Jx = −J sinφ, Jy = J cosφ, Jz = 0.

Now we must find A for such a current distribution.
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Fig. 14-4. A long solenoid with a surface current density J.

First, we wish to find Ax for points outside the solenoid. The result is the
same as the electrostatic potential outside a cylinder with a surface charge density

σ = σ0 sinφ,

with σ0 = −J/c2. We have not solved such a charge distribution, but we have done
something similar. This charge distribution is equivalent to two solid cylinders of
charge, one positive and one negative, with a slight relative displacement of their
axes in the y-direction. The potential of such a pair of cylinders is proportional
to the derivative with respect to y of the potential of a single uniformly charged
cylinder. We could work out the constant of proportionality, but let’s not worry
about it for the moment.

The potential of a cylinder of charge is proportional to ln r′; the potential of
the pair is then

φ ∝ ∂ln r′
∂y

= y

r′2
.

So we know that
Ax = −K y

r′2
, (14.25)
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where K is some constant. Following the same argument, we would find

Ay = K
x

r′2
. (14.26)

Although we said before that there was no magnetic field outside a solenoid,
we find now that there is an A-field which circulates around the z-axis, as in
Fig. 14-4. The question is: Is its curl zero?

Clearly, Bx and By are zero, and

Bz = ∂

∂x

(
K

x

r′2

)
− ∂

∂y

(
−K y

r′2

)
= K

(
1
r′2
− 2x2

r′4
+ 1
r′2
− 2y2

r′4

)
= 0.

So the magnetic field outside a very long solenoid is indeed zero, even though
the vector potential is not.

We can check our result against something else we know: The circulation of
the vector potential around the solenoid should be equal to the flux of B inside
the coil (Eq. 14.11). The circulation is A ·2πr′ or, since A = K/r′, the circulation
is 2πK. Notice that it is independent of r′. That is just as it should be if there
is no B outside, because the flux is just the magnitude of B inside the solenoid
times πa2. It is the same for all circles of radius r′ > a. We have found in the
last chapter that the field inside is nI/ε0c2, so we can determine the constant K:

2πK = πa2 nI

ε0c2
,

or

K = nIa2

2ε0c2
.

So the vector potential outside has the magnitude

A = nIa2

2ε0c2
1
r′
, (14.27)

and is always perpendicular to the vector r′.
We have been thinking of a solenoidal coil of wire, but we would produce

the same fields if we rotated a long cylinder with an electrostatic charge on the
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surface. If we have a thin cylindrical shell of radius a with a surface charge σ,
rotating the cylinder makes a surface current J = σv, where v = aω is the velocity
of the surface charge. There will then be a magnetic field B = σaω/ε0c

2 inside
the cylinder.

Now we can raise an interesting question. Suppose we put a short piece of
wire W perpendicular to the axis of the cylinder, extending from the axis out to
the surface, and fastened to the cylinder so that it rotates with it, as in Fig. 14-5.
This wire is moving in a magnetic field, so the v ×B forces will cause the ends
of the wire to be charged (they will charge up until the E-field from the charges
just balances the v ×B force). If the cylinder has a positive charge, the end of
the wire at the axis will have a negative charge. By measuring the charge on the
end of the wire, we could measure the speed of rotation of the system. We would
have an “angular-velocity meter”!

ω

J = σv

J = σv

B W

W

−−−
−

+
+ +
+

−
−
−−

+

+ +
+

Fig. 14-5. A rotating charged cylinder produces a magnetic field inside.
A short radial wire rotating with the cylinder has charges induced on its
ends.
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But are you wondering: “What if I put myself in the frame of reference of the
rotating cylinder? Then there is just a charged cylinder at rest, and I know that
the electrostatic equations say there will be no electric fields inside, so there will
be no force pushing charges to the center. So something must be wrong.” But
there is nothing wrong. There is no “relativity of rotation.” A rotating system
is not an inertial frame, and the laws of physics are different. We must be sure
to use equations of electromagnetism only with respect to inertial coordinate
systems.

It would be nice if we could measure the absolute rotation of the earth with
such a charged cylinder, but unfortunately the effect is much too small to observe
even with the most delicate instruments now available.

14-5 The field of a small loop; the magnetic dipole

Let’s use the vector-potential method to find the magnetic field of a small
loop of current. As usual, by “small” we mean simply that we are interested in
the fields only at distances large compared with the size of the loop. It will turn
out that any small loop is a “magnetic dipole.” That is, it produces a magnetic
field like the electric field from an electric dipole.

We take first a rectangular loop, and choose our coordinates as shown in
Fig. 14-6. There are no currents in the z-direction, so Az is zero. There
are currents in the x-direction on the two sides of length a. In each leg, the

a

b

P

R

x

y

z

I

I

Fig. 14-6. A rectangular loop of wire with the current I. What is the
magnetic field at P? (R� a and R� b.)
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Fig. 14-7. The distribution of jx in the current loop of Fig. 14-6.

current density (and current) is uniform. So the solution for Ax is just like the
electrostatic potential from two charged rods (see Fig. 14-7). Since the rods have
opposite charges, their electric potential at large distances would be just the
dipole potential (Section 6-5). At the point P in Fig. 14-6, the potential would
be

φ = 1
4πε0

p · eR
R2 , (14.28)

where p is the dipole moment of the charge distribution. The dipole moment, in
this case, is the total charge on one rod times the separation between them:

p = λab. (14.29)

The dipole moment points in the negative y-direction, so the cosine of the angle
between R and p is −y/R (where y is the coordinate of P ). So we have

φ = − 1
4πε0

λab

R2
y

R
.

We get Ax simply by replacing λ by I/c2:

Ax = − Iab

4πε0c2
y

R3 . (14.30)

By the same reasoning,

Ay = Iab

4πε0c2
x

R3 . (14.31)

Again, Ay is proportional to x and Ax is proportional to −y, so the vector
potential (at large distances) goes in circles around the z-axis, circulating in the
same sense as I in the loop, as shown in Fig. 14-8.
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I

µ

R

A

Fig. 14-8. The vector potential of a small current loop at the origin
(in the xy -plane); a magnetic dipole field.

The strength of A is proportional to Iab, which is the current times the area
of the loop. This product is called the magnetic dipole moment (or, often, just
“magnetic moment”) of the loop. We represent it by µ:

µ = Iab. (14.32)

The vector potential of a small plane loop of any shape (circle, triangle, etc.) is
also given by Eqs. (14.30) and (14.31) provided we replace Iab by

µ = I · (area of the loop). (14.33)

We leave the proof of this to you.
We can put our equation in vector form if we define the direction of the

vector µ to be the normal to the plane of the loop, with a positive sense given
by the right-hand rule (Fig. 14-8). Then we can write

A = 1
4πε0c2

µ×R
R3 = 1

4πε0c2
µ× eR
R2 . (14.34)

We have still to find B. Using (14.33) and (14.34), together with (14.4), we
get

Bx = − ∂

∂z

µ

4πε0c2
x

R3 = · · · 3xz
R5 (14.35)
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(where by · · · we mean µ/4πε0c2),

By = ∂

∂z

(
− · · · y

R3

)
= · · · 3yz

R5 ,

Bz = ∂

∂x

(
· · · x

R3

)
− ∂

∂y

(
− · · · y

R3

)
= − · · ·

(
1
R3 −

3z2

R5

)
.

(14.36)

The components of the B-field behave exactly like those of the E-field for
a dipole oriented along the z-axis. (See Eqs. (6.14) and (6.15); also Fig. 6-4.)
That’s why we call the loop a magnetic dipole. The word “dipole” is slightly
misleading when applied to a magnetic field because there are no magnetic “poles”
that correspond to electric charges. The magnetic “dipole field” is not produced
by two “charges,” but by an elementary current loop.

It is curious, though, that starting with completely different laws,∇·E = ρ/ε0
and ∇×B = j/ε0c

2, we can end up with the same kind of a field. Why should
that be? It is because the dipole fields appear only when we are far away from
all charges or currents. So through most of the relevant space the equations for
E and B are identical: both have zero divergence and zero curl. So they give
the same solutions. However, the sources whose configuration we summarize by
the dipole moments are physically quite different—in one case, it’s a circulating
current; in the other, a pair of charges, one above and one below the plane of the
loop for the corresponding field.

14-6 The vector potential of a circuit

We are often interested in the magnetic fields produced by circuits of wire in
which the diameter of the wire is very small compared with the dimensions of
the whole system. In such cases, we can simplify the equations for the magnetic
field. For a thin wire we can write our volume element as

dV = S ds

where S is the cross-sectional area of the wire and ds is the element of distance
along the wire. In fact, since the vector ds is in the same direction as j, as
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S j

ds

I

Fig. 14-9. For a fine wire j dV is the same as I ds.

shown in Fig. 14-9 (and we can assume that j is constant across any given cross
section), we can write a vector equation:

j dV = jS ds. (14.37)

But jS is just what we call the current I in a wire, so our integral for the vector
potential (14.19) becomes

A(1) = 1
4πε0c2

∫
I ds2

r12
(14.38)

(see Fig. 14-10). (We assume that I is the same throughout the circuit. If
there are several branches with different currents, we should, of course, use the
appropriate I for each branch.)

1

2

r12

ds

I

Fig. 14-10. The magnetic field of a wire can be obtained from an
integral around the circuit.

Again, we can find the fields from (14.38) either by integrating directly or by
solving the corresponding electrostatic problems.
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14-7 The law of Biot and Savart

In studying electrostatics we found that the electric field of a known charge
distribution could be obtained directly with an integral, Eq. (4.16):

E(1) = 1
4πε0

∫
ρ(2)e12 dV2

r2
12

.

As we have seen, it is usually more work to evaluate this integral—there are
really three integrals, one for each component—than to do the integral for the
potential and take its gradient.

There is a similar integral which relates the magnetic field to the currents.
We already have an integral for A, Eq. (14.19); we can get an integral for B by
taking the curl of both sides:

B(1) =∇×A(1) =∇×
[

1
4πε0c2

∫
j(2) dV2

r12

]
. (14.39)

Now we must be careful: The curl operator means taking the derivatives of A(1),
that is, it operates only on the coordinates (x1, y1, z1). We can move the ∇× op-
erator inside the integral sign if we remember that it operates only on variables
with the subscript 1, which of course, appear only in

r12 = [(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2. (14.40)

We have, for the x-component of B,

Bx = ∂Az
∂y1

− ∂Ay
∂z1

= 1
4πε0c2

∫ [
jz

∂

∂y1

(
1
r12

)
− jy

∂

∂z1

(
1
r12

)]
dV2

= − 1
4πε0c2

∫ [
jz
y1 − y2

r3
12

− jy
z1 − z2

r3
12

]
dV2.

(14.41)

The quantity in brackets is just the negative of the x-component of

j × r12

r3
12

= j × e12

r2
12
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Corresponding results will be found for the other components, so we have

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2. (14.42)

The integral gives B directly in terms of the known currents. The geometry
involved is the same as that shown in Fig. 14-2.

If the currents exist only in circuits of small wires we can, as in the last section,
immediately do the integral across the wire, replacing j dV by I ds, where ds is
an element of length of the wire. Then, using the symbols in Fig. 14-10,

B(1) = − 1
4πε0c2

∫
Ie12 × ds2

r2
12

. (14.43)

(The minus sign appears because we have reversed the order of the cross product.)
This equation for B is called the Biot-Savart law, after its discoverers. It gives
a formula for obtaining directly the magnetic field produced by wires carrying
currents.

You may wonder: “What is the advantage of the vector potential if we can
find B directly with a vector integral? After all, A also involves three integrals!”
Because of the cross product, the integrals for B are usually more complicated,
as is evident from Eq. (14.41). Also, since the integrals for A are like those of
electrostatics, we may already know them. Finally, we will see that in more
advanced theoretical matters (in relativity, in advanced formulations of the laws of
mechanics, like the principle of least action to be discussed later, and in quantum
mechanics) the vector potential plays an important role.
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15

The Vector Potential

15-1 The forces on a current loop; energy of a dipole

In the last chapter we studied the magnetic field produced by a small rectan-
gular current loop. We found that it is a dipole field, with the dipole moment
given by

µ = IA, (15.1)

where I is the current and A is the area of the loop. The direction of the moment
is normal to the plane of the loop, so we can also write

µ = IAn,

where n is the unit normal to the area A.
A current loop—or magnetic dipole—not only produces magnetic fields, but

will also experience forces when placed in the magnetic field of other currents.
We will look first at the forces on a rectangular loop in a uniform magnetic field.
Let the z-axis be along the direction of the field, and the plane of the loop be
placed through the y-axis, making the angle θ with the xy-plane as in Fig. 15-1.
Then the magnetic moment of the loop—which is normal to its plane—will make
the angle θ with the magnetic field.

Since the currents are opposite on opposite sides of the loop, the forces are
also opposite, so there is no net force on the loop (when the field is uniform).
Because of forces on the two sides marked 1 and 2 in the figure, however, there
is a torque which tends to rotate the loop about the y-axis. The magnitude of
these forces F1 and F2 is

F1 = F2 = IBb.

Their moment arm is
a sin θ,
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µ

Fig. 15-1. A rectangular loop carrying the current I sits in a uniform
field B (in the z-direction). The torque on the loop is τ = µ×B, where
the magnetic moment µ = Iab.

so the torque is
τ = IabB sin θ,

or, since Iab is the magnetic moment of the loop,

τ = µB sin θ.

The torque can be written in vector notation:

τ = µ×B. (15.2)

Although we have only shown that the torque is given by Eq. (15.2) in one rather
special case, the result is right for a small loop of any shape, as we will see. The
same kind of relationship holds for the torque of an electric dipole in an electric
field:

τ = p×E.
We now ask about the mechanical energy of our current loop. Since there

is a torque, the energy evidently depends on the orientation. The principle of
virtual work says that the torque is the rate of change of energy with angle, so
we can write

dU = τ dθ.
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Setting τ = µB sin θ, and integrating, we can write for the energy

U = −µB cos θ + a constant. (15.3)

(The sign is negative because the torque tries to line up the moment with the
field; the energy is lowest when µ and B are parallel.)

For reasons which we will discuss later, this energy is not the total energy
of a current loop. (We have, for one thing, not taken into account the energy
required to maintain the current in the loop.) We will, therefore, call this energy
Umech, to remind us that it is only part of the energy. Also, since we are leaving
out some of the energy anyway, we can set the constant of integration equal to
zero in Eq. (15.3). So we rewrite the equation:

Umech = −µ ·B. (15.4)

Again, this corresponds to the result for an electric dipole:

U = −p ·E. (15.5)

Now the electrostatic energy U in Eq. (15.5) is the true energy, but Umech
in (15.4) is not the real energy. It can, however, be used in computing forces,
by the principle of virtual work, supposing that the current in the loop—or at
least µ—is kept constant.

We can show for our rectangular loop that Umech also corresponds to the
mechanical work done in bringing the loop into the field. The total force on the
loop is zero only in a uniform field; in a nonuniform field there are net forces on
a current loop. In putting the loop into a region with a field, we must have gone
through places where the field was not uniform, and so work was done. To make
the calculation simple, we shall imagine that the loop is brought into the field
with its moment pointing along the field. (It can be rotated to its final position
after it is in place.)

Imagine that we want to move the loop in the x-direction—toward a region
of stronger field—and that the loop is oriented as shown in Fig. 15-2. We start
somewhere where the field is zero and integrate the force times the distance as
we bring the loop into the field.

First, let’s compute the work done on each side separately and then take the
sum (rather than adding the forces before integrating). The forces on sides 3
and 4 are at right angles to the direction of motion, so no work is done on them.
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Fig. 15-2. A loop is carried along the x-direction through the field B,
at right angles to x .

The force on side 2 is IbB(x) in the x-direction, and to get the work done against
the magnetic forces we must integrate this from some x where the field is zero,
say at x = −∞, to x2, its present position:

W2 = −
∫ x2

−∞
F2 dx = −Ib

∫ x2

−∞
B(x) dx. (15.6)

Similarly, the work done against the forces on side 1 is

W1 = −
∫ x1

−∞
F1 dx = Ib

∫ x1

−∞
B(x) dx. (15.7)

To find each integral, we need to know how B(x) depends on x. But notice that
side 1 follows along right behind side 2, so that its integral includes most of the
work done on side 2. In fact, the sum of (15.6) and (15.7) is just

W = −Ib
∫ x2

x1

B(x) dx. (15.8)

But if we are in a region where B is nearly the same on both sides 1 and 2, we
can write the integral as∫ x2

x1

B(x) dx = (x2 − x1)B = aB,
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where B is the field at the center of the loop. The total mechanical energy we
have put in is

Umech = W = −IabB = −µB. (15.9)

The result agrees with the energy we took for Eq. (15.4).
We would, of course, have gotten the same result if we had added the forces

on the loop before integrating to find the work. If we let B1 be the field at side 1
and B2 be the field at side 2, then the total force in the x-direction is

Fx = Ib(B2 −B1).

If the loop is “small,” that is, if B2 and B1 are not too different, we can write

B2 = B1 + ∂B

∂x
∆x = B1 + ∂B

∂x
a.

So the force is
Fx = Iab

∂B

∂x
. (15.10)

The total work done on the loop by external forces is

−
∫ x

−∞
Fx dx = −Iab

∫
∂B

∂x
dx = −IabB,

which is again just −µB. Only now we see why it is that the force on a small
current loop is proportional to the derivative of the magnetic field, as we would
expect from

Fx ∆x = −∆Umech = −∆(−µ ·B). (15.11)

Our result, then, is that even though Umech = −µ ·B may not include all
the energy of a system—it is a fake kind of energy—it can still be used with the
principle of virtual work to find the forces on steady current loops.

15-2 Mechanical and electrical energies

We want now to show why the energy Umech discussed in the previous section
is not the correct energy associated with steady currents—that it does not keep
track of the total energy in the world. We have, indeed, emphasized that it can
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be used like the energy, for computing forces from the principle of virtual work,
provided that the current in the loop (and all other currents) do not change.
Let’s see why all this works.

Imagine that the loop in Fig. 15-2 is moving in the +x-direction and take
the z-axis in the direction of B. The conduction electrons in side 2 will expe-
rience a force along the wire, in the y-direction. But because of their flow—as
an electric current—there is a component of their motion in the same direc-
tion as the force. Each electron is, therefore, having work done on it at the
rate Fyvy, where vy, is the component of the electron velocity along the wire.
We will call this work done on the electrons electrical work. Now it turns out
that if the loop is moving in a uniform field, the total electrical work is zero,
since positive work is done on some parts of the loop and an equal amount
of negative work is done on other parts. But this is not true if the circuit
is moving in a nonuniform field—then there will be a net amount of work
done on the electrons. In general, this work would tend to change the flow
of the electrons, but if the current is being held constant, energy must be ab-
sorbed or delivered by the battery or other source that is keeping the current
steady. This energy was not included when we computed Umech in Eq. (15.9),
because our computations included only the mechanical forces on the body of
the wire.

You may be thinking: But the force on the electrons depends on how fast
the wire is moved; perhaps if the wire is moved slowly enough this electrical
energy can be neglected. It is true that the rate at which the electrical energy is
delivered is proportional to the speed of the wire, but the total energy delivered
is proportional also to the time that this rate goes on. So the total electrical
energy is proportional to the velocity times the time, which is just the distance
moved. For a given distance moved in a field the same amount of electrical work
is done.

Let’s consider a segment of wire of unit length carrying the current I and
moving in a direction perpendicular to itself and to a magnetic field B with the
speed vwire. Because of the current the electrons will have a drift velocity vdrift
along the wire. The component of the magnetic force on each electron in the
direction of the drift is qevwireB. So the rate at which electrical work is being
done is Fvdrift = (qevwireB)vdrift. If there are N conduction electrons in the unit
length of the wire, the total rate at which electrical work is being done is

dUelect

dt
= NqevwireBvdrift.
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But Nqevdrift = I, the current in the wire, so

dUelect

dt
= IvwireB.

Now since the current is held constant, the forces on the conduction electrons
do not cause them to accelerate; the electrical energy is not going into the
electrons but into the source that is keeping the current constant.

But notice that the force on the wire is IB, so IBvwire is also the rate of
mechanical work done on the wire, dUmech/dt = IBvwire. We conclude that the
mechanical work done on the wire is just equal to the electrical work done on
the current source, so the energy of the loop is a constant!

This is not a coincidence, but a consequence of the law we already know. The
total force on each charge in the wire is

F = q(E + v ×B).

The rate at which work is done is

v · F = q[v ·E + v · (v ×B)]. (15.12)

If there are no electric fields we have only the second term, which is always zero.
We shall see later that changing magnetic fields produce electric fields, so our
reasoning applies only to moving wires in steady magnetic fields.

How is it then that the principle of virtual work gives the right answer?
Because we still have not taken into account the total energy of the world. We
have not included the energy of the currents that are producing the magnetic
field we start out with.

Suppose we imagine a complete system such as that drawn in Fig. 15-3(a),
in which we are moving our loop with the current I1 into the magnetic field B1
produced by the current I2 in a coil. Now the current I1 in the loop will also be
producing some magnetic field B2 at the coil. If the loop is moving, the field B2
will be changing. As we shall see in the next chapter, a changing magnetic field
generates an E-field; and this E-field will do work on the charges in the coil.
This energy must also be included in our balance sheet of the total energy.

We could wait until the next chapter to find out about this new energy term,
but we can also see what it will be if we use the principle of relativity in the
following way. When we are moving the loop toward the stationary coil we know
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Fig. 15-3. Finding the energy of a small loop in a magnetic field.

that its electrical energy is just equal and opposite to the mechanical work done.
So

Umech + Uelect(loop) = 0.

Suppose now we look at what is happening from a different point of view, in
which the loop is at rest, and the coil is moved toward it. The coil is then moving
into the field produced by the loop. The same arguments would give that

Umech + Uelect(coil) = 0.

The mechanical energy is the same in the two cases because it comes from the
force between the two circuits.
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The sum of the two equations gives

2Umech + Uelect(loop) + Uelect(coil) = 0.

The total energy of the whole system is, of course, the sum of the two electrical
energies plus the mechanical energy taken only once. So we have

Utotal = Uelect(loop) + Uelect(coil) + Umech = −Umech. (15.13)

The total energy of the world is really the negative of Umech. If we want the
true energy of a magnetic dipole, for example, we should write

Utotal = +µ ·B.

It is only if we make the condition that all currents are constant that we can
use only a part of the energy, Umech (which is always the negative of the true
energy), to find the mechanical forces. In a more general problem, we must be
careful to include all energies.

We have seen an analogous situation in electrostatics. We showed that the
energy of a capacitor is equal to Q2/2C. When we use the principle of virtual
work to find the force between the plates of the capacitor, the change in energy
is equal to Q2/2 times the change in 1/C. That is,

∆U = Q2

2 ∆
(

1
C

)
= −Q

2

2
∆C
C2 . (15.14)

Now suppose that we were to calculate the work done in moving two conductors
subject to the different condition that the voltage between them is held constant.
Then we can get the right answers for force from the principle of virtual work if
we do something artificial. Since Q = CV , the real energy is 1

2CV
2. But if we

define an artificial energy equal to − 1
2CV

2, then the principle of virtual work
can be used to get forces by setting the change in the artificial energy equal to
the mechanical work, provided that we insist that the voltage V be held constant.
Then

∆Umech = ∆
(
−CV

2

2

)
= −V

2

2 ∆C, (15.15)

which is the same as Eq. (15.14). We get the correct result even though we are
neglecting the work done by the electrical system to keep the voltage constant.
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Again, this electrical energy is just twice as big as the mechanical energy and of
the opposite sign.

Thus if we calculate artificially, disregarding the fact that the source of the
potential has to do work to maintain the voltages constant, we get the right
answer. It is exactly analogous to the situation in magnetostatics.

15-3 The energy of steady currents

We can now use our knowledge that Utotal = −Umech to find the true energy
of steady currents in magnetic fields. We can begin with the true energy of a
small current loop. Calling Utotal just U , we write

U = µ ·B. (15.16)

Although we calculated this energy for a plane rectangular loop, the same result
holds for a small plane loop of any shape.

We can find the energy of a circuit of any shape by imagining that it is made
up of small current loops. Say we have a wire in the shape of the loop Γ of
Fig. 15-4. We fill in this curve with the surface S, and on the surface mark out a
large number of small loops, each of which can be considered plane. If we let the
current I circulate around each of the little loops, the net result will be the same
as a current around Γ, since the currents will cancel on all lines internal to Γ.
Physically, the system of little currents is indistinguishable from the original
circuit. The energy must also be the same, and so is just the sum of the energies
of the little loops.

Loop Γ

Surface S

B

n

I

I

I

I

I

I

I

Fig. 15-4. The energy of a large loop in a magnetic field can be
considered as the sum of energies of smaller loops.
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If the area of each little loop is ∆a, its energy is I∆aBn, where Bn is the
component normal to ∆a. The total energy is

U =
∑

IBn ∆a.

Going to the limit of infinitesimal loops, the sum becomes an integral, and

U = I

∫
Bn da = I

∫
B · n da, (15.17)

where n is the unit normal to da.
If we set B =∇×A, we can connect the surface integral to a line integral,

using Stokes’ theorem,

I

∫
S

(∇×A) · n da = I

∮
Γ
A · ds, (15.18)

where ds is the line element along Γ. So we have the energy for a circuit of any
shape:

U = I

∮
circuit

A · ds, (15.19)

In this expression A refers, of course, to the vector potential due to those currents
(other than the I in the wire) which produce the field B at the wire.

Now any distribution of steady currents can be imagined to be made up of
filaments that run parallel to the lines of current flow. For each pair of such
circuits, the energy is given by (15.19), where the integral is taken around one
circuit, using the vector potential A from the other circuit. For the total energy
we want the sum of all such pairs. If, instead of keeping track of the pairs, we
take the complete sum over all the filaments, we would be counting the energy
twice (we saw a similar effect in electrostatics), so the total energy can be written

U = 1
2

∫
j ·A dV. (15.20)

This formula corresponds to the result we found for the electrostatic energy:

U = 1
2

∫
ρφ dV. (15.21)
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So we may if we wish think of A as a kind of potential for currents in magne-
tostatics. Unfortunately, this idea is not too useful, because it is true only for
static fields. In fact, neither of the equations (15.20) and (15.21) gives the correct
energy when the fields change with time.

15-4 B versus A

In this section we would like to discuss the following questions: Is the vector
potential merely a device which is useful in making calculations—as the scalar
potential is useful in electrostatics—or is the vector potential a “real” field? Isn’t
the magnetic field the “real” field, because it is responsible for the force on a
moving particle? First we should say that the phrase “a real field” is not very
meaningful. For one thing, you probably don’t feel that the magnetic field is
very “real” anyway, because even the whole idea of a field is a rather abstract
thing. You cannot put out your hand and feel the magnetic field. Furthermore,
the value of the magnetic field is not very definite; by choosing a suitable moving
coordinate system, for instance, you can make a magnetic field at a given point
disappear.

What we mean here by a “real” field is this: a real field is a mathematical
function we use for avoiding the idea of action at a distance. If we have a charged
particle at the position P , it is affected by other charges located at some distance
from P . One way to describe the interaction is to say that the other charges
make some “condition”—whatever it may be—in the environment at P . If we
know that condition, which we describe by giving the electric and magnetic fields,
then we can determine completely the behavior of the particle—with no further
reference to how those conditions came about.

In other words, if those other charges were altered in some way, but the
conditions at P that are described by the electric and magnetic field at P remain
the same, then the motion of the charge will also be the same. A “real” field is
then a set of numbers we specify in such a way that what happens at a point
depends only on the numbers at that point. We do not need to know any more
about what’s going on at other places. It is in this sense that we will discuss
whether the vector potential is a “real” field.

You may be wondering about the fact that the vector potential is not unique—
that it can be changed by adding the gradient of any scalar with no change at
all in the forces on particles. That has not, however, anything to do with the
question of reality in the sense that we are talking about. For instance, the
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magnetic field is in a sense altered by a relativity change (as are also E and A).
But we are not worried about what happens if the field can be changed in this
way. That doesn’t really make any difference; that has nothing to do with the
question of whether the vector potential is a proper “real” field for describing
magnetic effects, or whether it is just a useful mathematical tool.

We should also make some remarks on the usefulness of the vector potential A.
We have seen that it can be used in a formal procedure for calculating the
magnetic fields of known currents, just as φ can be used to find electric fields. In
electrostatics we saw that φ was given by the scalar integral

φ(1) = 1
4πε0

∫
ρ(2)
r12

dV2. (15.22)

From this φ, we get the three components of E by three differential operations.
This procedure is usually easier to handle than evaluating the three integrals in
the vector formula

E(1) = 1
4πε0

∫
ρ(2)e12

r2
12

dV2. (15.23)

First, there are three integrals; and second, each integral is in general somewhat
more difficult.

The advantages are much less clear for magnetostatics. The integral for A is
already a vector integral:

A(1) = 1
4πε0c2

∫
j(2) dV2

r12
, (15.24)

which is, of course, three integrals. Also, when we take the curl of A to get B,
we have six derivatives to do and combine by pairs. It is not immediately obvious
whether in most problems this procedure is really any easier than computing B
directly from

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2. (15.25)

Using the vector potential is often more difficult for simple problems for the
following reason. Suppose we are interested only in the magnetic field B at one
point, and that the problem has some nice symmetry—say we want the field at a
point on the axis of a ring of current. Because of the symmetry, we can easily
get B by doing the integral of Eq. (15.25). If, however, we were to find A first,
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we would have to compute B from derivatives of A, so we must know what A is
at all points in the neighborhood of the point of interest. And most of these points
are off the axis of symmetry, so the integral for A gets complicated. In the ring
problem, for example, we would need to use elliptic integrals. In such problems,
A is clearly not very useful. It is true that in many complex problems it is easier
to work with A, but it would be hard to argue that this ease of technique would
justify making you learn about one more vector field.

We have introduced A because it does have an important physical significance.
Not only is it related to the energies of currents, as we saw in the last section, but
it is also a “real” physical field in the sense that we described above. In classical
mechanics it is clear that we can write the force on a particle as

F = q(E + v ×B), (15.26)

so that, given the forces, everything about the motion is determined. In any
region where B = 0 even if A is not zero, such as outside a solenoid, there is
no discernible effect of A. Therefore for a long time it was believed that A was
not a “real” field. It turns out, however, that there are phenomena involving
quantum mechanics which show that the field A is in fact a “real” field in the
sense we have defined it. In the next section we will show you how that works.

15-5 The vector potential and quantum mechanics

There are many changes in what concepts are important when we go from
classical to quantum mechanics. We have already discussed some of them in
Vol. I. In particular, the force concept gradually fades away, while the concepts
of energy and momentum become of paramount importance. You remember
that instead of particle motions, one deals with probability amplitudes which
vary in space and time. In these amplitudes there are wavelengths related to
momenta, and frequencies related to energies. The momenta and energies, which
determine the phases of wave functions, are therefore the important quantities in
quantum mechanics. Instead of forces, we deal with the way interactions change
the wavelength of the waves. The idea of a force becomes quite secondary—if it
is there at all. When people talk about nuclear forces, for example, what they
usually analyze and work with are the energies of interaction of two nucleons,
and not the force between them. Nobody ever differentiates the energy to find
out what the force looks like. In this section we want to describe how the vector
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and scalar potentials enter into quantum mechanics. It is, in fact, just because
momentum and energy play a central role in quantum mechanics that A and φ
provide the most direct way of introducing electromagnetic effects into quantum
descriptions.

SOURCE

L

d

WALL

a

2

1

DETECTOR

x

x

I

Fig. 15-5. An interference experiment with electrons (see also Chap-
ter 37 of Vol. I).

We must review a little how quantum mechanics works. We will consider
again the imaginary experiment described in Chapter 37 of Vol. I, in which
electrons are diffracted by two slits. The arrangement is shown again in Fig. 15-5.
Electrons, all of nearly the same energy, leave the source and travel toward a wall
with two narrow slits. Beyond the wall is a “backstop” with a movable detector.
The detector measures the rate, which we call I, at which electrons arrive at a
small region of the backstop at the distance x from the axis of symmetry. The
rate is proportional to the probability that an individual electron that leaves
the source will reach that region of the backstop. This probability has the
complicated-looking distribution shown in the figure, which we understand as due
to the interference of two amplitudes, one from each slit. The interference of the
two amplitudes depends on their phase difference. That is, if the amplitudes are
C1e

iΦ1 and C2e
iΦ2 , the phase difference δ = Φ1−Φ2 determines their interference

pattern [see Eq. (29.12) in Vol. I]. If the distance between the screen and the
slits is L, and if the difference in the path lengths for electrons going through
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the two slits is a, as shown in the figure, then the phase difference of the two
waves is given by

δ = a

λ
. (15.27)

As usual, we let λ = λ/2π, where λ is the wavelength of the space variation of
the probability amplitude. For simplicity, we will consider only values of x much
less than L; then we can set

a = x

L
d

and
δ = x

L

d

λ
. (15.28)

When x is zero, δ is zero; the waves are in phase, and the probability has a
maximum. When δ is π, the waves are out of phase, they interfere destructively,
and the probability is a minimum. So we get the wavy function for the electron
intensity.

Now we would like to state the law that for quantum mechanics replaces
the force law F = qv ×B. It will be the law that determines the behavior of
quantum-mechanical particles in an electromagnetic field. Since what happens
is determined by amplitudes, the law must tell us how the magnetic influences
affect the amplitudes; we are no longer dealing with the acceleration of a particle.
The law is the following: the phase of the amplitude to arrive via any trajectory
is changed by the presence of a magnetic field by an amount equal to the integral
of the vector potential along the whole trajectory times the charge of the particle
over Planck’s constant. That is,

Magnetic change in phase = q

~

∫
trajectory

A · ds. (15.29)

If there were no magnetic field there would be a certain phase of arrival. If there
is a magnetic field anywhere, the phase of the arriving wave is increased by the
integral in Eq. (15.29).

Although we will not need to use it for our present discussion, we mention
that the effect of an electrostatic field is to produce a phase change given by the
negative of the time integral of the scalar potential φ:

Electric change in phase = − q
~

∫
φdt.
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These two expressions are correct not only for static fields, but together give the
correct result for any electromagnetic field, static or dynamic. This is the law
that replaces F = q(E + v ×B). We want now, however, to consider only a
static magnetic field.

Suppose that there is a magnetic field present in the two-slit experiment. We
want to ask for the phase of arrival at the screen of the two waves whose paths
pass through the two slits. Their interference determines where the maxima in
the probability will be. We may call Φ1 the phase of the wave along trajectory (1).
If Φ1(B = 0) is the phase without the magnetic field, then when the field is
turned on the phase will be

Φ1 = Φ1(B = 0) + q

~

∫
(1)
A · ds. (15.30)

Similarly, the phase for trajectory (2) is

Φ2 = Φ2(B = 0) + q

~

∫
(2)
A · ds. (15.31)

The interference of the waves at the detector depends on the phase difference

δ = Φ1(B = 0)− Φ2(B = 0) + q

~

∫
(1)
A · ds− q

~

∫
(2)
A · ds. (15.32)

The no-field difference we will call δ(B = 0); it is just the phase difference we
have calculated above in Eq. (15.28). Also, we notice that the two integrals can
be written as one integral that goes forward along (1) and back along (2); we
call this the closed path (1–2). So we have

δ = δ(B = 0) + q

~

∮
(1–2)

A · ds. (15.33)

This equation tells us how the electron motion is changed by the magnetic field;
with it we can find the new positions of the intensity maxima and minima at the
backstop.

Before we do that, however, we want to raise the following interesting and
important point. You remember that the vector potential function has some
arbitrariness. Two different vector potential functions A and A′ whose difference
is the gradient of some scalar function ∇ψ, both represent the same magnetic
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field, since the curl of a gradient is zero. They give, therefore, the same classical
force qv×B. If in quantum mechanics the effects depend on the vector potential,
which of the many possible A-functions is correct?

The answer is that the same arbitrariness in A continues to exist for quantum
mechanics. If in Eq. (15.33) we change A to A′ = A+∇ψ, the integral on A
becomes ∮

(1–2)
A′ · ds =

∮
(1–2)

A · ds+
∮

(1–2)
∇ψ · ds.

The integral of ∇ψ is around the closed path (1–2), but the integral of the
tangential component of a gradient on a closed path is always zero, by Stokes’
theorem. Therefore both A and A′ give the same phase differences and the same
quantum-mechanical interference effects. In both classical and quantum theory
it is only the curl of A that matters; any choice of the function of A which has
the correct curl gives the correct physics.

The same conclusion is evident if we use the results of Section 14-1. There we
found that the line integral of A around a closed path is the flux of B through
the path, which here is the flux between paths (1) and (2). Equation (15.33) can,
if we wish, be written as

δ = δ(B = 0) + q

~
[flux of B between (1) and (2)], (15.34)

where by the flux of B we mean, as usual, the surface integral of the normal
component of B. The result depends only on B, and therefore only on the curl
of A.

Now because we can write the result in terms of B as well as in terms of A,
you might be inclined to think that the B holds its own as a “real” field and that
the A can still be thought of as an artificial construction. But the definition of
“real” field that we originally proposed was based on the idea that a “real” field
would not act on a particle from a distance. We can, however, give an example
in which B is zero—or at least arbitrarily small—at any place where there is
some chance to find the particles, so that it is not possible to think of it acting
directly on them.

You remember that for a long solenoid carrying an electric current there is a
B-field inside but none outside, while there is lots of A circulating around outside,
as shown in Fig. 15-6. If we arrange a situation in which electrons are to be
found only outside of the solenoid—only where there is A—there will still be an
influence on the motion, according to Eq. (15.33). Classically, that is impossible.
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Fig. 15-6. The magnetic field and vector potential of a long solenoid.

Classically, the force depends only on B; in order to know that the solenoid is
carrying current, the particle must go through it. But quantum-mechanically you
can find out that there is a magnetic field inside the solenoid by going around
it—without ever going close to it!

Suppose that we put a very long solenoid of small diameter just behind the
wall and between the two slits, as shown in Fig. 15-7. The diameter of the
solenoid is to be much smaller than the distance d between the two slits. In these
circumstances, the diffraction of the electrons at the slit gives no appreciable
probability that the electrons will get near the solenoid. What will be the effect
on our interference experiment?

We compare the situation with and without a current through the solenoid.
If we have no current, we have no B or A and we get the original pattern of
electron intensity at the backstop. If we turn the current on in the solenoid and
build up a magnetic field B inside, then there is an A outside. There is a shift
in the phase difference proportional to the circulation of A outside the solenoid,
which will mean that the pattern of maxima and minima is shifted to a new
position. In fact, since the flux of B inside is a constant for any pair of paths,
so also is the circulation of A. For every arrival point there is the same phase
change; this corresponds to shifting the entire pattern in x by a constant amount,
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Fig. 15-7. A magnetic field can influence the motion of electrons
even though it exists only in regions where there is an arbitrarily small
probability of finding the electrons.

say x0, that we can easily calculate. The maximum intensity will occur where the
phase difference between the two waves is zero. Using Eq. (15.33) or Eq. (15.34)
for δ and Eq. (15.28) for x, we have

x0 = −L
d
λ
q

~

∮
(1–2)

A · ds, (15.35)

or
x0 = −L

d
λ
q

~
[flux of B between (1) and (2)]. (15.36)

The pattern with the solenoid in place should appear* as shown in Fig. 15-7. At
least, that is the prediction of quantum mechanics.

Precisely this experiment has recently been done. It is a very, very difficult
experiment. Because the wavelength of the electrons is so small, the apparatus
must be on a tiny scale to observe the interference. The slits must be very close
together, and that means that one needs an exceedingly small solenoid. It turns

* If the field B comes out of the plane of the figure, the flux as we have defined it is positive
and since q for electrons is negative, x0 is positive.
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out that in certain circumstances, iron crystals will grow in the form of very long,
microscopically thin filaments called whiskers. When these iron whiskers are
magnetized they are like a tiny solenoid, and there is no field outside except near
the ends. The electron interference experiment was done with such a whisker
between two slits, and the predicted displacement in the pattern of electrons was
observed.

In our sense then, the A-field is “real.” You may say: “But there was a
magnetic field.” There was, but remember our original idea—that a field is “real”
if it is what must be specified at the position of the particle in order to get the
motion. The B-field in the whisker acts at a distance. If we want to describe its
influence not as action-at-a-distance, we must use the vector potential.

This subject has an interesting history. The theory we have described was
known from the beginning of quantum mechanics in 1926. The fact that the
vector potential appears in the wave equation of quantum mechanics (called the
Schrödinger equation) was obvious from the day it was written. That it cannot
be replaced by the magnetic field in any easy way was observed by one man after
the other who tried to do so. This is also clear from our example of electrons
moving in a region where there is no field and being affected nevertheless. But
because in classical mechanics A did not appear to have any direct importance
and, furthermore, because it could be changed by adding a gradient, people
repeatedly said that the vector potential had no direct physical significance—that
only the magnetic and electric fields are “right” even in quantum mechanics. It
seems strange in retrospect that no one thought of discussing this experiment
until 1956, when Bohm and Aharonov first suggested it and made the whole
question crystal clear. The implication was there all the time, but no one paid
attention to it. Thus many people were rather shocked when the matter was
brought up. That’s why someone thought it would be worth while to do the
experiment to see that it really was right, even though quantum mechanics, which
had been believed for so many years, gave an unequivocal answer. It is interesting
that something like this can be around for thirty years but, because of certain
prejudices of what is and is not significant, continues to be ignored.

Now we wish to continue in our analysis a little further. We will show the
connection between the quantum-mechanical formula and the classical formula—
to show why it turns out that if we look at things on a large enough scale it will
look as though the particles are acted on by a force equal to qv × the curl of A.
To get classical mechanics from quantum mechanics, we need to consider cases
in which all the wavelengths are very small compared with distances over which
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Fig. 15-8. The shift of the interference pattern due to a strip of
magnetic field.

external conditions, like fields, vary appreciably. We shall not prove the result in
great generality, but only in a very simple example, to show how it works. Again
we consider the same slit experiment. But instead of putting all the magnetic
field in a very tiny region between the slits, we imagine a magnetic field that
extends over a larger region behind the slits, as shown in Fig. 15-8. We will take
the idealized case where we have a magnetic field which is uniform in a narrow
strip of width w, considered small as compared with L. (That can easily be
arranged; the backstop can be put as far out as we want.) In order to calculate
the shift in phase, we must take the two integrals of A along the two trajectories
(1) and (2). They differ, as we have seen, merely by the flux of B between the
paths. To our approximation, the flux is Bwd. The phase difference for the two
paths is then

δ = δ(B = 0) + q

~
Bwd. (15.37)

We note that, to our approximation, the phase shift is independent of the angle.
So again the effect will be to shift the whole pattern upward by an amount ∆x.
Using Eq. (15.35),

∆x = −Lλ
d

∆δ = −Lλ
d

[δ − δ(B = 0)].
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Using (15.37) for δ − δ(B = 0),

∆x = −Lλ q
~
Bw. (15.38)

Such a shift is equivalent to deflecting all the trajectories by the small angle α
(see Fig. 15-8), where

α = ∆x
L

= −λ
~
qBw. (15.39)

Now classically we would also expect a thin strip of magnetic field to deflect
all trajectories through some small angle, say α′, as shown in Fig. 15-9(a). As
the electrons go through the magnetic field, they feel a transverse force qv ×B
which lasts for a time w/v. The change in their transverse momentum is just

(a)

w

v

α′

LINES OF B

(b)

α′

∆px
p

Fig. 15-9. Deflection of a particle due to passage through a strip of
magnetic field.
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equal to this impulse, so
∆px = −qwB. (15.40)

The angular deflection [Fig. 15-9(b)] is equal to the ratio of this transverse
momentum to the total momentum p. We get that

α′ = ∆px
p

= −qwB
p

. (15.41)

We can compare this result with Eq. (15.39), which gives the same quantity
computed quantum-mechanically. But the connection between classical mechanics
and quantum mechanics is this: A particle of momentum p corresponds to a
quantum amplitude varying with the wavelength λ = ~/p. With this equality, α
and α′ are identical; the classical and quantum calculations give the same result.

From the analysis we see how it is that the vector potential which appears in
quantum mechanics in an explicit form produces a classical force which depends
only on its derivatives. In quantum mechanics what matters is the interference
between nearby paths; it always turns out that the effects depend only on
how much the field A changes from point to point, and therefore only on the
derivatives of A and not on the value itself. Nevertheless, the vector potential A
(together with the scalar potential φ that goes with it) appears to give the most
direct description of the physics. This becomes more and more apparent the
more deeply we go into the quantum theory. In the general theory of quantum
electrodynamics, one takes the vector and scalar potentials as the fundamental
quantities in a set of equations that replace the Maxwell equations: E and B
are slowly disappearing from the modern expression of physical laws; they are
being replaced by A and φ.

15-6 What is true for statics is false for dynamics

We are now at the end of our exploration of the subject of static fields. Already
in this chapter we have come perilously close to having to worry about what
happens when fields change with time. We were barely able to avoid it in our
treatment of magnetic energy by taking refuge in a relativistic argument. Even
so, our treatment of the energy problem was somewhat artificial and perhaps
even mysterious, because we ignored the fact that moving coils must, in fact,
produce changing fields. It is now time to take up the treatment of time-varying
fields—the subject of electrodynamics. We will do so in the next chapter. First,
however, we would like to emphasize a few points.
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Although we began this course with a presentation of the complete and correct
equations of electromagnetism, we immediately began to study some incomplete
pieces—because that was easier. There is a great advantage in starting with the
simpler theory of static fields, and proceeding only later to the more complicated
theory which includes dynamic fields. There is less new material to learn all at
once, and there is time for you to develop your intellectual muscles in preparation
for the bigger task.

But there is the danger in this process that before we get to see the complete
story, the incomplete truths learned on the way may become ingrained and taken
as the whole truth—that what is true and what is only sometimes true will
become confused. So we give in Table 15-1 a summary of the important formulas
we have covered, separating those which are true in general from those which are
true for statics, but false for dynamics. This summary also shows, in part, where
we are going, since as we treat dynamics we will be developing in detail what we
must just state here without proof.

It may be useful to make a few remarks about the table. First, you should
notice that the equations we started with are the true equations—we have not
misled you there. The electromagnetic force (often called the Lorentz force)
F = q(E + v ×B) is true. It is only Coulomb’s law that is false, to be used
only for statics. The four Maxwell equations for E and B are also true. The
equations we took for statics are false, of course, because we left off all terms
with time derivatives.

Gauss’ law, ∇ ·E = ρ/ε0, remains, but the curl of E is not zero in general.
So E cannot always be equated to the gradient of a scalar—the electrostatic
potential. We will see that a scalar potential still remains, but it is a time-
varying quantity that must be used together with vector potentials for a complete
description of the electric field. The equations governing this new scalar potential
are, necessarily, also new.

We must also give up the idea that E is zero in conductors. When the fields
are changing, the charges in conductors do not, in general, have time to rearrange
themselves to make the field zero. They are set in motion, but never reach
equilibrium. The only general statement is: electric fields in conductors produce
currents. So in varying fields a conductor is not an equipotential. It also follows
that the idea of a capacitance is no longer precise.

Since there are no magnetic charges, the divergence of B is always zero.
So B can always be equated to ∇×A. (Everything doesn’t change!) But the
generation of B is not only from currents; ∇×B is proportional to the current
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Table 15-1

FALSE IN GENERAL (true only for statics) TRUE ALWAYS

F = 1
4πε0

q1q2

r2 (Coulomb’s law) F = q(E + v ×B) (Lorentz force)

∇ ·E = ρ

ε0
(Gauss’ law)

∇×E = 0 ∇×E = −∂B
∂t

(Faraday’s law)

E = −∇φ E = −∇φ− ∂A

∂t

E(1) = 1
4πε0

∫
ρ(2)e12

r2
12

dV2

For conductors, E = 0, φ = constant. Q = CV In a conductor, E makes currents.

∇ ·B = 0 (No magnetic charges)

B =∇×A

c2∇×B = j

ε0
(Ampère’s law) c2∇×B = j

ε0
+ ∂E

∂t

B(1) = 1
4πε0c2

∫
j(2)× e12

r2
12

dV2

∇2φ = − ρ

ε0
(Poisson’s equation)



∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
and

∇2A = − j

ε0c2
∇2A− 1

c2
∂2A

∂t2
= − j

ε0c2

with with

∇ ·A = 0 c2∇ ·A+ ∂φ

∂t
= 0

φ(1) = 1
4πε0

∫
ρ(2)
r12

dV2


φ(1, t) = 1
4πε0

∫
ρ(2, t′)
r12

dV2

and

A(1) = 1
4πε0c2

∫
j(2)
r12

dV2 A(1, t) = 1
4πε0c2

∫
j(2, t′)
r12

dV2

with
t′ = t− r12

c

U = 1
2

∫
ρφ dV + 1

2

∫
j ·A dV U =

∫ (
ε0
2 E ·E + ε0c

2

2 B ·B
)
dV

The equations marked with ( ) are Maxwell’s equations.
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(2, t −
r12

c
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r12

Fig. 15-10. The potentials at point (1) and at the time t are given
by summing the contributions from each element of the source at the
roving point (2), using the currents and charges which were present at
the earlier time t − r12/c.

density plus a new term ∂E/∂t. This means that A is related to currents by
a new equation. It is also related to φ. If we make use of our freedom to
choose ∇ ·A for our own convenience, the equations for A or φ can be arranged
to take on a simple and elegant form. We therefore make the condition that
c2∇ ·A = −∂φ/∂t, and the differential equations for A or φ appear as shown
in the table.

The potentials A and φ can still be found by integrals over the currents and
charges, but not the same integrals as for statics. Most wonderfully, though, the
true integrals are like the static ones, with only a small and physically appealing
modification. When we do the integrals to find the potentials at some point, say
point (1) in Fig. 15-10, we must use the values of j and ρ at the point (2) at an
earlier time t′ = t− r12/c. As you would expect, the influences propagate from
point (2) to point (1) at the speed c. With this small change, one can solve for
the fields of varying currents and charges, because once we have A and φ, we
get B from ∇×A, as before, and E from −∇φ− ∂A/∂t.

Finally, you will notice that some results—for example, that the energy density
in an electric field is ε0E2/2—are true for electrodynamics as well as for statics.
You should not be misled into thinking that this is at all “natural.” The validity
of any formula derived in the static case must be demonstrated over again for the
dynamic case. A contrary example is the expression for the electrostatic energy
in terms of a volume integral of ρφ. This result is true only for statics.
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We will consider all these matters in more detail in due time, but it will
perhaps be useful to keep in mind this summary, so you will know what you can
forget, and what you should remember as always true.
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16

Induced Currents

16-1 Motors and generators

The discovery in 1820 that there was a close connection between electricity and
magnetism was very exciting—until then, the two subjects had been considered as
quite independent. The first discovery was that currents in wires make magnetic
fields; then, in the same year, it was found that wires carrying current in a
magnetic field have forces on them.

One of the excitements whenever there is a mechanical force is the possibility
of using it in an engine to do work. Almost immediately after their discovery,
people started to design electric motors using the forces on current-carrying wires.
The principle of the electromagnetic motor is shown in bare outline in Fig. 16-1.
A permanent magnet—usually with some pieces of soft iron—is used to produce
a magnetic field in two slots. Across each slot there is a north and south pole, as
shown. A rectangular coil of copper is placed with one side in each slot. When a
current passes through the coil, it flows in opposite directions in the two slots, so
the forces are also opposite, producing a torque on the coil about the axis shown.
If the coil is mounted on a shaft so that it can turn, it can be coupled to pulleys
or gears and can do work.

The same idea can be used for making a sensitive instrument for electrical
measurements. Thus the moment the force law was discovered the precision
of electrical measurements was greatly increased. First, the torque of such a
motor can be made much greater for a given current by making the current go
around many turns instead of just one. Then the coil can be mounted so that
it turns with very little torque—either by supporting its shaft on very delicate
jewel bearings or by hanging the coil on a very fine wire or a quartz fiber. Then
an exceedingly small current will make the coil turn, and for small angles the
amount of rotation will be proportional to the current. The rotation can be
measured by gluing a pointer to the coil or, for the most delicate instruments,
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Fig. 16-1. Schematic outline of a simple electromagnetic motor.

by attaching a small mirror to the coil and looking at the shift of the image of
a scale. Such instruments are called galvanometers. Voltmeters and ammeters
work on the same principle.

The same ideas can be applied on a large scale to make large motors for
providing mechanical power. The coil can be made to go around and around by
arranging that the connections to the coil are reversed each half-turn by contacts
mounted on the shaft. Then the torque is always in the same direction. Small
dc motors are made just this way. Larger motors, dc or ac, are often made
by replacing the permanent magnet by an electromagnet, energized from the
electrical power source.

With the realization that electric currents make magnetic fields, people
immediately suggested that, somehow or other, magnets might also make electric
fields. Various experiments were tried. For example, two wires were placed
parallel to each other and a current was passed through one of them in the
hope of finding a current in the other. The thought was that the magnetic field
might in some way drag the electrons along in the second wire, giving some
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such law as “likes prefer to move alike.” With the largest available current and
the most sensitive galvanometer to detect any current, the result was negative.
Large magnets next to wires also produced no observed effects. Finally, Faraday
discovered in 1840 the essential feature that had been missed—that electric effects
exist only when there is something changing. If one of a pair of wires has a
changing current, a current is induced in the other, or if a magnet is moved near
an electric circuit, there is a current. We say that currents are induced. This was
the induction effect discovered by Faraday. It transformed the rather dull subject
of static fields into a very exciting dynamic subject with an enormous range of
wonderful phenomena. This chapter is devoted to a qualitative description of
some of them. As we will see, one can quickly get into fairly complicated situations
that are hard to analyze quantitatively in all their details. But never mind, our
main purpose in this chapter is first to acquaint you with the phenomena involved.
We will take up the detailed analysis later.

We can easily understand one feature of magnetic induction from what we
already know, although it was not known in Faraday’s time. It comes from the
v×B force on a moving charge that is proportional to its velocity in a magnetic
field. Suppose that we have a wire which passes near a magnet, as shown in
Fig. 16-2, and that we connect the ends of the wire to a galvanometer. If we
move the wire across the end of the magnet the galvanometer pointer moves.

The magnet produces some vertical magnetic field, and when we push the wire
across the field, the electrons in the wire feel a sideways force—at right angles to
the field and to the motion. The force pushes the electrons along the wire. But
why does this move the galvanometer, which is so far from the force? Because
when the electrons which feel the magnetic force try to move, they push—by
electric repulsion—the electrons a little farther down the wire; they, in turn, repel
the electrons a little farther on, and so on for a long distance. An amazing thing.

It was so amazing to Gauss and Weber—who first built a galvanometer—that
they tried to see how far the forces in the wire would go. They strung a wire
all the way across their city. Mr. Gauss, at one end, connected the wires to
a battery (batteries were known before generators) and Mr. Weber watched
the galvanometer move. They had a way of signaling long distances—it was
the beginning of the telegraph! Of course, this has nothing directly to do with
induction—it has to do with the way wires carry currents, whether the currents
are pushed by induction or not.

Now suppose in the setup of Fig. 16-2 we leave the wire alone and move
the magnet. We still see an effect on the galvanometer. As Faraday discovered,
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Fig. 16-2. Moving a wire through a magnetic field produces a current,
as shown by the galvanometer.

moving the magnet under the wire—one way—has the same effect as moving the
wire over the magnet—the other way. But when the magnet is moved, we no
longer have any v ×B force on the electrons in the wire. This is the new effect
that Faraday found. Today, we might hope to understand it from a relativity
argument.

We already understand that the magnetic field of a magnet comes from its
internal currents. So we expect to observe the same effect if instead of a magnet
in Fig. 16-2 we use a coil of wire in which there is a current. If we move the wire
past the coil there will be a current through the galvanometer, or also if we move
the coil past the wire. But there is now a more exciting thing: If we change the
magnetic field of the coil not by moving it, but by changing its current, there is
again an effect in the galvanometer. For example, if we have a loop of wire near
a coil, as shown in Fig. 16-3, and if we keep both of them stationary but switch
off the current, there is a pulse of current through the galvanometer. When we
switch the coil on again, the galvanometer kicks in the other direction.
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Fig. 16-3. A coil with current produces a current in a second coil if
the first coil is moved or if its current is changed.

Whenever the galvanometer in a situation such as the one shown in Fig. 16-2,
or in Fig. 16-3, has a current, there is a net push on the electrons in the wire in one
direction along the wire. There may be pushes in different directions at different
places, but there is more push in one direction than another. What counts is
the push integrated around the complete circuit. We call this net integrated
push the electromotive force (abbreviated emf) in the circuit. More precisely, the
emf is defined as the tangential force per unit charge in the wire integrated over
length, once around the complete circuit. Faraday’s complete discovery was that
emf’s can be generated in a wire in three different ways: by moving the wire, by
moving a magnet near the wire, or by changing a current in a nearby wire.

Let’s consider the simple machine of Fig. 16-1 again, only now, instead of
putting a current through the wire to make it turn, let’s turn the loop by an
external force, for example by hand or by a waterwheel. When the coil rotates,
its wires are moving in the magnetic field and we will find an emf in the circuit
of the coil. The motor becomes a generator.

The coil of the generator has an induced emf from its motion. The amount of
the emf is given by a simple rule discovered by Faraday. (We will just state the
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rule now and wait until later to examine it in detail.) The rule is that when the
magnetic flux that passes through the loop (this flux is the normal component
ofB integrated over the area of the loop) is changing with time, the emf is equal to
the rate of change of the flux. We will refer to this as “the flux rule.” You see that
when the coil of Fig. 16-1 is rotated, the flux through it changes. At the start some
flux goes through one way; then when the coil has rotated 180◦ the same flux goes
through the other way. If we continuously rotate the coil the flux is first positive,
then negative, then positive, and so on. The rate of change of the flux must
alternate also. So there is an alternating emf in the coil. If we connect the two ends
of the coil to outside wires through some sliding contacts—called slip-rings—(just
so the wires won’t get twisted) we have an alternating-current generator.

Or we can also arrange, by means of some sliding contacts, that after every
one-half rotation, the connection between the coil ends and the outside wires is
reversed, so that when the emf reverses, so do the connections. Then the pulses of
emf will always push currents in the same direction through the external circuit.
We have what is called a direct-current generator.

The machine of Fig. 16-1 is either a motor or a generator. The reciprocity
between motors and generators is nicely shown by using two identical dc “motors”
of the permanent magnet kind, with their coils connected by two copper wires.
When the shaft of one is turned mechanically, it becomes a generator and drives
the other as a motor. If the shaft of the second is turned, it becomes the generator
and drives the first as a motor. So here is an interesting example of a new kind
of equivalence of nature: motor and generator are equivalent. The quantitative
equivalence is, in fact, not completely accidental. It is related to the law of
conservation of energy.

Another example of a device that can operate either to generate emf’s or to
respond to emf’s is the receiver of a standard telephone—that is, an “earphone.”
The original telephone of Bell consisted of two such “earphones” connected by
two long wires. The basic principle is shown in Fig. 16-4. A permanent magnet
produces a magnetic field in two “yokes” of soft iron and in a thin diaphragm
that is moved by sound pressure. When the diaphragm moves, it changes the
amount of magnetic field in the yokes. Therefore a coil of wire wound around one
of the yokes will have the flux through it changed when a sound wave hits the
diaphragm. So there is an emf in the coil. If the ends of the coil are connected
to a circuit, a current which is an electrical representation of the sound is set up.

If the ends of the coil of Fig. 16-4 are connected by two wires to another
identical gadget, varying currents will flow in the second coil. These currents will
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Fig. 16-4. A telephone transmitter or receiver.

produce a varying magnetic field and will make a varying attraction on the iron
diaphragm. The diaphragm will wiggle and make sound waves approximately
similar to the ones that moved the original diaphragm. With a few bits of iron
and copper the human voice is transmitted over wires!

(The modern home telephone uses a receiver like the one described but uses an
improved invention to get a more powerful transmitter. It is the “carbon-button
microphone,” that uses sound pressure to vary the electric current from a battery.)

16-2 Transformers and inductances

One of the most interesting features of Faraday’s discoveries is not that an
emf exists in a moving coil—which we can understand in terms of the magnetic
force qv ×B—but that a changing current in one coil makes an emf in a second
coil. And quite surprisingly the amount of emf induced in the second coil is
given by the same “flux rule”: that the emf is equal to the rate of change of
the magnetic flux through the coil. Suppose that we take two coils, each wound
around separate bundles of iron sheets (these help to make stronger magnetic
fields), as shown in Fig. 16-5. Now we connect one of the coils—coil (a)—to
an alternating-current generator. The continually changing current produces a
continuously varying magnetic field. This varying field generates an alternating
emf in the second coil—coil (b). This emf can, for example, produce enough
power to light an electric bulb.

The emf alternates in coil (b) at a frequency which is, of course, the same as
the frequency of the original generator. But the current in coil (b) can be larger
or smaller than the current in coil (a). The current in coil (b) depends on the
emf induced in it and on the resistance and inductance of the rest of its circuit.
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Fig. 16-5. Two coils, wrapped around bundles of iron sheets, allow a
generator to light a bulb with no direct connection.

The emf can be less than that of the generator if, say, there is little flux change.
Or the emf in coil (b) can be made much larger than that in the generator by
winding coil (b) with many turns, since in a given magnetic field the flux through
the coil is then greater. (Or if you prefer to look at it another way, the emf is the
same in each turn, and since the total emf is the sum of the emf’s of the separate
turns, many turns in series produce a large emf.)

Such a combination of two coils—usually with an arrangement of iron sheets
to guide the magnetic fields—is called a transformer. It can “transform” one emf
(also called a “voltage”) to another.

There are also induction effects in a single coil. For instance, in the setup in
Fig. 16-5 there is a changing flux not only through coil (b), which lights the bulb,
but also through coil (a). The varying current in coil (a) produces a varying
magnetic field inside itself and the flux of this field is continually changing, so
there is a self-induced emf in coil (a). There is an emf acting on any current
when it is building up a magnetic field—or, in general, when its field is changing
in any way. The effect is called self-inductance.
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When we gave “the flux rule” that the emf is equal to the rate of change of
the flux linkage, we didn’t specify the direction of the emf. There is a simple
rule, called Lenz’s rule, for figuring out which way the emf goes: the emf tries
to oppose any flux change. That is, the direction of an induced emf is always
such that if a current were to flow in the direction of the emf, it would produce a
flux of B that opposes the change in B that produces the emf. Lenz’s rule can
be used to find the direction of the emf in the generator of Fig. 16-1, or in the
transformer winding of Fig. 16-3.

In particular, if there is a changing current in a single coil (or in any wire)
there is a “back” emf in the circuit. This emf acts on the charges flowing in
coil (a) of Fig. 16-5 to oppose the change in magnetic field, and so in the direction
to oppose the change in current. It tries to keep the current constant; it is
opposite to the current when the current is increasing, and it is in the direction
of the current when it is decreasing. A current in a self-inductance has “inertia,”
because the inductive effects try to keep the flow constant, just as mechanical
inertia tries to keep the velocity of an object constant.

LAMP

+

−
BATTERY

SWITCH

Fig. 16-6. Circuit connections for an electromagnet. The lamp
allows the passage of current when the switch is opened, preventing the
appearance of excessive emf’s.

Any large electromagnet will have a large self-inductance. Suppose that a
battery is connected to the coil of a large electromagnet, as in Fig. 16-6, and that
a strong magnetic field has been built up. (The current reaches a steady value
determined by the battery voltage and the resistance of the wire in the coil.) But
now suppose that we try to disconnect the battery by opening the switch. If we
really opened the circuit, the current would go to zero rapidly, and in doing so it
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would generate an enormous emf. In most cases this emf would be large enough
to develop an arc across the opening contacts of the switch. The high voltage
that appears might also damage the insulation of the coil—or you, if you are
the person who opens the switch! For these reasons, electromagnets are usually
connected in a circuit like the one shown in Fig. 16-6. When the switch is opened,
the current does not change rapidly but remains steady, flowing instead through
the lamp, being driven by the emf from the self-inductance of the coil.

16-3 Forces on induced currents

You have probably seen the dramatic demonstration of Lenz’s rule made
with the gadget shown in Fig. 16-7. It is an electromagnet, just like coil (a) of
Fig. 16-5. An aluminum ring is placed on the end of the magnet. When the coil
is connected to an alternating-current generator by closing the switch, the ring
flies into the air. The force comes, of course, from the induced currents in the
ring. The fact that the ring flies away shows that the currents in it oppose the
change of the field through it. When the magnet is making a north pole at its
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F

Fig. 16-7. A conducting ring is strongly repelled by an electromagnet
with a varying current.
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top, the induced current in the ring is making a downward-pointing north pole.
The ring and the coil are repelled just like two magnets with like poles opposite.
If a thin radial cut is made in the ring the force disappears, showing that it does
indeed come from the currents in the ring.

If, instead of the ring, we place a disc of aluminum or copper across the end
of the electromagnet of Fig. 16-7, it is also repelled; induced currents circulate in
the material of the disc, and again produce a repulsion.

An interesting effect, similar in origin, occurs with a sheet of a perfect
conductor. In a “perfect conductor” there is no resistance whatever to the
current. So if currents are generated in it, they can keep going forever. In fact,
the slightest emf would generate an arbitrarily large current—which really means
that there can be no emf’s at all. Any attempt to make a magnetic flux go
through such a sheet generates currents that create opposite B fields—all with
infinitesimal emf’s, so with no flux entering.

If we have a sheet of a perfect conductor and put an electromagnet next to
it, when we turn on the current in the magnet, currents called eddy currents
appear in the sheet, so that no magnetic flux enters. The field lines would look
as shown in Fig. 16-8. The same thing happens, of course, if we bring a bar
magnet near a perfect conductor. Since the eddy currents are creating opposing
fields, the magnets are repelled from the conductor. This makes it possible to
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Fig. 16-8. An electromagnet near a perfectly conducting plate.
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Fig. 16-9. A bar magnet is suspended above a superconducting bowl,
by the repulsion of eddy currents.

suspend a bar magnet in air above a sheet of perfect conductor shaped like a
dish, as shown in Fig. 16-9. The magnet is suspended by the repulsion of the
induced eddy currents in the perfect conductor. There are no perfect conductors
at ordinary temperatures, but some materials become perfect conductors at low
enough temperatures. For instance, below 3.8◦K tin conducts perfectly. It is
called a superconductor.

If the conductor in Fig. 16-8 is not quite perfect there will be some resistance
to flow of the eddy currents. The currents will tend to die out and the magnet
will slowly settle down. The eddy currents in an imperfect conductor need an
emf to keep them going, and to have an emf the flux must keep changing. The
flux of the magnetic field gradually penetrates the conductor.

In a normal conductor, there are not only repulsive forces from eddy currents,
but there can also be sidewise forces. For instance, if we move a magnet sideways
along a conducting surface the eddy currents produce a force of drag, because the
induced currents are opposing the changing of the location of flux. Such forces
are proportional to the velocity and are like a kind of viscous force.

These effects show up nicely in the apparatus shown in Fig. 16-10. A square
sheet of copper is suspended on the end of a rod to make a pendulum. The
copper swings back and forth between the poles of an electromagnet. When the
magnet is turned on, the pendulum motion is suddenly arrested. As the metal
plate enters the gap of the magnet, there is a current induced in the plate which
acts to oppose the change in flux through the plate. If the sheet were a perfect
conductor, the currents would be so great that they would push the plate out
again—it would bounce back. With a copper plate there is some resistance in the
plate, so the currents at first bring the plate almost to a dead stop as it starts to
enter the field. Then, as the currents die down, the plate slowly settles to rest in
the magnetic field.
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Fig. 16-10. The braking of the pendulum shows the forces due to
eddy currents.
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Fig. 16-11. The eddy currents in the copper pendulum.

The nature of the eddy currents in the copper pendulum is shown in Fig. 16-11.
The strength and geometry of the currents are quite sensitive to the shape of the
plate. If, for instance, the copper plate is replaced by one which has several narrow
slots cut in it, as shown in Fig. 16-12, the eddy-current effects are drastically re-
duced. The pendulum swings through the magnetic field with only a small retard-
ing force. The reason is that the currents in each section of the copper have less flux
to drive them, so the effects of the resistance of each loop are greater. The currents
are smaller and the drag is less. The viscous character of the force is seen even more
clearly if a sheet of copper is placed between the poles of the magnet of Fig. 16-10
and then released. It doesn’t fall; it just sinks slowly downward. The eddy currents
exert a strong resistance to the motion—just like the viscous drag in honey.

If, instead of dragging a conductor past a magnet, we try to rotate it in a
magnetic field, there will be a resistive torque from the same effects. Alternatively,
if we rotate a magnet—end over end—near a conducting plate or ring, the ring
is dragged around; currents in the ring will create a torque that tends to rotate
the ring with the magnet.

A field just like that of a rotating magnet can be made with an arrangement of
coils such as is shown in Fig. 16-13. We take a torus of iron (that is, a ring of iron
like a doughnut) and wind six coils on it. If we put a current, as shown in part (a),
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Fig. 16-12. Eddy-current effects are drastically reduced by cutting
slots in the plate.
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Fig. 16-13. Making a rotating magnetic field.

through windings (1) and (4), there will be a magnetic field in the direction shown
in the figure. If we now switch the current to windings (2) and (5), the magnetic
field will be in a new direction, as shown in part (b) of the figure. Continuing
the process, we get the sequence of fields shown in the rest of the figure. If the
process is done smoothly, we have a “rotating” magnetic field. We can easily
get the required sequence of currents by connecting the coils to a three-phase
power line, which provides just such a sequence of currents. “Three-phase power”
is made in a generator using the principle of Fig. 16-1, except that there are
three loops fastened together on the same shaft in a symmetrical way—that is,
with an angle of 120◦ from one loop to the next. When the coils are rotated as
a unit, the emf is a maximum in one, then in the next, and so on in a regular
sequence. There are many practical advantages of three-phase power. One of
them is the possibility of making a rotating magnetic field. The torque produced
on a conductor by such a rotating field is easily shown by standing a metal ring
on an insulating table just above the torus, as shown in Fig. 16-14. The rotating
field causes the ring to spin about a vertical axis. The basic elements seen here
are quite the same as those at play in a large commercial three-phase induction
motor.
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Fig. 16-14. The rotating field of Fig. 16-13 can be used to provide
torque on a conducting ring.

Another form of induction motor is shown in Fig. 16-15. The arrangement
shown is not suitable for a practical high-efficiency motor but will illustrate the
principle. The electromagnet M , consisting of a bundle of laminated iron sheets
wound with a solenoidal coil, is powered with alternating current from a generator.
The magnet produces a varying flux of B through the aluminum disc. If we have
just these two components, as shown in part (a) of the figure, we do not yet have
a motor. There are eddy currents in the disc, but they are symmetric and there is
no torque. (There will be some heating of the disc due to the induced currents.)
If we now cover only one-half of the magnet pole with an aluminum plate, as
shown in part (b) of the figure, the disc begins to rotate, and we have a motor.
The operation depends on two eddy-current effects. First, the eddy currents
in the aluminum plate oppose the change of flux through it, so the magnetic
field above the plate always lags the field above that half of the pole which is
not covered. This so-called “shaded-pole” effect produces a field which in the
“shaded” region varies much like that in the “unshaded” region except that it is
delayed a constant amount in time. The whole effect is as if there were a magnet
only half as wide which is continually being moved from the unshaded region
toward the shaded one. Then the varying fields interact with the eddy currents
in the disc to produce the torque on it.

16-4 Electrical technology

When Faraday first made public his remarkable discovery that a changing
magnetic flux produces an emf, he was asked (as anyone is asked when he discovers
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Fig. 16-15. A simple example of a shaded-pole induction motor.

a new fact of nature), “What is the use of it?” All he had found was the oddity that
a tiny current was produced when he moved a wire near a magnet. Of what possible
“use” could that be? His answer was: “What is the use of a newborn baby?”

Yet think of the tremendous practical applications his discovery has led to.
What we have been describing are not just toys but examples chosen in most
cases to represent the principle of some practical machine. For instance, the
rotating ring in the turning field is an induction motor. There are, of course,
some differences between it and a practical induction motor. The ring has a
very small torque; it can be stopped with your hand. For a good motor, things
have to be put together more intimately: there shouldn’t be so much “wasted”
magnetic field out in the air. First, the field is concentrated by using iron. We
have not discussed how iron does that, but iron can make the magnetic field tens
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of thousands of times stronger than copper coils alone could do. Second, the gaps
between the pieces of iron are made small; to do that, some iron is even built
into the rotating ring. Everything is arranged so as to get the greatest forces
and the greatest efficiency—that is, conversion of electrical power to mechanical
power—until the “ring” can no longer be held still by your hand.

This problem of closing the gaps and making the thing work in the most
practical way is engineering. It requires serious study of design problems, although
there are no new basic principles from which the forces are obtained. But there is
a long way to go from the basic principles to a practical and economic design. Yet
it is just such careful engineering design that has made possible such a tremendous
thing as Boulder Dam and all that goes with it.

What is Boulder Dam? A huge river is stopped by a concrete wall. But what
a wall it is! Shaped with a perfect curve that is very carefully worked out so that
the least possible amount of concrete will hold back a whole river. It thickens at
the bottom in that wonderful shape that the artists like but that the engineers
can appreciate because they know that such thickening is related to the increase
of pressure with the depth of the water. But we are getting away from electricity.

Then the water of the river is diverted into a huge pipe. That’s a nice engineer-
ing accomplishment in itself. The pipe feeds the water into a “waterwheel”—a
huge turbine—and makes wheels turn. (Another engineering feat.) But why turn
wheels? They are coupled to an exquisitely intricate mess of copper and iron, all
twisted and interwoven. With two parts—one that turns and one that doesn’t.
All a complex intermixture of a few materials, mostly iron and copper but also
some paper and shellac for insulation. A revolving monster thing. A generator.
Somewhere out of the mess of copper and iron come a few special pieces of copper.
The dam, the turbine, the iron, the copper, all put there to make something
special happen to a few bars of copper—an emf. Then the copper bars go a little
way and circle for several times around another piece of iron in a transformer;
then their job is done.

But around that same piece of iron curls another cable of copper which has
no direct connection whatsoever to the bars from the generator; they have just
been influenced because they passed near it—to get their emf. The transformer
converts the power from the relatively low voltages required for the efficient design
of the generator to the very high voltages that are best for efficient transmission
of electrical energy over long cables.

And everything must be enormously efficient—there can be no waste, no
loss. Why? The power for a metropolis is going through. If a small fraction
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were lost—one or two percent—think of the energy left behind! If one percent of
the power were left in the transformer, that energy would need to be taken out
somehow. If it appeared as heat, it would quickly melt the whole thing. There is,
of course, some small inefficiency, but all that is required are a few pumps which
circulate some oil through a radiator to keep the transformer from heating up.

Out of the Boulder Dam come a few dozen rods of copper—long, long, long
rods of copper perhaps the thickness of your wrist that go for hundreds of miles in
all directions. Small rods of copper carrying the power of a giant river. Then the
rods are split to make more rods . . . then to more transformers . . . sometimes
to great generators which recreate the current in another form . . . sometimes
to engines turning for big industrial purposes . . . to more transformers . . . then
more splitting and spreading . . . until finally the river is spread throughout the
whole city—turning motors, making heat, making light, working gadgetry. The
miracle of hot lights from cold water over 600 miles away—all done with specially
arranged pieces of copper and iron. Large motors for rolling steel, or tiny motors
for a dentist’s drill. Thousands of little wheels, turning in response to the turning
of the big wheel at Boulder Dam. Stop the big wheel, and all the wheels stop;
the lights go out. They really are connected.

Yet there is more. The same phenomena that take the tremendous power of
the river and spread it through the countryside, until a few drops of the river
are running the dentist’s drill, come again into the building of extremely fine
instruments . . . for the detection of incredibly small amounts of current . . . for the
transmission of voices, music, and pictures . . . for computers . . . for automatic
machines of fantastic precision.

All this is possible because of carefully designed arrangements of copper and
iron—efficiently created magnetic fields . . . blocks of rotating iron six feet in
diameter whirling with clearances of 1/16 of an inch . . . careful proportions of
copper for the optimum efficiency . . . strange shapes all serving a purpose, like
the curve of the dam.

If some future archaeologist uncovers Boulder Dam, we may guess that he
would admire the beauty of its curves. But also the explorers from some great
future civilizations will look at the generators and transformers and say: “Notice
that every iron piece has a beautifully efficient shape. Think of the thought that
has gone into every piece of copper!”

This is the power of engineering and the careful design of our electrical
technology. There has been created in the generator something which exists
nowhere else in nature. It is true that there are forces of induction in other
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places. Certainly in some places around the sun and stars there are effects of
electromagnetic induction. Perhaps also (though it’s not certain) the magnetic
field of the earth is maintained by an analog of an electric generator that operates
on circulating currents in the interior of the earth. But nowhere have there been
pieces put together with moving parts to generate electrical power as is done in
the generator—with great efficiency and regularity.

You may think that designing electric generators is no longer an interesting
subject, that it is a dead subject because they are all designed. Almost perfect
generators or motors can be taken from a shelf. Even if this were true, we can
admire the wonderful accomplishment of a problem solved to near perfection. But
there remain as many unfinished problems. Even generators and transformers are
returning as problems. It is likely that the whole field of low temperatures and
superconductors will soon be applied to the problem of electric power distribution.
With a radically new factor in the problem, new optimum designs will have to
be created. Power networks of the future may have little resemblance to those of
today.

You can see that there is an endless number of applications and problems
that one could take up while studying the laws of induction. The study of the
design of electrical machinery is a life work in itself. We cannot go very far in
that direction, but we should be aware of the fact that when we have discovered
the law of induction, we have suddenly connected our theory to an enormous
practical development. We must, however, leave that subject to the engineers
and applied scientists who are interested in working out the details of particular
applications. Physics only supplies the base—the basic principles that apply,
no matter what. (We have not yet completed the base, because we have yet to
consider in detail the properties of iron and of copper. Physics has something to
say about these as we will see a little later!)

Modern electrical technology began with Faraday’s discoveries. The useless
baby developed into a prodigy and changed the face of the earth in ways its
proud father could never have imagined.
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17

The Laws of Induction

17-1 The physics of induction

In the last chapter we described many phenomena which show that the effects
of induction are quite complicated and interesting. Now we want to discuss
the fundamental principles which govern these effects. We have already defined
the emf in a conducting circuit as the total accumulated force on the charges
throughout the length of the loop. More specifically, it is the tangential component
of the force per unit charge, integrated along the wire once around the circuit.
This quantity is equal, therefore, to the total work done on a single charge that
travels once around the circuit.

We have also given the “flux rule,” which says that the emf is equal to the
rate at which the magnetic flux through such a conducting circuit is changing.
Let’s see if we can understand why that might be. First, we’ll consider a case in
which the flux changes because a circuit is moved in a steady field.

In Fig. 17-1 we show a simple loop of wire whose dimensions can be changed.
The loop has two parts, a fixed U-shaped part (a) and a movable crossbar (b)

LINES of B
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(a)

(b)

Fig. 17-1. An emf is induced in a loop if the flux is changed by varying
the area of the circuit.
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that can slide along the two legs of the U. There is always a complete circuit, but
its area is variable. Suppose we now place the loop in a uniform magnetic field
with the plane of the U perpendicular to the field. According to the rule, when
the crossbar is moved there should be in the loop an emf that is proportional to
the rate of change of the flux through the loop. This emf will cause a current in
the loop. We will assume that there is enough resistance in the wire that the
currents are small. Then we can neglect any magnetic field from this current.

The flux through the loop is wLB, so the “flux rule” would give for the
emf—which we write as E—

E = wB
dL

dt
= wBv,

where v is the speed of translation of the crossbar.
Now we should be able to understand this result from the magnetic v ×B

forces on the charges in the moving crossbar. These charges will feel a force,
tangential to the wire, equal to vB per unit charge. It is constant along the
length w of the crossbar and zero elsewhere, so the integral is

E = wvB,

which is the same result we got from the rate of change of the flux.
The argument just given can be extended to any case where there is a fixed

magnetic field and the wires are moved. One can prove, in general, that for any
circuit whose parts move in a fixed magnetic field the emf is the time derivative
of the flux, regardless of the shape of the circuit.

On the other hand, what happens if the loop is stationary and the magnetic
field is changed? We cannot deduce the answer to this question from the same
argument. It was Faraday’s discovery—from experiment—that the “flux rule” is
still correct no matter why the flux changes. The force on electric charges is given
in complete generality by F = q(E+v×B); there are no new special “forces due
to changing magnetic fields.” Any forces on charges at rest in a stationary wire
come from the E term. Faraday’s observations led to the discovery that electric
and magnetic fields are related by a new law: in a region where the magnetic
field is changing with time, electric fields are generated. It is this electric field
which drives the electrons around the wire—and so is responsible for the emf in
a stationary circuit when there is a changing magnetic flux.
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The general law for the electric field associated with a changing magnetic
field is

∇×E = −∂B
∂t

. (17.1)

We will call this Faraday’s law. It was discovered by Faraday but was first written
in differential form by Maxwell, as one of his equations. Let’s see how this
equation gives the “flux rule” for circuits.

Using Stokes’ theorem, this law can be written in integral form as∮
Γ
E · ds =

∫
S

(∇×E) · n da = −
∫
S

∂B

∂t
· n da, (17.2)

where, as usual, Γ is any closed curve and S is any surface bounded by it. Here,
remember, Γ is a mathematical curve fixed in space, and S is a fixed surface.
Then the time derivative can be taken outside the integral and we have∮

Γ
E · ds = − d

dt

∫
S

B · n da

= − d

dt
(flux through S). (17.3)

Applying this relation to a curve Γ that follows a fixed circuit of conductor, we
get the “flux rule” once again. The integral on the left is the emf, and that on the
right is the negative rate of change of the flux linked by the circuit. So Eq. (17.1)
applied to a fixed circuit is equivalent to the “flux rule.”

So the “flux rule”—that the emf in a circuit is equal to the rate of change of
the magnetic flux through the circuit—applies whether the flux changes because
the field changes or because the circuit moves (or both). The two possibilities—
“circuit moves” or “field changes”—are not distinguished in the statement of the
rule. Yet in our explanation of the rule we have used two completely distinct
laws for the two cases—v ×B for “circuit moves” and ∇ × E = −∂B/∂t for
“field changes.”

We know of no other place in physics where such a simple and accurate general
principle requires for its real understanding an analysis in terms of two different
phenomena. Usually such a beautiful generalization is found to stem from a
single deep underlying principle. Nevertheless, in this case there does not appear
to be any such profound implication. We have to understand the “rule” as the
combined effects of two quite separate phenomena.
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We must look at the “flux rule” in the following way. In general, the force
per unit charge is F /q = E + v×B. In moving wires there is the force from the
second term. Also, there is an E-field if there is somewhere a changing magnetic
field. They are independent effects, but the emf around the loop of wire is always
equal to the rate of change of magnetic flux through it.

17-2 Exceptions to the “flux rule”

We will now give some examples, due in part to Faraday, which show the
importance of keeping clearly in mind the distinction between the two effects
responsible for induced emf’s. Our examples involve situations to which the “flux
rule” cannot be applied—either because there is no wire at all or because the
path taken by induced currents moves about within an extended volume of a
conductor.

We begin by making an important point: The part of the emf that comes
from the E-field does not depend on the existence of a physical wire (as does the
v ×B part). The E-field can exist in free space, and its line integral around any
imaginary line fixed in space is the rate of change of the flux of B through that
line. (Note that this is quite unlike the E-field produced by static charges, for in
that case the line integral of E around a closed loop is always zero.)

Now we will describe a situation in which the flux through a circuit does not
change, but there is nevertheless an emf. Figure 17-2 shows a conducting disc
which can be rotated on a fixed axis in the presence of a magnetic field. One

N

S

COPPER DISC

GALVANOMETER

BAR
MAGNET

Fig. 17-2. When the disc rotates there is an emf from v × B, but
with no change in the linked flux.
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contact is made to the shaft and another rubs on the outer periphery of the disc.
A circuit is completed through a galvanometer. As the disc rotates, the “circuit,”
in the sense of the place in space where the currents are, is always the same. But
the part of the “circuit” in the disc is in material which is moving. Although the
flux through the “circuit” is constant, there is still an emf, as can be observed by
the deflection of the galvanometer. Clearly, here is a case where the v×B force in
the moving disc gives rise to an emf which cannot be equated to a change of flux.

GALVANOMETER

COPPER PLATES

P

P ′

⊗ B

Fig. 17-3. When the plates are rocked in a uniform magnetic field,
there can be a large change in the flux linkage without the generation
of an emf.

Now we consider, as an opposite example, a somewhat unusual situation in
which the flux through a “circuit” (again in the sense of the place where the
current is) changes but where there is no emf. Imagine two metal plates with
slightly curved edges, as shown in Fig. 17-3, placed in a uniform magnetic field
perpendicular to their surfaces. Each plate is connected to one of the terminals
of a galvanometer, as shown. The plates make contact at one point P , so there is
a complete circuit. If the plates are now rocked through a small angle, the point
of contact will move to P ′. If we imagine the “circuit” to be completed through
the plates on the dotted line shown in the figure, the magnetic flux through this
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circuit changes by a large amount as the plates are rocked back and forth. Yet
the rocking can be done with small motions, so that v ×B is very small and
there is practically no emf. The “flux rule” does not work in this case. It must be
applied to circuits in which the material of the circuit remains the same. When
the material of the circuit is changing, we must return to the basic laws. The
correct physics is always given by the two basic laws

F = q(E + v ×B),

∇×E = −∂B
∂t

.

17-3 Particle acceleration by an induced electric field; the betatron

We have said that the electromotive force generated by a changing magnetic
field can exist even without conductors; that is, there can be magnetic induction
without wires. We may still imagine an electromotive force around an arbitrary
mathematical curve in space. It is defined as the tangential component of E
integrated around the curve. Faraday’s law says that this line integral is equal to
minus the rate of change of the magnetic flux through the closed curve, Eq. (17.3).

As an example of the effect of such an induced electric field, we want now
to consider the motion of an electron in a changing magnetic field. We imagine
a magnetic field which, everywhere on a plane, points in a vertical direction,
as shown in Fig. 17-4. The magnetic field is produced by an electromagnet,
but we will not worry about the details. For our example we will imagine that
the magnetic field is symmetric about some axis, i.e., that the strength of the
magnetic field will depend only on the distance from the axis. The magnetic field
is also varying with time. We now imagine an electron that is moving in this field
on a path that is a circle of constant radius with its center at the axis of the field.
(We will see later how this motion can be arranged.) Because of the changing
magnetic field, there will be an electric field E tangential to the electron’s orbit
which will drive it around the circle. Because of the symmetry, this electric field
will have the same value everywhere on the circle. If the electron’s orbit has the
radius r, the line integral of E around the orbit is equal to minus the rate of
change of the magnetic flux through the circle. The line integral of E is just its
magnitude times the circumference of the circle, 2πr. The magnetic flux must, in
general, be obtained from an integral. For the moment, we let Bav represent the
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Fig. 17-4. An electron accelerating in an axially symmetric, increasing
magnetic field.

average magnetic field in the interior of the circle; then the flux is this average
magnetic field times the area of the circle. We will have

2πrE = d

dt
(Bav · πr2).

Since we are assuming r is constant, E is proportional to the time derivative
of the average field:

E = r

2
dBav

dt
. (17.4)

The electron will feel the electric force qE and will be accelerated by it. Re-
membering that the relativistically correct equation of motion is that the rate of
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change of the momentum is proportional to the force, we have

qE = dp

dt
. (17.5)

For the circular orbit we have assumed, the electric force on the electron is
always in the direction of its motion, so its total momentum will be increasing at
the rate given by Eq. (17.5). Combining Eqs. (17.5) and (17.4), we may relate
the rate of change of momentum to the change of the average magnetic field:

dp

dt
= qr

2
dBav

dt
. (17.6)

Integrating with respect to t, we find for the electron’s momentum

p = p0 + qr

2 ∆Bav, (17.7)

where p0 is the momentum with which the electrons start out, and ∆Bav, is
the subsequent change in Bav. The operation of a betatron—a machine for
accelerating electrons to high energies—is based on this idea.

To see how the betatron operates in detail, we must now examine how the
electron can be constrained to move on a circle. We have discussed in Chapter 11
of Vol. I the principle involved. If we arrange that there is a magnetic field B
at the orbit of the electron, there will be a transverse force qv ×B which, for a
suitably chosen B, can cause the electron to keep moving on its assumed orbit.
In the betatron this transverse force causes the electron to move in a circular
orbit of constant radius. We can find out what the magnetic field at the orbit
must be by using again the relativistic equation of motion, but this time, for the
transverse component of the force. In the betatron (see Fig. 17-4), B is at right
angles to v, so the transverse force is qvB. Thus the force is equal to the rate of
change of the transverse component pt of the momentum:

qvB = dpt
dt
. (17.8)

When a particle is moving in a circle, the rate of change of its transverse
momentum is equal to the magnitude of the total momentum times ω, the
angular velocity of rotation (following the arguments of Chapter 11, Vol. I):

dpt
dt

= ωp, (17.9)

17-8



where, since the motion is circular,
ω = v

r
. (17.10)

Setting the magnetic force equal to the transverse acceleration, we have

qvBorbit = p
v

r
, (17.11)

where Borbit is the field at the radius r.
As the betatron operates, the momentum of the electron grows in proportion

to Bav, according to Eq. (17.7), and if the electron is to continue to move in its
proper circle, Eq. (17.11) must continue to hold as the momentum of the electron
increases. The value of Borbit must increase in proportion to the momentum p.
Comparing Eq. (17.11) with Eq. (17.7), which determines p, we see that the
following relation must hold between Bav, the average magnetic field inside the
orbit at the radius r, and the magnetic field Borbit at the orbit:

∆Bav = 2 ∆Borbit. (17.12)

The correct operation of a betatron requires that the average magnetic field inside
the orbit increases at twice the rate of the magnetic field at the orbit itself. In
these circumstances, as the energy of the particle is increased by the induced
electric field the magnetic field at the orbit increases at just the rate required to
keep the particle moving in a circle.

The betatron is used to accelerate electrons to energies of tens of millions of
volts, or even to hundreds of millions of volts. However, it becomes impractical for
the acceleration of electrons to energies much higher than a few hundred million
volts for several reasons. One of them is the practical difficulty of attaining the
required high average value for the magnetic field inside the orbit. Another is that
Eq. (17.6) is no longer correct at very high energies because it does not include
the loss of energy from the particle due to its radiation of electromagnetic energy
(the so-called synchrotron radiation discussed in Chapter 36, Vol. I). For these
reasons, the acceleration of electrons to the highest energies—to many billions of
electron volts—is accomplished by means of a different kind of machine, called a
synchrotron.

17-4 A paradox

We would now like to describe for you an apparent paradox. A paradox is a
situation which gives one answer when analyzed one way, and a different answer
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when analyzed another way, so that we are left in somewhat of a quandary as
to actually what should happen. Of course, in physics there are never any real
paradoxes because there is only one correct answer; at least we believe that nature
will act in only one way (and that is the right way, naturally). So in physics a
paradox is only a confusion in our own understanding. Here is our paradox.

PLASTIC DISC

CHARGED
METAL SPHERES COIL OF WIRE

BATTERY

+
−

I

Fig. 17-5. Will the disc rotate if the current I is stopped?

Imagine that we construct a device like that shown in Fig. 17-5. There is a
thin, circular plastic disc supported on a concentric shaft with excellent bearings,
so that it is quite free to rotate. On the disc is a coil of wire in the form of a
short solenoid concentric with the axis of rotation. This solenoid carries a steady
current I provided by a small battery, also mounted on the disc. Near the edge
of the disc and spaced uniformly around its circumference are a number of small
metal spheres insulated from each other and from the solenoid by the plastic
material of the disc. Each of these small conducting spheres is charged with the
same electrostatic charge Q. Everything is quite stationary, and the disc is at
rest. Suppose now that by some accident—or by prearrangement—the current in
the solenoid is interrupted, without, however, any intervention from the outside.
So long as the current continued, there was a magnetic flux through the solenoid
more or less parallel to the axis of the disc. When the current is interrupted,
this flux must go to zero. There will, therefore, be an electric field induced which
will circulate around in circles centered at the axis. The charged spheres on the
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perimeter of the disc will all experience an electric field tangential to the perimeter
of the disc. This electric force is in the same sense for all the charges and so
will result in a net torque on the disc. From these arguments we would expect
that as the current in the solenoid disappears, the disc would begin to rotate.
If we knew the moment of inertia of the disc, the current in the solenoid, and the
charges on the small spheres, we could compute the resulting angular velocity.

But we could also make a different argument. Using the principle of the
conservation of angular momentum, we could say that the angular momentum of
the disc with all its equipment is initially zero, and so the angular momentum of
the assembly should remain zero. There should be no rotation when the current
is stopped. Which argument is correct? Will the disc rotate or will it not? We
will leave this question for you to think about.

We should warn you that the correct answer does not depend on any nonessen-
tial feature, such as the asymmetric position of a battery, for example. In fact,
you can imagine an ideal situation such as the following: The solenoid is made of
superconducting wire through which there is a current. After the disc has been
carefully placed at rest, the temperature of the solenoid is allowed to rise slowly
When the temperature of the wire reaches the transition temperature between
superconductivity and normal conductivity, the current in the solenoid will be
brought to zero by the resistance of the wire. The flux will, as before, fall to zero,
and there will be an electric field around the axis. We should also warn you that
the solution is not easy, nor is it a trick. When you figure it out, you will have
discovered an important principle of electromagnetism.

17-5 Alternating-current generator

In the remainder of this chapter we apply the principles of Section 17-1 to
analyze a number of the phenomena discussed in Chapter 16. We first look
in more detail at the alternating-current generator. Such a generator consists
basically of a coil of wire rotating in a uniform magnetic field. The same result
can also be achieved by a fixed coil in a magnetic field whose direction rotates
in the manner described in the last chapter. We will consider only the former
case. Suppose we have a circular coil of wire which can be turned on an axis
along one of its diameters. Let this coil be located in a uniform magnetic field
perpendicular to the axis of rotation, as in Fig. 17-6. We also imagine that the
two ends of the coil are brought to external connections through some kind of
sliding contacts.
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Fig. 17-6. A coil of wire rotating in a uniform magnetic field—the
basic idea of the AC generator.

Due to the rotation of the coil, the magnetic flux through it will be changing.
The circuit of the coil will therefore have an emf in it. Let S be the area of the
coil and θ the angle between the magnetic field and the normal to the plane of
the coil.* The flux through the coil is then

BS cos θ. (17.13)

If the coil is rotating at the uniform angular velocity ω, θ varies with time
as θ = ωt.

Each turn of the coil will have an emf equal to the rate of change of this flux.
If the coil has N turns of wire the total emf will be N times larger, so

E = −N d

dt
(BS cosωt) = NBSω sinωt. (17.14)

If we bring the wires from the generator to a point some distance from the
rotating coil, where the magnetic field is zero, or at least is not varying with time,
the curl of E in this region will be zero and we can define an electric potential.
In fact, if there is no current being drawn from the generator, the potential
difference V between the two wires will be equal to the emf in the rotating coil.
That is,

V = NBSω sinωt = V0 sinωt.
* Now that we are using the letter A for the vector potential, we prefer to let S stand for a

surface area.
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The potential difference between the wires varies as sinωt. Such a varying
potential difference is called an alternating voltage.

Since there is an electric field between the wires, they must be electrically
charged. It is clear that the emf of the generator has pushed some excess charges
out to the wire until the electric field from them is strong enough to exactly
counterbalance the induction force. Seen from outside the generator, the two
wires appear as though they had been electrostatically charged to the potential
difference V , and as though the charge was being changed with time to give
an alternating potential difference. There is also another difference from an
electrostatic situation. If we connect the generator to an external circuit that
permits passage of a current, we find that the emf does not permit the wires to
be discharged but continues to provide charge to the wires as current is drawn
from them, attempting to keep the wires always at the same potential difference.
If, in fact, the generator is connected in a circuit whose total resistance is R, the
current through the circuit will be proportional to the emf of the generator and
inversely proportional to R. Since the emf has a sinusoidal time variation, so
also does the current. There is an alternating current

I = E

R
= V0

R
sinωt.

The schematic diagram of such a circuit is shown in Fig. 17-7.

∼A.C.
Generator

I

R

I =
E
R
=
V0

R
sinωt

Fig. 17-7. A circuit with an AC generator and a resistance.

We can also see that the emf determines how much energy is supplied by the
generator. Each charge in the wire is receiving energy at the rate F · v, where F
is the force on the charge and v is its velocity. Now let the number of moving
charges per unit length of the wire be n; then the power being delivered into any
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element ds of the wire is
F · vnds.

For a wire, v is always along ds, so we can rewrite the power as

nvF · ds.

The total power being delivered to the complete circuit is the integral of this
expression around the complete loop:

Power =
∮
nvF · ds. (17.15)

Now remember that qnv is the current I, and that the emf is defined as the
integral of F/q around the circuit. We get the result

Power from a generator = EI. (17.16)

When there is a current in the coil of the generator, there will also be
mechanical forces on it. In fact, we know that the torque on the coil is proportional
to its magnetic moment, to the magnetic field strength B, and to the sine of the
angle between. The magnetic moment is the current in the coil times its area.
Therefore the torque is

τ = NISB sin θ. (17.17)

The rate at which mechanical work must be done to keep the coil rotating is the
angular velocity ω times the torque:

dW

dt
= ωτ = ωNISB sin θ. (17.18)

Comparing this equation with Eq. (17.14), we see that the rate of mechanical
work required to rotate the coil against the magnetic forces is just equal to EI,
the rate at which electrical energy is delivered by the emf of the generator. All
of the mechanical energy used up in the generator appears as electrical energy in
the circuit.

As another example of the currents and forces due to an induced emf, let’s
analyze what happens in the setup described in Section 17-1, and shown in
Fig. 17-1. There are two parallel wires and a sliding crossbar located in a uniform
magnetic field perpendicular to the plane of the parallel wires. Now let’s assume
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that the “bottom” of the U (the left side in the figure) is made of wires of high
resistance, while the two side wires are made of a good conductor like copper—
then we don’t need to worry about the change of the circuit resistance as the
crossbar is moved. As before, the emf in the circuit is

E = vBw. (17.19)

The current in the circuit is proportional to this emf and inversely proportional
to the resistance of the circuit:

I = E

R
= vBw

R
. (17.20)

Because of this current there will be a magnetic force on the crossbar that is
proportional to its length, to the current in it, and to the magnetic field, such
that

F = BIw. (17.21)

Taking I from Eq. (17.20), we have for the force

F = B2w2

R
v. (17.22)

We see that the force is proportional to the velocity of the crossbar. The direction
of the force, as you can easily see, is opposite to its velocity. Such a “velocity-
proportional” force, which is like the force of viscosity, is found whenever induced
currents are produced by moving conductors in a magnetic field. The examples of
eddy currents we gave in the last chapter also produced forces on the conductors
proportional to the velocity of the conductor, even though such situations, in
general, give a complicated distribution of currents which is difficult to analyze.

It is often convenient in the design of mechanical systems to have damping
forces which are proportional to the velocity. Eddy-current forces provide one of
the most convenient ways of getting such a velocity-dependent force. An example
of the application of such a force is found in the conventional domestic wattmeter.
In the wattmeter there is a thin aluminum disc that rotates between the poles
of a permanent magnet. This disc is driven by a small electric motor whose
torque is proportional to the power being consumed in the electrical circuit of the
house. Because of the eddy-current forces in the disc, there is a resistive force
proportional to the velocity. In equilibrium, the velocity is therefore proportional
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to the rate of consumption of electrical energy. By means of a counter attached
to the rotating disc, a record is kept of the number of revolutions it makes.
This count is an indication of the total energy consumption, i.e., the number of
watthours used.

We may also point out that Eq. (17.22) shows that the force from induced
currents—that is, any eddy-current force—is inversely proportional to the resis-
tance. The force will be larger, the better the conductivity of the material. The
reason, of course, is that an emf produces more current if the resistance is low,
and the stronger currents represent greater mechanical forces.

We can also see from our formulas how mechanical energy is converted into
electrical energy. As before, the electrical energy supplied to the resistance of
the circuit is the product EI. The rate at which work is done in moving the
conducting crossbar is the force on the bar times its velocity. Using Eq. (17.21)
for the force, the rate of doing work is

dW

dt
= v2B2w2

R
.

We see that this is indeed equal to the product EI we would get from Eqs. (17.19)
and (17.20). Again the mechanical work appears as electrical energy.

17-6 Mutual inductance

We now want to consider a situation in which there are fixed coils of wire but
changing magnetic fields. When we described the production of magnetic fields
by currents, we considered only the case of steady currents. But so long as the
currents are changed slowly, the magnetic field will at each instant be nearly the
same as the magnetic field of a steady current. We will assume in the discussion
of this section that the currents are always varying sufficiently slowly that this is
true.

In Fig. 17-8 is shown an arrangement of two coils which demonstrates the
basic effects responsible for the operation of a transformer. Coil 1 consists of a
conducting wire wound in the form of a long solenoid. Around this coil—and
insulated from it—is wound coil 2, consisting of a few turns of wire. If now a
current is passed through coil 1, we know that a magnetic field will appear inside
it. This magnetic field also passes through coil 2. As the current in coil 1 is
varied, the magnetic flux will also vary, and there will be an induced emf in coil 2.
We will now calculate this induced emf.
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COIL 1

COIL 2

I1

I2

B

Fig. 17-8. A current in coil 1 produces a magnetic field through coil 2.

We have seen in Section 13-5 that the magnetic field inside a long solenoid is
uniform and has the magnitude

B = 1
ε0c2

N1I1
l

, (17.23)

where N1 is the number of turns in coil 1, I1 is the current through it, and l is its
length. Let’s say that the cross-sectional area of coil 1 is S; then the flux of B is
its magnitude times S. If coil 2 has N2 turns, this flux links the coil N2 times.
Therefore the emf in coil 2 is given by

E2 = −N2S
dB

dt
. (17.24)

The only quantity in Eq. (17.23) which varies with time is I1. The emf is therefore
given by

E2 = −N1N2S

ε0c2l

dI1
dt
. (17.25)
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We see that the emf in coil 2 is proportional to the rate of change of the
current in coil 1. The constant of proportionality, which is basically a geometric
factor of the two coils, is called the mutual inductance, and is usually designated
M21. Equation (17.25) is then written

E2 = M21
dI1
dt
. (17.26)

Suppose now that we were to pass a current through coil 2 and ask about
the emf in coil 1. We would compute the magnetic field, which is everywhere
proportional to the current I2. The flux linkage through coil 1 would depend on
the geometry, but would be proportional to the current I2. The emf in coil 1
would, therefore, again be proportional to dI2/dt: We can write

E1 = M12
dI2
dt
. (17.27)

The computation of M12 would be more difficult than the computation we have
just done for M21. We will not carry through that computation now, because we
will show later in this chapter that M12 is necessarily equal to M21.

Since for any coil its field is proportional to its current, the same kind of result
would be obtained for any two coils of wire. The equations (17.26) and (17.27)
would have the same form; only the constants M21 and M12 would be different.
Their values would depend on the shapes of the coils and their relative positions.

Suppose that we wish to find the mutual inductance between any two arbitrary
coils—for example, those shown in Fig. 17-9. We know that the general expression

1 2

I1

I2

ds1

ds2

r12

Fig. 17-9. Any two coils have a mutual inductance M proportional to
the integral of ds1 · ds2/r12.
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for the emf in coil 1 can be written as

E1 = − d

dt

∫
(1)
B · n da,

where B is the magnetic field and the integral is to be taken over a surface
bounded by circuit 1. We have seen in Section 14-1 that such a surface integral
of B can be related to a line integral of the vector potential. In particular,∫

(1)
B · n da =

∮
(1)
A · ds1,

where A represents the vector potential and ds1 is an element of circuit 1. The
line integral is to be taken around circuit 1. The emf in coil 1 can therefore be
written as

E1 = − d

dt

∮
(1)
A · ds1. (17.28)

Now let’s assume that the vector potential at circuit 1 comes from currents
in circuit 2. Then it can be written as a line integral around circuit 2:

A = 1
4πε0c2

∮
(2)

I2 ds2

r12
, (17.29)

where I2 is the current in circuit 2, and r12 is the distance from the element of
the circuit ds2 to the point on circuit 1 at which we are evaluating the vector
potential. (See Fig. 17-9.) Combining Eqs. (17.28) and (17.29), we can express
the emf in circuit 1 as a double line integral:

E1 = − 1
4πε0c2

d

dt

∮
(1)

∮
(2)

I2 ds2

r12
· ds1.

In this equation the integrals are all taken with respect to stationary circuits. The
only variable quantity is the current I2, which does not depend on the variables
of integration. We may therefore take it out of the integrals. The emf can then
be written as

E1 = M12
dI2
dt
,

where the coefficient M12 is

M12 = − 1
4πε0c2

∮
(1)

∮
(2)

ds2 · ds1

r12
. (17.30)
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We see from this integral that M12 depends only on the circuit geometry. It
depends on a kind of average separation of the two circuits, with the average
weighted most for parallel segments of the two coils. Our equation can be used
for calculating the mutual inductance of any two circuits of arbitrary shape. Also,
it shows that the integral for M12 is identical to the integral for M21. We have
therefore shown that the two coefficients are identical. For a system with only
two coils, the coefficients M12 and M21 are often represented by the symbol M
without subscripts, called simply the mutual inductance:

M12 = M21 = M.

17-7 Self-inductance

In discussing the induced electromotive forces in the two coils of Figs. 17-8
or 17-9, we have considered only the case in which there was a current in one
coil or the other. If there are currents in the two coils simultaneously, the
magnetic flux linking either coil will be the sum of the two fluxes which would
exist separately, because the law of superposition applies for magnetic fields. The
emf in either coil will therefore be proportional not only to the change of the
current in the other coil, but also to the change in the current of the coil itself.
Thus the total emf in coil 2 should be written*

E2 = M21
dI1
dt

+ M22
dI2
dt
. (17.31)

Similarly, the emf in coil 1 will depend not only on the changing current in coil 2,
but also on the changing current in itself:

E1 = M12
dI2
dt

+ M11
dI1
dt
. (17.32)

The coefficients M22 and M11 are always negative numbers. It is usual to write

M11 = −L1, M22 = −L2, (17.33)

where L1 and L2 are called the self-inductances of the two coils.

* The sign of M12 and M21 in Eqs. (17.31) and (17.32) depends on the arbitrary choices
for the sense of a positive current in the two coils.
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The self-induced emf will, of course, exist even if we have only one coil. Any
coil by itself will have a self-inductance L. The emf will be proportional to the
rate of change of the current in it. For a single coil, it is usual to adopt the
convention that the emf and the current are considered positive if they are in the
same direction. With this convention, we may write for the emf of a single coil

E = −L dI

dt
. (17.34)

The negative sign indicates that the emf opposes the change in current—it is
often called a “back emf.”

Since any coil has a self-inductance which opposes the change in current,
the current in the coil has a kind of inertia. In fact, if we wish to change the
current in a coil we must overcome this inertia by connecting the coil to some
external voltage source such as a battery or a generator, as shown in the schematic
diagram of Fig. 17-10(a). In such a circuit, the current I depends on the voltage V
according to the relation

V = L
dI

dt
. (17.35)

(a)

V(t)

I

L

(b)

v

m
F

Fig. 17-10. (a) A circuit with a voltage source and an inductance.
(b) An analogous mechanical system.
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This equation has the same form as Newton’s law of motion for a particle
in one dimension. We can therefore study it by the principle that “the same
equations have the same solutions.” Thus, if we make the externally applied
voltage V correspond to an externally applied force F , and the current I in a coil
correspond to the velocity v of a particle, the inductance L of the coil corresponds
to the mass m of the particle.* See Fig. 17-10(b). We can make the following
table of corresponding quantities.

Particle Coil
F (force) V (potential difference)
v (velocity) I (current)

x (displacement) q (charge)
F = m

dv

dt
V = L

dI

dt
mv (momentum) LI

1
2mv

2 (kinetic energy) 1
2LI

2 (magnetic energy)

17-8 Inductance and magnetic energy

Continuing with the analogy of the preceding section, we would expect that
corresponding to the mechanical momentum p = mv, whose rate of change is the
applied force, there should be an analogous quantity equal to LI, whose rate of
change is V. We have no right, of course, to say that LI is the real momentum of
the circuit; in fact, it isn’t. The whole circuit may be standing still and have no
momentum. It is only that LI is analogous to the momentum mv in the sense of
satisfying corresponding equations. In the same way, to the kinetic energy 1

2mv
2,

there corresponds an analogous quantity 1
2LI

2. But there we have a surprise.
This 1

2LI
2 is really the energy in the electrical case also. This is because the rate

of doing work on the inductance is VI, and in the mechanical system it is Fv,
the corresponding quantity. Therefore, in the case of the energy, the quantities
not only correspond mathematically, but also have the same physical meaning as
well.

We may see this in more detail as follows. As we found in Eq. (17.16), the
rate of electrical work by induced forces is the product of the electromotive force

* This is, incidentally, not the only way a correspondence can be set up between mechanical
and electrical quantities.
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and the current:
dW

dt
= EI.

Replacing E by its expression in terms of the current from Eq. (17.34), we have

dW

dt
= −LI dI

dt
. (17.36)

Integrating this equation, we find that the energy required from an external
source to overcome the emf in the self-inductance while building up the current*
(which must equal the energy stored, U) is

−W = U = 1
2LI

2. (17.37)

Therefore the energy stored in an inductance is 1
2LI

2.
Applying the same arguments to a pair of coils such as those in Figs. 17-8

or 17-9, we can show that the total electrical energy of the system is given by

U = 1
2L1I

2
1 + 1

2L2I
2
2 + MI1I2. (17.38)

For, starting with I = 0 in both coils, we could first turn on the current I1 in
coil 1, with I2 = 0. The work done is just 1

2L1I
2
1 . But now, on turning up I2, we

not only do the work 1
2L2I

2
2 against the emf in circuit 2, but also an additional

amount MI1I2, which is the integral of the emf [M(dI2/dt)] in circuit 1 times
the now constant current I1 in that circuit.

Suppose we now wish to find the force between any two coils carrying the
currents I1 and I2. We might at first expect that we could use the principle
of virtual work, by taking the change in the energy of Eq. (17.38). We must
remember, of course, that as we change the relative positions of the coils the
only quantity which varies is the mutual inductance M. We might then write
the equation of virtual work as

−F ∆x = ∆U = I1I2 ∆M (wrong).

But this equation is wrong because, as we have seen earlier, it includes only the
change in the energy of the two coils and not the change in the energy of the

* We are neglecting any energy loss to heat from the current in the resistance of the coil.
Such losses require additional energy from the source but do not change the energy which goes
into the inductance.
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sources which are maintaining the currents I1 and I2 at their constant values. We
can now understand that these sources must supply energy against the induced
emf’s in the coils as they are moved. If we wish to apply the principle of virtual
work correctly, we must also include these energies. As we have seen, however, we
may take a short cut and use the principle of virtual work by remembering that
the total energy is the negative of what we have called Umech, the “mechanical
energy.” We can therefore write for the force

− F ∆x = ∆Umech = −∆U. (17.39)

The force between two coils is then given by

F ∆x = I1I2 ∆M.

Equation (17.38) for the energy of a system of two coils can be used to show
that an interesting inequality exists between mutual inductance M and the self-
inductances L1 and L2 of the two coils. It is clear that the energy of two coils
must be positive. If we begin with zero currents in the coils and increase these
currents to some values, we have been adding energy to the system. If not, the
currents would spontaneously increase with release of energy to the rest of the
world—an unlikely thing to happen! Now our energy equation, Eq. (17.38), can
equally well be written in the following form:

U = 1
2 L1

(
I1 + M

L1
I2

)2
+ 1

2

(
L2 −

M2

L1

)
I2
2 . (17.40)

That is just an algebraic transformation. This quantity must always be positive
for any values of I1 and I2. In particular, it must be positive if I2 should happen
to have the special value

I2 = −L1

M
I1. (17.41)

But with this current for I2, the first term in Eq. (17.40) is zero. If the energy is
to be positive, the last term in (17.40) must be greater than zero. We have the
requirement that

L1L2 >M2.

We have thus proved the general result that the magnitude of the mutual induc-
tance M of any two coils is necessarily less than or equal to the geometric mean

17-24



of the two self-inductances. (M itself may be positive or negative, depending on
the sign conventions for the currents I1 and I2.)

|M| <
√
L1L2. (17.42)

The relation between M and the self-inductances is usually written as

M = k
√

L1L2. (17.43)

The constant k is called the coefficient of coupling. If most of the flux from one
coil links the other coil, the coefficient of coupling is near one; we say the coils
are “tightly coupled.” If the coils are far apart or otherwise arranged so that there
is very little mutual flux linkage, the coefficient of coupling is near zero and the
mutual inductance is very small.

For calculating the mutual inductance of two coils, we have given in Eq. (17.30)
a formula which is a double line integral around the two circuits. We might think
that the same formula could be used to get the self-inductance of a single coil by
carrying out both line integrals around the same coil. This, however, will not
work, because the denominator r12 of the integrand will go to zero when the two
line elements ds1 and ds2 are at the same point on the coil. The self-inductance
obtained from this formula is infinite. The reason is that this formula is an
approximation that is valid only when the cross sections of the wires of the
two circuits are small compared with the distance from one circuit to the other.
Clearly, this approximation doesn’t hold for a single coil. It is, in fact, true that
the inductance of a single coil tends logarithmically to infinity as the diameter of
its wire is made smaller and smaller.

We must, then, look for a different way of calculating the self-inductance of a
single coil. It is necessary to take into account the distribution of the currents
within the wires because the size of the wire is an important parameter. We
should therefore ask not what is the inductance of a “circuit,” but what is the
inductance of a distribution of conductors. Perhaps the easiest way to find
this inductance is to make use of the magnetic energy. We found earlier, in
Section 15-3, an expression for the magnetic energy of a distribution of stationary
currents:

U = 1
2

∫
j ·A dV. (17.44)

If we know the distribution of current density j, we can compute the vector
potential A and then evaluate the integral of Eq. (17.44) to get the energy. This
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energy is equal to the magnetic energy of the self-inductance, 1
2LI

2. Equating
the two gives us a formula for the inductance:

L = 1
I2

∫
j ·A dV. (17.45)

We expect, of course, that the inductance is a number depending only on the
geometry of the circuit and not on the current I in the circuit. The formula of
Eq. (17.45) will indeed give such a result, because the integral in this equation is
proportional to the square of the current—the current appears once through j
and again through the vector potential A. The integral divided by I2 will depend
on the geometry of the circuit but not on the current I.

Equation (17.44) for the energy of a current distribution can be put in a quite
different form which is sometimes more convenient for calculation. Also, as we
will see later, it is a form that is important because it is more generally valid. In
the energy equation, Eq. (17.44), both A and j can be related to B, so we can
hope to express the energy in terms of the magnetic field—just as we were able
to relate the electrostatic energy to the electric field. We begin by replacing j
by ε0c2∇ × B. We cannot replace A so easily, since B = ∇ × A cannot be
reversed to give A in terms of B. Anyway, we can write

U = ε0c
2

2

∫
(∇×B) ·A dV. (17.46)

The interesting thing is that—with some restrictions—this integral can be
written as

U = ε0c
2

2

∫
B · (∇×A) dV. (17.47)

To see this, we write out in detail a typical term. Suppose that we take the
term (∇×B)zAz which occurs in the integral of Eq. (17.46). Writing out the
components, we get ∫ (

∂By
∂x
− ∂Bx

∂y

)
Az dx dy dz.

(There are, of course, two more integrals of the same kind.) We now integrate
the first term with respect to x—integrating by parts. That is, we can say∫

∂By
∂x

Az dx = ByAz −
∫
By

∂Az
∂x

dx.
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Now suppose that our system—meaning the sources and fields—is finite, so that
as we go to large distances all fields go to zero. Then if the integrals are carried
out over all space, evaluating the term ByAz at the limits will give zero. We have
left only the term with By(∂Az/∂x), which is evidently one part of By(∇×A)y
and, therefore, of B · (∇×A). If you work out the other five terms, you will see
that Eq. (17.47) is indeed equivalent to Eq. (17.46).

But now we can replace (∇×A) by B, to get

U = ε0c
2

2

∫
B ·B dV. (17.48)

We have expressed the energy of a magnetostatic situation in terms of the
magnetic field only. The expression corresponds closely to the formula we found
for the electrostatic energy:

U = ε0
2

∫
E ·E dV. (17.49)

One reason for emphasizing these two energy formulas is that sometimes they
are more convenient to use. More important, it turns out that for dynamic fields
(when E and B are changing with time) the two expressions (17.48) and (17.49)
remain true, whereas the other formulas we have given for electric or magnetic
energies are no longer correct—they hold only for static fields.

If we know the magnetic field B of a single coil, we can find the self-inductance
by equating the energy expression (17.48) to 1

2LI
2. Let’s see how this works

by finding the self-inductance of a long solenoid. We have seen earlier that the
magnetic field inside a solenoid is uniform and B outside is zero. The magnitude
of the field inside is B = nI/ε0c

2, where n is the number of turns per unit length
in the winding and I is the current. If the radius of the coil is r and its length
is L (we take L very long, so that we can neglect end effects, i.e., L� r), the
volume inside is πr2L. The magnetic energy is therefore

U = ε0c
2

2 B2 · (Vol) = n2I2

2ε0c2
πr2L,

which is equal to 1
2LI

2. Or,

L = πr2n2

ε0c2
L. (17.50)
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18

The Maxwell Equations

18-1 Maxwell’s equations

In this chapter we come back to the complete set of the four Maxwell equations
that we took as our starting point in Chapter 1. Until now, we have been studying
Maxwell’s equations in bits and pieces; it is time to add one final piece, and to
put them all together. We will then have the complete and correct story for
electromagnetic fields that may be changing with time in any way. Anything said
in this chapter that contradicts something said earlier is true and what was said
earlier is false—because what was said earlier applied to such special situations
as, for instance, steady currents or fixed charges. Although we have been very
careful to point out the restrictions whenever we wrote an equation, it is easy to
forget all of the qualifications and to learn too well the wrong equations. Now
we are ready to give the whole truth, with no qualifications (or almost none).

The complete Maxwell equations are written in Table 18-1, in words as well as
in mathematical symbols. The fact that the words are equivalent to the equations
should by this time be familiar—you should be able to translate back and forth
from one form to the other.

The first equation—that the divergence of E is the charge density over ε0—is
true in general. In dynamic as well as in static fields, Gauss’ law is always valid.
The flux of E through any closed surface is proportional to the charge inside.
The third equation is the corresponding general law for magnetic fields. Since
there are no magnetic charges, the flux of B through any closed surface is always
zero. The second equation, that the curl of E is −∂B/∂t, is Faraday’s law and
was discussed in the last two chapters. It also is generally true. The last equation
has something new. We have seen before only the part of it which holds for
steady currents. In that case we said that the curl of B is j/ε0c2, but the correct
general equation has a new part that was discovered by Maxwell.

18-1



T
ab

le
18

-1
C

la
ss

ic
al

P
hy

si
cs

M
ax

w
el

l’s
eq

ua
ti
on

s

I.
∇
·E

=
ρ ε 0

(F
lu
x
of
E

th
ro
ug

h
a
cl
os
ed

su
rfa

ce
)=

(C
ha

rg
e
in
sid

e)
/ε

0

II
.
∇
×
E

=
−
∂
B ∂
t

(L
in
e
in
te
gr
al

of
E

ar
ou

nd
a
lo
op

)=
−
d d
t(F

lu
x
of
B

th
ro
ug

h
th
e
lo
op

)

II
I.
∇
·B

=
0

(F
lu
x
of
B

th
ro
ug

h
a
cl
os
ed

su
rfa

ce
)=

0

IV
.
c2
∇
×
B

=
j ε 0

+
∂
E ∂
t

c2
(I
nt
eg
ra
lo

fB
ar
ou

nd
a
lo
op

)=
(C

ur
re
nt

th
ro
ug

h
th
e
lo
op

)/
ε 0

+
d d
t(F

lu
x
of
E

th
ro
ug

h
th
e
lo
op

)

 C
on

se
rv

at
io

n
of

ch
ar

ge
 

∇
·j

=
−
∂
ρ

∂
t

(F
lu
x
of

cu
rr
en
t
th
ro
ug

h
a
cl
os
ed

lo
op

)=
−
d d
t(C

ha
rg
e
in
sid

e)

Fo
rc

e
la

w

F
=
q(
E

+
v
×
B

)

La
w

of
m

ot
io

n
d d
t(p

)=
F
,

w
he

re
p

=
m
v

√ 1
−
v

2 /
c2

(N
ew

to
n’
s
la
w
,w

ith
Ei
ns
te
in
’s

m
od

ifi
ca
tio

n)

G
ra

vi
ta

ti
on

F
=
−
G
m

1m
2

r2
e
r

18-2



Until Maxwell’s work, the known laws of electricity and magnetism were those
we have studied in Chapters 3 through 17. In particular, the equation for the
magnetic field of steady currents was known only as

∇×B = j

ε0c2
. (18.1)

Maxwell began by considering these known laws and expressing them as differ-
ential equations, as we have done here. (Although the ∇ notation was not yet
invented, it is mainly due to Maxwell that the importance of the combinations of
derivatives, which we today call the curl and the divergence, first became appar-
ent.) He then noticed that there was something strange about Eq. (18.1). If one
takes the divergence of this equation, the left-hand side will be zero, because the
divergence of a curl is always zero. So this equation requires that the divergence
of j also be zero. But if the divergence of j is zero, then the total flux of current
out of any closed surface is also zero.

The flux of current from a closed surface is the decrease of the charge inside
the surface. This certainly cannot in general be zero because we know that the
charges can be moved from one place to another. The equation

∇ · j = −∂ρ
∂t

(18.2)

has, in fact, been almost our definition of j. This equation expresses the very
fundamental law that electric charge is conserved—any flow of charge must come
from some supply. Maxwell appreciated this difficulty and proposed that it could
be avoided by adding the term ∂E/∂t to the right-hand side of Eq. (18.1); he
then got the fourth equation in Table 18-1:

IV. c2∇×B = j

ε0
+ ∂E

∂t
.

It was not yet customary in Maxwell’s time to think in terms of abstract
fields. Maxwell discussed his ideas in terms of a model in which the vacuum was
like an elastic solid. He also tried to explain the meaning of his new equation in
terms of the mechanical model. There was much reluctance to accept his theory,
first because of the model, and second because there was at first no experimental
justification. Today, we understand better that what counts are the equations
themselves and not the model used to get them. We may only question whether
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the equations are true or false. This is answered by doing experiments, and untold
numbers of experiments have confirmed Maxwell’s equations. If we take away
the scaffolding he used to build it, we find that Maxwell’s beautiful edifice stands
on its own. He brought together all of the laws of electricity and magnetism and
made one complete and beautiful theory.

Let us show that the extra term is just what is required to straighten out
the difficulty Maxwell discovered. Taking the divergence of his equation (IV in
Table 18-1), we must have that the divergence of the right-hand side is zero:

∇ · j
ε0

+∇ · ∂E
∂t

= 0. (18.3)

In the second term, the order of the derivatives with respect to coordinates and
time can be reversed, so the equation can be rewritten as

∇ · j + ε0
∂

∂t
∇ ·E = 0. (18.4)

But the first of Maxwell’s equations says that the divergence of E is ρ/ε0.
Inserting this equality in Eq. (18.4), we get back Eq. (18.2), which we know is
true. Conversely, if we accept Maxwell’s equations—and we do because no one
has ever found an experiment that disagrees with them—we must conclude that
charge is always conserved.

The laws of physics have no answer to the question: “What happens if a charge
is suddenly created at this point—what electromagnetic effects are produced?”
No answer can be given because our equations say it doesn’t happen. If it were
to happen, we would need new laws, but we cannot say what they would be. We
have not had the chance to observe how a world without charge conservation
behaves. According to our equations, if you suddenly place a charge at some
point, you had to carry it there from somewhere else. In that case, we can say
what would happen.

When we added a new term to the equation for the curl of E, we found that
a whole new class of phenomena was described. We shall see that Maxwell’s little
addition to the equation for ∇×B also has far-reaching consequences. We can
touch on only a few of them in this chapter.

18-2 How the new term works

As our first example we consider what happens with a spherically symmetric
radial distribution of current. Suppose we imagine a little sphere with radioactive
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material on it. This radioactive material is squirting out some charged particles.
(Or we could imagine a large block of jello with a small hole in the center into
which some charge had been injected with a hypodermic needle and from which
the charge is slowly leaking out.) In either case we would have a current that is
everywhere radially outward. We will assume that it has the same magnitude in
all directions.

Let the total charge inside any radius r be Q(r). If the radial current density
at the same radius is j(r), then Eq. (18.2) requires that Q decreases at the rate

∂Q(r)
∂t

= −4πr2j(r). (18.5)

We now ask about the magnetic field produced by the currents in this situation.
Suppose we draw some loop Γ on a sphere of radius r, as shown in Fig. 18-1.
There is some current through this loop, so we might expect to find a magnetic
field circulating in the direction shown.

But we are already in difficulty. How can the B have any particular direction
on the sphere? A different choice of Γ would allow us to conclude that its direction

Q

E

E

E

j

j

Γ

B?

Fig. 18-1. What is the magnetic field of a spherically symmetric
current?
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is exactly opposite to that shown. So how can there be any circulation of B
around the currents?

We are saved by Maxwell’s equation. The circulation of B depends not only
on the total current through Γ but also on the rate of change with time of the
electric flux through it. It must be that these two parts just cancel. Let’s see if
that works out.

The electric field at the radius r must be Q(r)/4πε0r2—so long as the charge
is symmetrically distributed, as we assume. It is radial, and its rate of change is
then

∂E

∂t
= 1

4πε0r2
∂Q

∂t
. (18.6)

Comparing this with Eq. (18.5), we see

∂E

∂t
= − j

ε0
. (18.7)

In Eq. IV the two source terms cancel and the curl of B is always zero. There is
no magnetic field in our example.

As our second example, we consider the magnetic field of a wire used to
charge a parallel-plate condenser (see Fig. 18-2). If the charge Q on the plates is
changing with time (but not too fast), the current in the wires is equal to dQ/dt.
We would expect that this current will produce a magnetic field that encircles the
wire. Surely, the current close to the plate must produce the normal magnetic
field—it cannot depend on where the current is going.

Suppose we take a loop Γ1 which is a circle with radius r, as shown in part (a)
of the figure. The line integral of the magnetic field should be equal to the
current I divided by ε0c2. We have

2πrB = I

ε0c2
. (18.8)

This is what we would get for a steady current, but it is also correct with Maxwell’s
addition, because if we consider the plane surface S inside the circle, there are
no electric fields on it (assuming the wire to be a very good conductor). The
surface integral of ∂E/∂t is zero.

Suppose, however, that we now slowly move the curve Γ downward. We get
always the same result until we draw even with the plates of the condenser. Then
the current I goes to zero. Does the magnetic field disappear? That would be
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Fig. 18-2. The magnetic field near a charging capacitor.
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quite strange. Let’s see what Maxwell’s equation says for the curve Γ2, which is a
circle of radius r whose plane passes between the condenser plates [Fig. 18-2(b)].
The line integral of B around Γ2 is 2πrB. This must equal the time derivative of
the flux of E through the plane circular surface S2. This flux of E, we know from
Gauss’ law, must be equal to 1/ε0 times the charge Q on one of the condenser
plates. We have

c2 2πrB = d

dt

(
Q

ε0

)
. (18.9)

That is very convenient. It is the same result we found in Eq. (18.8). In-
tegrating over the changing electric field gives the same magnetic field as does
integrating over the current in the wire. Of course, that is just what Maxwell’s
equation says. It is easy to see that this must always be so by applying our
same arguments to the two surfaces S1 and S′1 that are bounded by the same
circle Γ1 in Fig. 18-2(b). Through S1 there is the current I, but no electric flux.
Through S′1 there is no current, but an electric flux changing at the rate I/ε0.
The same B is obtained if we use Eq. IV with either surface.

From our discussion so far of Maxwell’s new term, you may have the impression
that it doesn’t add much—that it just fixes up the equations to agree with what
we already expect. It is true that if we just consider Eq. IV by itself, nothing
particularly new comes out. The words “by itself ” are, however, all-important.
Maxwell’s small change in Eq. IV, when combined with the other equations, does
indeed produce much that is new and important. Before we take up these matters,
however, we want to speak more about Table 18-1.

18-3 All of classical physics

In Table 18-1 we have all that was known of fundamental classical physics,
that is, the physics that was known by 1905. Here it all is, in one table. With
these equations we can understand the complete realm of classical physics.

First we have the Maxwell equations—written in both the expanded form and
the short mathematical form. Then there is the conservation of charge, which is
even written in parentheses, because the moment we have the complete Maxwell
equations, we can deduce from them the conservation of charge. So the table is
even a little redundant. Next, we have written the force law, because having all
the electric and magnetic fields doesn’t tell us anything until we know what they
do to charges. Knowing E and B, however, we can find the force on an object
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with the charge q moving with velocity v. Finally, having the force doesn’t tell
us anything until we know what happens when a force pushes on something; we
need the law of motion, which is that the force is equal to the rate of change
of the momentum. (Remember? We had that in Volume I.) We even include
relativity effects by writing the momentum as p = m0v/

√
1− v2/c2.

If we really want to be complete, we should add one more law—Newton’s law
of gravitation—so we put that at the end.

Therefore in one small table we have all the fundamental laws of classical
physics—even with room to write them out in words and with some redundancy.
This is a great moment. We have climbed a great peak. We are on the top of K-2—
we are nearly ready for Mount Everest, which is quantum mechanics. We have
climbed the peak of a “Great Divide,” and now we can go down the other side.

We have mainly been trying to learn how to understand the equations. Now
that we have the whole thing put together, we are going to study what the
equations mean—what new things they say that we haven’t already seen. We’ve
been working hard to get up to this point. It has been a great effort, but now we
are going to have nice coasting downhill as we see all the consequences of our
accomplishment.

18-4 A travelling field

Now for the new consequences. They come from putting together all of
Maxwell’s equations. First, let’s see what would happen in a circumstance which
we pick to be particularly simple. By assuming that all the quantities vary only
in one coordinate, we will have a one-dimensional problem. The situation is
shown in Fig. 18-3. We have a sheet of charge located on the yz-plane. The
sheet is first at rest, then instantaneously given a velocity u in the y-direction,
and kept moving with this constant velocity. You might worry about having
such an “infinite” acceleration, but it doesn’t really matter; just imagine that the
velocity is brought to u very quickly. So we have suddenly a surface current J (J
is the current per unit width in the z-direction). To keep the problem simple, we
suppose that there is also a stationary sheet of charge of opposite sign superposed
on the yz-plane, so that there are no electrostatic effects. Also, although in the
figure we show only what is happening in a finite region, we imagine that the
sheet extends to infinity in ±y and ±z. In other words, we have a situation
where there is no current, and then suddenly there is a uniform sheet of current.
What will happen?
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Fig. 18-3. An infinite sheet of charge is suddenly set into motion
parallel to itself. There are magnetic and electric fields that propagate
out from the sheet at a constant speed.

Well, when there is a sheet of current in the plus y-direction, there is, as we
know, a magnetic field generated which will be in the minus z-direction for x > 0
and in the opposite direction for x < 0. We could find the magnitude of B by
using the fact that the line integral of the magnetic field will be equal to the
current over ε0c2. We would get that B = J/2ε0c2 (since the current I in a strip
of width w is Jw and the line integral of B is 2Bw).

This gives us the field next to the sheet—for small x—but since we are
imagining an infinite sheet, we would expect the same argument to give the
magnetic field farther out for larger values of x. However, that would mean that
the moment we turn on the current, the magnetic field is suddenly changed from
zero to a finite value everywhere. But wait! If the magnetic field is suddenly
changed, it will produce tremendous electrical effects. (If it changes in any way,
there are electrical effects.) So because we moved the sheet of charge, we make a
changing magnetic field, and therefore electric fields must be generated. If there
are electric fields generated, they had to start from zero and change to something
else. There will be some ∂E/∂t that will make a contribution, together with
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the current J , to the production of the magnetic field. So through the various
equations there is a big intermixing, and we have to try to solve for all the fields
at once.

By looking at the Maxwell equations alone, it is not easy to see directly
how to get the solution. So we will first show you what the answer is and then
verify that it does indeed satisfy the equations. The answer is the following: The
field B that we computed is, in fact, generated right next to the current sheet (for
small x). It must be so, because if we make a tiny loop around the sheet, there
is no room for any electric flux to go through it. But the field B out farther—for
larger x—is, at first, zero. It stays zero for awhile, and then suddenly turns on.
In short, we turn on the current and the magnetic field immediately next to it
turns on to a constant value B; then the turning on of B spreads out from the
source region. After a certain time, there is a uniform magnetic field everywhere
out to some value x, and then zero beyond. Because of the symmetry, it spreads
in both the plus and minus x-directions.

The E-field does the same thing. Before t = 0 (when we turn on the current),
the field is zero everywhere. Then after the time t, both E and B are uniform
out to the distance x = vt, and zero beyond. The fields make their way forward
like a tidal wave, with a front moving at a uniform velocity which turns out to
be c, but for a while we will just call it v. A graph of the magnitude of E or B
versus x, as they appear at the time t, is shown in Fig. 18-4(a). Looking again
at Fig. 18-3, at the time t, the region between x = ±vt is “filled” with the fields,
but they have not yet reached beyond. We emphasize again that we are assuming
that the current sheet and, therefore the fields E and B, extend infinitely far
in both the y- and z-directions. (We cannot draw an infinite sheet, so we have
shown only what happens in a finite area.)

We want now to analyze quantitatively what is happening. To do that, we
want to look at two cross-sectional views, a top view looking down along the
y-axis, as shown in Fig. 18-5, and a side view looking back along the z-axis, as
shown in Fig. 18-6. Suppose we start with the side view. We see the charged
sheet moving up; the magnetic field points into the page for +x, and out of the
page for −x, and the electric field is downward everywhere—out to x = ±vt.

Let’s see if these fields are consistent with Maxwell’s equations. Let’s first draw
one of those loops that we use to calculate a line integral, say the rectangle Γ2
shown in Fig. 18-6. You notice that one side of the rectangle is in the region
where there are fields, but one side is in the region the fields have still not
reached. There is some magnetic flux through this loop. If it is changing, there
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Fig. 18-4. (a) The magnitude of B (or E) as a function of x at time t
after the charge sheet is set in motion. (b) The fields for a charge sheet
set in motion, toward negative y at t = T . (c) The sum of (a) and (b).
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Fig. 18-6. Side view of Fig. 18-3.
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should be an emf around it. If the wavefront is moving, we will have a changing
magnetic flux, because the area in which B exists is progressively increasing
at the velocity v. The flux inside Γ2 is B times the part of the area inside Γ2
which has a magnetic field. The rate of change of the flux, since the magnitude
of B is constant, is the magnitude times the rate of change of the area. The rate
of change of the area is easy. If the width of the rectangle Γ2 is L, the area in
which B exists changes by Lv∆t in the time ∆t. (See Fig. 18-6.) The rate of
change of flux is then BLv. According to Faraday’s law, this should equal minus
the line integral of E around Γ2, which is just EL. We have the equation

E = vB. (18.10)

So if the ratio of E to B is v, the fields we have assumed will satisfy Faraday’s
equation.

But that is not the only equation; we have the other equation relating E
and B:

c2∇×B = j

ε0
+ ∂E

∂t
. (18.11)

To apply this equation, we look at the top view in Fig. 18-5. We have seen that
this equation will give us the value of B next to the current sheet. Also, for any
loop drawn outside the sheet but behind the wavefront, there is no curl of B nor
any j or changing E, so the equation is correct there. Now let’s look at what
happens for the curve Γ1 that intersects the wavefront, as shown in Fig. 18-5.
Here there are no currents, so Eq. (18.11) can be written—in integral form—as

c2
∮

Γ1

B · ds = d

dt

∫
inside Γ1

E · n da. (18.12)

The line integral of B is just B times L. The rate of change of the flux of E is
due only to the advancing wavefront. The area inside Γ1, where E is not zero, is
increasing at the rate vL. The right-hand side of Eq. (18.12) is then vLE. That
equation becomes

c2B = Ev. (18.13)

We have a solution in which we have a constant B and a constant E behind
the front, both at right angles to the direction in which the front is moving and
at right angles to each other. Maxwell’s equations specify the ratio of E to B.
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From Eqs. (18.10) and (18.13),

E = vB, and E = c2

v
B.

But one moment! We have found two different conditions on the ratio E/B. Can
such a field as we describe really exist? There is, of course, only one velocity v
for which both of these equations can hold, namely v = c. The wavefront must
travel with the velocity c. We have an example in which the electrical influence
from a current propagates at a certain finite velocity c.

Now let’s ask what happens if we suddenly stop the motion of the charged
sheet after it has been on for a short time T . We can see what will happen by
the principle of superposition. We had a current that was zero and then was
suddenly turned on. We know the solution for that case. Now we are going to
add another set of fields. We take another charged sheet and suddenly start it
moving, in the opposite direction with the same speed, only at the time T after
we started the first current. The total current of the two added together is first
zero, then on for a time T , then off again—because the two currents cancel. We
have a square “pulse” of current.

The new negative current produces the same fields as the positive one, only
with all the signs reversed and, of course, delayed in time by T . A wavefront again
travels out at the velocity c. At the time t it has reached the distance x = ±c(t−T ),
as shown in Fig. 18-4(b). So we have two “blocks” of field marching out at the
speed c, as in parts (a) and (b) of Fig. 18-4. The combined fields are as shown
in part (c) of the figure. The fields are zero for x > ct, they are constant (with
the values we found above) between x = c(t − T ) and x = ct, and again zero
for x < c(t− T ).

In short, we have a little piece of field—a block of thickness cT—which has
left the current sheet and is travelling through space all by itself. The fields have
“taken off”; they are propagating freely through space, no longer connected in
any way with the source. The caterpillar has turned into a butterfly!

How can this bundle of electric and magnetic fields maintain itself? The
answer is: by the combined effects of the Faraday law, ∇×E = −∂B/∂t, and
the new term of Maxwell, c2∇ ×B = ∂E/∂t. They cannot help maintaining
themselves. Suppose the magnetic field were to disappear. There would be a
changing magnetic field which would produce an electric field. If this electric
field tries to go away, the changing electric field would create a magnetic field
back again. So by a perpetual interplay—by the swishing back and forth from
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one field to the other—they must go on forever. It is impossible for them to
disappear.* They maintain themselves in a kind of a dance—one making the
other, the second making the first—propagating onward through space.

18-5 The speed of light

We have a wave which leaves the material source and goes outward at the
velocity c, which is the speed of light. But let’s go back a moment. From a
historical point of view, it wasn’t known that the coefficient c in Maxwell’s
equations was also the speed of light propagation. There was just a constant in
the equations. We have called it c from the beginning, because we knew what it
would turn out to be. We didn’t think it would be sensible to make you learn
the formulas with a different constant and then go back to substitute c wherever
it belonged. From the point of view of electricity and magnetism, however, we
just start out with two constants, ε0 and c2, that appear in the equations of
electrostatics and magnetostatics:

∇ ·E = ρ

ε0
(18.14)

and
∇×B = j

ε0c2
. (18.15)

If we take any arbitrary definition of a unit of charge, we can determine exper-
imentally the constant ε0 required in Eq. (18.14)—say by measuring the force
between two unit charges at rest, using Coulomb’s law. We must also determine
experimentally the constant ε0c2 that appears in Eq. (18.15), which we can do,
say, by measuring the force between two unit currents. (A unit current means
one unit of charge per second.) The ratio of these two experimental constants
is c2—just another “electromagnetic constant.”

Notice now that this constant c2 is the same no matter what we choose
for our unit of charge. If we put twice as much “charge”—say twice as many
proton charges—in our “unit” of charge, ε0 would need to be one-fourth as large.
When we pass two of these “unit” currents through two wires, there will be twice
as much “charge” per second in each wire, so the force between two wires is

* Well, not quite. They can be “absorbed” if they get to a region where there are charges.
By which we mean that other fields can be produced somewhere which superpose on these
fields and “cancel” them by destructive interference (see Chapter 31, Vol. I).
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four times larger. The constant ε0c2 must be reduced by one-fourth. But the
ratio ε0c2/ε0 is unchanged.

So just by experiments with charges and currents we find a number c2 which
turns out to be the square of the velocity of propagation of electromagnetic
influences. From static measurements—by measuring the forces between two unit
charges and between two unit currents—we find that c = 3.00× 108 meters/sec.
When Maxwell first made this calculation with his equations, he said that
bundles of electric and magnetic fields should be propagated at this speed. He
also remarked on the mysterious coincidence that this was the same as the speed
of light. “We can scarcely avoid the inference,” said Maxwell, “that light consists
in the transverse undulations of the same medium which is the cause of electric
and magnetic phenomena.”

Maxwell had made one of the great unifications of physics. Before his time,
there was light, and there was electricity and magnetism. The latter two had
been unified by the experimental work of Faraday, Oersted, and Ampère. Then,
all of a sudden, light was no longer “something else,” but was only electricity and
magnetism in this new form—little pieces of electric and magnetic fields which
propagate through space on their own.

We have called your attention to some characteristics of this special solution,
which turn out to be true, however, for any electromagnetic wave: that the
magnetic field is perpendicular to the direction of motion of the wavefront;
that the electric field is likewise perpendicular to the direction of motion of
the wavefront; and that the two vectors E and B are perpendicular to each
other. Furthermore, the magnitude of the electric field E is equal to c times the
magnitude of the magnetic field B. These three facts—that the two fields are
transverse to the direction of propagation, that B is perpendicular to E, and
that E = cB—are generally true for any electromagnetic wave. Our special case
is a good one—it shows all the main features of electromagnetic waves.

18-6 Solving Maxwell’s equations; the potentials and the wave equation

Now we would like to do something mathematical; we want to write Maxwell’s
equations in a simpler form. You may consider that we are complicating them, but
if you will be patient a little bit, they will suddenly come out simpler. Although
by this time you are thoroughly used to each of the Maxwell equations, there are
many pieces that must all be put together. That’s what we want to do.
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We begin with ∇ ·B = 0—the simplest of the equations. We know that it
implies that B is the curl of something. So, if we write

B =∇×A, (18.16)

we have already solved one of Maxwell’s equations. (Incidentally, you appreciate
that it remains true that another vectorA′ would be just as good ifA′ = A+∇ψ—
where ψ is any scalar field—because the curl of ∇ψ is zero, and B is still the
same. We have talked about that before.)

We take next the Faraday law, ∇×E = −∂B/∂t, because it doesn’t involve
any currents or charges. If we write B as ∇×A and differentiate with respect
to t, we can write Faraday’s law in the form

∇×E = − ∂

∂t
∇×A.

Since we can differentiate either with respect to time or to space first, we can
also write this equation as

∇×
(
E + ∂A

∂t

)
= 0. (18.17)

We see that E + ∂A/∂t is a vector whose curl is equal to zero. Therefore that
vector is the gradient of something. When we worked on electrostatics, we had
∇ ×E = 0, and then we decided that E itself was the gradient of something.
We took it to be the gradient of −φ (the minus for technical convenience). We
do the same thing for E + ∂A/∂t; we set

E + ∂A

∂t
= −∇φ. (18.18)

We use the same symbol φ so that, in the electrostatic case where nothing changes
with time and the ∂A/∂t term disappears, E will be our old −∇φ. So Faraday’s
equation can be put in the form

E = −∇φ− ∂A

∂t
. (18.19)

We have solved two of Maxwell’s equations already, and we have found that
to describe the electromagnetic fields E and B, we need four potential functions:
a scalar potential φ and a vector potential A, which is, of course, three functions.
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Now that A determines part of E, as well as B, what happens when we
change A to A′ = A+∇ψ? In general, E would change if we didn’t take some
special precaution. We can, however, still allow A to be changed in this way
without affecting the fields E and B—that is, without changing the physics—if
we always change A and φ together by the rules

A′ = A+∇ψ, φ′ = φ− ∂ψ

∂t
. (18.20)

Then neither B nor E, obtained from Eq. (18.19), is changed.
Previously, we chose to make ∇ ·A = 0, to make the equations of statics

somewhat simpler. We are not going to do that now; we are going to make a
different choice. But we’ll wait a bit before saying what the choice is, because
later it will be clear why the choice is made.

Now we return to the two remaining Maxwell equations which will give us
relations between the potentials and the sources ρ and j. Once we can determine
A and φ from the currents and charges, we can always get E and B from Eqs.
(18.16) and (18.19), so we will have another form of Maxwell’s equations.

We begin by substituting Eq. (18.19) into ∇ ·E = ρ/ε0; we get

∇ ·
(
−∇φ− ∂A

∂t

)
= ρ

ε0
,

which we can write also as

−∇2φ− ∂

∂t
∇ ·A = ρ

ε0
. (18.21)

This is one equation relating φ and A to the sources.
Our final equation will be the most complicated. We start by rewriting the

fourth Maxwell equation as

c2∇×B − ∂E

∂t
= j

ε0
,

and then substitute for B and E in terms of the potentials, using Eqs. (18.16)
and (18.19):

c2∇× (∇×A)− ∂

∂t

(
−∇φ− ∂A

∂t

)
= j

ε0
.
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The first term can be rewritten using the algebraic identity: ∇ × (∇ ×A) =
∇(∇ ·A)−∇2A; we get

− c2∇2A+ c2∇(∇ ·A) + ∂

∂t
∇φ+ ∂2A

∂t2
= j

ε0
. (18.22)

It’s not very simple!
Fortunately, we can now make use of our freedom to choose arbitrarily the

divergence of A. What we are going to do is to use our choice to fix things so
that the equations for A and for φ are separated but have the same form. We
can do this by taking*

∇ ·A = − 1
c2
∂φ

∂t
. (18.23)

When we do that, the two middle terms in A and φ in Eq. (18.22) cancel, and
that equation becomes much simpler:

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
. (18.24)

And our equation for φ—Eq. (18.21)—takes on the same form:

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
. (18.25)

What a beautiful set of equations! They are beautiful, first, because they
are nicely separated—with the charge density, goes φ; with the current, goes A.
Furthermore, although the left side looks a little funny—a Laplacian together
with a ∂2/∂t2—when we unfold it we see

∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 −
1
c2
∂2φ

∂t2
= − ρ

ε0
. (18.26)

It has a nice symmetry in x, y, z, t—the −1/c2 is necessary because, of course,
time and space are different; they have different units.

Maxwell’s equations have led us to a new kind of equation for the potentials
φ and A but to the same mathematical form for all four functions φ, Ax, Ay,

* Choosing the ∇ ·A is called “choosing a gauge.” Changing A by adding ∇ψ, is called a
“gauge transformation.” Equation (18.23) is called “the Lorenz gauge.”
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and Az. Once we learn how to solve these equations, we can get B and E from
∇×A and −∇φ− ∂A/∂t. We have another form of the electromagnetic laws
exactly equivalent to Maxwell’s equations, and in many situations they are much
simpler to handle.

We have, in fact, already solved an equation much like Eq. (18.26). When we
studied sound in Chapter 47 of Vol. I, we had an equation of the form

∂2φ

∂x2 = 1
c2
∂2φ

∂t2
,

and we saw that it described the propagation of waves in the x-direction at
the speed c. Equation (18.26) is the corresponding wave equation for three
dimensions. So in regions where there are no longer any charges and currents,
the solution of these equations is not that φ and A are zero. (Although that is
indeed one possible solution.) There are solutions in which there is some set of φ
and A which are changing in time but always moving out at the speed c. The
fields travel onward through free space, as in our example at the beginning of
the chapter.

With Maxwell’s new term in Eq. IV, we have been able to write the field
equations in terms ofA and φ in a form that is simple and that makes immediately
apparent that there are electromagnetic waves. For many practical purposes, it
will still be convenient to use the original equations in terms of E and B. But
they are on the other side of the mountain we have already climbed. Now we are
ready to cross over to the other side of the peak. Things will look different—we
are ready for some new and beautiful views.
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19

The Principle of Least Action

19-1 A special lecture—almost verbatim*

“When I was in high school, my physics teacher—whose name was Mr. Bader—
called me down one day after physics class and said, ‘You look bored; I want
to tell you something interesting.’ Then he told me something which I found
absolutely fascinating, and have, since then, always found fascinating. Every
time the subject comes up, I work on it. In fact, when I began to prepare this
lecture I found myself making more analyses on the thing. Instead of worrying
about the lecture, I got involved in a new problem. The subject is this—the
principle of least action.

* Later chapters do not depend on the material of this special lecture—which is intended to
be for “entertainment.”
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Figure 19-1

“Mr. Bader told me the following: Suppose you have a particle (in a gravita-
tional field, for instance) which starts somewhere and moves to some other point
by free motion—you throw it, and it goes up and comes down (Fig. 19-1). It
goes from the original place to the final place in a certain amount of time. Now,
you try a different motion. Suppose that to get from here to there, it went as
shown in Fig. 19-2 but got there in just the same amount of time. Then he said
this: If you calculate the kinetic energy at every moment on the path, take away
the potential energy, and integrate it over the time during the whole path, you’ll
find that the number you’ll get is bigger than that for the actual motion.

Figure 19-2

“In other words, the laws of Newton could be stated not in the form F = ma
but in the form: the average kinetic energy less the average potential energy
is as little as possible for the path of an object going from one point to an-
other.
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“Let me illustrate a little bit better what it means. If you take the case
of the gravitational field, then if the particle has the path x(t) (let’s just take
one dimension for a moment; we take a trajectory that goes up and down
and not sideways), where x is the height above the ground, the kinetic energy
is 1

2m (dx/dt)2, and the potential energy at any time is mgx. Now I take the
kinetic energy minus the potential energy at every moment along the path and
integrate that with respect to time from the initial time to the final time. Let’s
suppose that at the original time t1 we started at some height and at the end of
the time t2 we are definitely ending at some other place (Fig. 19-3).

Figure 19-3

“Then the integral is ∫ t2

t1

[
1
2m
(
dx

dt

)2
−mgx

]
dt.

The actual motion is some kind of a curve—it’s a parabola if we plot against
the time—and gives a certain value for the integral. But we could imagine some
other motion that went very high and came up and down in some peculiar way
(Fig. 19-4). We can calculate the kinetic energy minus the potential energy and
integrate for such a path . . . or for any other path we want. The miracle is that
the true path is the one for which that integral is least.

“Let’s try it out. First, suppose we take the case of a free particle for which
there is no potential energy at all. Then the rule says that in going from one
point to another in a given amount of time, the kinetic energy integral is least,
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Figure 19-4

so it must go at a uniform speed. (We know that’s the right answer—to go at a
uniform speed.) Why is that? Because if the particle were to go any other way,
the velocities would be sometimes higher and sometimes lower than the average.
The average velocity is the same for every case because it has to get from ‘here’
to ‘there’ in a given amount of time.

“As an example, say your job is to start from home and get to school in a
given length of time with the car. You can do it several ways: You can accelerate
like mad at the beginning and slow down with the brakes near the end, or you
can go at a uniform speed, or you can go backwards for a while and then go
forward, and so on. The thing is that the average speed has got to be, of course,
the total distance that you have gone over the time. But if you do anything but
go at a uniform speed, then sometimes you are going too fast and sometimes
you are going too slow. Now the mean square of something that deviates around
an average, as you know, is always greater than the square of the mean; so the
kinetic energy integral would always be higher if you wobbled your velocity than
if you went at a uniform velocity. So we see that the integral is a minimum if the
velocity is a constant (when there are no forces). The correct path is shown in
Fig. 19-5.

“Now, an object thrown up in a gravitational field does rise faster first and
then slow down. That is because there is also the potential energy, and we must
have the least difference of kinetic and potential energy on the average. Because
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Figure 19-5

the potential energy rises as we go up in space, we will get a lower difference if
we can get as soon as possible up to where there is a high potential energy. Then
we can take that potential away from the kinetic energy and get a lower average.
So it is better to take a path which goes up and gets a lot of negative stuff from
the potential energy (Fig. 19-6).

Figure 19-6
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“On the other hand, you can’t go up too fast, or too far, because you will
then have too much kinetic energy involved—you have to go very fast to get way
up and come down again in the fixed amount of time available. So you don’t
want to go too far up, but you want to go up some. So it turns out that the
solution is some kind of balance between trying to get more potential energy with
the least amount of extra kinetic energy—trying to get the difference, kinetic
minus the potential, as small as possible.

“That is all my teacher told me, because he was a very good teacher and knew
when to stop talking. But I don’t know when to stop talking. So instead of leaving
it as an interesting remark, I am going to horrify and disgust you with the complex-
ities of life by proving that it is so. The kind of mathematical problem we will have
is very difficult and a new kind. We have a certain quantity which is called the
action, S. It is the kinetic energy, minus the potential energy, integrated over time.

Action = S =
∫ t2

t1

(KE− PE) dt.

Remember that the PE and KE are both functions of time. For each different
possible path you get a different number for this action. Our mathematical
problem is to find out for what curve that number is the least.

“You say—Oh, that’s just the ordinary calculus of maxima and minima. You
calculate the action and just differentiate to find the minimum.

“But watch out. Ordinarily we just have a function of some variable, and we
have to find the value of that variable where the function is least or most. For
instance, we have a rod which has been heated in the middle and the heat is spread
around. For each point on the rod we have a temperature, and we must find the
point at which that temperature is largest. But now for each path in space we have
a number—quite a different thing—and we have to find the path in space for which
the number is the minimum. That is a completely different branch of mathematics.
It is not the ordinary calculus. In fact, it is called the calculus of variations.

“There are many problems in this kind of mathematics. For example, the
circle is usually defined as the locus of all points at a constant distance from a
fixed point, but another way of defining a circle is this: a circle is that curve of
given length which encloses the biggest area. Any other curve encloses less area
for a given perimeter than the circle does. So if we give the problem: find that
curve which encloses the greatest area for a given perimeter, we would have a
problem of the calculus of variations—a different kind of calculus than you’re
used to.
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“So we make the calculation for the path of an object. Here is the way we
are going to do it. The idea is that we imagine that there is a true path and that
any other curve we draw is a false path, so that if we calculate the action for the
false path we will get a value that is bigger than if we calculate the action for
the true path (Fig. 19-7).

Figure 19-7

“Problem: Find the true path. Where is it? One way, of course, is to calculate
the action for millions and millions of paths and look at which one is lowest.
When you find the lowest one, that’s the true path.

“That’s a possible way. But we can do it better than that. When we have a
quantity which has a minimum—for instance, in an ordinary function like the
temperature—one of the properties of the minimum is that if we go away from the
minimum in the first order, the deviation of the function from its minimum value
is only second order. At any place else on the curve, if we move a small distance
the value of the function changes also in the first order. But at a minimum, a
tiny motion away makes, in the first approximation, no difference (Fig. 19-8).

“That is what we are going to use to calculate the true path. If we have
the true path, a curve which differs only a little bit from it will, in the first
approximation, make no difference in the action. Any difference will be in the
second approximation, if we really have a minimum.

“That is easy to prove. If there is a change in the first order when I deviate
the curve a certain way, there is a change in the action that is proportional to
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Figure 19-8

the deviation. The change presumably makes the action greater; otherwise we
haven’t got a minimum. But then if the change is proportional to the deviation,
reversing the sign of the deviation will make the action less. We would get the
action to increase one way and to decrease the other way. The only way that it
could really be a minimum is that in the first approximation it doesn’t make any
change, that the changes are proportional to the square of the deviations from
the true path.

“So we work it this way: We call x(t) (with an underline) the true path—the
one we are trying to find. We take some trial path x(t) that differs from the true
path by a small amount which we will call η(t) (eta of t; Fig. 19-9).

“Now the idea is that if we calculate the action S for the path x(t), then the
difference between that S and the action that we calculated for the path x(t)—to
simplify the writing we can call it S—the difference of S and S must be zero in
the first-order approximation of small η. It can differ in the second order, but in
the first order the difference must be zero.

“And that must be true for any η at all. Well, not quite. The method doesn’t
mean anything unless you consider paths which all begin and end at the same
two points—each path begins at a certain point at t1 and ends at a certain other
point at t2, and those points and times are kept fixed. So the deviations in our η
have to be zero at each end, η(t1) = 0 and η(t2) = 0. With that condition, we
have specified our mathematical problem.

“If you didn’t know any calculus, you might do the same kind of thing to
find the minimum of an ordinary function f(x). You could discuss what happens
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Figure 19-9

if you take f(x) and add a small amount h to x and argue that the correction
to f(x) in the first order in h must be zero at the minimum. You would substitute
x+ h for x and expand out to the first order in h . . . just as we are going to do
with η.

“The idea is then that we substitute x(t) = x(t) + η(t) in the formula for the
action:

S =
∫ [

m

2

(
dx

dt

)2
− V (x)

]
dt,

where I call the potential energy V (x). The derivative dx/dt is, of course, the
derivative of x(t) plus the derivative of η(t), so for the action I get this expression:

S =
∫ t2

t1

[
m

2

(
dx

dt
+ dη

dt

)2
− V (x+ η)

]
dt.

“Now I must write this out in more detail. For the squared term I get(
dx

dt

)2
+ 2 dx

dt

dη

dt
+
(
dη

dt

)2
.

But wait. I’m not worrying about higher than the first order, so I will take all
the terms which involve η2 and higher powers and put them in a little box called
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‘second and higher order.’ From this term I get only second order, but there will
be more from something else. So the kinetic energy part is

m

2

(
dx

dt

)2
+m

dx

dt

dη

dt
+ (second and higher order).

“Now we need the potential V at x + η. I consider η small, so I can write
V (x) as a Taylor series. It is approximately V (x); in the next approximation
(from the ordinary nature of derivatives) the correction is η times the rate of
change of V with respect to x, and so on:

V (x+ η) = V (x) + ηV ′(x) + η2

2 V ′′(x) + · · ·

I have written V ′ for the derivative of V with respect to x in order to save
writing. The term in η2 and the ones beyond fall into the ‘second and higher
order’ category and we don’t have to worry about them. Putting it all together,

S =
∫ t2

t1

[
m

2

(
dx

dt

)2
− V (x) +m

dx

dt

dη

dt

− ηV ′(x) + (second and higher order)
]
dt.

Now if we look carefully at the thing, we see that the first two terms which I
have arranged here correspond to the action S that I would have calculated with
the true path x. The thing I want to concentrate on is the change in S—the
difference between the S and the S that we would get for the right path. This
difference we will write as δS, called the variation in S. Leaving out the ‘second
and higher order’ terms, I have for δS

δS =
∫ t2

t1

[
m
dx

dt

dη

dt
− ηV ′(x)

]
dt.

“Now the problem is this: Here is a certain integral. I don’t know what
the x is yet, but I do know that no matter what η is, this integral must be zero.
Well, you think, the only way that that can happen is that what multiplies η
must be zero. But what about the first term with dη/dt? Well, after all, if η
can be anything at all, its derivative is anything also, so you conclude that the
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coefficient of dη/dt must also be zero. That isn’t quite right. It isn’t quite right
because there is a connection between η and its derivative; they are not absolutely
independent, because η(t) must be zero at both t1 and t2.

“The method of solving all problems in the calculus of variations always uses
the same general principle. You make the shift in the thing you want to vary (as
we did by adding η); you look at the first-order terms; then you always arrange
things in such a form that you get an integral of the form ‘some kind of stuff times
the shift (η),’ but with no other derivatives (no dη/dt). It must be rearranged so
it is always ‘something’ times η. You will see the great value of that in a minute.
(There are formulas that tell you how to do this in some cases without actually
calculating, but they are not general enough to be worth bothering about; the
best way is to calculate it out this way.)

“How can I rearrange the term in dη/dt to make it have an η? I can do
that by integrating by parts. It turns out that the whole trick of the calculus
of variations consists of writing down the variation of S and then integrating
by parts so that the derivatives of η disappear. It is always the same in every
problem in which derivatives appear.

“You remember the general principle for integrating by parts. If you have
any function f times dη/dt integrated with respect to t, you write down the
derivative of ηf :

d

dt
(ηf) = η

df

dt
+ f

dη

dt
.

The integral you want is over the last term, so∫
f
dη

dt
dt = ηf −

∫
η
df

dt
dt.

“In our formula for δS, the function f is m times dx/dt; therefore, I have the
following formula for δS.

δS = m
dx

dt
η(t)

∣∣∣∣t2
t1

−
∫ t2

t1

d

dt

(
m
dx

dt

)
η(t) dt−

∫ t2

t1

V ′(x) η(t) dt.

The first term must be evaluated at the two limits t1 and t2. Then I must have
the integral from the rest of the integration by parts. The last term is brought
down without change.

“Now comes something which always happens—the integrated part disappears.
(In fact, if the integrated part does not disappear, you restate the principle, adding

19-11



conditions to make sure it does!) We have already said that η must be zero at both
ends of the path, because the principle is that the action is a minimum provided
that the varied curve begins and ends at the chosen points. The condition is that
η(t1) = 0, and η(t2) = 0. So the integrated term is zero. We collect the other
terms together and obtain this:

δS =
∫ t2

t1

[
−m d2x

dt2
− V ′(x)

]
η(t) dt.

The variation in S is now the way we wanted it—there is the stuff in brackets,
say F , all multiplied by η(t) and integrated from t1 to t2.

“We have that an integral of something or other times η(t) is always zero:∫
F (t) η(t) dt = 0.

I have some function of t; I multiply it by η(t); and I integrate it from one end
to the other. And no matter what the η is, I get zero. That means that the
function F (t) is zero. That’s obvious, but anyway I’ll show you one kind of proof.

“Suppose that for η(t) I took something which was zero for all t except right
near one particular value. It stays zero until it gets to this t, then it blips up for
a moment and blips right back down (Fig. 19-10). When we do the integral of
this η times any function F , the only place that you get anything other than zero

Figure 19-10
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was where η(t) was blipping, and then you get the value of F at that place times
the integral over the blip. The integral over the blip alone isn’t zero, but when
multiplied by F it has to be; so the function F has to be zero where the blip was.
But the blip was anywhere I wanted to put it, so F must be zero everywhere.

“We see that if our integral is zero for any η, then the coefficient of η must
be zero. The action integral will be a minimum for the path that satisfies this
complicated differential equation:[

−m d2x

dt2
− V ′(x)

]
= 0.

It’s not really so complicated; you have seen it before. It is just F = ma. The
first term is the mass times acceleration, and the second is the derivative of the
potential energy, which is the force.

“So, for a conservative system at least, we have demonstrated that the principle
of least action gives the right answer; it says that the path that has the minimum
action is the one satisfying Newton’s law.

“One remark: I did not prove it was a minimum—maybe it’s a maximum.
In fact, it doesn’t really have to be a minimum. It is quite analogous to what
we found for the ‘principle of least time’ which we discussed in optics. There
also, we said at first it was ‘least’ time. It turned out, however, that there were
situations in which it wasn’t the least time. The fundamental principle was that
for any first-order variation away from the optical path, the change in time was
zero; it is the same story. What we really mean by ‘least’ is that the first-order
change in the value of S, when you change the path, is zero. It is not necessarily
a ‘minimum.’

“Next, I remark on some generalizations. In the first place, the thing can be
done in three dimensions. Instead of just x, I would have x, y, and z as functions
of t; the action is more complicated. For three-dimensional motion, you have to
use the complete kinetic energy—(m/2) times the whole velocity squared. That
is,

KE = m

2

[(
dx

dt

)2
+
(
dy

dt

)2
+
(
dz

dt

)2]
.

Also, the potential energy is a function of x, y, and z. And what about the path?
The path is some general curve in space, which is not so easily drawn, but the
idea is the same. And what about the η? Well, η can have three components.
You could shift the paths in x, or in y, or in z—or you could shift in all three
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directions simultaneously. So η would be a vector. This doesn’t really complicate
things too much, though. Since only the first-order variation has to be zero,
we can do the calculation by three successive shifts. We can shift η only in the
x-direction and say that coefficient must be zero. We get one equation. Then
we shift it in the y-direction and get another. And in the z-direction and get
another. Or, of course, in any order that you want. Anyway, you get three
equations. And, of course, Newton’s law is really three equations in the three
dimensions—one for each component. I think that you can practically see that
it is bound to work, but we will leave you to show for yourself that it will work
for three dimensions. Incidentally, you could use any coordinate system you
want, polar or otherwise, and get Newton’s laws appropriate to that system
right off by seeing what happens if you have the shift η in radius, or in angle,
etc.

“Similarly, the method can be generalized to any number of particles. If you
have, say, two particles with a force between them, so that there is a mutual
potential energy, then you just add the kinetic energy of both particles and take
the potential energy of the mutual interaction. And what do you vary? You vary
the paths of both particles. Then, for two particles moving in three dimensions,
there are six equations. You can vary the position of particle 1 in the x-direction,
in the y-direction, and in the z-direction, and similarly for particle 2; so there
are six equations. And that’s as it should be. There are the three equations
that determine the acceleration of particle 1 in terms of the force on it and three
for the acceleration of particle 2, from the force on it. You follow the same
game through, and you get Newton’s law in three dimensions for any number of
particles.

“I have been saying that we get Newton’s law. That is not quite true, because
Newton’s law includes nonconservative forces like friction. Newton said that ma
is equal to any F . But the principle of least action only works for conservative
systems—where all forces can be gotten from a potential function. You know,
however, that on a microscopic level—on the deepest level of physics—there
are no nonconservative forces. Nonconservative forces, like friction, appear only
because we neglect microscopic complications—there are just too many particles
to analyze. But the fundamental laws can be put in the form of a principle of
least action.

“Let me generalize still further. Suppose we ask what happens if the particle
moves relativistically. We did not get the right relativistic equation of motion;
F = ma is only right nonrelativistically. The question is: Is there a corresponding
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principle of least action for the relativistic case? There is. The formula in the
case of relativity is the following:

S = −m0c
2
∫ t2

t1

√
1− v2/c2 dt− q

∫ t2

t1

[φ(x, y, z, t)− v ·A(x, y, z, t)] dt.

The first part of the action integral is the rest mass m0 times c2 times the
integral of a function of velocity,

√
1− v2/c2. Then instead of just the potential

energy, we have an integral over the scalar potential φ and over v times the
vector potential A. Of course, we are then including only electromagnetic forces.
All electric and magnetic fields are given in terms of φ and A. This action
function gives the complete theory of relativistic motion of a single particle in an
electromagnetic field.

“Of course, wherever I have written v, you understand that before you try
to figure anything out, you must substitute dx/dt for vx and so on for the other
components. Also, you put the point along the path at time t, x(t), y(t), z(t)
where I wrote simply x, y, z. Properly, it is only after you have made those
replacements for the v’s that you have the formula for the action for a relativistic
particle. I will leave to the more ingenious of you the problem to demonstrate that
this action formula does, in fact, give the correct equations of motion for relativity.
May I suggest you do it first without the A, that is, for no magnetic field? Then
you should get the components of the equation of motion, dp/dt = −q∇φ, where,
you remember, p = m0v/

√
1− v2/c2.

“It is much more difficult to include also the case with a vector potential. The
variations get much more complicated. But in the end, the force term does come
out equal to q(E + v ×B), as it should. But I will leave that for you to play
with.

“I would like to emphasize that in the general case, for instance in the rela-
tivistic formula, the action integrand no longer has the form of the kinetic energy
minus the potential energy. That’s only true in the nonrelativistic approximation.
For example, the term m0c

2
√

1− v2/c2 is not what we have called the kinetic
energy. The question of what the action should be for any particular case must
be determined by some kind of trial and error. It is just the same problem as
determining what are the laws of motion in the first place. You just have to
fiddle around with the equations that you know and see if you can get them into
the form of the principle of least action.

“One other point on terminology. The function that is integrated over time
to get the action S is called the Lagrangian, L, which is a function only of the
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velocities and positions of particles. So the principle of least action is also written

S =
∫ t2

t1

L(xi, vi) dt,

where by xi and vi are meant all the components of the positions and velocities.
So if you hear someone talking about the ‘Lagrangian,’ you know they are
talking about the function that is used to find S. For relativistic motion in an
electromagnetic field

L = −m0c
2
√

1− v2/c2 − q(φ− v ·A).

“Also, I should say that S is not really called the ‘action’ by the most precise
and pedantic people. It is called ‘Hamilton’s first principal function.’ Now I hate
to give a lecture on ‘the-principle-of-least-Hamilton’s-first-principal-function.’ So
I call it ‘the action.’ Also, more and more people are calling it the action. You
see, historically something else which is not quite as useful was called the action,
but I think it’s more sensible to change to a newer definition. So now you too
will call the new function the action, and pretty soon everybody will call it by
that simple name.

“Now I want to say some things on this subject which are similar to the
discussions I gave about the principle of least time. There is quite a difference
in the characteristic of a law which says a certain integral from one place to
another is a minimum—which tells something about the whole path—and of a
law which says that as you go along, there is a force that makes it accelerate.
The second way tells how you inch your way along the path, and the other is a
grand statement about the whole path. In the case of light, we talked about the
connection of these two. Now, I would like to explain why it is true that there are
differential laws when there is a least action principle of this kind. The reason is
the following: Consider the actual path in space and time. As before, let’s take
only one dimension, so we can plot the graph of x as a function of t. Along the
true path, S is a minimum. Let’s suppose that we have the true path and that it
goes through some point a in space and time, and also through another nearby
point b (Fig. 19-11). Now if the entire integral from t1 to t2 is a minimum, it
is also necessary that the integral along the little section from a to b is also a
minimum. It can’t be that the part from a to b is a little bit more. Otherwise
you could just fiddle with just that piece of the path and make the whole integral
a little lower.
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Figure 19-11

“So every subsection of the path must also be a minimum. And this is true
no matter how short the subsection. Therefore, the principle that the whole path
gives a minimum can be stated also by saying that an infinitesimal section of
path also has a curve such that it has a minimum action. Now if we take a short
enough section of path—between two points a and b very close together—how
the potential varies from one place to another far away is not the important
thing, because you are staying almost in the same place over the whole little
piece of the path. The only thing that you have to discuss is the first-order
change in the potential. The answer can only depend on the derivative of the
potential and not on the potential everywhere. So the statement about the gross
property of the whole path becomes a statement of what happens for a short
section of the path—a differential statement. And this differential statement only
involves the derivatives of the potential, that is, the force at a point. That’s the
qualitative explanation of the relation between the gross law and the differential
law.

“In the case of light we also discussed the question: How does the particle
find the right path? From the differential point of view, it is easy to understand.
Every moment it gets an acceleration and knows only what to do at that instant.
But all your instincts on cause and effect go haywire when you say that the
particle decides to take the path that is going to give the minimum action. Does
it ‘smell’ the neighboring paths to find out whether or not they have more action?
In the case of light, when we put blocks in the way so that the photons could
not test all the paths, we found that they couldn’t figure out which way to go,
and we had the phenomenon of diffraction.
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“Is the same thing true in mechanics? Is it true that the particle doesn’t just
‘take the right path’ but that it looks at all the other possible trajectories? And
if by having things in the way, we don’t let it look, that we will get an analog of
diffraction? The miracle of it all is, of course, that it does just that. That’s what
the laws of quantum mechanics say. So our principle of least action is incompletely
stated. It isn’t that a particle takes the path of least action but that it smells
all the paths in the neighborhood and chooses the one that has the least action
by a method analogous to the one by which light chose the shortest time. You
remember that the way light chose the shortest time was this: If it went on a path
that took a different amount of time, it would arrive at a different phase. And
the total amplitude at some point is the sum of contributions of amplitude for
all the different ways the light can arrive. All the paths that give wildly different
phases don’t add up to anything. But if you can find a whole sequence of paths
which have phases almost all the same, then the little contributions will add up
and you get a reasonable total amplitude to arrive. The important path becomes
the one for which there are many nearby paths which give the same phase.

“It is just exactly the same thing for quantum mechanics. The complete
quantum mechanics (for the nonrelativistic case and neglecting electron spin)
works as follows: The probability that a particle starting at point 1 at the time t1
will arrive at point 2 at the time t2 is the square of a probability amplitude. The
total amplitude can be written as the sum of the amplitudes for each possible
path—for each way of arrival. For every x(t) that we could have—for every
possible imaginary trajectory—we have to calculate an amplitude. Then we
add them all together. What do we take for the amplitude for each path? Our
action integral tells us what the amplitude for a single path ought to be. The
amplitude is proportional to some constant times eiS/~, where S is the action
for that path. That is, if we represent the phase of the amplitude by a complex
number, the phase angle is S/~. The action S has dimensions of energy times
time, and Planck’s constant ~ has the same dimensions. It is the constant that
determines when quantum mechanics is important.

“Here is how it works: Suppose that for all paths, S is very large compared
to ~. One path contributes a certain amplitude. For a nearby path, the phase is
quite different, because with an enormous S even a small change in S means a
completely different phase—because ~ is so tiny. So nearby paths will normally
cancel their effects out in taking the sum—except for one region, and that is when
a path and a nearby path all give the same phase in the first approximation (more
precisely, the same action within ~). Only those paths will be the important ones.
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So in the limiting case in which Planck’s constant ~ goes to zero, the correct
quantum-mechanical laws can be summarized by simply saying: ‘Forget about
all these probability amplitudes. The particle does go on a special path, namely,
that one for which S does not vary in the first approximation.’ That’s the relation
between the principle of least action and quantum mechanics. The fact that
quantum mechanics can be formulated in this way was discovered in 1942 by a
student of that same teacher, Bader, I spoke of at the beginning of this lecture.
[Quantum mechanics was originally formulated by giving a differential equation
for the amplitude (Schrödinger) and also by some other matrix mathematics
(Heisenberg).]

“Now I want to talk about other minimum principles in physics. There are
many very interesting ones. I will not try to list them all now but will only
describe one more. Later on, when we come to a physical phenomenon which has
a nice minimum principle, I will tell about it then. I want now to show that we
can describe electrostatics, not by giving a differential equation for the field, but
by saying that a certain integral is a maximum or a minimum. First, let’s take
the case where the charge density is known everywhere, and the problem is to
find the potential φ everywhere in space. You know that the answer should be

∇2φ = −ρ/ε0.

But another way of stating the same thing is this: Calculate the integral U∗,
where

U∗ = ε0
2

∫
(∇φ)2 dV −

∫
ρφ dV,

which is a volume integral to be taken over all space. This thing is a minimum
for the correct potential distribution φ(x, y, z).

“We can show that the two statements about electrostatics are equivalent.
Let’s suppose that we pick any function φ. We want to show that when we take
for φ the correct potential φ, plus a small deviation f , then in the first order, the
change in U∗ is zero. So we write

φ = φ+ f.

The φ is what we are looking for, but we are making a variation of it to find
what it has to be so that the variation of U∗ is zero to first order. For the first
part of U∗, we need

(∇φ)2 = (∇φ)2 + 2∇φ ·∇f + (∇f)2.
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The only first-order term that will vary is

2∇φ ·∇f.

In the second term of the quantity U∗, the integrand is

ρφ = ρφ+ ρf,

whose variable part is ρf . So, keeping only the variable parts, we need the
integral

∆U∗ =
∫

(ε0∇φ ·∇f − ρf) dV.

“Now, following the old general rule, we have to get the darn thing all clear
of derivatives of f . Let’s look at what the derivatives are. The dot product is

∂φ

∂x

∂f

∂x
+
∂φ

∂y

∂f

∂y
+
∂φ

∂z

∂f

∂z
,

which we have to integrate with respect to x, to y, and to z. Now here is the
trick: to get rid of ∂f/∂x we integrate by parts with respect to x. That will
carry the derivative over onto the φ. It’s the same general idea we used to get
rid of derivatives with respect to t. We use the equality∫

∂φ

∂x

∂f

∂x
dx = f

∂φ

∂x
−
∫
f
∂2φ

∂x2 dx.

The integrated term is zero, since we have to make f zero at infinity. (That
corresponds to making η zero at t1 and t2. So our principle should be more
accurately stated: U∗ is less for the true φ than for any other φ(x, y, z) having
the same values at infinity.) Then we do the same thing for y and z. So our
integral ∆U∗ is

∆U∗ =
∫

(−ε0∇2φ− ρ)f dV.

In order for this variation to be zero for any f , no matter what, the coefficient
of f must be zero and, therefore,

∇2φ = −ρ/ε0.

We get back our old equation. So our ‘minimum’ proposition is correct.
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“We can generalize our proposition if we do our algebra in a little different
way. Let’s go back and do our integration by parts without taking components.
We start by looking at the following equality:

∇ · (f∇φ) =∇f ·∇φ+ f ∇2φ.

If I differentiate out the left-hand side, I can show that it is just equal to the
right-hand side. Now we can use this equation to integrate by parts. In our
integral ∆U∗, we replace ∇φ ·∇f by ∇ · (f∇φ)− f ∇2φ, which gets integrated
over volume. The divergence term integrated over volume can be replaced by a
surface integral: ∫

∇ · (f∇φ) dV =
∫
f∇φ · n da.

Since we are integrating over all space, the surface over which we are integrating
is at infinity. There, f is zero and we get the same answer as before.

“Only now we see how to solve a problem when we don’t know where all the
charges are. Suppose that we have conductors with charges spread out on them
in some way. We can still use our minimum principle if the potentials of all the
conductors are fixed. We carry out the integral for U∗ only in the space outside
of all conductors. Then, since we can’t vary φ on the conductor, f is zero on all
those surfaces, and the surface integral∫

f∇φ · n da

is still zero. The remaining volume integral

∆U∗ =
∫

(−ε0∇2φ− ρ)f dV

is only to be carried out in the spaces between conductors. Of course, we get
Poisson’s equation again,

∇2φ = −ρ/ε0.

So we have shown that our original integral U∗ is also a minimum if we evaluate
it over the space outside of conductors all at fixed potentials (that is, such that
any trial φ(x, y, z) must equal the given potential of the conductors when (x, y, z)
is a point on the surface of a conductor).

19-21



“There is an interesting case when the only charges are on conductors. Then

U∗ = ε0
2

∫
(∇φ)2 dV.

Our minimum principle says that in the case where there are conductors set
at certain given potentials, the potential between them adjusts itself so that
integral U∗ is least. What is this integral? The term ∇φ is the electric field,
so the integral is the electrostatic energy. The true field is the one, of all those
coming from the gradient of a potential, with the minimum total energy.

Figure 19-12

“I would like to use this result to calculate something particular to show you
that these things are really quite practical. Suppose I take two conductors in
the form of a cylindrical condenser (Fig. 19-12). The inside conductor has the
potential V , and the outside is at the potential zero. Let the radius of the inside
conductor be a and that of the outside, b. Now we can suppose any distribution of
potential between the two. If we use the correct φ, and calculate ε0/2

∫
(∇φ)2 dV ,

it should be the energy of the system, 1
2CV

2. So we can also calculate C by our
principle. But if we use a wrong distribution of potential and try to calculate
the capacity C by this method, we will get a capacity that is too big, since V is
specified. Any assumed potential φ that is not the exactly correct one will give
a fake C that is larger than the correct value. But if my false φ is any rough
approximation, the C will be a good approximation, because the error in C is
second order in the error in φ.
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“Suppose I don’t know the capacity of a cylindrical condenser. I can use
this principle to find it. I just guess at the potential function φ until I get the
lowest C. Suppose, for instance, I pick a potential that corresponds to a constant
field. (You know, of course, that the field isn’t really constant here; it varies
as 1/r.) A field which is constant means a potential which goes linearly with
distance. To fit the conditions at the two conductors, it must be

φ = V

(
1− r − a

b− a

)
.

This function is V at r = a, zero at r = b, and in between has a constant slope
equal to −V/(b− a). So what one does to find the integral U∗ is multiply the
square of this gradient by ε0/2 and integrate over all volume. Let’s do this
calculation for a cylinder of unit length. A volume element at the radius r
is 2πr dr. Doing the integral, I find that my first try at the capacity gives

1
2 CV

2(first try) = ε0
2

∫ b

a

V 2

(b− a)2 2πr dr.

The integral is easy; it is just

πV 2
(
b+ a

b− a

)
.

So I have a formula for the capacity which is not the true one but is an approximate
job:

C

2πε0
= b+ a

2(b− a) .

It is, naturally, different from the correct answer C = 2πε0/ ln(b/a), but it’s not
too bad. Let’s compare it with the right answer for several values of b/a. I have
computed out the answers in Table 19-1. Even when b/a is as big as 2—which
gives a pretty big variation in the field compared with a linearly varying field—I
get a pretty fair approximation. The answer is, of course, a little too high, as
expected. The thing gets much worse if you have a tiny wire inside a big cylinder.
Then the field has enormous variations and if you represent it by a constant,
you’re not doing very well. With b/a = 100, we’re off by nearly a factor of two.
Things are much better for small b/a. To take the opposite extreme, when the
conductors are not very far apart—say b/a = 1.1—then the constant field is a
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Table 19-1

b

a

Ctrue

2πε0
C(first approx.)

2πε0
2 1.4423 1.500
4 0.721 0.833

10 0.434 0.612
100 0.217 0.51

1.5 2.4662 2.50
1.1 10.492059 10.500000

pretty good approximation, and we get the correct value for C to within a tenth
of a percent.

“Now I would like to tell you how to improve such a calculation. (Of course,
you know the right answer for the cylinder, but the method is the same for some
other odd shapes, where you may not know the right answer.) The next step is
to try a better approximation to the unknown true φ. For example, we might try
a constant plus an exponential φ, etc. But how do you know when you have a
better approximation unless you know the true φ? Answer: You calculate C; the
lowest C is the value nearest the truth. Let us try this idea out. Suppose that
the potential is not linear but say quadratic in r—that the electric field is not
constant but linear. The most general quadratic form that fits φ = 0 at r = b
and φ = V at r = a is

φ = V

[
1 + α

(
r − a
b− a

)
− (1 + α)

(
r − a
b− a

)2]
,

where α is any constant number. This formula is a little more complicated. It
involves a quadratic term in the potential as well as a linear term. It is very easy
to get the field out of it. The field is just

E = −dφ
dr

= − αV

b− a
+ 2(1 + α) (r − a)V

(b− a)2 .

Now we have to square this and integrate over volume. But wait a moment.
What should I take for α? I can take a parabola for the φ; but what parabola?
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Here’s what I do: Calculate the capacity with an arbitrary α. What I get is

C

2πε0
= a

b− a

[
b

a

(
α2

6 + 2α
3 + 1

)
+ 1

6 α
2 + 1

3

]
.

It looks a little complicated, but it comes out of integrating the square of the
field. Now I can pick my α. I know that the truth lies lower than anything that
I am going to calculate, so whatever I put in for α is going to give me an answer
too big. But if I keep playing with α and get the lowest possible value I can, that
lowest value is nearer to the truth than any other value. So what I do next is
to pick the α that gives the minimum value for C. Working it out by ordinary
calculus, I get that the minimum C occurs for α = −2b/(b + a). Substituting
that value into the formula, I obtain for the minimum capacity

C

2πε0
= b2 + 4ab+ a2

3(b2 − a2) .

“I’ve worked out what this formula gives for C for various values of b/a. I
call these numbers C(quadratic). Table 19-2 compares C(quadratic) with the
true C.

Table 19-2

b

a

Ctrue

2πε0
C(quadratic)

2πε0
2 1.4423 1.444
4 0.721 0.733

10 0.434 0.475
100 0.217 0.346

1.5 2.4662 2.4667
1.1 10.492059 10.492065

“For example, when the ratio of the radii is 2 to 1, I have 1.444, which is a
very good approximation to the true answer, 1.4423. Even for larger b/a, it stays
pretty good—it is much, much better than the first approximation. It is even
fairly good—only off by 10 percent—when b/a is 10 to 1. But when it gets to be
100 to 1—well, things begin to go wild. I get that C is 0.346 instead of 0.217.
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On the other hand, for a ratio of radii of 1.5, the answer is excellent; and for
a b/a of 1.1, the answer comes out 10.492065 instead of 10.492059. Where the
answer should be good, it is very, very good.

“I have given these examples, first, to show the theoretical value of the
principles of minimum action and minimum principles in general and, second,
to show their practical utility—not just to calculate a capacity when we already
know the answer. For any other shape, you can guess an approximate field with
some unknown parameters like α and adjust them to get a minimum. You will
get excellent numerical results for otherwise intractable problems.”

19-2 A note added after the lecture

“I should like to add something that I didn’t have time for in the lecture. (I
always seem to prepare more than I have time to tell about.) As I mentioned
earlier, I got interested in a problem while working on this lecture. I want to
tell you what that problem is. Among the minimum principles that I could
mention, I noticed that most of them sprang in one way or another from the
least action principle of mechanics and electrodynamics. But there is also a class
that does not. As an example, if currents are made to go through a piece of
material obeying Ohm’s law, the currents distribute themselves inside the piece
so that the rate at which heat is generated is as little as possible. Also we can
say (if things are kept isothermal) that the rate at which energy is generated
is a minimum. Now, this principle also holds, according to classical theory, in
determining even the distribution of velocities of the electrons inside a metal
which is carrying a current. The distribution of velocities is not exactly the
equilibrium distribution [Chapter 40, Vol. I, Eq. (40.6)] because they are drifting
sideways. The new distribution can be found from the principle that it is the
distribution for a given current for which the entropy developed per second by
collisions is as small as possible. The true description of the electrons’ behavior
ought to be by quantum mechanics, however. The question is: Does the same
principle of minimum entropy generation also hold when the situation is described
quantum-mechanically? I haven’t found out yet.

“The question is interesting academically, of course. Such principles are
fascinating, and it is always worth while to try to see how general they are.
But also from a more practical point of view, I want to know. I, with some
colleagues, have published a paper in which we calculated by quantum mechanics
approximately the electrical resistance felt by an electron moving through an ionic
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crystal like NaCl. [Feynman, Hellwarth, Iddings, and Platzman, “Mobility of Slow
Electrons in a Polar Crystal,” Phys. Rev. 127, 1004 (1962).] But if a minimum
principle existed, we could use it to make the results much more accurate, just as
the minimum principle for the capacity of a condenser permitted us to get such
accuracy for that capacity even though we had only a rough knowledge of the
electric field.”
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20

Solutions of Maxwell’s Equations in Free
Space

References: Chapter 47, Vol. I: Sound: The Wave Equation
Chapter 28, Vol. I: Electromagnetic Radiation

20-1 Waves in free space; plane waves

In Chapter 18 we had reached the point where we had the Maxwell equations
in complete form. All there is to know about the classical theory of the electric
and magnetic fields can be found in the four equations:

I. ∇ ·E = ρ

ε0
II. ∇×E = −∂B

∂t

III. ∇ ·B = 0 IV. c2∇×B = j

ε0
+ ∂E

∂t

(20.1)

When we put all these equations together, a remarkable new phenomenon occurs:
fields generated by moving charges can leave the sources and travel alone through
space. We considered a special example in which an infinite current sheet is
suddenly turned on. After the current has been on for the time t, there are
uniform electric and magnetic fields extending out the distance ct from the source.
Suppose that the current sheet lies in the yz-plane with a surface current density J
going toward positive y. The electric field will have only a y-component, and the
magnetic field, only a z-component. The field components are given by

Ey = cBz = − J

2ε0c
, (20.2)

for positive values of x less than ct. For larger x the fields are zero. There are,
of course, similar fields extending the same distance from the current sheet in
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x−ct ct

|E| = c|B|

Fig. 20-1. The electric and magnetic field as a function of x at the
time t after the current sheet is turned on.

the negative x-direction. In Fig. 20-1 we show a graph of the magnitude of the
fields as a function of x at the instant t. As time goes on, the “wavefront” at ct
moves outward in x at the constant velocity c.

Now consider the following sequence of events. We turn on a current of unit
strength for a while, then suddenly increase the current strength to three units,
and hold it constant at this value. What do the fields look like then? We can see
what the fields will look like in the following way. First, we imagine a current
of unit strength that is turned on at t = 0 and left constant forever. The fields
for positive x are then given by the graph in part (a) of Fig. 20-2. Next, we ask
what would happen if we turn on a steady current of two units at the time t1.

The fields in this case will be twice as high as before, but will extend out
in x only the distance c(t− t1), as shown in part (b) of the figure. When we add
these two solutions, using the principle of superposition, we find that the sum of
the two sources is a current of one unit for the time from zero to t1 and a current
of three units for times greater than t1. At the time t the fields will vary with x
as shown in part (c) of Fig. 20-2.

Now let’s take a more complicated problem. Consider a current which is
turned on to one unit for a while, then turned up to three units, and later turned
off to zero. What are the fields for such a current? We can find the solution in
the same way—by adding the solutions of three separate problems. First, we
find the fields for a step current of unit strength. (We have solved that problem
already.) Next, we find the fields produced by a step current of two units. Finally,
we solve for the fields of a step current of minus three units. When we add the
three solutions, we will have a current which is one unit strong from t = 0 to
some later time, say t1, then three units strong until a still later time t2, and
then turned off—that is, to zero. A graph of the current as a function of time is
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(a)
xct

E

0

1

2

(b)
xc(t−t1)

E

0

1

2

(c)
xc(t−t1) ct

E

0

1

2

3

Fig. 20-2. The electric field of a current sheet. (a) One unit of
current turned on at t = 0; (b) Two units of current turned on at t = t1;
(c) Superposition of (a) and (b).

shown in Fig. 20-3(a). When we add the three solutions for the electric field, we
find that its variation with x, at a given instant t, is as shown in Fig. 20-3(b).
The field is an exact representation of the current. The field distribution in space
is a nice graph of the current variation with time—only drawn backwards. As
time goes on the whole picture moves outward at the speed c, so there is a little
blob of field, travelling toward positive x, which contains a completely detailed
memory of the history of all the current variations. If we were to stand miles
away, we could tell from the variation of the electric or magnetic field exactly
how the current had varied at the source.

You will also notice that long after all activity at the source has completely
stopped and all charges and currents are zero, the block of field continues to
travel through space. We have a distribution of electric and magnetic fields that
exist independently of any charges or currents. That is the new effect that comes
from the complete set of Maxwell’s equations. If we want, we can give a complete
mathematical representation of the analysis we have just done by writing that
the electric field at a given place and a given time is proportional to the current

20-3



(a)

tt1 t2

J

0

1

2

3

(b)

xc(t−t2) c(t−t1) ct

−Ey

0
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3

Fig. 20-3. If the current source strength varies as shown in (a), then
at the time t shown by the arrow the electric field as a function of x is
as shown in (b).

at the source, only not at the same time, but at the earlier time t− x/c. We can
write

Ey(t) = −J(t− x/c)
2ε0c

. (20.3)

We have, believe it or not, already derived this same equation from another
point of view in Vol. I, when we were dealing with the theory of the index of
refraction. Then, we had to figure out what fields were produced by a thin
layer of oscillating dipoles in a sheet of dielectric material with the dipoles set in
motion by the electric field of an incoming electromagnetic wave. Our problem
was to calculate the combined fields of the original wave and the waves radiated
by the oscillating dipoles. How could we have calculated the fields generated by
moving charges when we didn’t have Maxwell’s equations? At that time we took
as our starting point (without any derivation) a formula for the radiation fields
produced at large distances from an accelerating point charge. If you will look in
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Chapter 31 of Vol. I, you will see that Eq. (31.9) there is just the same as the
Eq. (20.3) that we have just written down. Although our earlier derivation was
correct only at large distances from the source, we see now that the same result
continues to be correct even right up to the source.

We want now to look in a general way at the behavior of electric and magnetic
fields in empty space far away from the sources, i.e., from the currents and charges.
Very near the sources—near enough so that during the delay in transmission, the
source has not had time to change much—the fields are very much the same as
we have found in what we called the electrostatic or magnetostatic cases. If we go
out to distances large enough so that the delays become important, however, the
nature of the fields can be radically different from the solutions we have found.
In a sense, the fields begin to take on a character of their own when they have
gone a long way from all the sources. So we can begin by discussing the behavior
of the fields in a region where there are no currents or charges.

Suppose we ask: What kind of fields can there be in regions where ρ and j
are both zero? In Chapter 18 we saw that the physics of Maxwell’s equations
could also be expressed in terms of differential equations for the scalar and vector
potentials:

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
, (20.4)

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
. (20.5)

If ρ and j are zero, these equations take on the simpler form

∇2φ− 1
c2
∂2φ

∂t2
= 0, (20.6)

∇2A− 1
c2
∂2A

∂t2
= 0. (20.7)

Thus in free space the scalar potential φ and each component of the vector
potential A all satisfy the same mathematical equation. Suppose we let ψ (psi)
stand for any one of the four quantities φ, Ax, Ay, Az; then we want to investigate
the general solutions of the following equation:

∇2ψ − 1
c2
∂2ψ

∂t2
= 0. (20.8)
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This equation is called the three-dimensional wave equation—three-dimensional,
because the function ψ may depend in general on x, y, and z, and we need to
worry about variations in all three coordinates. This is made clear if we write
out explicitly the three terms of the Laplacian operator:

∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 −
1
c2
∂2ψ

∂t2
= 0. (20.9)

In free space, the electric fields E and B also satisfy the wave equation. For
example, since B =∇×A, we can get a differential equation for B by taking
the curl of Eq. (20.7). Since the Laplacian is a scalar operator, the order of the
Laplacian and curl operations can be interchanged:

∇× (∇2A) = ∇2(∇×A) = ∇2B.

Similarly, the order of the operations curl and ∂/∂t can be interchanged:

∇× 1
c2
∂2A

∂t2
= 1
c2

∂2

∂t2
(∇×A) = 1

c2
∂2B

∂t2
.

Using these results, we get the following differential equation for B:

∇2B − 1
c2
∂2B

∂t2
= 0. (20.10)

So each component of the magnetic field B satisfies the three-dimensional wave
equation. Similarly, using the fact that E = −∇φ− ∂A/∂t, it follows that the
electric field E in free space also satisfies the three-dimensional wave equation:

∇2E − 1
c2
∂2E

∂t2
= 0. (20.11)

All of our electromagnetic fields satisfy the same wave equation, Eq. (20.8).
We might well ask: What is the most general solution to this equation? However,
rather than tackling that difficult question right away, we will look first at what
can be said in general about those solutions in which nothing varies in y and z.
(Always do an easy case first so that you can see what is going to happen, and then
you can go to the more complicated cases.) Let’s suppose that the magnitudes of
the fields depend only upon x—that there are no variations of the fields with y
and z. We are, of course, considering plane waves again. We should expect to get
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results something like those in the previous section. In fact, we will find precisely
the same answers. You may ask: “Why do it all over again?” It is important to
do it again, first, because we did not show that the waves we found were the most
general solutions for plane waves, and second, because we found the fields only
from a very particular kind of current source. We would like to ask now: What
is the most general kind of one-dimensional wave there can be in free space? We
cannot find that by seeing what happens for this or that particular source, but
must work with greater generality. Also we are going to work this time with
differential equations instead of with integral forms. Although we will get the
same results, it is a way of practicing back and forth to show that it doesn’t make
any difference which way you go. You should know how to do things every which
way, because when you get a hard problem, you will often find that only one of
the various ways is tractable.

We could consider directly the solution of the wave equation for some elec-
tromagnetic quantity. Instead, we want to start right from the beginning with
Maxwell’s equations in free space so that you can see their close relationship to
the electromagnetic waves. So we start with the equations in (20.1), setting the
charges and currents equal to zero. They become

I. ∇ ·E = 0

II. ∇×E = −∂B
∂t

III. ∇ ·B = 0

IV. c2∇×B = ∂E

∂t

(20.12)

We write the first equation out in components:

∇ ·E = ∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

= 0. (20.13)

We are assuming that there are no variations with y and z, so the last two terms
are zero. This equation then tells us that

∂Ex
∂x

= 0. (20.14)
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Its solution is that Ex, the component of the electric field in the x-direction,
is a constant in space. If you look at IV in (20.12), supposing no B-variation
in y and z either, you can see that Ex is also constant in time. Such a field
could be the steady dc field from some charged condenser plates a long distance
away. We are not interested now in such an uninteresting static field; we are at
the moment interested only in dynamically varying fields. For dynamic fields,
Ex = 0.

We have then the important result that for the propagation of plane waves in
any direction, the electric field must be at right angles to the direction of propa-
gation. It can, of course, still vary in a complicated way with the coordinate x.

The transverse E-field can always be resolved into two components, say the
y-component and the z-component. So let’s first work out a case in which the
electric field has only one transverse component. We’ll take first an electric field
that is always in the y-direction, with zero z-component. Evidently, if we solve
this problem we can also solve for the case where the electric field is always in the
z-direction. The general solution can always be expressed as the superposition of
two such fields.

How easy our equations now get. The only component of the electric field
that is not zero is Ey, and all derivatives—except those with respect to x—are
zero. The rest of Maxwell’s equations then become quite simple.

Let’s look next at the second of Maxwell’s equations [II of Eq. (20.12)]. Writing
out the components of the curl E, we have

(∇×E)x = ∂Ez
∂y
− ∂Ey

∂z
= 0,

(∇×E)y = ∂Ex
∂z
− ∂Ez

∂x
= 0,

(∇×E)z = ∂Ey
∂x
− ∂Ex

∂y
= ∂Ey

∂x
.

The x-component of ∇ × E is zero because the derivatives with respect to y
and z are zero. The y-component is also zero; the first term is zero because
the derivative with respect to z is zero, and the second term is zero because
Ez is zero. The only components of the curl of E that is not zero is the z-
component, which is equal to ∂Ey/∂x. Setting the three components of ∇ ×
E equal to the corresponding components of −∂B/∂t, we can conclude the
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following:

∂Bx
∂t

= 0, ∂By
∂t

= 0. (20.15)

∂Bz
∂t

= −∂Ey
∂x

. (20.16)

Since the x-component of the magnetic field and the y-component of the mag-
netic field both have zero time derivatives, these two components are just con-
stant fields and correspond to the magnetostatic solutions we found earlier.
Somebody may have left some permanent magnets near where the waves are
propagating. We will ignore these constant fields and set Bx and By equal to
zero.

Incidentally, we would already have concluded that the x-component of B
should be zero for a different reason. Since the divergence of B is zero (from the
third Maxwell equation), applying the same arguments we used above for the
electric field, we would conclude that the longitudinal component of the magnetic
field can have no variation with x. Since we are ignoring such uniform fields in
our wave solutions, we would have set Bx equal to zero. In plane electromagnetic
waves the B-field, as well as the E-field, must be directed at right angles to the
direction of propagation.

Equation (20.16) gives us the additional proposition that if the electric field
has only a y-component, the magnetic field will have only a z-component. So E
and B are at right angles to each other. This is exactly what happened in the
special wave we have already considered.

We are now ready to use the last of Maxwell’s equations for free space [IV of
Eq. (20.12)]. Writing out the components, we have

c2(∇×B)x = c2
∂Bz
∂y
− c2 ∂By

∂z
= ∂Ex

∂t
,

c2(∇×B)y = c2
∂Bx
∂z
− c2 ∂Bz

∂x
= ∂Ey

∂t
,

c2(∇×B)z = c2
∂By
∂x
− c2 ∂Bx

∂y
= ∂Ez

∂t
.

(20.17)

Of the six derivatives of the components of B, only the term ∂Bz/∂x is not equal
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to zero. So the three equations give us simply

− c2 ∂Bz
∂x

= ∂Ey
∂t

. (20.18)

The result of all our work is that only one component each of the electric and
magnetic fields is not zero, and that these components must satisfy Eqs. (20.16)
and (20.18). The two equations can be combined into one if we differentiate the
first with respect to x and the second with respect to t; the left-hand sides of
the two equations will then be the same (except for the factor c2). So we find
that Ey satisfies the equation

∂2Ey
∂x2 −

1
c2
∂2Ey
∂t2

= 0. (20.19)

We have seen the same differential equation before, when we studied the propa-
gation of sound. It is the wave equation for one-dimensional waves.

You should note that in the process of our derivation we have found something
more than is contained in Eq. (20.11). Maxwell’s equations have given us the
further information that electromagnetic waves have field components only at
right angles to the direction of the wave propagation.

Let’s review what we know about the solutions of the one-dimensional wave
equation. If any quantity ψ satisfies the one-dimensional wave equation

∂2ψ

∂x2 −
1
c2
∂2ψ

∂t2
= 0, (20.20)

then one possible solution is a function ψ(x, t) of the form

ψ(x, t) = f(x− ct), (20.21)

that is, some function of the single variable (x − ct). The function f(x − ct)
represents a “rigid” pattern in x which travels toward positive x at the speed c
(see Fig. 20-4). For example, if the function f has a maximum when its argument
is zero, then for t = 0 the maximum of ψ, will occur at x = 0. At some later
time, say t = 10, ψ will have its maximum at x = 10c. As time goes on, the
maximum moves toward positive x at the speed c.

Sometimes it is more convenient to say that a solution of the one-dimensional
wave equation is a function of (t− x/c). However, this is saying the same thing,
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Fig. 20-4. The function f (x − ct) represents a constant “shape” that
travels toward positive x with the speed c.

because any function of (t− x/c) is also a function of (x− ct):

F (t− x/c) = F

[
−x− ct

c

]
= f(x− ct).

Let’s show that f(x− ct) is indeed a solution of the wave equation. Since it is
a function of only one variable—the variable (x− ct)—we will let f ′ represent the
derivative of f with respect to its variable and f ′′ represent the second derivative
of f . Differentiating Eq. (20.21) with respect to x, we have

∂ψ

∂x
= f ′(x− ct),

since the derivative of (x− ct) with respect to x is 1. The second derivative of ψ,
with respect to x is clearly

∂2ψ

∂x2 = f ′′(x− ct). (20.22)

Taking derivatives of ψ with respect to t, we find

∂ψ

∂t
= f ′(x− ct)(−c),

∂2ψ

∂t2
= +c2f ′′(x− ct). (20.23)

We see that ψ does indeed satisfy the one-dimensional wave equation.
You may be wondering: “If I have the wave equation, how do I know that I

should take f(x−ct) as a solution? I don’t like this backward method. Isn’t there
some forward way to find the solution?” Well, one good forward way is to know
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the solution. It is possible to “cook up” an apparently forward mathematical
argument, especially because we know what the solution is supposed to be, but
with an equation as simple as this we don’t have to play games. Soon you will get
so that when you see Eq. (20.20), you nearly simultaneously see ψ = f(x− xt)
as a solution. (Just as now when you see the integral of x2 dx, you know right
away that the answer is x3/3.)

Actually you should also see a little more. Not only is any function of (x− ct)
a solution, but any function of (x+ ct) is also a solution. Since the wave equation
contains only c2, changing the sign of c makes no difference. In fact, the most
general solution of the one-dimensional wave equation is the sum of two arbitrary
functions, one of (x− ct) and the other of (x+ ct):

ψ = f(x− ct) + g(x+ ct). (20.24)

The first term represents a wave travelling toward positive x, and the second
term an arbitrary wave travelling toward negative x. The general solution is the
superposition of two such waves both existing at the same time.

We will leave the following amusing question for you to think about. Take a
function ψ of the following form:

ψ = cos kx cos kct.

This equation isn’t in the form of a function of (x− ct) or of (x+ ct). Yet you can easily
show that this function is a solution of the wave equation by direct substitution into
Eq. (20.20). How can we then say that the general solution is of the form of Eq. (20.24)?

Applying our conclusions about the solution of the wave equation to the
y-component of the electric field, Ey, we conclude that Ey can vary with x in any
arbitrary fashion. However, the fields which do exist can always be considered
as the sum of two patterns. One wave is sailing through space in one direction
with speed c, with an associated magnetic field perpendicular to the electric
field; another wave is travelling in the opposite direction with the same speed.
Such waves correspond to the electromagnetic waves that we know about—light,
radiowaves, infrared radiation, ultraviolet radiation, x-rays, and so on. We have
already discussed the radiation of light in great detail in Vol. I. Since everything
we learned there applies to any electromagnetic wave, we don’t need to consider
in great detail here the behavior of these waves.
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We should perhaps make a few further remarks on the question of the polar-
ization of the electromagnetic waves. In our solution we chose to consider the
special case in which the electric field has only a y-component. There is clearly
another solution for waves travelling in the plus or minus x-direction, with an
electric field which has only a z-component. Since Maxwell’s equations are linear,
the general solution for one-dimensional waves propagating in the x-direction is
the sum of waves of Ey and waves of Ez. This general solution is summarized in
the following equations:

E = (0, Ey, Ez)

Ey = f(x− ct) + g(x+ ct)

Ez = F (x− ct) +G(x+ ct)

B = (0, By, Bz)

cBz = f(x− ct)− g(x+ ct)

cBy = −F (x− ct) +G(x+ ct).

(20.25)

Such electromagnetic waves have an E-vector whose direction is not constant but
which gyrates around in some arbitrary way in the yz-plane. At every point the
magnetic field is always perpendicular to the electric field and to the direction of
propagation.

If there are only waves travelling in one direction, say the positive x-direction,
there is a simple rule which tells the relative orientation of the electric and
magnetic fields. The rule is that the cross product E ×B—which is, of course,
a vector at right angles to both E and B—points in the direction in which the
wave is travelling. If E is rotated into B by a right-hand screw, the screw points
in the direction of the wave velocity. (We shall see later that the vector E ×B
has a special physical significance: it is a vector which describes the flow of energy
in an electromagnetic field.)

20-2 Three-dimensional waves
We want now to turn to the subject of three-dimensional waves. We have

already seen that the vector E satisfies the wave equation. It is also easy to arrive
at the same conclusion by arguing directly from Maxwell’s equations. Suppose
we start with the equation

∇×E = −∂B
∂t
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and take the curl of both sides:

∇× (∇×E) = − ∂

∂t
(∇×B). (20.26)

You will remember that the curl of the curl of any vector can be written as the
sum of two terms, one involving the divergence and the other the Laplacian,

∇× (∇×E) =∇(∇ ·E)−∇2E.

In free space, however, the divergence of E is zero, so only the Laplacian term
remains. Also, from the fourth of Maxwell’s equations in free space [Eq. (20.12)]
the time derivative of c2∇×B is the second derivative of E with respect to t:

c2
∂

∂t
(∇×B) = ∂2E

∂t2
.

Equation (20.26) then becomes

∇2E = 1
c2
∂2E

∂t2
,

which is the three-dimensional wave equation. Written out in all its glory, this
equation is, of course,

∂2E

∂x2 + ∂2E

∂y2 + ∂2E

∂z2 −
1
c2
∂2E

∂t2
= 0. (20.27)

How shall we find the general wave solution? The answer is that all the
solutions of the three-dimensional wave equation can be represented as a superpo-
sition of the one-dimensional solutions we have already found. We obtained the
equation for waves which move in the x-direction by supposing that the field did
not depend on y and z. Obviously, there are other solutions in which the fields
do not depend on x and z, representing waves going in the y-direction. Then
there are solutions which do not depend on x and y, representing waves travelling
in the z-direction. Or in general, since we have written our equations in vector
form, the three-dimensional wave equation can have solutions which are plane
waves moving in any direction at all. Again, since the equations are linear, we
may have simultaneously as many plane waves as we wish, travelling in as many
different directions. Thus the most general solution of the three-dimensional
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wave equation is a superposition of all sorts of plane waves moving in all sorts of
directions.

Try to imagine what the electric and magnetic fields look like at present in
the space in this lecture room. First of all, there is a steady magnetic field;
it comes from the currents in the interior of the earth—that is, the earth’s
steady magnetic field. Then there are some irregular, nearly static electric fields
produced perhaps by electric charges generated by friction as various people move
about in their chairs and rub their coat sleeves against the chair arms. Then
there are other magnetic fields produced by oscillating currents in the electrical
wiring—fields which vary at a frequency of 60 cycles per second, in synchronism
with the generator at Boulder Dam. But more interesting are the electric and
magnetic fields varying at much higher frequencies. For instance, as light travels
from window to floor and wall to wall, there are little wiggles of the electric and
magnetic fields moving along at 186,000 miles per second. Then there are also
infrared waves travelling from the warm foreheads to the cold blackboard. And
we have forgotten the ultraviolet light, the x-rays, and the radiowaves travelling
through the room.

Flying across the room are electromagnetic waves which carry music of a jazz
band. There are waves modulated by a series of impulses representing pictures
of events going on in other parts of the world, or of imaginary aspirins dissolving
in imaginary stomachs. To demonstrate the reality of these waves it is only
necessary to turn on electronic equipment that converts these waves into pictures
and sounds.

If we go into further detail to analyze even the smallest wiggles, there are tiny
electromagnetic waves that have come into the room from enormous distances.
There are now tiny oscillations of the electric field, whose crests are separated by
a distance of one foot, that have come from millions of miles away, transmitted to
the earth from the Mariner II space craft which has just passed Venus. Its signals
carry summaries of information it has picked up about the planets (information
obtained from electromagnetic waves that travelled from the planet to the space
craft).

There are very tiny wiggles of the electric and magnetic fields that are waves
which originated billions of light years away—from galaxies in the remotest
corners of the universe. That this is true has been found by “filling the room with
wires”—by building antennas as large as this room. Such radiowaves have been
detected from places in space beyond the range of the greatest optical telescopes.
Even they, the optical telescopes, are simply gatherers of electromagnetic waves.
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What we call the stars are only inferences, inferences drawn from the only physical
reality we have yet gotten from them—from a careful study of the unendingly
complex undulations of the electric and magnetic fields reaching us on earth.

There is, of course, more: the fields produced by lightning miles away, the
fields of the charged cosmic ray particles as they zip through the room, and more,
and more. What a complicated thing is the electric field in the space around
you! Yet it always satisfies the three-dimensional wave equation.

20-3 Scientific imagination

I have asked you to imagine these electric and magnetic fields. What do
you do? Do you know how? How do I imagine the electric and magnetic field?
What do I actually see? What are the demands of scientific imagination? Is
it any different from trying to imagine that the room is full of invisible angels?
No, it is not like imagining invisible angels. It requires a much higher degree of
imagination to understand the electromagnetic field than to understand invisible
angels. Why? Because to make invisible angels understandable, all I have to do is
to alter their properties a little bit—I make them slightly visible, and then I can
see the shapes of their wings, and bodies, and halos. Once I succeed in imagining
a visible angel, the abstraction required—which is to take almost invisible angels
and imagine them completely invisible—is relatively easy. So you say, “Professor,
please give me an approximate description of the electromagnetic waves, even
though it may be slightly inaccurate, so that I too can see them as well as I
can see almost invisible angels. Then I will modify the picture to the necessary
abstraction.”

I’m sorry I can’t do that for you. I don’t know how. I have no picture of
this electromagnetic field that is in any sense accurate. I have known about
the electromagnetic field a long time—I was in the same position 25 years ago
that you are now, and I have had 25 years more of experience thinking about
these wiggling waves. When I start describing the magnetic field moving through
space, I speak of the E- and B-fields and wave my arms and you may imagine
that I can see them. I’ll tell you what I see. I see some kind of vague shadowy,
wiggling lines—here and there is an E and B written on them somehow, and
perhaps some of the lines have arrows on them—an arrow here or there which
disappears when I look too closely at it. When I talk about the fields swishing
through space, I have a terrible confusion between the symbols I use to describe
the objects and the objects themselves. I cannot really make a picture that is
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even nearly like the true waves. So if you have some difficulty in making such a
picture, you should not be worried that your difficulty is unusual.

Our science makes terrific demands on the imagination. The degree of
imagination that is required is much more extreme than that required for some
of the ancient ideas. The modern ideas are much harder to imagine. We use a
lot of tools, though. We use mathematical equations and rules, and make a lot of
pictures. What I realize now is that when I talk about the electromagnetic field in
space, I see some kind of a superposition of all of the diagrams which I’ve ever seen
drawn about them. I don’t see little bundles of field lines running about because
it worries me that if I ran at a different speed the bundles would disappear,
I don’t even always see the electric and magnetic fields because sometimes I
think I should have made a picture with the vector potential and the scalar
potential, for those were perhaps the more physically significant things that were
wiggling.

Perhaps the only hope, you say, is to take a mathematical view. Now what is
a mathematical view? From a mathematical view, there is an electric field vector
and a magnetic field vector at every point in space; that is, there are six numbers
associated with every point. Can you imagine six numbers associated with each
point in space? That’s too hard. Can you imagine even one number associated
with every point? I cannot! I can imagine such a thing as the temperature at
every point in space. That seems to be understandable. There is a hotness and
coldness that varies from place to place. But I honestly do not understand the
idea of a number at every point.

So perhaps we should put the question: Can we represent the electric field
by something more like a temperature, say like the displacement of a piece of
jello? Suppose that we were to begin by imagining that the world was filled with
thin jello and that the fields represented some distortion—say a stretching or
twisting—of the jello. Then we could visualize the field. After we “see” what it is
like we could abstract the jello away. For many years that’s what people tried to
do. Maxwell, Ampère, Faraday, and others tried to understand electromagnetism
this way. (Sometimes they called the abstract jello “ether.”) But it turned out
that the attempt to imagine the electromagnetic field in that way was really
standing in the way of progress. We are unfortunately limited to abstractions, to
using instruments to detect the field, to using mathematical symbols to describe
the field, etc. But nevertheless, in some sense the fields are real, because after we
are all finished fiddling around with mathematical equations—with or without
making pictures and drawings or trying to visualize the thing—we can still make
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the instruments detect the signals from Mariner II and find out about galaxies a
billion miles away, and so on.

The whole question of imagination in science is often misunderstood by people
in other disciplines. They try to test our imagination in the following way. They
say, “Here is a picture of some people in a situation. What do you imagine will
happen next?” When we say, “I can’t imagine,” they may think we have a weak
imagination. They overlook the fact that whatever we are allowed to imagine in
science must be consistent with everything else we know: that the electric fields
and the waves we talk about are not just some happy thoughts which we are
free to make as we wish, but ideas which must be consistent with all the laws
of physics we know. We can’t allow ourselves to seriously imagine things which
are obviously in contradiction to the known laws of nature. And so our kind of
imagination is quite a difficult game. One has to have the imagination to think
of something that has never been seen before, never been heard of before. At
the same time the thoughts are restricted in a strait jacket, so to speak, limited
by the conditions that come from our knowledge of the way nature really is.
The problem of creating something which is new, but which is consistent with
everything which has been seen before, is one of extreme difficulty.

While I’m on this subject I want to talk about whether it will ever be possible
to imagine beauty that we can’t see. It is an interesting question. When we look
at a rainbow, it looks beautiful to us. Everybody says, “Ooh, a rainbow.” (You
see how scientific I am. I am afraid to say something is beautiful unless I have an
experimental way of defining it.) But how would we describe a rainbow if we were
blind? We are blind when we measure the infrared reflection coefficient of sodium
chloride, or when we talk about the frequency of the waves that are coming from
some galaxy that we can’t see—we make a diagram, we make a plot. For instance,
for the rainbow, such a plot would be the intensity of radiation vs. wavelength mea-
sured with a spectrophotometer for each direction in the sky. Generally, such mea-
surements would give a curve that was rather flat. Then some day, someone would
discover that for certain conditions of the weather, and at certain angles in the sky,
the spectrum of intensity as a function of wavelength would behave strangely; it
would have a bump. As the angle of the instrument was varied only a little bit, the
maximum of the bump would move from one wavelength to another. Then one day
the physical review of the blind men might publish a technical article with the title
“The Intensity of Radiation as a Function of Angle under Certain Conditions of the
Weather.” In this article there might appear a graph such as the one in Fig. 20-5.
The author would perhaps remark that at the larger angles there was more

20-18



Wavelength

In
te
n
si
ty

θ
=
40
◦ θ

=
41
◦

θ
=
42
◦

Fig. 20-5. The intensity of electromagnetic waves as a function of
wavelength for three angles (measured from the direction opposite the
sun), observed only with certain meteorological conditions.

radiation at long wavelengths, whereas for the smaller angles the maximum in the
radiation came at shorter wavelengths. (From our point of view, we would say that
the light at 40◦ is predominantly green and the light at 42◦ is predominantly red.)

Now do we find the graph of Fig. 20-5 beautiful? It contains much more detail
than we apprehend when we look at a rainbow, because our eyes cannot see the
exact details in the shape of a spectrum. The eye, however, finds the rainbow
beautiful. Do we have enough imagination to see in the spectral curves the same
beauty we see when we look directly at the rainbow? I don’t know.

But suppose I have a graph of the reflection coefficient of a sodium chloride
crystal as a function of wavelength in the infrared, and also as a function of angle.
I would have a representation of how it would look to my eyes if they could see in
the infrared—perhaps some glowing, shiny “green,” mixed with reflections from
the surface in a “metallic red.” That would be a beautiful thing, but I don’t know
whether I can ever look at a graph of the reflection coefficient of NaCl measured
with some instrument and say that it has the same beauty.

On the other hand, even if we cannot see beauty in particular measured
results, we can already claim to see a certain beauty in the equations which
describe general physical laws. For example, in the wave equation (20.9), there’s
something nice about the regularity of the appearance of the x, the y, the z, and
the t. And this nice symmetry in appearance of the x, y, z, and t suggests to
the mind still a greater beauty which has to do with the four dimensions, the
possibility that space has four-dimensional symmetry, the possibility of analyzing
that and the developments of the special theory of relativity. So there is plenty
of intellectual beauty associated with the equations.
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20-4 Spherical waves

We have seen that there are solutions of the wave equation which correspond
to plane waves, and that any electromagnetic wave can be described as a su-
perposition of many plane waves. In certain special cases, however, it is more
convenient to describe the wave field in a different mathematical form. We would
like to discuss now the theory of spherical waves—waves which correspond to
spherical surfaces that are spreading out from some center. When you drop a
stone into a lake, the ripples spread out in circular waves on the surface—they
are two-dimensional waves. A spherical wave is a similar thing except that it
spreads out in three dimensions.

Before we start describing spherical waves, we need a little mathematics.
Suppose we have a function that depends only on the radial distance r from a
certain origin—in other words, a function that is spherically symmetric. Let’s
call the function ψ(r), where by r we mean

r =
√
x2 + y2 + z2,

the radial distance from the origin. In order to find out what functions ψ(r)
satisfy the wave equation, we will need an expression for the Laplacian of ψ. So
we want to find the sum of the second derivatives of ψ with respect to x, y, and z.
We will use the notation that ψ′(r) represents the derivative of ψ with respect
to r and ψ′′(r) represents the second derivative of ψ with respect to r.

First, we find the derivatives with respect to x. The first derivative is
∂ψ(r)
∂x

= ψ′(r) ∂r
∂x
.

The second derivative of ψ with respect to x is

∂2ψ

∂x2 = ψ′′
(
∂r

∂x

)2
+ ψ′

∂2r

∂x2 .

We can evaluate the partial derivatives of r with respect to x from

∂r

∂x
= x

r
,

∂2r

∂x2 = 1
r

(
1− x2

r2

)
.

So the second derivative of ψ with respect to x is

∂2ψ

∂x2 = x2

r2 ψ
′′ + 1

r

(
1− x2

r2

)
ψ′. (20.28)
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Likewise,
∂2ψ

∂y2 = y2

r2 ψ
′′ + 1

r

(
1− y2

r2

)
ψ′, (20.29)

∂2ψ

∂z2 = z2

r2 ψ
′′ + 1

r

(
1− z2

r2

)
ψ′. (20.30)

The Laplacian is the sum of these three derivatives. Remembering that
x2 + y2 + z2 = r2, we get

∇2ψ(r) = ψ′′(r) + 2
r
ψ′(r). (20.31)

It is often more convenient to write this equation in the following form:

∇2ψ(r) = 1
r

d2

dr2 (rψ). (20.32)

If you carry out the differentiation indicated in Eq. (20.32), you will see that the
right-hand side is the same as in Eq. (20.31).

If we wish to consider spherically symmetric fields which can propagate as
spherical waves, our field quantity must be a function of both r and t. Suppose
we ask, then, what functions ψ(r, t) are solutions of the three-dimensional wave
equation

∇2ψ(r, t)− 1
c2

∂2

∂t2
ψ(r, t) = 0. (20.33)

Since ψ(r, t) depends only on the spatial coordinates through r, we can use the
equation for the Laplacian we found above, Eq. (20.32). To be precise, however,
since ψ is also a function of t, we should write the derivatives with respect to r
as partial derivatives. Then the wave equation becomes

1
r

∂2

∂r2 (rψ)− 1
c2

∂2

∂t2
ψ = 0.

We must now solve this equation, which appears to be much more complicated
than the plane wave case. But notice that if we multiply this equation by r, we
get

∂2

∂r2 (rψ)− 1
c2

∂2

∂t2
(rψ) = 0. (20.34)
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This equation tells us that the function rψ satisfies the one-dimensional wave
equation in the variable r. Using the general principle which we have emphasized
so often, that the same equations always have the same solutions, we know that
if rψ is a function only of (r− ct) then it will be a solution of Eq. (20.34). So we
know that spherical waves must have the form

rψ(r, t) = f(r − ct).

Or, as we have seen before, we can equally well say that rψ can have the form

rψ = f(t− r/c).

Dividing by r, we find that the field quantity ψ (whatever it may be) has the
following form:

ψ = f(t− r/c)
r

. (20.35)

Such a function represents a general spherical wave travelling outward from the
origin at the speed c. If we forget about the r in the denominator for a moment,
the amplitude of the wave as a function of the distance from the origin at a
given time has a certain shape that travels outward at the speed c. The factor r
in the denominator, however, says that the amplitude of the wave decreases in
proportion to 1/r as the wave propagates. In other words, unlike a plane wave
in which the amplitude remains constant as the wave runs along, in a spherical
wave the amplitude steadily decreases, as shown in Fig. 20-6. This effect is easy
to understand from a simple physical argument.

We know that the energy density in a wave depends on the square of the wave
amplitude. As the wave spreads, its energy is spread over larger and larger areas
proportional to the radial distance squared. If the total energy is conserved, the
energy density must fall as 1/r2, and the amplitude of the wave must decrease
as 1/r. So Eq. (20.35) is the “reasonable” form for a spherical wave.

We have disregarded the second possible solution to the one-dimensional wave
equation:

rψ = g(t+ r/c),
or

ψ = g(t+ r/c)
r

.

This also represents a spherical wave, but one which travels inward from large r
toward the origin.
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Fig. 20-6. A spherical wave ψ = f (t − r/c)/r . (a) ψ as a function
of r for t = t1 and the same wave for the later time t2. (b) ψ as a
function of t for r = r1 and the same wave seen at r2.

We are now going to make a special assumption. We say, without any
demonstration whatever, that the waves generated by a source are only the waves
which go outward. Since we know that waves are caused by the motion of charges,
we want to think that the waves proceed outward from the charges. It would be
rather strange to imagine that before charges were set in motion, a spherical wave
started out from infinity and arrived at the charges just at the time they began
to move. That is a possible solution, but experience shows that when charges
are accelerated the waves travel outward from the charges. Although Maxwell’s
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equations would allow either possibility, we will put in an additional fact—based
on experience—that only the outgoing wave solution makes “physical sense.”

We should remark, however, that there is an interesting consequence to this
additional assumption: we are removing the symmetry with respect to time that
exists in Maxwell’s equations. The original equations for E and B, and also
the wave equations we derived from them, have the property that if we change
the sign of t, the equation is unchanged. These equations say that for every
solution corresponding to a wave going in one direction there is an equally valid
solution for a wave travelling in the opposite direction. Our statement that we will
consider only the outgoing spherical waves is an important additional assumption.
(A formulation of electrodynamics in which this additional assumption is avoided
has been carefully studied. Surprisingly, in many circumstances it does not lead
to physically absurd conclusions, but it would take us too far astray to discuss
these ideas just now. We will talk about them a little more in Chapter 28.)

We must mention another important point. In our solution for an outgoing
wave, Eq. (20.35), the function ψ is infinite at the origin. That is somewhat
peculiar. We would like to have a wave solution which is smooth everywhere.
Our solution must represent physically a situation in which there is some source
at the origin. In other words, we have inadvertently made a mistake. We have
not solved the free wave equation (20.33) everywhere; we have solved Eq. (20.33)
with zero on the right everywhere, except at the origin. Our mistake crept in
because some of the steps in our derivation are not “legal” when r = 0.

Let’s show that it is easy to make the same kind of mistake in an electrostatic
problem. Suppose we want a solution of the equation for an electrostatic potential
in free space, ∇2φ = 0. The Laplacian is equal to zero, because we are assuming
that there are no charges anywhere. But what about a spherically symmetric
solution to this equation—that is, some function φ that depends only on r. Using
the formula of Eq. (20.32) for the Laplacian, we have

1
r

d2

dr2 (rφ) = 0.

Multiplying this equation by r, we have an equation which is readily integrated:

d2

dr2 (rφ) = 0.

If we integrate once with respect to r, we find that the first derivative of rφ is a

20-24



constant, which we may call a:

d

dr
(rφ) = a.

Integrating again, we find that rφ is of the form

rφ = ar + b,

where b is another constant of integration. So we have found that the following φ
is a solution for the electrostatic potential in free space:

φ = a+ b

r
.

Something is evidently wrong. In the region where there are no electric
charges, we know the solution for the electrostatic potential: the potential is
everywhere a constant. That corresponds to the first term in our solution. But
we also have the second term, which says that there is a contribution to the
potential that varies as one over the distance from the origin. We know, however,
that such a potential corresponds to a point charge at the origin. So, although
we thought we were solving for the potential in free space, our solution also gives
the field for a point source at the origin. Do you see the similarity between what
happened now and what happened when we solved for a spherically symmetric
solution to the wave equation? If there were really no charges or currents at
the origin, there would not be spherical outgoing waves. The spherical waves
must, of course, be produced by sources at the origin. In the next chapter we
will investigate the connection between the outgoing electromagnetic waves and
the currents and voltages which produce them.
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21

Solutions of Maxwell’s Equations with
Currents and Charges

Review: Chapter 28, Vol. I, Electromagnetic Radiation
Chapter 31, Vol. I, The Origin of the Refractive Index
Chapter 34, Vol. I, Relativistic Effects in Radiation

21-1 Light and electromagnetic waves

We saw in the last chapter that among their solutions, Maxwell’s equations
have waves of electricity and magnetism. These waves correspond to the phe-
nomena of radio, light, x-rays, and so on, depending on the wavelength. We
have already studied light in great detail in Vol. I. In this chapter we want to
tie together the two subjects—we want to show that Maxwell’s equations can
indeed form the base for our earlier treatment of the phenomena of light.

When we studied light, we began by writing down equations for the electric
and magnetic fields produced by a charge which moves in any arbitrary way.
Those equations were

E = q

4πε0

[
er′

r′2
+ r′

c

d

dt

(
er′

r′2

)
+ 1
c2

d2

dt2
er′

]
(21.1)

and
cB = er′ ×E.

[See Eqs. (28.3) and (28.4), Vol. I. As explained below, the signs here are the
negatives of the old ones.]

If a charge moves in an arbitrary way, the electric field we would find now at
some point depends only on the position and motion of the charge not now, but
at an earlier time—at an instant which is earlier by the time it would take light,
going at the speed c, to travel the distance r′ from the charge to the field point.
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In other words, if we want the electric field at point (1) at the time t, we must
calculate the location (2′) of the charge and its motion at the time (t − r′/c),
where r′ is the distance to the point (1) from the position of the charge (2′) at
the time (t− r′/c). The prime is to remind you that r′ is the so-called “retarded
distance” from the point (2′) to the point (1), and not the actual distance between
point (2), the position of the charge at the time t, and the field point (1) (see
Fig. 21-1). Note that we are using a different convention now for the direction of
the unit vector er. In Chapters 28 and 34 of Vol. I it was convenient to take r
(and hence er) pointing toward the source. Now we are following the definition
we took for Coulomb’s law, in which r is directed from the charge, at (2), toward
the field point at (1). The only difference, of course, is that our new r (and er)
are the negatives of the old ones.

(1)

(2′)

(2)

q

q

r ′

r

er ′

v

Position at
t − r ′/c

Position at t

Fig. 21-1. The fields at (1) at the time t depend on the position (2′)
occupied by the charge q at the time (t − r ′/c).

We have also seen that if the velocity v of a charge is always much less than c,
and if we consider only points at large distances from the charge, so that only
the last term of Eq. (21.1) is important, the fields can also be written as

E = q

4πε0c2r′

[
acceleration of the charge at (t− r′/c)
projected at right angles to r′

]
(21.1′)

and
cB = er′ ×E.

Let’s look at what the complete equation, Eq. (21.1), says in a little more
detail. The vector er′ is the unit vector to point (1) from the retarded position (2′).
The first term, then, is what we would expect for the Coulomb field of the charge
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at its retarded position—we may call this “the retarded Coulomb field.” The
electric field depends inversely on the square of the distance and is directed away
from the retarded position of the charge (that is, in the direction of er′).

But that is only the first term. The other terms tell us that the laws of
electricity do not say that all the fields are the same as the static ones, but just
retarded (which is what people sometimes like to say). To the “retarded Coulomb
field” we must add the other two terms. The second term says that there is a
“correction” to the retarded Coulomb field which is the rate of change of the
retarded Coulomb field multiplied by r′/c, the retardation delay. In a way of
speaking, this term tends to compensate for the retardation in the first term. The
first two terms correspond to computing the “retarded Coulomb field” and then
extrapolating it toward the future by the amount r′/c, that is, right up to the
time t! The extrapolation is linear, as if we were to assume that the “retarded
Coulomb field” would continue to change at the rate computed for the charge
at the point (2′). If the field is changing slowly, the effect of the retardation is
almost completely removed by the correction term, and the two terms together
give us an electric field that is the “instantaneous Coulomb field”—that is, the
Coulomb field of the charge at the point (2)—to a very good approximation.

Finally, there is a third term in Eq. (21.1) which is the second derivative of
the unit vector er′ . For our study of the phenomena of light, we made use of
the fact that far away from the charge the first two terms went inversely as the
square of the distance and, for large distances, became very weak in comparison
to the last term, which decreases as 1/r. So we concentrated entirely on the
last term, and we showed that it is (again, for large distances) proportional to
the component of the acceleration of the charge at right angles to the line of
sight. (Also, for most of our work in Vol. I, we took the case in which the charges
were moving nonrelativistically. We considered the relativistic effects in only one
chapter, Chapter 34.)

Now we should try to connect the two things together. We have the Maxwell
equations, and we have Eq. (21.1) for the field of a point charge. We should
certainly ask whether they are equivalent. If we can deduce Eq. (21.1) from
Maxwell’s equations, we will really understand the connection between light and
electromagnetism. To make this connection is the main purpose of this chapter.

It turns out that we won’t quite make it—that the mathematical details get
too complicated for us to carry through in all their gory details. But we will come
close enough so that you should easily see how the connection could be made.
The missing pieces will only be in the mathematical details. Some of you may
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find the mathematics in this chapter rather complicated, and you may not wish
to follow the argument very closely. We think it is important, however, to make
the connection between what you have learned earlier and what you are learning
now, or at least to indicate how such a connection can be made. You will notice,
if you look over the earlier chapters, that whenever we have taken a statement as
a starting point for a discussion, we have carefully explained whether it is a new
“assumption” that is a “basic law,” or whether it can ultimately be deduced from
some other laws. We owe it to you in the spirit of these lectures to make the
connection between light and Maxwell’s equations. If it gets difficult in places,
well, that’s life—there is no other way.

21-2 Spherical waves from a point source

In Chapter 18 we found that Maxwell’s equations could be solved by letting

E = −∇φ− ∂A

∂t
(21.2)

and
B =∇×A, (21.3)

where φ and A must then be solutions of the equations

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
(21.4)

and

∇2A− 1
c2
∂2A

∂t2
= − j

ε0c2
, (21.5)

and must also satisfy the condition that

∇ ·A = − 1
c2
∂φ

∂t
. (21.6)

Now we will find the solution of Eqs. (21.4) and (21.5). To do that we have
to find the solution ψ, of the equation

∇2ψ − 1
c2
∂2ψ

∂t2
= −s, (21.7)
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where s, which we call the source, is known. Of course, s corresponds to ρ/ε0
and ψ to φ for Eq. (21.4), or s is jx/ε0c2 if ψ is Ax, etc., but we want to solve
Eq. (21.7) as a mathematical problem no matter what ψ and s are physically.

In places where ρ and j are zero—in what we have called “free” space—the
potentials φ and A, and the fields E and B, all satisfy the three-dimensional
wave equation without sources, whose mathematical form is

∇2ψ − 1
c2
∂2ψ

∂t2
= 0. (21.8)

In Chapter 20 we saw that solutions of this equation can represent waves of
various kinds: plane waves in the x-direction, ψ = f(t− x/c); plane waves in the
y- or z-direction, or in any other direction; or spherical waves of the form

ψ(x, y, z, t) = f(t− r/c)
r

. (21.9)

(The solutions can be written in still other ways, for example cylindrical waves
that spread out from an axis.)

We also remarked that, physically, Eq. (21.9) does not represent a wave in
free space—that there must be charges at the origin to get the outgoing wave
started. In other words, Eq. (21.9) is a solution of Eq. (21.8) everywhere except
right near r = 0, where it must be a solution of the complete equation (21.7),
including some sources. Let’s see how that works. What kind of a source s in
Eq. (21.7) would give rise to a wave like Eq. (21.9)?

Suppose we have the spherical wave of Eq. (21.9) and look at what is happening
for very small r. Then the retardation −r/c in f(t − r/c) can be neglected—
provided f is a smooth function—and ψ becomes

ψ = f(t)
r

(r → 0). (21.10)

So ψ is just like a Coulomb field for a charge at the origin that varies with time.
That is, if we had a little lump of charge, limited to a very small region near the
origin, with a density ρ, we know that

φ = Q/4πε0
r

,

where Q =
∫
ρ dV . Now we know that such a φ satisfies the equation

∇2φ = − ρ

ε0
.
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Following the same mathematics, we would say that the ψ of Eq. (21.10)
satisfies

∇2ψ = −s (r → 0), (21.11)

where s is related to f by
f = S

4π ,

with
S =

∫
s dV.

The only difference is that in the general case, s, and therefore S, can be a
function of time.

Now the important thing is that if ψ, satisfies Eq. (21.11) for small r, it also
satisfies Eq. (21.7). As we go very close to the origin, the 1/r dependence of ψ
causes the space derivatives to become very large. But the time derivatives keep
their same values. [They are just the time derivatives of f(t).] So as r goes to
zero, the term ∂2ψ/∂t2 in Eq. (21.7) can be neglected in comparison with ∇2ψ,
and Eq. (21.7) becomes equivalent to Eq. (21.11).

To summarize, then, if the source function s(t) of Eq. (21.7) is localized at
the origin and has the total strength

S(t) =
∫
s(t) dV, (21.12)

the solution of Eq. (21.7) is

ψ(x, y, z, t) = 1
4π

S(t− r/c)
r

. (21.13)

The only effect of the term ∂2ψ/∂t2 in Eq. (21.7) is to introduce the retarda-
tion (t− r/c) in the Coulomb-like potential.

21-3 The general solution of Maxwell’s equations

We have found the solution of Eq. (21.7) for a “point” source. The next
question is: What is the solution for a spread-out source? That’s easy; we can
think of any source s(x, y, z, t) as made up of the sum of many “point” sources,
one for each volume element dV , and each with the source strength s(x, y, z, t) dV .
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Since Eq. (21.7) is linear, the resultant field is the superposition of the fields from
all of such source elements.

Using the results of the preceding section [Eq. (21.13)] we know that the
field dψ at the point (x1, y1, z1)—or (1) for short—at the time t, from a source
element s dV at the point (x2, y2, z2)—or (2) for short—is given by

dψ(1, t) = s(2, t− r12/c) dV2

4πr12
,

where r12 is the distance from (2) to (1). Adding the contributions from all
the pieces of the source means, of course, doing an integral over all regions
where s 6= 0; so we have

ψ(1, t) =
∫
s(2, t− r12/c)

4πr12
dV2. (21.14)

That is, the field at (1) at the time t is the sum of all the spherical waves which
leave the source elements at (2) at the times (t− r12/c). This is the solution of
our wave equation for any set of sources.

We see now how to obtain a general solution for Maxwell’s equations. If
for ψ we mean the scalar potential φ, the source function s becomes ρ/ε0. Or we
can let ψ represent any one of the three components of the vector potential A,
replacing s by the corresponding component of j/ε0c2. Thus, if we know the
charge density ρ(x, y, z, t) and the current density j(x, y, z, t) everywhere, we can
immediately write down the solutions of Eqs. (21.4) and (21.5). They are

φ(1, t) =
∫
ρ(2, t− r12/c)

4πε0r12
dV2 (21.15)

and

A(1, t) =
∫
j(2, t− r12/c)

4πε0c2r12
dV2. (21.16)

The fields E and B can then be found by differentiating the potentials, using
Eqs. (21.2) and (21.3). [Incidentally, it is possible to verify that the φ and A
obtained from Eqs. (21.15) and (21.16) do satisfy the equality (21.6).]

We have solved Maxwell’s equations. Given the currents and charges in any
circumstance, we can find the potentials directly from these integrals and then
differentiate and get the fields. So we have finished with the Maxwell theory. Also
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this permits us to close the ring back to our theory of light, because to connect with
our earlier work on light, we need only calculate the electric field from a moving
charge. All that remains is to take a moving charge, calculate the potentials from
these integrals, and then differentiate to find E from −∇φ− ∂A/∂t. We should
get Eq. (21.1). It turns out to be lots of work, but that’s the principle.

So here is the center of the universe of electromagnetism—the complete theory
of electricity and magnetism, and of light; a complete description of the fields
produced by any moving charges; and more. It is all here. Here is the structure
built by Maxwell, complete in all its power and beauty. It is probably one of the
greatest accomplishments of physics. To remind you of its importance, we will
put it all together in a nice frame.

Maxwell’s equations:

∇ ·E = ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

c2∇×B = j

ε0
+ ∂E

∂t

Their solutions:
E = −∇φ− ∂A

∂t

B =∇×A

φ(1, t) =
∫ ρ(2, t− r12/c)

4πε0r12
dV2

A(1, t) =
∫ j(2, t− r12/c)

4πε0c2r12
dV2

21-4 The fields of an oscillating dipole

We have still not lived up to our promise to derive Eq. (21.1) for the electric
field of a point charge in motion. Even with the results we already have, it is a
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relatively complicated thing to derive. We have not found Eq. (21.1) anywhere in
the published literature except in Vol. I of these lectures.* So you can see that it
is not easy to derive. (The fields of a moving charge have been written in many
other forms that are equivalent, of course.) We will have to limit ourselves here
just to showing that, in a few examples, Eqs. (21.15) and (21.16) give the same
results as Eq. (21.1). First, we will show that Eq. (21.1) gives the correct fields
with only the restriction that the motion of the charged particle is nonrelativistic.
(Just this special case will take care of 90 percent, or more, of what we said about
light.)

We consider a situation in which we have a blob of charge that is moving
about in some way, in a small region, and we will find the fields far away. To
put it another way, we are finding the field at any distance from a point charge
that is shaking up and down in very small motion. Since light is usually emitted
from neutral objects such as atoms, we will consider that our wiggling charge q
is located near an equal and opposite charge at rest. If the separation between
the centers of the charges is d, the charges will have a dipole moment p = qd,
which we take to be a function of time. Now we should expect that if we look
at the fields close to the charges, we won’t have to worry about the delay; the
electric field will be exactly the same as the one we have calculated earlier for
an electrostatic dipole—using, of course, the instantaneous dipole moment p(t).
But if we go very far out, we ought to find a term in the field that goes as 1/r
and depends on the acceleration of the charge perpendicular to the line of sight.
Let’s see if we get such a result.

We begin by calculating the vector potential A, using Eq. (21.16). Suppose
that our moving charge is in a small blob whose charge density is given by ρ(x, y, z),
and the whole thing is moving at any instant with the velocity v. Then the
current density j(x, y, z) will be equal to vρ(x, y, z). It will be convenient to
take our coordinate system so that the z-axis is in the direction of v; then the
geometry of our problem is as shown in Fig. 21-2. We want the integral∫

j(2, t− r12/c)
r12

dV2. (21.17)

Now if the size of the charge-blob is really very small compared with r12, we
can set the r12 term in the denominator equal to r, the distance to the center of

* The formula was first published by Oliver Heaviside in 1902. It was independently
discovered by R. P. Feynman, in about 1950, and given in some lectures as a good way of
thinking about synchrotron radiation.
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∆V2

(1)

v

r ′

r

Fig. 21-2. The potential at (1) are given by integrals over the charge
density ρ.

the blob, and take r outside the integral. Next, we are also going to set r12 = r
in the numerator, although that is not really quite right. It is not right because
we should take j at, say, the top of the blob at a slightly different time than we
used for j at the bottom of the blob. When we set r12 = r in j(t− r12/c), we are
taking the current density for the whole blob at the same time (t− r/c). That is
an approximation that will be good only if the velocity v of the charge is much
less than c. So we are making a nonrelativistic calculation. Replacing j by ρv,
the integral (21.17) becomes

1
r

∫
vρ(2, t− r/c) dV2.

Since all the charge has the same velocity, this integral is just v/r times the total
charge q. But qv is just ∂p/∂t, the rate of change of the dipole moment—which
is, of course, to be evaluated at the retarded time (t − r/c). We will write it
as ṗ(t− r/c). So we get for the vector potential

A(1, t) = 1
4πε0c2

ṗ(t− r/c)
r

. (21.18)

Our result says that the current in a varying dipole produces a vector potential
in the form of spherical waves whose source strength is ṗ/ε0c2.
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We can now get the magnetic field from B =∇×A. Since ṗ is totally in the
z-direction, A has only a z-component; there are only two nonzero derivatives in
the curl. So Bx = ∂Az/∂y and By = −∂Az/∂x. Let’s first look at Bx:

Bx = ∂Az
∂y

= 1
4πε0c2

∂

∂y

ṗ(t− r/c)
r

. (21.19)

To carry out the differentiation, we must remember that r =
√
x2 + y2 + z2, so

Bx = 1
4πε0c2

ṗ(t− r/c) ∂

∂y

(
1
r

)
+ 1

4πε0c2
1
r

∂

∂y
ṗ(t− r/c). (21.20)

Remembering that ∂r/∂y = y/r, the first term gives

− 1
4πε0c2

yṗ(t− r/c)
r3 , (21.21)

which drops off as 1/r2 like the potential of a static dipole (because y/r is constant
for a given direction).

The second term in Eq. (21.20) gives us the new effects. Carrying out the
differentiation, we get

− 1
4πε0c2

y

cr2 p̈(t− r/c), (21.22)

where p̈ means, of course, the second derivative of p with respect to t. This
term, which comes from differentiating the numerator, is responsible for radiation.
First, it describes a field which decreases with distance only as 1/r. Second, it
depends on the acceleration of the charge. You can begin to see how we are going
to get a result like Eq. (21.1′), which describes the radiation of light.

Let’s examine in a little more detail how this radiation term comes about—it
is such an interesting and important result. We start with the expression (21.18),
which has a 1/r dependence and is therefore like a Coulomb potential, except for
the delay term in the numerator. Why is it then that when we differentiate with
respect to space coordinates to get the fields, we don’t just get a 1/r2 field—with,
of course, the corresponding time delays?

We can see why in the following way: Suppose that we let our dipole oscillate
up and down in a sinusoidal motion. Then we would have

p = pz = p0 sinωt
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and

Az = 1
4πε0c2

ωp0 cosω(t− r/c)
r

.

If we plot a graph of Az as a function of r at a given instant, we get the curve
shown in Fig. 21-3. The peak amplitude decreases as 1/r, but there is, in addition,
an oscillation in space, bounded by the 1/r envelope. When we take the spatial
derivatives, they will be proportional to the slope of the curve. From the figure
we see that there are slopes much steeper than the slope of the 1/r curve itself.
It is, in fact, evident that for a given frequency the peak slopes are proportional
to the amplitude of the wave, which varies as 1/r. So that explains the drop-off
rate of the radiation term.

r

Az

1/r

c

Fig. 21-3. The z-component of A as a function of r at the instant t
for the spherical wave from an oscillating dipole.

It all comes about because the variations with time at the source are translated
into variations in space as the waves are propagated outward, and the magnetic
fields depend on the spatial derivatives of the potential.

Let’s go back and finish our calculation of the magnetic field. We have for Bx
the two terms (21.21) and (21.22), so

Bx = 1
4πε0c2

[
−yṗ(t− r/c)

r3 − yp̈(t− r/c)
cr2

]
.
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With the same kind of mathematics, we get

By = 1
4πε0c2

[
xṗ(t− r/c)

r3 + xp̈(t− r/c)
cr2

]
.

Or we can put it all together in a nice vector formula:

B = 1
4πε0c2

[ṗ+ (r/c)p̈]t−r/c × r
r3 . (21.23)

Now let’s look at this formula. First of all, if we go very far out in r, only the
p̈ term counts. The direction of B is given by p̈×r, which is at right angles to the
radius r and also at right angles to the acceleration, as in Fig. 21-4. Everything
is coming out right; that is also the result we get from Eq. (21.1′).

p̈

B

E

(1)

(2)

r

Fig. 21-4. The radiation fields B and E of an oscillating dipole.

Now let’s look at what we are not used to—at what happens closer in. In
Section 14-7 we worked out the law of Biot and Savart for the magnetic field of
an element of current. We found that a current element j dV contributes to the
magnetic field the amount

dB = 1
4πε0c2

j × r
r3 dV. (21.24)

You see that this formula looks very much like the first term of Eq. (21.23), if
we remember that ṗ is the current. But there is one difference. In Eq. (21.23),
the current is to be evaluated at the time (t − r/c), which doesn’t appear in
Eq. (21.24). Actually, however, Eq. (21.24) is still very good for small r, because
the second term of Eq. (21.23) tends to cancel out the effect of the retardation
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in the first term. The two together give a result very near to Eq. (21.24) when r
is small.

We can see that this way: When r is small, (t − r/c) is not very different
from t, so we can expand the bracket in Eq. (21.23) in a Taylor series. For the
first term,

ṗ(t− r/c) = ṗ(t)− r

c
p̈(t) + etc.,

and to the same order in r/c,
r

c
p̈(t− r/c) = r

c
p̈(t) + etc.

When we take the sum, the two terms in p̈ cancel, and we are left with the
unretarded current ṗ: that is, ṗ(t)—plus terms of order (r/c)2 or higher [e.g.,
1
2 (r/c)2 ˙̇ṗ ] which will be very small for r small enough that ṗ does not alter
markedly in the time r/c.

So Eq. (21.23) gives fields very much like the instantaneous theory—much
closer than the instantaneous theory with a delay; the first-order effects of the
delay are taken out by the second term. The static formulas are very accurate,
much more accurate than you might think. Of course, the compensation only
works for points close in. For points far out the correction becomes very bad,
because the time delays produce a very large effect, and we get the important
1/r term of the radiation.

We still have the problem of computing the electric field and demonstrating
that it is the same as Eq. (21.1′). For large distances we can see that the answer
is going to come out all right. We know that far from the sources, where we have
a propagating wave, E is perpendicular to B (and also to r), as in Fig. 21-4,
and that cB = E. So E is proportional to the acceleration p̈, as expected from
Eq. (21.1′).

To get the electric field completely for all distances, we need to solve for the
electrostatic potential. When we computed the current integral for A to get
Eq. (21.18), we made an approximation by disregarding the slight variation of r
in the delay terms. This will not work for the electrostatic potential, because we
would then get 1/r times the integral of the charge density, which is a constant.
This approximation is too rough. We need to go to one higher order. Instead of
getting involved in that higher-order computation directly, we can do something
else—we can determine the scalar potential from Eq. (21.6), using the vector
potential we have already found. The divergence of A, in our case, is just
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∂Az/∂z—since Ax and Ay are identically zero. Differentiating in the same way
that we did above to find B,

∇ ·A = 1
4πε0c2

[
ṗ(t− r/c) ∂

∂z

(
1
r

)
+ 1
r

∂

∂z
ṗ(t− r/c)

]
= 1

4πε0c2

[
−zṗ(t− r/c)

r3 − zp̈(t− r/c)
cr2

]
.

Or, in vector notation,

∇ ·A = − 1
4πε0c2

[ṗ+ (r/c)p̈]t−r/c · r
r3 .

Using Eq. (21.6), we have an equation for φ:

∂φ

∂t
= 1

4πε0
[ṗ+ (r/c)p̈]t−r/c · r

r3 .

Integrating with respect to t just removes one dot from each of the p’s, so

φ(r, t) = 1
4πε0

[p+ (r/c)ṗ]t−r/c · r
r3 . (21.25)

(The constant of integration would correspond to some superposed static field
which could, of course, exist. For the oscillating dipole we have taken, there is
no static field.)

We are now able to find the electric field E from

E = −∇φ− ∂A

∂t
.

Since the steps are tedious but straightforward [providing you remember that p(t−
r/c) and its time derivatives depend on x, y, and z through the retardation r/c],
we will just give the result:

E(r, t) = 1
4πε0r3

[
3(p∗ · r)r

r2 − p∗ + 1
c2
{p̈(t− r/c)× r} × r

]
(21.26)

with
p∗ = p(t− r/c) + r

c
ṗ(t− r/c). (21.27)
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Although it looks rather complicated, the result is easily interpreted. The
vector p∗ is the dipole moment retarded and then “corrected” for the retardation,
so the two terms with p∗ give just the static dipole field when r is small. [See
Chapter 6, Eq. (6.14).] When r is large, the term in p̈ dominates, and the electric
field is proportional to the acceleration of the charges, at right angles to r, and,
in fact, directed along the projection of p̈ in a plane perpendicular to r.

This result agrees with what we would have gotten using Eq. (21.1). Of course,
Eq. (21.1) is more general; it works with any motion, while Eq. (21.26) is valid
only for small motions for which we can take the retardation r/c as constant over
the source. At any rate, we have now provided the underpinnings for our entire
previous discussion of light (excepting some matters discussed in Chapter 34 of
Vol. I), for it all hinged on the last term of Eq. (21.26). We will discuss next
how the fields can be obtained for more rapidly moving charges (leading to the
relativistic effects of Chapter 34 of Vol. I).

21-5 The potentials of a moving charge; the general solution of Liénard and
Wiechert

In the last section we made a simplification in calculating our integral for A
by considering only low velocities. But in doing so we missed an important point
and also one where it is easy to go wrong. We will therefore take up now a
calculation of the potentials for a point charge moving in any way whatever—even
with a relativistic velocity. Once we have this result, we will have the complete
electromagnetism of electric charges. Even Eq. (21.1) can then be derived by
taking derivatives. The story will be complete. So bear with us.

Let’s try to calculate the scalar potential φ(1) at the point (x1, y1, z1) produced
by a point charge, such as an electron, moving in any manner whatsoever. By a
“point” charge we mean a very small ball of charge, shrunk down as small as you
like, with a charge density ρ(x, y, z). We can find φ from Eq. (21.15):

φ(1, t) = 1
4πε0

∫
ρ(2, t− r12/c)

r12
dV2. (21.28)

The answer would seem to be—and almost everyone would, at first, think—that
the integral of ρ over such a “point” charge is just the total charge q, so that

φ(1, t) = 1
4πε0

q

r′12
(wrong).
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a

(a)

ρ

“POINT” CHARGE

(1)r12

v

w
(b)

(1)ri

∆Vi

Fig. 21-5. (a) A “point” charge—considered as a small cubical distri-
bution of charge—moving with the speed v toward point (1). (b) The
volume element ∆Vi used for calculating the potentials.

By r′12 we mean the radius vector from the charge at point (2) to point (1) at
the retarded time (t− r12/c). It is wrong.

The correct answer is

φ(1, t) = 1
4πε0

q

r′12
· 1

1− vr′/c
, (21.29)

where vr′ , is the component of the velocity of the charge parallel to r′12—namely,
toward point (1). We will now show you why. To make the argument easier to
follow, we will make the calculation first for a “point” charge which is in the
form of a little cube of charge moving toward the point (1) with the speed v, as
shown in Fig. 21-5(a). Let the length of a side of the cube be a, which we take
to be much, much less than r12, the distance from the center of the charge to the
point (1).

Now to evaluate the integral of Eq. (21.28), we will return to basic principles;
we will write it as the sum ∑

i

ρi ∆Vi
ri

, (21.30)
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where ri is the distance from point (1) to the ith volume element ∆Vi and ρi is
the charge density at ∆Vi at the time ti = t− ri/c. Since ri � a, always, it will
be convenient to take our ∆Vi in the form of thin, rectangular slices perpendicular
to r12, as shown in Fig. 21-5(b).

Suppose we start by taking the volume elements ∆Vi with some thickness w
much less than a. The individual elements will appear as shown in Fig. 21-6(a),
where we have put in more than enough to cover the charge. But we have not
shown the charge, and for a good reason. Where should we draw it? For each

(a)

1
2

3
4

5
6 N

(1)

r1(b)
(1)r1

(c)
(1)r2

(d)
(1)r3

(e)
(1)rN

v ∆t a

b

Fig. 21-6. Integrating ρ(t − r ′/c) dV for a moving charge.
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volume element ∆Vi we are to take ρ at the time ti = (t− ri/c), but since the
charge is moving, it is in a different place for each volume element ∆Vi!

Let’s say that we begin with the volume element labeled “1” in Fig. 21-6(a),
chosen so that at the time t1 = (t − r1/c) the “back” edge of the charge occu-
pies ∆V1, as shown in Fig. 21-6(b). Then when we evaluate ρ2 ∆V2, we must use
the position of the charge at the slightly later time t2 = (t − r2/c), when the
charge will be in the position shown in Fig. 21-6(c). And so on, for ∆V3, ∆V4,
etc. Now we can evaluate the sum.

Since the thickness of each ∆Vi is w, its volume is wa2. Then each volume
element that overlaps the charge distribution contains the amount of charge wa2ρ,
where ρ is the density of charge within the cube—which we take to be uniform.
When the distance from the charge to point (1) is large, we will make a negligible
error by setting all the ri’s in the denominators equal to some average value, say
the retarded position r′ of the center of the charge. Then the sum (21.30) is

N∑
i=1

ρwa2

r′
,

where ∆VN is the last ∆Vi that overlaps the charge distributions, as shown in
Fig. 21-6(e). The sum is, clearly,

N
ρwa2

r′
= ρa3

r′

(
Nw

a

)
.

Now ρa3 is just the total charge q and Nw is the length b shown in part (e) of
the figure. So we have

φ = q

4πε0r′

(
b

a

)
. (21.31)

What is b? It is the length of the cube of charge increased by the distance
moved by the charge between t1 = (t− r1/c) and tN = (t− rN/c)—which is the
distance the charge moves in the time

∆t = tN − t1 = (r1 − rN )/c = b/c.

Since the speed of the charge is v, the distance moved is v∆t = vb/c. But the
length b is this distance added to a:

b = a+ v

c
b.
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Solving for b, we get
b = a

1− (v/c) .

Of course by v we mean the velocity at the retarded time t′ = (t− r′/c), which
we can indicate by writing [1− v/c]ret, and Eq. (21.31) for the potential becomes

φ(1, t) = q

4πε0r′
1

[1− (v/c)]ret
.

This result agrees with our assertion, Eq. (21.29). There is a correction term
which comes about because the charge is moving as our integral “sweeps over
the charge.” When the charge is moving toward the point (1), its contribution
to the integral is increased by the ratio b/a. Therefore the correct integral is
q/r′ multiplied by b/a, which is 1/[1− v/c]ret.

If the velocity of the charge is not directed toward the observation point (1),
you can see that what matters is the component of its velocity toward point (1).
Calling this velocity component vr, the correction factor is 1/[1− vr/c]ret. Also,
the analysis we have made goes exactly the same way for a charge distribution of
any shape—it doesn’t have to be a cube. Finally, since the “size” of the charge q
doesn’t enter into the final result, the same result holds when we let the charge
shrink to any size—even to a point. The general result is that the scalar potential
for a point charge moving with any velocity is

φ(1, t) = q

4πε0r′[1− (vr/c)]ret
. (21.32)

This equation is often written in the equivalent form

φ(1, t) = q

4πε0[r − (v · r/c)]ret
, (21.33)

where r is the vector from the charge to the point (1), where φ is being evaluated,
and all the quantities in the bracket are to have their values at the retarded
time t′ = t− r′/c.

The same thing happens when we compute A for a point charge, from
Eq. (21.16). The current density is ρv and the integral over ρ is the same as we
found for φ. The vector potential is

A(1, t) = qvret
4πε0c2[r − (v · r/c)]ret

. (21.34)
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The potentials for a point charge were first deduced in this form by Liénard
and Wiechert and are called the Liénard-Wiechert potentials.

To close the ring back to Eq. (21.1) it is only necessary to compute E and B
from these potentials (using B = ∇ ×A and E = −∇φ − ∂A/∂t). It is now
only arithmetic. The arithmetic, however, is fairly involved, so we will not write
out the details. Perhaps you will take our word for it that Eq. (21.1) is equivalent
to the Liénard-Wiechert potentials we have derived.*

21-6 The potentials for a charge moving with constant velocity; the Lorentz
formula

We want next to use the Liénard-Wiechert potentials for a special case—to find
the fields of a charge moving with uniform velocity in a straight line. We will do it
again later, using the principle of relativity. We already know what the potentials
are when we are standing in the rest frame of a charge. When the charge is
moving, we can figure everything out by a relativistic transformation from one
system to the other. But relativity had its origin in the theory of electricity and
magnetism. The formulas of the Lorentz transformation (Chapter 15, Vol. I) were
discoveries made by Lorentz when he was studying the equations of electricity and
magnetism. So that you can appreciate where things have come from, we would
like to show that the Maxwell equations do lead to the Lorentz transformation.
We begin by calculating the potentials of a charge moving with uniform velocity,
directly from the electrodynamics of Maxwell’s equations. We have shown that
Maxwell’s equations lead to the potentials for a moving charge that we got in
the last section. So when we use these potentials, we are using Maxwell’s theory.

Suppose we have a charge moving along the x-axis with the speed v. We
want the potentials at the point P (x, y, z), as shown in Fig. 21-7. If t = 0 is the
moment when the charge is at the origin, at the time t the charge is at x = vt,
y = z = 0. What we need to know, however, is its position at the retarded time

t′ = t− r′

c
, (21.35)

where r′ is the distance to the point P from the charge at the retarded time. At
* If you have a lot of paper and time you can try to work it through yourself. We would,

then, make two suggestions: First, don’t forget that the derivatives of r′ are complicated, since
it is a function of t′. Second, don’t try to derive (21.1), but carry out all of the derivatives in it,
and then compare what you get with the E obtained from the potentials (21.33) and (21.34).
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Fig. 21-7. Finding the potential at P of a charge moving with uniform
velocity along the x-axis.

the earlier time t′, the charge was at x = vt′, so

r′ =
√

(x− vt′)2 + y2 + z2. (21.36)

To find r′ or t′ we have to combine this equation with Eq. (21.35). First, we
eliminate r′ by solving Eq. (21.35) for r′ and substituting in Eq. (21.36). Then,
squaring both sides, we get

c2(t− t′)2 = (x− vt′)2 + y2 + z2,

which is a quadratic equation in t′. Expanding the squared binomials and
collecting like terms in t′, we get

(v2 − c2)t′2 − 2(xv − c2t)t′ + x2 + y2 + z2 − (ct)2 = 0.

Solving for t′,(
1− v2

c2

)
t′ = t− vx

c2
− 1
c

√
(x− vt)2 +

(
1− v2

c2

)
(y2 + z2). (21.37)

To get r′ we have to substitute this expression for t′ into

r′ = c(t− t′).
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Now we are ready to find φ from Eq. (21.33), which, since v is constant,
becomes

φ(x, y, z, t) = q

4πε0
1

r′ − (v · r′/c) . (21.38)

The component of v in the direction of r′ is v × (x − vt′)/r′, so v · r′ is just
v × (x− vt′), and the whole denominator is

c(t− t′)− v

c
(x− vt′) = c

[
t− vx

c2
−
(

1− v2

c2

)
t′
]
.

Substituting for (1− v2/c2)t′ from Eq. (21.37), we get for φ

φ(x, y, z, t) = q

4πε0
1√

(x− vt)2 +
(

1− v2

c2

)
(y2 + z2)

.

This equation is more understandable if we rewrite it as

φ(x, y, z, t) = q

4πε0
1√

1− v2

c2

1[(
x− vt√
1− v2/c2

)2
+ y2 + z2

]1/2 . (21.39)

The vector potential A is the same expression with an additional factor of v/c2:

A = v

c2
φ.

In Eq. (21.39) you can clearly see the beginning of the Lorentz transformation.
If the charge were at the origin in its own rest frame, its potential would be

φ(x, y, z) = q

4πε0
1

[x2 + y2 + z2]1/2 .

We are seeing it in a moving coordinate system, and it appears that the coordinates
should be transformed by

x→ x− vt√
1− v2/c2

,

y → y,

z → z.
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That is just the Lorentz transformation, and what we have done is essentially
the way Lorentz discovered it.

But what about that extra factor 1/
√

1− v2/c2 that appears at the front of
Eq. (21.39)? Also, how does the vector potential A appear, when it is everywhere
zero in the rest frame of the particle? We will soon show that A and φ together
constitute a four-vector, like the momentum p and the total energy U of a particle.
The extra 1/

√
1− v2/c2 in Eq. (21.39) is the same factor that always comes

in when one transforms the components of a four-vector—just as the charge
density ρ transforms to ρ/

√
1− v2/c2. In fact, it is almost apparent from Eqs.

(21.4) and (21.5) that A and φ are components of a four-vector, because we have
already shown in Chapter 13 that j and ρ are the components of a four-vector.

Later we will take up in more detail the relativity of electrodynamics; here
we only wished to show how naturally the Maxwell equations lead to the Lorentz
transformation. You will not, then, be surprised to find that the laws of electricity
and magnetism are already correct for Einstein’s relativity. We will not have to
“fix them up,” as we had to do for Newton’s laws of mechanics.

21-24



22

AC Circuits

Review: Chapter 22, Vol. I, Algebra
Chapter 23, Vol. I, Resonance
Chapter 25, Vol. I, Linear Systems and Review

22-1 Impedances

Most of our work in this course has been aimed at reaching the complete
equations of Maxwell. In the last two chapters we have been discussing the
consequences of these equations. We have found that the equations contain all
the static phenomena we had worked out earlier, as well as the phenomena of
electromagnetic waves and light that we had gone over in some detail in Volume I.
The Maxwell equations give both phenomena, depending upon whether one
computes the fields close to the currents and charges, or very far from them.
There is not much interesting to say about the intermediate region; no special
phenomena appear there.

There still remain, however, several subjects in electromagnetism that we
want to take up. We want to discuss the question of relativity and the Maxwell
equations—what happens when one looks at the Maxwell equations with respect
to moving coordinate systems. There is also the question of the conservation of
energy in electromagnetic systems. Then there is the broad subject of the elec-
tromagnetic properties of materials; so far, except for the study of the properties
of dielectrics, we have considered only the electromagnetic fields in free space.
And although we covered the subject of light in some detail in Volume I, there
are still a few things we would like to do again from the point of view of the field
equations.

In particular, we want to take up again the subject of the index of refraction,
particularly for dense materials. Finally, there are the phenomena associated
with waves confined in a limited region of space. We touched on this kind of
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problem briefly when we were studying sound waves. Maxwell’s equations lead
also to solutions which represent confined waves of the electric and magnetic
fields. We will take up this subject, which has important technical applications,
in some of the following chapters. In order to lead up to that subject, we will
begin by considering the properties of electrical circuits at low frequencies. We
will then be able to make a comparison between those situations in which the
almost static approximations of Maxwell’s equations are applicable and those
situations in which high-frequency effects are dominant.

So we descend from the great and esoteric heights of the last few chapters
and turn to the relatively low-level subject of electrical circuits. We will see,
however, that even such a mundane subject, when looked at in sufficient detail,
can contain great complications.

We have already discussed some of the properties of electrical circuits in
Chapters 23 and 25 of Vol. I. Now we will cover some of the same material again,
but in greater detail. Again we are going to deal only with linear systems and
with voltages and currents which all vary sinusoidally; we can then represent
all voltages and currents by complex numbers, using the exponential notation
described in Chapter 23 of Vol. I. Thus a time-varying voltage V (t) will be
written

V (t) = V̂ eiωt, (22.1)
where V̂ represents a complex number that is independent of t. It is, of course,
understood that the actual time-varying voltage V (t) is given by the real part of
the complex function on the right-hand side of the equation.

Similarly, all of our other time-varying quantities will be taken to vary sinu-
soidally at the same frequency ω. So we write

I = Î eiωt (current),

E = Ê eiωt (emf),

E = Ê eiωt (electric field),

(22.2)

and so on.
Most of the time we will write our equations in terms of V , I, E, . . . (instead

of in terms of V̂ , Î, Ê, . . . ), remembering, though, that the time variations are
as given in (22.2).

In our earlier discussion of circuits we assumed that such things as inductances,
capacitances, and resistances were familiar to you. We want now to look in a
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Fig. 22-1. An inductance.

little a more detail at what is meant by these idealized circuit elements. We
begin with the inductance.

An inductance is made by winding many turns of wire in the form of a coil and
bringing the two ends out to terminals at some distance from the coil, as shown
in Fig. 22-1. We want to assume that the magnetic field produced by currents in
the coil does not spread out strongly all over space and interact with other parts
of the circuit. This is usually arranged by winding the coil in a doughnut-shaped
form, or by confining the magnetic field by winding the coil on a suitable iron
core, or by placing the coil in some suitable metal box, as indicated schematically
in Fig. 22-1. In any case, we assume that there is a negligible magnetic field in
the external region near the terminals a and b. We are also going to assume that
we can neglect any electrical resistance in the wire of the coil. Finally, we will
assume that we can neglect the amount of electrical charge that appears on the
surface of a wire in building up the electric fields.

With all these approximations we have what we call an “ideal” inductance.
(We will come back later and discuss what happens in a real inductance.) For an
ideal inductance we say that the voltage across the terminals is equal to L(dI/dt).
Let’s see why that is so. When there is a current through the inductance, a
magnetic field proportional to the current is built up inside the coil. If the current
changes with time, the magnetic field also changes. In general, the curl of E is
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equal to −∂B/∂t; or, put differently, the line integral of E all the way around any
closed path is equal to the negative of the rate of change of the flux of B through
the loop. Now suppose we consider the following path: Begin at terminal a and
go along the coil (staying always inside the wire) to terminal b; then return from
terminal b to terminal a through the air in the space outside the inductance. The
line integral of E around this closed path can be written as the sum of two parts:∮

E · ds =
∫ b

a
via
coil

E · ds+
∫ a

b
outside

E · ds. (22.3)

As we have seen before, there can be no electric fields inside a perfect conductor.
(The smallest fields would produce infinite currents.) Therefore the integral from
a to b via the coil is zero. The whole contribution to the line integral of E comes
from the path outside the inductance from terminal b to terminal a. Since we
have assumed that there are no magnetic fields in the space outside of the “box,”
this part of the integral is independent of the path chosen and we can define the
potentials of the two terminals. The difference of these two potentials is what we
call the voltage difference, or simply the voltage V , so we have

V = −
∫ a

b

E · ds = −
∮
E · ds.

The complete line integral is what we have before called the electromotive
force E and is, of course, equal to the rate of change of the magnetic flux in the
coil. We have seen earlier that this emf is equal to the negative rate of change of
the current, so we have

V = −E = L
dI

dt
,

where L is the inductance of the coil. Since dI/dt = iωI, we have

V = iωLI. (22.4)

The way we have described the ideal inductance illustrates the general ap-
proach to other ideal circuit elements—usually called “lumped” elements. The
properties of the element are described completely in terms of currents and
voltages that appear at the terminals. By making suitable approximations, it
is possible to ignore the great complexities of the fields that appear inside the
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object. A separation is made between what happens inside and what happens
outside.

For all the circuit elements we will find a relation like the one in Eq. (22.4), in
which the voltage is proportional to the current with a proportionality constant
that is, in general, a complex number. This complex coefficient of proportionality
is called the impedance and is usually written as z (not to be confused with the
z-coordinate). It is, in general, a function of the frequency ω. So for any lumped
element we write

V

I
= V̂

Î
= z. (22.5)

For an inductance, we have

z (inductance) = zL = iωL. (22.6)

Now let’s look at a capacitor from the same point of view.* A capacitor
consists of a pair of conducting plates from which two wires are brought out to
suitable terminals. The plates may be of any shape whatsoever, and are often
separated by some dielectric material. We illustrate such a situation schematically
in Fig. 22-2. Again we make several simplifying assumptions. We assume that the
plates and the wires are perfect conductors. We also assume that the insulation
between the plates is perfect, so that no charges can flow across the insulation
from one plate to the other. Next, we assume that the two conductors are close
to each other but far from all others, so that all field lines which leave one plate
end up on the other. Then there are always equal and opposite charges on the
two plates and the charges on the plates are much larger than the charges on
the surfaces of the lead-in wires. Finally, we assume that there are no magnetic
fields close to the capacitor.

Suppose now we consider the line integral of E around a closed loop which
starts at terminal a, goes along inside the wire to the top plate of the capacitor,
jumps across the space between the plates, passes from the lower plate to
terminal b through the wire, and returns to terminal a in the space outside the

* There are people who say we should call the objects by the names “inductor” and
“capacitor” and call their properties “inductance” and “capacitance” (by analogy with “resistor”
and “resistance”). We would rather use the words you will hear in the laboratory. Most people
still say “inductance” for both the physical coil and its inductance L. The word “capacitor”
seems to have caught on—although you will still hear “condenser” fairly often—and most people
still prefer the sound of “capacity” to “capacitance.”
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Fig. 22-2. A capacitor (or condenser).

capacitor. Since there is no magnetic field, the line integral of E around this
closed path is zero. The integral can be broken down into three parts:∮

E · ds =
∫

along
wires

E · ds+
∫

between
plates

E · ds+
∫ a

b
outside

E · ds. (22.7)

The integral along the wires is zero, because there are no electric fields inside
perfect conductors. The integral from b to a outside the capacitor is equal to the
negative of the potential difference between the terminals. Since we imagined
that the two plates are in some way isolated from the rest of the world, the total
charge on the two plates must be zero; if there is a charge Q on the upper plate,
there is an equal, opposite charge −Q on the lower plate. We have seen earlier
that if two conductors have equal and opposite charges, plus and minus Q, the
potential difference between the plates is equal to Q/C, where C is called the
capacity of the two conductors. From Eq. (22.7) the potential difference between
the terminals a and b is equal to the potential difference between the plates. We
have, therefore, that

V = Q

C
.

The electric current I entering the capacitor through terminal a (and leaving
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through terminal b) is equal to dQ/dt, the rate of change of the electric charge
on the plates. Writing dV/dt as iωV , we can put the voltage current relationship
for a capacitor in the following way:

iωV = I

C
,

or
V = I

iωC
. (22.8)

The impedance z of a capacitor, is then

z (capacitor) = zC = 1
iωC

. (22.9)

The third element we want to consider is a resistor. However, since we have
not yet discussed the electrical properties of real materials, we are not yet ready
to talk about what happens inside a real conductor. We will just have to accept
as fact that electric fields can exist inside real materials, that these electric fields
give rise to a flow of electric charge—that is, to a current—and that this current
is proportional to the integral of the electric field from one end of the conductor
to the other. We then imagine an ideal resistor constructed as in the diagram
of Fig. 22-3. Two wires which we take to be perfect conductors go from the

I

I

a

b

V

Fig. 22-3. A resistor
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terminals a and b to the two ends of a bar of resistive material. Following our
usual line of argument, the potential difference between the terminals a and b
is equal to the line integral of the external electric field, which is also equal to
the line integral of the electric field through the bar of resistive material. It then
follows that the current I through the resistor is proportional to the terminal
voltage V :

I = V

R
,

where R is called the resistance. We will see later that the relation between
the current and the voltage for real conducting materials is only approximately
linear. We will also see that this approximate proportionality is expected to be
independent of the frequency of variation of the current and voltage only if the
frequency is not too high. For alternating currents then, the voltage across a
resistor is in phase with the current, which means that the impedance is a real
number:

z (resistance) = zR = R. (22.10)

Our results for the three lumped circuit elements—the inductor, the capacitor,
and the resistor—are summarized in Fig. 22-4. In this figure, as well as in the
preceding ones, we have indicated the voltage by an arrow that is directed from
one terminal to another. If the voltage is “positive”—that is, if the terminal a is
at a higher potential than the terminal b—the arrow indicates the direction of a
positive “voltage drop.”

Although we are talking about alternating currents, we can of course include
the special case of circuits with steady currents by taking the limit as the

(a)

a

b

zI V

z =
V

I

(b)

L

iωL

(c)

C

1

iωC

(d)

R

R

Fig. 22-4. The ideal lumped circuit elements (passive).
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frequency ω goes to zero. For zero frequency—that is, for dc—the impedance of
an inductance goes to zero; it becomes a short circuit. For dc, the impedance of
a condenser goes to infinity; it becomes an open circuit. Since the impedance of
a resistor is independent of frequency, it is the only element left when we analyze
a circuit for dc.

In the circuit elements we have described so far, the current and voltage are
proportional to each other. If one is zero, so also is the other. We usually think in
terms like these: An applied voltage is “responsible” for the current, or a current
“gives rise to” a voltage across the terminals; so in a sense the elements “respond”
to the “applied” external conditions. For this reason these elements are called
passive elements. They can thus be contrasted with the active elements, such as
the generators we will consider in the next section, which are the sources of the
oscillating currents or voltages in a circuit.

22-2 Generators

Now we want to talk about an active circuit element—one that is a source of
the currents and voltages in a circuit—namely, a generator.

Suppose that we have a coil like an inductance except that it has very few
turns, so that we may neglect the magnetic field of its own current. This coil,
however, sits in a changing magnetic field such as might be produced by a rotating
magnet, as sketched in Fig. 22-5. (We have seen earlier that such a rotating
magnetic field can also be produced by a suitable set of coils with alternating
currents.) Again we must make several simplifying assumptions. The assumptions
we will make are all the ones that we described for the case of the inductance. In
particular, we assume that the varying magnetic field is restricted to a definite
region in the vicinity of the coil and does not appear outside the generator in the
space between the terminals.

Following closely the analysis we made for the inductance, we consider the line
integral of E around a complete loop that starts at terminal a, goes through the
coil to terminal b and returns to its starting point in the space between the two
terminals. Again we conclude that the potential difference between the terminals
is equal to the total line integral of E around the loop:

V = −
∮
E · ds.
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Fig. 22-5. A generator consisting of a fixed coil and a rotating magnetic
field.

This line integral is equal to the emf in the circuit, so the potential difference V
across the terminals of the generator is also equal to the rate of change of the
magnetic flux linking the coil:

V = −E = d

dt
(flux). (22.11)

For an ideal generator we assume that the magnetic flux linking the coil is
determined by external conditions—such as the angular velocity of a rotating
magnetic field—and is not influenced in any way by the currents through the
generator. Thus a generator—at least the ideal generator we are considering—is
not an impedance. The potential difference across its terminals is determined
by the arbitrarily assigned electromotive force E(t). Such an ideal generator
is represented by the symbol shown in Fig. 22-6. The little arrow represents
the direction of the emf when it is positive. A positive emf in the generator of
Fig. 22-6 will produce a voltage V = E, with the terminal a at a higher potential
than the terminal b.

There is another way to make a generator which is quite different on the
inside but which is indistinguishable from the one we have just described insofar
as what happens beyond its terminals. Suppose we have a coil of wire which is
rotated in a fixed magnetic field, as indicated in Fig. 22-7. We show a bar magnet
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Fig. 22-6. Symbol for an ideal generator.
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Fig. 22-7. A generator consisting of a coil rotating in a fixed magnetic
field.
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to indicate the presence of a magnetic field; it could, of course, be replaced by
any other source of a steady magnetic field, such as an additional coil carrying a
steady current. As shown in the figure, connections from the rotating coil are
made to the outside world by means of sliding contacts or “slip rings.” Again, we
are interested in the potential difference that appears across the two terminals
a and b, which is of course the integral of the electric field from terminal a to
terminal b along a path outside the generator.

Now in the system of Fig. 22-7 there are no changing magnetic fields, so we
might at first wonder how any voltage could appear at the generator terminals. In
fact, there are no electric fields anywhere inside the generator. We are, as usual,
assuming for our ideal elements that the wires inside are made of a perfectly
conducting material, and as we have said many times, the electric field inside a
perfect conductor is equal to zero. But that is not true. It is not true when a
conductor is moving in a magnetic field. The true statement is that the total
force on any charge inside a perfect conductor must be zero. Otherwise there
would be an infinite flow of the free charges. So what is always true is that the
sum of the electric field E and the cross product of the velocity of the conductor
and the magnetic field B—which is the total force on a unit charge—must have
the value zero inside the conductor:

F /unit charge = E + v ×B = 0 (in a perfect conductor), (22.12)

where v represents the velocity of the conductor. Our earlier statement that
there is no electric field inside a perfect conductor is all right if the velocity v of
the conductor is zero; otherwise the correct statement is given by Eq. (22.12).

Returning to our generator of Fig. 22-7, we now see that the line integral of
the electric field E from terminal a to terminal b through the conducting path of
the generator must be equal to the line integral of v ×B on the same path,∫ b

a
inside

conductor

E · ds = −
∫ b

a
inside

conductor

(v ×B) · ds. (22.13)

It is still true, however, that the line integral of E around a complete loop,
including the return from b to a outside the generator, must be zero, because
there are no changing magnetic fields. So the first integral in Eq. (22.13) is
also equal to V , the voltage between the two terminals. It turns out that the
right-hand integral of Eq. (22.13) is just the rate of change of the flux linkage

22-12



through the coil and is therefore—by the flux rule—equal to the emf in the coil.
So we have again that the potential difference across the terminals is equal to
the electromotive force in the circuit, in agreement with Eq. (22.11). So whether
we have a generator in which a magnetic field changes near a fixed coil, or one
in which a coil moves in a fixed magnetic field, the external properties of the
generators are the same. There is a voltage difference V across the terminals,
which is independent of the current in the circuit but depends only on the
arbitrarily assigned conditions inside the generator.

a

b

V

I

+−+−+−+−
+− − −+
+ +

Fig. 22-8. A chemical cell.

So long as we are trying to understand the operation of generators from
the point of view of Maxwell’s equations, we might also ask about the ordinary
chemical cell, like a flashlight battery. It is also a generator, i.e., a voltage source,
although it will of course only appear in dc circuits. The simplest kind of cell
to understand is shown in Fig. 22-8. We imagine two metal plates immersed
in some chemical solution. We suppose that the solution contains positive and
negative ions. We suppose also that one kind of ion, say the negative, is much
heavier than the one of opposite polarity, so that its motion through the solution
by the process of diffusion is much slower. We suppose next that by some means
or other it is arranged that the concentration of the solution is made to vary
from one part of the liquid to the other, so that the number of ions of both
polarities near, say, the lower plate is much larger than the concentration of ions
near the upper plate. Because of their rapid mobility the positive ions will drift
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more readily into the region of lower concentration, so that there will be a slight
excess of positive charge arriving at the upper plate. The upper plate will become
positively charged and the lower plate will have a net negative charge.

As more and more charges diffuse to the upper plate, the potential of this
plate will rise until the resulting electric field between the plates produces forces
on the ions which just compensate for their excess mobility, so the two plates of
the cell quickly reach a potential difference which is characteristic of the internal
construction.

Arguing just as we did for the ideal capacitor, we see that the potential
difference between the terminals a and b is just equal to the line integral of the
electric field between the two plates when there is no longer any net diffusion of
the ions. There is, of course, an essential difference between a capacitor and such
a chemical cell. If we short-circuit the terminals of a condenser for a moment,
the capacitor is discharged and there is no longer any potential difference across
the terminals. In the case of the chemical cell a current can be drawn from
the terminals continuously without any change in the emf—until, of course, the
chemicals inside the cell have been used up. In a real cell it is found that the
potential difference across the terminals decreases as the current drawn from the
cell increases. In keeping with the abstractions we have been making, however, we
may imagine an ideal cell in which the voltage across the terminals is independent
of the current. A real cell can then be looked at as an ideal cell in series with a
resistor.

22-3 Networks of ideal elements; Kirchhoff’s rules

As we have seen in the last section, the description of an ideal circuit element
in terms of what happens outside the element is quite simple. The current and the
voltage are linearly related. But what is actually happening inside the element is
quite complicated, and it is quite difficult to give a precise description in terms of
Maxwell’s equations. Imagine trying to give a precise description of the electric
and magnetic fields of the inside of a radio which contains hundreds of resistors,
capacitors, and inductors. It would be an impossible task to analyze such a
thing by using Maxwell’s equations. But by making the many approximations
we have described in Section 22-2 and summarizing the essential features of the
real circuit elements in terms of idealizations, it becomes possible to analyze an
electrical circuit in a relatively straightforward way. We will now show how that
is done.
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Fig. 22-9. The sum of the voltage drops around any closed path is zero.

Suppose we have a circuit consisting of a generator and several impedances
connected together, as shown in Fig. 22-9. According to our approximations
there is no magnetic field in the region outside the individual circuit elements.
Therefore the line integral of E around any curve which does not pass through
any of the elements is zero. Consider then the curve Γ shown by the broken line
which goes all the way around the circuit in Fig. 22-9. The line integral of E
around this curve is made up of several pieces. Each piece is the line integral
from one terminal of a circuit element to the other. This line integral we have
called the voltage drop across the circuit element. The complete line integral is
then just the sum of the voltage drops across all of the elements in the circuit:∮

E · ds =
∑

Vn.

Since the line integral is zero, we have that the sum of the potential differences
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around a complete loop of a circuit is equal to zero:∑
around
any loop

Vn = 0. (22.14)

This result follows from one of Maxwell’s equations—that in a region where there
are no magnetic fields the line integral of E around any complete loop is zero.

a b c d

e f g h

z1 z2 z3

I1 I2 I3 I4

I1 I2 I3 I4

EV

Fig. 22-10. The sum of the currents into any node is zero.

Suppose we consider now a circuit like that shown in Fig. 22-10. The horizontal
line joining the terminals a, b, c, and d is intended to show that these terminals
are all connected, or that they are joined by wires of negligible resistance. In
any case, the drawing means that terminals a, b, c, and d are all at the same
potential and, similarly, that the terminals e, f , g, and h are also at one common
potential. Then the voltage drop V across each of the four elements is the same.

Now one of our idealizations has been that negligible electrical charges accu-
mulate on the terminals of the impedances. We now assume further that any
electrical charges on the wires joining terminals can also be neglected. Then the
conservation of charge requires that any charge which leaves one circuit element
immediately enters some other circuit element. Or, what is the same thing, we
require that the algebraic sum of the currents which enter any given junction
must be zero. By a junction, of course, we mean any set of terminals such as
a, b, c, and d which are connected. Such a set of connected terminals is usually
called a “node.” The conservation of charge then requires that for the circuit of
Fig. 22-10,

I1 − I2 − I3 − I4 = 0. (22.15)
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The sum of the currents entering the node which consists of the four terminals
e, f , g, and h must also be zero:

− I1 + I2 + I3 + I4 = 0. (22.16)

This is, of course, the same as Eq. (22.15). The two equations are not independent.
The general rule is that the sum of the currents into any node must be zero:∑

into
a node

In = 0. (22.17)

Our earlier conclusion that the sum of the voltage drops around a closed loop
is zero must apply to any loop in a complicated circuit. Also, our result that the
sum of the currents into a node is zero must be true for any node. These two
equations are known as Kirchhoff’s rules. With these two rules it is possible to
solve for the currents and voltages in any network whatever.

Suppose we consider the more complicated circuit of Fig. 22-11. How shall we
find the currents and voltages in this circuit? We can find them in the following
straightforward way. We consider separately each of the four subsidiary closed

a b c

d e f

g h j

z1 z2

z3

z4

z5 z6

z7

E1

E2

I1 I2

I1 I3

I4 I8

I5 I6

I7

Fig. 22-11. Analyzing a circuit with Kirchhoff’s rules.
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loops, which appear in the circuit. (For instance, one loop goes from terminal a
to terminal b to terminal e to terminal d and back to terminal a.) For each of
the loops we write the equation for the first of Kirchhoff’s rules—that the sum
of the voltages around each loop is equal to zero. We must remember to count
the voltage drop as positive if we are going in the direction of the current and
negative if we are going across an element in the direction opposite to the current;
and we must remember that the voltage drop across a generator is the negative
of the emf in that direction. Thus if we consider the small loop that starts and
ends at terminal a we have the equation

z1I1 + z3I3 + z4I4 − E1 = 0.

Applying the same rule to the remaining loops, we would get three more equations
of the same kind.

Next, we must write the current equation for each of the nodes in the circuit.
For example, summing the currents into the node at terminal b gives the equation

I1 − I3 − I2 = 0.

Similarly, for the node labeled e we would have the current equation

I3 − I4 + I8 − I5 = 0.

For the circuit shown there are five such current equations. It turns out, however,
that any one of these equations can be derived from the other four; there are,
therefore, only four independent current equations. We thus have a total of eight
independent, linear equations: the four voltage equations and the four current
equations. With these eight equations we can solve for the eight unknown currents.
Once the currents are known the circuit is solved. The voltage drop across any
element is given by the current through that element times its impedance (or, in
the case of the voltage sources, it is already known).

We have seen that when we write the current equations, we get one equation
which is not independent of the others. Generally it is also possible to write down
too many voltage equations. For example, in the circuit of Fig. 22-11, although we
have considered only the four small loops, there are a large number of other loops
for which we could write the voltage equation. There is, for example, the loop
along the path abcfeda. There is another loop which follows the path abcfehgda.
You can see that there are many loops. In analyzing complicated circuits it is
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very easy to get too many equations. There are rules which tell us how to proceed
so that only the minimum number of equations is written down, but usually with
a little thought it is possible to see how to get the right number of equations
in the simplest form. Besides, writing an extra equation or two doesn’t do any
harm. They will not lead to any wrong answers, only perhaps a little unnecessary
algebra.

In Chapter 25 of Vol. I we showed that if the two impedances z1 and z2 are
in series, they are equivalent to a single impedance zs given by

zs = z1 + z2. (22.18)

We also showed that if the two impedances are connected in parallel, they are
equivalent to the single impedance zp given by

zp = 1
(1/z1) + (1/z2) = z1z2

z1 + z2
. (22.19)

If you look back you will see that in deriving these results we were in effect
making use of Kirchhoff’s rules. It is often possible to analyze a complicated
circuit by repeated application of the formulas for series and parallel impedances.
For instance, the circuit of Fig. 22-12 can be analyzed that way. First, the
impedances z4 and z5 can be replaced by their parallel equivalent, and so also can
z6 and z7. Then the impedance z2 can be combined with the parallel equivalent
of z6 and z7 by the series rule. Proceeding in this way, the whole circuit can be
reduced to a generator in series with a single impedance Z. The current through
the generator is then just E/Z. Then by working backward one can solve for the
currents in each of the impedances.

There are, however, quite simple circuits which cannot be analyzed by this
method, as for example the circuit of Fig. 22-13. To analyze this circuit we must
write down the current and voltage equations from Kirchhoff’s rules. Let’s do it.
There is just one current equation:

I1 + I2 + I3 = 0,
so we know immediately that

I3 = −(I1 + I2).

We can save ourselves some algebra if we immediately make use of this result in
writing the voltage equations. For this circuit there are two independent voltage
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Fig. 22-12. A circuit which can be analyzed in terms of series and
parallel combinations.
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Fig. 22-13. A circuit that cannot be analyzed in terms of series and
parallel combinations.
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equations; they are
−E1 + I2z2 − I1z1 = 0

and
E2 − (I1 + I2)z3 − I2z2 = 0.

There are two equations and two unknown currents. Solving these equations for
I1 and I2, we get

I1 = z2E2 − (z2 + z3)E1

z1(z2 + z3) + z2z3
(22.20)

and

I2 = z1E2 + z3E1

z1(z2 + z3) + z2z3
. (22.21)

The third current is obtained from the sum of these two.
Another example of a circuit that cannot be analyzed by using the rules for

series and parallel impedance is shown in Fig. 22-14. Such a circuit is called a
“bridge.” It appears in many instruments used for measuring impedances. With
such a circuit one is usually interested in the question: How must the various
impedances be related if the current through the impedance z3 is to be zero? We
leave it for you to find the conditions for which this is so.

E

a

b

z1 z2

z3

z4 z5

z6

Fig. 22-14. A bridge circuit.
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22-4 Equivalent circuits

Suppose we connect a generator E to a circuit containing some complicated
interconnection of impedances, as indicated schematically in Fig. 22-15(a). All
of the equations we get from Kirchhoff’s rules are linear, so when we solve them
for the current I through the generator, we will get that I is proportional to E.
We can write

I = E

zeff
,

where now zeff is some complex number, an algebraic function of all the elements
in the circuit. (If the circuit contains no generators other than the one shown,
there is no additional term independent of E.) But this equation is just what
we would write for the circuit of Fig. 22-15(b). So long as we are interested
only in what happens to the left of the two terminals a and b, the two circuits
of Fig. 22-15 are equivalent. We can, therefore, make the general statement

(a)

a

b

E

I

V

Any
Circuit

of
z ’s

(b)

a

b

E

I

V zeff

Fig. 22-15. Any two-terminal network of passive elements is equivalent
to an effective impedance.
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that any two-terminal network of passive elements can be replaced by a single
impedance zeff without changing the currents and voltages in the rest of the
circuit. This statement is of course, just a remark about what comes out of
Kirchhoff’s rules—and ultimately from the linearity of Maxwell’s equations.

The idea can be generalized to a circuit that contains generators as well as
impedances. Suppose we look at such a circuit “from the point of view” of one of
the impedances, which we will call zn, as in Fig. 22-16(a). If we were to solve
the equation for the whole circuit, we would find that the voltage Vn between
the two terminals a and b is a linear function of I, which we can write

Vn = A−BIn, (22.22)

(a)

a

b

In

Vn zn

Any
Circuit
of z ’s

and E’s

(b)

a

b

In

Vn
zn

zeff

Eeff

Fig. 22-16. Any two-terminal network can be replaced by a generator
in series with an impedance.
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where A and B depend on the generators and impedances in the circuit to the
left of the terminals. For instance, for the circuit of Fig. 22-13, we find V1 = I1z1.
This can be written (by rearranging Eq. (22.20)] as

V1 =
[(

z2

z2 + z3

)
E2 − E1

]
− z2z3

z2 + z3
I1. (22.23)

The complete solution is then obtained by combining this equation with the one
for the impedance z1, namely, V1 = I1z1, or in the general case, by combining
Eq. (22.22) with

Vn = Inzn.

If now we consider that zn is attached to a simple series circuit of a generator
and a current, as in Fig. 22-15(b), the equation corresponding to Eq. (22.22) is

Vn = Eeff − Inzeff,

which is identical to Eq. (22.22) provided we set Eeff = A and zeff = B. So if we
are interested only in what happens to the right of the terminals a and b, the
arbitrary circuit of Fig. 22-16 can always be replaced by an equivalent combination
of a generator in series with an impedance.

22-5 Energy

We have seen that to build up the current I in an inductance, the energy U =
1
2LI

2 must be provided by the external circuit. When the current falls back to
zero, this energy is delivered back to the external circuit. There is no energy-loss
mechanism in an ideal inductance. When there is an alternating current through
an inductance, energy flows back and forth between it and the rest of the circuit,
but the average rate at which energy is delivered to the circuit is zero. We say that
an inductance is a nondissipative element; no electrical energy is dissipated—that
is, “lost”—in it.

Similarly, the energy of a condenser, U = 1
2CV

2, is returned to the external
circuit when a condenser is discharged. When a condenser is in an ac circuit
energy flows in and out of it, but the net energy flow in each cycle is zero. An
ideal condenser is also a nondissipative element.

We know that an emf is a source of energy. When a current I flows in the direc-
tion of the emf, energy is delivered to the external circuit at the rate dU/dt = EI.
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If current is driven against the emf—by other generators in the circuit—the emf
will absorb energy at the rate EI; since I is negative, dU/dt will also be negative.

If a generator is connected to a resistor R, the current through the resistor
is I = E/R. The energy being supplied by the generator at the rate EI is being
absorbed by the resistor. This energy goes into heat in the resistor and is lost
from the electrical energy of the circuit. We say that electrical energy is dissipated
in a resistor. The rate at which energy is dissipated in a resistor is dU/dt = RI2.

In an ac circuit the average rate of energy lost to a resistor is the average
of RI2 over one cycle. Since I = Îeiωt—by which we really mean that I varies
as cosωt—the average of I2 over one cycle is |Î|2/2, since the peak current is |Î|
and the average of cos2 ωt is 1/2.

What about the energy loss when a generator is connected to an arbitrary
impedance z? (By “loss” we mean, of course, conversion of electrical energy into
thermal energy.) Any impedance z can be written as the sum of its real and
imaginary parts. That is,

z = R+ iX, (22.24)

where R and X are real numbers. From the point of view of equivalent circuits
we can say that any impedance is equivalent to a resistance in series with a pure
imaginary impedance—called a reactance—as shown in Fig. 22-17.

We have seen earlier that any circuit that contains only L’s and C’s has an
impedance that is a pure imaginary number. Since there is no energy loss into

z

R

iX

Fig. 22-17. Any impedance is equivalent to a series combination of a
pure resistance and a pure reactance.
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any of the L’s and C’s on the average, a pure reactance containing only L’s
and C’s will have no energy loss. We can see that this must be true in general
for a reactance.

If a generator with the emf E is connected to the impedance z of Fig. 22-17,
the emf must be related to the current I from the generator by

E = I(R+ iX). (22.25)

To find the average rate at which energy is delivered, we want the average of
the product EI. Now we must be careful. When dealing with such products, we
must deal with the real quantities E(t) and I(t). (The real parts of the complex
functions will represent the actual physical quantities only when we have linear
equations; now we are concerned with products, which are certainly not linear.)

Suppose we choose our origin of t so that the amplitude Î is a real number,
let’s say I0; then the actual time variation I is given by

I = I0 cosωt.

The emf of Eq. (22.25) is the real part of

I0e
iωt(R+ iX)

or
E = I0R cosωt− I0X sinωt. (22.26)

The two terms in Eq. (22.26) represent the voltage drops across R and X in
Fig. 22-17. We see that the voltage drop across the resistance is in phase with
the current, while the voltage drop across the purely reactive part is out of phase
with the current.

The average rate of energy loss, 〈P 〉av, from the generator is the integral of
the product EI over one cycle divided by the period T ; in other words,

〈P 〉av = 1
T

∫ T

0
EI dt = 1

T

∫ T

0
I2
0R cos2 ωt dt− 1

T

∫ T

0
I2
0X cosωt sinωt dt.

The first integral is 1
2I

2
0R, and the second integral is zero. So the average

energy loss in an impedance z = R+ iX depends only on the real part of z, and
is I2

0R/2, which is in agreement with our earlier result for the energy loss in a
resistor. There is no energy loss in the reactive part.
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22-6 A ladder network

We would like now to consider an interesting circuit which can be analyzed
in terms of series and parallel combinations. Suppose we start with the circuit
of Fig. 22-18(a). We can see right away that the impedance from terminal a to
terminal b is simply z1 + z2. Now let’s take a little harder circuit, the one shown
in Fig. 22-18(b). We could analyze this circuit using Kirchhoff’s rules, but it is
also easy to handle with series and parallel combinations. We can replace the
two impedances on the right-hand end by a single impedance z3 = z1 + z2, as in
part (c) of the figure. Then the two impedances z2 and z3 can be replaced by
their equivalent parallel impedance z4, as shown in part (d) of the figure. Finally,
z1 and z4 are equivalent to a single impedance z5, as shown in part (e).

(a)

a

b

z1

z2 =

a

b

z3 z3 = z1 + z2

(b)

a

b

z1

z2

z1

z2 = (c)

a

b

z1

z2 z3

= (d)

a

b

z1

z4

1

z4
=
1

z2
+
1

z3

= (e)

a

b

z5

z5 = z1 + z4

Fig. 22-18. The effective impedance of a ladder.

Now we may ask an amusing question: What would happen if in the network
of Fig. 22-18(b) we kept on adding more sections forever—as we indicate by
the dashed lines in Fig. 22-19(a)? Can we solve such an infinite network? Well,
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a

b
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z2
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z2 etc.

(b)

a

b
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d

z1

z2 z0 =

a

b

z0

Fig. 22-19. The effective impedance of an infinite ladder.

that’s not so hard. First, we notice that such an infinite network is unchanged if
we add one more section at the “front” end. Surely, if we add one more section
to an infinite network it is still the same infinite network. Suppose we call the
impedance between the two terminals a and b of the infinite network z0; then
the impedance of all the stuff to the right of the two terminals c and d is also z0.
Therefore, so far as the front end is concerned, we can represent the network
as shown in Fig. 22-19(b). Forming the parallel combination of z2 with z0 and
adding the result in series with z1, we can immediately write down the impedance
of this circuit:

z = z1 + 1
(1/z2) + (1/z0) or z = z1 + z2z0

z2 + z0
.

But this impedance is also equal to z0, so we have the equation

z0 = z1 + z2z0

z2 + z0
.

We can solve for z0 to get

z0 = z1

2 +
√

(z2
1/4) + z1z2. (22.27)

So we have found the solution for the impedance of an infinite ladder of repeated
series and parallel impedances. The impedance z0 is called the characteristic
impedance of such an infinite network.
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C

L

C etc.

(b)

a

b

a′
L/2 L/2

C

L/2

C

L/2

C etc.

Fig. 22-20. An L-C ladder drawn in two equivalent ways.

Let’s now consider a specific example in which the series element is an
inductance L and the shunt element is a capacitance C, as shown in Fig. 22-20(a).
In this case we find the impedance of the infinite network by setting z1 = iωL
and z2 = 1/iωC. Notice that the first term, z1/2, in Eq. (22.27) is just one-half
the impedance of the first element. It would therefore seem more natural, or
at least somewhat simpler, if we were to draw our infinite network as shown in
Fig. 22-20(b). Looking at the infinite network from the terminal a′ we would see
the characteristic impedance

z0 =
√

(L/C)− (ω2L2/4). (22.28)

Now there are two interesting cases, depending on the frequency ω. If ω2

is less than 4/LC, the second term in the radical will be smaller than the first,
and the impedance z0 will be a real number. On the other hand, if ω2 is greater
than 4/LC the impedance z0 will be a pure imaginary number which we can
write as

z0 = i
√

(ω2L2/4)− (L/C).

We have said earlier that a circuit which contains only imaginary impedances,
such as inductances and capacitances, will have an impedance which is purely
imaginary. How can it be then that for the circuit we are now studying—which
has only L’s and C’s—the impedance is a pure resistance for frequencies be-
low

√
4/LC? For higher frequencies the impedance is purely imaginary, in

agreement with our earlier statement. For lower frequencies the impedance is
a pure resistance and will therefore absorb energy. But how can the circuit
continuously absorb energy, as a resistance does, if it is made only of inductances
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and capacitances? Answer: Because there is an infinite number of inductances
and capacitances, so that when a source is connected to the circuit, it supplies
energy to the first inductance and capacitance, then to the second, to the third,
and so on. In a circuit of this kind, energy is continually absorbed from the
generator at a constant rate and flows constantly out into the network, supplying
energy which is stored in the inductances and capacitances down the line.

This idea suggests an interesting point about what is happening in the circuit.
We would expect that if we connect a source to the front end, the effects of
this source will be propagated through the network toward the infinite end.
The propagation of the waves down the line is much like the radiation from an
antenna which absorbs energy from its driving source; that is, we expect such
a propagation to occur when the impedance is real, which occurs if ω is less
than

√
4/LC. But when the impedance is purely imaginary, which happens for

ω greater than
√

4/LC, we would not expect to see any such propagation.

22-7 Filters

We saw in the last section that the infinite ladder network of Fig. 22-20
absorbs energy continuously if it is driven at a frequency below a certain critical
frequency

√
4/LC, which we will call the cutoff frequency ω0. We suggested

that this effect could be understood in terms of a continuous transport of energy
down the line. On the other hand, at high frequencies, for w > ω0, there is no
continuous absorption of energy; we should then expect that perhaps the currents
don’t “penetrate” very far down the line. Let’s see whether these ideas are right.

Suppose we have the front end of the ladder connected to some ac generator
and we ask what the voltage looks like at, say, the 754th section of the ladder.
Since the network is infinite, whatever happens to the voltage from one section
to the next is always the same; so let’s just look at what happens when we go
from some section, say the nth to the next. We will define the currents In and
voltages Vn as shown in Fig. 22-21(a).

We can get the voltage Vn+1 from Vn by remembering that we can always re-
place the rest of the ladder after the nth section by its characteristic impedance z0;
then we need only analyze the circuit of Fig. 22-21(b). First, we notice that
any Vn, since it is across z0, must equal Inz0. Also, the difference between Vn
and Vn+1 is just Inz1:

Vn − Vn+1 = Inz1 = Vn
z1

z0
.
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z1
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I1 I2 I3
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z1

z2 z0Vn Vn+1

In In+1

Fig. 22-21. Finding the propagation factor of a ladder.

So we get the ratio
Vn+1

Vn
= 1− z1

z0
= z0 − z1

z0
.

We can call this ratio the propagation factor for one section of the ladder; we’ll
call it α. It is, of course, the same for all sections:

α = z0 − z1

z0
. (22.29)

The voltage after the nth section is then

Vn = αnE. (22.30)

You can now find the voltage after 754 sections; it is just α to the 754th power
times E.

Suppose we see what α is like for the L-C ladder of Fig. 22-20(a). Using z0
from Eq. (22.27), and z1 = iωL, we get

α =
√

(L/C)− (ω2L2/4)− i(ωL/2)√
(L/C)− (ω2L2/4) + i(ωL/2)

. (22.31)
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If the driving frequency is below the cutoff frequency ω0 =
√

4/LC, the radical
is a real number, and the magnitudes of the complex numbers in the numerator
and denominator are equal. Therefore, the magnitude of α is one; we can write

α = eiδ,

which means that the magnitude of the voltage is the same at every section;
only its phase changes. The phase change δ is, in fact, a negative number and
represents the “delay” of the voltage as it passes along the network.

For frequencies above the cutoff frequency ω0 it is better to factor out an i
from the numerator and denominator of Eq. (22.31) and rewrite it as

α =
√

(ω2L2/4)− (L/C)− (ωL/2)√
(ω2L2/4)− (L/C) + (ωL/2)

. (22.32)

The propagation factor α is now a real number, and a number less than one.
That means that the voltage at any section is always less than the voltage at the
preceding section by the factor α. For any frequency above ω0, the voltage dies
away rapidly as we go along the network. A plot of the absolute value of α as a
function of frequency looks like the graph in Fig. 22-22.

ω0 ω0

|α|

0

1

Fig. 22-22. The propagation factor of a section of an L-C ladder.

We see that the behavior of α, both above and below ω0, agrees with our
interpretation that the network propagates energy for ω < ω0 and blocks it
for ω > ω0. We say that the network “passes” low frequencies and “rejects” or
“filters out” the high frequencies. Any network designed to have its characteristics
vary in a prescribed way with frequency is called a “filter.” We have been analyzing
a “low-pass filter.”
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You may be wondering why all this discussion of an infinite network which
obviously cannot actually occur. The point is that the same characteristics are
found in a finite network if we finish it off at the end with an impedance equal
to the characteristic impedance z0. Now in practice it is not possible to exactly
reproduce the characteristic impedance with a few simple elements—like R’s, L’s,
and C’s. But it is often possible to do so with a fair approximation for a certain
range of frequencies. In this way one can make a finite filter network whose
properties are very nearly the same as those for the infinite case. For instance,
the L-C ladder behaves much as we have described it if it is terminated in the
pure resistance R =

√
L/C.

(a)

E

C

L

C

L

C

L

C

L

(b)

1/ω1/ω0

|α|

0

1

Fig. 22-23. (a) A high-pass filter; (b) its propagation factor as a
function of 1/ω.

If in our L-C ladder we interchange the positions of the L’s and C’s, to make
the ladder shown in Fig. 22-23(a), we can have a filter that propagates high
frequencies and rejects low frequencies. It is easy to see what happens with this
network by using the results we already have. You will notice that whenever we
change an L to a C and vice versa, we also change every iω to 1/iω. So whatever
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happened at ω before will now happen at 1/ω. In particular, we can see how α
will vary with frequency by using Fig. 22-22 and changing the label on the axis
to 1/ω, as we have done in Fig. 22-23(b).

The low-pass and high-pass filters we have described have various technical
applications. An L-C low-pass filter is often used as a “smoothing” filter in a
dc power supply. If we want to manufacture dc power from an ac source, we
begin with a rectifier which permits current to flow only in one direction. From
the rectifier we get a series of pulses that look like the function V (t) shown in
Fig. 22-24, which is lousy dc, because it wobbles up and down. Suppose we
would like a nice pure dc, such as a battery provides. We can come close to that
by putting a low-pass filter between the rectifier and the load.

T t

V (t)

0

Fig. 22-24. The output voltage of a full-wave rectifier.

We know from Chapter 50 of Vol. I that the time function in Fig. 22-24 can
be represented as a superposition of a constant voltage plus a sine wave, plus a
higher-frequency sine wave, plus a still higher-frequency sine wave, etc.—by a
Fourier series. If our filter is linear (if, as we have been assuming, the L’s and C’s
don’t vary with the currents or voltages) then what comes out of the filter is
the superposition of the outputs for each component at the input. If we arrange
that the cutoff frequency ω0 of our filter is well below the lowest frequency in the
function V (t), the dc (for which ω = 0) goes through fine, but the amplitude of
the first harmonic will be cut down a lot. And amplitudes of the higher harmonics
will be cut down even more. So we can get the output as smooth as we wish,
depending only on how many filter sections we are willing to buy.

A high-pass filter is used if one wants to reject certain low frequencies. For
instance, in a phonograph amplifier a high-pass filter may be used to let the
music through, while keeping out the low-pitched rumbling from the motor of
the turntable.

It is also possible to make “band-pass” filters that reject frequencies below
some frequency ω1 and above another frequency ω2 (greater than ω1), but pass
the frequencies between ω1 and ω2. This can be done simply by putting together
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(a)

ω

(b)

ωω1 ω2

Fig. 22-25. (a) A band-pass filter. (b) A simple resonant filter.

a high-pass and a low-pass filter, but it is more usually done by making a ladder in
which the impedances z1 and z2 are more complicated—being each a combination
of L’s and C’s. Such a band-pass filter might have a propagation constant like that
shown in Fig. 22-25(a). It might be used, for example, in separating signals that
occupy only an interval of frequencies, such as each of the many voice channels in
a high-frequency telephone cable, or the modulated carrier of a radio transmission.

We have seen in Chapter 25 of Vol. I that such filtering can also be done
using the selectivity of an ordinary resonance curve, which we have drawn for
comparison in Fig. 22-25(b). But the resonant filter is not as good for some
purposes as the band-pass filter. You will remember (Chapter 48, Vol. I) that
when a carrier of frequency ωc is modulated with a “signal” frequency ωs, the
total signal contains not only the carrier frequency but also the two side-band
frequencies ωc + ωs and ωc − ωs. With a resonant filter, these side-bands are
always attenuated somewhat, and the attenuation is more, the higher the signal
frequency, as you can see from the figure. So there is a poor “frequency response.”
The higher musical tones don’t get through. But if the filtering is done with a
band-pass filter designed so that the width ω2 − ω1 is at least twice the highest
signal frequency, the frequency response will be “flat” for the signals wanted.

We want to make one more point about the ladder filter: the L-C ladder
of Fig. 22-20 is also an approximate representation of a transmission line. If
we have a long conductor that runs parallel to another conductor—such as a
wire in a coaxial cable, or a wire suspended above the earth—there will be some
capacitance between the two conductors and also some inductance due to the
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magnetic field between them. If we imagine the line as broken up into small
lengths ∆`, each length will look like one section of the L-C ladder with a series
inductance ∆L and a shunt capacitance ∆C. We can then use our results for the
ladder filter. If we take the limit as ∆` goes to zero, we have a good description
of the transmission line. Notice that as ∆` is made smaller and smaller, both ∆L
and ∆C decrease, but in the same proportion, so that the ratio ∆L/∆C remains
constant. So if we take the limit of Eq. (22.28) as ∆L and ∆C go to zero, we
find that the characteristic impedance z0 is a pure resistance whose magnitude
is
√

∆L/∆C. We can also write the ratio ∆L/∆C as L0/C0, where L0 and C0
are the inductance and capacitance of a unit length of the line; then we have

z0 =
√
L0

C0
. (22.33)

You will also notice that as ∆L and ∆C go to zero, the cutoff frequency ω0 =√
4/LC goes to infinity. There is no cutoff frequency for an ideal transmission

line.

22-8 Other circuit elements

We have so far defined only the ideal circuit impedances—the inductance, the
capacitance, and the resistance—as well as the ideal voltage generator. We want
now to show that other elements, such as mutual inductances or transistors or
vacuum tubes, can be described by using only the same basic elements. Suppose
that we have two coils and that on purpose, or otherwise, some flux from one of
the coils links the other, as shown in Fig. 22-26(a). Then the two coils will have
a mutual inductance M such that when the current varies in one of the coils,
there will be a voltage generated in the other. Can we take into account such an
effect in our equivalent circuits? We can in the following way. We have seen that
the induced emf’s in each of two interacting coils can be written as the sum of
two parts:

E1 = −L1
dI1
dt
±M dI2

dt
,

E2 = −L2
dI2
dt
±M dI1

dt
.

(22.34)

The first term comes from the self-inductance of the coil, and the second term
comes from its mutual inductance with the other coil. The sign of the second term
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I1
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(b)

I1 I2

L1 L2

E1 E2

Fig. 22-26. Equivalent circuit of a mutual inductance.

can be plus or minus, depending on the way the flux from one coil links the other.
Making the same approximations we used in describing an ideal inductance, we
would say that the potential difference across the terminals of each coil is equal
to the electromotive force in the coil. Then the two equations of (22.34) are the
same as the ones we would get from the circuit of Fig. 22-26(b), provided the
electromotive force in each of the two circuits shown depends on the current in
the opposite circuit according to the relations

E1 = ±iωMI2, E2 = ±iωMI1. (22.35)

So what we can do is represent the effect of the self-inductance in a normal way
but replace the effect of the mutual inductance by an auxiliary ideal voltage
generator. We must in addition, of course, have the equation that relates this emf
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to the current in some other part of the circuit; but so long as this equation is
linear, we have just added more linear equations to our circuit equations, and all
of our earlier conclusions about equivalent circuits and so forth are still correct.

(a)

A B

C D

+ + + + + +

− − − − − −

− − − − − −

+ + + + + +

(b)

A B

C D

Fig. 22-27. Equivalent circuit of mutual capacitance.

In addition to mutual inductances there may also be mutual capacitances. So
far, when we have talked about condensers we have always imagined that there
were only two electrodes, but in many situations, for example in a vacuum tube,
there may be many electrodes close to each other. If we put an electric charge on
any one of the electrodes, its electric field will induce charges on each of the other
electrodes and affect its potential. As an example, consider the arrangement of
four plates shown in Fig. 22-27(a). Suppose these four plates are connected to
external circuits by means of the wires A, B, C, and D. So long as we are only
worried about electrostatic effects, the equivalent circuit of such an arrangement
of electrodes is as shown in part (b) of the figure. The electrostatic interaction
of any electrode with each of the others is equivalent to a capacity between the
two electrodes.
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Finally, let’s consider how we should represent such complicated devices as
transistors and radio tubes in an ac circuit. We should point out at the start
that such devices are often operated in such a way that the relationship between
the currents and voltages is not at all linear. In such cases, those statements we
have made which depend on the linearity of equations are, of course, no longer
correct. On the other hand, in many applications the operating characteristics
are sufficiently linear that we may consider the transistors and tubes to be linear
devices. By this we mean that the alternating currents in, say, the plate of
a vacuum tube are linearly proportional to the voltages that appear on the
other electrodes, say the grid voltage and the plate voltage. When we have such
linear relationships, we can incorporate the device into our equivalent circuit
representation.

As in the case of the mutual inductance, our representation will have to
include auxiliary voltage generators which describe the influence of the voltages
or currents in one part of the device on the currents or voltages in another part.
For example, the plate circuit of a triode can usually be represented by a resistance
in series with an ideal voltage generator whose source strength is proportional to
the grid voltage. We get the equivalent circuit shown in Fig. 22-28.* Similarly,
the collector circuit of a transistor is conveniently represented as a resistor in
series with an ideal voltage generator whose source strength is proportional to the
current from the emitter to the base of the transistor. The equivalent circuit is
then like that in Fig. 22-29. So long as the equations which describe the operation
are linear, we can use such representations for tubes or transistors. Then, when

PLATE

GRID

CATHODE

G

P

C

Vg E

Ê = −µVg

Fig. 22-28. A low-frequency equivalent circuit of a vacuum triode.

* The equivalent circuit shown is correct only for low frequencies. For high frequencies the
equivalent circuit gets much more complicated and will include various so-called “parasitic”
capacitances and inductances.
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Fig. 22-29. A low-frequency equivalent circuit of a transistor.

they are incorporated in a complicated network, our general conclusions about
the equivalent representation of any arbitrary connection of elements is still valid.

There is one remarkable thing about transistor and radio tube circuits which
is different from circuits containing only impedances: the real part of the effective
impedance zeff can become negative. We have seen that the real part of z
represents the loss of energy. But it is the important characteristic of transistors
and tubes that they supply energy to the circuit. (Of course they don’t just
“make” energy; they take energy from the dc circuits of the power supplies and
convert it into ac energy.) So it is possible to have a circuit with a negative
resistance. Such a circuit has the property that if you connect it to an impedance
with a positive real part, i.e., a positive resistance, and arrange matters so that
the sum of the two real parts is exactly zero, then there is no dissipation in
the combined circuit. If there is no loss of energy, any alternating voltage once
started will remain forever. This is the basic idea behind the operation of an
oscillator or signal generator which can be used as a source of alternating voltage
at any desired frequency.
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23

Cavity Resonators

Review: Chapter 23, Vol. I, Resonance
Chapter 49, Vol. I, Modes

23-1 Real circuit elements

When looked at from any one pair of terminals, any arbitrary circuit made
up of ideal impedances and generators is, at any given frequency, equivalent to a
generator E in series with an impedance z. That comes about because if we put
a voltage V across the terminals and solve all the equations to find the current I,
we must get a linear relation between the current and the voltage. Since all the
equations are linear, the result for I must also depend only linearly on V . The
most general linear form can be expressed as

I = 1
z

(V − E). (23.1)

In general, both z and E may depend in some complicated way on the frequency ω.
Equation (23.1), however, is the relation we would get if behind the two terminals
there was just the generator E(ω) in series with the impedance z(ω).

There is also the opposite kind of question: If we have any electromagnetic
device at all with two terminals and we measure the relation between I and V to
determine E and z as functions of frequency, can we find a combination of our
ideal elements that is equivalent to the internal impedance z? The answer is that
for any reasonable—that is, physically meaningful—function z(ω), it is possible
to approximate the situation to as high an accuracy as you wish with a circuit
containing a finite set of ideal elements. We don’t want to consider the general
problem now, but only look at what might be expected from physical arguments
for a few cases.
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L

R

C

Fig. 23-1. Equivalent circuit of a real resistor.

If we think of a real resistor, we know that the current through it will produce
a magnetic field. So any real resistor should also have some inductance. Also,
when a resistor has a potential difference across it, there must be charges on
the ends of the resistor to produce the necessary electric fields. As the voltage
changes, the charges will change in proportion, so the resistor will also have some
capacitance. We expect that a real resistor might have the equivalent circuit
shown in Fig. 23-1. In a well-designed resistor, the so-called “parasitic” elements
L and C are small, so that at the frequencies for which it is intended, ωL is much
less than R, and 1/ωC is much greater than R. It may therefore be possible to
neglect them. As the frequency is raised, however, they will eventually become
important, and a resistor begins to look like a resonant circuit.

A real inductance is also not equal to the idealized inductance, whose impe-
dance is iωL. A real coil of wire will have some resistance, so at low frequencies
the coil is really equivalent to an inductance in series with some resistance, as
shown in Fig. 23-2(a). But, you are thinking, the resistance and inductance
are together in a real coil—the resistance is spread all along the wire, so it is
mixed in with the inductance. We should probably use a circuit more like the
one in Fig. 23-2(b), which has several little R’s and L’s in series. But the total
impedance of such a circuit is just

∑
R +

∑
iωL, which is equivalent to the

simpler diagram of part (a).
As we go up in frequency with a real coil, the approximation of an inductance

plus a resistance is no longer very good. The charges that must build up on the
wires to make the voltages will become important. It is as if there were little
condensers across the turns of the coil, as sketched in Fig. 23-3(a). We might try
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(a) (b)

Fig. 23-2. The equivalent circuit of a real inductance at low frequencies.

to approximate the real coil by the circuit in Fig. 23-3(b). At low frequencies,
this circuit can be imitated fairly well by the simpler one in part (c) of the figure
(which is again the same resonant circuit we found for the high-frequency model
of a resistor). For higher frequencies, however, the more complicated circuit of
Fig. 23-3(b) is better. In fact, the more accurately you wish to represent the
actual impedance of a real, physical inductance, the more ideal elements you will
have to use in the artificial model of it.

Let’s look a little more closely at what goes on in a real coil. The impedance
of an inductance goes as ωL, so it becomes zero at low frequencies—it is a “short
circuit”: all we see is the resistance of the wire. As we go up in frequency, ωL
soon becomes much larger than R, and the coil looks pretty much like an ideal
inductance. As we go still higher, however, the capacities become important.
Their impedance is proportional to 1/ωC, which is large for small ω. For small
enough frequencies a condenser is an “open circuit,” and when it is in parallel
with something else, it draws no current. But at high frequencies, the current
prefers to flow into the capacitance between the turns, rather than through
the inductance. So the current in the coil jumps from one turn to the other
and doesn’t bother to go around and around where it has to buck the emf. So
although we may have intended that the current should go around the loop, it
will take the easier path—the path of least impedance.

If the subject had been one of popular interest, this effect would have been
called “the high-frequency barrier,” or some such name. The same kind of thing
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(a)

(b) (c)

Fig. 23-3. The equivalence circuit of a real inductance at higher
frequencies.

happens in all subjects. In aerodynamics, if you try to make things go faster
than the speed of sound when they were designed for lower speeds, they don’t
work. It doesn’t mean that there is a great “barrier” there; it just means that the
object should be redesigned. So this coil which we designed as an “inductance”
is not going to work as a good inductance, but as some other kind of thing at
very high frequencies. For high frequencies, we have to find a new design.

23-2 A capacitor at high frequencies

Now we want to discuss in detail the behavior of a capacitor—a geometrically
ideal capacitor—as the frequency gets larger and larger, so we can see the
transition of its properties. (We prefer to use a capacitor instead of an inductance,
because the geometry of a pair of plates is much less complicated than the geometry
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Fig. 23-4. The electric and magnetic fields between the plates of a
capacitor.

of a coil.) We consider the capacitor shown in Fig. 23-4(a), which consists of two
parallel circular plates connected to an external generator by a pair of wires. If
we charge the capacitor with dc, there will be a positive charge on one plate and
a negative charge on the other; and there will be a uniform electric field between
the plates.
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Now suppose that instead of dc, we put an ac of low frequency on the plates.
(We will find out later what is “low” and what is “high”.) Say we connect the
capacitor to a lower-frequency generator. As the voltage alternates, the positive
charge on the top plate is taken off and negative charge is put on. While that
is happening, the electric field disappears and then builds up in the opposite
direction. As the charge sloshes back and forth slowly, the electric field follows.
At each instant the electric field is uniform, as shown in Fig. 23-4(b), except for
some edge effects which we are going to disregard. We can write the magnitude
of the electric field as

E = E0e
iωt, (23.2)

where E0 is a constant.
Now will that continue to be right as the frequency goes up? No, because as

the electric field is going up and down, there is a flux of electric field through
any loop like Γ1 in Fig. 23-4(a). And, as you know, a changing electric field acts
to produce a magnetic field. One of Maxwell’s equations says that when there is
a varying electric field, as there is here, there has got to be a line integral of the
magnetic field. The integral of the magnetic field around a closed ring, multiplied
by c2, is equal to the time rate-of-change of the electric flux through the area
inside the ring (if there are no currents):

c2
∮

Γ
B · ds = d

dt

∫
inside Γ

E · n da. (23.3)

So how much magnetic field is there? That’s not very hard. Suppose that we
take the loop Γ1, which is a circle of radius r. We can see from symmetry that
the magnetic field goes around as shown in the figure. Then the line integral
of B is 2πrB. And, since the electric field is uniform, the flux of the electric field
is simply E multiplied by πr2, the area of the circle:

c2B · 2πr = ∂

∂t
E · πr2. (23.4)

The derivative of E with respect to time is, for our alternating field, sim-
ply iωE0e

iωt. So we find that our capacitor has the magnetic field

B = iωr

2c2 E0e
iωt. (23.5)
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In other words, the magnetic field also oscillates and has a strength proportional
to r.

What is the effect of that? When there is a magnetic field that is varying,
there will be induced electric fields and the capacitor will begin to act a little bit
like an inductance. As the frequency goes up, the magnetic field gets stronger; it
is proportional to the rate of change of E, and so to ω. The impedance of the
capacitor will no longer be simply 1/iωC.

Let’s continue to raise the frequency and to analyze what happens more
carefully. We have a magnetic field that goes sloshing back and forth. But then
the electric field cannot be uniform, as we have assumed! When there is a varying
magnetic field, there must be a line integral of the electric field—because of
Faraday’s law. So if there is an appreciable magnetic field, as begins to happen
at high frequencies, the electric field cannot be the same at all distances from
the center. The electric field must change with r so that the line integral of the
electric field can equal the changing flux of the magnetic field.

Let’s see if we can figure out the correct electric field. We can do that by
computing a “correction” to the uniform field we originally assumed for low
frequencies. Let’s call the uniform field E1, which will still be E0e

iωt, and write
the correct field as

E = E1 + E2,

where E2 is the correction due to the changing magnetic field. For any ω we will
write the field at the center of the condenser as E0e

iωt (thereby defining E0), so
that we have no correction at the center; E2 = 0 at r = 0.

To find E2 we can use the integral form of Faraday’s law:∮
Γ
E · ds = − d

dt
(flux of B).

The integrals are simple if we take them for the curve Γ2, shown in Fig. 23-4(b),
which goes up along the axis, out radially the distance r along the top plate,
down vertically to the bottom plate, and back to the axis. The line integral of E1
around this curve is, of course, zero; so only E2 contributes, and its integral is
just −E2(r) ·h, where h is the spacing between the plates. (We call E positive if it
points upward.) This is equal to minus the rate of change of the flux of B, which
we have to get by an integral over the shaded area S inside Γ2 in Fig. 23-4(b).
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The flux through a vertical strip of width dr is B(r)h dr, so the total flux is

h

∫
B(r) dr.

Setting −∂/∂t of the flux equal to the line integral of E2, we have

E2(r) = ∂

∂t

∫
B(r) dr. (23.6)

Notice that the h cancels out; the fields don’t depend on the separation of the
plates.

Using Eq. (23.5) for B(r), we have

E2(r) = ∂

∂t

iωr2

4c2 E0e
iωt.

The time derivative just brings down another factor iω; we get

E2(r) = −ω
2r2

4c2 E0e
iωt. (23.7)

As we expect, the induced field tends to reduce the electric field farther out. The
corrected field E = E1 + E2 is then

E = E1 + E2 =
(

1− 1
4
ω2r2

c2

)
E0e

iωt. (23.8)

The electric field in the capacitor is no longer uniform; it has the parabolic
shape shown by the broken line in Fig. 23-5. You see that our simple capacitor
is getting slightly complicated.

We could now use our results to calculate the impedance of the capacitor
at high frequencies. Knowing the electric field, we could compute the charges
on the plates and find out how the current through the capacitor depends on
the frequency ω, but we are not interested in that problem for the moment. We
are more interested in seeing what happens as we continue to go up with the
frequency—to see what happens at even higher frequencies. Aren’t we already
finished? No, because we have corrected the electric field, which means that
the magnetic field we have calculated is no longer right. The magnetic field of
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Fig. 23-5. The electric field between the capacitor plates at high
frequency. (Edge effects are neglected.)

Eq. (23.5) is approximately right, but it is only a first approximation. So let’s
call it B1. We should then rewrite Eq. (23.5) as

B1 = iωr

2c2 E0e
iωt. (23.9)

You will remember that this field was produced by the variation of E1. Now the
correct magnetic field will be that produced by the total electric field E1 +E2. If
we write the magnetic field as B = B1 +B2, the second term is just the additional
field produced by E2. To find B2 we can go through the same arguments we
have used to find B1; the line integral of B2 around the curve Γ1 is equal to the
rate of change of the flux of E2 through Γ1. We will just have Eq. (23.4) again
with B replaced by B2 and E replaced by E2:

c2B2 · 2πr = d

dt
(flux of E2 through Γ1).

Since E2 varies with radius, to obtain its flux we must integrate over the circular
surface inside Γ1. Using 2πr dr as the element of area, this integral is∫ r

0
E2(r) · 2πr dr.

So we get for B2(r)

B2(r) = 1
rc2

∂

∂t

∫
E2(r)r dr. (23.10)
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Using E2(r) from Eq. (23.7), we need the integral of r3 dr, which is, of course,
r4/4. Our correction to the magnetic field becomes

B2(r) = − iω
3r3

16c4 E0e
iωt. (23.11)

But we are still not finished! If the magnetic field B is not the same as we
first thought, then we have incorrectly computed E2. We must make a further
correction to E, which comes from the extra magnetic field B2. Let’s call this
additional correction to the electric field E3. It is related to the magnetic field B2
in the same way that E2 was related to B1. We can use Eq. (23.6) all over again
just by changing the subscripts:

E3(r) = ∂

∂t

∫
B2(r) dr. (23.12)

Using our result, Eq. (23.11), for B2, the new correction to the electric field is

E3(r) = +ω4r4

64c4 E0e
iωt. (23.13)

Writing our doubly corrected electric field as E = E1 + E2 + E3, we get

E = E0e
iωt

[
1− 1

22

(
ωr

c

)2
+ 1

22 · 42

(
ωr

c

)4]
. (23.14)

The variation of the electric field with radius is no longer the simple parabola we
drew in Fig. 23-5, but at large radii lies slightly above the curve (E1 + E2).

We are not quite through yet. The new electric field produces a new correction
to the magnetic field, and the newly corrected magnetic field will produce a further
correction to the electric field, and on and on. However, we already have all the
formulas that we need. For B3 we can use Eq. (23.10), changing the subscripts
of B and E from 2 to 3.

The next correction to the electric field is

E4 = − 1
22 · 42 · 62

(
ωr

c

)6
E0e

iωt.

So to this order we have that the complete electric field is given by

E = E0e
iωt

[
1− 1

(1!)2

(
ωr

2c

)2
+ 1

(2!)2

(
ωr

2c

)4
− 1

(3!)2

(
ωr

2c

)6
± · · ·

]
. (23.15)
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where we have written the numerical coefficients in such a way that it is obvious
how the series is to be continued.

Our final result is that the electric field between the plates of the capacitor,
for any frequency, is given by E0e

iωt times the infinite series which contains only
the variable ωr/c. If we wish, we can define a special function, which we will
call J0(x), as the infinite series that appears in the brackets of Eq. (23.15):

J0(x) = 1− 1
(1!)2

(
x

2

)2
+ 1

(2!)2

(
x

2

)4
− 1

(3!)2

(
x

2

)6
± · · · (23.16)

Then we can write our solution as E0e
iωt times this function, with x = ωr/c:

E = E0e
iωtJ0

(
ωr

c

)
. (23.17)

The reason we have called our special function J0 is that, naturally, this is
not the first time anyone has ever worked out a problem with oscillations in a
cylinder. The function has come up before and is usually called J0. It always
comes up whenever you solve a problem about waves with cylindrical symmetry.
The function J0 is to cylindrical waves what the cosine function is to waves on a
straight line. So it is an important function, invented a long time ago. Then a
man named Bessel got his name attached to it. The subscript zero means that
Bessel invented a whole lot of different functions and this is just the first of them.

The other functions of Bessel—J1, J2, and so on—have to do with cylindrical
waves which have a variation of their strength with the angle around the axis of
the cylinder.

The completely corrected electric field between the plates of our circular
capacitor, given by Eq. (23.17), is plotted as the solid line in Fig. 23-5. For
frequencies that are not too high, our second approximation was already quite
good. The third approximation was even better—so good, in fact, that if we had
plotted it, you would not have been able to see the difference between it and the
solid curve. You will see in the next section, however, that the complete series is
needed to get an accurate description for large radii, or for high frequencies.

23-3 A resonant cavity

We want to look now at what our solution gives for the electric field between
the plates of the capacitor as we continue to go to higher and higher frequencies.
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For large ω, the parameter x = ωr/c also gets large, and the first few terms in
the series for J0 of x will increase rapidly. That means that the parabola we have
drawn in Fig. 23-5 curves downward more steeply at higher frequencies. In fact,
it looks as though the field would fall all the way to zero at some high frequency,
perhaps when c/ω is approximately one-half of a. Let’s see whether J0 does
indeed go through zero and become negative. We begin by trying x = 2:

J0(2) = 1− 1 + 1
4 −

1
36 = 0.22.

The function is still not zero, so let’s try a higher value of x, say, x = 2.5. Putting
in numbers, we write

J0(2.5) = 1− 1.56 + 0.61− 0.11 = −0.06.

The function J0 has already gone through zero by the time we get to x = 2.5.
Comparing the results for x = 2 and x = 2.5, it looks as though J0 goes through
zero at one-fifth of the way from 2.5 to 2. We would guess that the zero occurs
for x approximately equal to 2.4. Let’s see what that value of x gives:

J0(2.4) = 1− 1.44 + 0.52− 0.08 = 0.00.

We get zero to the accuracy of our two decimal places. If we make the calculation
more accurate (or since J0 is a well-known function, if we look it up in a book),
we find that it goes through zero at x = 2.405. We have worked it out by hand
to show you that you too could have discovered these things rather than having
to borrow them from a book.

As long as we are looking up J0 in a book, it is interesting to notice how it
goes for larger values of x; it looks like the graph in Fig. 23-6. As x increases,
J0(x) oscillates between positive and negative values with a decreasing amplitude
of oscillation.

We have gotten the following interesting result: If we go high enough in
frequency, the electric field at the center of our condenser will be one way and
the electric field near the edge will point in the opposite direction. For example,
suppose that we take an ω high enough so that x = ωr/c at the outer edge of
the capacitor is equal to 4; then the edge of the capacitor corresponds to the
abscissa x = 4 in Fig. 23-6. This means that our capacitor is being operated at
the frequency ω = 4c/a. At the edge of the plates, the electric field will have
a rather high magnitude opposite the direction we would expect. That is the
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Fig. 23-6. The Bessel function J0(x).

terrible thing that can happen to a capacitor at high frequencies. If we go to
very high frequencies, the direction of the electric field oscillates back and forth
many times as we go out from the center of the capacitor. Also there are the
magnetic fields associated with these electric fields. It is not surprising that our
capacitor doesn’t look like the ideal capacitance for high frequencies. We may
even start to wonder whether it looks more like a capacitor or an inductance.
We should emphasize that there are even more complicated effects that we have
neglected which happen at the edges of the capacitor. For instance, there will be
a radiation of waves out past the edges, so the fields are even more complicated
than the ones we have computed, but we will not worry about those effects now.

We could try to figure out an equivalent circuit for the capacitor, but perhaps
it is better if we just admit that the capacitor we have designed for low-frequency
fields is just no longer satisfactory when the frequency is too high. If we want to
treat the operation of such an object at high frequencies, we should abandon the
approximations to Maxwell’s equations that we have made for treating circuits
and return to the complete set of equations which describe completely the fields
in space. Instead of dealing with idealized circuit elements, we have to deal with
the real conductors as they are, taking into account all the fields in the spaces in
between. For instance, if we want a resonant circuit at high frequencies we will
not try to design one using a coil and a parallel-plate capacitor.

We have already mentioned that the parallel-plate capacitor we have been
analyzing has some of the aspects of both a capacitor and an inductance. With
the electric field there are charges on the surfaces of the plates, and with the
magnetic fields there are back emf’s. Is it possible that we already have a resonant
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circuit? We do indeed. Suppose we pick a frequency for which the electric field
pattern falls to zero at some radius inside the edge of the disc; that is, we
choose ωa/c greater than 2.405. Everywhere on a circle coaxial with the plates
the electric field will be zero. Now suppose we take a thin metal sheet and cut
a strip just wide enough to fit between the plates of the capacitor. Then we
bend it into a cylinder that will go around at the radius where the electric field
is zero. Since there are no electric fields there, when we put this conducting
cylinder in place, no currents will flow in it; and there will be no changes in
the electric and magnetic fields. We have been able to put a direct short circuit
across the capacitor without changing anything. And look what we have; we
have a complete cylindrical can with electrical and magnetic fields inside and
no connection at all to the outside world. The fields inside won’t change even if
we throw away the edges of the plates outside our can, and also the capacitor
leads. All we have left is a closed can with electric and magnetic fields inside,
as shown in Fig. 23-7(a). The electric fields are oscillating back and forth at
the frequency ω—which, don’t forget, determined the diameter of the can. The
amplitude of the oscillating E field varies with the distance from the axis of the
can, as shown in the graph of Fig. 23-7(b). This curve is just the first arch of the
Bessel function of zero order. There is also a magnetic field which goes in circles
around the axis and oscillates in time 90◦ out of phase with the electric field.

We can also write out a series for the magnetic field and plot it, as shown in
the graph of Fig. 23-7(c).

How is it that we can have an electric and magnetic field inside a can with
no external connections? It is because the electric and magnetic fields maintain
themselves, the changing E makes a B and the changing B makes an E—all
according to the equations of Maxwell. The magnetic field has an inductive
aspect, and the electric field a capacitive aspect; together they make something
like a resonant circuit. Notice that the conditions we have described would only
happen if the radius of the can is exactly 2.405c/ω. For a can of a given radius,
the oscillating electric and magnetic fields will maintain themselves—in the way
we have described—only at that particular frequency. So a cylindrical can of
radius r is resonant at the frequency

ω0 = 2.405 c
r
. (23.18)

We have said that the fields continue to oscillate in the same way after the can
is completely closed. That is not exactly right. It would be possible if the walls of
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Fig. 23-7. The electric and magnetic fields in an enclosed cylindrical
can.

the can were perfect conductors. For a real can, however, the oscillating currents
which exist on the inside walls of the can lose energy because of the resistance
of the material. The oscillations of the fields will gradually die away. We can
see from Fig. 23-7 that there must be strong currents associated with electric
and magnetic fields inside the cavity. Because the vertical electrical field stops
suddenly at the top and bottom plates of the can, it has a large divergence there;
so there must be positive and negative electric charges on the inner surfaces of
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the can, as shown in Fig. 23-7(a). When the electric field reverses, the charges
must reverse also, so there must be an alternating current between the top and
bottom plates of the can. These charges will flow in the sides of the can, as shown
in the figure. We can also see that there must be currents in the sides of the can
by considering what happens to the magnetic field. The graph of Fig. 23-7(c)
tells us that the magnetic field suddenly drops to zero at the edge of the can.
Such a sudden change in the magnetic field can happen only if there is a current
in the wall. This current is what gives the alternating electric charges on the top
and bottom plates of the can.

You may be wondering about our discovery of currents in the vertical sides
of the can. What about our earlier statement that nothing would be changed
when we introduced these vertical sides in a region where the electric field was
zero? Remember, however, that when we first put in the sides of the can, the top
and bottom plates extended out beyond them, so that there were also magnetic
fields on the outside of our can. It was only when we threw away the parts of
the capacitor plates beyond the edges of the can that net currents had to appear
on the insides of the vertical walls.

E

B

INPUT
LOOP

OUTPUT
LOOP

Fig. 23-8. Coupling into and out of a resonant cavity.

Although the electric and magnetic fields in the completely enclosed can will
gradually die away because of the energy losses, we can stop this from happening
if we make a little hole in the can and put in a little bit of electrical energy to
make up the losses. We take a small wire, poke it through the hole in the side of
the can, and fasten it to the inside wall so that it makes a small loop, as shown in
Fig. 23-8. If we now connect this wire to a source of high-frequency alternating
current, this current will couple energy into the electric and magnetic fields of
the cavity and keep the oscillations going. This will happen, of course, only if
the frequency of the driving source is at the resonant frequency of the can. If
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Fig. 23-9. A setup for observing the cavity resonance.

the source is at the wrong frequency, the electric and magnetic fields will not
resonate, and the fields in the can will be very weak.

The resonant behavior can easily be seen by making another small hole in the
can and hooking in another coupling loop, as we have also drawn in Fig. 23-8. The
changing magnetic field through this loop will generate an induced electromotive
force in the loop. If this loop is now connected to some external measuring
circuit, the currents will be proportional to the strength of the fields in the cavity.
Suppose we now connect the input loop of our cavity to an RF signal generator,
as shown in Fig. 23-9. The signal generator contains a source of alternating
current whose frequency can be varied by varying the knob on the front of the
generator. Then we connect the output loop of the cavity to a “detector,” which
is an instrument that measures the current from the output loop. It gives a meter
reading proportional to this current. If we now measure the output current as a
function of the frequency of the signal generator, we find a curve like that shown in
Fig. 23-10. The output current is small for all frequencies except those very near
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∆ω = ω0/Q

Fig. 23-10. The frequency response curve of a resonant cavity.
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the frequency ω0, which is the resonant frequency of the cavity. The resonance
curve is very much like those we described in Chapter 23 of Vol. I. The width of
the resonance is however, much narrower than we usually find for resonant circuits
made of inductances and capacitors; that is, the Q of the cavity is very high. It
is not unusual to find Q’s as high as 100,000 or more if the inside walls of the
cavity are made of some material with a very good conductivity, such as silver.

23-4 Cavity modes

Suppose we now try to check our theory by making measurements with an
actual can. We take a can which is a cylinder with a diameter of 3.0 inches and
a height of about 2.5 inches. The can is fitted with an input and output loop, as
shown in Fig. 23-8. If we calculate the resonant frequency expected for this can
according to Eq. (23.18), we get that f0 = ω0/2π = 3010 megacycles. When we
set the frequency of our signal generator near 3000 megacycles and vary it slightly
until we find the resonance, we observe that the maximum output current occurs
for a frequency of 3050 megacycles, which is quite close to the predicted resonant
frequency, but not exactly the same. There are several possible reasons for the
discrepancy. Perhaps the resonant frequency is changed a little bit because of the
holes we have cut to put in the coupling loops. A little thought, however, shows
that the holes should lower the resonant frequency a little bit, so that cannot be
the reason. Perhaps there is some slight error in the frequency calibration of the
signal generator, or perhaps our measurement of the diameter of the cavity is
not accurate enough. Anyway, the agreement is fairly close.

Much more important is something that happens if we vary the frequency of
our signal generator somewhat further from 3000 megacycles. When we do that
we get the results shown in Fig. 23-11. We find that, in addition to the resonance
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Fig. 23-11. Observed resonant frequencies of a cylindrical cavity.
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we expected near 3000 megacycles, there is also a resonance near 3300 megacycles
and one near 3820 megacycles. What do these extra resonances mean? We might
get a clue from Fig. 23-6. Although we have been assuming that the first zero
of the Bessel function occurs at the edge of the can, it could also be that the
second zero of the Bessel function corresponds to the edge of the can, so that
there is one complete oscillation of the electric field as we move from the center
of the can out to the edge, as shown in Fig. 23-12. This is another possible mode
for the oscillating fields. We should certainly expect the can to resonate in such
a mode. But notice, the second zero of the Bessel function occurs at x = 5.52,

(a)
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(b)

r

E

E0

r = 5.52c/ω

Fig. 23-12. A higher-frequency mode.
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which is over twice as large as the value at the first zero. The resonant frequency
of this mode should therefore be higher than 6000 megacycles. We would, no
doubt, find it there, but it doesn’t explain the resonance we observe at 3300.

The trouble is that in our analysis of the behavior of a resonant cavity we
have considered only one possible geometric arrangement of the electric and
magnetic fields. We have assumed that the electric fields are vertical and that
the magnetic fields lie in horizontal circles. But other fields are possible. The
only requirements are that the fields should satisfy Maxwell’s equations inside
the can and that the electric field should meet the wall at right angles. We have
considered the case in which the top and the bottom of the can are flat, but
things would not be completely different if the top and bottom were curved. In
fact, how is the can supposed to know which is its top and bottom, and which
are its sides? It is, in fact, possible to show that there is a mode of oscillation
of the fields inside the can in which the electric fields go more or less across the
diameter of the can, as shown in Fig. 23-13.

E B

Fig. 23-13. A transverse mode of the cylindrical cavity.

It is not too hard to understand why the natural frequency of this mode
should be not very different from the natural frequency of the first mode we have
considered. Suppose that instead of our cylindrical cavity we had taken a cavity
which was a cube 3 inches on a side. It is clear that this cavity would have three
different modes, but all with the same frequency. A mode with the electric field
going more or less up and down would certainly have the same frequency as the
mode in which the electric field was directed right and left. If we now distort
the cube into a cylinder, we will change these frequencies somewhat. We would
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Fig. 23-14. Another mode of a cylindrical cavity.

still expect them not to be changed too much, provided we keep the dimensions
of the cavity more or less the same. So the frequency of the mode of Fig. 23-13
should not be too different from the mode of Fig. 23-8. We could make a detailed
calculation of the natural frequency of the mode shown in Fig. 23-13, but we will
not do that now. When the calculations are carried through, it is found that, for
the dimensions we have assumed, the resonant frequency comes out very close to
the observed resonance at 3300 megacycles.

By similar calculations it is possible to show that there should be still another
mode at the other resonant frequency we found near 3800 megacycles. For this
mode, the electric and magnetic fields are as shown in Fig. 23-14. The electric
field does not bother to go all the way across the cavity. It goes from the sides
to the ends, as shown.

As you will probably now believe, if we go higher and higher in frequency we
should expect to find more and more resonances. There are many different modes,
each of which will have a different resonant frequency corresponding to some
particular complicated arrangement of the electric and magnetic fields. Each of
these field arrangements is called a resonant mode. The resonance frequency of
each mode can be calculated by solving Maxwell’s equations for the electric and
magnetic fields in the cavity.

When we have a resonance at some particular frequency, how can we know
which mode is being excited? One way is to poke a little wire into the cavity
through a small hole. If the electric field is along the wire, as in Fig. 23-15(a),
there will be relatively large currents in the wire, sapping energy from the
fields, and the resonance will be suppressed. If the electric field is as shown in
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Fig. 23-15. A short metal wire inserted into a cavity will disturb the
resonance much more when it is parallel to E than when it is at right
angles.

Fig. 23-15(b), the wire will have a much smaller effect. We could find which
way the field points in this mode by bending the end of the wire, as shown in
Fig. 23-15(c). Then, as we rotate the wire, there will be a big effect when the
end of the wire is parallel to E and a small effect when it is rotated so as to be
at 90◦ to E.

23-5 Cavities and resonant circuits

Although the resonant cavity we have been describing seems to be quite
different from the ordinary resonant circuit consisting of an inductance and a
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capacitor, the two resonant systems are, of course, closely related. They are both
members of the same family; they are just two extreme cases of electromagnetic
resonators—and there are many intermediate cases between these two extremes.
Suppose we start by considering the resonant circuit of a capacitor in parallel
with an inductance, as shown in Fig. 23-16(a). This circuit will resonate at the
frequency ω0 = 1/

√
LC. If we want to raise the resonant frequency of this circuit,

we can do so by lowering the inductance L. One way is to decrease the number
of turns in the coil. We can, however, go only so far in this direction. Eventually
we will get down to the last turn, and we will have just a piece of wire joining the
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Fig. 23-16. Resonators of progressively higher resonant frequencies.
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top and bottom plates of the condenser. We could raise the resonant frequency
still further by making the capacitance smaller; however, we can also continue to
decrease the inductance by putting several inductances in parallel. Two one-turn
inductances in parallel will have only half the inductance of each turn. So when
our inductance has been reduced to a single turn, we can continue to raise the
resonant frequency by adding other single loops from the top plate to the bottom
plate of the condenser. For instance, Fig. 23-16(b) shows the condenser plates
connected by six such “single-turn inductances.” If we continue to add many such
pieces of wire, we can make the transition to the completely enclosed resonant
system shown in part (c) of the figure, which is a drawing of the cross section of a
cylindrically symmetrical object. Our inductance is now a cylindrical hollow can
attached to the edges of the condenser plates. The electric and magnetic fields
will be as shown in the figure. Such an object is, of course, a resonant cavity. It
is called a “loaded” cavity. But we can still think of it as an L-C circuit in which
the capacity section is the region where we find most of the electric field and the
inductance section is that region where we find most of the magnetic field.

If we want to make the frequency of the resonator in Fig. 23-16(c) still higher,
we can do so by continuing to decrease the inductance L. To do that, we must
decrease the geometric dimensions of the inductance section, for example by
decreasing the dimension h in the drawing. As h is decreased, the resonant
frequency will be increased. Eventually, of course, we will get to the situation in
which the height h is just equal to the separation between the condenser plates.
We then have just a cylindrical can; our resonant circuit has become the cavity
resonator of Fig. 23-7.

You will notice that in the original L-C resonant circuit of Fig. 23-16 the
electric and magnetic fields are quite separate. As we have gradually modified the
resonant system to make higher and higher frequencies, the magnetic field has
been brought closer and closer to the electric field until in the cavity resonator
the two are quite intermixed.

Although the cavity resonators we have talked about in this chapter have been
cylindrical cans, there is nothing magic about the cylindrical shape. A can of any
shape will have resonant frequencies corresponding to various possible modes of
oscillations of the electric and magnetic fields. For example, the “cavity” shown
in Fig. 23-17 will have its own particular set of resonant frequencies—although
they would be rather difficult to calculate.
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Fig. 23-17. Another resonant cavity.
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24

Waveguides

24-1 The transmission line

In the last chapter we studied what happened to the lumped elements of
circuits when they were operated at very high frequencies, and we were led to see
that a resonant circuit could be replaced by a cavity with the fields resonating
inside. Another interesting technical problem is the connection of one object
to another, so that electromagnetic energy can be transmitted between them.
In low-frequency circuits the connection is made with wires, but this method
doesn’t work very well at high frequencies because the circuits would radiate
energy into all the space around them, and it is hard to control where the energy
will go. The fields spread out around the wires; the currents and voltages are not
“guided” very well by the wires. In this chapter we want to look into the ways
that objects can be interconnected at high frequencies. At least, that’s one way
of presenting our subject.

Another way is to say that we have been discussing the behavior of waves in
free space. Now it is time to see what happens when oscillating fields are confined
in one or more dimensions. We will discover the interesting new phenomenon
when the fields are confined in only two dimensions and allowed to go free in
the third dimension, they propagate in waves. These are “guided waves”—the
subject of this chapter.

We begin by working out the general theory of the transmission line. The or-
dinary power transmission line that runs from tower to tower over the countryside
radiates away some of its power, but the power frequencies (50–60 cycles/sec) are
so low that this loss is not serious. The radiation could be stopped by surrounding
the line with a metal pipe, but this method would not be practical for power lines
because the voltages and currents used would require a very large, expensive,
and heavy pipe. So simple “open lines” are used.

For somewhat higher frequencies—say a few kilocycles—radiation can already
be serious. However, it can be reduced by using “twisted-pair” transmission lines,
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as is done for short-run telephone connections. At higher frequencies, however,
the radiation soon becomes intolerable, either because of power losses or because
the energy appears in other circuits where it isn’t wanted. For frequencies from a
few kilocycles to some hundreds of megacycles, electromagnetic signals and power
are usually transmitted via coaxial lines consisting of a wire inside a cylindrical
“outer conductor” or “shield.” Although the following treatment will apply to a
transmission line of two parallel conductors of any shape, we will carry it out
referring to a coaxial line.

a

b

Fig. 24-1. A coaxial transmission line.

We take the simplest coaxial line that has a central conductor, which we
suppose is a thin hollow cylinder, and an outer conductor which is another thin
cylinder on the same axis as the inner conductor, as in Fig. 24-1. We begin by
figuring out approximately how the line behaves at relatively low frequencies. We
have already described some of the low-frequency behavior when we said earlier
that two such conductors had a certain amount of inductance per unit length or
a certain capacity per unit length. We can, in fact, describe the low-frequency
behavior of any transmission line by giving its inductance per unit length, L0 and
its capacity per unit length, C0. Then we can analyze the line as the limiting case
of the L-C filter as discussed in Section 22-6. We can make a filter which imitates
the line by taking small series elements L0 ∆x and small shunt capacities C0 ∆x,
where ∆x is an element of length of the line. Using our results for the infinite
filter, we see that there would be a propagation of electric signals along the line.
Rather than following that approach, however, we would now rather look at the
line from the point of view of a differential equation.

Suppose that we see what happens at two neighboring points along the
transmission line, say at the distances x and x+ ∆x from the beginning of the
line. Let’s call the voltage difference between the two conductors V (x), and the
current along the “hot” conductor I(x) (see Fig. 24-2). If the current in the line
is varying, the inductance will give us a voltage drop across the small section of
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V (x) V (x + ∆x)

Fig. 24-2. The currents and voltages of a transmission line.

line from x to x+ ∆x in the amount

∆V = V (x+ ∆x)− V (x) = −L0 ∆x dI
dt
.

Or, taking the limit as ∆x→ 0, we get

∂V

∂x
= −L0

∂I

∂t
. (24.1)

The changing current gives a gradient of the voltage.
Referring again to the figure, if the voltage at x is changing, there must

be some charge supplied to the capacity in that region. If we take the small
piece of line between x and x+ ∆x, the charge on it is q = C0 ∆xV . The time
rate-of-change of this charge is C0 ∆x dV/dt, but the charge changes only if the
current I(x) into the element is different from the current I(x+ ∆x) out. Calling
the difference ∆I, we have

∆I = −C0 ∆x dV
dt
.

Taking the limit as ∆x→ 0, we get

∂I

∂x
= −C0

∂V

∂t
. (24.2)

So the conservation of charge implies that the gradient of the current is propor-
tional to the time rate-of-change of the voltage.

Equations (24.1) and (24.2) are then the basic equations of a transmission
line. If we wish, we could modify them to include the effects of resistance in the
conductors or of leakage of charge through the insulation between the conductors,
but for our present discussion we will just stay with the simple example.
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The two transmission line equations can be combined by differentiating one
with respect to t and the other with respect to x and eliminating either V or I.
Then we have either

∂2V

∂x2 = C0L0
∂2V

∂t2
(24.3)

or
∂2I

∂x2 = C0L0
∂2I

∂t2
(24.4)

Once more we recognize the wave equation in x. For a uniform transmission
line, the voltage (and current) propagates along the line as a wave. The voltage
along the line must be of the form V (x, t) = f(x− vt) or V (x, t) = g(x+ vt), or
a sum of both. Now what is the velocity v? We know that the coefficient of the
∂2/∂t2 term is just 1/v2, so

v = 1√
L0C0

. (24.5)

We will leave it for you to show that the voltage for each wave in a line is
proportional to the current of that wave and that the constant of proportionality
is just the characteristic impedance z0. Calling V+ and I+ the voltage and current
for a wave going in the plus x-direction, you should get

V+ = z0I+. (24.6)

Similarly, for the wave going toward minus x the relation is

V− = z0I−.

The characteristic impedance—as we found out from our filter equations—is
given by

z0 =
√
L0

C0
, (24.7)

and is, therefore, a pure resistance.
To find the propagation speed v and the characteristic impedance z0 of a

transmission line, we have to know the inductance and capacity per unit length.
We can calculate them easily for a coaxial cable, so we will see how that goes.
For the inductance we follow the ideas of Section 17-8, and set 1

2LI
2 equal to the

magnetic energy which we get by integrating ε0c2B2/2 over the volume. Suppose
that the central conductor carries the current I; then we know that B = I/2πε0c2r,
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where r is the distance from the axis. Taking as a volume element a cylindrical
shell of thickness dr and of length l, we have for the magnetic energy

U = ε0c
2

2

∫ b

a

(
I

2πε0c2r

)2
l 2πr dr,

where a and b are the radii of the inner and outer conductors, respectively.
Carrying out the integral, we get

U = I2l

4πε0c2
ln b

a
. (24.8)

Setting the energy equal to 1
2LI

2, we find

L = l

2πε0c2
ln b

a
. (24.9)

It is, as it should be, proportional to the length l of the line, so the inductance
per unit length L0 is

L0 = ln(b/a)
2πε0c2

. (24.10)

We have worked out the charge on a cylindrical condenser (see Section 12-2).
Now, dividing the charge by the potential difference, we get

C = 2πε0l
ln(b/a) .

The capacity per unit length C0 is C/l. Combining this result with Eq. (24.10),
we see that the product L0C0 is just equal to 1/c2, so v = 1/

√
L0C0 is equal

to c. The wave travels down the line with the speed of light. We point out
that this result depends on our assumptions: (a) that there are no dielectrics
or magnetic materials in the space between the conductors, and (b) that the
currents are all on the surfaces of the conductors (as they would be for perfect
conductors). We will see later that for good conductors at high frequencies,
all currents distribute themselves on the surfaces as they would for a perfect
conductor, so this assumption is then valid.

Now it is interesting that so long as assumptions (a) and (b) are correct, the
product L0C0 is equal to 1/c2 for any parallel pair of conductors—even, say, for a
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hexagonal inner conductor anywhere inside an elliptical outer conductor. So long
as the cross section is constant and the space between has no material, waves are
propagated at the velocity of light.

No such general statement can be made about the characteristic impedance.
For the coaxial line, it is

z0 = ln(b/a)
2πε0c

. (24.11)

The factor 1/ε0c has the dimensions of a resistance and is equal to 120π ohms.
The geometric factor ln(b/a) depends only logarithmically on the dimensions, so
for the coaxial line—and most lines—the characteristic impedance has typical
values of from 50 ohms or so to a few hundred ohms.

24-2 The rectangular waveguide

The next thing we want to talk about seems, at first sight, to be a striking
phenomenon: if the central conductor is removed from the coaxial line, it can still
carry electromagnetic power. In other words, at high enough frequencies a hollow
tube will work just as well as one with wires. It is related to the mysterious
way in which a resonant circuit of a condenser and inductance gets replaced by
nothing but a can at high frequencies.

Although it may seem to be a remarkable thing when one has been thinking
in terms of a transmission line as a distributed inductance and capacity, we all
know that electromagnetic waves can travel along inside a hollow metal pipe. If
the pipe is straight, we can see through it! So certainly electromagnetic waves go
through a pipe. But we also know that it is not possible to transmit low-frequency
waves (power or telephone) through the inside of a single metal pipe. So it must
be that electromagnetic waves will go through if their wavelength is short enough.
Therefore we want to discuss the limiting case of the longest wavelength (or the
lowest frequency) that can get through a pipe of a given size. Since the pipe is
then being used to carry waves, it is called a waveguide.

We will begin with a rectangular pipe, because it is the simplest case to
analyze. We will first give a mathematical treatment and come back later to look
at the problem in a much more elementary way. The more elementary approach,
however, can be applied easily only to a rectangular guide. The basic phenomena
are the same for a general guide of arbitrary shape, so the mathematical argument
is fundamentally more sound.
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Fig. 24-3. Coordinates chosen for the rectangular waveguide.

Our problem, then, is to find what kind of waves can exist inside a rectangular
pipe. Let’s first choose some convenient coordinates; we take the z-axis along
the length of the pipe, and the x- and y-axes parallel to the two sides, as shown
in Fig. 24-3.

We know that when light waves go down the pipe, they have a transverse
electric field; so suppose we look first for solutions in which E is perpendicular
to z, say with only a y-component, Ey. This electric field will have some variation
across the guide; in fact, it must go to zero at the sides parallel to the y-axis,
because the currents and charges in a conductor always adjust themselves so that
there is no tangential component of the electric field at the surface of a conductor.
So Ey will vary with x in some arch, as shown in Fig. 24-4. Perhaps it is the
Bessel function we found for a cavity? No, because the Bessel function has to
do with cylindrical geometries. For a rectangular geometry, waves are usually
simple harmonic functions, so we should try something like sin kxx.

Since we want waves that propagate down the guide, we expect the field to
alternate between positive and negative values as we go along in z, as in Fig. 24-5,
and these oscillations will travel along the guide with some velocity v. If we
have oscillations at some definite frequency ω, we would guess that the wave
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Fig. 24-4. The electric field in the waveguide at some value of z .
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Fig. 24-5. The z-dependence of the field in the waveguide.
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might vary with z like cos (ωt−kzz), or to use the more convenient mathematical
form, like ei(ωt−kzz). This z-dependence represents a wave travelling with the
speed v = ω/kz (see Chapter 29, Vol. I).

So we might guess that the wave in the guide would have the following
mathematical form:

Ey = E0e
i(ωt−kzz) sin kxx. (24.12)

Let’s see whether this guess satisfies the correct field equations. First, the
electric field should have no tangential components at the conductors. Our field
satisfies this requirement; it is perpendicular to the top and bottom faces and
is zero at the two side faces. Well, it is if we choose kx so that one-half a cycle
of sin kxx just fits in the width of the guide—that is, if

kxa = π. (24.13)

There are other possibilities, like kxa = 2π, 3π, . . . , or, in general,

kxa = nπ, (24.14)

where n is any integer. These represent various complicated arrangements of the
field, but for now let’s take only the simplest one, where kx = π/a, where a is
the width of the inside of the guide.

Next, the divergence of E must be zero in the free space inside the guide,
since there are no charges there. Our E has only a y-component, and it doesn’t
change with y, so we do have that ∇ ·E = 0.

Finally, our electric field must agree with the rest of Maxwell’s equations in
the free space inside the guide. That is the same thing as saying that it must
satisfy the wave equation

∂2Ey
∂x2 + ∂2Ey

∂y2 + ∂2Ey
∂z2 −

1
c2
∂2Ey
∂t2

= 0. (24.15)

We have to see whether our guess, Eq. (24.12), will work. The second derivative
of Ey with respect to x is just −k2

xEy. The second derivative with respect to y
is zero, since nothing depends on y. The second derivative with respect to z
is −k2

zEy, and the second derivative with respect to t is −ω2Ey. Equation (24.15)
then says that

k2
xEy + k2

zEy −
ω2

c2
Ey = 0.
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Unless Ey is zero everywhere (which is not very interesting), this equation is
correct if

k2
x + k2

z −
ω2

c2
= 0. (24.16)

We have already fixed kx, so this equation tells us that there can be waves of the
type we have assumed if kz is related to the frequency ω so that Eq. (24.16) is
satisfied—in other words, if

kz =
√

(ω2/c2)− (π2/a2). (24.17)

The waves we have described are propagated in the z-direction with this value
of kz.

The wave number kz we get from Eq. (24.17) tells us, for a given frequency ω,
the speed with which the nodes of the wave propagate down the guide. The
phase velocity is

v = ω

kz
. (24.18)

You will remember that the wavelength λ of a travelling wave is given by λ =
2πv/ω, so kz is also equal to 2π/λg, where λg is the wavelength of the oscillations
along the z-direction—the “guide wavelength.” The wavelength in the guide is
different, of course, from the free-space wavelength of electromagnetic waves
of the same frequency. If we call the free-space wavelength λ0, which is equal
to 2πc/ω, we can write Eq. (24.17) as

λg = λ0√
1− (λ0/2a)2

. (24.19)

Besides the electric fields there are magnetic fields that will travel with the
wave, but we will not bother to work out an expression for them right now.
Since c2∇ × B = ∂E/∂t, the lines of B will circulate around the regions in
which ∂E/∂t is largest, that is, halfway between the maximum and minimum
of E. The loops of B will lie parallel to the xz-plane and between the crests and
troughs of E, as shown in Fig. 24-6.

24-3 The cutoff frequency

In solving Eq. (24.16) for kz, there should really be two roots—one plus and
one minus. We should write

kz = ±
√

(ω2/c2)− (π2/a2). (24.20)
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Fig. 24-6. The magnetic field in the waveguide.

The two signs simply mean that there can be waves which propagate with a
negative phase velocity (toward −z), as well as waves which propagate in the
positive direction in the guide. Naturally, it should be possible for waves to go
in either direction. Since both types of waves can be present at the same time,
there will be the possibility of standing-wave solutions.

Our equation for kz also tells us that higher frequencies give larger values
of kz, and therefore smaller wavelengths, until in the limit of large ω, k becomes
equal to ω/c, which is the value we would expect for waves in free space. The
light we “see” through a pipe still travels at the speed c. But now notice that if
we go toward low frequencies, something strange happens. At first the wavelength
gets longer and longer, but if ω gets too small the quantity inside the square root
of Eq. (24.20) suddenly becomes negative. This will happen as soon as ω gets to
be less than πc/a—or when λ0 becomes greater than 2a. In other words, when
the frequency gets smaller than a certain critical frequency ωc = πc/a, the wave
number kz (and also λg) becomes imaginary and we haven’t got a solution any
more. Or do we? Who said that kz has to be real? What if it does come out
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imaginary? Our field equations are still satisfied. Perhaps an imaginary kz also
represents a wave.

Suppose ω is less than ωc; then we can write

kz = ±ik′, (24.21)

where k′ is a positive real number:

k =
√

(π2/a2)− (ω2/c2). (24.22)

If we now go back to our expression, Eq. (24.12), for Ey, we have

Ey = E0e
i(ωt∓ik′z) sin kxx, (24.23)

which we can write as
Ey = E0e

±k′zeiωt sin kxx. (24.24)

This expression gives an E-field that oscillates with time as eiωt but which
varies with z as e±k′z. It decreases or increases with z smoothly as a real
exponential. In our derivation we didn’t worry about the sources that started the
waves, but there must, of course, be a source someplace in the guide. The sign
that goes with k′ must be the one that makes the field decrease with increasing
distance from the source of the waves.

So for frequencies below ωc = πc/a, waves do not propagate down the guide;
the oscillating fields penetrate into the guide only a distance of the order of 1/k′.
For this reason, the frequency ωc is called the “cutoff frequency” of the guide.
Looking at Eq. (24.22), we see that for frequencies just a little below ωc, the
number k′ is small and the fields can penetrate a long distance into the guide.
But if ω is much less than ωc, the exponential coefficient k′ is equal to π/a and
the field dies off extremely rapidly, as shown in Fig. 24-7. The field decreases
by 1/e in the distance a/π, or in only about one-third of the guide width. The
fields penetrate very little distance from the source.

We want to emphasize an interesting feature of our analysis of the guided
waves—the appearance of the imaginary wave number kz. Normally, if we
solve an equation in physics and get an imaginary number, it doesn’t mean
anything physical. For waves, however, an imaginary wave number does mean
something. The wave equation is still satisfied; it only means that the solution
gives exponentially decreasing fields instead of propagating waves. So in any
wave problem where k becomes imaginary for some frequency, it means that the
form of the wave changes—the sine wave changes into an exponential.
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Fig. 24-7. The variation of Ey with z for ω � ωc .

24-4 The speed of the guided waves

The wave velocity we have used above is the phase velocity, which is the speed
of a node of the wave; it is a function of frequency. If we combine Eqs. (24.17)
and (24.18), we can write

vphase = c√
1− (ωc/ω)2

. (24.25)

For frequencies above cutoff—where travelling waves exist—ωc/ω is less than one,
and vphase is real and greater than the speed of light. We have already seen in
Chapter 48 of Vol. I that phase velocities greater than light are possible, because
it is just the nodes of the wave which are moving and not energy or information.
In order to know how fast signals will travel, we have to calculate the speed of
pulses or modulations made by the interference of a wave of one frequency with
one or more waves of slightly different frequencies (see Chapter 48, Vol. I). We
have called the speed of the envelope of such a group of waves the group velocity;
it is not ω/k but dω/dk:

vgroup = dω

dk
. (24.26)
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Taking the derivative of Eq. (24.17) with respect to ω and inverting to get dω/dk,
we find that

vgroup = c
√

1− (ωc/ω)2, (24.27)
which is less than the speed of light.

The geometric mean of vphase and vgroup is just c, the speed of light:

vphasevgroup = c2. (24.28)

This is curious, because we have seen a similar relation in quantum mechanics. For
a particle with any velocity—even relativistic—the momentum p and energy U
are related by

U2 = p2c2 +m2c4. (24.29)
But in quantum mechanics the energy is ~ω, and the momentum is ~/λ, which
is equal to ~k; so Eq. (24.29) can be written

ω2

c2
= k2 + m2c2

~2 , (24.30)
or

k =
√

(ω2/c2)− (m2c2/~2), (24.31)

which looks very much like Eq. (24.17) . . . Interesting!
The group velocity of the waves is also the speed at which energy is transported

along the guide. If we want to find the energy flow down the guide, we can get it
from the energy density times the group velocity. If the root mean square electric
field is E0, then the average density of electric energy is ε0E2

0/2. There is also
some energy associated with the magnetic field. We will not prove it here, but
in any cavity or guide the magnetic and electric energies are equal, so the total
electromagnetic energy density is ε0E2

0 . The power dU/dt transmitted by the
guide is then

dU

dt
= ε0E

2
0abvgroup. (24.32)

(We will see later another, more general way of getting the energy flow.)

24-5 Observing guided waves

Energy can be coupled into a waveguide by some kind of an “antenna.” For
example, a little vertical wire or “stub” will do. The presence of the guided waves
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Fig. 24-8. A waveguide with a driving stub and a pickup probe.

can be observed by picking up some of the electromagnetic energy with a little
receiving “antenna,” which again can be a little stub of wire or a small loop. In
Fig. 24-8, we show a guide with some cutaways to show a driving stub and a
pickup “probe”. The driving stub can be connected to a signal generator via a
coaxial cable, and the pickup probe can be connected by a similar cable to a
detector. It is usually convenient to insert the pickup probe via a long thin slot
in the guide, as shown in Fig. 24-8. Then the probe can be moved back and forth
along the guide to sample the fields at various positions.

If the signal generator is set at some frequency ω greater than the cutoff
frequency ωc, there will be waves propagated down the guide from the driving
stub. These will be the only waves present if the guide is infinitely long, which
can effectively be arranged by terminating the guide with a carefully designed
absorber in such a way that there are no reflections from the far end. Then, since
the detector measures the time average of the fields near the probe, it will pick
up a signal which is independent of the position along the guide; its output will
be proportional to the power being transmitted.

If now the far end of the guide is finished off in some way that produces a
reflected wave—as an extreme example, if we closed it off with a metal plate—
there will be a reflected wave in addition to the original forward wave. These
two waves will interfere and produce a standing wave in the guide similar to the
standing waves on a string which we discussed in Chapter 49 of Vol. I. Then,
as the pickup probe is moved along the line, the detector reading will rise and
fall periodically, showing a maximum in the fields at each loop of the standing
wave and a minimum at each node. The distance between two successive nodes
(or loops) is just λg/2. This gives a convenient way of measuring the guide
wavelength. If the frequency is now moved closer to ωc, the distances between
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nodes increase, showing that the guide wavelength increases as predicted by
Eq. (24.19).

Suppose now the signal generator is set at a frequency just a little below ωc.
Then the detector output will decrease gradually as the pickup probe is moved
down the guide. If the frequency is set somewhat lower, the field strength will
fall rapidly, following the curve of Fig. 24-7, and showing that waves are not
propagated.

24-6 Waveguide plumbing

An important practical use of waveguides is for the transmission of high-
frequency power, as, for example, in coupling the high-frequency oscillator or
output amplifier of a radar set to an antenna. In fact, the antenna itself usually
consists of a parabolic reflector fed at its focus by a waveguide flared out at the
end to make a “horn” that radiates the waves coming along the guide. Although
high frequencies can be transmitted along a coaxial cable, a waveguide is better
for transmitting large amounts of power. First, the maximum power that can be
transmitted along a line is limited by the breakdown of the insulation (solid or
gas) between the conductors. For a given amount of power, the field strengths in
a guide are usually less than they are in a coaxial cable, so higher powers can be
transmitted before breakdown occurs. Second, the power losses in the coaxial
cable are usually greater than in a waveguide. In a coaxial cable there must be
insulating material to support the central conductor, and there is an energy loss
in this material—particularly at high frequencies. Also, the current densities on
the central conductor are quite high, and since the losses go as the square of the
current density, the lower currents that appear on the walls of the guide result in
lower energy losses. To keep these losses to a minimum, the inner surfaces of the
guide are often plated with a material of high conductivity, such as silver.

The problem of connecting a “circuit” with waveguides is quite different
from the corresponding circuit problem at low frequencies, and is usually called
microwave “plumbing.” Many special devices have been developed for the purpose.
For instance, two sections of waveguide are usually connected together by means
of flanges, as can be seen in Fig. 24-9. Such connections can, however, cause
serious energy losses, because the surface currents must flow across the joint,
which may have a relatively high resistance. One way to avoid such losses is to
make the flanges as shown in the cross section drawn in Fig. 24-10. A small space
is left between the adjacent sections of the guide, and a groove is cut in the face of
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Fig. 24-9. Sections of waveguide connected with flanges.

GUIDE GUIDE

FLANGE
RESONANT
CAVITY

a

b

Fig. 24-10. A low-loss connection between two sections of waveguide.
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one of the flanges to make a small cavity of the type shown in Fig. 23-16(c). The
dimensions are chosen so that this cavity is resonant at the frequency being used.
This resonant cavity presents a high “impedance” to the currents, so relatively
little current flows across the metallic joints (at a in Fig. 24-10). The high guide
currents simply charge and discharge the “capacity” of the gap (at b in the figure),
where there is little dissipation of energy.

Suppose you want to stop a waveguide in a way that won’t result in reflected
waves. Then you must put something at the end that imitates an infinite length
of guide. You need a “termination” which acts for the guide like the characteristic
impedance does for a transmission line—something that absorbs the arriving
waves without making reflections. Then the guide will act as though it went on
forever. Such terminations are made by putting inside the guide some wedges of
resistance material carefully designed to absorb the wave energy while generating
almost no reflected waves.

Fig. 24-11. A waveguide “T.” (The flanges have plastic end caps to
keep the inside clean while the “T” is not being used.

If you want to connect three things together—for instance, one source to two
different antennas—then you can use a “T” like the one shown in Fig. 24-11.
Power fed in at the center section of the “T” will be split and go out the two side
arms (and there may also be some reflected waves). You can see qualitatively
from the sketches in Fig. 24-12 that the fields would spread out when they get to
the end of the input section and make electric fields that will start waves going
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Fig. 24-12. The electric fields in a waveguide “T” for two possible
field orientations.
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Fig. 24-13. A unidirectional coupler.
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out the two arms. Depending on whether electric fields in the guide are parallel
or perpendicular to the “top” of the “T,” the fields at the junction would be
roughly as shown in (a) or (b) of Fig. 24-12.

Finally, we would like to describe a device called an “unidirectional coupler,”
which is very useful for telling what is going on after you have connected a
complicated arrangement of waveguides. Suppose you want to know which way
the waves are going in a particular section of guide—you might be wondering,
for instance, whether or not there is a strong reflected wave. The unidirectional
coupler takes out a small fraction of the power of a guide if there is a wave going
one way, but none if the wave is going the other way. By connecting the output
of the coupler to a detector, you can measure the “one-way” power in the guide.

Figure 24-13 is a drawing of a unidirectional coupler; a piece of waveguide AB
has another piece of waveguide CD soldered to it along one face. The guide CD is
curved away so that there is room for the connecting flanges. Before the guides are
soldered together, two (or more) holes have been drilled in each guide (matching
each other) so that some of the fields in the main guide AB can be coupled
into the secondary guide CD. Each of the holes acts like a little antenna that
produces a wave in the secondary guide. If there were only one hole, waves would
be sent in both directions and would be the same no matter which way the wave
was going in the primary guide. But when there are two holes with a separation
space equal to one-quarter of the guide wavelength, they will make two sources
90◦ out of phase. Do you remember that we considered in Chapter 29 of Vol. I
the interference of the waves from two antennas spaced λ/4 apart and excited
90◦ out of phase in time? We found that the waves subtract in one direction
and add in the opposite direction. The same thing will happen here. The wave
produced in the guide CD will be going in the same direction as the wave in AB.

If the wave in the primary guide is travelling from A toward B, there will
be a wave at the output D of the secondary guide. If the wave in the primary
guide goes from B toward A, there will be a wave going toward the end C of the
secondary guide. This end is equipped with a termination, so that this wave is
absorbed and there is no wave at the output of the coupler.

24-7 Waveguide modes

The wave we have chosen to analyze is a special solution of the field equations.
There are many more. Each solution is called a waveguide “mode.” For example,
our x-dependence of the field was just one-half a cycle of a sine wave. There is an
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Fig. 24-14. Another possible variation of Ey with x

equally good solution with a full cycle; then the variation of Ey with x is as shown
in Fig. 24-14. The kx for such a mode is twice as large, so the cutoff frequency is
much higher. Also, in the wave we studied E has only a y-component, but there
are other modes with more complicated electric fields. If the electric field has
components only in x and y—so that the total electric field is always at right
angles to the z-direction—the mode is called a “transverse electric” (or TE) mode.
The magnetic field of such modes will always have a z-component. It turns out
that if E has a component in the z-direction (along the direction of propagation),
then the magnetic field will always have only transverse components. So such
fields are called transverse magnetic (TM) modes. For a rectangular guide, all
the other modes have a higher cutoff frequency than the simple TE mode we have
described. It is, therefore, possible—and usual—to use a guide with a frequency
just above the cutoff for this lowest mode but below the cutoff frequency for all
the others, so that just the one mode is propagated. Otherwise, the behavior
gets complicated and difficult to control.
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24-8 Another way of looking at the guided waves

We want now to show you another way of understanding why a waveguide
attenuates the fields rapidly for frequencies below the cutoff frequency ωc. Then
you will have a more “physical” idea of why the behavior changes so drastically
between low and high frequencies. We can do this for the rectangular guide by
analyzing the fields in terms of reflections—or images—in the walls of the guide.
The approach only works for rectangular guides, however; that’s why we started
with the more mathematical analysis which works, in principle, for guides of any
shape.

For the mode we have described, the vertical dimension (in y) had no effect,
so we can ignore the top and bottom of the guide and imagine that the guide is
extended indefinitely in the vertical direction. We imagine then that the guide
just consists of two vertical plates with the separation a.

Let’s say that the source of the fields is a vertical wire placed in the middle
of the guide, with the wire carrying a current that oscillates at the frequency ω.
In the absence of the guide walls such a wire would radiate cylindrical waves.

Now we consider that the guide walls are perfect conductors. Then, just as
in electrostatics, the conditions at the surface will be correct if we add to the
field of the wire the field of one or more suitable image wires. The image idea
works just as well for electrodynamics as it does for electrostatics, provided, of
course, that we also include the retardations. We know that is true because we
have often seen a mirror producing an image of a light source. And a mirror is
just a “perfect” conductor for electromagnetic waves with optical frequencies.

Now let’s take a horizontal cross section, as shown in Fig. 24-15, where W1
and W2 are the two guide walls and S0 is the source wire. We call the direction
of the current in the wire positive. Now if there were only one wall, say W1,
we could remove it if we placed an image source (with opposite polarity) at the
position marked S1. But with both walls in place there will also be an image
of S0 in the wall W2, which we show as the image S2. This source, too, will have
an image in W1, which we call S3. Now both S1 and S3 will have images in W2
at the positions marked S4 and S6, and so on. For our two plane conductors
with the source halfway between, the fields are the same as those produced by
an infinite line of sources, all separated by the distance a. (It is, in fact just
what you would see if you looked at a wire placed halfway between two parallel
mirrors.) For the fields to be zero at the walls, the polarity of the currents in the
images must alternate from one image to the next. In other words, they oscillate
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Fig. 24-15. The line source S0 between the conducting plane walls
W1 and W2. The walls can be replaced by the infinite sequence of image
sources.

180◦ out of phase. The waveguide field is, then, just the superposition of the
fields of such an infinite set of line sources.

We know that if we are close to the sources, the field is very much like the
static fields. We considered in Section 7-5 the static field of a grid of line sources
and found that it is like the field of a charged plate except for terms that decrease
exponentially with the distance from the grid. Here the average source strength
is zero, because the sign alternates from one source to the next. Any fields which
exist should fall off exponentially with distance. Close to the source, we see the
field mainly of the nearest source; at large distances, many sources contribute
and their average effect is zero. So now we see why the waveguide below cutoff
frequency gives an exponentially decreasing field. At low frequencies, in particular,
the static approximation is good, and it predicts a rapid attenuation of the fields
with distance.

Now we are faced with the opposite question: Why are waves propagated
at all? That is the mysterious part! The reason is that at high frequencies the
retardation of the fields can introduce additional changes in phase which can
cause the fields of the out-of-phase sources to add instead of cancelling. In fact,
in Chapter 29 of Vol. I we have already studied, just for this problem, the fields
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generated by an array of antennas or by an optical grating. There we found that
when several radio antennas are suitably arranged, they can give an interference
pattern that has a strong signal in some direction but no signal in another.
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Fig. 24-16. One set of coherent waves from an array of line sources.

Suppose we go back to Fig. 24-15 and look at the fields which arrive at a
large distance from the array of image sources. The fields will be strong only in
certain directions which depend on the frequency—only in those directions for
which the fields from all the sources add in phase. At a reasonable distance from
the sources the field propagates in these special directions as plane waves. We
have sketched such a wave in Fig. 24-16, where the solid lines represent the wave
crests and the dashed lines represent the troughs. The wave direction will be
the one for which the difference in the retardation for two neighboring sources
to the crest of a wave corresponds to one-half a period of oscillation. In other
words, the difference between r2 and r0 in the figure is one-half of the free-space
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Fig. 24-17. The waveguide field can be viewed as the superposition
of two trains of plane waves.

wavelength:
r2 − r0 = λ0

2 .

The angle θ is then given by

sin θ = λ0

2a . (24.33)

There is, of course, another set of waves travelling downward at the symmetric
angle with respect to the array of sources. The complete waveguide field (not
too close to the source) is the superposition of these two sets of waves, as shown
in Fig. 24-17. The actual fields are really like this, of course, only between the
two walls of the waveguide.

At points like A and C, the crests of the two wave patterns coincide, and the
field will have a maximum; at points like B, both waves have their peak negative
value, and the field has its minimum (largest negative) value. As time goes on the
field in the guide appears to be travelling along the guide with a wavelength λg,
which is the distance from A to C. That distance is related to θ by

cos θ = λ0

λg
. (24.34)

Using Eq. (24.33) for θ, we get that

λg = λ0

cos θ = λ0√
1− (λ0/2a)2

, (24.35)

which is just what we found in Eq. (24.19).
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Now we see why there is only wave propagation above the cutoff frequency ω0.
If the free-space wavelength is longer than 2a, there is no angle where the waves
shown in Fig. 24-16 can appear. The necessary constructive interference appears
suddenly when λ0 drops below 2a, or when ω goes above ω0 = πc/a.

If the frequency is high enough, there can be two or more possible directions
in which the waves will appear. For our case, this will happen if λ0 <

2
3a. In

general, however, it could also happen when λ0 < a. These additional waves
correspond to the higher guide modes we have mentioned.

It has also been made evident by our analysis why the phase velocity of the
guided waves is greater than c and why this velocity depends on ω. As ω is
changed, the angle of the free waves of Fig. 24-16 changes, and therefore so does
the velocity along the guide.

Although we have described the guided wave as the superposition of the fields
of an infinite array of line sources, you can see that we would arrive at the same
result if we imagined two sets of free-space waves being continually reflected back
and forth between two perfect mirrors—remembering that a reflection means
a reversal of phase. These sets of reflecting waves would all cancel each other
unless they were going at just the angle θ given in Eq. (24.33). There are many
ways of looking at the same thing.
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25

Electrodynamics in Relativistic Notation

Review: Chapter 15, Vol. I, The Special Theory of Relativity
Chapter 16, Vol. I, Relativistic Energy and Momentum
Chapter 17, Vol. I, Space-Time
Chapter 13, Vol. II, Magnetostatics

In this chapter: c = 1

25-1 Four-vectors

We now discuss the application of the special theory of relativity to electrody-
namics. Since we have already studied the special theory of relativity in Chapters
15 through 17 of Vol. I, we will just review quickly the basic ideas.

It is found experimentally that the laws of physics are unchanged if we move
with uniform velocity. You can’t tell if you are inside a spaceship moving with
uniform velocity in a straight line, unless you look outside the spaceship, or at
least make an observation having to do with the world outside. Any true law of
physics we write down must be arranged so that this fact of nature is built in.

The relationship between the space and time of two systems of coordinates,
one, S′, in uniform motion in the x-direction with speed v relative to the other,
S, is given by the Lorentz transformation:

t′ = t− vx√
1− v2

, y′ = y,

x′ = x− vt√
1− v2

, z′ = z.

(25.1)
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The laws of physics must be such that after a Lorentz transformation, the new
form of the laws looks just like the old form. This is just like the principle that
the laws of physics don’t depend on the orientation of our coordinate system.
In Chapter 11 of Vol. I, we saw that the way to describe mathematically the
invariance of physics with respect to rotations was to write our equations in terms
of vectors.

For example, if we have two vectors

A = (Ax, Ay, Az) and B = (Bx, By, Bz),

we found that the combination

A ·B = AxBx +AyBy +AzBz

was not changed if we transformed to a rotated coordinate system. So we know
that if we have a scalar product like A ·B on both sides of an equation, the
equation will have exactly the same form in all rotated coordinate systems. We
also discovered an operator (see Chapter 2),

∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
,

which, when applied to a scalar function, gave three quantities which transform
just like a vector. With this operator we defined the gradient, and in combination
with other vectors, the divergence and the Laplacian. Finally we discovered that
by taking sums of certain products of pairs of the components of two vectors we
could get three new quantities which behaved like a new vector. We called it the
cross product of two vectors. Using the cross product with our operator ∇ we
then defined the curl of a vector.

Since we will be referring back to what we have done in vector analysis, we
have put in Table 25-1 a summary of all the important vector operations in three
dimensions that we have used in the past. The point is that it must be possible to
write the equations of physics so that both sides transform the same way under
rotations. If one side is a vector, the other side must also be a vector, and both
sides will change together in exactly the same way if we rotate our coordinate
system. Similarly, if one side is a scalar, the other side must also be a scalar, so
that neither side changes when we rotate coordinates, and so on.

Now in the case of special relativity, time and space are inextricably mixed,
and we must do the analogous things for four dimensions. We want our equations
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Table 25-1

The important quantities and operations of vector analysis in three dimensions

Definition of a
vector A = (Ax, Ay, Az)

Scalar product A ·B
Differential vector

operator ∇
Gradient ∇φ
Divergence ∇ ·A
Laplacian ∇ ·∇ = ∇2

Cross product A×B
Curl ∇×A

to remain the same not only for rotations, but also for any inertial frame. That
means that our equations should be invariant under the Lorentz transformation
of equations (25.1). The purpose of this chapter is to show you how that can be
done. Before we get started, however, we want to do something that makes our
work a lot easier (and saves some confusion). And that is to choose our units of
length and time so that the speed of light c is equal to 1. You can think of it as
taking our unit of time to be the time that it takes light to go one meter (which
is about 3× 10−9 sec). We can even call this time unit “one meter.” Using this
unit, all of our equations will show more clearly the space-time symmetry. Also,
all the c’s will disappear from our relativistic equations. (If this bothers you, you
can always put the c’s back into any equation by replacing every t by ct, or, in
general, by sticking in a c wherever it is needed to make the dimensions of the
equations come out right.) With this groundwork we are ready to begin. Our
program is to do in the four dimensions of space-time all of the things we did
with vectors for three dimensions. It is really quite a simple game; we just work
by analogy. The only real complications is the notation (we’ve already used up
the vector symbol for three dimensions) and one slight twist of signs.

First, by analogy with vectors in three dimensions, we define a four-vector
as a set of the four quantities at, ax, ay, and az, which transform like t, x, y,
and z when we change to a moving coordinate system. There are several different
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notations people use for a four-vector; we will write aµ, by which we mean the
group of four numbers (at, ax, ay, az)—in other words, the subscript µ can take
on the four “values” t, x, y, z. It will also be convenient, at times, to indicate
the three space components by a three-vector, like this: aµ = (at,a).

We have already encountered one four-vector, which consists of the energy
and momentum of a particle (Chapter 17, Vol. I): In our new notation we write

pµ = (E,p), (25.2)

which means that the four-vector pµ is made up of the energy E and the three
components of the three-vector p of a particle.

It looks as though the game is really very simple—for each three-vector in
physics all we have to do is find what the remaining component should be, and
we have a four-vector. To see that this is not the case, consider the velocity
vector with components

vx = dx

dt
, vy = dy

dt
, vz = dz

dt
.

The question is: What is the time component? Instinct should give the right
answer. Since four-vectors are like t, x, y, z, we would guess that the time
component is

vt = dt

dt
= 1.

This is wrong. The reason is that the t in each denominator is not an invari-
ant when we make a Lorentz transformation. The numerators have the right
behavior to make a four-vector, but the dt in the denominator spoils things; it is
unsymmetric and is not the same in two different systems.

It turns out that the four “velocity” components which we have written down
will become the components of a four-vector if we just divide by

√
1− v2. We

can see that that is true because if we start with the momentum four-vector

pµ = (E,p) =
(

m0√
1− v2

,
m0v√
1− v2

)
, (25.3)

and divide it by the rest mass m0, which is an invariant scalar in four dimensions,
we have

pµ
m0

=
(

1√
1− v2

,
v√

1− v2

)
, (25.4)
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which must still be a four-vector. (Dividing by an invariant scalar doesn’t change
the transformation properties.) So we can define the “velocity four-vector” uµ by

ut = 1√
1− v2

, uy = vy√
1− v2

,

ux = vx√
1− v2

, uz = vz√
1− v2

,

(25.5)

The four-velocity is a useful quantity; we can, for instance, write

pµ = m0uµ. (25.6)

This is the typical sort of form an equation which is relativistically correct must
have; each side is a four-vector. (The right-hand side is an invariant times a
four-vector, which is still a four-vector.)

25-2 The scalar product

It is an accident of life, if you wish, that under coordinate rotations the
distance of a point from the origin does not change. This means mathematically
that r2 = x2 + y2 + z2 is an invariant. In other words, after a rotation r′2 = r2,
or

x′2 + y′2 + z′2 = x2 + y2 + z2.

Now the question is: Is there a similar quantity which is invariant under the
Lorentz transformation? There is. From Eq. (25.1) you can see that

t′2 − x′2 = t2 − x2.

That is pretty nice, except that it depends on a particular choice of the x-direction.
We can fix that up by subtracting y2 and z2. Then any Lorentz transformation
plus a rotation will leave the quantity unchanged. So the quantity which is
analogous to r2 for three dimensions, in four dimensions is

t2 − x2 − y2 − z2.

It is an invariant under what is called the “complete Lorentz group”—which
means for transformation of both translations at constant velocity and rotations.
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Now since this invariance is an algebraic matter depending only on the
transformation rules of Eq. (25.1)—plus rotations—it is true for any four-vector
(by definition they all transform the same). So for a four-vector aµ we have that

a′2t − a′2x − a′2y − a′2z = a2
t − a2

x − a2
y − a2

z.

We will call this quantity the square of “the length” of the four-vector aµ.
(Sometimes people change the sign of all the terms and call the length a2

x + a2
y +

a2
z − a2

t , so you’ll have to watch out.)
Now if we have two vectors aµ and bµ their corresponding components trans-

form in the same way, so the combination

atbt − axbx − ayby − azbz

is also an invariant (scalar) quantity. (We have in fact already proved this in
Chapter 17 of Vol. I.) Clearly this expression is quite analogous to the dot product
for vectors. We will, in fact, call it the dot product or scalar product of two
four-vectors. It would seem logical to write it as aµ · bµ, so it would look like a dot
product. But, unhappily, it’s not done that way; it is usually written without the
dot. So we will follow the convention and write the dot product simply as aµbµ.
So, by definition,

aµbµ = atbt − axbx − ayby − azbz. (25.7)
Whenever you see two identical subscripts together (we will occasionally have to
use ν or some other letter instead of µ) it means that you are to take the four
products and sum, remembering the minus sign for the products of the space
components. With this convention the invariance of the scalar product under a
Lorentz transformation can be written as

a′µb
′
µ = aµbµ.

Since the last three terms in (25.7) are just the scalar dot product in three
dimensions, it is often more convenient to write

aµbµ = atbt − a · b.

It is also obvious that the four-dimensional length we described above can be
written as aµaµ:

aµaµ = a2
t − a2

x − a2
y − a2

z = a2
t − a · a. (25.8)
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It will also be convenient to sometimes write this quantity as a2
µ:

a2
µ ≡ aµaµ.

We will now give you an illustration of the usefulness of four-vector dot
products. Antiprotons (P) are produced in large accelerators by the reaction

P + P→ P + P + P + P.

That is, an energetic proton collides with a proton at rest (for example, in a
hydrogen target placed in the beam), and if the incident proton has enough
energy, a proton-antiproton pair may be produced, in addition to the two original
protons.* The question is: How much energy must be given to the incident proton
to make this reaction energetically possible?

The easiest way to get the answer is to consider what the reaction looks
like in the center-of-mass (CM) system (see Fig. 25-1). We’ll call the incident
proton a and its four-momentum paµ. Similarly, we’ll call the target proton b

and its four-momentum pbµ. If the incident proton has just barely enough energy
to make the reaction go, the final state—the situation after the collision—will
consist of a glob containing three protons and an antiproton at rest in the CM
system. If the incident energy were slightly higher, the final state particles would
have some kinetic energy and be moving apart; if the incident energy were slightly
lower, there would not be enough energy to make the four particles.

If we call pcµ the total four-momentum of the whole glob in the final state,
conservation of energy and momentum tells us that

pa + pb = pc,

and
Ea + Eb = Ec.

* You may well ask: Why not consider the reactions

P + P→ P + P + P,
or even

P + P→ P + P

which clearly require less energy? The answer is that a principle called conservation of baryons
tells us the quantity “number of protons minus number of antiprotons” cannot change. This
quantity is 2 on the left side of our reaction. Therefore, if we want an antiproton on the right
side, we must have also three protons (or other baryons).
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Fig. 25-1. The reaction P + P → 3P + P viewed in the laboratory
and CM systems. The incident proton is supposed to have just barely
enough energy to make the reaction go. Protons are denoted by solid
circles; antiprotons by open circles.

Combining these two equations, we can write that

paµ + pbµ = pcµ. (25.9)

Now the important thing is that this is an equation among four-vectors, and
is, therefore, true in any inertial frame. We can use this fact to simplify our
calculations. We start by taking the “length” of each side of Eq. (25.9); they are,
of course, also equal. We get

(paµ + pbµ)(paµ + pbµ) = pcµp
c
µ. (25.10)

Since pcµpcµ is invariant, we can evaluate it in any coordinate system. In the CM
system, the time component of pcµ is the rest energy of four protons, namely 4M ,
and the space part p is zero; so pcµ = (4M,0 ). We have used the fact that the
rest mass of an antiproton equals the rest mass of a proton, and we have called
this common mass M .

Thus, Eq. (25.10) becomes

paµp
a
µ + 2paµpbµ + pbµp

b
µ = 16M2. (25.11)
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Now paµp
a
µ and pbµpbµ are very easy, since the “length” of the momentum four-vector

of any particle is just the mass of the particle squared:

pµpµ = E2 − p2 = M2.

This can be shown by direct calculation or, more cleverly, by noting that for a
particle at rest pµ = (M,0 ), so pµpµ = M2. But since it is an invariant, it is
equal to M2 in any frame. Using these results in Eq. (25.11), we have

2paµpbµ = 14M2

or
paµp

b
µ = 7M2. (25.12)

Now we can also evaluate paµpbµ = paµ
′pbµ
′ in the laboratory system. The

four-vector paµ′ can be written (Ea′,pa′), while pbµ
′ = (M,0 ), since it describes

a proton at rest. Thus, paµ′pbµ
′ must also be equal to MEa′; and since we know

the scalar product is an invariant this must be numerically the same as what we
found in (25.12). So we have that

Ea′ = 7M,

which is the result we were after. The total energy of the initial proton must
be at least 7M (about 6.6 Gev since M = 938 MeV) or, subtracting the rest
mass M , the kinetic energy must be at least 6M (about 5.6 Gev). The Bevatron
accelerator at Berkeley was designed to give about 6.2 Gev of kinetic energy to
the protons it accelerates, in order to be able to make antiprotons.

Since scalar products are invariant, they are always interesting to evaluate.
What about the “length” of the four-velocity uµuµ?

uµuµ = u2
t − u2 = 1

1− v2 −
v2

1− v2 = 1.

Thus, uµ is the unit four-vector.

25-3 The four-dimensional gradient

The next thing that we have to discuss is the four-dimensional analog of the
gradient. We recall (Chapter 14, Vol. I) that the three differential operators
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∂/∂x, ∂/∂y, ∂/∂z transform like a three-vector and are called the gradient. The
same scheme ought to work in four dimensions; that is, we might guess that the
four-dimensional gradient should be (∂/∂t, ∂/∂x, ∂/∂y, ∂/∂z). This is wrong.

To see the error, consider a scalar function φ which depends only on x and t.
The change in φ, if we make a small change ∆t in t while holding x constant, is

∆φ = ∂φ

∂t
∆t. (25.13)

On the other hand, according to a moving observer,

∆φ = ∂φ

∂x′
∆x′ + ∂φ

∂t′
∆t′.

We can express ∆x′ and ∆t′ in terms of ∆t by using Eq. (25.1). Remembering
that we are holding x constant, so that ∆x = 0, we write

∆x′ = − v√
1− v2

∆t; ∆t′ = ∆t√
1− v2

.

Thus,

∆φ = ∂φ

∂x′

(
− v√

1− v2
∆t
)

+ ∂φ

∂t′

(
∆t√

1− v2

)

=
(
∂φ

∂t′
− v ∂φ

∂x′

)
∆t√

1− v2
.

Comparing this result with Eq. (25.13), we learn that

∂φ

∂t
= 1√

1− v2

(
∂φ

∂t′
− v ∂φ

∂x′

)
. (25.14)

A similar calculation gives

∂φ

∂x
= 1√

1− v2

(
∂φ

∂x′
− v ∂φ

∂t′

)
. (25.15)

Now we can see that the gradient is rather strange. The formulas for x and t
in terms of x′ and t′ [obtained by solving Eq. (25.1)] are:

t = t′ + vx′√
1− v2

, x = x′ + vt′√
1− v2

.
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This is the way a four-vector must transform. But Eqs. (25.14) and (25.15) have
a couple of signs wrong!

The answer is that instead of the incorrect (∂/∂t,∇), we must define the
four-dimensional gradient operator, which we will call ∇µ, by

∇µ =
(
∂

∂t
,−∇

)
=
(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
. (25.16)

With this definition, the sign difficulties encountered above go away, and ∇µ
behaves as a four-vector should. (It’s rather awkward to have those minus signs,
but that’s the way the world is.) Of course, what it means to say that ∇µ “behaves
like a four-vector” is simply that the four-gradient of a scalar is a four-vector.
If φ is a true scalar invariant field (Lorentz invariant) then ∇µφ is a four-vector
field.

All right, now that we have vectors, gradients, and dot products, the next
thing is to look for an invariant which is analogous to the divergence of three-
dimensional vector analysis. Clearly, the analog is to form the expression ∇µbµ,
where bµ is a four-vector field whose components are functions of space and time.
We define the divergence of the four-vector bµ = (bt, b) as the dot product of ∇µ
and bµ:

∇µbµ = ∂

∂t
bt −

(
− ∂

∂x

)
bx −

(
− ∂

∂y

)
by −

(
− ∂

∂z

)
bz

= ∂

∂t
bt +∇ · b,

(25.17)

where ∇ · b is the ordinary three-divergence of the three-vector b. Note that
one has to be careful with the signs. Some of the minus signs come from the
definition of the scalar product, Eq. (25.7); the others are required because the
space components of ∇µ are −∂/∂x, etc., as in Eq. (25.16). The divergence as
defined by (25.17) is an invariant and gives the same answer in all coordinate
systems which differ by a Lorentz transformation.

Let’s look at a physical example in which the four-divergence shows up. We
can use it to solve the problem of the fields around a moving wire. We have already
seen (Section 13-7) that the electric charge density ρ and the current density j
form a four-vector jµ = (ρ, j). If an uncharged wire carries the current jx, then
in a frame moving past it with velocity v (along x), the wire will have the charge
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and current density [obtained from the Lorentz transformation Eqs. (25.1)] as
follows:

ρ′ = −vjx√
1− v2

, j′x = jx√
1− v2

.

These are just what we found in Chapter 13. We can then use these sources
in Maxwell’s equations in the moving system to find the fields.

The charge conservation law, Section 13-2, also takes on a simple form in the
four-vector notation. Consider the four divergence of jµ:

∇µjµ = ∂ρ

∂t
+∇ · j. (25.18)

The law of the conservation of charge says that the outflow of current per unit
volume must equal the negative rate of increase of charge density. In other words,
that

∇ · j = −∂ρ
∂t
.

Putting this into Eq. (25.18), the law of conservation of charge takes on the
simple form

∇µjµ = 0. (25.19)

Since ∇µjµ is an invariant scalar, if it is zero in one frame it is zero in all frames.
We have the result that if charge is conserved in one coordinate system, it is
conserved in all coordinate systems moving with uniform velocity.

As our last example we want to consider the scalar product of the gradient
operator ∇µ with itself. In three dimensions, such a product gives the Laplacian

∇2 =∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

What do we get in four dimensions? That’s easy. Following our rules for dot
products and gradients, we get

∇µ∇µ = ∂

∂t

∂

∂t
−
(
− ∂

∂x

)(
− ∂

∂x

)
−
(
− ∂

∂y

)(
− ∂

∂y

)
−
(
− ∂

∂z

)(
− ∂

∂z

)
= ∂2

∂t2
−∇2.
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This operator, which is the analog of the three-dimensional Laplacian, is called
the D’Alembertian and has a special notation:

�2 = ∇µ∇µ = ∂2

∂t2
−∇2. (25.20)

From its definition it is an invariant scalar operator; if it operates on a four-vector
field, it produces a new four-vector field. (Some people define the D’Alembertian
with the opposite sign to Eq. (25.20), so you will have to be careful when reading
the literature.)

We have now found four-dimensional equivalents of most of the three-dimen-
sional quantities we had listed in Table 25-1. (We do not yet have the equivalents
of the cross product and the curl operation; we won’t get to them until the next
chapter.) It may help you remember how they go if we put all the important
definitions and results together in one place, so we have made such a summary
in Table 25-2.

25-4 Electrodynamics in four-dimensional notation

We have already encountered the D’Alembertian operator, without giving
it that name, in Section 18-6; the differential equations we found there for the
potentials can be written in the new notations as:

�2φ = ρ

ε0
, �2A = j

ε0
. (25.21)

The four quantities on the right-hand side of the two equations in (25.21) are
ρ, jx, jy, jz divided by ε0, which is a universal constant which will be the same
in all coordinate systems if the same unit of charge is used in all frames. So the
four quantities ρ/ε0, jx/ε0, jy/ε0, jz/ε0 also transform as a four-vector. We can
write them as jµ/ε0. The D’Alembertian doesn’t change when the coordinate
system is changed, so the quantities φ, Ax, Ay, Az must also transform like a
four-vector—which means that they are the components of a four-vector. In
short,

Aµ = (φ,A)

is a four-vector. What we call the scalar and vector potentials are really different
aspects of the same physical thing. They belong together. And if they are
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kept together the relativistic invariance of the world is obvious. We call Aµ the
four-potential.

In the four-vector notation Eqs. (25.21) become simply

�2Aµ = jµ
ε0
, (25.22)

The physics of this equation is just the same as Maxwell’s equations. But there is
some pleasure in being able to rewrite them in an elegant form. The pretty form
is also meaningful; it shows directly the invariance of electrodynamics under the
Lorentz transformation.

Remember that Eqs. (25.21) could be deduced from Maxwell’s equations only
if we imposed the gauge condition

∂φ

∂t
+∇ ·A = 0, (25.23)

which just says ∇µAµ = 0; the gauge condition says that the divergence of the
four-vector Aµ is zero. This condition is called the Lorenz condition. It is very
convenient because it is an invariant condition and therefore Maxwell’s equations
stay in the form of Eq. (25.22) for all frames.

25-5 The four-potential of a moving charge

Although it is implicit in what we have already said, let us write down the
transformation laws which give φ and A in a moving system in terms of φ and A
in a stationary system. Since Aµ = (φ,A) is a four-vector, the equations must
look just like Eqs. (25.1), except that t is replaced by φ, and x is replaced by A.
Thus,

φ′ = φ− vAx√
1− v2

, A′y = Ay,

A′x = Ax − vφ√
1− v2

, A′z = Az.

(25.24)

This assumes that the primed coordinate system is moving with speed v in the
positive x-direction, as measured in the unprimed coordinate system.

We will consider one example of the usefulness of the idea of the four-potential.
What are the vector and scalar potentials of a charge q moving with speed v
along the x-axis? The problem is easy in a coordinate system moving with the
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Fig. 25-2. The frame S′ moves with velocity v (in the x-direction)
with respect to S. A charge at rest at the origin of S′ is at x = vt in S.
The potentials at P can be computed in either frame.

charge, since in this system the charge is standing still. Let’s say that the charge
is at the origin of the S′-frame, as shown in Fig. 25-2. The scalar potential in
the moving system is then given by

φ′ = q

4πε0r′
, (25.25)

r′ being the distance from q to the field point, as measured in the moving system.
The vector potential A′ is, of course, zero.

Now it is straightforward to find φ and A, the potentials as measured in the
stationary coordinates. The inverse relations to Eqs. (25.24) are

φ = φ′ + vA′x√
1− v2

, Ay = A′y,

Ax = A′x + vφ′√
1− v2

, Az = A′z.

(25.26)

Using the φ′ given by Eq. (25.25), and A′ = 0, we get

φ = q

4πε0
1

r′
√

1− v2

= q

4πε0
1

√
1− v2

√
x′2 + y′2 + z′2

.

This gives us the scalar potential φ we would see in S, but, unfortunately,
expressed in terms of the S′ coordinates. We can get things in terms of t, x, y, z
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by substituting for t′, x′, y′, and z′, using (25.1). We get

φ = q

4πε0
1√

1− v2
1√

[(x− vt)/
√

1− v2]2 + y2 + z2
. (25.27)

Following the same procedure for the components of A, you can show that

A = vφ. (25.28)

These are the same formulas we derived by a different method in Chapter 21.

25-6 The invariance of the equations of electrodynamics

We have found that the potentials φ and A taken together form a four-
vector which we call Aµ, and that the wave equations—the full equations which
determine the Aµ in terms of the jµ—can be written as in Eq. (25.22). This
equation, together with the conservation of charge, Eq. (25.19), gives us the
fundamental law of the electromagnetic field:

�2Aµ = 1
ε0
jµ, ∇µjµ = 0. (25.29)

There, in one tiny space on the page, are all of the Maxwell equations—beautiful
and simple. Did we learn anything from writing the equations this way, besides
that they are beautiful and simple? In the first place, is it anything different from
what we had before when we wrote everything out in all the various components?
Can we from this equation deduce something that could not be deduced from
the wave equations for the potentials in terms of the charges and currents? The
answer is definitely no. The only thing we have been doing is changing the
names of things—using a new notation. We have written a square symbol to
represent the derivatives, but it still means nothing more nor less than the second
derivative with respect to t, minus the second derivative with respect to x, minus
the second derivative with respect to y, minus the second derivative with respect
to z. And the µ means that we have four equations, one each for µ = t, x, y,
or z. What then is the significance of the fact that the equations can be written
in this simple form? From the point of view of deducing anything directly, it
doesn’t mean anything. Perhaps, though, the simplicity of the equations means
that nature also has a certain simplicity.
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Let us show you something interesting that we have recently discovered: All
of the laws of physics can be contained in one equation. That equation is

U = 0. (25.30)

What a simple equation! Of course, it is necessary to know what the symbol means.
U is a physical quantity which we will call the “unworldliness” of the situation.
And we have a formula for it. Here is how you calculate the unworldliness. You
take all of the known physical laws and write them in a special form. For example,
suppose you take the law of mechanics, F = ma, and rewrite it as F −ma = 0.
Then you can call (F −ma)—which should, of course, be zero—the “mismatch”
of mechanics. Next, you take the square of this mismatch and call it U1, which
can be called the “unworldliness of mechanical effects.” In other words, you take

U1 = (F −ma)2. (25.31)

Now you write another physical law, say, ∇ ·E = ρ/ε0 and define

U2 =
(
∇ ·E − ρ

ε0

)2
,

which you might call “the gaussian unworldliness of electricity.” You continue to
write U3, U4, and so on—one for every physical law there is.

Finally you call the total unworldliness U of the world the sum of the various
unworldlinesses Ui from all the subphenomena that are involved; that is, U =

∑
Ui.

Then the great “law of nature” is

U = 0. (25.32)

This “law” means, of course, that the sum of the squares of all the individual
mismatches is zero, and the only way the sum of a lot of squares can be zero is
for each one of the terms to be zero.

So the “beautifully simple” law in Eq. (25.32) is equivalent to the whole
series of equations that you originally wrote down. It is therefore absolutely
obvious that a simple notation that just hides the complexity in the definitions
of symbols is not real simplicity. It is just a trick. The beauty that appears in
Eq. (25.32)—just from the fact that several equations are hidden within it—is
no more than a trick. When you unwrap the whole thing, you get back where
you were before.
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However, there is more to the simplicity of the laws of electromagnetism
written in the form of Eq. (25.29). It means more, just as a theory of vector
analysis means more. The fact that the electromagnetic equations can be written
in a very particular notation which was designed for the four-dimensional geometry
of the Lorentz transformations—in other words, as a vector equation in the four-
space—means that it is invariant under the Lorentz transformations. It is because
the Maxwell equations are invariant under those transformations that they can
be written in a beautiful form.

It is no accident that the equations of electrodynamics can be written in the
beautifully elegant form of Eq. (25.29). The theory of relativity was developed
because it was found experimentally that the phenomena predicted by Maxwell’s
equations were the same in all inertial systems. And it was precisely by studying
the transformation properties of Maxwell’s equations that Lorentz discovered his
transformation as the one which left the equations invariant.

There is, however, another reason for writing our equations this way. It has
been discovered—after Einstein guessed that it might be so—that all of the laws
of physics are invariant under the Lorentz transformation. That is the principle
of relativity. Therefore, if we invent a notation which shows immediately when a
law is written down whether it is invariant or not, we can be sure that in trying
to make new theories we will write only equations which are consistent with the
principle of relativity.

The fact that the Maxwell equations are simple in this particular notation is
not a miracle, because the notation was invented with them in mind. But the
interesting physical thing is that every law of physics—the propagation of meson
waves or the behavior of neutrinos in beta decay, and so forth—must have this
same invariance under the same transformation. Then when you are moving at a
uniform velocity in a spaceship, all of the laws of nature transform together in
such a way that no new phenomenon will show up. It is because the principle of
relativity is a fact of nature that in the notation of four-dimensional vectors the
equations of the world will look simple.
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26

Lorentz Transformations of the Fields

Review: Chapter 20, Vol. II, Solution of Maxwell’s Equations in Free Space

In this chapter: c = 1

26-1 The four-potential of a moving charge

We saw in the last chapter that the potential Aµ = (φ,A) is a four-vector.
The time component is the scalar potential φ, and the three space components are
the vector potential A. We also worked out the potentials of a particle moving
with uniform speed on a straight line by using the Lorentz transformation. (We
had already found them by another method in Chapter 21.) For a point charge
whose position at the time t is (vt, 0, 0), the potentials at the point (x, y, z) are

φ = 1

4πε0
√

1− v2

q[
(x− vt)2

1− v2 + y2 + z2
]1/2

Ax = 1

4πε0
√

1− v2

qv[
(x− vt)2

1− v2 + y2 + z2
]1/2

Ay = Az = 0.

(26.1)

Equations (26.1) give the potentials at x, y, and z at the time t, for a charge
whose “present” position (by which we mean the position at the time t) is
at x = vt. Notice that the equations are in terms of (x− vt), y, and z which are
the coordinates measured from the current position P of the moving charge (see
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y

y

(x, y , z)

P ′ P

vt ′

vt

x − vt

r ′

r

RETARDED
POSITION

PRESENT
POSITION

Fig. 26-1. Finding the fields at (x, y , z) due to a charge q moving
along the x-axis with the constant speed v . The field “now” at the
point (x, y , z) can be expressed in terms of the “present” position P , as
well as in terms of P ′, the “retarded” position (at t ′ = t − r ′/c).

Fig. 26-1). The actual influence we know really travels at the speed c, so it is the
behavior of the charge back at the retarded position P ′ that really counts.* The
point P ′ is at x = vt′ (where t′ = t− r′/c is the retarded time). But we said that
the charge was moving with uniform velocity in a straight line, so naturally the
behavior at P ′ and the current position are directly related. In fact, if we make
the added assumption that the potentials depend only upon the position and the
velocity at the retarded moment, we have in equations (26.1) a complete formula
for the potentials for a charge moving any way. It works this way. Suppose that
you have a charge moving in some arbitrary fashion, say with the trajectory in
Fig. 26-2, and you are trying to find the potentials at the point (x, y, z). First,
you find the retarded position P ′ and the velocity v′ at that point. Then you
imagine that the charge would keep on moving with this velocity during the delay
time (t′ − t), so that it would then appear at an imaginary position Pproj, which
we can call the “projected position,” and would arrive there with the velocity v′.
(Of course, it doesn’t do that; its real position at t is at P .) Then the potentials
at (x, y, z) are just what equations (26.1) would give for the imaginary charge
at the projected position Pproj. What we are saying is that since the potentials

* The primes used here to indicate the retarded positions and times should not be confused
with the primes referring to a Lorentz-transformed frame in the preceding chapter.

26-2



TRAJECTORY

q
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RETARDED
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′/c Pproj

“PROJECTED”
POSITION

P “PRESENT”
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r ′
rPproj

(x, y , z)

Fig. 26-2. A charge moves on an arbitrary trajectory. The potentials
at (x, y , z) at the time t are determined by the position P ′ and velocity v ′

at the retarded time t ′ − r ′/c . They are conveniently expressed in terms
of the coordinates from the “projected” position Pproj. (The actual
position at t is P .)

depend only on what the charge is doing at the retarded time, the potentials
will be the same whether the charge continued moving at a constant velocity or
whether it changed its velocity after t′—that is, after the potentials that were
going to appear at (x, y, z) at the time t were already determined.

You know, of course, that the moment that we have the formula for the
potentials from a charge moving in any manner whatsoever, we have the complete
electrodynamics; we can get the potentials of any charge distribution by superpo-
sition. Therefore we can summarize all the phenomena of electrodynamics either
by writing Maxwell’s equations or by the following series of remarks. (Remember
them in case you are ever on a desert island. From them, all can be reconstructed.
You will, of course, know the Lorentz transformation; you will never forget that
on a desert island or anywhere else.)

First, Aµ is a four-vector. Second, the Coulomb potential for a stationary
charge is q/4πε0r. Third, the potentials produced by a charge moving in any
way depend only upon the velocity and position at the retarded time. With
those three facts we have everything. From the fact that Aµ is a four-vector, we
transform the Coulomb potential, which we know, and get the potentials for a
constant velocity. Then, by the last statement that potentials depend only upon
the past velocity at the retarded time, we can use the projected position game to
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find them. It is not a particularly useful way of doing things, but it is interesting
to show that the laws of physics can be put in so many different ways.

It is sometimes said, by people who are careless, that all of electrodynamics
can be deduced solely from the Lorentz transformation and Coulomb’s law.
Of course, that is completely false. First, we have to suppose that there is a
scalar potential and a vector potential that together make a four-vector. That
tells us how the potentials transform. Then why is it that the effects at the
retarded time are the only things that count? Better yet, why is it that the
potentials depend only on the position and the velocity and not, for instance,
on the acceleration? The fields E and B do depend on the acceleration. If you
try to make the same kind of an argument with respect to them, you would
say that they depend only upon the position and velocity at the retarded time.
But then the fields from an accelerating charge would be the same as the fields
from a charge at the projected position—which is false. The fields depend not
only on the position and the velocity along the path but also on the acceleration.
So there are several additional tacit assumptions in this great statement that
everything can be deduced from the Lorentz transformation. (Whenever you see
a sweeping statement that a tremendous amount can come from a very small
number of assumptions, you always find that it is false. There are usually a large
number of implied assumptions that are far from obvious if you think about them
sufficiently carefully.)

26-2 The fields of a point charge with a constant velocity

Now that we have the potentials from a point charge moving at constant
velocity, we ought to find the fields—for practical reasons. There are many
cases where we have uniformly moving particles—for instance, cosmic rays going
through a cloud chamber, or even slow-moving electrons in a wire. So let’s at least
see what the fields actually do look like for any speed—even for speeds nearly
that of light—assuming only that there is no acceleration. It is an interesting
question.

We get the fields from the potentials by the usual rules:

E = −∇φ− ∂A

∂t
, B =∇×A.

First, for Ez

Ez = −∂φ
∂z
− ∂Az

∂t
.
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But Az is zero; so differentiating φ in equations (26.1), we get

Ez = q

4πε0
√

1− v2

z[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.2)

Similarly, for Ey,

Ey = q

4πε0
√

1− v2

y[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.3)

The x-component is a little more work. The derivative of φ is more complicated
and Ax is not zero. First,

− ∂φ

∂x
= q

4πε0
√

1− v2

(x− vt)/(1− v2)[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.4)

Then, differentiating Ax with respect to t, we find

− ∂Ax
∂t

= q

4πε0
√

1− v2

−v2(x− vt)/(1− v2)[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.5)

And finally, taking the sum,

Ex = q

4πε0
√

1− v2

x− vt[
(x− vt)2

1− v2 + y2 + z2
]3/2 . (26.6)

We’ll look at the physics of E in a minute; let’s first find B. For the z-
component,

Bz = ∂Ay
∂x
− ∂Ax

∂y
.

Since Ay is zero, we have just one derivative to get. Notice, however, that Ax is
just vφ, and ∂/∂y of vφ is just −vEy. So

Bz = vEy. (26.7)
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Similarly,

By = ∂Ax
∂z
− ∂Az

∂x
= +v ∂φ

∂z
,

and
By = −vEz. (26.8)

Finally, Bx is zero, since Ay and Az are both zero. We can write the magnetic
field simply as

B = v ×E. (26.9)

Now let’s see what the fields look like. We will try to draw a picture of the
field at various positions around the present position of the charge. It is true that
the influence of the charge comes, in a certain sense, from the retarded position;
but because the motion is exactly specified, the retarded position is uniquely
given in terms of the present position. For uniform velocities, it’s nicer to relate
the fields to the current position, because the field components at (x, y, z) depend
only on (x− vt), y, and z—which are the components of the displacement r from
the present position to (x, y, z) (see Fig. 26-3).

Consider first a point with z = 0. Then E has only x- and y-components.
From Eqs. (26.3) and (26.6), the ratio of these components is just equal to the
ratio of the x- and y-components of the displacement. That means that E is in

x

y

y

(x, y , z)

P ′ P

vt ′

vt

x − vt

r

RETARDED
POSITION

PRESENT
POSITION

E

Ex

Ey

Fig. 26-3. For a charge moving with constant speed, the electric field
points radially from the “present” position of the charge.
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the same direction as r, as shown in Fig. 26-3. Since Ez is also proportional to z,
it is clear that this result holds in three dimensions. In short, the electric field is
radial from the charge, and the field lines radiate directly out of the charge, just
as they do for a stationary charge. Of course, the field isn’t exactly the same
as for the stationary charge, because of all the extra factors of (1− v2). But we
can show something rather interesting. The difference is just what you would
get if you were to draw the Coulomb field with a peculiar set of coordinates in
which the scale of x was squashed up by the factor

√
1− v2. If you do that, the

field lines will be spread out ahead and behind the charge and will be squeezed
together around the sides, as shown in Fig. 26-4.

If we relate the strength of E to the density of the field lines in the conventional
way, we see a stronger field at the sides and a weaker field ahead and behind,

(a) v = 0

E

(b) v = 0.9c

E

v

Fig. 26-4. The electric field of a charge moving with constant speed
v = 0.9c , part (b), compared with the field of a charge at rest, part (a).

26-7



which is just what the equations say. First, if we look at the strength of the field
at right angles to the line of motion, that is, for (x− vt) = 0, the distance from
the charge is

√
y2 + z2. Here the total field strength is

√
E2
y + E2

z , which is

E = q

4πε0
√

1− v2
1

y2 + z2 . (26.10)

The field is proportional to the inverse square of the distance—just like the
Coulomb field except increased by the constant, extra factor 1/

√
1− v2, which is

always greater than one. So at the sides of a moving charge, the electric field is
stronger than you get from the Coulomb law. In fact, the field in the sidewise
direction is bigger than the Coulomb potential by the ratio of the energy of the
particle to its rest mass.

Ahead of the charge (and behind), y and z are zero and

E = Ex = q(1− v2)
4πε0(x− vt)2 . (26.11)

The field again varies as the inverse square of the distance from the charge but
is now reduced by the factor (1− v2), in agreement with the picture of the field
lines. If v/c is small, v2/c2 is still smaller, and the effect of the (1− v2) terms is
very small; we get back to Coulomb’s law. But if a particle is moving very close
to the speed of light, the field in the forward direction is enormously reduced,
and the field in the sidewise direction is enormously increased.

Our results for the electric field of a charge can be put this way: Suppose
you were to draw on a piece of paper the field lines for a charge at rest, and
then set the picture to travelling with the speed v. Then, of course, the whole
picture would be compressed by the Lorentz contraction; that is, the carbon
granules on the paper would appear in different places. The miracle of it is that
the picture you would see as the page flies by would still represent the field lines
of the point charge. The contraction moves them closer together at the sides and
spreads them out ahead and behind, just in the right way to give the correct
line densities. We have emphasized before that field lines are not real but are
only one way of representing the field. However, here they almost seem to be
real. In this particular case, if you make the mistake of thinking that the field
lines are somehow really there in space, and transform them, you get the correct
field. That doesn’t, however, make the field lines any more real. All you need
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do to remind yourself that they aren’t real is to think about the electric fields
produced by a charge together with a magnet; when the magnet moves, new
electric fields are produced, and destroy the beautiful picture. So the neat idea
of the contracting picture doesn’t work in general. It is, however, a handy way
to remember what the fields from a fast-moving charge are like.

v

B

q

Fig. 26-5. The magnetic field near a moving charge is v×E. [Compare
with Fig. 26-4.]

The magnetic field is v×E [from Eq. (26.9)]. If you take the velocity crossed
into a radial E-field, you get a B which circles around the line of motion, as
shown in Fig. 26-5. If we put back the c’s, you will see that it’s the same result
we had for low-velocity charges. A good way to see where the c’s must go is to
refer back to the force law,

F = q(E + v ×B).

You see that a velocity times the magnetic field has the same dimensions as an
electric field. So the right-hand side of Eq. (26.9) must have a factor 1/c2:

B = v ×E
c2

. (26.12)

For a slow-moving charge (v � c), we can take for E the Coulomb field; then

B = q

4πε0c2
v × r
r3 . (26.13)

This formula corresponds exactly to equations for the magnetic field of a current
that we found in Section 14-7.

We would like to point out, in passing, something interesting for you to think
about. (We will come back to discuss it again later.) Imagine two protons with
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(a)

q1
v1 q2

v2

(b)

v1

v2
B1

q1v1 × B1

q1E1

F1

q2E2 = F2

Fig. 26-6. The forces between two moving charges are not always
equal and opposite. It appears that “action” is not equal to “reaction.”

velocities at right angles, so that one will cross over the path of the other, but in
front of it, so they don’t collide. At some instant, their relative positions will be
as in Fig. 26-6(a). We look at the force on q1 due to q2 and vice versa. On q2
there is only the electric force from q1, since q1 makes no magnetic field along its
line of motion. On q1, however, there is again the electric force but, in addition,
a magnetic force, since it is moving in a B-field made by q2. The forces are as
drawn in Fig. 26-6(b). The electric forces on q1 and q2 are equal and opposite.
However, there is a sidewise (magnetic) force on q1 and no sidewise force on q2.
Does action not equal reaction? We leave it for you to worry about.

26-3 Relativistic transformation of the fields

In the last section we calculated the electric and magnetic fields from the
transformed potentials. The fields are important, of course, in spite of the
arguments given earlier that there is physical meaning and reality to the potentials.
The fields, too, are real. It would be convenient for many purposes to have a way
to compute the fields in a moving system if you already know the fields in some
“rest” system. We have the transformation laws for φ and A, because Aµ is a
four-vector. Now we would like to know the transformation laws of E and B.
Given E and B in one frame, how do they look in another frame moving past? It
is a convenient transformation to have. We could always work back through the
potentials, but it is useful sometimes to be able to transform the fields directly.
We will now see how that goes.
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How can we find the transformation laws of the fields? We know the transfor-
mation laws of the φ and A, and we know how the fields are given in terms of φ
and A—it should be easy to find the transformation for the B and E. (You might
think that with every vector there should be something to make it a four-vector,
so with E there’s got to be something else we can use for the fourth component.
And also for B. But it’s not so. It’s quite different from what you would expect.)
To begin with, let’s take just a magnetic field B, which is, of course ∇×A. Now
we know that the vector potential with its x-, y-, and z-components is only a
piece of something; there is also a t-component. Also we know that for derivatives
like ∇, besides the x, y, z parts, there is also a derivative with respect to t. So
let’s try to figure out what happens if we replace a “y” by a “t”, or a “z” by a “t,”
or something like that.

First, notice the form of the terms in∇×A when we write out the components:

Bx = ∂Az
∂y
− ∂Ay

∂z
, By = ∂Ax

∂z
− ∂Az

∂x
, Bz = ∂Ay

∂x
− ∂Ax

∂y
. (26.14)

The x-component is equal to a couple of terms that involve only y- and z-
components. Suppose we call this combination of derivatives and components a
“zy-thing,” and give it a shorthand name, Fzy. We simply mean that

Fzy ≡
∂Az
∂y
− ∂Ay

∂z
. (26.15)

Similarly, By is equal to the same kind of “thing,” but this time it is an “xz-thing.”
And Bz is, of course, the corresponding “yx-thing.” We have

Bx = Fzy, By = Fxz, Bz = Fyx. (26.16)

Now what happens if we simply try to concoct also some “t”-type things like
Fxt and Ftz (since nature should be nice and symmetric in x, y, z, and t)? For
instance, what is Ftz? It is, of course,

∂At
∂z
− ∂Az

∂t
.

But remember that At = φ, so it is also

∂φ

∂z
− ∂Az

∂t
.
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You’ve seen that before. It is the z-component of E. Well, almost—there is a
sign wrong. But we forgot that in the four-dimensional gradient the t-derivative
comes with the opposite sign from x, y, and z. So we should really have taken
the more consistent extension of Ftz, as

Ftz = ∂At
∂z

+ ∂Az
∂t

(26.17)

Then it is exactly equal to −Ez. Trying also Ftx and Fty, we find that the three
possibilities give

Ftx = −Ex, Fty = −Ey, Ftz = −Ez. (26.18)

What happens if both subscripts are t? Or, for that matter, if both are x?
We get things like

Ftt = ∂At
∂t
− ∂At

∂t
,

and
Fxx = ∂Ax

∂x
− ∂Ax

∂x
,

which give nothing but zero.
We have then six of these F -things. There are six more which you get by

reversing the subscripts, but they give nothing really new, since

Fxy = −Fyx,

and so on. So, out of sixteen possible combinations of the four subscripts taken
in pairs, we get only six different physical objects; and they are the components
of B and E.

To represent the general term of F , we will use the general subscripts µ and ν,
where each can stand for 0, 1, 2, or 3—meaning in our usual four-vector notation
t, x, y, and z. Also, everything will be consistent with our four-vector notation if
we define Fµν by

Fµν = ∇µAν −∇νAµ, (26.19)
remembering that ∇µ = (∂/∂t,−∂/∂x,−∂/∂y,−∂/∂z) and that Aµ = (φ,Ax, Ay,
Az).

What we have found is that there are six quantities that belong together in
nature—that are different aspects of the same thing. The electric and magnetic
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fields which we have considered as separate vectors in our slow-moving world
(where we don’t worry about the speed of light) are not vectors in four-space.
They are parts of a new “thing.” Our physical “field” is really the six-component
object Fµν . That is the way we must look at it for relativity. We summarize our
results on Fµν in Table 26-1.

Table 26-1

The components of F µν

Fµν = −Fνµ

Fµµ = 0

Fxy = −Bz Fxt = Ex

Fyz = −Bx Fyt = Ey

Fzx = −By Fzt = Ez

You see that what we have done here is to generalize the cross product. We
began with the curl operation, and the fact that the transformation properties
of the curl are the same as the transformation properties of two vectors—the
ordinary three-dimensional vector A and the gradient operator which we know
also behaves like a vector. Let’s look for a moment at an ordinary cross product
in three dimensions, for example, the angular momentum of a particle. When an
object is moving in a plane, the quantity (xvy − yvx) is important. For motion
in three dimensions, there are three such important quantities, which we call the
angular momentum:

Lxy = m(xvy − yvx), Lyz = m(yvz − zvy), Lzx = m(zvx − xvz).

Then (although you may have forgotten by now) we discovered in Chapter 20
of Vol. I the miracle that these three quantities could be identified with the
components of a vector. In order to do so, we had to make an artificial rule with
a right-hand convention. It was just luck. It was luck because Lij (with i and j
equal to x, y, or z) was an antisymmetric object:

Lij = −Lji, Lii = 0.

Of the nine possible quantities, there are only three independent numbers. And
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it just happens that when you change coordinate systems these three objects
transform in exactly the same way as the components of a vector.

The same thing lets us represent an element of surface as a vector. A surface
element has two parts—say dx and dy—which we can represent by the vector da
normal to the surface. But we can’t do that in four dimensions. What is the
“normal” to dx dy? Is it along z or along t?

In short, for three dimensions it happens by luck that after you’ve taken a
combination of two vectors like Lij , you can represent it again by another vector
because there are just three terms that happen to transform like the components
of a vector. But in four dimensions that is evidently impossible, because there
are six independent terms, and you can’t represent six things by four things.

Even in three dimensions it is possible to have combinations of vectors that
can’t be represented by vectors. Suppose we take any two vectors a = (ax, ay, az)
and b = (bx, by, bz), and make the various possible combinations of components,
like axbx, axby, etc. There would be nine possible quantities:

axbx, axby, axbz,

aybx, ayby, aybz,

azbx, azby, azbz.

We might call these quantities Tij .
If we now go to a rotated coordinate system (say rotated about the z-axis),

the components of a and b are changed. In the new system, ax, for example,
gets replaced by

a′x = ax cos θ + ay sin θ,
and by gets replaced by

b′y = by cos θ − bx sin θ.
And similarly for other components. The nine components of the product quan-
tity Tij we have invented are all changed too, of course. For instance, Txy = axby
gets changed to

T ′xy = axby(cos2 θ)− axbx(cos θ sin θ) + ayby(sin θ cos θ)− aybx(sin2 θ),

or
T ′xy = Txy cos2 θ − Txx cos θ sin θ + Tyy sin θ cos θ − Tyx sin2 θ.

Each component of T ′ij is a linear combination of the components of Tij .
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So we discover that it is not only possible to have a “vector product” like a×b
which has three components that transform like a vector, but we can—artificially—
also make another kind of “product” of two vectors Tij with nine components
that transform under a rotation by a complicated set of rules that we could figure
out. Such an object which has two indices to describe it, instead of one, is called
a tensor . It is a tensor of the “second rank,” because you can play this game
with three vectors too and get a tensor of the third rank—or with four, to get a
tensor of the fourth rank, and so on. A tensor of the first rank is a vector.

The point of all this is that our electromagnetic quantity Fµν is also a tensor
of the second rank, because it has two indices in it. It is, however, a tensor in
four dimensions. It transforms in a special way which we will work out in a
moment—it is just the way a product of vectors transforms. For Fµν it happens
that if you change the indices around, Fµν changes sign. That’s a special case—it
is an antisymmetric tensor. So we say: the electric and magnetic fields are both
part of an antisymmetric tensor of the second rank in four dimensions.

You’ve come a long way. Remember way back when we defined what a velocity
meant? Now we are talking about “an antisymmetric tensor of the second rank
in four dimensions.”

Now we have to find the law of the transformation of Fµν . It isn’t at all
difficult to do; it’s just laborious—the brains involved are nil, but the work is
not. What we want is the Lorentz transformation of ∇µAν −∇νAµ. Since ∇µ
is just a special case of a vector, we will work with the general antisymmetric
vector combination, which we can call Gµν :

Gµν = aµbν − aνbµ. (26.20)

(For our purposes, aµ will eventually be replaced by ∇µ and bµ will be replaced
by the potential Aµ.) The components of aµ and bµ transform by the Lorentz
formulas, which are

a′t = at − vax√
1− v2

, b′t = bt − vbx√
1− v2

,

a′x = ax − vat√
1− v2

, b′x = bx − vbt√
1− v2

,

a′y = ay, b′y = by,

a′z = az, b′z = bz.

(26.21)
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Now let’s transform the components of Gµν . We start with Gtx:

G′tx = a′tb
′
x − a′xb′t

=
(
at − vax√

1− v2

)(
bx − vbt√

1− v2

)
−
(
ax − vat√

1− v2

)(
bt − vbx√

1− v2

)
= atbx − axbt.

But that is just Gtx; so we have the simple result

G′tx = Gtx.

We will do one more.

G′ty = at − vax√
1− v2

by − ay
bt − vbx√

1− v2
= (atby − aybt)− v(axby − aybx)√

1− v2
.

So we get that
G′ty = Gty − vGxy√

1− v2
.

And, of course, in the same way,

G′tz = Gtz − vGxz√
1− v2

.

It is clear how the rest will go. Let’s make a table of all six terms; only now we
may as well write them for Fµν :

F ′tx = Ftx, F ′xy = Fxy − vFty√
1− v2

,

F ′ty = Fty − vFxy√
1− v2

, F ′yz = Fyz,

F ′tz = Ftz − vFxz√
1− v2

, F ′zx = Fzx − vFzt√
1− v2

.

(26.22)

Of course, we still have F ′µν = −F ′νµ and F ′µµ = 0.
So we have the transformation of the electric and magnetic fields. All we have

to do is look at Table 26-1 to find out what our grand notation in terms of Fµν
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Table 26-2

The Lorentz transformation of the electric and magnetic fields (Note: c = 1)

E′x = Ex B′x = Bx

E′y = Ey − vBz√
1− v2

B′y = By + vEz√
1− v2

E′z = Ez + vBy√
1− v2

B′z = Bz − vEy√
1− v2

means in terms of E and B. It’s just a matter of substitution. So that we can
see how it looks in the ordinary symbols, we’ll rewrite our transformation of the
field components in Table 26-2.

The equations in Table 26-2 tell us how E and B change if we go from one
inertial frame to another. If we know E and B in one system, we can find what
they are in another that moves by with the speed v.

We can write these equations in a form that is easier to remember if we notice
that since v is in the x-direction, all the terms with v are components of the cross
products v ×E and v ×B. So we can rewrite the transformations as shown in
Table 26-3.

Table 26-3

An alternative form for the field transformations (Note: c = 1)

E′x = Ex B′x = Bx

E′y = (E + v ×B)y√
1− v2

B′y = (B − v ×E)y√
1− v2

E′z = (E + v ×B)z√
1− v2

B′z = (B − v ×E)z√
1− v2

It is now easier to remember which components go where. In fact, the
transformation can be written even more simply if we define the field components
along x as the “parallel” components E‖ and B‖ (because they are parallel to
the relative velocity of S and S′), and the total transverse components—the
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vector sums of the y- and z-components—as the “perpendicular” components
E⊥ and B⊥. Then we get the equations in Table 26-4. (We have also put back
the c’s, so it will be more convenient when we want to refer back later.)

Table 26-4

Still another form for the Lorentz transformation of E and B

E′‖ = E‖ B′‖ = B‖

E′⊥ = (E + v ×B)⊥√
1− v2/c2

B′⊥ =

(
B − v ×E

c2

)
⊥√

1− v2/c2

The field transformations give us another way of solving some problems we
have done before—for instance, for finding the fields of a moving point charge.
We have worked out the fields before by differentiating the potentials. But we
could now do it by transforming the Coulomb field. If we have a point charge at
rest in the S-frame, then there is only the simple radial E-field. In the S′-frame
we will see a point charge moving with the velocity u, if the S′-frame moves by the
S-frame with the speed v = −u. We will let you show that the transformations
of Tables 26-3 and 26-4 give the same electric and magnetic fields we got in
Section 26-2.

The transformation of Table 26-2 gives us an interesting and simple answer for
what we see if we move past any system of fixed charges. For example, suppose
we want to know the fields in our frame S′ if we are moving along between the
plates of a condenser, as shown in Fig. 26-7. (It is, of course, the same thing
if we say that a charged condenser is moving past us.) What do we see? The

+ + + + + + + +

− − − − − − − −

E
S′

v

Fig. 26-7. The coordinate frame S′ moving through a static electric
field.
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transformation is easy in this case because the B-field in the original system
is zero. Suppose, first, that our motion is perpendicular to E; then we will see
an E′ = E/

√
1− v2/c2 which is still completely transverse. We will see, in

addition, a magnetic field B′ = −v×E′/c2. (The
√

1− v2/c2 doesn’t appear in
our formula for B′ because we wrote it in terms of E′ rather than E; but it’s the
same thing.) So when we move along perpendicular to a static electric field, we
see a reduced E and an added transverse B. If our motion is not perpendicular
to E, we break E into E‖ and E⊥. The parallel part is unchanged, E′‖ = E‖,
and the perpendicular component does as just described.

Let’s take the opposite case, and imagine we are moving through a pure static
magnetic field. This time we would see an electric field E′ equal to v ×B′, and
the magnetic field changed by the factor 1/

√
1− v2/c2 (assuming it is transverse).

So long as v is much less than c, we can neglect the change in the magnetic field,
and the main effect is that an electric field appears. As one example of this effect,
consider this once famous problem of determining the speed of an airplane. It’s
no longer famous, since radar can now be used to determine the air speed from
ground reflections, but for many years it was very hard to find the speed of an
airplane in bad weather. You could not see the ground and you didn’t know
which way was up, and so on. Yet it was important to know how fast you were
moving relative to the earth. How can this be done without seeing the earth?
Many who knew the transformation formulas thought of the idea of using the
fact that the airplane moves in the magnetic field of the earth. Suppose that
an airplane is flying where there is a magnetic field more or less known. Let’s
just take the simple case where the magnetic field is vertical. If we were flying
through it with a horizontal velocity v, then, according to our formula, we should
see an electric field which is v×B, i.e., perpendicular to the line of motion. If we
hang an insulated wire across the airplane, this electric field will induce charges
on the ends of the wire. That is nothing new. From the point of view of someone
on the ground, we are moving a wire through a field, and the v ×B force causes
charges to move to the ends of the wire. The transformation equations just say
the same thing in a different way. (The fact that we can say the thing more than
one way doesn’t mean that one way is better than another. We are getting so
many different methods and tools that we can usually get the same result in
65 different ways!)

So to measure v, all we have to do is measure the voltage between the ends of
the wire. We can’t do it with a voltmeter because the same fields will act on the
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wires in the voltmeter, but there are ways of measuring such fields. We talked
about some of them when we discussed atmospheric electricity in Chapter 9. So
it should be possible to measure the speed of the airplane.

This important problem was, however, never solved this way. The reason is
that the electric field that is developed is of the order of millivolts per meter.
It is possible to measure such fields, but the trouble is that these fields are,
unfortunately, not any different from any other electric fields. The field that is
produced by motion through the magnetic field can’t be distinguished from some
electric field that was already in the air from another cause, say from electrostatic
charges in the air, or on the clouds. We described in Chapter 9 that there are,
typically, electric fields above the surface of the earth with strengths of about
100 volts per meter. But they are quite irregular. So as the airplane flies through
the air, it sees fluctuations of atmospheric electric fields which are enormous in
comparison to the tiny fields produced by the v ×B term, and it turns out for
practical reasons to be impossible to measure speeds of an airplane by its motion
through the earth’s magnetic field.

26-4 The equations of motion in relativistic notation*
It doesn’t do much good to find electric and magnetic fields from Maxwell’s

equations unless we know what the fields do when we have them. You may
remember that the fields are required to find the forces on charges, and that
those forces determine the motion of the charge. So, of course, part of the theory
of electrodynamics is the relation between the motion of charges and the forces.

For a single charge in the fields E and B, the force is

F = q(E + v ×B). (26.23)

This force is equal to the mass times the acceleration for low velocities, but
the correct law for any velocity is that the force is equal to dp/dt. Writing
p = m0v/

√
1− v2/c2, we find that the relativistically correct equation of motion

is
d

dt

(
m0v√

1− v2/c2

)
= F = q(E + v ×B). (26.24)

We would like now to discuss this equation from the point of view of relativ-
ity. Since we have put our Maxwell equations in relativistic form, it would be

* In this section we will put back all of the c’s
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interesting to see what the equations of motion would look like in relativistic
form. Let’s see whether we can rewrite the equation in a four-vector notation.

We know that the momentum is part of a four-vector pµ whose time component
is the energy m0c

2/
√

1− v2/c2. So we might think to replace the left-hand side
of Eq. (26.24) by dpµ/dt. Then we need only find a fourth component to go
with F . This fourth component must equal the rate-of-change of the energy, or
the rate of doing work, which is F ·v. We would then like to write the right-hand
side of Eq. (26.24) as a four-vector like (F · v, Fx, Fy, Fz). But this does not
make a four-vector.

The time derivative of a four-vector is no longer a four-vector, because the d/dt
requires the choice of some special frame for measuring t. We got into that trouble
before when we tried to make v into a four-vector. Our first guess was that the
time component would be cdt/dt = c. But the quantities(

c,
dx

dt
,
dy

dt
,
dz

dt

)
= (c,v) (26.25)

are not the components of a four-vector. We found that they could be made into
one by multiplying each component by 1/

√
1− v2/c2. The “four-velocity” uµ is

the four-vector
uµ =

(
c√

1− v2/c2
,

v√
1− v2/c2

)
. (26.26)

So it appears that the trick is to multiply d/dt by 1/
√

1− v2/c2, if we want the
derivatives to make a four-vector.

Our second guess then is that

1√
1− v2/c2

d

dt
(pµ) (26.27)

should be a four-vector. But what is v? It is the velocity of the particle—not of
a coordinate frame! Then the quantity fµ defined by

fµ =
(

F · v√
1− v2/c2

,
F√

1− v2/c2

)
(26.28)

is the extension into four dimensions of a force—we can call it the “four-force.” It
is indeed a four-vector, and its space components are not the components of F
but of F /

√
1− v2/c2.
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The question is—why is fµ a four-vector? It would be nice to get a little
understanding of that 1/

√
1− v2/c2 factor. Since it has come up twice now, it

is time to see why the d/dt can always be fixed by the same factor. The answer
is in the following: When we take the time derivative of some function x, we
compute the increment ∆x in a small interval ∆t in the variable t. But in another
frame, the interval ∆t might correspond to a change in both t′ and x′, so if we
vary only t′, the change in x will be different. We have to find a variable for our
differentiation that is a measure of an “interval” in space-time, which will then
be the same in all coordinate systems. When we take ∆x for that interval, it will
be the same for all coordinate frames. When a particle “moves” in four-space,
there are the changes ∆t, ∆x, ∆y, ∆z. Can we make an invariant interval out of
them? Well, they are the components of the four-vector xµ = (ct, x, y, z) so if we
define a quantity ∆s by

(∆s)2 = 1
c2

∆xµ∆xµ = 1
c2

(c2∆t2 −∆x2 −∆y2 −∆z2) (26.29)

—which is a four-dimensional dot product—we then have a good four-scalar to
use as a measure of a four-dimensional interval. From ∆s—or its limit ds—we
can define a parameter s =

∫
ds. And a derivative with respect to s, d/ds, is a

nice four-dimensional operation, because it is invariant with respect to a Lorentz
transformation.

It is easy to relate ds to dt for a moving particle. For a moving point particle,

dx = vx dt, dy = vy dt, dz = vz dt, (26.30)
and

ds =
√

(dt2/c2)(c2 − v2
x − v2

y − v2
z) = dt

√
1− v2/c2. (26.31)

So the operator
1√

1− v2/c2
d

dt

is an invariant operator. If we operate on any four-vector with it, we get another
four-vector. For instance, if we operate on (ct, x, y, z), we get the four-velocity uµ:

dxµ
ds

= uµ.

We see now why the factor
√

1− v2/c2 fixes things up.
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The invariant variable s is a useful physical quantity. It is called the “proper
time” along the path of a particle, because ds is always an interval of time
in a frame that is moving with the particle at any particular instant. (Then,
∆x = ∆y = ∆z = 0, and ∆s = ∆t.) If you can imagine some “clock” whose rate
doesn’t depend on the acceleration, such a clock carried along with the particle
would show the time s.

We can now go back and write Newton’s law (as corrected by Einstein) in
the neat form

dpµ
ds

= fµ, (26.32)

where fµ is given in Eq. (26.28). Also, the momentum pµ can be written as

pµ = m0uµ = m0
dxµ
ds

, (26.33)

where the coordinates xµ = (ct, x, y, z) now describe the trajectory of the particle.
Finally, the four-dimensional notation gives us this very simple form of the
equations of motion:

fµ = m0
d2xµ
ds2 , (26.34)

which is reminiscent of F = ma. It is important to notice that Eq. (26.34) is not
the same as F = ma, because the four-vector formula Eq. (26.34) has in it the
relativistic mechanics which are different from Newton’s law for high velocities.
It is unlike the case of Maxwell’s equations, where we were able to rewrite the
equations in the relativistic form without any change in the meaning at all—but
with just a change of notation.

Now let’s return to Eq. (26.24) and see how we can write the right-hand side in
four-vector notation. The three components—when divided by

√
1− v2/c2—are

the components of fµ, so

fx = q(E + v ×B)x√
1− v2/c2

= q

[
Ex√

1− v2/c2
+ vyBz√

1− v2/c2
− vzBy√

1− v2/c2

]
. (26.35)

Now we must put all quantities in their relativistic notation. First, c/
√

1− v2/c2

and vy/
√

1− v2/c2 and vz/
√

1− v2/c2 are the t-, y-, and z-components of the
four-velocity uµ. And the components of E and B are components of the second-
rank tensor of the fields Fµν . Looking back in Table 26-1 for the components
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of Fµν that correspond to Ex, Bz, and By, we get*

fx = q(utFxt − uyFxy − uzFxz),

which begins to look interesting. Every term has the subscript x, which is
reasonable, since we’re finding an x-component. Then all the others appear in
pairs: tt, yy, zz—except that the xx-term is missing. So we just stick it in, and
write

fx = q(utFxt − uxFxx − uyFxy − uzFxz). (26.36)
We haven’t changed anything because Fµν is antisymmetric, and Fxx is zero.
The reason for wanting to put in the xx-term is so that we can write Eq. (26.36)
in the short-hand form

fµ = quνFµν . (26.37)
This equation is the same as Eq. (26.36) if we make the rule that whenever any
subscript occurs twice (as ν does here), you automatically sum over terms in the
same way as for the scalar product, using the same convention for the signs.

You can easily believe that (26.37) works equally well for µ = y or µ = z, but
what about µ = t? Let’s see, for fun, what it says:

ft = q(utFtt − uxFtx − uyFty − uzFtz).

Now we have to translate back to E’s and B’s. We get

ft = q

(
0 + vx√

1− v2/c2
Ex + vy√

1− v2/c2
Ey + vz√

1− v2/c2
Ez

)
, (26.38)

or
ft = qv ·E√

1− v2/c2
.

But from Eq. (26.28), ft is supposed to be

F · v√
1− v2/c2

= q(E + v ×B) · v√
1− v2/c2

.

This is the same thing as Eq. (26.38), since (v ×B) · v is zero. So everything
comes out all right.

* When we put the c’s back in Table 26-1, all components of Fµν , corresponding to
components of E are multiplied by 1/c.
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Summarizing, our equation of motion can be written in the elegant form

m0
d2xµ
ds2 = fµ = quνFµν . (26.39)

Although it is nice to see that the equations can be written that way, this form is
not particularly useful. It’s usually more convenient to solve for particle motions
by using the original equations (26.24), and that’s what we will usually do.
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27

Field Energy and Field Momentum

27-1 Local conservation

It is clear that the energy of matter is not conserved. When an object radiates
light it loses energy. However, the energy lost is possibly describable in some
other form, say in the light. Therefore the theory of the conservation of energy
is incomplete without a consideration of the energy which is associated with
the light or, in general, with the electromagnetic field. We take up now the law
of conservation of energy and, also, of momentum for the fields. Certainly, we
cannot treat one without the other, because in the relativity theory they are
different aspects of the same four-vector.

Very early in Volume I, we discussed the conservation of energy; we said then
merely that the total energy in the world is constant. Now we want to extend
the idea of the energy conservation law in an important way—in a way that
says something in detail about how energy is conserved. The new law will say
that if energy goes away from a region, it is because it flows away through the
boundaries of that region. It is a somewhat stronger law than the conservation
of energy without such a restriction.

To see what the statement means, let’s look at how the law of the conservation
of charge works. We described the conservation of charge by saying that there is
a current density j and a charge density ρ, and that when the charge decreases
at some place there must be a flow of charge away from that place. We call that
the conservation of charge. The mathematical form of the conservation law is

∇ · j = −∂ρ
∂t
. (27.1)

This law has the consequence that the total charge in the world is always constant—
there is never any net gain or loss of charge. However, the total charge in the world
could be constant in another way. Suppose that there is some charge Q1 near
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(a)

(1) (2)

Q1 Q2

(b)

Q1 Q2

|

Fig. 27-1. Two ways to conserve charge: (a) Q1 + Q2 is constant;
(b) dQ1/dt = −

∫
j · n da = −dQ2/dt.

some point (1) while there is no charge near some point (2) some distance away
(Fig. 27-1). Now suppose that, as time goes on, the charge Q1 were to gradually
fade away and that simultaneously with the decrease of Q1 some charge Q2 would
appear near point (2), and in such a way that at every instant the sum of Q1
and Q2 was a constant. In other words, at any intermediate state the amount of
charge lost by Q1 would be added to Q2. Then the total amount of charge in
the world would be conserved. That’s a “world-wide” conservation, but not what
we will call a “local” conservation, because in order for the charge to get from
(1) to (2), it didn’t have to appear anywhere in the space between point (1) and
point (2). Locally, the charge was just “lost.”

There is a difficulty with such a “world-wide” conservation law in the theory of
relativity. The concept of “simultaneous moments” at distant points is one which
is not equivalent in different systems. Two events that are simultaneous in one
system are not simultaneous for another system moving past. For “world-wide”
conservation of the kind described, it is necessary that the charge lost from Q1
should appear simultaneously in Q2. Otherwise there would be some moments
when the charge was not conserved. There seems to be no way to make the
law of charge conservation relativistically invariant without making it a “local”
conservation law. As a matter of fact, the requirement of the Lorentz relativistic
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invariance seems to restrict the possible laws of nature in surprising ways. In
modern quantum field theory, for example, people have often wanted to alter the
theory by allowing what we call a “nonlocal” interaction—where something here
has a direct effect on something there—but we get in trouble with the relativity
principle.

“Local” conservation involves another idea. It says that a charge can get
from one place to another only if there is something happening in the space
between. To describe the law we need not only the density of charge, ρ, but also
another kind of quantity, namely j, a vector giving the rate of flow of charge
across a surface. Then the flow is related to the rate of change of the density
by Eq. (27.1). This is the more extreme kind of a conservation law. It says that
charge is conserved in a special way—conserved “locally.”

It turns out that energy conservation is also a local process. There is not only
an energy density in a given region of space but also a vector to represent the
rate of flow of the energy through a surface. For example, when a light source
radiates, we can find the light energy moving out from the source. If we imagine
some mathematical surface surrounding the light source, the energy lost from
inside the surface is equal to the energy that flows out through the surface.

27-2 Energy conservation and electromagnetism

We want now to write quantitatively the conservation of energy for electro-
magnetism. To do that, we have to describe how much energy there is in any
volume element of space, and also the rate of energy flow. Suppose we think
first only of the electromagnetic field energy. We will let u represent the energy
density in the field (that is, the amount of energy per unit volume in space) and
let the vector S represent the energy flux of the field (that is, the flow of energy
per unit time across a unit area perpendicular to the flow). Then, in perfect
analogy with the conservation of charge, Eq. (27.1), we can write the “local” law
of energy conservation in the field as

∂u

∂t
= −∇ · S. (27.2)

Of course, this law is not true in general; it is not true that the field energy is
conserved. Suppose you are in a dark room and then turn on the light switch. All
of a sudden the room is full of light, so there is energy in the field, although there
wasn’t any energy there before. Equation (27.2) is not the complete conservation
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law, because the field energy alone is not conserved, only the total energy in the
world—there is also the energy of matter. The field energy will change if there is
some work being done by matter on the field or by the field on matter.

However, if there is matter inside the volume of interest, we know how much
energy it has: Each particle has the energy m0c

2/
√

1− v2/c2. The total energy
of the matter is just the sum of all the particle energies, and the flow of this
energy through a surface is just the sum of the energy carried by each particle
that crosses the surface. We want now to talk only about the energy of the
electromagnetic field. So we must write an equation which says that the total
field energy in a given volume decreases either because field energy flows out of
the volume or because the field loses energy to matter (or gains energy, which is
just a negative loss). The field energy inside a volume V is∫

V

u dV,

and its rate of decrease is minus the time derivative of this integral. The flow of
field energy out of the volume V is the integral of the normal component of S
over the surface Σ that encloses V ,∫

Σ
S · n da.

So
− d

dt

∫
V

u dV =
∫

Σ
S · n da+ (work done on matter inside V ). (27.3)

We have seen before that the field does work on each unit volume of matter
at the rate E · j. [The force on a particle is F = q(E + v ×B), and the rate of
doing work is F · v = qE · v. If there are N particles per unit volume, the rate
of doing work per unit volume is NqE · v, but Nqv = j.] So the quantity E · j
must be equal to the loss of energy per unit time and per unit volume by the
field. Equation (27.3) then becomes

− d

dt

∫
V

u dV =
∫

Σ
S · n da+

∫
V

E · j dV. (27.4)

This is our conservation law for energy in the field. We can convert it into a
differential equation like Eq. (27.2) if we can change the second term to a volume
integral. That is easy to do with Gauss’ theorem. The surface integral of the
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normal component of S is the integral of its divergence over the volume inside.
So Eq. (27.3) is equivalent to

−
∫
V

∂u

∂t
dV =

∫
V

∇ · S dV +
∫
V

E · j dV,

where we have put the time derivative of the first term inside the integral. Since
this equation is true for any volume, we can take away the integrals and we have
the energy equation for the electromagnetic fields:

− ∂u

∂t
=∇ · S +E · j. (27.5)

Now this equation doesn’t do us a bit of good unless we know what u and S
are. Perhaps we should just tell you what they are in terms of E and B, because
all we really want is the result. However, we would rather show you the kind of
argument that was used by Poynting in 1884 to obtain formulas for S and u,
so you can see where they come from. (You won’t, however, need to learn this
derivation for our later work.)

27-3 Energy density and energy flow in the electromagnetic field

The idea is to suppose that there is a field energy density u and a flux S
that depend only upon the fields E and B. (For example, we know that in
electrostatics, at least, the energy density can be written 1

2ε0E ·E.) Of course,
the u and S might depend on the potentials or something else, but let’s see what
we can work out. We can try to rewrite the quantity E · j in such a way that it
becomes the sum of two terms: one that is the time derivative of one quantity
and another that is the divergence of a second quantity. The first quantity would
then be u and the second would be S (with suitable signs). Both quantities must
be written in terms of the fields only; that is, we want to write our equality as

E · j = −∂u
∂t
−∇ · S. (27.6)

The left-hand side must first be expressed in terms of the fields only. How can
we do that? By using Maxwell’s equations, of course. From Maxwell’s equation
for the curl of B,

j = ε0c
2∇×B − ε0

∂E

∂t
.

27-5



Substituting this in (27.6) we will have only E’s and B’s:

E · j = ε0c
2E · (∇×B)− ε0E ·

∂E

∂t
. (27.7)

We are already partly finished. The last term is a time derivative—it is
(∂/∂t)( 1

2ε0E ·E). So 1
2ε0E ·E is at least one part of u. It’s the same thing we

found in electrostatics. Now, all we have to do is to make the other term into
the divergence of something.

Notice that the first term on the right-hand side of (27.7) is the same as

(∇×B) ·E. (27.8)

And, as you know from vector algebra, (a× b) · c is the same as a · (b× c); so
our term is also the same as

∇ · (B ×E) (27.9)

and we have the divergence of “something,” just as we wanted. Only that’s wrong!
We warned you before that ∇ is “like” a vector, but not “exactly” the same. The
reason it is not is because there is an additional convention from calculus: when
a derivative operator is in front of a product, it works on everything to the right.
In Eq. (27.7), the ∇ operates only on B, not on E. But in the form (27.9), the
normal convention would say that ∇ operates on both B and E. So it’s not the
same thing. In fact, if we work out the components of ∇ · (B ×E) we can see
that it is equal to E · (∇ ×B) plus some other terms. It’s like what happens
when we take a derivative of a product in algebra. For instance,

d

dx
(fg) = df

dx
g + f

dg

dx
.

Rather than working out all the components of ∇ · (B ×E), we would like
to show you a trick that is very useful for this kind of problem. It is a trick
that allows you to use all the rules of vector algebra on expressions with the
∇ operator, without getting into trouble. The trick is to throw out—for a while
at least—the rule of the calculus notation about what the derivative operator
works on. You see, ordinarily, the order of terms is used for two separate purposes.
One is for calculus: f(d/dx)g is not the same as g(d/dx)f ; and the other is for
vectors: a× b is different from b× a. We can, if we want, choose to abandon
momentarily the calculus rule. Instead of saying that a derivative operates on
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everything to the right, we make a new rule that doesn’t depend on the order
in which terms are written down. Then we can juggle terms around without
worrying.

Here is our new convention: we show, by a subscript, what a differential
operator works on; the order has no meaning. Suppose we let the operator D
stand for ∂/∂x. Then Df means that only the derivative of the variable quantity f
is taken. Then

Dff = ∂f

∂x
.

But if we have Dffg, it means

Dffg =
(
∂f

∂x

)
g.

But notice now that according to our new rule, fDfg means the same thing. We
can write the same thing any which way:

Dffg = gDff = fDfg = fgDf .

You see, the Df can even come after everything. (It’s surprising that such a
handy notation is never taught in books on mathematics or physics.)

You may wonder: What if I want to write the derivative of fg? I want the
derivative of both terms. That’s easy, you just say so; you write Df (fg) +Dg(fg).
That is just g(∂f/∂x) + f(∂g/∂x), which is what you mean in the old notation
by ∂(fg)/∂x.

You will see that it is now going to be very easy to work out a new expression
for ∇ · (B ×E). We start by changing to the new notation; we write

∇ · (B ×E) =∇B · (B ×E) +∇E · (B ×E). (27.10)

The moment we do that we don’t have to keep the order straight any more. We
always know that ∇E operates on E only, and ∇B operates on B only. In these
circumstances, we can use ∇ as though it were an ordinary vector. (Of course,
when we are finished, we will want to return to the “standard” notation that
everybody usually uses.) So now we can do the various things like interchanging
dots and crosses and making other kinds of rearrangements of the terms. For
instance, the middle term of Eq. (27.10) can be rewritten as E ·∇×B. (You
remember that a ·b×c = b ·c×a.) And the last term is the same as B ·E×∇E .
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It looks freakish, but it is all right. Now if we try to go back to the ordinary
convention, we have to arrange that the ∇ operates only on its “own” variable.
The first one is already that way, so we can just leave off the subscript. The
second one needs some rearranging to put the ∇ in front of the E, which we can
do by reversing the cross product and changing sign:

B · (E ×∇E) = −B · (∇E ×E).

Now it is in a conventional order, so we can return to the usual notation. Equa-
tion (27.10) is equivalent to

∇ · (B ×E) = E · (∇×B)−B · (∇×E). (27.11)

(A quicker way would have been to use components in this special case, but it
was worth taking the time to show you the mathematical trick. You probably
won’t see it anywhere else, and it is very good for unlocking vector algebra from
the rules about the order of terms with derivatives.)

We now return to our energy conservation discussion and use our new result,
Eq. (27.11), to transform the ∇×B term of Eq. (27.7). That energy equation
becomes

E · j = ε0c
2∇ · (B ×E) + ε0c

2B · (∇×E)− ∂

∂t
( 1

2ε0E ·E). (27.12)

Now you see, we’re almost finished. We have one term which is a nice derivative
with respect to t to use for u and another that is a beautiful divergence to
represent S. Unfortunately, there is the center term left over, which is neither
a divergence nor a derivative with respect to t. So we almost made it, but not
quite. After some thought, we look back at the differential equations of Maxwell
and discover that ∇×E is, fortunately, equal to −∂B/∂t, which means that we
can turn the extra term into something that is a pure time derivative:

B · (∇×E) = B ·
(
−∂B
∂t

)
= − ∂

∂t

(
B ·B

2

)
.

Now we have exactly what we want. Our energy equation reads

E · j =∇ · (ε0c2B ×E)− ∂

∂t

(
ε0c

2

2 B ·B + ε0
2 E ·E

)
, (27.13)
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which is exactly like Eq. (27.6), if we make the definitions

u = ε0
2 E ·E + ε0c

2

2 B ·B (27.14)

and
S = ε0c

2E ×B. (27.15)

(Reversing the cross product makes the signs come out right.)
Our program was successful. We have an expression for the energy density

that is the sum of an “electric” energy density and a “magnetic” energy density,
whose forms are just like the ones we found in statics when we worked out the
energy in terms of the fields. Also, we have found a formula for the energy flow
vector of the electromagnetic field. This new vector, S = ε0c

2E ×B, is called
“Poynting’s vector,” after its discoverer. It tells us the rate at which the field
energy moves around in space. The energy which flows through a small area da
per second is S ·n da, where n is the unit vector perpendicular to da. (Now that
we have our formulas for u and S, you can forget the derivations if you want.)

27-4 The ambiguity of the field energy

Before we take up some applications of the Poynting formulas [Eqs. (27.14)
and (27.15)], we would like to say that we have not really “proved” them. All
we did was to find a possible “u” and a possible “S.” How do we know that by
juggling the terms around some more we couldn’t find another formula for “u”
and another formula for “S”? The new S and the new u would be different,
but they would still satisfy Eq. (27.6). It’s possible. It can be done, but the
forms that have been found always involve various derivatives of the field (and
always with second-order terms like a second derivative or the square of a first
derivative). There are, in fact, an infinite number of different possibilities for u
and S, and so far no one has thought of an experimental way to tell which one is
right! People have guessed that the simplest one is probably the correct one, but
we must say that we do not know for certain what is the actual location in space
of the electromagnetic field energy. So we too will take the easy way out and say
that the field energy is given by Eq. (27.14). Then the flow vector S must be
given by Eq. (27.15).

It is interesting that there seems to be no unique way to resolve the indefinite-
ness in the location of the field energy. It is sometimes claimed that this problem
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can be resolved by using the theory of gravitation in the following argument. In
the theory of gravity, all energy is the source of gravitational attraction. Therefore
the energy density of electricity must be located properly if we are to know in
which direction the gravity force acts. As yet, however, no one has done such
a delicate experiment that the precise location of the gravitational influence of
electromagnetic fields could be determined. That electromagnetic fields alone
can be the source of gravitational force is an idea it is hard to do without. It has,
in fact, been observed that light is deflected as it passes near the sun—we could
say that the sun pulls the light down toward it. Do you not want to allow that
the light pulls equally on the sun? Anyway, everyone always accepts the simple
expressions we have found for the location of electromagnetic energy and its flow.
And although sometimes the results obtained from using them seem strange,
nobody has ever found anything wrong with them—that is, no disagreement with
experiment. So we will follow the rest of the world—besides, we believe that it is
probably perfectly right.

We should make one further remark about the energy formula. In the first
place, the energy per unit volume in the field is very simple: It is the electrostatic
energy plus the magnetic energy, if we write the electrostatic energy in terms
of E2 and the magnetic energy as B2. We found two such expressions as possible
expressions for the energy when we were doing static problems. We also found
a number of other formulas for the energy in the electrostatic field, such as ρφ,
which is equal to the integral of E ·E in the electrostatic case. However, in an
electrodynamic field the equality failed, and there was no obvious choice as to
which was the right one. Now we know which is the right one. Similarly, we have
found the formula for the magnetic energy that is correct in general. The right
formula for the energy density of dynamic fields is Eq. (27.14).

27-5 Examples of energy flow

Our formula for the energy flow vector S is something quite new. We want
now to see how it works in some special cases and also to see whether it checks
out with anything that we knew before. The first example we will take is light. In
a light wave we have an E vector and a B vector at right angles to each other and
to the direction of the wave propagation. (See Fig. 27-2.) In an electromagnetic
wave, the magnitude of B is equal to 1/c times the magnitude of E, and since
they are at right angles,

|E ×B| = E2

c
.
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Fig. 27-2. The vectors E, B, and S for a light wave.

Therefore, for light, the flow of energy per unit area per second is

S = ε0cE
2. (27.16)

For a light wave in which E = E0 cosω(t− x/c), the average rate of energy flow
per unit area, 〈S〉av—which is called the “intensity” of the light—is the mean
value of the square of the electric field times ε0c:

Intensity = 〈S〉av = ε0c〈E2〉av. (27.17)

Believe it or not, we have already derived this result in Section 31-5 of Vol. I,
when we were studying light. We can believe that it is right because it also checks
against something else. When we have a light beam, there is an energy density
in space given by Eq. (27.14). Using cB = E for a light wave, we get that

u = ε0
2 E2 + ε0c

2

2

(
E2

c2

)
= ε0E

2.

But E varies in space, so the average energy density is

〈u〉av = ε0〈E2〉av. (27.18)

Now the wave travels at the speed c, so we should think that the energy that
goes through a square meter in a second is c times the amount of energy in one
cubic meter. So we would say that

〈S〉av = ε0c〈E2〉av.

And it’s right; it is the same as Eq. (27.17).

27-11



−

+

E

B

S

Fig. 27-3. Near a charging capacitor, the Poynting vector S points
inward toward the axis.

Now we take another example. Here is a rather curious one. We look at the
energy flow in a capacitor that we are charging slowly. (We don’t want frequencies
so high that the capacitor is beginning to look like a resonant cavity, but we
don’t want dc either.) Suppose we use a circular parallel plate capacitor of our
usual kind, as shown in Fig. 27-3. There is a nearly uniform electric field inside
which is changing with time. At any instant the total electromagnetic energy
inside is u times the volume. If the plates have a radius a and a separation h,
the total energy between the plates is

U =
(
ε0
2 E2

)
(πa2h). (27.19)

This energy changes when E changes. When the capacitor is being charged, the
volume between the plates is receiving energy at the rate

dU

dt
= ε0πa

2hEĖ. (27.20)

So there must be a flow of energy into that volume from somewhere. Of course
you know that it must come in on the charging wires—not at all! It can’t enter
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the space between the plates from that direction, because E is perpendicular to
the plates; E ×B must be parallel to the plates.

You remember, of course, that there is a magnetic field that circles around
the axis when the capacitor is charging. We discussed that in Chapter 23. Using
the last of Maxwell’s equations, we found that the magnetic field at the edge of
the capacitor is given by

2πac2B = Ė · πa2,

or
B = a

2c2 Ė.

Its direction is shown in Fig. 27-3. So there is an energy flow proportional
to E × B that comes in all around the edges, as shown in the figure. The
energy isn’t actually coming down the wires, but from the space surrounding the
capacitor.

Let’s check whether or not the total amount of flow through the whole surface
between the edges of the plates checks with the rate of change of the energy
inside—it had better; we went through all that work proving Eq. (27.15) to make
sure, but let’s see. The area of the surface is 2πah, and S = ε0c

2E ×B is in
magnitude

ε0c
2E

(
a

2c2 Ė
)
,

so the total flux of energy is
πa2hε0EĖ.

It does check with Eq. (27.20). But it tells us a peculiar thing: that when we are
charging a capacitor, the energy is not coming down the wires; it is coming in
through the edges of the gap. That’s what this theory says!

How can that be? That’s not an easy question, but here is one way of thinking
about it. Suppose that we had some charges above and below the capacitor
and far away. When the charges are far away, there is a weak but enormously
spread-out field that surrounds the capacitor. (See Fig. 27-4.) Then, as the
charges come together, the field gets stronger nearer to the capacitor. So the
field energy which is way out moves toward the capacitor and eventually ends up
between the plates.

As another example, we ask what happens in a piece of resistance wire when
it is carrying a current. Since the wire has resistance, there is an electric field
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Fig. 27-4. The fields outside a capacitor when it is being charged by
bringing two charges from a large distance.

j E
E

BS

Fig. 27-5. The Poynting vector S near a wire carrying a current.
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along it, driving the current. Because there is a potential drop along the wire,
there is also an electric field just outside the wire, parallel to the surface. (See
Fig. 27-5.) There is, in addition, a magnetic field which goes around the wire
because of the current. The E and B are at right angles; therefore there is a
Poynting vector directed radially inward, as shown in the figure. There is a flow
of energy into the wire all around. It is, of course, equal to the energy being lost
in the wire in the form of heat. So our “crazy” theory says that the electrons are
getting their energy to generate heat because of the energy flowing into the wire
from the field outside. Intuition would seem to tell us that the electrons get their
energy from being pushed along the wire, so the energy should be flowing down
(or up) along the wire. But the theory says that the electrons are really being
pushed by an electric field, which has come from some charges very far away,
and that the electrons get their energy for generating heat from these fields. The
energy somehow flows from the distant charges into a wide area of space and
then inward to the wire.

Finally, in order to really convince you that this theory is obviously nuts,
we will take one more example—an example in which an electric charge and a
magnet are at rest near each other—both sitting quite still. Suppose we take the
example of a point charge sitting near the center of a bar magnet, as shown in
Fig. 27-6. Everything is at rest, so the energy is not changing with time. Also,
E and B are quite static. But the Poynting vector says that there is a flow of
energy, because there is an E ×B that is not zero. If you look at the energy
flow, you find that it just circulates around and around. There isn’t any change
in the energy anywhere—everything which flows into one volume flows out again.
It is like incompressible water flowing around. So there is a circulation of energy
in this so-called static condition. How absurd it gets!

q
N

S

E

B

S

Fig. 27-6. A charge and a magnet produce a Poynting vector that
circulates in closed loops.
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Perhaps it isn’t so terribly puzzling, though, when you remember that what we
called a “static” magnet is really a circulating permanent current. In a permanent
magnet the electrons are spinning permanently inside. So maybe a circulation of
the energy outside isn’t so queer after all.

You no doubt begin to get the impression that the Poynting theory at least
partially violates your intuition as to where energy is located in an electromagnetic
field. You might believe that you must revamp all your intuitions, and, therefore
have a lot of things to study here. But it seems really not necessary. You don’t
need to feel that you will be in great trouble if you forget once in a while that
the energy in a wire is flowing into the wire from the outside, rather than along
the wire. It seems to be only rarely of value, when using the idea of energy
conservation, to notice in detail what path the energy is taking. The circulation
of energy around a magnet and a charge seems, in most circumstances, to be quite
unimportant. It is not a vital detail, but it is clear that our ordinary intuitions
are quite wrong.

27-6 Field momentum

Next we would like to talk about the momentum in the electromagnetic field.
Just as the field has energy, it will have a certain momentum per unit volume.
Let us call that momentum density g. Of course, momentum has various possible
directions, so that g must be a vector. Let’s talk about one component at a time;
first, we take the x-component. Since each component of momentum is conserved
we should be able to write down a law that looks something like this:

− ∂

∂t

(
momentum
of matter

)
x

= ∂gx
∂t

+
(
momentum
outflow

)
x

.

The left side is easy. The rate-of-change of the momentum of matter is just the
force on it. For a particle, it is F = q(E + v ×B); for a distribution of charges,
the force per unit volume is (ρE + j × B). The “momentum outflow” term,
however, is strange. It cannot be the divergence of a vector because it is not a
scalar; it is, rather, an x-component of some vector. Anyway, it should probably
look something like

∂a

∂x
+ ∂b

∂y
+ ∂c

∂z
,
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because the x-momentum could be flowing in any one of the three directions.
In any case, whatever a, b, and c are, the combination is supposed to equal the
outflow of the x-momentum.

Now the game would be to write ρE + j ×B in terms only of E and B—
eliminating ρ and j by using Maxwell’s equations—and then to juggle terms and
make substitutions to get it into a form that looks like

∂gx
∂t

+ ∂a

∂x
+ ∂b

∂y
+ ∂c

∂z
.

Then, by identifying terms, we would have expressions for gx, a, b, and c. It’s a
lot of work, and we are not going to do it. Instead, we are only going to find an
expression for g, the momentum density—and by a different route.

There is an important theorem in mechanics which is this: whenever there
is a flow of energy in any circumstance at all (field energy or any other kind of
energy), the energy flowing through a unit area per unit time, when multiplied
by 1/c2, is equal to the momentum per unit volume in the space. In the special
case of electrodynamics, this theorem gives the result that g is 1/c2 times the
Poynting vector:

g = 1
c2
S. (27.21)

So the Poynting vector gives not only energy flow but, if you divide by c2, also
the momentum density. The same result would come out of the other analysis
we suggested, but it is more interesting to notice this more general result. We
will now give a number of interesting examples and arguments to convince you
that the general theorem is true.

First example: Suppose that we have a lot of particles in a box—let’s say N
per cubic meter—and that they are moving along with some velocity v. Now
let’s consider an imaginary plane surface perpendicular to v. The energy flow
through a unit area of this surface per second is equal to Nv, the number which
flow through the surface per second, times the energy carried by each one. The
energy in each particle is m0c

2/
√

1− v2/c2. So the energy flow per second is

Nv
m0c

2√
1− v2/c2

.

But the momentum of each particle is m0v/
√

1− v2/c2, so the density of mo-
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mentum is
N

m0v√
1− v2/c2

,

which is just 1/c2 times the energy flow—as the theorem says. So the theorem is
true for a bunch of particles.

It is also true for light. When we studied light in Volume I, we saw that when
the energy is absorbed from a light beam, a certain amount of momentum is
delivered to the absorber. We have, in fact, shown in Chapter 34 of Vol. I that
the momentum is 1/c times the energy absorbed [Eq. (34.24) of Vol. I]. If we
let U0 be the energy arriving at a unit area per second, then the momentum
arriving at a unit area per second is U0/c. But the momentum is travelling at
the speed c, so its density in front of the absorber must be U0/c

2. So again the
theorem is right.

Finally we will give an argument due to Einstein which demonstrates the
same thing once more. Suppose that we have a railroad car on wheels (assumed
frictionless) with a certain big mass M . At one end there is a device which will
shoot out some particles or light (or anything, it doesn’t make any difference what
it is), which are then stopped at the opposite end of the car. There was some
energy originally at one end—say the energy U indicated in Fig. 27-7(a)—and
then later it is at the opposite end, as shown in Fig. 27-7(c). The energy U has
been displaced the distance L, the length of the car. Now the energy U has
the mass U/c2, so if the car stayed still, the center of gravity of the car would
be moved. Einstein didn’t like the idea that the center of gravity of an object
could be moved by fooling around only on the inside, so he assumed that it is
impossible to move the center of gravity by doing anything inside. But if that is
the case, when we moved the energy U from one end to the other, the whole car
must have recoiled some distance x, as shown in part (c) of the figure. You can
see, in fact, that the total mass of the car, times x, must equal the mass of the
energy moved, U/c2 times L (assuming that U/c2 is much less than M):

Mx = U

c2
L. (27.22)

Let’s now look at the special case of the energy being carried by a light flash.
(The argument would work as well for particles, but we will follow Einstein,
who was interested in the problem of light.) What causes the car to be moved?
Einstein argued as follows: When the light is emitted there must be a recoil,
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Fig. 27-7. The energy U in motion at the speed c carries the momen-
tum U/c.
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some unknown recoil with momentum p. It is this recoil which makes the car
roll backward. The recoil velocity v of the car will be this momentum divided by
the mass of the car:

v = p

M
.

The car moves with this velocity until the light energy U gets to the opposite
end. Then, when it hits, it gives back its momentum and stops the car. If x is
small, then the time the car moves is nearly equal to L/c; so we have that

x = vt = v
L

c
= p

M

L

c
.

Putting this x in Eq. (27.22), we get that

p = U

c
.

Again we have the relation of energy and momentum for light. Dividing by c to
get the momentum density g = p/c, we get once more that

g = U

c2
. (27.23)

You may well wonder: What is so important about the center-of-gravity
theorem? Maybe it is wrong. Perhaps, but then we would also lose the con-
servation of angular momentum. Suppose that our boxcar is moving along a
track at some speed v and that we shoot some light energy from the top to the
bottom of the car—say, from A to B in Fig. 27-8. Now we look at the angular
momentum of the system about the point P . Before the energy U leaves A, it has
the mass m = U/c2 and the velocity v, so it has the angular momentum mvrA.
When it arrives at B, it has the same mass and, if the linear momentum of the
whole boxcar is not to change, it must still have the velocity v. It’s angular mo-
mentum about P is then mvrB . The angular momentum will be changed unless
the right recoil momentum was given to the car when the light was emitted—that
is, unless the light carries the momentum U/c. It turns out that the angular
momentum conservation and the theorem of center-of-gravity are closely related
in the relativity theory. So the conservation of angular momentum would also
be destroyed if our theorem were not true. At any rate, it does turn out to be
a true general law, and in the case of electrodynamics we can use it to get the
momentum in the field.
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Fig. 27-8. The energy U must carry the momentum U/c if the angular
momentum about P is to be conserved.

We will mention two further examples of momentum in the electromagnetic
field. We pointed out in Section 26-2 the failure of the law of action and reaction
when two charged particles were moving on orthogonal trajectories. The forces
on the two particles don’t balance out, so the action and reaction are not equal;
therefore the net momentum of the matter must be changing. It is not conserved.
But the momentum in the field is also changing in such a situation. If you
work out the amount of momentum given by the Poynting vector, it is not
constant. However, the change of the particle momenta is just made up by the
field momentum, so the total momentum of particles plus field is conserved.

Finally, another example is the situation with the magnet and the charge,
shown in Fig. 27-6. We were unhappy to find that energy was flowing around
in circles, but now, since we know that energy flow and momentum are pro-
portional, we know also that there is momentum circulating in the space. But
a circulating momentum means that there is angular momentum. So there is
angular momentum in the field. Do you remember the paradox we described in
Section 17-4 about a solenoid and some charges mounted on a disc? It seemed
that when the current turned off, the whole disc should start to turn. The puzzle
was: Where did the angular momentum come from? The answer is that if you
have a magnetic field and some charges, there will be some angular momentum
in the field. It must have been put there when the field was built up. When
the field is turned off, the angular momentum is given back. So the disc in the
paradox would start rotating. This mystic circulating flow of energy, which at
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first seemed so ridiculous, is absolutely necessary. There is really a momentum
flow. It is needed to maintain the conservation of angular momentum in the
whole world.

27-22



28

Electromagnetic Mass

28-1 The field energy of a point charge

In bringing together relativity and Maxwell’s equations, we have finished our
main work on the theory of electromagnetism. There are, of course, some details
we have skipped over and one large area that we will be concerned with in the
future—the interaction of electromagnetic fields with matter. But we want to
stop for a moment to show you that this tremendous edifice, which is such a
beautiful success in explaining so many phenomena, ultimately falls on its face.
When you follow any of our physics too far, you find that it always gets into some
kind of trouble. Now we want to discuss a serious trouble—the failure of the
classical electromagnetic theory. You can appreciate that there is a failure of all
classical physics because of the quantum-mechanical effects. Classical mechanics
is a mathematically consistent theory; it just doesn’t agree with experience.
It is interesting, though, that the classical theory of electromagnetism is an
unsatisfactory theory all by itself. There are difficulties associated with the
ideas of Maxwell’s theory which are not solved by and not directly associated
with quantum mechanics. You may say, “Perhaps there’s no use worrying about
these difficulties. Since the quantum mechanics is going to change the laws
of electrodynamics, we should wait to see what difficulties there are after the
modification.” However, when electromagnetism is joined to quantum mechanics,
the difficulties remain. So it will not be a waste of our time now to look at what
these difficulties are. Also, they are of great historical importance. Furthermore,
you may get some feeling of accomplishment from being able to go far enough
with the theory to see everything—including all of its troubles.

The difficulty we speak of is associated with the concepts of electromagnetic
momentum and energy, when applied to the electron or any charged particle. The
concepts of simple charged particles and the electromagnetic field are in some
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way inconsistent. To describe the difficulty, we begin by doing some exercises
with our energy and momentum concepts.

First, we compute the energy of a charged particle. Suppose we take a simple
model of an electron in which all of its charge q is uniformly distributed on the
surface of a sphere of radius a, which we may take to be zero for the special case
of a point charge. Now let’s calculate the energy in the electromagnetic field. If
the charge is standing still, there is no magnetic field, and the energy per unit
volume is proportional to the square of the electric field. The magnitude of the
electric field is q/4πε0r2, and the energy density is

u = ε0
2 E2 = q2

32π2ε0r4 .

To get the total energy, we must integrate this density over all space. Using the
volume element 4πr2 dr, the total energy, which we will call Uelec, is

Uelec =
∫

q2

8πε0r2 dr.

This is readily integrated. The lower limit is a, and the upper limit is ∞, so

Uelec = 1
2

q2

4πε0
1
a
. (28.1)

If we use the electronic charge qe for q and the symbol e2 for q2
e/4πε0, then

Uelec = 1
2
e2

a
. (28.2)

It is all fine until we set a equal to zero for a point charge—there’s the great
difficulty. Because the energy of the field varies inversely as the fourth power of
the distance from the center, its volume integral is infinite. There is an infinite
amount of energy in the field surrounding a point charge.

What’s wrong with an infinite energy? If the energy can’t get out, but must
stay there forever, is there any real difficulty with an infinite energy? Of course,
a quantity that comes out infinite may be annoying, but what really matters is
only whether there are any observable physical effects. To answer that question,
we must turn to something else besides the energy. Suppose we ask how the
energy changes when we move the charge. Then, if the changes are infinite, we
will be in trouble.
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28-2 The field momentum of a moving charge

Suppose an electron is moving at a uniform velocity through space, assuming
for a moment that the velocity is low compared with the speed of light. Associated
with this moving electron there is a momentum—even if the electron had no
mass before it was charged—because of the momentum in the electromagnetic
field. We can show that the field momentum is in the direction of the velocity v
of the charge and is, for small velocities, proportional to v. For a point P at the
distance r from the center of the charge and at the angle θ with respect to the
line of motion (see Fig. 28-1) the electric field is radial and, as we have seen, the
magnetic field is v ×E/c2. The momentum density, Eq. (27.21), is

g = ε0E ×B.

It is directed obliquely toward the line of motion, as shown in the figure, and has
the magnitude

g = ε0v

c2
E2 sin θ.

+

+

+

+

+

+

+

+

v

r

θ

φ

P
E

B
g

SPHERICAL
ELECTRON

(+)

a

Fig. 28-1. The fields E and B and the momentum density g for a
positive electron. For a negative electron, E and B are reversed but g
is not.

The fields are symmetric about the line of motion, so when we integrate over
space, the transverse components will sum to zero, giving a resultant momentum
parallel to v. The component of g in this direction is g sin θ, which we must
integrate over all space. We take as our volume element a ring with its plane
perpendicular to v, as shown in Fig. 28-2. Its volume is 2πr2 sin θ dθ dr. The
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Fig. 28-2. The volume element 2πr 2 sin θ dθ dr used for calculating
the field momentum.

total momentum is then

p =
∫
ε0v

c2
E2 sin2 θ 2πr2 sin θ dθ dr.

Since E is independent of θ (for v � c), we can immediately integrate over θ;
the integral is∫

sin3 θ dθ = −
∫

(1− cos2 θ) d(cos θ) = − cos θ + cos3 θ

3 .

The limits of θ are 0 and π, so the θ-integral gives merely a factor of 4/3, and

p = 8π
3
ε0v

c2

∫
E2r2 dr.

The integral (for v � c) is the one we have just evaluated to find the energy; it
is q2/16π2ε20a, and

p = 2
3

q2

4πε0
v

ac2
,

or

p = 2
3
e2

ac2
v. (28.3)

The momentum in the field—the electromagnetic momentum—is proportional
to v. It is just what we should have for a particle with the mass equal to the
coefficient of v. We can, therefore, call this coefficient the electromagnetic mass,
melec, and write it as

melec = 2
3
e2

ac2
. (28.4)
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28-3 Electromagnetic mass

Where does the mass come from? In our laws of mechanics we have supposed
that every object “carries” a thing we call the mass—which also means that it
“carries” a momentum proportional to its velocity. Now we discover that it is
understandable that a charged particle carries a momentum proportional to its
velocity. It might, in fact, be that the mass is just the effect of electrodynamics.
The origin of mass has until now been unexplained. We have at last in the
theory of electrodynamics a grand opportunity to understand something that we
never understood before. It comes out of the blue—or rather, from Maxwell and
Poynting—that any charged particle will have a momentum proportional to its
velocity just from electromagnetic influences.

Let’s be conservative and say, for a moment, that there are two kinds of
mass—that the total momentum of an object could be the sum of a mechanical
momentum and the electromagnetic momentum. The mechanical momentum
is the “mechanical” mass, mmech, times v. In experiments where we measure
the mass of a particle by seeing how much momentum it has, or how it swings
around in an orbit, we are measuring the total mass. We say generally that the
momentum is the total mass (mmech +melec) times the velocity. So the observed
mass can consist of two pieces (or possibly more if we include other fields): a
mechanical piece plus an electromagnetic piece. We know that there is definitely
an electromagnetic piece, and we have a formula for it. And there is the thrilling
possibility that the mechanical piece is not there at all—that the mass is all
electromagnetic.

Let’s see what size the electron must have if there is to be no mechanical
mass. We can find out by setting the electromagnetic mass of Eq. (28.4) equal
to the observed mass me of an electron. We find

a = 2
3

e2

mec2
. (28.5)

The quantity

r0 = e2

mec2
(28.6)

is called the “classical electron radius”; it has the numerical value 2.82×10−13 cm,
about one one-hundred-thousandth of the diameter of an atom.

Why is r0 called the electron radius, rather than our a? Because we could
equally well do the same calculation with other assumed distributions of charges—
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the charge might be spread uniformly through the volume of a sphere or it might be
smeared out like a fuzzy ball. For any particular assumption the factor 2/3 would
change to some other fraction. For instance, for a charge uniformly distributed
throughout the volume of a sphere, the 2/3 gets replaced by 4/5. Rather than
to argue over which distribution is correct, it was decided to define r0 as the
“nominal” radius. Then different theories could supply their pet coefficients.

Let’s pursue our electromagnetic theory of mass. Our calculation was for v � c;
what happens if we go to high velocities? Early attempts led to a certain amount
of confusion, but Lorentz realized that the charged sphere would contract into a
ellipsoid at high velocities and that the fields would change in accordance with
the formulas (26.6) and (26.7) we derived for the relativistic case in Chapter 26.
If you carry through the integrals for p in that case, you find that for an arbitrary
velocity v, the momentum is altered by the factor 1/

√
1− v2/c2:

p = 2
3
e2

ac2
v√

1− v2/c2
. (28.7)

In other words, the electromagnetic mass rises with velocity inversely as√
1− v2/c2—a discovery that was made before the theory of relativity.
Early experiments were proposed to measure the changes with velocity in

the observed mass of a particle in order to determine how much of the mass was
mechanical and how much was electrical. It was believed at the time that the
electrical part would vary with velocity, whereas the mechanical part would not.
But while the experiments were being done, the theorists were also at work. Soon
the theory of relativity was developed, which proposed that no matter what the
origin of the mass, it all should vary as m0/

√
1− v2/c2. Equation (28.7) was

the beginning of the theory that mass depended on velocity.
Let’s now go back to our calculation of the energy in the field, which led

to Eq. (28.2). According to the theory of relativity, the energy U will have the
mass U/c2; Eq. (28.2) then says that the field of the electron should have the
mass

m′elec = Uelec

c2
= 1

2
e2

ac2
, (28.8)

which is not the same as the electromagnetic mass, melec, of Eq. (28.4). In fact,
if we just combine Eqs. (28.2) and (28.4), we would write

Uelec = 3
4 melecc

2.
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This formula was discovered before relativity, and when Einstein and others
began to realize that it must always be that U = mc2, there was great confusion.

28-4 The force of an electron on itself

The discrepancy between the two formulas for the electromagnetic mass
is especially annoying, because we have carefully proved that the theory of
electrodynamics is consistent with the principle of relativity. Yet the theory of
relativity implies without question that the momentum must be the same as the
energy times v/c2. So we are in some kind of trouble; we must have made a
mistake. We did not make an algebraic mistake in our calculations, but we have
left something out.

In deriving our equations for energy and momentum, we assumed the conser-
vation laws. We assumed that all forces were taken into account and that any
work done and any momentum carried by other “nonelectrical” machinery was
included. Now if we have a sphere of charge, the electrical forces are all repulsive
and an electron would tend to fly apart. Because the system has unbalanced
forces, we can get all kinds of errors in the laws relating energy and momen-
tum. To get a consistent picture, we must imagine that something holds the
electron together. The charges must be held to the sphere by some kind of rubber
bands—something that keeps the charges from flying off. It was first pointed
out by Poincaré that the rubber bands—or whatever it is that holds the electron
together—must be included in the energy and momentum calculations. For this
reason the extra nonelectrical forces are also known by the more elegant name
“the Poincaré stresses.” If the extra forces are included in the calculations, the
masses obtained in two ways are changed (in a way that depends on the detailed
assumptions). And the results are consistent with relativity; i.e., the mass that
comes out from the momentum calculation is the same as the one that comes
from the energy calculation. However, both of them contain two contributions:
an electromagnetic mass and contribution from the Poincaré stresses. Only when
the two are added together do we get a consistent theory.

It is therefore impossible to get all the mass to be electromagnetic in the
way we hoped. It is not a legal theory if we have nothing but electrodynamics.
Something else has to be added. Whatever you call them—“rubber bands,” or
“Poincaré stresses,” or something else—there have to be other forces in nature to
make a consistent theory of this kind.
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Clearly, as soon as we have to put forces on the inside of the electron, the
beauty of the whole idea begins to disappear. Things get very complicated. You
would want to ask: How strong are the stresses? How does the electron shake?
Does it oscillate? What are all its internal properties? And so on. It might
be possible that an electron does have some complicated internal properties.
If we made a theory of the electron along these lines, it would predict odd
properties, like modes of oscillation, which haven’t apparently been observed. We
say “apparently” because we observe a lot of things in nature that still do not
make sense. We may someday find out that one of the things we don’t understand
today (for example, the muon) can, in fact, be explained as an oscillation of the
Poincaré stresses. It doesn’t seem likely, but no one can say for sure. There
are so many things about fundamental particles that we still don’t understand.
Anyway, the complex structure implied by this theory is undesirable, and the
attempt to explain all mass in terms of electromagnetism—at least in the way
we have described—has led to a blind alley.

We would like to think a little more about why we say we have a mass when
the momentum in the field is proportional to the velocity. Easy! The mass is
the coefficient between momentum and velocity. But we can look at the mass in
another way: a particle has mass if you have to exert a force in order to accelerate
it. So it may help our understanding if we look a little more closely at where the
forces come from. How do we know that there has to be a force? Because we
have proved the law of the conservation of momentum for the fields. If we have a
charged particle and push on it for awhile, there will be some momentum in the
electromagnetic field. Momentum must have been poured into the field somehow.
Therefore there must have been a force pushing on the electron in order to get it
going—a force in addition to that required by its mechanical inertia, a force due
to its electromagnetic interaction. And there must be a corresponding force back
on the “pusher.” But where does that force come from?

The picture is something like this. We can think of the electron as a charged
sphere. When it is at rest, each piece of charge repels electrically each other piece,
but the forces all balance in pairs, so that there is no net force. [See Fig. 28-3(a).]
However, when the electron is being accelerated, the forces will no longer be in
balance because of the fact that the electromagnetic influences take time to go
from one piece to another. For instance, the force on the piece α in Fig. 28-3(b)
from a piece β on the opposite side depends on the position of β at an earlier
time, as shown. Both the magnitude and direction of the force depend on the
motion of the charge. If the charge is accelerating, the forces on various parts of
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Fig. 28-3. The self-force on an accelerating electron is not zero
because of the retardation. (By dF we mean the force on a surface
element da; by d2F we mean the force on the surface element daα from
the charge on the surface element daβ.

the electron might be as shown in Fig. 28-3(c). When all these forces are added
up, they don’t cancel out. They would cancel for a uniform velocity, even though
it looks at first glance as though the retardation would give an unbalanced force
even for a uniform velocity. But it turns out that there is no net force unless the
electron is being accelerated. With acceleration, if we look at the forces between
the various parts of the electron, action and reaction are not exactly equal, and
the electron exerts a force on itself that tries to hold back the acceleration. It
holds itself back by its own bootstraps.

It is possible, but difficult, to calculate this self-reaction force; however, we
don’t want to go into such an elaborate calculation here. We will tell you what the
result is for the special case of relatively uncomplicated motion in one dimension,
say x. Then, the self-force can be written in a series. The first term in the series
depends on the acceleration ẍ, the next term is proportional to ˙̇ẋ, and so on.*
The result is

F = α
e2

ac2
ẍ− 2

3
e2

c3
˙̇ẋ+ γ

e2a

c4
˙̇ ˙̇x + · · · , (28.9)

where α and γ are numerical coefficients of the order of 1. The coefficient α
of the ẍ term depends on what charge distribution is assumed; if the charge is
distributed uniformly on a sphere, then α = 2/3. So there is a term, proportional
to the acceleration, which varies inversely as the radius a of the electron and agrees

* We are using the notation: ẋ = dx/dt, ẍ = d2x/dt2, ˙̇ẋ = d3x/dt3, etc.

28-9



exactly with the value we got in Eq. (28.4) for melec. If the charge distribution
is chosen to be different, so that α is changed, the fraction 2/3 in Eq. (28.4)
would be changed in the same way. The term in ˙̇ẋ is independent of the assumed
radius a, and also of the assumed distribution of the charge; its coefficient is
always 2/3. The next term is proportional to the radius a, and its coefficient γ
depends on the charge distribution. You will notice that if we let the electron
radius a go to zero, the last term (and all higher terms) will go to zero; the second
term remains constant, but the first term—the electromagnetic mass—goes to
infinity. And we can see that the infinity arises because of the force of one part of
the electron on another—because we have allowed what is perhaps a silly thing,
the possibility of the “point” electron acting on itself.

28-5 Attempts to modify the Maxwell theory

We would like now to discuss how it might be possible to modify Maxwell’s
theory of electrodynamics so that the idea of an electron as a simple point charge
could be maintained. Many attempts have been made, and some of the theories
were even able to arrange things so that all the electron mass was electromagnetic.
But all of these theories have died. It is still interesting to discuss some of the
possibilities that have been suggested—to see the struggles of the human mind.

We started out our theory of electricity by talking about the interaction of
one charge with another. Then we made up a theory of these interacting charges
and ended up with a field theory. We believe it so much that we allow it to tell
us about the force of one part of an electron on another. Perhaps the entire
difficulty is that electrons do not act on themselves; perhaps we are making too
great an extrapolation from the interaction of separate electrons to the idea that
an electron interacts with itself. Therefore some theories have been proposed
in which the possibility that an electron acts on itself is ruled out. Then there
is no longer the infinity due to the self-action. Also, there is no longer any
electromagnetic mass associated with the particle; all the mass is back to being
mechanical, but there are new difficulties in the theory.

We must say immediately that such theories require a modification of the
idea of the electromagnetic field. You remember we said at the start that the
force on a particle at any point was determined by just two quantities—E and B.
If we abandon the “self-force” this can no longer be true, because if there is an
electron in a certain place, the force isn’t given by the total E and B, but by
only those parts due to other charges. So we have to keep track always of how
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much of E and B is due to the charge on which you are calculating the force
and how much is due to the other charges. This makes the theory much more
elaborate, but it gets rid of the difficulty of the infinity.

So we can, if we want to, say that there is no such thing as the electron acting
upon itself, and throw away the whole set of forces in Eq. (28.9). However, we
have then thrown away the baby with the bath! Because the second term in
Eq. (28.9), the term in ˙̇ẋ, is needed. That force does something very definite.
If you throw it away, you’re in trouble again. When we accelerate a charge,
it radiates electromagnetic waves, so it loses energy. Therefore, to accelerate
a charge, we must require more force than is required to accelerate a neutral
object of the same mass; otherwise energy wouldn’t be conserved. The rate at
which we do work on an accelerating charge must be equal to the rate of loss
of energy by radiation. We have talked about this effect before—it is called the
radiation resistance. We still have to answer the question: Where does the extra
force, against which we must do this work, come from? When a big antenna is
radiating, the forces come from the influence of one part of the antenna current
on another. For a single accelerating electron radiating into otherwise empty
space, there would seem to be only one place the force could come from—the
action of one part of the electron on another part.

We found back in Chapter 32 of Vol. I that an oscillating charge radiates
energy at the rate

dW

dt
= 2

3
e2(ẍ)2

c3
. (28.10)

Let’s see what we get for the rate of doing work on an electron against the
bootstrap force of Eq. (28.9). The rate of work is the force times the velocity,
or Fẋ:

dW

dt
= α

e2

ac2
ẍẋ− 2

3
e2

c3
˙̇ẋẋ+ · · · (28.11)

The first term is proportional to dẋ2/dt, and therefore just corresponds to the rate
of change of the kinetic energy 1

2mv
2 associated with the electromagnetic mass.

The second term should correspond to the radiated power in Eq. (28.10). But it
is different. The discrepancy comes from the fact that the term in Eq. (28.11) is
generally true, whereas Eq. (28.10) is right only for an oscillating charge. We
can show that the two are equivalent if the motion of the charge is periodic. To
do that, we rewrite the second term of Eq. (28.11) as

−2
3
e2

c3
d

dt
(ẋẍ) + 2

3
e2

c3
(ẍ)2,
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which is just an algebraic transformation. If the motion of the electron is periodic,
the quantity ẋẍ returns periodically to the same value, so that if we take the
average of its time derivative, we get zero. The second term, however, is always
positive (it’s a square), so its average is also positive. This term gives the net
work done and is just equal to Eq. (28.10).

The term in ˙̇ẋ of the bootstrap force is required in order to have energy
conservation in radiating systems, and we can’t throw it away. It was, in fact,
one of the triumphs of Lorentz to show that there is such a force and that it
comes from the action of the electron on itself. We must believe in the idea of
the action of the electron on itself, and we need the term in ˙̇ẋ. The problem is
how we can get that term without getting the first term in Eq. (28.9), which
gives all the trouble. We don’t know how. You see that the classical electron
theory has pushed itself into a tight corner.

There have been several other attempts to modify the laws in order to
straighten the thing out. One way, proposed by Born and Infeld, is to change
the Maxwell equations in a complicated way so that they are no longer linear.
Then the electromagnetic energy and momentum can be made to come out finite.
But the laws they suggest predict phenomena which have never been observed.
Their theory also suffers from another difficulty we will come to later, which is
common to all the attempts to avoid the troubles we have described.

The following peculiar possibility was suggested by Dirac. He said: Let’s
admit that an electron acts on itself through the second term in Eq. (28.9) but
not through the first. He then had an ingenious idea for getting rid of one but not
the other. Look, he said, we made a special assumption when we took only the
retarded wave solutions of Maxwell’s equations; if we were to take the advanced
waves instead, we would get something different. The formula for the self-force
would be

F = α
e2

ac2
ẍ+ 2

3
e2

c3
˙̇ẋ+ γ

e2a

c4
˙̇ ˙̇x + · · · (28.12)

This equation is just like Eq. (28.9) except for the sign of the second term—and
some higher terms—of the series. [Changing from retarded to advanced waves is
just changing the sign of the delay which, it is not hard to see, is equivalent to
changing the sign of t everywhere. The only effect on Eq. (28.9) is to change the
sign of all the odd time derivatives.] So, Dirac said, let’s make the new rule that
an electron acts on itself by one-half the difference of the retarded and advanced
fields which it produces. The difference of Eqs. (28.9) and (28.12), divided by
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two, is then

F = −2
3
e2

c3
˙̇ẋ+ higher terms.

In all the higher terms, the radius a appears to some positive power in the
numerator. Therefore, when we go to the limit of a point charge, we get only the
one term—just what is needed. In this way, Dirac got the radiation resistance
force and none of the inertial forces. There is no electromagnetic mass, and the
classical theory is saved—but at the expense of an arbitrary assumption about
the self-force.

The arbitrariness of the extra assumption of Dirac was removed, to some
extent at least, by Wheeler and Feynman, who proposed a still stranger theory.
They suggest that point charges interact only with other charges, but that the
interaction is half through the advanced and half through the retarded waves. It
turns out, most surprisingly, that in most situations you won’t see any effects of
the advanced waves, but they do have the effect of producing just the radiation
reaction force. The radiation resistance is not due to the electron acting on itself,
but from the following peculiar effect. When an electron is accelerated at the
time t, it shakes all the other charges in the world at a later time t′ = t+ r/c
(where r is the distance to the other charge), because of the retarded waves.
But then these other charges react back on the original electron through their
advanced waves, which will arrive at the time t′′, equal to t′ minus r/c, which is, of
course, just t. (They also react back with their retarded waves too, but that just
corresponds to the normal “reflected” waves.) The combination of the advanced
and retarded waves means that at the instant it is accelerated an oscillating
charge feels a force from all the charges that are “going to” absorb its radiated
waves. You see what tight knots people have gotten into in trying to get a theory
of the electron!

We’ll describe now still another kind of theory, to show the kind of things
that people think of when they are stuck. This is another modification of the
laws of electrodynamics, proposed by Bopp. You realize that once you decide
to change the equations of electromagnetism you can start anywhere you want.
You can change the force law for an electron, or you can change the Maxwell
equations (as we saw in the examples we have described), or you can make a
change somewhere else. One possibility is to change the formulas that give the
potentials in terms of the charges and currents. One of our formulas has been
that the potentials at some point are given by the current density (or charge)
at each other point at an earlier time. Using our four-vector notation for the
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potentials, we write

Aµ(1, t) = 1
4πε0c2

∫
jµ(2, t− r12/c)

r12
dV2. (28.13)

Bopp’s beautifully simple idea is that: Maybe the trouble is in the 1/r factor in
the integral. Suppose we were to start out by assuming only that the potential
at one point depends on the charge density at any other point as some function
of the distance between the points, say as f(r12). The total potential at point (1)
will then be given by the integral of jµ times this function over all space:

Aµ(1, t) =
∫
jµ(2, t− r12/c)f(r12) dV2.

That’s all. No differential equation, nothing else. Well, one more thing. We also
ask that the result should be relativistically invariant. So by “distance” we should
take the invariant “distance” between two points in space-time. This distance
squared (within a sign which doesn’t matter) is

s2
12 = c2(t1 − t2)2 − r2

12

= c2(t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 − z2)2. (28.14)

So, for a relativistically invariant theory, we should take some function of the
magnitude of s12, or what is the same thing, some function of s2

12. So Bopp’s
theory is that

Aµ(1, t1) =
∫
jµ(2, t2)F (s2

12) dV2 dt2. (28.15)

(The integral must, of course, be over the four-dimensional volume dt2 dx2 dy2 dz2.)
All that remains is to choose a suitable function for F . We assume only one

thing about F—that it is very small except when its argument is near zero—so
that a graph of F would be a curve like the one in Fig. 28-4. It is a narrow
spike with a finite area centered at s2 = 0, and with a width which we can say is
roughly a2. We can say, crudely, that when we calculate the potential at point (1),
only those points (2) produce any appreciable effect if s2

12 = c2(t1 − t2)2 − r2
12 is

within ±a2 of zero. We can indicate this by saying that F is important only for

s2
12 = c2(t1 − t2)2 − r2

12 ≈ ±a2. (28.16)

You can make it more mathematical if you want to, but that’s the idea.
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Fig. 28-4. The function F (s2) used in the nonlocal theory of Bopp.

Now suppose that a is very small in comparison with the size of ordinary
objects like motors, generators, and the like so that for normal problems r12 � a.
Then Eq. (28.16) says that charges contribute to the integral of Eq. (28.15) only
when t1 − t2 is in the small range

c(t1 − t2) ≈
√
r2
12 ± a2 = r12

√
1± a2

r2
12
.

Since a2/r2
12 � 1, the square root can be approximated by 1± a2/2r2

12, so

t1 − t2 = r12

c

(
1± a2

2r2
12

)
= r12

c
± a2

2r12c
.
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What is the significance? This result says that the only times t2 that are
important in the integral of Aµ are those which differ from the time t1, at which
we want the potential, by the delay r12/c—with a negligible correction so long
as r12 � a. In other words, this theory of Bopp approaches the Maxwell theory—
so long as we are far away from any particular charge—in the sense that it gives
the retarded wave effects.

We can, in fact, see approximately what the integral of Eq. (28.15) is going
to give. If we integrate first over t2 from −∞ to +∞—keeping r12 fixed—then
s2

12 is also going to go from −∞ to +∞. The integral will all come from t2’s in
a small interval of width ∆t2 = 2 × a2/2r12c, centered at t1 − r12/c. Say that
the function F (s2) has the value K at s2 = 0; then the integral over t2 gives
approximately Kjµ∆t2, or

Ka2

c

jµ
r12

.

We should, of course, take the value of jµ at t2 = t1 − r12/c, so that Eq. (28.15)
becomes

Aµ(1, t1) = Ka2

c

∫
jµ(2, t1 − r12/c)

r12
dV2.

If we pick K = 1/4πε0ca2, we are right back to the retarded potential solution of
Maxwell’s equations—including automatically the 1/r dependence! And it all
came out of the simple proposition that the potential at one point in space-time
depends on the current density at all other points in space-time, but with a
weighting factor that is some narrow function of the four-dimensional distance
between the two points. This theory again predicts a finite electromagnetic mass
for the electron, and the energy and mass have the right relation for the relativity
theory. They must, because the theory is relativistically invariant from the start,
and everything seems to be all right.

There is, however, one fundamental objection to this theory and to all the
other theories we have described. All particles we know obey the laws of quantum
mechanics, so a quantum-mechanical modification of electrodynamics has to be
made. Light behaves like photons. It isn’t 100 percent like the Maxwell theory.
So the electrodynamic theory has to be changed. We have already mentioned
that it might be a waste of time to work so hard to straighten out the classical
theory, because it could turn out that in quantum electrodynamics the difficulties
will disappear or may be resolved in some other fashion. But the difficulties
do not disappear in quantum electrodynamics. That is one of the reasons that
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people have spent so much effort trying to straighten out the classical difficulties,
hoping that if they could straighten out the classical difficulty and then make
the quantum modifications, everything would be straightened out. The Maxwell
theory still has the difficulties after the quantum mechanics modifications are
made.

The quantum effects do make some changes—the formula for the mass is
modified, and Planck’s constant ~ appears—but the answer still comes out infinite
unless you cut off an integration somehow—just as we had to stop the classical
integrals at r = a. And the answers depend on how you stop the integrals. We
cannot, unfortunately, demonstrate for you here that the difficulties are really
basically the same, because we have developed so little of the theory of quantum
mechanics and even less of quantum electrodynamics. So you must just take our
word that the quantized theory of Maxwell’s electrodynamics gives an infinite
mass for a point electron.

It turns out, however, that nobody has ever succeeded in making, a self-
consistent quantum theory out of any of the modified theories. Born and Infeld’s
ideas have never been satisfactorily made into a quantum theory. The theories
with the advanced and retarded waves of Dirac, or of Wheeler and Feynman,
have never been made into a satisfactory quantum theory. The theory of Bopp
has never been made into a satisfactory quantum theory. So today, there is no
known solution to this problem. We do not know how to make a consistent
theory—including the quantum mechanics—which does not produce an infinity
for the self-energy of an electron, or any point charge. And at the same time,
there is no satisfactory theory that describes a non-point charge. It’s an unsolved
problem.

In case you are deciding to rush off to make a theory in which the action
of an electron on itself is completely removed, so that electromagnetic mass is
no longer meaningful, and then to make a quantum theory of it, you should be
warned that you are certain to be in trouble. There is definite experimental
evidence of the existence of electromagnetic inertia—there is evidence that some
of the mass of charged particles is electromagnetic in origin.

It used to be said in the older books that since Nature will obviously not
present us with two particles—one neutral and the other charged, but otherwise
the same—we will never be able to tell how much of the mass is electromagnetic
and how much is mechanical. But it turns out that Nature has been kind enough
to present us with just such objects, so that by comparing the observed mass of
the charged one with the observed mass of the neutral one, we can tell whether
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there is any electromagnetic mass. For example, there are the neutrons and
protons. They interact with tremendous forces—the nuclear forces—whose origin
is unknown. However, as we have already described, the nuclear forces have one
remarkable property. So far as they are concerned, the neutron and proton are
exactly the same. The nuclear forces between neutron and neutron, neutron and
proton, and proton and proton are all identical as far as we can tell. Only the
little electromagnetic forces are different; electrically the proton and neutron are
as different as night and day. This is just what we wanted. There are two particles,
identical from the point of view of the strong interactions, but different electrically.
And they have a small difference in mass. The mass difference between the proton
and the neutron—expressed as the difference in the rest-energy mc2 in units of
MeV—is about 1.3 MeV, which is about 2.6 times the electron mass. The classical
theory would then predict a radius of about 1

3 to 1
2 the classical electron radius,

or about 10−13 cm. Of course, one should really use the quantum theory, but by
some strange accident, all the constants—2π’s and ~’s, etc.—come out so that
the quantum theory gives roughly the same radius as the classical theory. The
only trouble is that the sign is wrong! The neutron is heavier than the proton.

Nature has also given us several other pairs—or triplets—of particles which
appear to be exactly the same except for their electrical charge. They interact
with protons and neutrons, through the so-called “strong” interactions of the
nuclear forces. In such interactions, the particles of a given kind—say the π-
mesons—behave in every way like one object except for their electrical charge. In
Table 28-1 we give a list of such particles, together with their measured masses.
The charged π-mesons—positive or negative—have a mass of 139.6 MeV, but
the neutral π-meson is 4.6 MeV lighter. We believe that this mass difference is
electromagnetic; it would correspond to a particle radius of 3 to 4× 10−14 cm.
You will see from the table that the mass differences of the other particles are
usually of the same general size.

Now the size of these particles can be determined by other methods, for
instance by the diameters they appear to have in high-energy collisions. So the
electromagnetic mass seems to be in general agreement with electromagnetic
theory, if we stop our integrals of the field energy at the same radius obtained by
these other methods. That’s why we believe that the differences do represent
electromagnetic mass.

You are no doubt worried about the different signs of the mass differences
in the table. It is easy to see why the charged ones should be heavier than
the neutral ones. But what about those pairs like the proton and the neutron,
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Table 28-1

Particle Masses

Particle Charge Mass ∆m1

(electronic) (MeV) (MeV)

n (neutron) 0 939.5
p (proton) +1 938.2 −1.3

π (π-meson) 0 135.0
±1 139.6 +4.6

K (K-meson) 0 497.8
±1 493.9 −3.9

Σ (sigma) 0 1191.5
+1 1189.4 −2.1
−1 1196.0 +4.5

1 ∆m = (mass of charged)− (mass of neutral).

where the measured mass comes out the other way? Well, it turns out that
these particles are complicated, and the computation of the electromagnetic mass
must be more elaborate for them. For instance, although the neutron has no net
charge, it does have a charge distribution inside it—it is only the net charge that
is zero. In fact, we believe that the neutron looks—at least sometimes—like a
proton with a negative π-meson in a “cloud” around it, as shown in Fig. 28-5.

+

PROTON

Negative
π-meson

Fig. 28-5. A neutron may exist, at times, as a proton surrounded by
a negative π-meson.

28-19



Although the neutron is “neutral,” because its total charge is zero, there are still
electromagnetic energies (for example, it has a magnetic moment), so it’s not
easy to tell the sign of the electromagnetic mass difference without a detailed
theory of the internal structure.

We only wish to emphasize here the following points: (1) the electromagnetic
theory predicts the existence of an electromagnetic mass, but it also falls on its
face in doing so, because it does not produce a consistent theory—and the same
is true with the quantum modifications; (2) there is experimental evidence for
the existence of electromagnetic mass; and (3) all these masses are roughly the
same as the mass of an electron. So we come back again to the original idea of
Lorentz—maybe all the mass of an electron is purely electromagnetic, maybe the
whole 0.511 MeV is due to electrodynamics. Is it or isn’t it? We haven’t got a
theory, so we cannot say.

We must mention one more piece of information, which is the most annoying.
There is another particle in the world called a muon—or µ-meson—which, so far
as we can tell, differs in no way whatsoever from an electron except for its mass.
It acts in every way like an electron: it interacts with neutrinos and with the
electromagnetic field, and it has no nuclear forces. It does nothing different from
what an electron does—at least, nothing which cannot be understood as merely
a consequence of its higher mass (206.77 times the electron mass). Therefore,
whenever someone finally gets the explanation of the mass of an electron, he will
then have the puzzle of where a muon gets its mass. Why? Because whatever the
electron does, the muon does the same—so the mass ought to come out the same.
There are those who believe faithfully in the idea that the muon and the electron
are the same particle and that, in the final theory of the mass, the formula for the
mass will be a quadratic equation with two roots—one for each particle. There
are also those who propose it will be a transcendental equation with an infinite
number of roots, and who are engaged in guessing what the masses of the other
particles in the series must be, and why these particles haven’t been discovered
yet.

28-6 The nuclear force field

We would like to make some further remarks about the part of the mass
of nuclear particles that is not electromagnetic. Where does this other large
fraction come from? There are other forces besides electrodynamics—like nuclear
forces—that have their own field theories, although no one knows whether the
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current theories are right. These theories also predict a field energy which gives
the nuclear particles a mass term analogous to electromagnetic mass; we could
call it the “π-mesic-field-mass.” It is presumably very large, because the forces
are great, and it is the possible origin of the mass of the heavy particles. But
the meson field theories are still in a most rudimentary state. Even with the
well-developed theory of electromagnetism, we found it impossible to get beyond
first base in explaining the electron mass. With the theory of the mesons, we
strike out.

We may take a moment to outline the theory of the mesons, because of its
interesting connection with electrodynamics. In electrodynamics, the field can
be described in terms of a four-potential that satisfies the equation

�2Aµ = sources.

Now we have seen that pieces of the field can be radiated away so that they
exist separated from the sources. These are the photons of light, and they are
described by a differential equation without sources:

�2Aµ = 0.

People have argued that the field of nuclear forces ought also to have its own
“photons”—they would presumably be the π-mesons—and that they should be
described by an analogous differential equation. (Because of the weakness of the
human brain, we can’t think of something really new; so we argue by analogy
with what we know.) So the meson equation might be

�2φ = 0,

where φ could be a different four-vector or perhaps a scalar. It turns out that the
pion has no polarization, so φ should be a scalar. With the simple equation �2φ =
0, the meson field would vary with distance from a source as 1/r2, just as the
electric field does. But we know that nuclear forces have much shorter distances
of action, so the simple equation won’t work. There is one way we can change
things without disrupting the relativistic invariance: we can add or subtract
from the D’Alembertian a constant, times φ. So Yukawa suggested that the free
quanta of the nuclear force field might obey the equation

−�2φ− µ2φ = 0, (28.17)

28-21



where µ2 is a constant—that is, an invariant scalar. (Since �2 is a scalar
differential operator in four dimensions, its invariance is unchanged if we add
another scalar to it.)

Let’s see what Eq. (28.17) gives for the nuclear force when things are not
changing with time. We want a spherically symmetric solution of

∇2φ− µ2φ = 0

around some point source at, say, the origin. If φ depends only on r, we know
that

∇2φ = 1
r

∂2

∂r2 (rφ).

So we have the equation
1
r

∂2

∂r2 (rφ)− µ2φ = 0

or
∂2

∂r2 (rφ) = µ2(rφ).

Thinking of (rφ) as our dependent variable, this is an equation we have seen
many times. Its solution is

rφ = Ke±µr.

Clearly, φ cannot become infinite for large r, so the + sign in the exponent is
ruled out. The solution is

φ = K
e−µr

r
. (28.18)

This function is called the Yukawa potential. For an attractive force, K is a
negative number whose magnitude must be adjusted to fit the experimentally
observed strength of the forces.

The Yukawa potential of the nuclear forces dies off more rapidly than 1/r
by the exponential factor. The potential—and therefore the force—falls to zero
much more rapidly than 1/r for distances beyond 1/µ, as shown in Fig. 28-6.
The “range” of nuclear forces is much less than the “range” of electrostatic forces.
It is found experimentally that the nuclear forces do not extend beyond about
10−13 cm, so µ ≈ 1015 m−1.

Finally, let’s look at the free-wave solution of Eq. (28.17). If we substitute

φ = φ0e
i(ωt−kz)
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Fig. 28-6. The Yukawa potential e−µr/r , compared with the Coulomb
potential 1/r .

into Eq. (28.17), we get that

ω2

c2
− k2 − µ2 = 0.

Relating frequency to energy and wave number to momentum, as we did at the
end of Chapter 34 of Vol. I, we get that

E2

c2
− p2 = µ2~2,

which says that the Yukawa “photon” has a mass equal to µ~/c. If we use for µ
the estimate 1015 m−1, which gives the observed range of the nuclear forces, the
mass comes out to 3× 10−25 g, or 170 MeV, which is roughly the observed mass
of the π-meson. So, by an analogy with electrodynamics, we would say that the
π-meson is the “photon” of the nuclear force field. But now we have pushed the
ideas of electrodynamics into regions where they may not really be valid—we
have gone beyond electrodynamics to the problem of the nuclear forces.
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29

The Motion of Charges in Electric and
Magnetic Fields

Review: Chapter 30, Vol. I, Diffraction

29-1 Motion in a uniform electric or magnetic field

We want now to describe—mainly in a qualitative way—the motions of charges
in various circumstances. Most of the interesting phenomena in which charges are
moving in fields occur in very complicated situations, with many, many charges
all interacting with each other. For instance, when an electromagnetic wave
goes through a block of material or a plasma, billions and billions of charges are
interacting with the wave and with each other. We will come to such problems
later, but now we just want to discuss the much simpler problem of the motions of
a single charge in a given field. We can then disregard all other charges—except,
of course, those charges and currents which exist somewhere to produce the fields
we will assume.

We should probably ask first about the motion of a particle in a uniform
electric field. At low velocities, the motion is not particularly interesting—it is just
a uniform acceleration in the direction of the field. However, if the particle picks
up enough energy to become relativistic, then the motion gets more complicated.
But we will leave the solution for that case for you to play with.

Next, we consider the motion in a uniform magnetic field with zero electric
field. We have already solved this problem—one solution is that the particle goes
in a circle. The magnetic force qv ×B is always at right angles to the motion,
so dp/dt is perpendicular to p and has the magnitude vp/R, where R is the
radius of the circle:

F = qvB = vp

R
.
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Fig. 29-1. Motion of a particle in a uniform magnetic field.

The radius of the circular orbit is then

R = p

qB
. (29.1)

That is only one possibility. If the particle has a component of its motion
along the field direction, that motion is constant, since there can be no component
of the magnetic force in the direction of the field. The general motion of a particle
in a uniform magnetic field is a constant velocity parallel to B and a circular
motion at right angles to B—the trajectory is a cylindrical helix (Fig. 29-1). The
radius of the helix is given by Eq. (29.1) if we replace p by p⊥, the component of
momentum at right angles to the field.

29-2 Momentum analysis

A uniform magnetic field is often used in making a “momentum analyzer,” or
“momentum spectrometer,” for high-energy charged particles. Suppose that
charged particles are shot into a uniform magnetic field at the point A in
Fig. 29-2(a), the magnetic field being perpendicular to the plane of the drawing.
Each particle will go into an orbit which is a circle whose radius is proportional
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(a)

A C DETECTOR

UNIFORM MAGNETIC FIELD

x

(b)
POINT SOURCE

Fig. 29-2. A uniform-field momentum spectrometer with 180◦ focus-
ing: (a) different momenta; (b) different angles. (The magnetic field is
directed perpendicular to the plane of the figure.)

to its momentum. If all the particles enter perpendicular to the edge of the field,
they will leave the field at a distance x (from A) which is proportional to their
momentum p. A counter placed at some point such as C will detect only those
particles whose momentum is in an interval ∆p near the momentum p = qBx/2.

It is, of course, not necessary that the particles go through 180◦ before they
are counted, but the so-called “180◦ spectrometer” has a special property. It is not
necessary that all the particles enter at right angles to the field edge. Figure 29-2(b)
shows the trajectories of three particles, all with the same momentum but entering
the field at different angles. You see that they take different trajectories, but
all leave the field very close to the point C. We say that there is a “focus.”
Such a focusing property has the advantage that larger angles can be accepted
at A—although some limit is usually imposed, as shown in the figure. A larger
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angular acceptance usually means that more particles are counted in a given
time, decreasing the time required for a given measurement.

By varying the magnetic field, or moving the counter along in x, or by using
many counters to cover a range of x, the “spectrum” of momenta in the incoming
beam can be measured. [By the “momentum spectrum” f(p), we mean that
the number of particles with momenta between p and (p+ dp) is f(p) dp.] Such
measurements have been made, for example, to determine the distribution of
energies in the β-decay of various nuclei.

There are many other forms of momentum spectrometers, but we will describe
just one more, which has an especially large solid angle of acceptance. It is based
on the helical orbits in a uniform field, like the one shown in Fig. 29-1. Let’s
think of a cylindrical coordinate system—ρ, θ, z—set up with the z-axis along
the direction of the field. If a particle is emitted from the origin at some angle α
with respect to the z-axis, it will move along a spiral whose equation is

ρ = a sin kz, θ = bz,

where a, b, and k are parameters you can easily work out in terms of p, α, and
the magnetic field B. If we plot the distance ρ from the axis as a function of z
for a given momentum, but for several starting angles, we will get curves like the
solid ones drawn in Fig. 29-3. (Remember that this is just a kind of projection of
a helical trajectory.) When the angle between the axis and the starting direction
is larger, the peak value of ρ is large but the longitudinal velocity is less, so the
trajectories for different angles tend to come to a kind of “focus” near the point A
in the figure. If we put a narrow aperture of A, particles with a range of initial
angles can still get through and pass on to the axis, where they can be counted
by the long detector D.

Particles which leave the source at the origin with a higher momentum but
at the same angles, follow the paths shown by the broken lines and do not get

z

ρ

0

B
A

A′

D

Fig. 29-3. An axial-field spectrometer.
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through the aperture at A. So the apparatus selects a small interval of momenta.
The advantage over the first spectrometer described is that the aperture A—and
the aperture A′—can be an annulus, so that particles which leave the source in a
rather large solid angle are accepted. A large fraction of the particles from the
source are used—an important advantage for weak sources or for very precise
measurements.

One pays a price for this advantage, however, because a large volume of
uniform magnetic field is required, and this is usually only practical for low-
energy particles. One way of making a uniform field, you remember, is to wind a
coil on a sphere, with a surface current density proportional to the sine of the
angle. You can also show that the same thing is true for an ellipsoid of rotation.
So such spectrometers are often made by winding an elliptical coil on a wooden
(or aluminum) frame. All that is required is that the current in each interval of
axial distance ∆x be the same, as shown in Fig. 29-4.

B

∆x

Fig. 29-4. An ellipsoidal coil with equal currents in each axial inter-
val ∆x produces a uniform magnetic field inside.

29-3 An electrostatic lens

Particle focusing has many applications. For instance, the electrons that leave
the cathode in a TV picture tube are brought to a focus at the screen—to make
a fine spot. In this case, one wants to take electrons all of the same energy but
with different initial angles and bring them together in a small spot. The problem
is like focusing light with a lens, and devices which do the corresponding job for
particles are also called lenses.
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One example of an electron lens is sketched in Fig. 29-5. It is an “electrostatic”
lens whose operation depends on the electric field between two adjacent electrodes.
Its operation can be understood by considering what happens to a parallel beam
that enters from the left. When the electrons arrive at the region a, they feel
a force with a sidewise component and get a certain impulse that bends them
toward the axis. You might think that they would get an equal and opposite
impulse in the region b, but that is not so. By the time the electrons reach b
they have gained energy and so spend less time in the region b. The forces are
the same, but the time is shorter, so the impulse is less. In going through the
regions a and b, there is a net axial impulse, and the electrons are bent toward
a common point. In leaving the high-voltage region, the particles get another
kick toward the axis. The force is outward in region c and inward in region d,
but the particles stay longer in the latter region, so there is again a net impulse.
For distances not too far from the axis, the total impulse through the lens is
proportional to the distance from the axis (Can you see why?), and this is just
the condition necessary for lens-type focusing.

You can use the same arguments to show that there is focusing if the potential
of the middle electrode is either positive or negative with respect to the other
two. Electrostatic lenses of this type are commonly used in cathode-ray tubes
and in some electron microscopes.

29-4 A magnetic lens

Another kind of lens—often found in electron microscopes—is the magnetic
lens sketched schematically in Fig. 29-6. A cylindrically symmetric electromagnet
has very sharp circular pole tips which produce a strong, nonuniform field in a
small region. Electrons which travel vertically through this region are focused.
You can understand the mechanism by looking at the magnified view of the
pole-tip region drawn in Fig. 29-7. Consider two electrons a and b that leave
the source S at some angle with respect to the axis. As electron a reaches the
beginning of the field, it is deflected away from you by the horizontal component
of the field. But then it will have a lateral velocity, so that when it passes through
the strong vertical field, it will get an impulse toward the axis. Its lateral motion
is taken out by the magnetic force as it leaves the field, so the net effect is an
impulse toward the axis, plus a “rotation” about the axis. All the forces on
particle b are opposite, so it also is deflected toward the axis. In the figure, the
divergent electrons are brought into parallel paths. The action is like a lens with
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Fig. 29-7. Electron motion in the magnetic lens.
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an object at the focal point. Another similar lens upstream can be used to focus
the electrons back to a single point, making an image of the source S.

29-5 The electron microscope

You know that electron microscopes can “see” objects too small to be seen by
optical microscopes. We discussed in Chapter 30 of Vol. I the basic limitations
of any optical system due to diffraction of the lens opening. If a lens opening
subtends the angle 2θ from a source (see Fig. 29-8), two neighboring spots at the
source cannot be seen as separate if they are closer than about

δ ≈ λ

sin θ ,

where λ is the wavelength of the light. With the best optical microscope, θ
approaches the theoretical limit of 90◦, so δ is about equal to λ, or approximately
5000 angstroms.

SOURCE

θ

LENS
OPENING

Fig. 29-8. The resolution of a microscope is limited by the angle
subtended from the source.

The same limitation would also apply to an electron microscope, but there
the wavelength is—for 50-kilovolt electrons—about 0.05 angstrom. If one could
use a lens opening of near 30◦, it would be possible to see objects only 1

5 of an
angstrom apart. Since the atoms in molecules are typically 1 or 2 angstroms
apart, we could get photographs of molecules. Biology would be easy; we would
have a photograph of the DNA structure. What a tremendous thing that would
be! Most of present-day research in molecular biology is an attempt to figure out
the shapes of complex organic molecules. If we could only see them!
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Unfortunately, the best resolving power that has been achieved in an electron
microscope is more like 20 angstroms. The reason is that no one has yet designed
a lens with a large opening. All lenses have “spherical aberration,” which means
that rays at large angles from the axis have a different point of focus than the rays
nearer the axis, as shown in Fig. 29-9. By special techniques, optical microscope
lenses can be made with a negligible spherical aberration, but no one has yet
been able to make an electron lens which avoids spherical aberration.

In fact, one can show that any electrostatic or magnetic lens of the types we
have described must have an irreducible amount of spherical aberration. This
aberration—together with diffraction—limits the resolving power of electron
microscopes to their present value.

The limitation we have mentioned does not apply to electric and magnetic
fields which are not axially symmetric or which are not constant in time. Perhaps
some day someone will think of a new kind of electron lens that will overcome
the inherent aberration of the simple electron lens. Then we will be able to
photograph atoms directly. Perhaps one day chemical compounds will be analyzed
by looking at the positions of the atoms rather than by looking at the color of
some precipitate!

29-6 Accelerator guide fields

Magnetic fields are also used to produce special particle trajectories in high
energy particle accelerators. Machines like the cyclotron and synchrotron bring
particles to high energies by passing the particles repeatedly through a strong
electric field. The particles are held in their cyclic orbits by a magnetic field.

We have seen that a particle in a uniform magnetic field will go in a circular
orbit. This, however, is true only for a perfectly uniform field. Imagine a field B
which is nearly uniform over a large area but which is slightly stronger in one
region than in another. If we put a particle of momentum p in this field, it will go
in a nearly circular orbit with the radius R = p/qB. The radius of curvature will,
however, be slightly smaller in the region where the field is stronger. The orbit is
not a closed circle but will “walk” through the field, as shown in Fig. 29-10. We
can, if we wish, consider that the slight “error” in the field produces an extra
angular kick which sends the particle off on a new track. If the particles are to
make millions of revolutions in an accelerator, some kind of “radial focusing” is
needed which will tend to keep the trajectories close to some design orbit.
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Fig. 29-10. Particle motion in a slightly nonuniform field.
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Another difficulty with a uniform field is that the particles do not remain in
a plane. If they start out with the slightest angle—or are given a slight angle by
any small error in the field—they will go in a helical path that will eventually
take them into the magnet pole or the ceiling or floor of the vacuum tank. Some
arrangement must be made to inhibit such vertical drifts; the field must provide
“vertical focusing” as well as radial focusing.

One would, at first, guess that radial focusing could be provided by making a
magnetic field which increases with increasing distance from the center of the
design path. Then if a particle goes out to a large radius, it will be in a stronger
field which will bend it back toward the correct radius. If it goes to too small a
radius, the bending will be less, and it will be returned toward the design radius.
If a particle is once started at some angle with respect to the ideal circle, it
will oscillate about the ideal circular orbit, as shown in Fig. 29-11. The radial
focusing would keep the particles near the circular path.

r

B
CIRCULAR
ORBIT

MAGNETIC
FIELD

Fig. 29-11. Radial motion of a particle in a magnetic field with a large
positive slope.

Actually there is still some radial focusing even with the opposite field slope.
This can happen if the radius of curvature of the trajectory does not increase

29-12



r

B
CIRCULAR
ORBIT

MAGNETIC
FIELD

Fig. 29-12. Radial motion of a particle in a magnetic field with a
small negative slope.

more rapidly than the increase in the distance of the particle from the center of
the field. The particle orbits will be as drawn in Fig. 29-12. If the gradient of
the field is too large, however, the orbits will not return to the design radius but
will spiral inward or outward, as shown in Fig. 29-13.

We usually describe the slope of the field in terms of the “relative gradient”
or field index, n:

n = dB/B

dr/r
. (29.2)

A guide field gives radial focusing if this relative gradient is greater than −1.
A radial field gradient will also produce vertical forces on the particles.

Suppose we have a field that is stronger nearer to the center of the orbit and
weaker at the outside. A vertical cross section of the magnet at right angles to
the orbit might be as shown in Fig. 29-14. (For protons the orbits would be
coming out of the page.) If the field is to be stronger to the left and weaker to
the right, the lines of the magnetic field must be curved as shown. We can see
that this must be so by using the law that the circulation of B is zero in free
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Fig. 29-13. Radial motion of a particle in a magnetic field with a large
negative slope.
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Fig. 29-14. A vertical guide field as seen in a cross section perpendic-
ular to the orbits.
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space. If we take coordinates as shown in the figure, then

(∇×B)y = ∂Bx
∂z
− ∂Bz

∂x
= 0,

or
∂Bx
∂z

= ∂Bz
∂x

. (29.3)

Since we assume that ∂Bz/∂x is negative, there must be an equal negative ∂Bx/∂z.
If the “nominal” plane of the orbit is a plane of symmetry where Bx = 0, then
the radial component Bx will be negative above the plane and positive below.
The lines must be curved as shown.

Such a field will have vertical focusing properties. Imagine a proton that is
travelling more or less parallel to the central orbit but above it. The horizontal
component of B will exert a downward force on it. If the proton is below the
central orbit, the force is reversed. So there is an effective “restoring force” toward
the central orbit. From our arguments there will be vertical focusing, provided
that the vertical field decreases with increasing radius; but if the field gradient
is positive, there will be “vertical defocusing.” So for vertical focusing, the field
index n must be less than zero. We found above that for radial focusing n had
to be greater than −1. The two conditions together give the condition that

−1 < n < 0

if the particles are to be kept in stable orbits. In cyclotrons, values very near zero
are used; in betatrons and synchrotrons, the value n = −0.6 is typically used.

29-7 Alternating-gradient focusing

Such small values of n give rather “weak” focusing. It is clear that much more
effective radial focusing would be given by a large positive gradient (n� 1), but
then the vertical forces would be strongly defocusing. Similarly, large negative
slopes (n � −1) would give stronger vertical forces but would cause radial
defocusing. It was realized about 10 years ago, however, that a force that
alternates between strong focusing and strong defocusing can still have a net
focusing force.

To explain how alternating-gradient focusing works, we will first describe the
operation of a quadrupole lens, which is based on the same principle. Imagine
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that a uniform negative magnetic field is added to the field of Fig. 29-14, with
the strength adjusted to make zero field at the orbit. The resulting field—for
small displacements from the neutral point—would be like the field shown in
Fig. 29-15. Such a four-pole magnet is called a “quadrupole lens.” A positive
particle that enters (from the reader) to the right or left of the center is pushed
back toward the center. If the particle enters above or below, it is pushed away
from the center. This is a horizontal focusing lens. If the horizontal gradient
is reversed—as can be done by reversing all the polarities—the signs of all the
forces are reversed and we have a vertical focusing lens, as in Fig. 29-16. For such
lenses, the field strength—and therefore the focusing forces—increase linearly
with the distance of the lens from the axis.

Now imagine that two such lenses are placed in series. If a particle enters
with some horizontal displacement from the axis, as shown in Fig. 29-17(a), it
will be deflected toward the axis in the first lens. When it arrives at the second
lens it is closer to the axis, so the force outward is less and the outward deflection
is less. There is a net bending toward the axis; the average effect is horizontally
focusing. On the other hand, if we look at a particle which enters off the axis in
the vertical direction, the path will be as shown in Fig. 29-17(b). The particle is
first deflected away from the axis, but then it arrives at the second lens with a
larger displacement, feels a stronger force, and so is bent toward the axis. Again
the net effect is focusing. Thus a pair of quadrupole lenses acts independently
for horizontal and vertical motion—very much like an optical lens. Quadrupole
lenses are used to form and control beams of particles in much the same way
that optical lenses are used for light beams.

We should point out that an alternating-gradient system does not always
produce focusing. If the gradients are too large (in relation to the particle
momentum or to the spacing between the lenses), the net effect can be a defocusing
one. You can see how that could happen if you imagine that the spacing between
the two lenses of Fig. 29-17 were increased, say, by a factor of three or four.

Let’s return now to the synchrotron guide magnet. We can consider that it
consists of an alternating sequence of “positive” and “negative” lenses with a
superimposed uniform field. The uniform field serves to bend the particles, on
the average, in a horizontal circle (with no effect on the vertical motion), and
the alternating lenses act on any particles that might tend to go astray—pushing
them always toward the central orbit (on the average).

There is a nice mechanical analog which demonstrates that a force which
alternates between a “focusing” force and a “defocusing” force can have a net
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Fig. 29-16. A vertical focusing quadrupole lens.
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Fig. 29-17. Horizontal and vertical focusing with a pair of quadrupole
lenses.

“focusing” effect. Imagine a mechanical “pendulum” which consists of a solid
rod with a weight on the end, suspended from a pivot which is arranged to be
moved rapidly up and down by a motor driven crank. Such a pendulum has
two equilibrium positions. Besides the normal, downward-hanging position, the
pendulum is also in equilibrium “hanging upward”—with its “bob” above the
pivot! Such a pendulum is drawn in Fig. 29-18.

By the following argument you can see that the vertical pivot motion is
equivalent to an alternating focusing force. When the pivot is accelerated
downward, the “bob” tends to move inward, as indicated in Fig. 29-19. When
the pivot is accelerated upward, the effect is reversed. The force restoring the
“bob” toward the axis alternates, but the average effect is a force toward the axis.
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Fig. 29-18. A pendulum with an oscillating pivot can have a stable
position with the bob above the pivot.

Fig. 29-19. A downward acceleration of the pivot causes the pendulum
to move toward the vertical.
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So the pendulum will swing back and forth about a neutral position which is just
opposite the normal one.

There is, of course, a much easier way of keeping a pendulum upside down,
and that is by balancing it on your finger! But try to balance two independent
sticks on the same finger ! Or one stick with your eyes closed! Balancing involves
making a correction for what is going wrong. And this is not possible, in general,
if there are several things going wrong at once. In a synchrotron there are
billions of particles going around together, each one of which may start out with
a different “error.” The kind of focusing we have been describing works on them
all.

29-8 Motion in crossed electric and magnetic fields

So far we have talked about particles in electric fields only or in magnetic
fields only. There are some interesting effects when there are both kinds of
fields at the same time. Suppose we have a uniform magnetic field B and an
electric field E at right angles. Particles that start out perpendicular to B will
move in a curve like the one in Fig. 29-20. (The figure is a plane curve, not a
helix!) We can understand this motion qualitatively. When the particle (assumed
positive) moves in the direction of E, it picks up speed, and so it is bent less
by the magnetic field. When it is going against the E-field, it loses speed and
is continually bent more by the magnetic field. The net effect is that it has an
average “drift” in the direction of E ×B.

B

E

v0

vd

Fig. 29-20. Path of a particle in crossed electric and magnetic fields.

We can, in fact, show that the motion is a uniform circular motion super-
imposed on a uniform sidewise motion at the speed vd = E/B—the trajectory
in Fig. 29-20 is a cycloid. Imagine an observer who is moving to the right at
a constant speed. In his frame our magnetic field gets transformed to a new
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magnetic field plus an electric field in the downward direction. If he has just the
right speed, his total electric field will be zero, and he will see the electron going
in a circle. So the motion we see is a circular motion, plus a translation at the
drift speed vd = E/B. The motion of electrons in crossed electric and magnetic
fields is the basis of the magnetron tubes, i.e., oscillators used for generating
microwave energy.

There are many other interesting examples of particle motions in electric and
magnetic fields—such as the orbits of the electrons and protons trapped in the
Van Allen belts—but we do not, unfortunately, have the time to deal with them
here.
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30

The Internal Geometry of Crystals

Reference: C. Kittel, Introduction to Solid State Physics, John Wiley and
Sons, Inc., New York, 2nd ed., 1956.

30-1 The internal geometry of crystals

We have finished the study of the basic laws of electricity and magnetism,
and we are now going to study the electromagnetic properties of matter. We
begin by describing solids—that is, crystals. When the atoms of matter are not
moving around very much, they get stuck together and arrange themselves in a
configuration with as low an energy as possible. If the atoms in a certain place
have found a pattern which seems to be of low energy, then the atoms somewhere
else will probably make the same arrangement. For these reasons, we have in a
solid material a repetitive pattern of atoms.

In other words, the conditions in a crystal are this way: The environment of
a particular atom in a crystal has a certain arrangement, and if you look at the
same kind of an atom at another place farther along, you will find one whose
surroundings are exactly the same. If you pick an atom farther along by the
same distance, you will find the conditions exactly the same once more. The
pattern is repeated over and over again—and, of course, in three dimensions.

Imagine the problem of designing a wallpaper—or a cloth, or some geometric
design for a plane area—in which you are supposed to have a design element
which repeats and repeats and repeats, so that you can make the area as large
as you want. This is the two-dimensional analog of a problem which a crystal
solves in three dimensions. For example, Fig. 30-1(a) shows a common kind of
wallpaper design. There is a single element repeated in a pattern that can go on
forever. The geometric characteristics of this wallpaper design, considering only
its repetition properties and not worrying about the geometry of the flower itself
or its artistic merit, are contained in Fig. 30-1(b). If you start at any point, you
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Fig. 30-1. A repeating pattern in two dimensions.

can find the corresponding point by moving the distance a along the direction of
arrow 1. You can also get to a corresponding point if you move the distance b
in the direction of the other arrow. There are, of course, many other directions.
You can go, for example, from point α to point β and reach a corresponding
position, but such a step can be considered as a combination of a step along
direction 1, followed by a step along direction 2. One of the basic properties of
the pattern can be described by the two shortest steps to nearby equal positions.
By “equal” positions we mean that if you were to stand in any one of them and
look around you, you would see exactly the same thing as if you were to stand in
another one. That’s the fundamental property of a crystal. The only difference
is that a crystal is a three-dimensional arrangement instead of a two-dimensional
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arrangement; and naturally, instead of flowers, each element of the lattice is some
kind of an arrangement of atoms—perhaps six hydrogen atoms and two carbon
atoms—in some kind of pattern. The pattern of atoms in a crystal can be found
out experimentally by x-ray diffraction. We have mentioned this method briefly
before, and won’t say any more now except that the precise arrangement of the
atoms in space has been worked out for most simple crystals and also for some
fairly complex ones.

The internal pattern of a crystal shows up in several ways. First, the binding
strength of the atoms in certain directions is usually stronger than in other
directions. This means that there are certain planes through the crystal where it
is more easily broken than others. They are called the cleavage planes. If you
crack a crystal with a knife blade it will often split apart along such a plane.
Second, the internal structure often appears at the surface because of the way the
crystal was formed. Imagine a crystal being deposited out of a solution. There
are the atoms floating around in the solution and finally settling down when they
find a position of lowest energy. (It’s as if the wallpaper got made by flowers
drifting around until one drifted accidentally into place and got stuck, and then
the next, and the next so that the pattern gradually grows.) You can appreciate
that there will be certain directions in which it will grow at a different speed
than in other directions, thereby growing into some kind of geometrical shape.
Because of such effects, the outside surfaces of many crystals show some of the
character of the internal arrangement of the atoms.

For example, Fig. 30-2(a) shows the shape of a typical quartz crystal whose
internal pattern is hexagonal. If you look closely at such a crystal, you will notice
that the outside does not make a very good hexagon because the sides are not
all of equal length—they are, in fact, often very unequal. But in one respect it
is a very good hexagon: the angles between the faces are exactly 120◦. Clearly,
the size of any particular face is an accident of the growth, but the angles are a
representation of the internal geometry. So every crystal of quartz has a different
shape, even though the angles between corresponding faces are always the same.

The internal geometry of a crystal of sodium chloride is also evident from its
external shape. Figure 30-2(b) shows the shape of a typical grain of salt. Again
the crystal is not a perfect cube, but the faces are exactly at right angles to one
another.

A more complicated crystal is mica, which has the shape shown in Fig. 30-2(c).
It is a highly anisotropic crystal, as is easily seen from the fact that it is very
tough if you try to pull it apart in one direction (horizontally in the figure),
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Fig. 30-2. Natural crystals: (a) quartz, (b) sodium chloride, (c) mica.
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but very easy to split by pulling apart in the other direction (vertically). It has
commonly been used to obtain very tough, thin sheets. Mica and quartz are two
examples of natural minerals containing silica. A third example of a mineral
with silica is asbestos, which has the interesting property that it is easily pulled
apart in two directions but not in the third. It appears to be made of very strong,
linear fibers.

30-2 Chemical bonds in crystals

The mechanical properties of crystals clearly depend on the kind of chemical
bindings between the atoms. The strikingly different strength of mica along
different directions depends on the kinds of interatomic binding in the different
directions. You have already learned in chemistry, no doubt, about the different
kinds of chemical bonds. First, there are ionic bonds, as we have already discussed
for sodium chloride. Roughly speaking, the sodium atoms have lost an electron
and become positive ions; the chlorine atoms have gained an electron and become
negative ions. The positive and negative ions are arranged in a three-dimensional
checkerboard and are held together by electrical forces.

The covalent bond—in which electrons are shared between two atoms—is
more common and is usually very strong. In a diamond, for example, the carbon
atoms have covalent bonds in all four directions to the nearest neighbors, so the
crystal is very hard indeed. There is also covalent bonding between silicon and
oxygen in a quartz crystal, but there the bond is really only partially covalent.
Because there is not complete sharing of the electrons, the atoms are partly
charged, and the crystal is somewhat ionic. Nature is not as simple as we try
to make it; there are really all possible gradations between covalent and ionic
bonding.

A sugar crystal has still another kind of binding. In it there are large molecules
in which the atoms are held strongly together by covalent bonds, so that the
molecule is a tough structure. But since the strong bonds are completely satis-
fied, there are only relatively weak attractions between the separate, individual
molecules. In such molecular crystals the molecules keep their individual identity,
so to speak, and the internal arrangement might be as shown in Fig. 30-3. Since
the molecules are not held strongly to each other, the crystals are easy to break.
They are quite different from something like diamond, which is really one giant
molecule that cannot be broken anywhere without disrupting strong covalent
bonds. Paraffin is another example of a molecular crystal.
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Fig. 30-3. The lattice of a molecular crystal.

An extreme example of a molecular crystal occurs in a substance like solid
argon. There is very little attraction between the atoms—each atom is a com-
pletely saturated monatomic molecule. But at very low temperatures, the thermal
motion is very small, so the slight interatomic forces can cause the atoms to
settle down into a regular array like a pile of closely packed spheres.

The metals form a completely different class of substances. The bonding is of
an entirely different kind. In a metal the bonding is not between adjacent atoms
but is a property of the whole crystal. The valence electrons are not attached
to one atom or to a pair of atoms but are shared throughout the crystal. Each
atom contributes an electron to a universal pool of electrons, and the atomic
positive ions reside in the sea of negative electrons. The electron sea holds the
ions together like some kind of glue.

In the metals, since there are no special bonds in any particular direction,
there is no strong directionality in the binding. They are still crystalline, however,
because the total energy is lowest when the atomic ions are arranged in some
definite array—although the energy of the preferred arrangement is not usually
much lower than other possible ones. To a first approximation, the atoms of
many metals are like small spheres packed in as tightly as possible.

30-3 The growth of crystals

Try to imagine the natural formation of crystals in the earth. In the earth’s
surface there is a big mixture of all kinds of atoms. They are being continually
churned about by volcanic action, by wind, and by water—continually being
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moved about and mixed. Yet, by some trick, silicon atoms gradually begin to
find each other, and to find oxygen atoms, to make silica. One atom at a time
is added to the others to build up a crystal—the mixture gets unmixed. And
somewhere nearby, sodium and chlorine atoms are finding each other and building
up a crystal of salt.

How does it happen that once a crystal is started, it permits only a particular
kind of atom to join on? It happens because the whole system is working toward
the lowest possible energy. A growing crystal will accept a new atom if it is
going to make the energy as low as possible. But how does it know that a
silicon—or an oxygen—atom at some particular spot is going to result in the
lowest possible energy? It does it by trial and error. In the liquid, all of the
atoms are in perpetual motion. Each atom bounces against its neighbors about
1013 times every second. If it hits against the right spot of growing crystal, it
has a somewhat smaller chance of jumping off again if the energy is low. By
continually testing over periods of millions of years at a rate of 1013 tests per
second, the atoms gradually build up at the places where they find their lowest
energy. Eventually they grow into big crystals.

30-4 Crystal lattices

The arrangement of the atoms in a crystal—the crystal lattice—can take on
many geometric forms. We would like to describe first the simplest lattices, which
are characteristic of most of the metals and of the solid form of the inert gases.
They are the cubic lattices which can occur in two forms: the body-centered
cubic, shown in Fig. 30-4(a), and the face-centered cubic shown in Fig. 30-4(b).
The drawings show, of course, only one cube of the lattice; you are to imagine
that the pattern is repeated indefinitely in three dimensions. Also, to make the
drawing clearer, only the “centers” of the atoms are shown. In an actual crystal,
the atoms are more like spheres in contact with each other. The dark and light
spheres in the drawings may, in general, stand for different kinds of atoms or
may be the same kind. For instance, iron has a body-centered cubic lattice at
low temperatures, but a face-centered cubic lattice at higher temperatures. The
physical properties are quite different in the two crystalline forms.

How do such forms come about? Imagine that you have the problem of packing
spherical atoms together as tightly as possible. One way would be to start by
making a layer in a “hexagonal close-packed array,” as shown in Fig. 30-5(a).
Then you could build up a second layer like the first, but displaced horizontally,
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Fig. 30-4. The unit cell of cubic crystals: (a) body-centered, (b) face-
centered.

as shown in Fig. 30-5(b). Next, you can put on the third layer. But notice!
There are two distinct ways of placing the third layer. If you start the third layer
by placing an atom at A in Fig. 30-5(b), each atom in the third layer is directly
above an atom of the bottom layer. On the other hand, if you start the third
layer by putting an atom at the position B, the atoms of the third layer will be
centered at points exactly in the middle of a triangle formed by three atoms of
the bottom layer. Any other starting place is equivalent to A or B, so there are
only two ways of placing the third layer.
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Fig. 30-5. Building up a hexagonal close-packed lattice.
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Fig. 30-6. Is this a hexagon or a cube seen from one corner?

If the third layer has an atom at point B, the crystal lattice is a face-centered
cubic—but seen at an angle. It seems funny that starting with hexagons you
can end up with cubes. But notice that a cube looked at from a corner has a
hexagonal outline. For instance, Fig. 30-6 could represent a plane hexagon or a
cube seen in perspective!

If a third layer is added to Fig. 30-5(b) by starting with an atom at A, there
is no cubical structure, and the lattice has instead only a hexagonal symmetry.
It is clear that both possibilities we have described are equally close-packed.

Some metals—for example, copper and silver—choose the first alternative, the
face-centered cubic. Others—for example, beryllium and magnesium—choose the
other alternatives; they form hexagonal crystals. Clearly, which crystal lattice
appears cannot depend only on the packing of little spheres, but must also be
determined in part by other factors. In particular, it depends on the slight
remaining angular dependence of the interatomic forces (or, in the case of the
metals, on the energy of the electron pool). You will, no doubt, learn all about
such things in your chemistry courses.

30-5 Symmetries in two dimensions

We would now like to discuss some of the properties of crystals from the point
of view of their internal symmetries. The main feature of a crystal is that if you
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start at one atom and move to a corresponding atom one lattice unit away, you are
again in the same kind of an environment. That’s the fundamental proposition.
But if you were an atom, there would be another kind of change that could
take you again to the same environment—that is, another possible “symmetry.”
Figure 30-7(a) shows another possible “wallpaper-type” design (though one you
have probably never seen). Suppose we compare the environments for points A
and B. You might, at first, think that they are the same—but not quite. Points
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Fig. 30-7. A pattern of high symmetry.
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C and D are equivalent to A, but the environment of B is like that of A only if
the surroundings are reversed, as in a mirror reflection.

There are other kinds of “equivalent” points in the pattern. For instance, the
points E and F have the “same” environments except that one is rotated 90◦
with respect to the other. The pattern is quite special. A rotation of 90◦—or any
multiple of it—about a vertex such as A gives the same pattern all over again.
A crystal with such a structure would have square corners on the outside, but
inside it is more complicated than a simple cube.

Now that we have described some special examples, let’s try to figure out all
the possible symmetries a crystal can have. First, we consider what happens in
a plane. A plane lattice can be defined by the two so-called primitive vectors
that go from one point of the lattice to the two nearest equivalent points. The
two vectors 1 and 2 are the primitive vectors of the lattice of Fig. 30-1. The two
vectors a and b of Fig. 30-7(a) are the primitive vectors of the pattern there. We
could, of course, equally well replace a by −a, or b by −b. Since a and b are
equal in magnitude and at right angles, a rotation of 90◦ turns a into b, and b
into −a, giving the same lattice once again.

We see that there are lattices which have a “four-sided” symmetry. And we
have described earlier a close-packed array based on a hexagon which could have
a six-sided symmetry. A rotation of the array of circles in Fig. 30-5(a) by an
angle of 60◦ about the center of any circle brings the pattern back to itself.

What other kinds of rotational symmetry are there? Can we have, for example,
a fivefold or an eightfold rotational symmetry? It is easy to see that they are
impossible. The only symmetry with more sides than four is a six-sided symmetry.
First, let’s show that more than sixfold symmetry is impossible. Suppose we
try to imagine a lattice with two equal primitive vectors with an enclosed angle
less than 60◦, as in Fig. 30-8(a). We are to suppose that points B and C are
equivalent to A, and that a and b are the two shortest vectors from A to its
equivalent neighbors. But that is clearly wrong, because the distance between
B and C is shorter than from either one to A. There must be a neighbor at D
equivalent to A which is closer than B or C. We should have chosen b′ as one
of our primitive vectors. So the angle between the two primitive vectors must
be 60◦ or larger. Octagonal symmetry is not possible.

What about fivefold symmetry? If we assume that the primitive vectors a
and b have equal lengths and make an angle of 2π/5 = 72◦, as in Fig. 30-8(b),
then there should also be an equivalent lattice point at D, at 72◦ from C. But the
vector b′ from E to D is then less than b, so b is not a primitive vector. There can
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b′

72◦

72◦

36◦

Fig. 30-8. (a) Rotational symmetries greater than sixfold are not
possible. (b) Fivefold rotational symmetry is not possible.

be no fivefold symmetry. The only possibilities that do not get us into this kind
of difficulty are θ = 60◦, 90◦, or 120◦. Zero or 180◦ are also clearly possible. One
way of stating our result is that the pattern can be left unchanged by a rotation
of one full turn (no change at all), one-half of a turn, one-third, one-fourth, or
one-sixth of a turn. And those are all the possible rotational symmetries in a
plane—a total of five. If θ = 2π/n, we speak of an “n-fold” symmetry. We say
that a pattern with n equal to 4 or to 6 has a “higher symmetry” than one with
n equal to 1 or to 2.

Returning to Fig. 30-7(a), we see that the pattern has a fourfold rotational
symmetry. We have drawn in Fig. 30-7(b) another design which has the same
symmetry properties as part (a). The little comma-like figures are asymmetric
objects which serve to define the symmetry of the design inside of each square.
Notice that the commas are reversed in alternate squares, so that the unit cell is
larger than one of the small squares. If there were no commas, the pattern would
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still have fourfold symmetry, but the unit cell would be smaller. The patterns of
Fig. 30-7 also have other symmetry properties. For instance, a reflection about
any of the broken lines R–R reproduces the same pattern.

The patterns of Fig. 30-7 have still another kind of symmetry. If the pattern
is reflected about the line Y –Y and shifted one square to the right (or left), we
get back the original pattern. The line Y –Y is called a “glide” line.

(a) (b)

A

−R

R

(c) (d)

Fig. 30-9. Symmetry under inversion. Pattern (b) is unchanged if
R→ −R, but pattern (a) is changed. In three dimensions pattern (d) is
symmetric under an inversion but (c) is not.

These are all the possible symmetries in two dimensions. There is one
more spatial symmetry operation which is equivalent in two dimensions to a
180◦ rotation, but which is a quite distinct operation in three dimensions. It is
inversion. By an inversion we mean that any point at the vector displacement R
from some origin [for instance, the point A in Fig. 30-9(b)] is moved to the point
at −R.

An inversion of pattern (a) of Fig. 30-9 produces a new pattern, but an
inversion of pattern (b) reproduces the same pattern. For a two-dimensional

30-14



pattern (as you can see from the figure), an inversion of the pattern (b) through
the point A is equivalent to a rotation of 180◦ about the same point. Suppose,
however, we make the pattern in Fig. 30-9(b) three dimensional by imagining
that the little 6’s and 9’s each have an “arrow” pointing out of the page. After
an inversion in three dimensions all the arrows will be reversed, so the pattern
is not reproduced. If we indicate the heads and tails of the arrows by dots and
crosses, respectively, we can make a three-dimensional pattern, as in Fig. 30-9(c),
which is not symmetric under an inversion, or we can make a pattern like the
one shown in(d), which does have such a symmetry. Notice that it is not possible
to imitate a three-dimensional inversion by any combination of rotations.

If we characterize the “symmetry” of a pattern—or lattice—by the kinds of
symmetry operations we have been describing, it turns out that for two dimensions
17 distinct patterns are possible. We have drawn one pattern of the lowest possible
symmetry in Fig. 30-1, and one of high symmetry in Fig. 30-7. We will leave you
with the game of trying to figure out all of the 17 possible patterns.

It is peculiar how few of the 17 possible patterns are used in making wallpaper
and fabrics. One always sees the same three or four basic patterns. Is this because
of a lack of imagination of designers, or because many of the possible patterns
are not pleasing to the eye?

30-6 Symmetries in three dimensions

So far we have talked only about patterns in two dimensions. What we are
really interested in, however, are patterns of atoms in three dimensions. First,
it is clear that a three-dimensional crystal will have three primitive vectors. If
we then ask about the possible symmetry operations in three dimensions, we
find that there are 230 different possible symmetries! For some purposes, these
230 types can be grouped into seven classes, which are drawn in Fig. 30-10.
The lattice with the least symmetry is called the triclinic. Its unit cell is a
parallelepiped. The primitive vectors are of different lengths, and no two of
the angles between them are equal. There is no possibility of any rotational or
reflection symmetry. There are, however, still two possible symmetries—the unit
cell is, or is not, changed by an inversion through the vertex. (By an inversion
in three dimensions, we again mean that spatial displacements R are replaced
by −R—in other words, that (x, y, z) goes into (−x,−y,−z)). So the triclinic
lattice has only two possible symmetries, unless there is some special relation
among the primitive vectors. For example, if all the vectors are equal and are
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CUBIC
a

aa

TETRAGONAL
a
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c

ORTHORHOMBIC
a

b
c

HEXAGONAL
a

ac

60◦

MONOCLINIC
a

b

c

TRIGONAL
a

a
a

TRICLINIC
a

b
c

Fig. 30-10. The seven classes of crystal lattices.

separated by equal angles, one has the trigonal lattice shown in the figure. This
figure can have an additional symmetry; it may be unchanged by a rotation
about the long, body diagonal.

If one of the primitive vectors, say c, is at right angles to the other two, we get
a monoclinic unit cell. A new symmetry is possible—a rotation by 180◦ about c.
The hexagonal cell is a special case in which the vectors a and b are equal and
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the angle between them is 60◦, so that a rotation of 60◦, or 120◦, or 180◦ about
the vector c repeats the same lattice (for certain internal symmetries).

If all three primitive vectors are at right angles, but of different lengths, we
get the orthorhombic cell. The figure is symmetric for rotations of 180◦ about
the three axes. Higher-order symmetries are possible with the tetragonal cell,
which has all right angles and two equal primitive vectors. Finally, there is the
cubic cell, which is the most symmetric of all.

The point of all this discussion about symmetries is that the internal sym-
metries of the crystals show up—sometimes in subtle ways—in the macroscopic
physical properties of the crystal. For instance, a crystal will, in general, have a
tensor electric polarizability. If we describe the tensor in terms of the ellipsoid of
polarization, we should expect that some of the crystal symmetries should show
up also in the ellipsoid. For example, a cubic crystal is symmetric with respect
to a rotation of 90◦ about any one of three orthogonal directions. Clearly, the
only ellipsoid with this property is a sphere. A cubic crystal must be an isotropic
dielectric.

On the other hand, a tetragonal crystal has a fourfold rotational symmetry.
Its ellipsoid must have two of its principal axes equal, and the third must be
parallel to the axis of the crystal. Similarly, since the orthorhombic crystal has
twofold rotational symmetry about three orthogonal axes, its axes must coincide
with the axes of the polarization ellipsoid. In a like manner, one of the axes of a
monoclinic crystal must be parallel to one of the principal axes of the ellipsoid,
though we can’t say anything about the other axes. Since a triclinic crystal has
no rotational symmetry, the ellipsoid can have any orientation at all.

As you can see, we can make a big game of figuring out the possible symmetries
and relating them to the possible physical tensors. We have considered only the
polarization tensor, but things get more complicated for others—for instance, for
the tensor of elasticity. There is a branch of mathematics called “group theory”
that deals with such subjects, but usually you can figure out what you want with
common sense.

30-7 The strength of metals

We have said that metals usually have a simple cubic crystal structure;
we want now to discuss their mechanical properties—which depend on this
structure. Metals are, generally speaking, very “soft,” because it is easy to
slide one layer of the crystal over the next. You may think: “That’s ridiculous;
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(a)

(b)

1 2 3 4

Fig. 30-11. Slippage of crystal planes.

metals are strong.” Not so, a single crystal of a metal can be distorted very
easily.

Suppose we look at two layers of a crystal subjected to a shear force, as shown
in the diagram of Fig. 30-11(a). You might at first think the whole layer would
resist motion until the force was big enough to push the whole layer “over the
hump,” so that it shifted one notch to the left. Although slipping does occur
along a plane, it doesn’t happen that way. (If it did, you would calculate that the
metal is much stronger than it really is.) What happens is more like one atom
going at a time; first the atom on the left makes its jump, then the next, and
so on, as indicated in Fig. 30-11(b). In effect it is the vacant space between two
atoms that quickly travels to the right, with the net result that the whole second
layer has moved over one atomic spacing. The slipping goes this way because it
takes much less energy to lift one atom at a time over the hump than to lift a
whole row. Once the force is enough to start the process, it goes the rest of the
way very fast.

It turns out that in a real crystal, slipping will occur repeatedly at one plane,
then will stop there and start at some other plane. The details of why it starts
and stops are quite mysterious. It is, in fact, quite strange that successive regions
of slip are often fairly evenly spaced. Figure 30-12 shows a photograph of a tiny
thin copper crystal that has been stretched. You can see the various planes where
slipping has occurred.

The sudden slipping of individual crystal planes is quite apparent if you take
a piece of tin wire that has large crystals in it and stretch it while holding it
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Fig. 30-12. A photograph of a small crystal of copper after stretching.
[Courtesy of S. S. Brenner, Senior Scientist, United States Steel Research
Center, Monroeville, Pa.]

next to your ear. You can hear a rush of “ticks” as the planes snap to their new
positions, one after the other.

The problem of having a “missing” atom in one row is somewhat more difficult
than it might appear from Fig. 30-11. When there are more layers, the situation
must be something like that shown in Fig. 30-13. Such an imperfection in a
crystal is called a dislocation. It is presumed that such dislocations are either
present when the crystal was formed or are generated at some notch or crack at
the surface. Once they are produced, they can move relatively freely through the
crystal. The gross distortions result from the motions of many of such dislocations.

Fig. 30-13. A dislocation in a crystal.

Dislocations can move freely—that is, they require little extra energy—so
long as the rest of the crystal has a perfect lattice. But they may get “stuck”
if they encounter some other kind of imperfection in the crystal. If it takes a
lot of energy for them to pass the imperfection, they will be stopped. This is
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Fig. 30-14. A screw dislocation. [From Charles Kittel, Introduction
to Solid State Physics, John Wiley and Sons, Inc., New York, 2nd ed.,
1956.]

precisely the mechanism that gives strength to imperfect metal crystals. Pure
iron crystals are quite soft, but a small concentration of impurity atoms may
cause enough imperfections to effectively immobilize the dislocations. As you
know, steel, which is primarily iron, is very hard. To make steel, a small amount
of carbon is dissolved in the iron melt; if the melt is cooled rapidly, the carbon
precipitates out in little grains, making many microscopic distortions in the
lattice. The dislocations can no longer move about, and the metal is hard.

Pure copper is very soft, but can be “work-hardened.” This is done by ham-
mering on it or bending it back and forth. In this case, many new dislocations
of various kinds are made which interfere with one another, cutting down their
mobility. Perhaps you’ve seen the trick of taking a bar of “dead soft” copper and
gently bending it around someone’s wrist as a bracelet. In the process, it becomes
work-hardened and cannot easily be unbent again! A work-hardened metal like
copper can be made soft again by annealing at a high temperature. The thermal
motion of the atoms “irons out” the dislocations and makes large single crystals
again. We have, so far, described only the so-called slip dislocation. There are
many other kinds, one of which is the screw dislocation shown in Fig. 30-14.
Such dislocations often play an important part in crystal growth.

30-8 Dislocations and crystal growth

One of the great puzzles for a long time was how crystals can possibly grow.
We have described how it is that each atom might, by repeated testing, determine
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whether it was better to be in the crystal or not. But that means that each atom
must find a place of low energy. However, an atom put on a new surface is only
bound by one or two bonds from below, and doesn’t have the same energy it
would have if it were placed in a corner, where it would have atoms on three
sides. Suppose we imagine a growing crystal as a stack of blocks, as shown in
Fig. 30-15. If we try a new block at, say, position A, it will have only one of the
six neighbors it should ultimately get. With so many bonds lacking, its energy is
not very low. It would be better off at position B, where it already has one-half
of its quota of bonds. Crystals do indeed grow by attaching new atoms at places
like B.

A

B

Fig. 30-15. Crystal growth.

What happens, though, when that line is finished? To start a new line, an
atom must come to rest with only two sides attached, and that is again not very
likely. Even if it did, what would happen when the layer was finished? How
could a new layer get started? One answer is that the crystal prefers to grow
at a dislocation, for instance around a screw dislocation like the one shown in
Fig. 30-14. As blocks are added to this crystal, there is always some place where
there are three available bonds. The crystal prefers, therefore, to grow with a
dislocation built in. Such a spiral pattern of growth is shown in Fig. 30-16, which
is a photograph of a single crystal of paraffin.
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Fig. 30-16. A paraffin crystal which has grown around a screw dislo-
cation. [From Charles Kittel, Introduction to Solid State Physics, John
Wiley and Sons, Inc., New York, 2nd ed., 1956.]

30-9 The Bragg-Nye crystal model

We cannot, of course, see what goes on with the individual atoms in a crystal.
Also, as you realize by now, there are many complicated phenomena that are not
easy to treat quantitatively. Sir Lawrence Bragg and J. F. Nye have devised a
scheme for making a model of a metallic crystal which shows in a striking way
many of the phenomena that are believed to occur in a real metal. In the following
pages we have reproduced their original article, which describes their method
and shows some of the results they obtained with it. (The article is reprinted
from the Proceedings of the Royal Society of London, Vol. 190, September 1947,
pp. 474–481—with the permission of the authors and of the Royal Society.)

30-22



A dynamical model of a crystal structure

By Sir Lawrence Bragg, F.R.S. and J. F. Nye

Cavendish Laboratory, University of Cambridge

(Received 9 January 1947—Read 19 June 1947)

[Plates 8 to 21]

The crystal structure of a metal is represented by an assemblage of bubbles, a millimetre
or less in diameter, floating on the surface of a soap solution. The bubbles are blown
from a fine pipette beneath the surface with a constant air pressure, and are remarkably
uniform in size. They are held together by surface tension, either in single layer on the
surface or in a three-dimensional mass. An assemblage may contain hundreds of thousands
of bubbles and persists for an hour or more. The assemblages show structures which
have been supposed to exist in metals, and simulate effects which have been observed,
such as, grain boundaries, dislocations and other types of fault, slip, recrystallization,
annealing, and strains due to ‘foreign’ atoms.

1. The bubble model

Models of crystal structure have been described from time to time in which the atoms
are represented by small floating or suspended magnets, or by circular disks floating on
a water surface and held together by the forces of capillary attraction. These models
have certain disadvantages; for instance, in the case of floating objects in contact,
frictional forces impede their free relative movement. A more serious disadvantage is
that the number of components is limited, for a large number of components is required
in order to approach the state of affairs in a real crystal. The present paper describes
the behaviour of a model in which the atoms are represented by small bubbles from 2·0
to 0·1mm. in diameter floating on the surface of a soap solution. These small bubbles
are sufficiently persistent for experiments lasting an hour or more, they slide past
each other without friction, and they can be produced in large numbers. Some of the
illustrations in this paper were taken from assemblages of bubbles numbering 100,000
or more. The model most nearly represents the behaviour of a metal structure, because
the bubbles are of one type only and are held together by a general capillary attraction,
which represents the binding force of the free electrons in the metal. A brief description
of the model has been given in the Journal of Scientific Instruments (Bragg 1942b).
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2. Method of formation

The bubbles are blown from a fine orifice, beneath the surface of a soap solution.
We have had the best results with a solution the formula of which was given to us by
Mr Green of the Royal Institution. 15·2 c.c. of oleic acid (pure redistilled) is well shaken
in 50 c.c. of distilled water. This is mixed thoroughly with 73 c.c. of 10% solution of
tri-ethanolamine and the mixture made up to 200 c.c. To this is added 164 c.c. of pure
glycerine. It is left to stand and the clear liquid is drawn off from below. In some
experiments this was diluted in three times its volume of water to reduce viscosity.
The orifice of the jet is about 5mm. below the surface. A constant air pressure of 50
to 200 cm. of water is supplied by means of two Winchester flasks. Normally the bubbles
are remarkably uniform in size. Occasionally they issue in an irregular manner, but
this can be corrected by a change of jet or of pressure. Unwanted bubbles can easily
be destroyed by playing a small flame over the surface. Figure 1 shows the apparatus.
We have found it of advantage to blacken the bottom of the vessel, because details of
structure, such as grain boundaries and dislocations, then show up more clearly.

Figure 2, plate 8, shows a portion of a raft or two-dimensional crystal of bubbles.
Its regularity can be judged by looking at the figure in a glancing direction. The size of
the bubbles varies with the aperture, but does not appear to vary to any marked degree
with the pressure or the depth of the orifice beneath the surface. The main effect of
increasing the pressure is to increase the rate of issue of the bubbles. As an example, a
thick-walled jet of 49µ bore with a pressure of 100 cm. produced bubbles of 1·2mm. in
diameter. A thin-walled jet of 27µ diameter and a pressure of 180 cm. produced bubbles
of 0·6mm. diameter. It is convenient to refer to bubbles of 2·0 to 1·0mm. diameter
as ‘large’ bubbles, those from 0·8 to 0·6mm. diameter as ‘medium’ bubbles, and those
from 0·3 to 0·1mm. diameter as ‘small’ bubbles, since their behaviour varies with their
size.

With this apparatus we have not found it possible to reduce the size of the jet and so
produce bubbles of smaller diameter than 0·6mm. As it was desired to experiment with
very small bubbles, we had recourse to placing the soap solution in a rotating vessel and
introducing a fine jet as nearly as possible parallel to a stream line. The bubbles are
swept away as they form, and under steady conditions are reasonably uniform. They

Figure 1. Apparatus for producing rafts of bubbles.
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Figure 3. Apparatus for producing bubbles of small size.

issue at a rate of one thousand or more per second, giving a high-pitched note. The
soap solution mounts up in a steep wall around the perimeter of the vessel while it is
rotating, but carries back most of the bubbles with it when rotation ceases. With this
device, illustrated in figure 3, bubbles down to 0·12mm. in diameter can be obtained.
As an example, an orifice 38µ across in a thin-walled jet, with a pressure of 190 cm.
of water, and a speed of the fluid of 180 cm./sec. past the orifice, produced bubbles of
0·14mm. diameter. In this case a dish of diameter 9·5 cm. and speed of 6 rev./sec. was
used. Figure 4, plate 8, is an enlarged picture of these ‘small’ bubbles and shows their
degree of regularity; the pattern is not as perfect with a rotating as with a stationary
vessel, the rows being seen to be slightly irregular when viewed in a glancing direction.

These two-dimensional crystals show structures which have been supposed to exist
in metals, and simulate effects which have been observed, such as grain boundaries,
dislocations and other types of fault, slip, recrystallization, annealing, and strains due
to ‘foreign’ atoms.

3. Grain boundaries

Figures 5a, 5b and 5c, plates 9 and 10, show typical grain boundaries for bubbles of
1·87, 0·76 and 0·30mm. diameter respectively. The width of the disturbed area at the
boundary, where the bubbles have an irregular distribution, is in general greater the
smaller the bubbles. In figure 5a, which shows portions of several adjacent grains, bubbles
at a boundary between two grains adhere definitely to one crystalline arrangement or
the other. In figure 5c there is a marked ‘Beilby layer’ between the two grains. The
small bubbles, as will be seen, have a greater rigidity than the large ones, and this
appears to give rise to more irregularity at the interface.

Separate grains show up distinctly when photographs of polycrystalline rafts such
as figures 5a to 5c, plates 9 and 10, and figures 12a to 12e, plates 14 to 16, are viewed
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obliquely. With suitable lighting, the floating raft of bubbles itself when viewed obliquely
resembles a polished and etched metal in a remarkable way.

It often happens that some ‘impurity atoms’, or bubbles which are markedly larger
or smaller than the average, are found in a polycrystalline raft, and when this is so a
large proportion of them are situated at the grain boundaries. It would be incorrect
to say that the irregular bubbles make their way to the boundaries; it is a defect of
the model that no diffusion of bubbles through the structure can take place, mutual
adjustments of neighbours alone being possible. It appears that the boundaries tend
to readjust themselves by the growth of one crystal at the expense of another till they
pass through the irregular atoms.

4. Dislocations

When a single crystal or polycrystalline raft is compressed, extended, or otherwise
deformed it exhibits a behaviour very similar to that which has been pictured for metals
subjected to strain. Up to a certain limit the model is within its elastic range. Beyond
that point it yields by slip along one of the three equally inclined directions of closely
packed rows. Slip takes place by the bubbles in one row moving forward over those
in the next row by an amount equal to the distance between neighbours. It is very
interesting to watch this process taking place. The movement is not simultaneous along
the whole row but begins at one end with the appearance of a ‘dislocation’, where
there is locally one more bubble in the rows on one side of the slip line as compared
with those on the other. This dislocation then runs along the slip line from one side
of the crystal to the other, the final result being a slip by one ‘inter-atomic’ distance.
Such a process has been invoked by Orowan, by Polanyi and by Taylor to explain the
small forces required to produce plastic gliding in metal structures. The theory put
forward by Taylor (1934) to explain the mechanism of plastic deformation of crystals
considers the mutual action and equilibrium of such dislocations. The bubbles afford a
very striking picture of what has been supposed to take place in the metal. Sometimes
the dislocations run along quite slowly, taking a matter of seconds to cross a crystal;
stationary dislocations also are to be seen in crystals which are not homogeneously
strained. They appear as short black lines, and can be seen in the series of photographs,
figures 12a to 12e, plates 14 to 16. When a polycrystalline raft is compressed, these
dark lines are seen to be dashing about in all directions across the crystals.

Figures 6a, 6b and 6c, plates 10 and 11, show examples of dislocations. In figure 6a,
where the diameter of the bubbles is 1·9mm., the dislocation is very local, extending
over about six bubbles. In figure 6b (diameter 0·76mm.) it extends over twelve bubbles,
and in figure 6c (diameter 0·30mm.) its influence can be traced for a length of about
fifty bubbles. The greater rigidity of the small bubbles leads to longer dislocations.
The study of any mass of bubbles shows, however, that there is not a standard length
of dislocation for each size. The length depends upon the nature of the strain in the
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crystal. A boundary between two crystals with corresponding axes at approximately 30◦
(the maximum angle which can occur) may be regarded as a series of dislocations in
alternate rows, and in this case the dislocations are very short. As the angle between
the neighbouring crystals decreases, the dislocations occur at wider intervals and at
the same time become longer, till one finally has single dislocations in a large body of
perfect structure as shown in figures 6a, 6b and 6c.

Figure 7, plate 11, shows three parallel dislocations. If we call them positive and
negative (following Taylor) they are positive, negative, positive, reading from left to
right. The strip between the last two has three bubbles in excess, as can be seen by
looking along the rows in a horizontal direction. Figure 8, plate 12, shows a dislocation
projecting from a grain boundary, an effect often observed.

Figure 9, plate 12, shows a place where two bubbles take the place of one. This may
be regarded as a limiting case of positive and negative dislocations on neighbouring
rows, with the compressive sides of the dislocations facing each other. The contrary
case would lead to a hole in the structure, one bubble being missing at the point where
the dislocations met.

5. Other types of fault

Figure 10, plate 12, shows a narrow strip between two crystals of parallel orientation,
the strip being crossed by a number of fault lines where the bubbles are not in close
packing. It is in such places as these that recrystallization may be expected. The
boundaries approach and the strip is absorbed into a wider area of perfect crystal.

Figures 11a to 11g, plates 13 and 14 are examples of arrangements which frequently
appear in places where there is a local deficiency of bubbles. While a dislocation is seen
as a dark stripe in a general view, these structures show up in the shape of the letter V
or as triangles. A typical V structure is seen in figure 11a. When the model is being
distorted, a V structure is formed by two dislocations meeting at an inclination of 60◦;
it is destroyed by the dislocations continuing along their paths. Figure 11b shows a
small triangle, which also embodies a dislocation, for it will be noticed that the rows
below the fault have one more bubble than these below. If a mild amount of ‘thermal
movement’ is imposed by gentle agitation of one side of the crystal, such faulty places
disappear and a perfect structure is formed.

Here and there in the crystals there is a blank space where a bubble is missing,
showing as a black dot in a general view. Examples occur in figure 11g. Such a
gap cannot be closed by a local readjustment, since filling the hole causes another to
appear. Such holes both appear and disappear when the crystal is ‘cold-worked’. These
structures in the model suggest that similar local faults may exist in an actual metal.
They may play a part in processes such as diffusion or the order-disorder change by
reducing energy barriers in their neighbourhood, and act as nuclei for crystallization in
an allotropic change.
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6. Recrystallization and annealing

Figures 12a to 12e, plates 14 to 16, show the same raft of bubbles at successive
times. A raft covering the surface of the solution was given a vigorous stirring with a
glass rake, and then left to adjust itself. Figure 12a shows its aspect about 1 sec. after
stirring has ceased. The raft is broken into a number of small ‘crystallites’; these are
in a high state of non-homogeneous strain as is shown by the numerous dislocations
and other faults. The following photograph (figure 12b) shows the same raft 32 sec.
later. The small grains have coalesced to form larger grains, and much of the strain
has disappeared in the process. Recrystallization takes place right through the series,
the last three photographs of which show the appearance of the raft 2, 14 and 25min.
after the initial stirring. It is not possible to follow the rearrangement for much longer
times, because the bubbles shrink after long standing, apparently due to the diffusion
of air through their walls, and they also become thin and tend to burst. No agitation
was given to the model during this process. An ever slower process of rearrangement
goes on, the movement of the bubbles in one part of the raft setting up strains which
activate a rearrangement in a neighbouring part, and that in its turn still another.

A number of interesting points are to be seen in this series. Note the three small
grains at the points indicated by the co-ordinates AA, BB, CC. A persists, though
changed in form, throughout the whole series. B is still present after 14min., but has
disappeared in 25min., leaving behind it four dislocations marking internal strain in the
grain. Grain C shrinks and finally disappears in figure 12d, leaving a hole and a V which
has disappeared in figure 12e. At the same time the ill-defined boundary in figure 12d
at DD has become a definite one in figure 12e. Note also the straightening out of
the grain boundary in the neighbourhood of EE in figures 12b to 12e. Dislocations
of various lengths can be seen, marking all stages between a slight warping of the
structure and a definite boundary. Holes where bubbles are missing show up as black
dots. Some of these holes are formed or filled up by movements of dislocations, but
others represent places where a bubble has burst. Many examples of V’s and some of
triangles can be seen. Other interesting points will be apparent from a study of this
series of photographs.

Figures 13a, 13b and 13c, plate 17, show a portion of a raft 1 sec., 4 sec. and 4min.
after the stirring process, and is interesting as showing two successive stages in the
relaxation towards a more perfect arrangement. The changes show up well when one
looks in a glancing direction across the page. The arrangement is very broken in
figure 13a. In figure 13b the bubbles have grouped themselves in rows, but the curvature
of these rows indicates a high degree of internal strain. In figure 13c this strain has
been relieved by the formation of a new boundary at A–A, the rows on either side
now being straight. It would appear that the energy of this strained crystal is greater
than that of the intercrystalline boundary. We are indebted to Messrs Kodak for the
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photographs of figure 13, which were taken when the cinematograph film referred to
below was produced.

7. Effect of impurity atom

Figure 14, plate 18, shows the widespread effect of a bubble which is of the wrong
size. If this figure is compared with the perfect rafts shown in figures 2 and 4, plate 8,
it will be seen that three bubbles, one larger and two smaller than normal, disturb
the regularity of the rows over the whole of the figure. As has been mentioned above,
bubbles of the wrong size are generally found in the grain boundaries, where holes of
irregular size occur which can accommodate them.

8. Mechanical properties of the two-dimensional model

The mechanical properties of a two-dimensional perfect raft have been described in
the paper referred to above (Bragg 1942b). The raft lies between two parallel springs
dipping horizontally in the surface of the soap solution. The pitch of the springs is
adjusted to fit the spacing of the rows of bubbles, which then adhere firmly to them.
One spring can be translated parallel to itself by a micrometer screw, and the other is
supported by two thin vertical glass fibres. The shearing stress can be measured by
noting the deflexion of the glass fibres. When subjected to a shearing strain, the raft
obeys Hooke’s law of elasticity up to the point where the elastic limit is reached. It then
slips along some intermediate row by an amount equal to the width of one bubble. The
elastic shear and slip can be repeated several times. The elastic limit is approximately
reached when one side of the raft has been sheared by an amount equal to a bubble
width past the other side. This feature supports the basic assumption made by one
of us in the calculation of the elastic limit of a metal (Bragg 1942a), in which it is
supposed that each crystallite in a cold-worked metal only yields when the strain in it
has reached such a value that energy is released by the slip.

A calculation has been made by M. M. Nicolson of the forces between the bubbles,
and will be published shortly. It shows two interesting points. The curve for the
variation of potential energy with distance between centres is very similar to those which
have been plotted for atoms. It has a minimum for a distance between centres slightly
less than a free bubble diameter, and rises sharply for smaller distances. Further, the
rise is extremely sharp for bubbles of 0·1mm. diameter but much less so for bubbles
of 1mm. diameter, thus confirming the impression given by the model that the small
bubbles behave as if they were much more rigid than the large ones.

9. Three-dimensional assemblages

If the bubbles are allowed to accumulate in multiple layers on the surface, they
form a mass of three-dimensional ‘crystals’ with one of the arrangements of closest
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packing. Figure 15, plate 18, shows an oblique view of such a mass; its resemblance to
a polished and etched metal surface is noticeable. In figure 16, plate 20, a similar mass
is seen viewed normally. Parts of the structure are definitely in cubic closest packing,
the outer surface being the (111) face or (100) face. Figure 17a, plate 19, shows a (111)
face. The outlines of the three bubbles on which each upper bubble rests can be clearly
seen, and the next layer of these bubbles is faintly visible in a position not beneath
the uppermost layer, showing that the packing of the (111) planes has the well-known
cubic succession. Figure 17b, plate 19, shows a (100) face with each bubble resting
on four others. The cubic axes are of course inclined at 45◦ to the close-packed rows
of the surface layer. Figure 17c, plate 19, shows a twin in the cubic structure across
the face (111). The uppermost faces are (111) and (100), and they make a small angle
with each other, though this is not apparent in the figure; it shows up in an oblique
view. Figure 17d, plate 19, appears to show both the cubic and hexagonal succession
of closely packed planes, but it is difficult to verify whether the left-hand side follows
the true hexagonal close-packed structure because it is not certain that the assemblage
had a depth of more than two layers at this point. Many instances of twins, and of
intercrystalline boundaries, can be seen in figure 16, plate 20.

Figure 18, plate 21, shows several dislocations in a three-dimensional structure
subjected to a bending strain.

10. Demonstration of the model

With the co-operation of Messrs Kodak, a 16mm. cinematograph film has been
made of the movements of the dislocations and grain boundaries when single crystal
and polycrystalline rafts are sheared, compressed, or extended. Moreover, if the soap
solution is placed in a glass vessel with a flat bottom, the model lends itself to projection
on a large scale by transmitted light. Since a certain depth is required for producing
the bubbles, and the solution is rather opaque, it is desirable to make the projection
through a glass block resting on the bottom of the vessel and just submerged beneath
the surface.

In conclusion, we wish to express our thanks to Mr C. E. Harrold, of King’s College,
Cambridge, who made for us some of the pipettes which were used to produce the
bubbles.
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Figure 2. Perfect crystalline raft of bubbles. Diameter 1·41mm.

Figure 4. Perfect crystalline raft of bubbles. Diameter 0·30mm.
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Grain boundaries

Figure 5a. Diameter 1·87mm.

Figure 5b. Diameter 0·76mm.
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Figure 5c. A grain boundary. Diameter 0·30mm.

Figure 6a. A dislocation. Diameter 1·9mm.
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Dislocations

Figure 6b. Diameter 0·76mm.

Figure 6c. Diameter 0·30mm.

Figure 7. Parallel dislocations. Diameter 0·76mm.
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Figure 8. Dislocation projecting from a grain boundary. Diameter 0·30mm.

Figure 9. Dislocations in adjacent rows. Diameter 1·9mm.

Figure 10. Series of fault lines between two areas of parallel
orientation. Diameter 0·30mm.
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Diameter 0·68mm.
a

Diameter 0·68mm.
b

Diameter 0·6mm.
c

Diameter 0·30mm.
d

Diameter 0·6mm.
e

Diameter 0·6mm.
f

Figure 11. Types of fault.
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g

Figure 11. Types of fault. Diameter 0·68mm.

a. Immediately after stirring.
Figure 12. Recrystallization. Diameter 0·60mm.
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b. After 33 sec.

c. After 2 min.
Figure 12
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d. After 14 min.

e. After 25 min.
Figure 12
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a. After 1 sec.

b. After 4 sec.

c. After 4 min.
Figure 13. Two stages of recrystallization. Diameter 1·64mm.
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Figure 14. Effect of atoms of impurity. Diameter of uniform
bubbles about 1·3mm.

Figure 15. Oblique view of three-dimensional raft.
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a. (111) face. b. (100) face.
Face-centered cubic structure.

c. Twin across (111), cubic structure. d. Possible example of hexagonal close-
packing.

Diameter 0·70mm.

Figure 17
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Figure 16. A three-dimensional raft viewed normally. Diameter 0·70mm.
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Figure 18. Dislocations in three-dimensional structure. Diameter 0·70mm.
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31

Tensors

Review: Chapter 11, Vol. I, Vectors
Chapter 20, Vol. I, Rotation in Space

31-1 The tensor of polarizability

Physicists always have a habit of taking the simplest example of any phe-
nomenon and calling it “physics,” leaving the more complicated examples to
become the concern of other fields—say of applied mathematics, electrical en-
gineering, chemistry, or crystallography. Even solid-state physics is almost only
half physics because it worries too much about special substances. So in these
lectures we will be leaving out many interesting things. For instance, one of the
important properties of crystals—or of most substances—is that their electric
polarizability is different in different directions. If you apply a field in any di-
rection, the atomic charges shift a little and produce a dipole moment, but the
magnitude of the moment depends very much on the direction of the field. That
is, of course, quite a complication. But in physics we usually start out by talking
about the special case in which the polarizability is the same in all directions,
to make life easier. We leave the other cases to some other field. Therefore, for
our later work, we will not need at all what we are going to talk about in this
chapter.

The mathematics of tensors is particularly useful for describing properties of
substances which vary in direction—although that’s only one example of their use.
Since most of you are not going to become physicists, but are going to go into the
real world, where things depend severely upon direction, sooner or later you will
need to use tensors. In order not to leave anything out, we are going to describe
tensors, although not in great detail. We want the feeling that our treatment of
physics is complete. For example, our electrodynamics is complete—as complete
as any electricity and magnetism course, even a graduate course. Our mechanics
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is not complete, because we studied mechanics when you didn’t have a high level
of mathematical sophistication, and we were not able to discuss subjects like the
principle of least action, or Lagrangians, or Hamiltonians, and so on, which are
more elegant ways of describing mechanics. Except for general relativity, however,
we do have the complete laws of mechanics. Our electricity and magnetism is
complete, and a lot of other things are quite complete. The quantum mechanics,
naturally, will not be—we have to leave something for the future. But you should
at least know what a tensor is.

We emphasized in Chapter 30 that the properties of crystalline substances
are different in different directions—we say they are anisotropic. The variation
of the induced dipole moment with the direction of the applied electric field is
only one example, the one we will use for our example of a tensor. Let’s say
that for a given direction of the electric field the induced dipole moment per
unit volume P is proportional to the strength of the applied field E. (This is
a good approximation for many substances if E is not too large.) We will call
the proportionality constant α.* We want now to consider substances in which
α depends on the direction of the applied field, as, for example, in crystals like
calcite, which make double images when you look through them.

Suppose, in a particular crystal, we find that an electric field E1 in the
x-direction produces the polarization P 1 in the x-direction. Then we find that
an electric field E2 in the y-direction, with the same strength, as E1 produces a
different polarization P 2 in the y-direction. What would happen if we put an
electric field at 45◦? Well, that’s a superposition of two fields along x and y, so
the polarization P will be the vector sum of P 1 and P 2, as shown in Fig. 31-1(a).
The polarization is no longer in the same direction as the electric field. You can
see how that might come about. There may be charges which can move easily
up and down, but which are rather stiff for sidewise motions. When a force is
applied at 45◦, the charges move farther up than they do toward the side. The
displacements are not in the direction of the external force, because there are
asymmetric internal elastic forces.

There is, of course, nothing special about 45◦. It is generally true that the
induced polarization of a crystal is not in the direction of the electric field. In our
example above, we happened to make a “lucky” choice of our x- and y-axes, for
which P was along E for both the x- and y-directions. If the crystal were rotated

* In Chapter 10 we followed the usual convention and wrote P = ε0χE and called χ (“khi”)
the “susceptibility.” Here, it will be more convenient to use a single letter, so we write α for ε0χ.
For isotropic dielectrics, α = (κ− 1)ε0, where κ is the dielectric constant (see Section 10-4).
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(a)

E1

E2

E

P1

P2

P

(b)

E1

E2

E

P1

P2

P

Fig. 31-1. The vector addition of polarizations in an anisotropic crystal.

with respect to the coordinate axes, the electric field E2 in the y-direction would
have produced a polarization P with both an x- and a y-component. Similarly,
the polarization due to an electric field in the x-direction would have produced a
polarization with an x-component and a y-component. Then the polarizations
would be as shown in Fig. 31-1(b), instead of as in part (a). Things get more
complicated—but for any field E, the magnitude of P is still proportional to the
magnitude of E.

We want now to treat the general case of an arbitrary orientation of a crystal
with respect to the coordinate axes. An electric field in the x-direction will
produce a polarization P with x-, y-, and z-components; we can write

Px = αxxEx, Py = αyxEx, Pz = αzxEx. (31.1)
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All we are saying here is that if the electric field is in the x-direction, the
polarization does not have to be in that same direction, but rather has an x-, a
y-, and a z-component—each proportional to Ex. We are calling the constants of
proportionality αxx, αyx, and αzx, respectively (the first letter to tell us which
component of P is involved, the last to refer to the direction of the electric field).

Similarly, for a field in the y-direction, we can write

Px = αxyEy, Py = αyyEy, Pz = αzyEy; (31.2)

and for a field in the z-direction,

Px = αxzEz, Py = αyzEz, Pz = αzzEz. (31.3)

Now we have said that polarization depends linearly on the fields, so if there
is an electric field E that has both an x- and a y-component, the resulting
x-component of P will be the sum of the two Px’s of Eqs. (31.1) and (31.2). If
E has components along x, y, and z, the resulting components of P will be the
sum of the three contributions in Eqs. (31.1), (31.2), and (31.3). In other words,
P will be given by

Px = αxxEx + αxyEy + αxzEz,

Py = αyxEx + αyyEy + αyzEz,

Pz = αzxEx + αzyEy + αzzEz.

(31.4)

The dielectric behavior of the crystal is then completely described by the nine
quantities (αxx, αxy, αxz, αyx, . . . ), which we can represent by the symbol αij .
(The subscripts i and j each stand for any one of the three possible letters x, y,
and z.) Any arbitrary electric field E can be resolved with the components
Ex, Ey, and Ez; from these we can use the αij to find Px, Py, and Pz, which
together give the total polarization P . The set of nine coefficients αij is called a
tensor—in this instance, the tensor of polarizability. Just as we say that the three
numbers (Ex, Ey, Ez) “form the vector E,” we say that the nine numbers (αxx,
αxy, . . . ) “form the tensor αij .”

31-2 Transforming the tensor components

You know that when we change to a different coordinate system x′, y′, and z′,
the components Ex′ , Ey′ , and Ez′ of the vector will be quite different—as will
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also the components of P . So all the coefficients αij will be different for a
different set of coordinates. You can, in fact, see how the α’s must be changed by
changing the components of E and P in the proper way, because if we describe
the same physical electric field in the new coordinate system we should get the
same polarization. For any new set of coordinates, Px′ is a linear combination of
Px, Py, and Pz:

Px′ = aPx + bPy + cPz,

and similarly for the other components. If you substitute for Px, Py, and Pz in
terms of the E’s, using Eq. (31.4), you get

Px′ = a(αxxEx + αxyEy + αxzEz)
+ b(αyxEx + αyyEy + αyzEz)
+ c(αzxEx + αzyEy + αzzEz).

Then you write Ex, Ey, and Ez in terms of Ex′ , Ey′ , and Ez′ ; for instance,

Ex = a′Ex′ + b′Ey′ + c′Ez′ ,

where a′, b′, c′ are related to, but not equal to, a, b, c. So you have Px′ , expressed
in terms of the components Ex′ , Ey′ , and Ez′ ; that is, you have the new αij . It
is fairly messy, but quite straightforward.

When we talk about changing the axes we are assuming that the crystal
stays put in space. If the crystal were rotated with the axes, the α’s would not
change. Conversely, if the orientation of the crystal were changed with respect
to the axes, we would have a new set of α’s. But if they are known for any one
orientation of the crystal, they can be found for any other orientation by the
transformation we have just described. In other words, the dielectric property of
a crystal is described completely by giving the components of the polarization
tensor αij with respect to any arbitrarily chosen set of axes. Just as we can
associate a vector velocity v = (vx, vy, vz) with a particle, knowing that the three
components will change in a certain definite way if we change our coordinate axes,
so with a crystal we associate its polarization tensor αij , whose nine components
will transform in a certain definite way if the coordinate system is changed.

The relation between P and E written in Eq. (31.4) can be put in the more
compact notation:

Pi =
∑
j

αijEj , (31.5)
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where it is understood that i represents either x, y, or z and that the sum is
taken on j = x, y, and z. Many special notations have been invented for dealing
with tensors, but each of them is convenient only for a limited class of problems.
One common convention is to omit the sum sign (

∑
) in Eq. (31.5), leaving it

understood that whenever the same subscript occurs twice (here j), a sum is to
be taken over that index. Since we will be using tensors so little, we will not
bother to adopt any such special notations or conventions.

31-3 The energy ellipsoid

We want now to get some experience with tensors. Suppose we ask the
interesting question: What energy is required to polarize the crystal (in addition
to the energy in the electric field which we know is ε0E2/2 per unit volume)?
Consider for a moment the atomic charges that are being displaced. The work
done in displacing the charge the distance dx is qEx dx, and if there are N charges
per unit volume, the work done is qExN dx. But qN dx is the change dPx in the
dipole moment per unit volume. So the energy required per unit volume is

Ex dPx.

Combining the work for the three components of the field, the work per unit
volume is found to be

E · dP .

Since the magnitude of P is proportional to E, the work done per unit volume
in bringing the polarization from 0 to P is the integral of E · dP . Calling this
work uP ,* we write

uP = 1
2E · P = 1

2

∑
i

EiPi. (31.6)

Now we can express P in terms of E by Eq. (31.5), and we have that

uP = 1
2

∑
i

∑
j

αijEiEj . (31.7)

The energy density uP is a number independent of the choice of axes, so it is a
scalar. A tensor has then the property that when it is summed over one index

* This work done in producing the polarization by an electric field is not to be confused
with the potential energy −p0 ·E of a permanent dipole moment p0.
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(with a vector), it gives a new vector; and when it is summed over both indexes
(with two vectors), it gives a scalar.

The tensor αij should really be called a “tensor of second rank,” because it
has two indexes. A vector—with one index—is a tensor of the first rank, and
a scalar—with no index—is a tensor of zero rank. So we say that the electric
field E is a tensor of the first rank and that the energy density uP is a tensor of
zero rank. It is possible to extend the ideas of a tensor to three or more indexes,
and so to make tensors of ranks higher than two.

The subscripts of the polarization tensor range over three possible values—
they are tensors in three dimensions. The mathematicians consider tensors in four,
five, or more dimensions. We have already used a four-dimensional tensor Fµν in
our relativistic description of the electromagnetic field (Chapter 26).

The polarization tensor αij has the interesting property that it is symmetric,
that is, that αxy = αyx, and so on for any pair of indexes. (This is a physical
property of a real crystal and not necessary for all tensors.) You can prove for
yourself that this must be true by computing the change in energy of a crystal
through the following cycle: (1) Turn on a field in the x-direction; (2) turn on
a field in the y-direction; (3) turn off the x-field; (4) turn off the y-field. The
crystal is now back where it started, and the net work done on the polarization
must be back to zero. You can show, however, that for this to be true, αxy must
be equal to αyx. The same kind of argument can, of course, be given for αxz,
etc. So the polarization tensor is symmetric.

This also means that the polarization tensor can be measured by just measuring
the energy required to polarize the crystal in various directions. Suppose we apply
an E-field with only an x- and a y-component; then according to Eq. (31.7),

uP = 1
2 [αxxE2

x + (αxy + αyx)ExEy + αyyE
2
y ]. (31.8)

With an Ex alone, we can determine αxx; with an Ey alone, we can determine αyy;
with both Ex and Ey, we get an extra energy due to the term with (αxy + αyx).
Since the αxy and αyx are equal, this term is 2αxy and can be related to the
energy.

The energy expression, Eq. (31.8), has a nice geometric interpretation. Sup-
pose we ask what fields Ex and Ey correspond to some given energy density—
say u0. That is just the mathematical problem of solving the equation

αxxE
2
x + 2αxyExEy + αyyE

2
y = 2u0.
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E

Ex

Ey

Fig. 31-2. Locus of the vector E = (Ex , Ey ) that gives a constant
energy of polarization.

This is a quadratic equation, so if we plot Ex and Ey the solutions of this equation
are all the points on an ellipse (Fig. 31-2). (It must be an ellipse, rather than
a parabola or a hyperbola, because the energy for any field is always positive
and finite.) The vector E with components Ex and Ey can be drawn from the
origin to the ellipse. So such an “energy ellipse” is a nice way of “visualizing” the
polarization tensor.

If we now generalize to include all three components, the electric vector E in
any direction required to give a unit energy density gives a point which will be
on the surface of an ellipsoid, as shown in Fig. 31-3. The shape of this ellipsoid
of constant energy uniquely characterizes the tensor polarizability.

Now an ellipsoid has the nice property that it can always be described simply
by giving the directions of three “principal axes” and the diameters of the ellipse
along these axes. The “principal axes” are the directions of the longest and
shortest diameters and the direction at right angles to both. They are indicated
by the axes a, b, and c in Fig. 31-3. With respect to these axes, the ellipsoid has
the particularly simple equation

αaaE
2
a + αbbE

2
b + αccE

2
c = 2u0.

So with respect to these axes, the dielectric tensor has only three components
that are not zero: αaa, αbb, and αcc. That is to say, no matter how complicated a
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a

b

c

Fig. 31-3. The energy ellipsoid of the polarization tensor.

crystal is, it is always possible to choose a set of axes (not necessarily the crystal
axes) for which the polarization tensor has only three components. With such a
set of axes, Eq. (31.4) becomes simply

Pa = αaaEa, Pb = αbbEb, Pc = αccEc. (31.9)

An electric field along any one of the principal axes produces a polarization along
the same axis, but the coefficients for the three axes may, of course, be different.

Often, a tensor is described by listing the nine coefficients in a table inside of
a pair of brackets: αxx αxy αxz

αyx αyy αyz
αzx αzy αzz

 . (31.10)

For the principal axes a, b, and c, only the diagonal terms are not zero; we say
then that “the tensor is diagonal.” The complete tensor isαaa 0 0

0 αbb 0
0 0 αcc

 . (31.11)

The important point is that any polarization tensor (in fact, any symmetric
tensor of rank two in any number of dimensions) can be put in this form by
choosing a suitable set of coordinate axes.

If the three elements of the polarization tensor in diagonal form are all equal,
that is, if

αaa = αbb = αcc = α, (31.12)
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the energy ellipsoid becomes a sphere, and the polarizability is the same in all
directions. The material is isotropic. In the tensor notation,

αij = αδij (31.13)

where δij is the unit tensor

δij =

1 0 0
0 1 0
0 0 1

 . (31.14)

That means, of course,
δij = 1, if i = j;

δij = 0, if i 6= j.
(31.15)

The tensor δij is often called the “Kronecker delta.” You may amuse yourself
by proving that the tensor (31.14) has exactly the same form if you change
the coordinate system to any other rectangular one. The polarization tensor of
Eq. (31.13) gives

Pi = α
∑
j

δijEj = αEi,

which means the same as our old result for isotropic dielectrics:

P = αE.

The shape and orientation of the polarization ellipsoid can sometimes be
related to the symmetry properties of the crystal. We have said in Chapter 30 that
there are 230 different possible internal symmetries of a three-dimensional lattice
and that they can, for many purposes, be conveniently grouped into seven classes,
according to the shape of the unit cell. Now the ellipsoid of polarizability must
share the internal geometric symmetries of the crystal. For example, a triclinic
crystal has low symmetry—the ellipsoid of polarizability will have unequal axes,
and its orientation will not, in general, be aligned with the crystal axes. On
the other hand, a monoclinic crystal has the property that its properties are
unchanged if the crystal is rotated 180◦ about one axis. So the polarization
tensor must be the same after such a rotation. It follows that the ellipsoid of
the polarizability must return to itself after a 180◦ rotation. That can happen
only if one of the axes of the ellipsoid is in the same direction as the symmetry
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axis of the crystal. Otherwise, the orientation and dimensions of the ellipsoid are
unrestricted.

For an orthorhombic crystal, however, the axes of the ellipsoid must correspond
to the crystal axes, because a 180◦ rotation about any one of the three axes
repeats the same lattice. If we go to a tetragonal crystal, the ellipse must have
the same symmetry, so it must have two equal diameters. Finally, for a cubic
crystal, all three diameters of the ellipsoid must be equal; it becomes a sphere,
and the polarizability of the crystal is the same in all directions.

There is a big game of figuring out the possible kinds of tensors for all the
possible symmetries of a crystal. It is called a “group-theoretical” analysis. But
for the simple case of the polarizability tensor, it is relatively easy to see what
the relations must be.

31-4 Other tensors; the tensor of inertia

There are many other examples of tensors appearing in physics. For example,
in a metal, or in any conductor, one often finds that the current density j is
approximately proportional to the electric field E; the proportionality constant
is called the conductivity σ:

j = σE.

For crystals, however, the relation between j and E is more complicated; the
conductivity is not the same in all directions. The conductivity is a tensor, and
we write

ji =
∑

σijEj .

Another example of a physical tensor is the moment of inertia. In Chapter 18
of Volume I we saw that a solid object rotating about a fixed axis has an
angular momentum L proportional to the angular velocity ω, and we called the
proportionality factor I, the moment of inertia:

L = Iω.

For an arbitrarily shaped object, the moment of inertia depends on its orientation
with respect to the axis of rotation. For instance, a rectangular block will have
different moments about each of its three orthogonal axes. Now angular velocity ω
and angular momentum L are both vectors. For rotations about one of the axes
of symmetry, they are parallel. But if the moment of inertia is different for the

31-11



ω

L

Fig. 31-4. The angular momentum L of a solid object is not, in
general, parallel to its angular velocity ω.

three principal axes, then ω and L are, in general, not in the same direction
(see Fig. 31-4). They are related in a way analogous to the relation between E
and P . In general, we must write

Lx = Ixxωx + Ixyωy + Ixzωz,

Ly = Iyxωx + Iyyωy + Iyzωz,

Lz = Izxωx + Izyωy + Izzωz.

(31.16)

The nine coefficients Iij are called the tensor of inertia. Following the analogy
with the polarization, the kinetic energy for any angular momentum must be
some quadratic form in the components ωx, ωy, and ωz:

KE = 1
2

∑
ij

Iijωiωj . (31.17)

We can use the energy to define the ellipsoid of inertia. Also, energy arguments
can be used to show that the tensor is symmetric—that Iij = Iji.

The tensor of inertia for a rigid body can be worked out if the shape of the
object is known. We need only to write down the total kinetic energy of all
the particles in the body. A particle of mass m and velocity v has the kinetic
energy 1

2mv
2, and the total kinetic energy is just the sum∑

1
2mv

2
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over all of the particles of the body. The velocity v of each particle is related to
the angular velocity ω of the solid body. Let’s assume that the body is rotating
about its center of mass, which we take to be at rest. Then if r is the displacement
of a particle from the center of mass, its velocity v is given by ω × r. So the
total kinetic energy is

KE =
∑

1
2m(ω × r)2. (31.18)

Now all we have to do is write ω × r out in terms of the components ωx, ωy, ωz,
and x, y, z, and compare the result with Eq. (31.17); we find Iij by identifying
terms. Carrying out the algebra, we write

(ω × r)2 = (ω × r)2
x + (ω × r)2

y + (ω × r)2
z

= (ωyz − ωzy)2 + (ωzx− ωxz)2 + (ωxy − ωyx)2

= + ω2
yz

2 − 2ωyωzzy + ω2
zy

2

+ ω2
zx

2 − 2ωzωxxz + ω2
xz

2

+ ω2
xy

2 − 2ωxωyyx+ ω2
yx

2.

Multiplying this equation by m/2, summing over all particles, and comparing
with Eq. (31.17), we see that Ixx, for instance, is given by

Ixx =
∑

m(y2 + z2).

This is the formula we have had before (Chapter 19, Vol. I) for the moment of
inertia of a body about the x-axis. Since r2 = x2 + y2 + z2, we can also write
this term as

Ixx =
∑

m(r2 − x2).

Working out all of the other terms, the tensor of inertia can be written as

Iij =

∑m(r2 − x2) −
∑
mxy −

∑
mxz

−
∑
myx

∑
m(r2 − y2) −

∑
myz

−
∑
mzx −

∑
mzy

∑
m(r2 − z2)

 . (31.19)

If you wish, this may be written in “tensor notation” as

Iij =
∑

m(r2δij − rirj), (31.20)
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where the ri are the components (x, y, z) of the position vector of a particle and
the

∑
means to sum over all the particles. The moment of inertia, then, is a

tensor of the second rank whose terms are a property of the body and relate L
to ω by

Li =
∑
j

Iijωj . (31.21)

For a body of any shape whatever, we can find the ellipsoid of inertia and,
therefore, the three principal axes. Referred to these axes, the tensor will be
diagonal, so for any object there are always three orthogonal axes for which
the angular velocity and angular momentum are parallel. They are called the
principal axes of inertia.

31-5 The cross product

We should point out that we have been using tensors of the second rank since
Chapter 20 of Volume I. There, we defined a “torque in a plane,” such as τxy by

τxy = xFy − yFx.

Generalized to three dimensions, we could write

τij = riFj − rjFi. (31.22)

The quantity τij is a tensor of the second rank. One way to see that this is so is
by combining τij with some vector, say the unit vector e, according to∑

j

τijej .

If this quantity is a vector, then τij must transform as a tensor—this is our
definition of a tensor. Substituting for τij , we have∑

j

τijej =
∑
j

riFjej −
∑
j

rjejFi

= ri(F · e)− (r · e)Fi.

Since the dot products are scalars, the two terms on the right-hand side are
vectors, and likewise their difference. So τij is a tensor.
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But τij is a special kind of tensor; it is antisymmetric, that is,

τij = −τji,

so it has only three nonzero terms—τxy, τyz, and τzx. We were able to show in
Chapter 20 of Volume I that these three terms, almost “by accident,” transform
like the three components of a vector, so that we could define

τ = (τx, τy, τz) = (τyz, τzx, τxy)

We say “by accident,” because it happens only in three dimensions. In four
dimensions, for instance, an antisymmetric tensor of the second rank has up
to six nonzero terms and certainly cannot be replaced by a vector with four
components.

Just as the axial vector τ = r × F is a tensor, so also is every cross product
of two polar vectors—all the same arguments apply. By luck, however, they are
also representable by vectors (really pseudo vectors), so our mathematics has
been made easier for us.

Mathematically, if a and b are any two vectors, the nine quantities aibj form
a tensor (although it may have no useful physical purpose). Thus, for the position
vector r, rirj is a tensor, and since δij is also, we see that the right side of
Eq. (31.20) is indeed a tensor. Likewise Eq. (31.22) is a tensor, since the two
terms on the right-hand side are tensors.

31-6 The tensor of stress

The symmetric tensors we have described so far arose as coefficients in relating
one vector to another. We would like to look now at a tensor which has a different
physical significance—the tensor of stress. Suppose we have a solid object with
various forces on it. We say that there are various “stresses” inside, by which we
mean that there are internal forces between neighboring parts of the material.
We have talked a little about such stresses in a two-dimensional case when we
considered the surface tension in a stretched diaphragm in Section 12-3. We will
now see that the internal forces in the material of a three-dimensional body can
be described in terms of a tensor.

Consider a body of some elastic material—say a block of jello. If we make a
cut through the block, the material on each side of the cut will, in general, get
displaced by the internal forces. Before the cut was made, there must have been
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(a)

x

σ

(b)

σ

∆F1

−∆F1

∆y

∆z

Fig. 31-5. The material to the left of the plane σ exerts across the
area ∆y ∆z the force ∆F1 on the material to the right of the plane.

forces between the two parts of the block that kept the material in place; we can
define the stresses in terms of these forces. Suppose we look at an imaginary
plane perpendicular to the x-axis—like the plane σ in Fig. 31-5—and ask about
the force across a small area ∆y∆z in this plane. The material on the left of the
area exerts the force ∆F 1 on the material to the right, as shown in part (b) of
the figure. There is, of course, the opposite reaction force −∆F 1 exerted on the
material to the left of the surface. If the area is small enough, we expect that
∆F 1 is proportional to the area ∆y∆z.

You are already familiar with one kind of stress—the pressure in a static
liquid. There the force is equal to the pressure times the area and is at right
angles to the surface element. For solids—also for viscous liquids in motion—the
force need not be normal to the surface; there are shear forces in addition to
pressures (positive or negative). (By a “shear” force we mean the tangential
components of the force across a surface.) All three components of the force
must be taken into account. Notice also that if we make our cut on a plane with
some other orientation, the forces will be different. A complete description of the
internal stress requires a tensor.

We define the stress tensor in the following way: First, we imagine a cut
perpendicular to the x-axis and resolve the force ∆F 1 across the cut into its
components ∆Fx1, ∆Fy1, ∆Fz1, as in Fig. 31-6. The ratio of these forces to the
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∆F1

∆Fx1

∆Fy1

∆Fz1

∆y

∆z

Fig. 31-6. The force ∆F1 across an element of area ∆y ∆z perpen-
dicular to the x-axis is resolved into three components ∆Fx1, ∆Fy1,
and ∆Fz1.

area ∆y∆z, we call Sxx, Syx, and Szx. For example,

Syx = ∆Fx1

∆y∆z .

The first index y refers to the direction force component; the second index x is
normal to the area. If you wish, you can write the area ∆y∆z as ∆ax, meaning
an element of area perpendicular to x. Then

Syx = ∆Fx1

∆ax
.

Next, we think of an imaginary cut perpendicular to the y-axis. Across a small
area ∆x∆z there will be a force ∆F 2. Again we resolve this force into three
components, as shown in Fig. 31-7, and define the three components of the stress,
Sxy, Syy, Szy, as the force per unit area in the three directions. Finally, we make
an imaginary cut perpendicular to z and define the three components Sxz, Syz,
and Szz. So we have the nine numbers

Sij =

Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

 . (31.23)
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∆F2

∆Fx2

∆Fy2

∆Fz2

∆x

∆z

Fig. 31-7. The force across an element of area perpendicular to y is
resolved into three rectangular components.

∆Fn

∆Fxn

∆Fyn

∆Fzn

n

∆x

∆y

∆z

θ

Fig. 31-8. The force Fn across the face N (whose unit normal is n) is
resolved into components.
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We want to show now that these nine numbers are sufficient to describe
completely the internal state of stress, and that Sij is indeed a tensor. Suppose
we want to know the force across a surface oriented at some arbitrary angle. Can
we find it from Sij? Yes, in the following way: We imagine a little solid figure
which has one face N in the new surface, and the other faces parallel to the
coordinate axes. If the face N happened to be parallel to the z-axis, we would
have the triangular piece shown in Fig. 31-8. (This is a somewhat special case,
but will illustrate well enough the general method.) Now the stress forces on
the little solid triangle in Fig. 31-8 are in equilibrium (at least in the limit of
infinitesimal dimensions), so the total force on it must be zero. We know the
forces on the faces parallel to the coordinate axes directly from Sij . Their vector
sum must equal the force on the face N , so we can express this force in terms
of Sij .

Our assumption that the surface forces on the small triangular volume are in
equilibrium neglects any other body forces that might be present, such as gravity
or pseudo forces if our coordinate system is not an inertial frame. Notice, however,
that such body forces will be proportional to the volume of the little triangle
and, therefore, to ∆x∆y∆z, whereas all the surface forces are proportional to
the areas such as ∆x∆y, ∆y∆z, etc. So if we take the scale of the little wedge
small enough, the body forces can always be neglected in comparison with the
surface forces.

Let’s now add up the forces on the little wedge. We take first the x-component,
which is the sum of five parts—one from each face. However, if ∆z is small
enough, the forces on the triangular faces (perpendicular to the z-axis) will be
equal and opposite, so we can forget them. The x-component of the force on the
bottom rectangle is

∆Fx2 = Sxy ∆x∆z.

The x-component of the force on the vertical rectangle is

∆Fx1 = Sxx ∆y∆z.

These two must be equal to the x-component of the force outward across the
face N . Let’s call n the unit vector normal to the face N , and the force on it F n;
then we have

∆Fxn = Sxx ∆y∆z + Sxy ∆x∆z.

The x-component Sxn, of the stress across this plane is equal to ∆Fxn divided
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by the area, which is ∆z
√

∆x2 + ∆y2, or

Sxn = Sxx
∆y√

∆x2 + ∆y2
+ Sxy

∆x√
∆x2 + ∆y2

.

Now ∆x/
√

∆x2 + ∆y2 is the cosine of the angle θ between n and the y-axis,
as shown in Fig. 31-8, so it can also be written as ny, the y-component of n.
Similarly, ∆y/

√
∆x2 + ∆y2 is sin θ = nx. We can write

Sxn = Sxxnx + Sxyny.

If we now generalize to an arbitrary surface element, we would get that

Sxn = Sxxnx + Sxyny + Sxznz

or, in general,
Sin =

∑
j

Sijnj . (31.24)

We can find the force across any surface element in terms of the Sij , so it does
describe completely the state of internal stress of the material.

Equation (31.24) says that the tensor Sij relates the stress Sn to the unit
vector n, just as αij relates P to E. Since n and Sn are vectors, the components
of Sij must transform as a tensor with changes in coordinate axes. So Sij is
indeed a tensor.

We can also show that Sij is a symmetric tensor by looking at the forces
on a little cube of material. Suppose we take a little cube, oriented with its
faces parallel to our coordinate axes, and look at it in cross section, as shown in
Fig. 31-9. If we let the edge of the cube be one unit, the x- and y-components
of the forces on the faces normal to the x- and y-axes might be as shown in the
figure. If the cube is small, the stresses do not change appreciably from one side
of the cube to the opposite side, so the force components are equal and opposite
as shown. Now there must be no torque on the cube, or it would start spinning.
The total torque about the center is (Syx − Sxy) (times the unit edge of the
cube), and since the total is zero, Syx is equal to Sxy, and the stress tensor is
symmetric.

Since Sij is a symmetric tensor, it can be described by an ellipsoid which
will have three principal axes. For surfaces normal to these axes, the stresses
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Syx
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Sxx

Syy

Syx

Sxy

Sxx

Fig. 31-9. The x- and y -forces on four faces of a small unit cube.

are particularly simple—they correspond to pushes or pulls perpendicular to the
surfaces. There are no shear forces along these faces. For any stress, we can
always choose our axes so that the shear components are zero. If the ellipsoid
is a sphere, there are only normal forces in any direction. This corresponds to
a hydrostatic pressure (positive or negative). So for a hydrostatic pressure, the
tensor is diagonal and all three components are equal; they are, in fact, just equal
to the pressure p. We can write

Sij = pδij . (31.25)

The stress tensor—and also its ellipsoid—will, in general, vary from point
to point in a block of material; to describe the whole block we need to give the
value of each component of Sij as a function of position. So the stress tensor is a
field. We have had scalar fields, like the temperature T (x, y, z), which give one
number for each point in space, and vector fields like E(x, y, z), which give three
numbers for each point. Now we have a tensor field which gives nine numbers
for each point in space—or really six for the symmetric tensor Sij . A complete
description of the internal forces in an arbitrarily distorted solid requires six
functions of x, y, and z.

31-21



31-7 Tensors of higher rank

The stress tensor Sij describes the internal forces of matter. If the material
is elastic, it is convenient to describe the internal distortion in terms of another
tensor Tij—called the strain tensor. For a simple object like a bar of metal, you
know that the change in length, ∆L, is approximately proportional to the force,
so we say it obeys Hooke’s law:

∆L = γF.

For a solid elastic body with arbitrary distortions, the strain Tij is related to the
stress Sij by a set of linear equations:

Tij =
∑
k,l

γijklSkl. (31.26)

Also, you know that the potential energy of a spring (or bar) is

1
2F ∆L = 1

2γF
2.

The generalization for the elastic energy density in a solid body is

Uelastic =
∑
ijkl

1
2γijklSijSkl. (31.27)

The complete description of the elastic properties of a crystal must be given in
terms of the coefficients γijkl. This introduces us to a new beast. It is a tensor of
the fourth rank. Since each index can take on any one of three values, x, y, or z,
there are 34 = 81 coefficients. But there are really only 21 different numbers.
First, since Sij is symmetric, it has only six different values, and only 36 different
coefficients are needed in Eq. (31.27). But also, Sij can be interchanged with Skl
without changing the energy, so γijkl must be symmetric if we interchange ij
and kl. This reduces the number of different coefficients to 21. So to describe the
elastic properties of a crystal of the lowest possible symmetry requires 21 elastic
constants! This number is, of course, reduced for crystals of higher symmetry.
For example, a cubic crystal has only three elastic constants, and an isotropic
substance has only two.

That the latter is true can be seen as follows. How can the components of γijkl
be independent of the direction of the axes, as they must be if the material is
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isotropic? Answer: They can be independent only if they are expressible in terms
of the tensor δij . There are two possible expressions, δijδkl and δikδjl + δilδjk,
which have the required symmetry, so γijkl must be a linear combination of them.
Therefore, for isotropic materials,

γijkl = a(δijδkl) + b(δikδjl + δilδjk),

and the material requires two constants, a and b, to describe its elastic properties.
We will leave it for you to show that a cubic crystal needs only three.

As a final example, this time of a third-rank tensor, we have the piezoelectric
effect. Under stress, a crystal generates an electric field proportional to the stress;
hence, in general, the law is

Ei =
∑
j,k

PijkSjk,

where Ei is the electric field, and the Pijk are the piezoelectric coefficients—or
the piezoelectric tensor. Can you show that if the crystal has a center of inversion
(invariant under x, y, z → −x,−y,−z) the piezoelectric coefficients are all zero?

31-8 The four-tensor of electromagnetic momentum

All the tensors we have looked at so far in this chapter relate to the three
dimensions of space; they are defined to have a certain transformation property
under spatial rotations. In Chapter 26 we had occasion to use a tensor in the
four dimensions of relativistic space-time—the electromagnetic field tensor Fµν .
The components of such a four-tensor transform under a Lorentz transformation
of the coordinates in a special way that we worked out. (Although we did not do
it that way, we could have considered the Lorentz transformation as a “rotation”
in a four-dimensional “space” called Minkowski space; then the analogy with
what we are doing here would have been clearer.)

As our last example, we want to consider another tensor in the four di-
mensions (t, x, y, z) of relativity theory. When we wrote the stress tensor, we
defined Sij as a component of a force across a unit area. But a force is equal to
the time rate of change of a momentum. Therefore, instead of saying “Sxy is the
x-component of the force across a unit area perpendicular to y,” we could equally
well say, “Sxy is the rate of flow of the x-component of momentum through a
unit area perpendicular to y.” In other words, each term of Sij also represents
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the flow of the i-component of momentum through a unit area perpendicular
to the j-direction. These are pure space components, but they are parts of a
“larger” tensor Sµν in four dimensions (µ and ν = t, x, y, z) containing additional
components like Stx, Syt, Stt, etc. We will now try to find the physical meaning
of these extra components.

We know that the space components represent flow of momentum. We can
get a clue on how to extend this to the time dimension by studying another kind
of “flow”—the flow of electric charge. For the scalar quantity, charge, the rate
of flow (per unit area perpendicular to the flow) is a space vector—the current
density vector j. We have seen that the time component of this flow vector is
the density of the stuff that is flowing. For instance, j can be combined with a
time component, jt = ρ, the charge density, to make the four-vector jµ = (ρ, j);
that is, the µ in jµ takes on the values t, x, y, z to mean “density, rate of flow in
the x-direction, rate of flow in y, rate of flow in z” of the scalar charge.

Now by analogy with our statement about the time component of the flow of
a scalar quantity, we might expect that with Sxx, Sxy, and Sxz, describing the
flow of the x-component of momentum, there should be a time component Sxt
which would be the density of whatever is flowing; that is, Sxt should be the
density of x-momentum. So we can extend our tensor horizontally to include a
t-component. We have

Sxt = density of x-momentum,

Sxx = x-flow of x-momentum,

Sxy = y-flow of x-momentum,

Sxz = z-flow of x-momentum.

Similarly, for the y-component of momentum we have the three components of
flow—Syx, Syy, Syz—to which we should add a fourth term:

Syt = density of y-momentum.

And, of course, to Szx, Szy, Szz we would add

Szt = density of z-momentum.

In four dimensions there is also a t-component of momentum, which is, we
know, energy. So the tensor Sij should be extended vertically with Stx, Sty,
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and Stz, where
Stx = x-flow of energy,

Sty = y-flow of energy,

Stz = z-flow of energy;

(31.28)

that is, Stx is the flow of energy per unit area and per unit time across a surface
perpendicular to the x-axis, and so on. Finally, to complete our tensor we need Stt,
which would be the density of energy. We have extended our stress tensor Sij of
three dimensions to the four-dimensional stress-energy tensor Sµν . The index µ
can take on the four values t, x, y, and z, meaning, respectively, “density,” “flow
per unit area in the x-direction,” “flow per unit area in the y-direction,” and
“flow per unit area in the z-direction.” In the same way, ν takes on the four values
t, x, y, z to tell us what flows, namely, “energy,” “momentum in the x-direction,”
“momentum in the y-direction,” and “momentum in the z-direction.”

As an example, we will discuss this tensor not in matter, but in a region of
free space in which there is an electromagnetic field. We know that the flow of
energy is the Poynting vector S = ε0c

2E ×B. So the x-, y-, and z-components
of S are, from the relativistic point of view, the components Stx, Sty, and Stz
of our four-dimensional stress-energy tensor. The symmetry of the tensor Sij
carries over into the time components as well, so the four-dimensional tensor Sµν
is symmetric:

Sµν = Sνµ. (31.29)

In other words, the components Sxt, Syt, Szt, which are the densities of x, y,
and z momentum, are also equal to the x-, y-, and z-components of the Poynting
vector S, the energy flow—as we have already shown in an earlier chapter by a
different kind of argument.

The remaining components of the electromagnetic stress tensor Sµν can also
be expressed in terms of the electric and magnetic fields E and B. That is to
say, we must admit stress or, to put it less mysteriously, flow of momentum in
the electromagnetic field. We discussed this in Chapter 27 in connection with
Eq. (27.21), but did not work out the details.

Those who want to exercise their prowess in tensors in four dimensions might
like to see the formula for Sµν in terms of the fields:

Sµν = −ε0
(∑

α

FµαFνα − 1
4δµν

∑
α,β

FβαFβα

)
,
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where sums on α, β are on t, x, y, z but (as usual in relativity) we adopt a special
meaning for the sum sign

∑
and for the symbol δ. In the sums the x, y, z terms are

to be subtracted and δtt = +1, while δxx = δyy = δzz = −1 and δµν = 0 for µ 6= ν
(c = 1). Can you verify that it gives the energy density Stt = (ε0/2) (E2 +B2)
and the Poynting vector ε0E ×B? Can you show that in an electrostatic field
with B = 0 the principal axes of stress are in the direction of the electric field,
that there is a tension (ε0/2)E2 along the direction of the field, and that there is
an equal pressure in directions perpendicular to the field direction?
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32

Refractive Index of Dense Materials

Review: See Table 32-1.

32-1 Polarization of matter

We want now to discuss the phenomenon of the refraction of light—and also,
therefore, the absorption of light—by dense materials. In Chapter 31 of Volume I
we discussed the theory of the index of refraction, but because of our limited
mathematical abilities at that time, we had to restrict ourselves to finding the
index only for materials of low density, like gases. The physical principles that
produced the index were, however, made clear. The electric field of the light wave
polarizes the molecules of the gas, producing oscillating dipole moments. The
acceleration of the oscillating charges radiates new waves of the field. This new
field, interfering with the old field, produces a changed field which is equivalent
to a phase shift of the original wave. Because this phase shift is proportional to
the thickness of the material, the effect is equivalent to having a different phase
velocity in the material. When we looked at the subject before, we neglected the
complications that arise from such effects as the new wave changing the fields at
the oscillating dipoles. We assumed that the forces on the charges in the atoms
came just from the incoming wave, whereas, in fact, their oscillations are driven
not only by the incoming wave but also by the radiated waves of all the other
atoms. It would have been difficult for us at that time to include this effect, so
we studied only the rarefied gas, where such effects are not important.

Now, however, we will find that it is very easy to treat the problem by the
use of differential equations. This method obscures the physical origin of the
index (as coming from the re-radiated waves interfering with the original waves),
but it makes the theory for dense materials much simpler. This chapter will
bring together a large number of pieces from our earlier work. We’ve taken up
practically everything we will need, so there are relatively few really new ideas
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Table 32-1

Our work in this chapter will be based on the following material,
already covered in earlier chapters

Subject Reference Equation

Damped oscillations Vol. I, Chap. 23 m(ẍ+ γẋ+ ω2
0x) = F

Index of gases Vol. I, Chap. 31 n = 1+ 1
2

Nq2
e

ε0(ω2
0 − ω2)

n = n′ − in′′

Mobility Vol. I, Chap. 41 mẍ+ µẋ = F

Electrical conductivity Vol. I, Chap. 43 µ = τ

m
; σ = Nq2

eτ

m

Polarizability Vol. II, Chap. 10 ρpol = −∇ · P

Inside dielectrics Vol. II, Chap. 11 Elocal = E + 1
3ε0

P

to be introduced. Since you may need to refresh your memory about what we
are going to need, we give in Table 32-1 a list of the equations we are going to
use, together with a reference to the place where each can be found. In most
instances, we will not take the time to give the physical arguments again, but
will just use the equations.

We begin by recalling the machinery of the index of refraction for a gas. We
suppose that there are N particles per unit volume and that each particle behaves
as a harmonic oscillator. We use a model of an atom or molecule in which the
electron is bound with a force proportional to its displacement (as though the
electron were held in place by a spring). We emphasized that this was not a
legitimate classical model of an atom, but we will show later that the correct
quantum mechanical theory gives results equivalent to this model (in simple
cases). In our earlier treatment, we did not include the possibility of a damping
force in the atomic oscillators, but we will do so now. Such a force corresponds
to a resistance to the motion, that is, to a force proportional to the velocity of
the electron. Then the equation of motion is

F = qeE = m(ẍ+ γẋ+ ω2
0x), (32.1)

32-2



where x is the displacement parallel to the direction of E. (We are assuming an
isotropic oscillator whose restoring force is the same in all directions. Also, we
are taking, for the moment, a linearly polarized wave, so that E doesn’t change
direction.) If the electric field acting on the atom varies sinusoidally with time,
we write

E = E0e
iωt. (32.2)

The displacement will then oscillate with the same frequency, and we can let

x = x0e
iωt.

Substituting ẋ = iωx and ẍ = −ω2x, we can solve for x in terms of E:

x = qe/m

−ω2 + iγω + ω2
0
E. (32.3)

Knowing the displacement, we can calculate the acceleration ẍ and find the
radiated wave responsible for the index. This was the way we computed the
index in Chapter 31 of Volume I.

Now, however, we want to take a different approach. The induced dipole
moment p of an atom is qex or, using Eq. (32.3),

p = q2
e/m

−ω2 + iγω + ω2
0
E. (32.4)

Since p is proportional to E, we write

p = ε0α(ω)E, (32.5)

where α is called the atomic polarizability.* With this definition, we have

α = q2
e/mε0

−ω2 + iγω + ω2
0
. (32.6)

The quantum mechanical solution for the motions of electrons in atoms gives
a similar answer except with the following modifications. The atoms have several

* Throughout this chapter we follow the notation of Chapter 31 of Volume I, and let α
represent the atomic polarizability as defined here. In the last chapter, we used α to represent
the volume polarizability—the ratio of P to E. In the notation of this chapter P = Nαε0E
(see Eq. 32.8).
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natural frequencies, each frequency with its own dissipation constant γ. Also
the effective “strength” of each mode is different, which we can represent by
multiplying the polarizability for each frequency by a strength factor f , which is
a number we expect to be of the order of 1. Representing the three parameters
ω0, γ, and f by ω0k, γk, and fk for each mode of oscillation, and summing over
the various modes, we modify Eq. (32.6) to read

α(ω) = q2
e

ε0m

∑
k

fk
−ω2 + iγkω + ω2

0k
. (32.7)

IfN is the number of atoms per unit volume in the material, the polarization P
is just Np = ε0NαE, and is proportional to E:

P = ε0Nα(ω)E. (32.8)

In other words, when there is a sinusoidal electric field acting in a material,
there is an induced dipole moment per unit volume which is proportional to the
electric field—with a proportionality constant α that, we emphasize, depends
upon the frequency. At very high frequencies, α is small; there is not much
response. However, at low frequencies there can be a strong response. Also, the
proportionality constant is a complex number, which means that the polarization
does not exactly follow the electric field, but may be shifted in phase to some
extent. At any rate, there is a polarization per unit volume whose magnitude is
proportional to the strength of the electric field.

32-2 Maxwell’s equations in a dielectric

The existence of polarization in matter means that there are polarization
charges and currents inside of the material, and these must be put into the
complete Maxwell equations in order to find the fields. We are going to solve
Maxwell’s equations this time in a situation in which the charges and currents
are not zero, as in a vacuum, but are given implicitly by the polarization vector.
Our first step is to find explicitly the charge density ρ and current density j,
averaged over a small volume of the same size we had in mind when we defined P .
Then the ρ and j we need can be obtained from the polarization.

We have seen in Chapter 10 that when the polarization P varies from place
to place, there is a charge density given by

ρpol = −∇ · P . (32.9)
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At that time, we were dealing with static fields, but the same formula is valid
also for time-varying fields. However, when P varies with time, there are charges
in motion, so there is also a polarization current. Each of the oscillating charges
contributes a current equal to its charge qe, times its velocity v. With N such
charges per unit volume, the current density j is

j = Nqev.

Since we know that v = dx/dt, then j = Nqe(dx/dt), which is just dP/dt.
Therefore the current density from the varying polarization is

jpol = ∂P

∂t
. (32.10)

Our problem is now direct and simple. We write Maxwell’s equations with
the charge density and current density expressed in terms of P , using Eqs. (32.9)
and (32.10). (We assume that there are no other currents and charges in the
material.) We then relate P to E with Eq. (32.8), and we solve the equation for
E and B—looking for the wave solutions.

Before we do this, we would like to make an historical note. Maxwell originally
wrote his equations in a form which was different from the one we have been using.
Because the equations were written in this different form for many years—and
are still written that way by many people—we will explain the difference. In the
early days, the mechanism of the dielectric constant was not fully and clearly
appreciated. The nature of atoms was not understood, nor that there was a
polarization of the material. So people did not appreciate that there was a
contribution to the charge density ρ from ∇ · P . They thought only in terms of
charges that were not bound to atoms (such as the charges that flow in wires or
are rubbed off surfaces).

Today, we prefer to let ρ represent the total charge density, including the part
from the bound atomic charges. If we call that part ρpol, we can write

ρ = ρpol + ρother,

where ρother is the charge density considered by Maxwell and refers not bound to
individual atoms. We would then write

∇ ·E = ρpol + ρother
ε0

.
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Substituting ρpol from Eq. (32.9),

∇ ·E = ρother
ε0
− 1
ε0
∇ · P

or
∇ · (ε0E + P ) = ρother. (32.11)

The current density in the Maxwell equations for ∇×B also has, in general,
contributions from bound atomic currents. We can therefore write

j = jpol + jother,

and the Maxwell equation becomes

c2∇×B = jother
ε0

+
jpol
ε0

+ ∂E

∂t
. (32.12)

Using Eq. (32.10), we get

ε0c
2∇×B = jother + ∂

∂t
(ε0E + P ). (32.13)

Now you can see that if we were to define a new vector D by

D = ε0E + P , (32.14)

the two field equations would become

∇ ·D = ρother (32.15)
and

ε0c
2∇×B = jother + ∂D

∂t
. (32.16)

These are actually the forms that Maxwell used for dielectrics. His two remaining
equations were

∇×E = −∂B
∂t

,

and
∇ ·B = 0,

which are the same as we have been using.
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Maxwell and the other early workers also had a problem with magnetic
materials (which we will take up soon). Because they did not know about the
circulating currents responsible for atomic magnetism, they used a current density
that was missing still another part. Instead of Eq. (32.16), they actually wrote

∇×H = j′ + ∂D

∂t
, (32.17)

where H differs from ε0c
2B because it includes the effects of atomic currents.

(Then j′ represents what is left of the currents.) So Maxwell had four field
vectors—E, D, B, and H—the D and H were hidden ways of not paying
attention to what was going on inside the material. You will find the equations
written this way in many places.

To solve the equations, it is necessary to relate D and H to the other fields,
and people used to write

D = εE and B = µH. (32.18)

However, these relations are only approximately true for some materials and
even then only if the fields are not changing rapidly with time. (For sinusoidally
varying fields one often can write the equations this way by making ε and µ
complex functions of the frequency, but not for an arbitrary time variation of
the fields.) So there used to be all kinds of cheating in solving the equations.
We think the right way is to keep the equations in terms of the fundamental
quantities as we now understand them—and that’s how we have done it.

32-3 Waves in a dielectric

We want now to find out what kind of electromagnetic waves can exist in a
dielectric material in which there are no extra charges other than those bound
in atoms. So we take ρ = −∇ · P and j = ∂P /∂t. Maxwell’s equations then
become

(a) ∇ ·E = −∇ · P
ε0

(b) c2∇×B = ∂

∂t

(
P

ε0
+E

)

(c) ∇×E = −∂B
∂t

(d) ∇ ·B = 0

(32.19)
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We can solve these equations as we have done before. We start by taking the
curl of Eq. (32.19c):

∇× (∇×E) = − ∂

∂t
∇×B.

Next, we make use of the vector identity

∇× (∇×E) =∇(∇ ·E)−∇2E,

and also substitute for ∇×B, using Eq. (32.19b); we get

∇(∇ ·E)−∇2E = − 1
ε0c2

∂2P

∂t2
− 1
c2
∂2E

∂t2
.

Using Eq. (32.19a) for ∇ ·E, we get

∇2E − 1
c2
∂2E

∂t2
= − 1

ε0
∇(∇ · P ) + 1

ε0c2
∂2P

∂t2
. (32.20)

So instead of the wave equation, we now get that the D’Alembertian of E is
equal to two terms involving the polarization P .

Since P depends on E, however, Eq. (32.20) can still have wave solutions. We
will now limit ourselves to isotropic dielectrics, so that P is always in the same
direction as E. Let’s try to find a solution for a wave going in the z-direction.
Then, the electric field might vary as ei(ωt−kz). We will also suppose that the wave
is polarized in the x-direction—that the electric field has only an x-component.
We write

Ex = E0e
i(ωt−kz). (32.21)

You know that any function of (z − vt) represents a wave that travels with
the speed v. The exponent of Eq. (32.21) can be written as

−ik
(
z − ω

k
t

)
,

so, Eq. (32.21) represents a wave with the phase velocity

vph = ω/k.

The index of refraction n is defined (see Chapter 31, Vol. I) by letting

vph = c

n
.
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Thus Eq. (32.21) becomes

Ex = E0e
iω(t−nz/c).

So we can find n by finding what value of k is required if Eq. (32.21) is to satisfy
the proper field equations, and then using

n = kc

ω
. (32.22)

In an isotropic material, there will be only an x-component of the polarization;
then P has no variation with the x-coordinate, so ∇ · P = 0, and we get rid of
the first term on the right-hand side of Eq. (32.20). Also, since we are assuming
a linear dielectric, Px will vary as eiωt, and ∂2Px/∂t

2 = −ω2Px. The Laplacian
in Eq. (32.20) becomes simply ∂2Ex/∂z

2 = −k2Ex, so we get

− k2Ex + ω2

c2
Ex = − ω2

ε0c2
Px. (32.23)

Now let us assume for the moment that since E is varying sinusoidally, we
can set P proportional to E, as in Eq. (32.8). (We’ll come back to discuss this
assumption later.) We write

Px = ε0NαEx.

Then Ex drops out of Eq. (32.23), and we find

k2 = ω2

c2
(1 +Nα). (32.24)

We have found that a wave like Eq. (32.21), with the wave number k given by
Eq. (32.24), will satisfy the field equations. Using Eq. (32.22), the index n is
given by

n2 = 1 +Nα. (32.25)

Let’s compare this formula with what we obtained in our theory of the index
of a gas (Chapter 31, Vol. I). There, we got Eq. (31.19), which is

n = 1 + 1
2
Nq2

e

mε0

1
−ω2 + ω2

0
. (32.26)
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Taking α from Eq. (32.6), Eq. (32.25) would give us

n2 = 1 + Nq2
e

mε0

1
−ω2 + iγω + ω2

0
. (32.27)

First, we have the new term in iγω, because we are including the dissipation
of the oscillators. Second, the left-hand side is n instead of n2, and there is an
extra factor of 1/2. But notice that if N is small enough so that n is close to
one (as it is for a gas), then Eq. (32.27) says that n2 is one plus a small number:
n2 = 1 + ε. We can then write n =

√
1 + ε ≈ 1 + ε/2, and the two expressions

are equivalent. Thus our new method gives for a gas the same result we found
earlier.

Now you might think that Eq. (32.27) should give the index of refraction
for dense materials also. It needs to be modified, however, for several reasons.
First, the derivation of this equation assumes that the polarizing field on each
atom is the field Ex. That assumption is not right, however, because in dense
materials there is also the field produced by other atoms in the vicinity, which
may be comparable to Ex. We considered a similar problem when we studied
the static fields in dielectrics. (See Chapter 11.) You will remember that we
estimated the field at a single atom by imagining that it sat in a spherical hole
in the surrounding dielectric. The field in such a hole—which we called the local
field—is increased over the average field E by the amount P/3ε0. (Remember,
however, that this result is only strictly true in isotropic materials—including
the special case of a cubic crystal.)

The same arguments will hold for the electric field in a wave, so long as the
wavelength of the wave is much longer than the spacing between atoms. Limiting
ourselves to such cases, we write

Elocal = E + P

3ε0
. (32.28)

This local field is the one that should be used for E in Eq. (32.3); that is, Eq. (32.8)
should be rewritten:

P = ε0NαElocal. (32.29)
Using Elocal from Eq. (32.28), we find

P = ε0Nα

(
E + P

3ε0

)
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or
P = Nα

1− (Nα/3) ε0E. (32.30)

In other words, for dense materials P is still proportional to E (for sinusoidal
fields). However, the constant of proportionality is not ε0Nα, as we wrote below
Eq. (32.23), but should be ε0Nα/[1− (Nα/3)]. So we should correct Eq. (32.25)
to read

n2 = 1 + Nα

1− (Nα/3) . (32.31)

It will be more convenient if we rewrite this equation as

3 n
2 − 1
n2 + 2 = Nα, (32.32)

which is algebraically equivalent. This is known as the Clausius-Mossotti equation.
There is another complication in dense materials. Because neighboring atoms

are so close, there are strong interactions between them. The internal modes
of oscillation are, therefore, modified. The natural frequencies of the atomic
oscillations are spread out by the interactions, and they are usually quite heavily
damped—the resistance coefficient becomes quite large. So the ω0’s and γ’s of the
solid will be quite different from those of the free atoms. With these reservations,
we can still represent α, at least approximately, by Eq. (32.7). We have then that

3 n
2 − 1
n2 + 2 = Nq2

e

mε0

∑
k

fk
−ω2 + iγkω + ω2

0k
. (32.33)

One final complication. If the dense material is a mixture of several compo-
nents, each will contribute to the polarization. The total α will be the sum of
the contributions from each component of the mixture [except for the inaccuracy
of the local field approximation, Eq. (32.28), in ordered crystals—effects we
discussed when analyzing ferroelectrics]. Writing Nj as the number of atoms of
each component per unit volume, we should replace Eq. (32.32) by

3
(
n2 − 1
n2 + 2

)
=
∑
j

Njαj , (32.34)

where each αj will be given by an expression like Eq. (32.7). Equation (32.34)
completes our theory of the index of refraction. The quantity 3(n2 − 1)/(n2 + 2)
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is given by some complex function of frequency, which is the mean atomic
polarizability α(ω). The precise evaluation of α(ω) (that is, finding fk, γk
and ω0k) in dense substances is a difficult problem of quantum mechanics. It has
been done from first principles only for a few especially simple substances.

32-4 The complex index of refraction

We want to look now at the consequences of our result, Eq. (32.33). First,
we notice that α is complex, so the index n is going to be a complex number.
What does that mean? Let’s say that we write n as the sum of a real and an
imaginary part:

n = nR − inI , (32.35)
where nR and nI are real functions of ω. We write inI with a minus sign, so
that nI will be a positive quantity in all ordinary optical materials. (In ordinary
inactive materials—that are not, like lasers, light sources themselves—γ is a
positive number, and that makes the imaginary part of n negative.) Our plane
wave of Eq. (32.21) is written in terms of n as

Ex = E0e
iω(t−nz/c).

Writing n as in Eq. (32.35), we would have

Ex = E0e
−ωnIz/ceiω(t−nRz/c). (32.36)

The term eiω(t−nRz/c) represents a wave travelling with the speed c/nR, so nR
represents what we normally think of as the index of refraction. But the amplitude
of this wave is

E0e
−ωnIz/c,

which decreases exponentially with z. A graph of the strength of the electric field
at some instant as a function of z is shown in Fig. 32-1, for nI ≈ nR/2π. The
imaginary part of the index represents the attenuation of the wave due to the
energy losses in the atomic oscillators. The intensity of the wave is proportional
to the square of the amplitude, so

Intensity ∝ e−2ωnIz/c.

This is often written as
Intensity ∝ e−βz.
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z

e−ωnI z/c

e−ωnI z/ce iω(t−nRz/c)

Fig. 32-1. A graph of Ex for some instant t, if nI ≈ nR/2π.

where β = 2ωnI/c is called the absorption coefficient. Thus we have in Eq. (32.33)
not only the theory of the index of refraction of materials, but the theory of their
absorption of light as well.

In what we usually consider to be transparent material, the quantity c/ωnI—
which has the dimensions of a length—is quite large in comparison with the
thickness of the material.

32-5 The index of a mixture

There is another prediction of our theory of the index of refraction that we
can check against experiment. Suppose we consider a mixture of two materials.
The index of the mixture is not the average of the two indexes, but should be
given in terms of the sum of the two polarizabilities, as in Eq. (32.34). If we
ask about the index of, say, a sugar solution, the total polarizability is the sum
of the polarizability of the water and that of the sugar. Each must, of course,
be calculated using for N the number per unit volume of the molecules of the
particular kind. In other words, if a given solution has N1 molecules of water,
whose polarizability is α1, and N2 molecules of sucrose (C12H22O11), whose
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polarizability is α2, we should have that

3
(
n2 − 1
n2 + 2

)
= N1α1 +N2α2. (32.37)

We can use this formula to test our theory against experiment by measuring
the index for various concentrations of sucrose in water. We are making several
assumptions here, however. Our formula assumes that there is no chemical
action when the sucrose is dissolved and that the disturbances to the individual
atomic oscillators are not too different for various concentrations. So our result
is certainly only approximate. Anyway, let’s see how good it is.

We have picked the example of a sugar solution because there is a good table
of measurements of the index of refraction in the Handbook of Chemistry and
Physics and also because sugar is a molecular crystal that goes into solution
without ionizing or otherwise changing its chemical state.

We give in the first three columns of Table 32-2 the data from the handbook.
Column A is the percent of sucrose by weight, column B is the measured density
(g/cm3), and column C is the measured index of refraction for light whose
wavelength is 589.3 millimicrons. For pure sugar we have taken the measured
index of sugar crystals. The crystals are not isotropic, so the measured index is
different along different directions. The handbook gives three values:

n1 = 1.5376, n2 = 1.5651, n3 = 1.5705.

We have taken the average.
Now we could try to compute n for each concentration, but we don’t know

what value to take for α1 or α2. Let’s test the theory this way: We will assume
that the polarizability of water (α1) is the same at all concentrations and compute
the polarizability of sucrose by using the experiment of values for n and solving
Eq. (32.37) for α2. If the theory is correct, we should get the same α2 for all
concentrations.

First, we need to know N1 and N2: let’s express them in terms of Avogadro’s
number, N0. Let’s take one liter (1000 cm3) for our unit of volume. Then Ni/N0
is the weight per liter divided by the gram-molecular weight. And the weight per
liter is the density (multiplied by 1000 to get grams per liter) times the fractional
weight of either the sucrose or the water. In this way, we get N2/N0 and N1/N0
as in columns D and E of the table.
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In column F we have computed 3(n2 − 1)/(n2 + 2) from the experimental
values of n in column C. For pure water, 3(n2 − 1)/(n2 + 2) is 0.617, which is
equal to just N1α1. We can then fill in the rest of Column G, since for each row
G/E may be in the same ratio—namely, 0.617 : 55.5. Subtracting column G
from column F, we get the contribution N2α2 of the sucrose, shown in column H.
Dividing these entries by the values of N2/N0 in column D, we get the value
of N0α2 shown in column J.

From our theory we would expect all the values of N0α2 to be the same. They
are not exactly equal, but pretty close. We can conclude that our ideas are fairly
correct. Even more, we find that the polarizability of the sugar molecule doesn’t
seem to depend much on its surroundings—its polarizability is nearly the same
in a dilute solution as it is in the crystal.

32-6 Waves in metals

The theory we have worked out in this chapter for solid materials can also be
applied to good conductors, like metals, with very little modification. In metals
some of the electrons have no binding force holding them to any particular atom;
it is these “free” electrons which are responsible for the conductivity. There are
other electrons which are bound, and the theory above is directly applicable
to them. Their influence, however, is usually swamped by the effects of the
conduction electrons. We will consider now only the effects of the free electrons.

If there is no restoring force on an electron—but still some resistance to its
motion—its equation of motion differs from Eq. (32.1) only because the term
in ω2

0x is lacking. So all we have to do is set ω2
0 = 0 in the rest of our derivations—

except that there is one more difference. The reason that we had to distinguish
between the average field and the local field in a dielectric is that in an insulator
each of the dipoles is fixed in position, so that it has a definite relationship to
the position of the others. But because the conduction electrons in a metal move
around all over the place, the field on them on the average is just the average
field E. So the correction we made to Eq. (32.8) by using Eq. (32.28) should
not be made for conduction electrons. Therefore the formula for the index of
refraction for metals should look like Eq. (32.27), except with ω0 set equal to
zero, namely,

n2 = 1 + Nq2
e

mε0

1
−ω2 + iγω

. (32.38)

32-16



vdrift

AVERAGE TIME BETWEEN
COLLISIONS IS τ

Fig. 32-2. The motion of a free electron.

This is only the contribution from the conduction electrons, which we will assume
is the major term for metals.

Now we even know how to find what value to use for γ, because it is related
to the conductivity of the metal. In Chapter 43 of Volume I we discussed how
the conductivity of a metal comes from the diffusion of the free electrons through
the crystal. The electrons go on a jagged path from one scattering to the next,
and between scatterings they move freely except for an acceleration due to any
average electric field (as shown in Fig. 32-2). We found in Chapter 43 of Volume I
that the average drift velocity is just the acceleration times the average time τ
between collisions. The acceleration is qeE/m, so

vdrift = qeE

m
τ. (32.39)

This formula assumed that E was constant, so that vdrift was a steady velocity.
Since there is no average acceleration, the drag force is equal to the applied force.
We have defined γ by saying that γmv is the drag force [see Eq. (32.1)], which
is qeE; therefore we have that

γ = 1
τ
. (32.40)

Although we cannot easily measure τ directly, we can determine it by mea-
suring the conductivity of the metal. It is found experimentally that an electric
field E in a metal produces a current with the density j proportional to E (for
isotropic materials):

j = σE.

The proportionality constant σ is called the conductivity. This is just what we
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expect from Eq. (32.39) if we set

j = Nqevdrift.

Then

σ = Nq2
e

m
τ. (32.41)

So τ—and therefore γ—can be related to the observed electrical conductivity. Us-
ing Eqs. (32.40) and (32.41), we can rewrite our formula for the index, Eq. (32.38),
in the following form:

n2 = 1 + σ/ε0
iω(1 + iωτ) , (32.42)

where
τ = 1

γ
= mσ

Nq2
e

. (32.43)

This is a convenient formula for the index of refraction of metals.

32-7 Low-frequency and high-frequency approximations; the skin depth and
the plasma frequency

Our result, Eq. (32.42), for the index of refraction for metals predicts quite
different characteristics for wave propagation at different frequencies. Let’s
first see what happens at very low frequencies. If ω is small enough, we can
approximate Eq. (32.42) by

n2 = −i σ

ε0ω
. (32.44)

Now, as you can check by taking the square,*

√
−i = 1− i√

2
;

so for low frequencies,
n =

√
σ/2ε0ω (1− i). (32.45)

The real and imaginary parts of n have the same magnitude. With such a large

* Or writing −i = e−iπ/2;
√
−i = e−iπ/4 = cosπ/4− i sinπ/4, which gives the same result.
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imaginary part to n, the wave is rapidly attenuated in the metal. Referring to
Eq. (32.36), the amplitude of a wave going in the z-direction decreases as

exp[−
√
σω/2ε0c2 z]. (32.46)

Let’s write this as
e−z/δ, (32.47)

where δ is then the distance in which the wave amplitude decreases by the
factor e−1 = 1/2.72—or roughly one-third. The amplitude of such a wave as a
function of z is shown in Fig. 32-3. Since electromagnetic waves will penetrate
into a metal only this distance, δ is called the skin depth. It is given by

δ =
√

2ε0c2/σω. (32.48)

z

AMPLITUDE

0 δ 2δ 3δ
0

1

SURFACE

e−z/δ

Fig. 32-3. The amplitude of a transverse electromagnetic wave as a
function of distance into a metal.

Now what do we mean by “low” frequencies? Looking at Eq. (32.42), we see
that it can be approximated by Eq. (32.44) only if ωτ is much less than one and
if ωε0/σ is also much less than one—that is, our low-frequency approximation
applies when

ω � 1
τ

and
ω � σ

ε0
. (32.49)

32-19



Let’s see what frequencies these correspond to for a typical metal like copper.
We compute τ by using Eq. (32.43), and σ/ε0, by using the measured conductivity.
We take the following data from a handbook:

σ = 5.76× 107 (ohm·meter)−1
,

atomic weight = 63.5 grams,
density = 8.9 grams·cm−3,

Avogadro’s number = 6.02× 1023 (gram atomic weight)−1.

If we assume that there is one free electron per atom, then the number of electrons
per cubic meter is

N = 8.5× 1028 meter−3.

Using
qe = 1.6× 10−19 coulomb,
ε0 = 8.85× 10−12 farad ·meter−1,

m = 9.11× 10−31 kg,
we get

τ = 2.4× 10−12 sec,
1
τ

= 4.1× 1013 sec−1,

σ

ε0
= 6.5× 1018 sec−1.

So for frequencies less than about 1012 cycles per second, copper will have the
“low-frequency” behavior we describe (that means for waves whose free-space
wavelength is longer than 0.3 millimeters—very short radio waves!).

For these waves, the skin depth in copper is

δ =
√

0.028 m2 · sec−1

ω

For microwaves of 10,000 megacycles per second (3-cm waves)

δ = 6.7× 10−5 cm.

The wave penetrates a very small distance.
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We can see from this why in studying cavities (or waveguides) we needed to
worry only about the fields inside the cavity, and not in the metal or outside the
cavity. Also, we see why the losses in a cavity are reduced by a thin plating of
silver or gold. The losses come from the current, which are appreciable only in a
thin layer equal to the skin depth.

Suppose we look now at the index of a metal like copper at high frequencies.
For very high frequencies ωτ is much greater than one, and Eq. (32.42) is well
approximated by

n2 = 1− σ

ε0ω2τ
. (32.50)

For waves of high frequencies the index of a metal becomes real—and less than
one! This is also evident from Eq. (32.38) if the dissipation term with γ is
neglected, as can be done for very large ω. Equation (32.38) gives

n2 = 1− Nq2
e

mε0ω2 , (32.51)

which is, of course, the same as Eq. (32.50). We have seen before the quan-
tity Nq2

e/mε0, which we called the square of the plasma frequency (Section 7-3):

ω2
p = Nq2

e

ε0m
,

so we can write Eq. (32.50) or Eq. (32.51) as

n2 = 1−
(
ωp
ω

)2
.

The plasma frequency is a kind of “critical” frequency.
For ω < ωp the index of a metal has an imaginary part, and waves are

attenuated; but for ω � ωp the index is real, and the metal becomes transparent.
You know, of course, that metals are reasonably transparent to x-rays. But
some metals are even transparent in the ultraviolet. In Table 32-3 we give
for several metals the experimental observed wavelength at which they begin
to become transparent. In the second column we give the calculated critical
wavelength λp = 2πc/ωp. Considering that the experimental wavelength is not
too well defined, the fit of the theory is fairly good.

You may wonder why the plasma frequency ωp should have anything to do
with the propagation of electromagnetic waves in metals. The plasma frequency
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Table 32-3

Wavelengths below which the metal
becomes transparent*

Metal λ (experimental) λp = 2πc/ωp
Li 1550 Å 1550 Å
Na 2100 2090
K 3150 2870
Rb 3400 3220
* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956, p. 266.

came up in Chapter 7 as the natural frequency of density oscillations of the free
electrons. (A clump of electrons is repelled by electric forces, and the inertia of
the electrons leads to an oscillation of density.) So longitudinal plasma waves are
resonant at ωp. But we are now talking about transverse electromagnetic waves,
and we have found that transverse waves are absorbed for frequencies below ωp.
(It’s an interesting and not accidental coincidence.)

Although we have been talking about wave propagation in metals, you appre-
ciate by this time the universality of the phenomena of physics—that it doesn’t
make any difference whether the free electrons are in a metal or whether they
are in the plasma of the ionosphere of the earth, or in the atmosphere of a
star. To understand radio propagation in the ionosphere, we can use the same
expressions—using, of course, the proper values for N and τ . We can see now
why long radio waves are absorbed or reflected by the ionosphere, whereas short
waves go right through. (Short waves must be used for communication with
satellites.)

We have talked about the high- and low-frequency extremes for wave prop-
agation in metals. For the in-between frequencies the full-blown formula of
Eq. (32.42) must be used. In general, the index will have real and imaginary
parts; the wave is attenuated as it propagates into the metal. For very thin layers,
metals are somewhat transparent even at optical frequencies. As an example,
special goggles for people who work around high-temperature furnaces are made
by evaporating a thin layer of gold on glass. The visible light is transmitted fairly
well—with a strong green tinge—but the infrared is strongly absorbed.
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Finally, it cannot have escaped the reader that many of these formulas resemble
in some ways those for the dielectric constant κ discussed in Chapter 10. The
dielectric constant κ measures the response of the material to a constant field,
that is, for ω = 0. If you look carefully at the definition of n and κ you see
that κ is simply the limit of n2 as ω → 0. Indeed, placing ω = 0 and n2 = κ
in equations of this chapter will reproduce the equations of the theory of the
dielectric constant of Chapter 11.
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33

Reflection from Surfaces

Review: Chapter 33, Vol. I, Polarization

33-1 Reflection and refraction of light

The subject of this chapter is the reflection and refraction of light—or elec-
tromagnetic waves in general—at surfaces. We have already discussed the laws
of reflection and refraction in Chapters 26 and 33 of Volume I. Here’s what we
found out there:

1. The angle of reflection is equal to the angle of incidence. With the angles
defined as shown in Fig. 33-1,

θr = θi. (33.1)

2. The product n sin θ is the same for the incident and transmitted beams
(Snell’s law):

n1 sin θi = n2 sin θt. (33.2)

3. The intensity of the reflected light depends on the angle of incidence and
also on the direction of polarization. For E perpendicular to the plane of
incidence, the reflection coefficient R⊥ is

R⊥ = Ir
Ii

= sin2(θi − θt)
sin2(θi + θt)

. (33.3)

For E parallel to the plane of incidence, the reflection coefficient R‖ is

R‖ = Ir
Ii

= tan2(θi − θt)
tan2(θi + θt)

. (33.4)
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Fig. 33-1. Reflection and refraction of light waves at a surface. (The
wave directions are normal to the wave crests.)

4. For normal incidence (any polarization, of course!),

Ir
Ii

=
(
n2 − n1

n2 + n1

)2
. (33.5)

(Earlier, we used i for the incident angle and r for the refracted angle. Since
we can’t use r for both “refracted” and “reflected” angles, we are now using
θi = incident angle, θr = reflected angle, and θt = transmitted angle.)

Our earlier discussion is really about as far as anyone would normally need to
go with the subject, but we are going to do it all over again a different way. Why?
One reason is that we assumed before that the indexes were real (no absorption
in the materials). But another reason is that you should know how to deal with
what happens to waves at surfaces from the point of view of Maxwell’s equations.
We’ll get the same answers as before, but now from a straightforward solution of
the wave problem, rather than by some clever arguments.

We want to emphasize that the amplitude of a surface reflection is not a
property of the material, as is the index of refraction. It is a “surface property,”
one that depends precisely on how the surface is made. A thin layer of extraneous
junk on the surface between two materials of indices n1 and n2 will usually change
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the reflection. (There are all kinds of possibilities of interference here—like the
colors of oil films. Suitable thickness can even reduce the reflected amplitude to
zero for a given frequency; that’s how coated lenses are made.) The formulas we
will derive are correct only if the change of index is sudden—within a distance
very small compared with one wavelength. For light, the wavelength is about
5000 Å, so by a “smooth” surface we mean one in which the conditions change
in going a distance of only a few atoms (or a few angstroms). Our equations
will work for light for highly polished surfaces. In general, if the index changes
gradually over a distance of several wavelengths, there is very little reflection at
all.

33-2 Waves in dense materials

First, we remind you about the convenient way of describing a sinusoidal
plane wave we used in Chapter 34 of Volume I. Any field component in the wave
(we use E as an example) can be written in the form

E = E0e
i(ωt−k·r), (33.6)

where E represents the amplitude at the point r (from the origin) at the time t.
The vector k points in the direction the wave is travelling, and its magnitude |k| =
k = 2π/λ is the wave number. The phase velocity of the wave is vph = ω/k; for
a light wave in a material of index n, vph = c/n, so

k = ωn

c
. (33.7)

Suppose k is in the z-direction; then k · r is just kz, as we have often used it.
For k in any other direction, we should replace z by rk, the distance from the
origin in the k-direction; that is, we should replace kz by krk, which is just k · r.
(See Fig. 33-2.) So Eq. (33.6) is a convenient representation of a wave in any
direction.

We must remember, of course, that

k · r = kxx+ kyy + kzz,

where kx, ky, and kz are the components of k along the three axes. In fact, we
pointed out once that (ω, kx, ky, kz) is a four-vector, and that its scalar product
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Fig. 33-2. For a wave moving in the direction k, the phase at any
point P is (ωt − k · r).

with (t, x, y, z) is an invariant. So the phase of a wave is an invariant, and
Eq. (33.6) could be written

E = E0e
ikµxµ .

But we don’t need to be that fancy now.
For a sinusoidal E, as in Eq. (33.6), ∂E/∂t is the same as iωE, and ∂E/∂x

is −ikxE, and so on for the other components. You can see why it is very
convenient to use the form in Eq. (33.6) when working with differential equations—
differentiations are replaced by multiplications. One further useful point: The
operation ∇ = (∂/∂x, ∂/∂y, ∂/∂z) gets replaced by the three multiplications
(−ikx,−iky,−ikz). But these three factors transform as the components of the
vector k, so the operator ∇ gets replaced by multiplication with −ik:

∂

∂t
→ iω,

∇→ −ik. (33.8)

This remains true for any ∇ operation—whether it is the gradient, or the
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divergence, or the curl. For instance, the z-component of ∇×E is

∂Ey
∂x
− ∂Ex

∂y
.

If both Ey and Ex vary as e−ik·r, then we get

−ikxEy + ikyEx,

which is, you see, the z-component of −ik ×E.
So we have the very useful general fact that whenever you have to take the

gradient of a vector that varies as a wave in three dimensions (they are an
important part of physics), you can always take the derivations quickly and
almost without thinking by remembering that the operation ∇ is equivalent to
multiplication by −ik.

For instance, the Faraday equation

∇×E = −∂B
∂t

becomes for a wave
−ik ×E = −iωB.

This tells us that
B = k ×E

ω
, (33.9)

which corresponds to the result we found earlier for waves in free space—that
B, in a wave, is at right angles to E and to the wave direction. (In free space,
ω/k = c.) You can remember the sign in Eq. (33.9) from the fact that k is in the
direction of Poynting’s vector S = ε0c

2E ×B.
If you use the same rule with the other Maxwell equations, you get again the

results of the last chapter and, in particular, that

k · k = k2 = ω2n2

c2
. (33.10)

But since we know that, we won’t do it again.
If you want to entertain yourself, you can try the following terrifying problem

that was the ultimate test for graduate students back in 1890: solve Maxwell’s
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equations for plane waves in an anisotropic crystal, that is, when the polariza-
tion P is related to the electric field E by a tensor of polarizability. You should,
of course, choose your axes along the principal axes of the tensor, so that the
relations are simplest (then Px = αaEx, Py = αbEy, and Pz = αcEz), but let
the waves have an arbitrary direction and polarization. You should be able
to find the relations between E and B, and how k varies with direction and
wave polarization. Then you will understand the optics of an anisotropic crystal.
It would be best to start with the simpler case of a birefringent crystal—like
calcite—for which two of the polarizabilities are equal (say, αb = αc), and see if
you can understand why you see double when you look through such a crystal.
If you can do that, then try the hardest case, in which all three α’s are different.
Then you will know whether you are up to the level of a graduate student of 1890.
In this chapter, however, we will consider only isotropic substances.

We know from experience that when a plane wave arrives at the boundary
between two different materials—say, air and glass, or water and oil—there is a
wave reflected and a wave transmitted. Suppose we assume no more than that
and see what we can work out. We choose our axes with the yz-plane in the
surface and the xy-plane perpendicular to the incident wave surfaces, as shown
in Fig. 33-3.

The electric vector of the incident wave can then be written as

Ei = E0e
i(ωt−k·r). (33.11)

Since k is perpendicular to the z-axis,

k · r = kxx+ kyy. (33.12)

We write the reflected wave as

Er = E′0e
i(ω′t−k′·r), (33.13)

so that its frequency is ω′, its wave number is k′, and its amplitude is E′0. (We
know, of course, that the frequency is the same and the magnitude of k′ is the
same as for the incident wave, but we are not going to assume even that. We
will let it come out of the mathematical machinery.) Finally, we write for the
transmitted wave,

Et = E′′0e
i(ω′′t−k′′·r). (33.14)
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Fig. 33-3. The propagation vectors k, k ′, and k ′′ for the incident,
reflected, and transmitted waves.

We know that one of Maxwell’s equations gives Eq. (33.9), so for each of the
waves we have

Bi = k ×Ei

ω
, Br = k′ ×Er

ω′
, Bt = k′′ ×Et

ω′′
. (33.15)

Also, if we call the indexes of the two media n1 and n2, we have from Eq. (33.10)

k2 = k2
x + k2

y = ω2n2
1

c2
. (33.16)

Since the reflected wave is in the same material, then

k′2 = ω′2n2
1

c2
(33.17)

whereas for the transmitted wave,

k′′2 = ω′′2n2
2

c2
. (33.18)
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33-3 The boundary conditions

All we have done so far is to describe the three waves; our problem now is to
work out the parameters of the reflected and transmitted waves in terms of those
of the incident wave. How can we do that? The three waves we have described
satisfy Maxwell’s equations in the uniform material, but Maxwell’s equations
must also be satisfied at the boundary between the two different materials. So
we must now look at what happens right at the boundary. We will find that
Maxwell’s equations demand that the three waves fit together in a certain way.

As an example of what we mean, the y-component of the electric field E must
be the same on both sides of the boundary. This is required by Faraday’s law,

∇×E = −∂B
∂t

, (33.19)

as we can see in the following way. Consider a little rectangular loop Γ which
straddles the boundary, as shown in Fig. 33-4. Equation (33.19) says that the
line integral of E around Γ is equal to the rate of change of the flux of B through
the loop: ∮

Γ
E · ds = − ∂

∂t

∫
B · n da.

x

y

n1 n2

Γ

Ey1 Ey2

Fig. 33-4. A boundary condition Ey2 = Ey1 is obtained from
∮

Γ
E·ds = 0.
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Now imagine that the rectangle is very narrow, so that the loop encloses an
infinitesimal area. If B remains finite (and there’s no reason it should be infinite
at the boundary!) the flux through the area is zero. So the line integral of E
must be zero. If Ey1 and Ey2 are the components of the field on the two sides of
the boundary and if the length of the rectangle is l, we have

Ey1l − Ey2l = 0
or

Ey1 = Ey2, (33.20)

as we have said. This gives us one relation among the fields of the three waves.
The procedure of working out the consequences of Maxwell’s equations at the

boundary is called “determining the boundary conditions.” Ordinarily, it is done
by finding as many equations like Eq. (33.20) as one can, by making arguments
about little rectangles like Γ in Fig. 33-4, or by using little gaussian surfaces that
straddle the boundary. Although that is a perfectly good way of proceeding, it
gives the impression that the problem of dealing with a boundary is different for
every different physical problem.

For example, in a problem of heat flow across a boundary, how are the
temperatures on the two sides related? Well, you could argue, for one thing, that
the heat flow to the boundary from one side would have to equal the flow away
from the other side. It is usually possible, and generally quite useful, to work
out the boundary conditions by making such physical arguments. There may be
times, however, when in working on some problem you have only some equations,
and you may not see right away what physical arguments to use. So although we
are at the moment interested only in an electromagnetic problem, where we can
make the physical arguments, we want to show you a method that can be used
for any problem—a general way of finding what happens at a boundary directly
from the differential equations.

We begin by writing all the Maxwell equations for a dielectric—and this time
we are very specific and write out explicitly all the components:

∇ ·E = −∇ · P
ε0

ε0

(
∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

)
= −

(
∂Px
∂x

+ ∂Py
∂y

+ ∂Pz
∂z

)
(33.21)
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∇×E = −∂B
∂t

∂Ez
∂y
− ∂Ey

∂z
= −∂Bx

∂t
(33.22a)

∂Ex
∂z
− ∂Ez

∂x
= −∂By

∂t
(33.22b)

∂Ey
∂x
− ∂Ex

∂y
= −∂Bz

∂t
(33.22c)

∇ ·B = 0
∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

= 0 (33.23)

c2∇×B = 1
ε0

∂P

∂t
+ ∂E

∂t

c2
(
∂Bz
∂y
− ∂By

∂z

)
= 1
ε0

∂Px
∂t

+ ∂Ex
∂t

(33.24a)

c2
(
∂Bx
∂z
− ∂Bz

∂x

)
= 1
ε0

∂Py
∂t

+ ∂Ey
∂t

(33.24b)

c2
(
∂By
∂x
− ∂Bx

∂y

)
= 1
ε0

∂Pz
∂t

+ ∂Ez
∂t

(33.24c)

Now these equations must all hold in region 1 (to the left of the boundary)
and in region 2 (to the right of the boundary). We have already written the
solutions in regions 1 and 2. Finally, they must also be satisfied in the boundary,
which we can call region 3. Although we usually think of the boundary as being
sharply discontinuous, in reality it is not. The physical properties change very
rapidly but not infinitely fast. In any case, we can imagine that there is a very
rapid, but continuous, transition of the index between region 1 and 2, in a short
distance we can call region 3. Also, any field quantity like Px, or Ey, etc., will
make a similar kind of transition in region 3. In this region, the differential
equations must still be satisfied, and it is by following the differential equations
in this region that we can arrive at the needed “boundary conditions.”

For instance, suppose that we have a boundary between vacuum (region 1)
and glass (region 2). There is nothing to polarize in the vacuum, so P 1 = 0.
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Let’s say there is some polarization P 2 in the glass. Between the vacuum and
the glass there is a smooth, but rapid, transition. If we look at any component
of P , say Px, it might vary as drawn in Fig. 33-5(a). Suppose now we take the

(a)

x

Px

Px1 = 0

Px2

REGION 1 REGION 3 REGION 2

(b)

x

∂Px

∂x

(c)

x

−ε0
∂Ex

∂x

Fig. 33-5. The fields in the transition region 3 between two different
materials in regions 1 and 2.
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first of our equations, Eq. (33.21). It involves derivatives of the components
of P with respect to x, y, and z. The y- and z-derivatives are not interesting;
nothing spectacular is happening in those directions. But the x-derivative of Px
will have some very large values in region 3, because of the tremendous slope
of Px. The derivative ∂Px/∂x will have a sharp spike at the boundary, as shown
in Fig. 33-5(b). If we imagine squashing the boundary to an even thinner layer,
the spike would get much higher. If the boundary is really sharp for the waves
we are interested in, the magnitude of ∂Px/∂x in region 3 will be much, much
greater than any contributions we might have from the variation of P in the
wave away from the boundary—so we ignore any variations other than those due
to the boundary.

Now how can Eq. (33.21) be satisfied if there is a whopping big spike on the
right-hand side? Only if there is an equally whopping big spike on the other side.
Something on the left-hand side must also be big. The only candidate is ∂Ex/∂x,
because the variations with y and z are only those small effects in the wave we
just mentioned. So −ε0(∂Ex/∂x) must be as drawn in Fig. 33-5(c)—just a copy
of ∂Px/∂x. We have that

ε0
∂Ex
∂x

= −∂Px
∂x

.

If we integrate this equation with respect to x across region 3, we conclude that

ε0(Ex2 − Ex1) = −(Px2 − Px1). (33.25)

In other words, the jump in ε0Ex in going from region 1 to region 2 must be
equal to the jump in −Px.

We can rewrite Eq. (33.25) as

ε0Ex2 + Px2 = ε0Ex1 + Px1, (33.26)

which says that the quantity (ε0Ex+Px) has equal values in region 2 and region 1.
People say: the quantity (ε0Ex + Px) is continuous across the boundary. We
have, in this way, one of our boundary conditions.

Although we took as an illustration the case in which P 1 was zero because
region 1 was a vacuum, it is clear that the same argument applies for any two
materials in the two regions, so Eq. (33.26) is true in general.

Let’s now go through the rest of Maxwell’s equations and see what each of
them tells us. We take next Eq. (33.22a). There are no x-derivatives, so it doesn’t
tell us anything. (Remember that the fields themselves do not get especially
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large at the boundary; only the derivatives with respect to x can become so huge
that they dominate the equation.) Next, we look at Eq. (33.22b). Ah! There is
an x-derivative! We have ∂Ez/∂x on the left-hand side. Suppose it has a huge
derivative. But wait a moment! There is nothing on the right-hand side to match
it with; therefore Ez cannot have any jump in going from region 1 to region 2. [If
it did, there would be a spike on the left of Eq. (33.22b) but none on the right,
and the equation would be false.] So we have a new condition:

Ez2 = Ez1. (33.27)

By the same argument, Eq. (33.22c) gives

Ey2 = Ey1. (33.28)

This last result is just what we got in Eq. (33.20) by a line integral argument.
We go on to Eq. (33.23). The only term that could have a spike is ∂Bx/∂x.

But there’s nothing on the right to match it, so we conclude that

Bx2 = Bx1. (33.29)

On to the last of Maxwell’s equations! Equation (33.24a) gives nothing,
because there are no x-derivatives. Equation (33.24b) has one, −c2 ∂Bz/∂x, but
again, there is nothing to match it with. We get

Bz2 = Bz1. (33.30)

The last equation is quite similar, and gives

By2 = By1. (33.31)

The last three equations gives us that B2 = B1. We want to emphasize,
however, that we get this result only when the materials on both sides of the
boundary are nonmagnetic—or rather, when we can neglect any magnetic effects
of the materials. This can usually be done for most materials, except ferromagnetic
ones. (We will treat the magnetic properties of materials in some later chapters.)

Our program has netted us the six relations between the fields in region 1
and those in region 2. We have put them all together in Table 33-1. We can now
use them to match the waves in the two regions. We want to emphasize, however,
that the idea we have just used will work in any physical situation in which you
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Table 33-1

Boundary conditions at the surface of a
dielectric

(ε0E1 + P 1)x = (ε0E2 + P 2)x
(E1)y = (E2)y
(E1)z = (E2)z
B1 = B2

(The surface is in the yz-plane)

have differential equations and you want a solution that crosses a sharp boundary
between two regions where some property changes. For our present purposes,
we could have easily derived the same equations by using arguments about the
fluxes and circulations at the boundary. (You might see whether you can get the
same result that way.) But now you have seen a method that will work in case
you ever get stuck and don’t see any easy argument about the physics of what is
happening at the boundary—you can just work with the equations.

33-4 The reflected and transmitted waves

Now we are ready to apply our boundary conditions to the waves we wrote
down in Section 33-2. We had:

Ei = E0e
i(ωt−kxx−kyy), (33.32)

Er = E′0e
i(ω′t−k′

xx−k
′
yy), (33.33)

Et = E′′0e
i(ω′′t−k′′

xx−k
′′
y y), (33.34)

Bi = k ×Ei

ω
, (33.35)

Br = k′ ×Er

ω′
, (33.36)

Bt = k′′ ×Et

ω′′
. (33.37)

We have one further bit of knowledge: E is perpendicular to its propagation
vector k for each wave.
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The results will depend on the direction of the E-vector (the “polarization”) of
the incoming wave. The analysis is much simplified if we treat separately the case
of an incident wave with its E-vector parallel to the “plane of incidence” (that is,
the xy-plane) and the case of an incident wave with the E-vector perpendicular
to the plane of incidence. A wave of any other polarization is just a linear
combination of two such waves. In other words, the reflected and transmitted
intensities are different for different polarizations, and it is easiest to pick the
two simplest cases and treat them separately.

We will carry through the analysis for an incoming wave polarized perpendic-
ular to the plane of incidence and then just give you the result for the other. We
are cheating a little by taking the simplest case, but the principle is the same for
both. So we take that Ei has only a z-component, and since all the E-vectors
are in the same direction we can leave off the vector signs.

x

y

SURFACE

n1 n2

k

Ei

Bi

k ′

Er

Br

k ′′

Et

Bt

Fig. 33-6. Polarization of the reflected and transmitted waves when
the E-field of the incident wave is perpendicular to the plane of incidence.

So long as both materials are isotropic, the induced oscillations of charges in
the material will also be in the z-direction, and the E-field of the transmitted
and radiated waves will have only z-components. So for all the waves, Ex and Ey
and Px and Py are zero. The waves will have their E- and B-vectors as drawn in
Fig. 33-6. (We are cutting a corner here on our original plan of getting everything
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from the equations. This result would also come out of the boundary conditions,
but we can save a lot of algebra by using the physical argument. When you have
some spare time, see if you can get the same result from the equations. It is clear
that what we have said agrees with the equations; it is just that we have not
shown that there are no other possibilities.)

Now our boundary conditions, Eqs. (33.26) through (33.31), give relations
between the components of E and B in regions 1 and 2. For region 2 we have
only the transmitted wave, but in region 1 we have two waves. Which one do we
use? The fields in region 1 are, of course, the superposition of the fields of the
incident and reflected waves. (Since each satisfies Maxwell’s equations, so does
the sum.) So when we use the boundary conditions, we must use that

E1 = Ei +Er, E2 = Et,

and similarly for the B’s.
For the polarization we are considering, Eqs. (33.26) and (33.28) give us no

new information; only Eq. (33.27) is useful. It says that

Ei + Er = Et,

at the boundary, that is, for x = 0. So we have that

E0e
i(ωt−kyy) + E′0e

i(ω′t−k′
yy) = E′′0 e

i(ω′′t−k′′
y y), (33.38)

which must be true for all t and for all y. Suppose we look first at y = 0. Then
we have

E0e
iωt + E′0e

iω′t = E′′0 e
iω′′t.

This equation says that two oscillating terms are equal to a third oscillation. That
can happen only if all the oscillations have the same frequency. (It is impossible
for three—or any number—of such terms with different frequencies to add to
zero for all times.) So

ω′′ = ω′ = ω. (33.39)
As we knew all along, the frequencies of the reflected and transmitted waves are
the same as that of the incident wave.

We should really have saved ourselves some trouble by putting that in at the
beginning, but we wanted to show you that it can also be got out of the equations.
When you are doing a real problem, it is usually the best thing to put everything
you know into the works right at the start and save yourself a lot of trouble.
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By definition, the magnitude of k is given by k2 = n2ω2/c2, so we have also
that

k′′2

n2
2

= k′2

n2
1

= k2

n2
1
. (33.40)

Now look at Eq. (33.38) for t = 0. Using again the same kind of argument
we have just made, but this time based on the fact that the equation must hold
for all values of y, we get that

k′′y = k′y = ky. (33.41)

From Eq. (33.40), k′2 = k2, so

k′2x + k′2y = k2
x + k2

y.

Combining this with Eq. (33.41), we have that

k′2x = k2
x,

or that k′x = ±kx. The positive sign makes no sense; that would not give a
reflected wave, but another incident wave, and we said at the start that we were
solving the problem of only one incident wave. So we have

k′x = −kx. (33.42)

The two equations (33.41) and (33.42) give us that the angle of reflection is equal
to the angle of incidence, as we expected. (See Fig. 33-3.) The reflected wave is

Er = E′0e
i(ωt+kxx−kyy). (33.43)

For the transmitted wave we already have that

k′′y = ky,

and
k′′2

n2
2

= k2

n2
1

; (33.44)

so we can solve these to find k′′x . We get

k′′2x = k′′2 − k′′2y = n2
2
n2

1
k2 − k2

y. (33.45)
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Suppose for a moment that n1 and n2 are real numbers (that the imaginary
parts of the indexes are very small). Then all the k’s are also real numbers, and
from Fig. 33-3 we find that

ky
k

= sin θi,
k′′y
k′′

= sin θt. (33.46)

From (33.44) we get that
n2 sin θt = n1 sin θi, (33.47)

which is Snell’s law of refraction—again, something we already knew. If the
indexes are not real, the wave numbers are complex, and we have to use Eq. (33.45).
[We could still define the angles θi and θt by Eq. (33.46), and Snell’s law,
Eq. (33.47), would be true in general. But then the “angles” also are complex
numbers, thereby losing their simple geometrical interpretation as angles. It is
best then to describe the behavior of the waves by their complex kx or k′′x values.]

So far, we haven’t found anything new. We have just had the simple-minded
delight of getting some obvious answers from a complicated mathematical ma-
chinery. Now we are ready to find the amplitudes of the waves which we have
not yet known. Using our results for the ω’s and k’s, the exponential factors in
Eq. (33.38) can be cancelled, and we get

E0 + E′0 = E′′0 . (33.48)

Since both E′0 and E′′0 are unknown, we need one more relationship. We must use
another of the boundary conditions. The equations for Ex and Ey are no help,
because all the E’s have only a z-component. So we must use the conditions
on B. Let’s try Eq. (33.29):

Bx2 = Bx1.

From Eqs. (33.35) through (33.37),

Bxi = kyEi
ω

, Bxr =
k′yEr

ω′
, Bxt =

k′′yEt

ω′′
.

Recalling that ω′′ = ω′ = ω and k′′y = k′y = ky, we get that

E0 + E′0 = E′′0 .

But this is just Eq. (33.48) all over again! We’ve just wasted time getting
something we already knew.
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We could try Eq. (33.30), Bz2 = Bz1, but there are no z-components of B!
So there’s only one equation left: Eq. (33.31), By2 = By1. For the three waves:

Byi = −kxEi
ω

, Byr = −k
′
xEr
ω′

, Byt = −k
′′
xEt
ω′′

. (33.49)

Putting for Ei, Er, and Et the wave expression for x = 0 (to be at the boundary),
the boundary condition is

kx
ω
E0e

i(ωt−kyy) + k′x
ω′
E′0e

i(ω′t−k′
yy) = k′′x

ω′′
E′′0 e

i(ω′′t−k′′
y y).

Again all ω’s and ky’s are equal, so this reduces to

kxE0 + k′xE
′
0 = k′′xE

′′
0 . (33.50)

This gives us an equation for the E’s that is different from Eq. (33.48). With
the two, we can solve for E′0 and E′′0 . Remembering that k′x = −kx, we get

E′0 = kx − k′′x
kx + k′′x

E0, (33.51)

E′′0 = 2kx
kx + k′′x

E0. (33.52)

These, together with Eq. (33.45) or Eq. (33.46) for k′′x , give us what we wanted
to know. We will discuss the consequences of this result in the next section.

If we begin with a wave polarized with its E-vector parallel to the plane of
incidence, E will have both x- and y-components, as shown in Fig. 33-7. The
algebra is straightforward but more complicated. (The work can be somewhat
reduced by expressing things in this case in terms of the magnetic fields, which
are all in the z-direction.) One finds that

|E′0| =
n2

2kx − n2
1k
′′
x

n2
2kx + n2

1k
′′
x

|E0| (33.53)

and
|E′′0 | =

2n1n2kx
n2

2kx + n2
1k
′′
x

|E0|. (33.54)

Let’s see whether our results agree with those we got earlier. Equation (33.3)
is the result we worked out in Chapter 33 of Volume I for the ratio of the intensity
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Fig. 33-7. Polarization of the waves when the E-field of the incident
wave is parallel to the plane of incidence.

of the reflected wave to the intensity of the incident wave. Then, however, we
were considering only real indexes. For real indexes (and k’s), we can write

kx = k cos θi = ωn1

c
cos θi,

k′′x = k′′ cos θt = ωn2

c
cos θt.

Substituting in Eq. (33.51), we have

E′0
E0

= n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

, (33.55)

which does not look the same as Eq. (33.3). It will, however, if we use Snell’s law
to get rid of the n’s. Setting n2 = n1 sin θi/ sin θt, and multiplying the numerator
and denominator by sin θt, we get

E′0
E0

= cos θi sin θt − sin θi cos θt
cos θi sin θt + sin θi cos θt

.

The numerator and denominator are just the sines of −(θi − θt) and (θi + θt); we
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get
E′0
E0

= − sin(θi − θt)
sin(θi + θt)

. (33.56)

Since E′0 and E0 are in the same material, the intensities are proportional to
the squares of the electric fields, and we get the same result as before. Similarly,
Eq. (33.53) is the same as Eq. (33.4).

For waves which arrive at normal incidence, θi = 0 and θt = 0. Equa-
tion (33.56) gives 0/0, which is not very useful. We can, however, go back to
Eq. (33.55), which gives

Ir
Ii

=
(
E′0
E0

)2
=
(
n1 − n2

n1 + n2

)2
. (33.57)

This result, naturally, applies for “either” polarization, since for normal incidence
there is no special “plane of incidence.”

33-5 Reflection from metals

We can now use our results to understand the interesting phenomenon of
reflection from metals. Why is it that metals are shiny? We saw in the last
chapter that metals have an index of refraction which, for some frequencies, has
a large imaginary part. Let’s see what we would get for the reflected intensity
when light shines from air (with n = 1) onto a material with n = −inI . Then
Eq. (33.55) gives (for normal incidence)

E′0
E0

= 1 + inI
1− inI

.

For the intensity of the reflected wave, we want the square of the absolute values
of E′0 and E0:

Ir
Ii

= |E
′
0|2

|E0|2
= |1 + inI |2

|1− inI |2
, (33.58)

or
Ir
Ii

= 1 + n2
I

1 + n2
I

= 1. (33.59)

For a material with an index which is a pure imaginary number, there is 100 per-
cent reflection!
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Fig. 33-8. A material which absorbs light strongly at the frequency ω
also reflects light of that frequency.

Metals do not reflect 100 percent, but many do reflect visible light very well.
In other words, the imaginary part of their indexes is very large. But we have
seen that a large imaginary part of the index means a strong absorption. So
there is a general rule that if any material gets to be a very good absorber at
any frequency, the waves are strongly reflected at the surface and very little gets
inside to be absorbed. You can see this effect with strong dyes. Pure crystals of
the strongest dyes have a “metallic” shine. Probably you have noticed that at the
edge of a bottle of purple ink the dried dye will give a golden metallic reflection,
or that dried red ink will sometimes give a greenish metallic reflection. Red ink
absorbs out the greens of transmitted light, so if the ink is very concentrated, it
will exhibit a strong surface reflection for the frequencies of green light.

You can easily show this effect by coating a glass plate with red ink and
letting it dry. If you direct a beam of white light at the back of the plate, as
shown in Fig. 33-8, there will be a transmitted beam of red light and a reflected
beam of green light.

33-6 Total internal reflection

If light goes from a material like glass, with a real index n greater than 1,
toward, say, air, with an index n2 equal to 1, Snell’s law says that

sin θt = n sin θi.
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The angle θt of the transmitted wave becomes 90◦ when the incident angle θi is
equal to the “critical angle” θc given by

n sin θc = 1. (33.60)

What happens for θi greater than the critical angle? You know that there is total
internal reflection. But how does that come about?

Let’s go back to Eq. (33.45) which gives the wave number k′′x for the trans-
mitted wave. We would have

k′′2x = k2

n2 − k
2
y.

Now ky = k sin θi and k = ωn/c, so

k′′2x = ω2

c2
(1− n2 sin2 θi).

If n sin θi is greater than one, k′′2x is negative and k′′x is a pure imaginary, say ±ikI .
You know by now what that means! The “transmitted” wave (Eq. 33.34) will
have the form

Et = E′′0e
±kIxei(ωt−kyy).

The wave amplitude either grows or drops off exponentially with increasing x.
Clearly, what we want here is the negative sign. Then the amplitude of the
wave to the right of the boundary will go as shown in Fig. 33-9. Notice that kI
is ω/c—which is of the order 1/λ0, the reciprocal of the free-space wavelength of
the light. When light is totally reflected from the inside of a glass-air surface,
there are fields in the air, but they extend beyond the surface only a distance of
the order of the wavelength of the light.

We can now see how to answer the following question: If a light wave in glass
arrives at the surface at a large enough angle, it is reflected; if another piece
of glass is brought up to the surface (so that the “surface” in effect disappears)
the light is transmitted. Exactly when does this happen? Surely there must be
continuous change from total reflection to no reflection! The answer, of course,
is that if the air gap is so small that the exponential tail of the wave in the
air has an appreciable strength at the second piece of glass, it will shake the
electrons there and generate a new wave, as shown in Fig. 33-10. Some light
will be transmitted. (Clearly, our solution is incomplete; we should solve all the
equations again for a thin layer of air between two regions of glass.)
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Fig. 33-9. Total internal reflection.
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n1 = n n2 = 1 n3 = n

Fig. 33-10. If there is a small gap, internal reflection is not “total;” a
transmitted wave appears beyond the gap.

This transmission effect can be observed with ordinary light only if the air
gap is very small (of the order of the wavelength of light, like 10−5 cm), but
it is easily demonstrated with three-centimeter waves. Then the exponentially
decreasing field extends several centimeters. A microwave apparatus that shows
the effect is drawn in Fig. 33-11. Waves from a small three-centimeter transmitter
are directed at a 45◦ prism of paraffin. The index of refraction of paraffin for
these frequencies is 1.50, and therefore the critical angle is 41.5◦. So the wave is
totally reflected from the 45◦ face and is picked up by detector A, as indicated
in Fig. 33-11(a). If a second paraffin prism is placed in contact with the first, as
shown in part (b) of the figure, the wave passes straight through and is picked
up at detector B. If a gap of a few centimeters is left between the two prisms,
as in part (c), there are both transmitted and reflected waves. The electric field
outside the 45◦ face of the prism in Fig. 33-11(a) can also be shown by bringing
detector B to within a few centimeters of the surface.
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Fig. 33-11. A demonstration of the penetration of internally reflected
waves.
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34

The Magnetism of Matter

Review: Section 15-1, “The forces on a current loop; energy of a dipole.”

34-1 Diamagnetism and paramagnetism

In this chapter we are going to talk about the magnetic properties of materials.
The material which has the most striking magnetic properties is, of course, iron.
Similar magnetic properties are shared also by the elements nickel, cobalt, and—
at sufficiently low temperatures (below 16◦C)—by gadolinium, as well as by a
number of peculiar alloys. That kind of magnetism, called ferromagnetism, is
sufficiently striking and complicated that we will discuss it in a special chapter.
However, all ordinary substances do show some magnetic effects, although very
small ones—a thousand to a million times less than the effects in ferromagnetic
materials. Here we are going to describe ordinary magnetism, that is to say, the
magnetism of substances other than the ferromagnetic ones.

This small magnetism is of two kinds. Some materials are attracted toward
magnetic fields; others are repelled. Unlike the electrical effect in matter, which
always causes dielectrics to be attracted, there are two signs to the magnetic effect.
These two signs can be easily shown with the help of a strong electromagnet
which has one sharply pointed pole piece and one flat pole piece, as drawn in
Fig. 34-1. The magnetic field is much stronger near the pointed pole than near
the flat pole. If a small piece of material is fastened to a long string and suspended
between the poles, there will, in general, be a small force on it. This small force
can be seen by the slight displacement of the hanging material when the magnet
is turned on. The few ferromagnetic materials are attracted very strongly toward
the pointed pole; all other materials feel only a very weak force. Some are weakly
attracted to the pointed pole; and some are weakly repelled.

The effect is most easily seen with a small cylinder of bismuth, which is
repelled from the high-field region. Substances which are repelled in this way
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Fig. 34-1. A small cylinder of bismuth is weakly repelled by the sharp
pole; a piece of aluminum is attracted.

are called diamagnetic. Bismuth is one of the strongest diamagnetic materials,
but even with it, the effect is still quite weak. Diamagnetism is always very
weak. If a small piece of aluminum is suspended between the poles, there is
also a weak force, but toward the pointed pole. Substances like aluminum are
called paramagnetic. (In such an experiment, eddy-current forces arise when the
magnet is turned on and off, and these can give off strong impulses. You must be
careful to look for the net displacement after the hanging object settles down.)

We want now to describe briefly the mechanisms of these two effects. First, in
many substances the atoms have no permanent magnetic moments, or rather, all
the magnets within each atom balance out so that the net moment of the atom is
zero. The electron spins and orbital motions all exactly balance out, so that any
particular atom has no average magnetic moment. In these circumstances, when
you turn on a magnetic field little extra currents are generated inside the atom by
induction. According to Lenz’s law, these currents are in such a direction as to
oppose the increasing field. So the induced magnetic moments of the atoms are
directed opposite to the magnetic field. This is the mechanism of diamagnetism.

Then there are some substances for which the atoms do have a permanent
magnetic moment—in which the electron spins and orbits have a net circulating
current that is not zero. So besides the diamagnetic effect (which is always
present), there is also the possibility of lining up the individual atomic magnetic
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moments. In this case, the moments try to line up with the magnetic field (in
the way the permanent dipoles of a dielectric are lined up by the electric field),
and the induced magnetism tends to enhance the magnetic field. These are the
paramagnetic substances. Paramagnetism is generally fairly weak because the
lining-up forces are relatively small compared with the forces from the thermal
motions which try to derange the order. It also follows that paramagnetism is
usually sensitive to the temperature. (The paramagnetism arising from the spins
of the electrons responsible for conduction in a metal constitutes an exception.
We will not be discussing this phenomenon here.) For ordinary paramagnetism,
the lower the temperature, the stronger the effect. There is more lining-up at low
temperatures when the deranging effects of the collisions are less. Diamagnetism,
on the other hand, is more or less independent of the temperature. In any
substance with built-in magnetic moments there is a diamagnetic as well as a
paramagnetic effect, but the paramagnetic effect usually dominates.

In Chapter 11 we described a ferroelectric material, in which all the electric
dipoles get lined up by their own mutual electric fields. It is also possible to
imagine the magnetic analog of ferroelectricity, in which all the atomic moments
would line up and lock together. If you make calculations of how this should
happen, you will find that because the magnetic forces are so much smaller than
the electric forces, thermal motions should knock out this alignment even at
temperatures as low as a few tenths of a degree Kelvin. So it would be impossible
at room temperature to have any permanent lining up of the magnets.

On the other hand, this is exactly what does happen in iron—it does get lined
up. There is an effective force between the magnetic moments of the different
atoms of iron which is much, much greater than the direct magnetic interaction.
It is an indirect effect which can be explained only by quantum mechanics. It is
about ten thousand times stronger than the direct magnetic interaction, and is
what lines up the moments in ferromagnetic materials. We discuss this special
interaction in a later chapter.

Now that we have tried to give you a qualitative explanation of diamagnetism
and paramagnetism, we must correct ourselves and say that it is not possible to
understand the magnetic effects of materials in any honest way from the point
of view of classical physics. Such magnetic effects are a completely quantum-
mechanical phenomenon. It is, however, possible to make some phoney classical
arguments and to get some idea of what is going on. We might put it this way.
You can make some classical arguments and get guesses as to the behavior of the
material, but these arguments are not “legal” in any sense because it is absolutely
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essential that quantum mechanics be involved in every one of these magnetic
phenomena. On the other hand, there are situations, such as in a plasma or a
region of space with many free electrons, where the electrons do obey the laws
of classical mechanics. And in those circumstances, some of the theorems from
classical magnetism are worth while. Also, the classical arguments are of some
value for historical reasons. The first few times that people were able to guess at
the meaning and behavior of magnetic materials, they used classical arguments.
Finally, as we have already illustrated, classical mechanics can give us some useful
guesses as to what might happen—even though the really honest way to study
this subject would be to learn quantum mechanics first and then to understand
the magnetism in terms of quantum mechanics.

On the other hand, we don’t want to wait until we learn quantum mechanics
inside out to understand a simple thing like diamagnetism. We will have to
lean on the classical mechanics as kind of half showing what happens, realizing,
however, that the arguments are really not correct. We therefore make a series
of theorems about classical magnetism that will confuse you because they will
prove different things. Except for the last theorem, every one of them will be
wrong. Furthermore, they will all be wrong as a description of the physical world,
because quantum mechanics is left out.

34-2 Magnetic moments and angular momentum

The first theorem we want to prove from classical mechanics is the following:
If an electron is moving in a circular orbit (for example, revolving around a
nucleus under the influence of a central force), there is a definite ratio between
the magnetic moment and the angular momentum. Let’s call J the angular
momentum and µ the magnetic moment of the electron in the orbit. The
magnitude of the angular momentum is the mass of the electron times the
velocity times the radius. (See Fig. 34-2.) It is directed perpendicular to the
plane of the orbit.

J = mvr. (34.1)

(This is, of course, a nonrelativistic formula, but it is a good approximation for
atoms, because for the electrons involved v/c is generally of the order of e2/~c ≈
1/137, or about 1 percent.)

The magnetic moment of the same orbit is the current times the area. (See
Section 14-5.) The current is the charge per unit time which passes any point on
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Fig. 34-2. For any circular orbit the magnetic moment µ is q/2m times
the angular momentum J.

the orbit, namely, the charge q times the frequency of rotation. The frequency is
the velocity divided by the circumference of the orbit; so

I = q
v

2πr .

The area is πr2, so the magnetic moment is

µ = qvr

2 . (34.2)

It is also directed perpendicular to the plane of the orbit. So J and µ are in the
same direction:

µ = q

2m J (orbit). (34.3)

Their ratio depends neither on the velocity nor on the radius. For any particle
moving in a circular orbit the magnetic moment is equal to q/2m times the
angular momentum. For an electron, the charge is negative—we can call it −qe;
so for an electron

µ = − qe
2m J (electron orbit). (34.4)

That’s what we would expect classically and, miraculously enough, it is also
true quantum-mechanically. It’s one of those things. However, if you keep going
with the classical physics, you find other places where it gives the wrong answers,
and it is a great game to try to remember which things are right and which things
are wrong. We might as well give you immediately what is true in general in
quantum mechanics. First, Eq. (34.4) is true for orbital motion, but that’s not
the only magnetism that exists. The electron also has a spin rotation about its
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own axis (something like the earth rotating on its axis), and as a result of that
spin it has both an angular momentum and a magnetic moment. But for reasons
that are purely quantum-mechanical—there is no classical explanation—the ratio
of µ to J for the electron spin is twice as large as it is for orbital motion of the
spinning electron:

µ = −qe
m
J (electron spin). (34.5)

In any atom there are, generally speaking, several electrons and some combi-
nation of spin and orbit rotations which builds up a total angular momentum and
a total magnetic moment. Although there is no classical reason why it should be
so, it is always true in quantum mechanics that (for an isolated atom) the direc-
tion of the magnetic moment is exactly opposite to the direction of the angular
momentum. The ratio of the two is not necessarily either −qe/m or −qe/2m,
but somewhere in between, because there is a mixture of the contributions from
the orbits and the spins. We can write

µ = −g
(
qe
2m

)
J , (34.6)

where g is a factor which is characteristic of the state of the atom. It would be 1
for a pure orbital moment, or 2 for a pure spin moment, or some other number
in between for a complicated system like an atom. This formula does not, of
course, tell us very much. It says that the magnetic moment is parallel to the
angular momentum, but can have any magnitude. The form of Eq. (34.6) is
convenient, however, because g—called the “Landé g-factor”—is a dimensionless
constant whose magnitude is of the order of one. It is one of the jobs of quantum
mechanics to predict the g-factor for any particular atomic state.

You might also be interested in what happens in nuclei. In nuclei there are
protons and neutrons which may move around in some kind of orbit and at the
same time, like an electron, have an intrinsic spin. Again the magnetic moment
is parallel to the angular momentum. Only now the order of magnitude of the
ratio of the two is what you would expect for a proton going around in a circle,
with m in Eq. (34.3) equal to the proton mass. Therefore it is usual to write for
nuclei

µ = g

(
qe

2mp

)
J , (34.7)

where mp is the mass of the proton, and g—called the nuclear g-factor—is a
number near one, to be determined for each nucleus.
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Another important difference for a nucleus is that the spin magnetic moment
of the proton does not have a g-factor of 2, as the electron does. For a proton,
g = 2 · (2.79). Surprisingly enough, the neutron also has a spin magnetic moment,
and its magnetic moment relative to its angular momentum is 2 · (−1.91). The
neutron, in other words, is not exactly “neutral” in the magnetic sense. It is like
a little magnet, and it has the kind of magnetic moment that a rotating negative
charge would have.

34-3 The precession of atomic magnets

One of the consequences of having the magnetic moment proportional to
the angular momentum is that an atomic magnet placed in a magnetic field
will precess. First we will argue classically. Suppose that we have the magnetic
moment µ suspended freely in a uniform magnetic field. It will feel a torque τ ,
equal to µ×B, which tries to bring it in line with the field direction. But the
atomic magnet is a gyroscope—it has the angular momentum J . Therefore the
torque due to the magnetic field will not cause the magnet to line up. Instead, the
magnet will precess, as we saw when we analyzed a gyroscope in Chapter 20 of
Volume I. The angular momentum—and with it the magnetic moment—precesses
about an axis parallel to the magnetic field. We can find the rate of precession
by the same method we used in Chapter 20 of the first volume.

Suppose that in a small time ∆t the angular momentum changes from J
to J ′, as drawn in Fig. 34-3, staying always at the same angle θ with respect
to the direction of the magnetic field B. Let’s call ωp the angular velocity of
the precession, so that in the time ∆t the angle of precession is ωp ∆t. From
the geometry of the figure, we see that the change of angular momentum in the
time ∆t is

∆J = (J sin θ)(ωp ∆t).

So the rate of change of the angular momentum is

dJ

dt
= ωpJ sin θ, (34.8)

which must be equal to the torque:

τ = µB sin θ. (34.9)
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B

ωp

θ

J

J ′ ∆J

|J| sin θ

Fig. 34-3. An object with angular momentum J and a parallel magnetic
moment µ placed in a magnetic field B precesses with the angular
velocity ωp.

The angular velocity of precession is then

ωp = µ

J
B. (34.10)

Substituting µ/J from Eq. (34.6), we see that for an atomic system

ωp = g
qeB

2m ; (34.11)

the precession frequency is proportional to B. It is handy to remember that for
an atom (or electron)

fp = ωp
2π = (1.4 megacycles/gauss)gB, (34.12)

and that for a nucleus

fp = ωp
2π = (0.76 kilocycles/gauss)gB. (34.13)

(The formulas for atoms and nuclei are different only because of the different
conventions for g for the two cases.)
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According to the classical theory, then, the electron orbits—and spins—in an
atom should precess in a magnetic field. Is it also true quantum-mechanically? It
is essentially true, but the meaning of the “precession” is different. In quantum
mechanics one cannot talk about the direction of the angular momentum in the
same sense as one does classically; nevertheless, there is a very close analogy—so
close that we continue to call it “precession.” We will discuss it later when we
talk about the quantum-mechanical point of view.

34-4 Diamagnetism

Next we want to look at diamagnetism from the classical point of view. It
can be worked out in several ways, but one of the nice ways is the following.
Suppose that we slowly turn on a magnetic field in the vicinity of an atom. As
the magnetic field changes an electric field is generated by magnetic induction.
From Faraday’s law, the line integral of E around any closed path is the rate of
change of the magnetic flux through the path. Suppose we pick a path Γ which is
a circle of radius r concentric with the center of the atom, as shown in Fig. 34-4.
The average tangential electric field E around this path is given by

E2πr = − d

dt
(Bπr2),

and there is a circulating electric field whose strength is

E = −r2
dB

dt
.

B

r

Path Γ

q
F

Fig. 34-4. The induced electric forces on the electrons in an atom.
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The induced electric field acting on an electron in the atom produces a
torque equal to −qeEr, which must equal the rate of change of the angular
momentum dJ/dt:

dJ

dt
= qer

2

2
dB

dt
. (34.14)

Integrating with respect to time from zero field, we find that the change in angular
momentum due to turning on the field is

∆J = qer
2

2 B. (34.15)

This is the extra angular momentum from the twist given to the electrons as the
field is turned on.

This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, is just −qe/2m times the angular momentum.
The induced diamagnetic moment is

∆µ = − qe
2m ∆J = −q

2
er

2

4m B. (34.16)

The minus sign (as you can see is right by using Lenz’s law) means that the
added moment is opposite to the magnetic field.

We would like to write Eq. (34.16) a little differently. The r2 which appears
is the radius from an axis through the atom parallel to B, so if B is along the
z-direction, it is x2 + y2. If we consider spherically symmetric atoms (or average
over atoms with their natural axes in all directions) the average of x2 + y2 is 2/3
of the average of the square of the true radial distance from the center point of
the atom. It is therefore usually more convenient to write Eq. (34.16) as

∆µ = − q2
e

6m 〈r
2〉avB. (34.17)

In any case, we have found an induced atomic moment proportional to the
magnetic field B and opposing it. This is diamagnetism of matter. It is this
magnetic effect that is responsible for the small force on a piece of bismuth in a
nonuniform magnetic field. (You could compute the force by working out the
energy of the induced moments in the field and seeing how the energy changes as
the material is moved into or out of the high-field region.)
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We are still left with the problem: What is the mean square radius, 〈r2〉av?
Classical mechanics cannot supply an answer. We must go back and start over
with quantum mechanics. In an atom we cannot really say where an electron is,
but only know the probability that it will be at some place. If we interpret 〈r2〉av to
mean the average of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by quantum mechanics is just the
same as formula (34.17). This equation, of course, is the moment for one electron.
The total moment is given by the sum over all the electrons in the atom. The
surprising thing is that the classical argument and quantum mechanics give
the same answer, although, as we shall see, the classical argument that gives
Eq. (34.17) is not really valid in classical mechanics.

The same diamagnetic effect occurs even when an atom already has a per-
manent moment. Then the system will precess in the magnetic field. As the
whole atom precesses, it takes up an additional small angular velocity, and that
slow turning gives a small current which represents a correction to the magnetic
moment. This is just the diamagnetic effect represented in another way. But we
don’t really have to worry about that when we talk about paramagnetism. If
the diamagnetic effect is first computed, as we have done here, we don’t have
to worry about the fact that there is an extra little current from the precession.
That has already been included in the diamagnetic term.

34-5 Larmor’s theorem

We can already conclude something from our results so far. First of all, in
the classical theory the moment µ was always proportional to J , with a given
constant of proportionality for a particular atom. There wasn’t any spin of the
electrons, and the constant of proportionality was always −qe/2m; that is to
say, in Eq. (34.6) we should set g = 1. The ratio of µ to J was independent
of the internal motion of the electrons. Thus, according to the classical theory,
all systems of electrons would precess with the same angular velocity. (This is
not true in quantum mechanics.) This result is related to a theorem in classical
mechanics that we would now like to prove. Suppose we have a group of electrons
which are all held together by attraction toward a central point—as the electrons
are attracted by a nucleus. The electrons will also be interacting with each other,
and can, in general, have complicated motions. Suppose you have solved for
the motions with no magnetic field and then want to know what the motions
would be with a weak magnetic field. The theorem says that the motion with a
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weak magnetic field is always one of the no-field solutions with an added rotation,
about the axis of the field, with the angular velocity ωL = qeB/2m. (This is the
same as ωp, if g = 1.) There are, of course, many possible motions. The point is
that for every motion without the magnetic field there is a corresponding motion
in the field, which is the original motion plus a uniform rotation. This is called
Larmor’s theorem, and ωL is called the Larmor frequency.

We would like to show how the theorem can be proved, but we will let you
work out the details. Take, first, one electron in a central force field. The force on
it is just F (r), directed toward the center. If we now turn on a uniform magnetic
field, there is an additional force, qv ×B; so the total force is

F (r) + qv ×B. (34.18)

Now let’s look at the same system from a coordinate system rotating with angular
velocity ω about an axis through the center of force and parallel to B. This is
no longer an inertial system, so we have to put in the proper pseudo forces—the
centrifugal and Coriolis forces we talked about in Chapter 19 of Volume I. We
found there that in a frame rotating with angular velocity ω, there is an apparent
tangential force proportional to vr, the radial component of velocity:

Ft = −2mωvr. (34.19)

And there is an apparent radial force which is given by

Fr = mω2r + 2mωvt, (34.20)

where vt is the tangential component of the velocity, measured in the rotating
frame. (The radial component vr for rotating and inertial frames is the same.)

Now for small enough angular velocities (that is, if ωr � vt), we can neglect
the first term (centrifugal) in Eq. (34.20) in comparison with the second (Coriolis).
Then Eqs. (34.19) and (34.20) can be written together as

F = −2mω × v. (34.21)

If we now combine a rotation and a magnetic field, we must add the force in
Eq. (34.21) to that in Eq. (34.18). The total force is

F (r) + qv ×B + 2mv × ω (34.22)
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[we reverse the cross product and the sign of Eq. (34.21) to get the last term].
Looking at our result, we see that if

2mω = −qB

the two terms on the right cancel, and in the moving frame the only force is F (r).
The motion of the electron is just the same as with no magnetic field—and, of
course, no rotation. We have proved Larmor’s theorem for one electron. Since
the proof assumes a small ω, it also means that the theorem is true only for weak
magnetic fields. The only thing we could ask you to improve on is to take the
case of many electrons mutually interacting with each other, but all in the same
central field, and prove the same theorem. So no matter how complex an atom
is, if it has a central field the theorem is true. But that’s the end of the classical
mechanics, because it isn’t true in fact that the motions precess in that way. The
precession frequency ωp of Eq. (34.11) is only equal to ωL if g happens to be
equal to 1.

34-6 Classical physics gives neither diamagnetism nor paramagnetism

Now we would like to demonstrate that according to classical mechanics there
can be no diamagnetism and no paramagnetism at all. It sounds crazy—first,
we have proved that there are paramagnetism, diamagnetism, precessing orbits,
and so on, and now we are going to prove that it is all wrong. Yes!—We are
going to prove that if you follow the classical mechanics far enough, there are no
such magnetic effects—they all cancel out. If you start a classical argument in a
certain place and don’t go far enough, you can get any answer you want. But the
only legitimate and correct proof shows that there is no magnetic effect whatever.

It is a consequence of classical mechanics that if you have any kind of system—
a gas with electrons, protons, and whatever—kept in a box so that the whole thing
can’t turn, there will be no magnetic effect. It is possible to have a magnetic effect
if you have an isolated system, like a star held together by itself, which can start
rotating when you put on the magnetic field. But if you have a piece of material
that is held in place so that it can’t start spinning, then there will be no magnetic
effects. What we mean by holding down the spin is summarized this way: At a
given temperature we suppose that there is only one state of thermal equilibrium.
The theorem then says that if you turn on a magnetic field and wait for the system
to get into thermal equilibrium, there will be no paramagnetism or diamagnetism—
there will be no induced magnetic moment. Proof: According to statistical
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mechanics, the probability that a system will have any given state of motion is
proportional to e−U/kT , where U is the energy of that motion. Now what is the
energy of motion? For a particle moving in a constant magnetic field, the energy is
the ordinary potential energy plusmv2/2, with nothing additional for the magnetic
field. [You know that the forces from electromagnetic fields are q(E+v×B), and
that the rate of work F · v is just qE · v, which is not affected by the magnetic
field.] So the energy of a system, whether it is in a magnetic field or not, is always
given by the kinetic energy plus the potential energy. Since the probability of any
motion depends only on the energy—that is, on the velocity and position—it is the
same whether or not there is a magnetic field. For thermal equilibrium, therefore,
the magnetic field has no effect. If we have one system in a box, and then have
another system in a second box, this time with a magnetic field, the probability
of any particular velocity at any point in the first box is the same as in the second.
If the first box has no average circulating current (which it will not have if it is
in equilibrium with the stationary walls), there is no average magnetic moment.
Since in the second box all the motions are the same, there is no average magnetic
moment there either. Hence, if the temperature is kept constant and thermal
equilibrium is re-established after the field is turned on, there can be no magnetic
moment induced by the field—according to classical mechanics. We can only get
a satisfactory understanding of magnetic phenomena from quantum mechanics.

Unfortunately, we cannot assume that you have a thorough understanding
of quantum mechanics, so this is hardly the place to discuss the matter. On
the other hand, we don’t always have to learn something first by learning the
exact rules and then by learning how they are applied in different cases. Almost
every subject that we have taken up in this course has been treated in a different
way. In the case of electricity, we wrote the Maxwell equations on “Page One”
and then deduced all the consequences. That’s one way. But we will not now
try to begin a new “Page One,” writing the equations of quantum mechanics
and deducing everything from them. We will just have to tell you some of the
consequences of quantum mechanics, before you learn where they come from. So
here we go.

34-7 Angular momentum in quantum mechanics

We have already given you a relation between the magnetic moment and the
angular momentum. That’s pleasant. But what do the magnetic moment and
the angular momentum mean in quantum mechanics? In quantum mechanics it
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turns out to be best to define things like magnetic moments in terms of the other
concepts such as energy, in order to make sure that one knows what it means.
Now, it is easy to define a magnetic moment in terms of energy, because the
energy of a moment in a magnetic field is, in the classical theory, µ ·B. Therefore,
the following definition has been taken in quantum mechanics: If we calculate
the energy of a system in a magnetic field and we find that it is proportional
to the field strength (for small field), the coefficient is called the component of
magnetic moment in the direction of the field. (We don’t have to get so elegant
for our work now; we can still think of the magnetic moment in the ordinary, to
some extent classical, sense.)

Now we would like to discuss the idea of angular momentum in quantum
mechanics—or rather, the characteristics of what, in quantum mechanics, is
called angular momentum. You see, when you go to new kinds of laws, you
can’t just assume that each word is going to mean exactly the same thing. You
may think, say, “Oh, I know what angular momentum is. It’s that thing that
is changed by a torque.” But what’s a torque? In quantum mechanics we have
to have new definitions of old quantities. It would, therefore, be legally best to
call it by some other name such as “quantangular momentum,” or something
like that, because it is the angular momentum as defined in quantum mechanics.
But if we can find a quantity in quantum mechanics which is identical to our old
idea of angular momentum when the system becomes large enough, there is no
use in inventing an extra word. We might as well just call it angular momentum.
With that understanding, this odd thing that we are about to describe is angular
momentum. It is the thing which in a large system we recognize as angular
momentum in classical mechanics.

First, we take a system in which angular momentum is conserved, such as an
atom all by itself in empty space. Now such a thing (like the earth spinning on
its axis) could, in the ordinary sense, be spinning around any axis one wished to
choose. And for a given spin, there could be many different “states,” all of the
same energy, each “state” corresponding to a particular direction of the axis of the
angular momentum. So in the classical theory, with a given angular momentum,
there is an infinite number of possible states, all of the same energy.

It turns out in quantum mechanics, however, that several strange things
happen. First, the number of states in which such a system can exist is limited—
there is only a finite number. If the system is small, the finite number is very
small, and if the system is large, the finite number gets very, very large. Second,
we cannot describe a “state” by giving the direction of its angular momentum, but
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only by giving the component of the angular momentum along some direction—say
in the z-direction. Classically, an object with a given total angular momentum J
could have, for its z-component, any value from +J to −J . But quantum-
mechanically, the z-component of angular momentum can have only certain
discrete values. Any given system—a particular atom, or a nucleus, or anything—
with a given energy, has a characteristic number j, and its z-component of angular
momentum can only be one of the following set of values:

j~
(j − 1)~
(j − 2)~

...

−(j − 2)~
−(j − 1)~

−j~

(34.23)

The largest z-component is j times ~; the next smaller is one unit of ~ less, and
so on down to −j~. The number j is called “the spin of the system.” (Some
people call it the “total angular momentum quantum number”; but we’ll call it
the “spin.”)

You may be worried that what we are saying can only be true for some
“special” z-axis. But that is not so. For a system whose spin is j, the component
of angular momentum along any axis can have only one of the values in (34.23).
Although it is quite mysterious, we ask you just to accept it for the moment. We
will come back and discuss the point later. You may at least be pleased to hear
that the z-component goes from some number to minus the same number, so
that we at least don’t have to decide which is the plus direction of the z-axis.
(Certainly, if we said that it went from +j to minus a different amount, that
would be infinitely mysterious, because we wouldn’t have been able to define the
z-axis, pointing the other way.)

Now if the z-component of angular momentum must go down by integers
from +j to −j, then j must be an integer. No! Not quite; twice j must be an
integer. It is only the difference between +j and −j that must be an integer.
So, in general, the spin j is either an integer or a half-integer, depending on
whether 2j is even or odd. Take, for instance, a nucleus like lithium, which has a
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spin of three-halves, j = 3/2. Then the angular momentum around the z-axis, in
units of ~, is one of the following:

+3/2
+1/2
−1/2
−3/2.

There are four possible states, each of the same energy, if the nucleus is in empty
space with no external fields. If we have a system whose spin is two, then the
z-component of angular momentum has only the values, in units of ~,

2
1
0
−1
−2.

If you count how many states there are for a given j, there are (2j+1) possibilities.
In other words, if you tell me the energy and also the spin j, it turns out that
there are exactly (2j + 1) states with that energy, each state corresponding to
one of the different possible values of the z-component of the angular momentum.

We would like to add one other fact. If you pick out any atom of known j
at random and measure the z-component of the angular momentum, then you
may get any one of the possible values, and each of the values is equally likely.
All of the states are in fact single states, and each is just as good as any other.
Each one has the same “weight” in the world. (We are assuming that nothing
has been done to sort out a special sample.) This fact has, incidentally, a simple
classical analog. If you ask the same question classically: What is the likelihood
of a particular z-component of angular momentum if you take a random sample
of systems, all with the same total angular momentum?—the answer is that all
values from the maximum to the minimum are equally likely. (You can easily
work that out.) The classical result corresponds to the equal probability of the
(2j + 1) possibilities in quantum mechanics.

From what we have so far, we can get another interesting and somewhat
surprising conclusion. In certain classical calculations the quantity that appears
in the final result is the square of the magnitude of the angular momentum J—in
other words, J · J . It turns out that it is often possible to guess at the correct
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quantum-mechanical formula by using the classical calculation and the following
simple rule: Replace J2 = J · J by j(j + 1)~2. This rule is commonly used,
and usually gives the correct result, but not always. We can give the following
argument to show why you might expect this rule to work.

The scalar product J · J can be written as
J · J = J2

x + J2
y + J2

z .

Since it is a scalar, it should be the same for any orientation of the spin. Suppose
we pick samples of any given atomic system at random and make measurements
of J2

x , or J2
y , or J2

z , the average value should be the same for each. (There is no
special distinction for any one of the directions.) Therefore, the average of J · J
is just equal to three times the average of any component squared, say of J2

z ;
〈J · J〉av = 3〈J2

z 〉av.
But since J · J is the same for all orientations, its average is, of course, just its
constant value; we have

J · J = 3〈J2
z 〉av. (34.24)

If we now say that we will use the same equation for quantum mechanics,
we can easily find 〈J2

z 〉av. We just have to take the sum of the (2j + 1) possible
values of J2

z , and divide by the total number;

〈J2
z 〉av = j2 + (j − 1)2 + · · ·+ (−j + 1)2 + (−j)2

2j + 1 ~2. (34.25)

For a system with a spin of 3/2, it goes like this:

〈J2
z 〉av = (3/2)2 + (1/2)2 + (−1/2)2 + (−3/2)2

4 ~2 = 5
4 ~2.

We conclude that
J · J = 3〈J2

z 〉av = 3 5
4~

2 = 3
2 ( 3

2 + 1)~2.

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives
the general result

J · J = j(j + 1)~2. (34.26)
Although we would think classically that the largest possible value of the z-
component of J is just the magnitude of J—namely,

√
J · J—quantum mechan-

ically the maximum of Jz is always a little less than that, because j~ is always
less than

√
j(j + 1)~. The angular momentum is never “completely along the

z-direction.”
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34-8 The magnetic energy of atoms

Now we want to talk again about the magnetic moment. We have said that
in quantum mechanics the magnetic moment of a particular atomic system can
be written in terms of the angular momentum by Eq. (34.6);

µ = −g
(
qe
2m

)
J , (34.27)

where −qe and m are the charge and mass of the electron.
An atomic magnet placed in an external magnetic field will have an extra

magnetic energy which depends on the component of its magnetic moment along
the field direction. We know that

Umag = −µ ·B. (34.28)

Choosing our z-axis along the direction of B,

Umag = −µzB. (34.29)

Using Eq. (34.27), we have that

Umag = g

(
qe
2m

)
JzB.

Quantum mechanics says that Jz can have only certain values: j~, (j − 1)~,
. . . , −j~. Therefore, the magnetic energy of an atomic system is not arbitrary;
it can have only certain values. Its maximum value, for instance, is

g

(
qe
2m

)
~jB.

The quantity qe~/2m is usually given the name “the Bohr magneton” and
written µB :

µB = qe~
2m.

The possible values of the magnetic energy are

Umag = gµBB
Jz
~
,

where Jz/~ takes on the possible values j, (j − 1), (j − 2), . . . , (−j + 1), −j.
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In other words, the energy of an atomic system is changed when it is put in a
magnetic field by an amount that is proportional to the field, and proportional
to Jz. We say that the energy of an atomic system is “split into 2j+1 levels” by a
magnetic field. For instance, an atom whose energy is U0 outside a magnetic field
and whose j is 3/2, will have four possible energies when placed in a field. We
can show these energies by an energy-level diagram like that drawn in Fig. 34-5.
Any particular atom can have only one of the four possible energies in any given
field B. That is what quantum mechanics says about the behavior of an atomic
system in a magnetic field.

The simplest “atomic” system is a single electron. The spin of an electron
is 1/2, so there are two possible states: Jz = ~/2 and Jz = −~/2. For an electron,
at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the
magnetic energy can be either ±µBB. The possible energies in a magnetic field
are shown in Fig. 34-6. Speaking loosely we say that the electron either has its
spin “up” (along the field) or “down” (opposite the field).

For systems with higher spins, there are more states. We can think that the
spin is “up” or “down” or cocked at some “angle” in between, depending on the
value of Jz.

We will use these quantum mechanical results to discuss the magnetic prop-
erties of materials in the next chapter.
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2
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2
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Fig. 34-5. The possible magnetic energies of an atomic system with
a spin of 3/2 in a magnetic filed B.
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h̄

Fig. 34-6. The two possible energy states of an electron in a magnetic
field B.
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35

Paramagnetism and Magnetic Resonance

Review: Chapter 11, Inside Dielectrics

35-1 Quantized magnetic states
In the last chapter we described how in quantum mechanics the angular

momentum of a thing does not have an arbitrary direction, but its component
along a given axis can take on only certain equally spaced, discrete values. It
is a shocking and peculiar thing. You may think that perhaps we should not go
into such things until your minds are more advanced and ready to accept this
kind of an idea. Actually, your minds will never become more advanced—in the
sense of being able to accept such a thing easily. There isn’t any descriptive way
of making it intelligible that isn’t so subtle and advanced in its own form that
it is more complicated than the thing you were trying to explain. The behavior
of matter on a small scale—as we have remarked many times—is different from
anything that you are used to and is very strange indeed. As we proceed with
classical physics, it is a good idea to try to get a growing acquaintance with the
behavior of things on a small scale, at first as a kind of experience without any
deep understanding. Understanding of these matters comes very slowly, if at
all. Of course, one does get better able to know what is going to happen in a
quantum-mechanical situation—if that is what understanding means—but one
never gets a comfortable feeling that these quantum-mechanical rules are “natural.”
Of course they are, but they are not natural to our own experience at an ordinary
level. We should explain that the attitude that we are going to take with regard
to this rule about angular momentum is quite different from many of the other
things we have talked about. We are not going to try to “explain” it, but we must
at least tell you what happens; it would be dishonest to describe the magnetic
properties of materials without mentioning the fact that the classical description
of magnetism—of angular momentum and magnetic moments—is incorrect.

One of the most shocking and disturbing features about quantum mechanics
is that if you take the angular momentum along any particular axis you find that
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it is always an integer or half-integer times ~. This is so no matter which axis
you take. The subtleties involved in that curious fact—that you can take any
other axis and find that the component for it is also locked to the same set of
values—we will leave to a later chapter, when you will experience the delight of
seeing how this apparent paradox is ultimately resolved.

We will now just accept the fact that for every atomic system there is a
number j, called the spin of the system—which must be an integer or a half-
integer—and that the component of the angular momentum along any particular
axis will always have one of the following values between +j~ and −j~:

Jz = one of



j
j − 1
j − 2
...

−j + 2
−j + 1
−j


· ~. (35.1)

We have also mentioned that every simple atomic system has a magnetic
moment which has the same direction as the angular momentum. This is true
not only for atoms and nuclei but also for the fundamental particles. Each
fundamental particle has its own characteristic value of j and its magnetic
moment. (For some particles, both are zero.) What we mean by “the magnetic
moment” in this statement is that the energy of the system in a magnetic field,
say in the z-direction, can be written as −µzB for small magnetic fields. We
must have the condition that the field should not be too great, otherwise it could
disturb the internal motions of the system and the energy would not be a measure
of the magnetic moment that was there before the field was turned on. But if
the field is sufficiently weak, the field changes the energy by the amount

∆U = −µzB, (35.2)

with the understanding that in this equation we are to replace µz by

µz = g

(
q

2m

)
Jz, (35.3)

where Jz has one of the values in Eq. (35.1).
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Suppose we take a system with a spin j = 3/2. Without a magnetic field,
the system has four different possible states corresponding to the different values
of Jz, all of which have exactly the same energy. But the moment we turn on
the magnetic field, there is an additional energy of interaction which separates
these states into four slightly different energy levels. The energies of these levels
are given by a certain energy proportional to B, multiplied by ~ times 3/2, 1/2,
−1/2, and −3/2—the values of Jz. The splitting of the energy levels for atomic
systems with spins of 1/2, 1, and 3/2 are shown in the diagrams of Fig. 35-1.
(Remember that for any arrangement of electrons the magnetic moment is always
directed opposite to the angular momentum.)

(a)

U

U0 B

j = 1/2

Jz = +h̄/2

Jz = −h̄/2

(b)

U

U0 B

j = 1

Jz = +h̄

Jz = 0h̄

Jz = −h̄

(c)

U

U0 B

j = 3/2 Jz
=

+3h̄
/2

Jz = +h̄/2

Jz = −h̄/2

J
z = −3h̄/2

h̄ωp

h̄ωp

h̄ωp

Fig. 35-1. An atomic system with spin j has (2j + 1) possible energy
values in a magnetic field B. The energy splitting is proportional to B
for small fields.
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You will notice from the diagrams that the “center of gravity” of the energy
levels is the same with and without a magnetic field. Also notice that the spacings
from one level to the next are always equal for a given particle in a given magnetic
field. We are going to write the energy spacing, for a given magnetic field B,
as ~ωp—which is just a definition of ωp. Using Eqs. (35.2) and (35.3), we have

~ωp = g
q

2m ~B
or

ωp = g
q

2m B. (35.4)

The quantity g(q/2m) is just the ratio of the magnetic moment to the angular
momentum—it is a property of the particle. Equation (35.4) is the same formula
that we got in Chapter 34 for the angular velocity of precession in a magnetic field,
for a gyroscope whose angular momentum is J and whose magnetic moment is µ.

35-2 The Stern-Gerlach experiment

The fact that the angular momentum is quantized is such a surprising thing
that we will talk a little bit about it historically. It was a shock from the moment
it was discovered (although it was expected theoretically). It was first observed
in an experiment done in 1922 by Stern and Gerlach. If you wish, you can
consider the experiment of Stern-Gerlach as a direct justification for a belief in
the quantization of angular momentum. Stern and Gerlach devised an experiment
for measuring the magnetic moment of individual silver atoms. They produced a
beam of silver atoms by evaporating silver in a hot oven and letting some of them
come out through a series of small holes. This beam was directed between the
pole tips of a special magnet, as shown in Fig. 35-2. Their idea was the following.
If the silver atom has a magnetic moment µ, then in a magnetic field B it has
an energy −µzB, where z is the direction of the magnetic field. In the classical
theory, µz would be equal to the magnetic moment times the cosine of the angle
between the moment and the magnetic field, so the extra energy in the field
would be

∆U = −µB cos θ. (35.5)

Of course, as the atoms come out of the oven, their magnetic moments would
point in every possible direction, so there would be all values of θ. Now if the
magnetic field varies very rapidly with z—if there is a strong field gradient—then
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the magnetic energy will also vary with position, and there will be a force on the
magnetic moments whose direction will depend on whether cosine θ is positive
or negative. The atoms will be pulled up or down by a force proportional to the
derivative of the magnetic energy; from the principle of virtual work,

Fz = −∂U
∂z

= µ cos θ ∂B
∂z

. (35.6)

Stern and Gerlach made their magnet with a very sharp edge on one of the
pole tips in order to produce a very rapid variation of the magnetic field. The
beam of silver atoms was directed right along this sharp edge, so that the atoms
would feel a vertical force in the inhomogeneous field. A silver atom with its
magnetic moment directed horizontally would have no force on it and would go
straight past the magnet. An atom whose magnetic moment was exactly vertical
would have a force pulling it up toward the sharp edge of the magnet. An atom
whose magnetic moment was pointed downward would feel a downward push.
Thus, as they left the magnet, the atoms would be spread out according to their
vertical components of magnetic moment. In the classical theory all angles are
possible, so that when the silver atoms are collected by deposition on a glass
plate, one should expect a smear of silver along a vertical line. The height of
the line would be proportional to the magnitude of the magnetic moment. The
abject failure of classical ideas was completely revealed when Stern and Gerlach
saw what actually happened. They found on the glass plate two distinct spots.
The silver atoms had formed two beams.

That a beam of atoms whose spins would apparently be randomly oriented
gets split up into two separate beams is most miraculous. How does the magnetic
moment know that it is only allowed to take on certain components in the direction
of the magnetic field? Well, that was really the beginning of the discovery of the
quantization of angular momentum, and instead of trying to give you a theoretical
explanation, we will just say that you are stuck with the result of this experiment
just as the physicists of that day had to accept the result when the experiment
was done. It is an experimental fact that the energy of an atom in a magnetic
field takes on a series of individual values. For each of these values the energy
is proportional to the field strength. So in a region where the field varies, the
principle of virtual work tells us that the possible magnetic force on the atoms
will have a set of separate values; the force is different for each state, so the beam
of atoms is split into a small number of separate beams. From a measurement of
the deflection of the beams, one can find the strength of the magnetic moment.
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35-3 The Rabi molecular-beam method

We would now like to describe an improved apparatus for the measurement
of magnetic moments which was developed by I. I. Rabi and his collaborators.
In the Stern-Gerlach experiment the deflection of atoms is very small, and the
measurement of the magnetic moment is not very precise. Rabi’s technique
permits a fantastic precision in the measurement of the magnetic moments. The
method is based on the fact that the original energy of the atoms in a magnetic
field is split up into a finite number of energy levels. That the energy of an atom
in the magnetic field can have only certain discrete energies is really not more
surprising than the fact that atoms in general have only certain discrete energy
levels—something we mentioned often in Volume I. Why should the same thing
not hold for atoms in a magnetic field? It does. But it is the attempt to correlate
this with the idea of an oriented magnetic moment that brings out some of the
strange implications of quantum mechanics.

When an atom has two levels which differ in energy by the amount ∆U , it
can make a transition from the upper level to the lower level by emitting a light
quantum of frequency ω, where

~ω = ∆U. (35.7)

The same thing can happen with atoms in a magnetic field. Only then, the energy
differences are so small that the frequency does not correspond to light, but to
microwaves or to radiofrequencies. The transitions from the lower energy level
to an upper energy level of an atom can also take place with the absorption of
light or, in the case of atoms in a magnetic field, by the absorption of microwave
energy. Thus if we have an atom in a magnetic field, we can cause transitions
from one state to another by applying an additional electromagnetic field of the
proper frequency. In other words, if we have an atom in a strong magnetic field
and we “tickle” the atom with a weak varying electromagnetic field, there will
be a certain probability of knocking it to another level if the frequency is near
to the ω in Eq. (35.7). For an atom in a magnetic field, this frequency is just
what we have earlier called ωp and it is given in terms of the magnetic field
by Eq. (35.4). If the atom is tickled with the wrong frequency, the chance of
causing a transition is very small. Thus there is a sharp resonance at ωp in the
probability of causing a transition. By measuring the frequency of this resonance
in a known magnetic field B, we can measure the quantity g(q/2m)—and hence
the g-factor—with great precision.
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It is interesting that one comes to the same conclusion from a classical point
of view. According to the classical picture, when we place a small gyroscope
with a magnetic moment µ and an angular momentum J in an external magnetic
field, the gyroscope will precess about an axis parallel to the magnetic field.
(See Fig. 35-3.) Suppose we ask: How can we change the angle of the classical
gyroscope with respect to the field—namely, with respect to the z-axis? The
magnetic field produces a torque around a horizontal axis. Such a torque you
would think is trying to line up the magnet with the field, but it only causes
the precession. If we want to change the angle of the gyroscope with respect to
the z-axis, we must exert a torque on it about the z-axis. If we apply a torque
which goes in the same direction as the precession, the angle of the gyroscope
will change to give a smaller component of J in the z-direction. In Fig. 35-3, the
angle between J and the z-axis would increase. If we try to hinder the precession,
J moves toward the vertical.

B

ωp

J

µ

Fig. 35-3. The classical precession of an atom with the magnetic
moment µ and the angular momentum J.

For our precessing atom in a uniform magnetic field, how can we apply the
kind of torque we want? The answer is: with a weak magnetic field from the
side. You might at first think that the direction of this magnetic field would have
to rotate with the precession of the magnetic moment, so that it was always at
right angles to the moment, as indicated by the field B′ in Fig. 35-4(a). Such
a field works very well, but an alternating horizontal field is almost as good. If
we have a small horizontal field B′, which is always in the x-direction (plus or
minus) and which oscillates with the frequency ωp, then on each one-half cycle
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(a)

B

J

µ

B′

(b)

B

J

µ

B′ = b cosωpt

Fig. 35-4. The angle of precession of an atomic magnet can be
changed by a horizontal magnetic field always at right angles to µ, as
in (a), or by an oscillating field, as in (b).

the torque on the magnetic moment reverses, so that it has a cumulative effect
which is almost as effective as a rotating magnetic field. Classically, then, we
would expect the component of the magnetic moment along the z-direction to
change if we have a very weak oscillating magnetic field at a frequency which is
exactly ωp. Classically, of course, µz would change continuously, but in quantum
mechanics the z-component of the magnetic moment cannot adjust continuously.
It must jump suddenly from one value to another. We have made the comparison
between the consequences of classical mechanics and quantum mechanics to give
you some clue as to what might happen classically and how it is related to what
actually happens in quantum mechanics. You will notice, incidentally, that the
expected resonant frequency is the same in both cases.
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One additional remark: From what we have said about quantum mechanics,
there is no apparent reason why there couldn’t also be transitions at the fre-
quency 2ωp. It happens that there isn’t any analog of this in the classical case,
and also it doesn’t happen in the quantum theory either—at least not for the
particular method of inducing the transitions that we have described. With an
oscillating horizontal magnetic field, the probability that a frequency 2ωp would
cause a jump of two steps at once is zero. It is only at the frequency ωp that
transitions, either upward or downward, are likely to occur.

Now we are ready to describe Rabi’s method for measuring magnetic moments.
We will consider here only the operation for atoms with a spin of 1/2. A diagram of
the apparatus is shown in Fig. 35-5. There is an oven which gives out a stream of
neutral atoms which passes down a line of three magnets. Magnet 1 is just like the
one in Fig. 35-2, and has a field with a strong field gradient—say, with ∂Bz/∂z pos-
itive. If the atoms have a magnetic moment, they will be deflected downward
if Jz = +~/2, or upward if Jz = −~/2 (since for electrons µ is directed opposite
to J). If we consider only those atoms which can get through the slit S1, there are
two possible trajectories, as shown. Atoms with Jz = +~/2 must go along curve a
to get through the slit, and those with Jz = −~/2 must go along curve b. Atoms
which start out from the oven along other paths will not get through the slit.

Magnet 2 has a uniform field. There are no forces on the atoms in this region,
so they go straight through and enter magnet 3. Magnet 3 is just like magnet 1
but with the field inverted, so that ∂Bz/∂z has the opposite sign. The atoms
with Jz = +~/2 (we say “with spin up”), that felt a downward push in magnet 1,
get an upward push in magnet 3; they continue on the path a and go through
slit S2 to a detector. The atoms with Jz = −~/2 (“with spin down”) also have
opposite forces in magnets 1 and 3 and go along the path b, which also takes
them through slit S2 to the detector.

The detector may be made in various ways, depending on the atom being
measured. For example, for atoms of an alkali metal like sodium, the detector
can be a thin, hot tungsten wire connected to a sensitive current meter. When
sodium atoms land on the wire, they are evaporated off as Na+ ions, leaving an
electron behind. There is a current from the wire proportional to the number of
sodium atoms arriving per second.

In the gap of magnet 2 there is a set of coils that produces a small horizontal
magnetic fieldB′. The coils are driven with a current which oscillates at a variable
frequency ω. So between the poles of magnet 2 there is a strong, constant, vertical
field B0 and a weak, oscillating, horizontal field B′.
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Suppose now that the frequency ω of the oscillating field is set at ωp—the
“precession” frequency of the atoms in the field B. The alternating field will
cause some of the atoms passing by to make transitions from one Jz to the
other. An atom whose spin was initially “up” (Jz = +~/2) may be flipped “down”
(Jz = −~/2). Now this atom has the direction of its magnetic moment reversed,
so it will feel a downward force in magnet 3 and will move along the path a′,
shown in Fig. 35-5. It will no longer get through the slit S2 to the detector.
Similarly, some of the atoms whose spins were initially down (Jz = −~/2) will
have their spins flipped up (Jz = +~/2) as they pass through magnet 2. They
will then go along the path b′ and will not get to the detector.

If the oscillating field B′ has a frequency appreciably different from ωp, it
will not cause any spin flips, and the atoms will follow their undisturbed paths
to the detector. So you can see that the “precession” frequency ωp of the atoms
in the field B0 can be found by varying the frequency ω of the field B′ until a
decrease is observed in the current of atoms arriving at the detector. A decrease
in the current will occur when ω is “in resonance” with ωp. A plot of the detector
current as a function of ω might look like the one shown in Fig. 35-6. Knowing
ωp, we can obtain the g-value of the atom.

Such atomic-beam or, as they are usually called, “molecular” beam resonance
experiments are a beautiful and delicate way of measuring the magnetic properties
of atomic objects. The resonance frequency ωp can be determined with great
precision—in fact, with a greater precision than we can measure the magnetic
field B0, which we must know to find g.

ωωp

DETECTOR
CURRENT

Fig. 35-6. The current of atoms in the beam decreases when ω = ωp.
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35-4 The paramagnetism of bulk materials

We would like now to describe the phenomenon of the paramagnetism of bulk
materials. Suppose we have a substance whose atoms have permanent magnetic
moments, for example a crystal like copper sulfate. In the crystal there are copper
ions whose inner electron shells have a net angular momentum and a net magnetic
moment. So the copper ion is an object which has a permanent magnetic moment.
Let’s say just a word about which atoms have magnetic moments and which ones
don’t. Any atom, like sodium for instance, which has an odd number of electrons,
will have a magnetic moment. Sodium has one electron in its unfilled shell. This
electron gives the atom a spin and a magnetic moment. Ordinarily, however,
when compounds are formed the extra electrons in the outside shell are coupled
together with other electrons whose spin directions are exactly opposite, so that
all the angular momenta and magnetic moments of the valence electrons usually
cancel out. That’s why, in general, molecules do not have a magnetic moment.
Of course if you have a gas of sodium atoms, there is no such cancellation.* Also,
if you have what is called in chemistry a “free radical”—an object with an odd
number of valence electrons—then the bonds are not completely satisfied, and
there is a net angular momentum.

In most bulk materials there is a net magnetic moment only if there are atoms
present whose inner electron shell is not filled. Then there can be a net angular
momentum and a magnetic moment. Such atoms are found in the “transition
element” part of the periodic table—for instance, chromium, manganese, iron,
nickel, cobalt, palladium, and platinum are elements of this kind. Also, all of the
rare earth elements have unfilled inner shells and permanent magnetic moments.
There are a couple of other strange things that also happen to have magnetic
moments, such as liquid oxygen, but we will leave it to the chemistry department
to explain the reason.

Now suppose that we have a box full of atoms or molecules with permanent
moments—say a gas, or a liquid, or a crystal. We would like to know what
happens if we apply an external magnetic field. With no magnetic field, the
atoms are kicked around by the thermal motions, and the moments wind up
pointing in all directions. But when there is a magnetic field, it acts to line up
the little magnets; then there are more moments lying toward the field than away
from it. The material is “magnetized.”

* Ordinary Na vapor is mostly monatomic, although there are also some molecules of Na2.
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We define the magnetization M of a material as the net magnetic moment
per unit volume, by which we mean the vector sum of all the atomic magnetic
moments in a unit volume. If there are N atoms per unit volume and their
average moment is 〈µ〉av then M can be written as N times the average atomic
moment:

M = N〈µ〉av. (35.8)

The definition of M corresponds to the definition of the electric polarization P
of Chapter 10.

The classical theory of paramagnetism is just like the theory of the dielectric
constant we showed you in Chapter 11. One assumes that each of the atoms has a
magnetic moment µ, which always has the same magnitude but which can point
in any direction. In a field B, the magnetic energy is −µ ·B = −µB cos θ, where
θ is the angle between the moment and the field. From statistical mechanics, the
relative probability of having any angle is e−energy/kT , so angles near zero are
more likely than angles near π. Proceeding exactly as we did in Section 11-3,
we find that for small magnetic fields M is directed parallel to B and has the
magnitude

M = Nµ2B

3kT . (35.9)

[See Eq. (11.20).] This approximate formula is correct only for µB/kT much less
than one.

We find that the induced magnetization—the magnetic moment per unit
volume—is proportional to the magnetic field. This is the phenomenon of
paramagnetism. You will see that the effect is stronger at lower temperatures and
weaker at higher temperatures. When we put a field on a substance, it develops,
for small fields, a magnetic moment proportional to the field. The ratio of M
to B (for small fields) is called the magnetic susceptibility.

Now we want to look at paramagnetism from the point of view of quantum
mechanics. We take first the case of an atom with a spin of 1/2. In the absence
of a magnetic field the atoms have a certain energy, but in a magnetic field there
are two possible energies, one for each value of Jz. For Jz = +~/2, the energy is
changed by the magnetic field by the amount

∆U1 = +g
(
qe~
2m

)
· 1

2 ·B. (35.10)
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(The energy shift ∆U is positive for an atom because the electron charge is
negative.) For Jz = −~/2, the energy is changed by the amount

∆U2 = −g
(
qe~
2m

)
· 1

2 ·B. (35.11)

To save writing, let’s set

µ0 = g

(
qe~
2m

)
· 1

2 ; (35.12)

then
∆U = ±µ0B. (35.13)

The meaning of µ0 is clear: −µ0 is the z-component of the magnetic moment in
the up-spin case, and +µ0 is the z-component of the magnetic moment in the
down-spin case.

Now statistical mechanics tells us that the probability that an atom is in one
state or another is proportional to

e−(Energy of state)/kT .

With no magnetic field the two states have the same energy; so when there is
equilibrium in a magnetic field, the probabilities are proportional to

e−∆U/kT . (35.14)

The number of atoms per unit volume with spin up is

Nup = ae−µ0B/kT , (35.15)

and the number with spin down is

Ndown = ae+µ0B/kT . (35.16)

The constant a is to be determined so that

Nup +Ndown = N, (35.17)

the total number of atoms per unit volume. So we get that

a = N

e+µ0B/kT + e−µ0B/kT
. (35.18)
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What we are interested in is the average magnetic moment along the z-axis.
The atoms with spin up will contribute a moment of −µ0, and those with spin
down will have a moment of +µ0; so the average moment is

〈µ〉av = Nup(−µ0) +Ndown(+µ0)
N

. (35.19)

The magnetic moment per unit volumeM is then N〈µ〉av. Using Eqs. (35.15),
(35.16), and (35.17), we get that

M = Nµ0
e+µ0B/kT − e−µ0B/kT

e+µ0B/kT + e−µ0B/kT
. (35.20)

This is the quantum-mechanical formula for M for atoms with j = 1/2. Inciden-
tally, this formula can also be written somewhat more concisely in terms of the
hyperbolic tangent function:

M = Nµ0 tanh µ0B

kT
. (35.21)

µ0B/kT

0 1 2 3 4

M

Nµ0

Fig. 35-7. The variation of the paramagnetic magnetization with the
magnetic field strength B.

A plot of M as a function of B is given in Fig. 35-7. When B gets very large,
the hyperbolic tangent approaches 1, and M approaches the limiting value Nµ0.
So at high fields, the magnetization saturates. We can see why that is; at high
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enough fields the moments are all lined up in the same direction. In other words,
they are all in the spin-down state, and each atom contributes the moment µ0.

In most normal cases—say, for typical moments, room temperatures, and the
fields one can normally get (like 10,000 gauss)—the ratio µ0B/kT is about 0.002.
One must go to very low temperatures to see the saturation. For normal temper-
atures, we can usually replace tanh x by x, and write

M = Nµ2
0B

kT
. (35.22)

Just as we saw in the classical theory, M is proportional to B. In fact, the
formula is almost exactly the same, except that there seems to be a factor of 1/3
missing. But we still need to relate the µ0 in our quantum formula to the µ that
appears in the classical result, Eq. (35.9).

In the classical formula, what appears is µ2 = µ · µ, the square of the vector
magnetic moment, or

µ · µ =
(
g
qe
2m

)2
J · J . (35.23)

We pointed out in the last chapter that you can very likely get the right answer
from a classical calculation by replacing J · J by j(j + 1)~2. In our particular
example, we have j = 1/2, so

j(j + 1)~2 = 3
4~

2.

Substituting this for J · J in Eq. (35.23), we get

µ · µ =
(
g
qe
2m

)2 3~2

4 ,

or in terms of µ0, defined in Eq. (35.12), we get

µ · µ = 3µ2
0.

Substituting this for µ2 in the classical formula, Eq. (35.9), does indeed reproduce
the correct quantum formula, Eq. (35.22).

The quantum theory of paramagnetism is easily extended to atoms of any
spin j. The low-field magnetization is

M = Ng2 j(j + 1)
3

µ2
BB

kT
, (35.24)
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where
µB = qe~

2m (35.25)

is a combination of constants with the dimensions of a magnetic moment. Most
atoms have moments of roughly this size. It is called the Bohr magneton. The
spin magnetic moment of the electron is almost exactly one Bohr magneton.

35-5 Cooling by adiabatic demagnetization

There is a very interesting special application of paramagnetism. At very low
temperatures it is possible to line up the atomic magnets in a strong field. It
is then possible to get down to extremely low temperatures by a process called
adiabatic demagnetization. We can take a paramagnetic salt (for example, one
containing a number of rare-earth atoms like praseodymium-ammonium-nitrate),
and start by cooling it down with liquid helium to one or two degrees absolute in
a strong magnetic field. Then the factor µB/kT is larger than 1—say more like
2 or 3. Most of the spins are lined up, and the magnetization is nearly saturated.
Let’s say, to make it easy, that the field is very powerful and the temperature
is very low, so that nearly all the atoms are lined up. Then you isolate the salt
thermally (say, by removing the liquid helium and leaving a good vacuum) and
turn off the magnetic field. The temperature of the salt goes way down.

Now if you were to turn off the field suddenly, the jiggling and shaking,
of the atoms in the crystal lattice would gradually knock all the spins out of
alignment. Some of them would be up and some down. But if there is no field
(and disregarding the interactions between the atomic magnets, which will make
only a slight error), it takes no energy to turn over the atomic magnets. They
could randomize their spins without any energy change and, therefore, without
any temperature change.

Suppose, however, that while the atomic magnets are being flipped over by
the thermal motion there is still some magnetic field present. Then it requires
some work to flip them over opposite to the field—they must do work against the
field. This takes energy from the thermal motions and lowers the temperature.
So if the strong magnetic field is not removed too rapidly, the temperature of
the salt will decrease—it is cooled by the demagnetization. From the quantum-
mechanical view, when the field is strong all the atoms are in the lowest state,
because the odds against any being in the upper state are impossibly big. But as
the field is lowered, it gets more and more likely that thermal fluctuations will
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knock an atom into the upper state. When that happens, the atom absorbs the
energy ∆U = µ0B. So if the field is turned off slowly, the magnetic transitions
can take energy out of the thermal vibrations of the crystal, cooling it off. It is
possible in this way to go from a temperature of a few degrees absolute down to
a temperature of a few thousandths of a degree.

Would you like to make something even colder than that? It turns out that
Nature has provided a way. We have already mentioned that there are also
magnetic moments for the atomic nuclei. Our formulas for paramagnetism work
just as well for nuclei, except that the moments of nuclei are roughly a thousand
times smaller. [They are of the order of magnitude of q~/2mp, where mp is
the proton mass, so they are smaller by the ratio of the masses of the electron
and proton.] With such magnetic moments, even at a temperature of 2◦K, the
factor µB/kT is only a few parts in a thousand. But if we use the paramagnetic
demagnetization process to get down to a temperature of a few thousandths of
a degree, µB/kT becomes a number near 1—at these low temperatures we can
begin to saturate the nuclear moments. That is good luck, because we can then
use the adiabatic demagnetization of the nuclear magnetism to reach still lower
temperatures. Thus it is possible to do two stages of magnetic cooling. First we
use adiabatic demagnetization of paramagnetic ions to reach a few thousandths
of a degree. Then we use the cold paramagnetic salt to cool some material which
has a strong nuclear magnetism. Finally, when we remove the magnetic field
from this material, its temperature will go down to within a millionth of a degree
of absolute zero—if we have done everything very carefully.

35-6 Nuclear magnetic resonance

We have said that atomic paramagnetism is very small and that nuclear
magnetism is even a thousand times smaller. Yet it is relatively easy to observe
the nuclear magnetism by the phenomenon of “nuclear magnetic resonance.”
Suppose we take a substance like water, in which all of the electron spins are
exactly balanced so that their net magnetic moment is zero. The molecules
will still have a very, very tiny magnetic moment due to the nuclear magnetic
moment of the hydrogen nuclei. Suppose we put a small sample of water in a
magnetic field B. Since the protons (of the hydrogen) have a spin of 1/2, they
will have two possible energy states. If the water is in thermal equilibrium, there
will be slightly more protons in the lower energy states—with their moments
directed parallel to the field. There is a small net magnetic moment per unit
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volume. Since the proton moment is only about one-thousandth of an atomic
moment, the magnetization which goes as µ2—using Eq. (35.22)—is only about
one-millionth as strong as typical atomic paramagnetism. (That’s why we have
to pick a material with no atomic magnetism.) If you work it out, the difference
between the number of protons with spin up and with spin down is only one part
in 108, so the effect is indeed very small! It can still be observed, however, in the
following way.

Suppose we surround the water sample with a small coil that produces a small
horizontal oscillating magnetic field. If this field oscillates at the frequency ωp,
it will induce transitions between the two energy states—just as we described
for the Rabi experiment in Section 35-3. When a proton flips from an upper
energy state to a lower one, it will give up the energy µzB which, as we have
seen, is equal to ~ωp. If it flips from the lower energy state to the upper one, it
will absorb the energy ~ωp from the coil. Since there are slightly more protons in
the lower state than in the upper one, there will be a net absorption of energy
from the coil. Although the effect is very small, the slight energy absorption can
be seen with a sensitive electronic amplifier.

Just as in the Rabi molecular-beam experiment, the energy absorption will
be seen only when the oscillating field is in resonance, that is, when

ω = ωp = g

(
qe

2mp

)
B.

It is often more convenient to search for the resonance by varying B while keeping
ω fixed. The energy absorption will evidently appear when

B = 2mp

gqe
ω.

A typical nuclear magnetic resonance apparatus is shown in Fig. 35-8. A
high-frequency oscillator drives a small coil placed between the poles of a large
electromagnet. Two small auxiliary coils around the pole tips are driven with
a 60-cycle current so that the magnetic field is “wobbled” about its average
value by a very small amount. As an example, say that the main current of the
magnet is set to give a field of 5000 gauss, and the auxiliary coils produce a
variation of ±1 gauss about this value. If the oscillator is set at 21.2 megacycles
per second, it will then be at the proton resonance each time the field sweeps
through 5000 gauss [using Eq. (34.13) with g = 5.58 for the proton].
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Fig. 35-8. A nuclear magnetic resonance apparatus.

The circuit of the oscillator is arranged to give an additional output signal
proportional to any change in the power being absorbed from the oscillator. This
signal is fed to the vertical deflection amplifier of an oscilloscope. The horizontal
sweep of the oscilloscope is triggered once during each cycle of the field-wobbling
frequency. (More usually, the horizontal deflection is made to follow in proportion
to the wobbling field.)

Before the water sample is placed inside the high-frequency coil, the power
drawn from the oscillator is some value. (It doesn’t change with the magnetic
field.) When a small bottle of water is placed in the coil, however, a signal appears
on the oscilloscope, as shown in the figure. We see a picture of the power being
absorbed by the flipping over of the protons!

In practice, it is difficult to know how to set the main magnet to exactly
5000 gauss. What one does is to adjust the main magnet current until the
resonance signal appears on the oscilloscope. It turns out that this is now the
most convenient way to make an accurate measurement of the strength of a
magnetic field. Of course, at some time someone had to measure accurately the
magnetic field and frequency to determine the g-value of the proton. But now
that this has been done, a proton resonance apparatus like that of the figure can
be used as a “proton resonance magnetometer.”
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We should say a word about the shape of the signal. If we were to wobble
the magnetic field very slowly, we would expect to see a normal resonance curve.
The energy absorption would read a maximum when ωp arrived exactly at the
oscillator frequency. There would be some absorption at nearby frequencies
because all the protons are not in exactly the same field—and different fields
mean slightly different resonant frequencies.

One might wonder, incidentally, whether at the resonance frequency we should
see any signal at all. Shouldn’t we expect the high-frequency field to equalize the
populations of the two states—so that there should be no signal except when the
water is first put in? Not exactly, because although we are trying to equalize the
two populations, the thermal motions on their part are trying to keep the proper
ratios for the temperature T . If we sit at the resonance, the power being absorbed
by the nuclei is just what is being lost to the thermal motions. There is, however,
relatively little “thermal contact” between the proton magnetic moments and
the atomic motions. The protons are relatively isolated down in the center of the
electron distributions. So in pure water, the resonance signal is, in fact, usually
too small to be seen. To increase the absorption, it is necessary to increase the
“thermal contact.” This is usually done by adding a little iron oxide to the water.
The iron atoms are like small magnets; as they jiggle around in their thermal
dance, they make tiny jiggling magnetic fields at the protons. These varying
fields “couple” the proton magnets to the atomic vibrations and tend to establish
thermal equilibrium. It is through this “coupling” that protons in the higher
energy states can lose their energy so that they are again capable of absorbing
energy from the oscillator.

In practice the output signal of a nuclear resonance apparatus does not look
like a normal resonance curve. It is usually a more complicated signal with
oscillations—like the one drawn in the figure. Such signal shapes appear because
of the changing fields. The explanation should be given in terms of quantum
mechanics, but it can be shown that in such experiments the classical ideas of
precessing moments always give the correct answer. Classically, we would say
that when we arrive at resonance we start driving a lot of the precessing nuclear
magnets synchronously. In so doing, we make them precess together. These
nuclear magnets, all rotating together, will set up an induced emf in the oscillator
coil at the frequency ωp. But because the magnetic field is increasing with time,
the precession frequency is increasing also, and the induced voltage is soon at a
frequency a little higher than the oscillator frequency. As the induced emf goes
alternately in phase and out of phase with the oscillator, the “absorbed” power
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goes alternately positive and negative. So on the oscilloscope we see the beat
note between the proton frequency and the oscillator frequency. Because the
proton frequencies are not all identical (different protons are in slightly different
fields) and also possibly because of the disturbance from the iron oxide in the
water, the freely precessing moments soon get out of phase, and the beat signal
disappears.

These phenomena of magnetic resonance have been put to use in many ways
as tools for finding out new things about matter—especially in chemistry and
nuclear physics. It goes without saying that the numerical values of the magnetic
moments of nuclei tell us something about their structure. In chemistry, much has
been learned from the structure (or shape) of the resonances. Because of magnetic
fields produced by nearby nuclei, the exact position of a nuclear resonance is
shifted somewhat, depending on the environment in which any particular nucleus
finds itself. Measuring these shifts helps determine which atoms are near which
other ones and helps to elucidate the details of the structure of molecules. Equally
important is the electron spin resonance of free radicals. Although not present to
any very large extent in equilibrium, such radicals are often intermediate states
of chemical reactions. A measurement of an electron spin resonance is a delicate
test for the presence of free radicals and is often the key to understanding the
mechanism of certain chemical reactions.
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36

Ferromagnetism

Review: Chapter 10, Dielectrics
Chapter 17, The Laws of Induction

36-1 Magnetization currents

In this chapter we will discuss some materials in which the net effect of
the magnetic moments in the material is much greater than in the case of
paramagnetism or diamagnetism. The phenomenon is called ferromagnetism.
In paramagnetic and diamagnetic materials the induced magnetic moments are
usually so weak that we don’t have to worry about the additional fields produced
by the magnetic moments. For ferromagnetic materials, however, the magnetic
moments induced by applied magnetic fields are quite enormous and have a
great effect on the fields themselves. In fact, the induced moments are so strong
that they are often the dominant effect in producing the observed fields. So one
of the things we will have to worry about is the mathematical theory of large
induced magnetic moments. That is, of course, just a technical question. The
real problem is, why are the magnetic moments so strong—how does it all work?
We will come to that question in a little while.

Finding the magnetic fields of ferromagnetic materials is something like the
problem of finding the electrostatic field in the presence of dielectrics. You will
remember that we first described the internal properties of a dielectric in terms
of a vector field P , the dipole moment per unit volume. Then we figured out
that the effects of this polarization are equivalent to a charge density ρpol given
by the divergence of P :

ρpol = −∇ · P . (36.1)
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The total charge in any situation can be written as the sum of this polarization
charge plus all other charges, whose density we write* ρother. Then the Maxwell
equation which relates the divergence of E to the charge density becomes

∇ ·E = ρ

ε0
= ρpol + ρother

ε0
,

or
∇ ·E = −∇ · P

ε0
+ ρother

ε0
.

We can then pull out the polarization part of the charge and put it on the other
side of the equation, to get the new law

∇ · (ε0E + P ) = ρother. (36.2)

The new law says the divergence of the quantity (ε0E+P ) is equal to the density
of the other charges.

Pulling E and P together as in Eq. (36.2), of course, is useful only if we know
some relation between them. We have seen that the theory which relates the
induced electric dipole moment to the field was a relatively complicated business
and can really only be applied to certain simple situations, and even then as an
approximation. We would like to remind you of one of the approximate ideas
we used. To find the induced dipole moment of an atom inside a dielectric, it is
necessary to know the electric field that acts on an individual atom. We made the
approximation—which is not too bad in many cases—that the field on the atom
is the same as it would be at the center of the small hole which would be left if
we took out the atom (keeping the dipole moments of all the neighboring atoms
the same). You will also remember that the electric field in a hole in a polarized
dielectric depends on the shape of the hole. We summarize our earlier results
in Fig. 36-1. For a thin, disc-shaped hole perpendicular to the polarization, the
electric field in the hole is given by

Ehole = Edielectric + P

ε0
,

which we showed by using Gauss’ law. On the other hand, in a needle-shaped slot
parallel to the polarization, we showed—by using the fact that the curl of E is

* If all of the “other” charges were on conductors, ρother would be the same as our ρfree of
Chapter 10.
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Fig. 36-1. The electric field in a cavity in a dielectric depends on the
shape of the cavity.

36-3



zero—that the electric fields inside and outside of the slot are the same. Finally,
we found that for a spherical hole the electric field was one-third of the way
between the field of the slot and the field of the disc:

Ehole = Edielectric + 1
3
P

ε0
(spherical hole). (36.3)

This was the field we used in thinking about what happens to an atom inside a
polarized dielectric.

Now we have to discuss the analog of all this for the case of magnetism. One
simple, short-cut way of doing this is to say the M , the magnetic moment per
unit volume, is just like P , the electric dipole moment per unit volume, and
that, therefore, the negative of the divergence of M is equivalent to a “magnetic
charge density” ρm—whatever that may mean. The trouble is, of course, that
there isn’t any such thing as a “magnetic charge” in the physical world. As we
know, the divergence of B is always zero. But that does not stop us from making
an artificial analog and writing

∇ ·M = −ρm, (36.4)

where it is to be understood that ρm is purely mathematical. Then we could
make a complete analogy with the electrostatic case and use all our old equations
from electrostatics. People have often done something like that. In fact, histori-
cally, people even believed that the analogy was right. They believed that the
quantity ρm represented the density of “magnetic poles.” These days, however, we
know that the magnetization of materials comes from circulating currents within
the atoms—either from the spinning electrons or from the motion of the electrons
in the atom. It is therefore nicer from a physical point of view to describe things
realistically in terms of the atomic currents, rather than in terms of a density
of some mythical “magnetic poles.” Incidentally, these currents are sometimes
called “Ampèrian” currents, because Ampère first suggested that the magnetism
of matter came from circulating atomic currents.

The actual microscopic current density in magnetized matter is, of course,
very complicated. Its value depends on where you look in the atom—it’s large in
some places and small in others; it goes one way in one part of the atom and
the opposite way in another part (just as the microscopic electric field varies
enormously inside a dielectric). In many practical problems, however, we are
interested only in the fields outside of the matter or in the average magnetic field
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inside of the matter—where we mean an average taken over many, many atoms.
It is only for such macroscopic problems that it is convenient to describe the
magnetic state of the matter in terms of M , the average dipole moment per unit
volume. What we want to show now is that the atomic currents of magnetized
matter can give rise to certain large-scale currents which are related to M .

What we are going to do, then, is to separate the current density j—which is
the real source of the magnetic fields—into various parts: one part to describe
the circulating currents of the atomic magnets, and the other parts to describe
what other currents there may be. It is usually most convenient to separate the
currents into three parts. In Chapter 32 we made a distinction between the
currents which flow freely on conductors and the ones which are due to the back
and forth motions of the bound charges in dielectrics. In Section 32-2 we wrote

j = jpol + jother,

where jpol represented the currents from the motion of the bound charges in
dielectrics and jother took care of all other currents. Now we want to go further.
We want to separate jother into one part, jmag, which describes the average
currents inside of magnetized materials, and an additional term which we can
call jcond for whatever is left over. The last term will generally refer to currents
in conductors, but it may also include other currents—for example the currents
from charges moving freely through empty space. So we will write for the total
current density:

j = jpol + jmag + jcond. (36.5)
Of course it is this total current which belongs in the Maxwell equation for the
curl of B:

c2∇×B = j

ε0
+ ∂E

∂t
. (36.6)

Now we have to relate the current jmag to the magnetization vector M . So
that you can see where we are going, we will tell you that the result is going to
be that

jmag =∇×M . (36.7)
If we are given the magnetization vector M everywhere in a magnetic material,
the circulation current density is given by the curl of M . Let’s see if we can
understand why this is so.

First, let’s take the case of a cylindrical rod which has a uniform magnetization
parallel to its axis. Physically, we know that such a uniform magnetization really
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Fig. 36-2. Schematic diagram of the circulating atomic currents as
seen in a cross section of an iron rod magnetized in the z-direction.

means a uniform density of atomic circulating currents everywhere inside the
material. Suppose we try to imagine what the actual currents would look like in
a cross section of the material. We would expect to see currents something like
those shown in Fig. 36-2. Each atomic current goes around and around in a little
circle, with all the circulating currents going around in the same direction. Now
what is the effective current of such a thing? Well, in most of the bar there is no
effect at all, because right next to each current there is another current going
in the opposite direction. If we imagine a small surface—but one still quite a
bit larger than a single atom—such as is indicated in Fig. 36-2 by the line AB,
the net current through such a surface is zero. There is no net current anywhere
inside the material. Note, however, that at the surface of the material there are
atomic currents which are not cancelled by neighboring currents going the other
way. At the surface there is a net current always going in the same direction
around the rod. Now you see why we said earlier that a uniformly magnetized
rod is equivalent to a long solenoid carrying an electric current.

How does this view fit with Eq. (36.7)? First, inside the material the mag-
netization M is constant, so all its derivatives are zero. This agrees with our
geometric picture. At the surface, however, M is not really constant—it is
constant up to the edge and then suddenly collapses to zero. So, right at the
surface there are terrific gradients which, according to (36.7), will give a high
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current density. Suppose we look at what happens near the point C in Fig. 36-2.
Taking the x- and y-directions as in the figure, the magnetization M is in the
z-direction. Writing out the components of Eq. (36.7), we have

∂Mz

∂y
= (jmag)x,

−∂Mz

∂x
= (jmag)y.

(36.8)

At the point C, the derivative ∂Mz/∂y is zero, but ∂Mz/∂x is large and positive.
Equation (36.7) says that there is a large current density in the minus y-direction.
This agrees with our picture of a surface current going around the bar.

Now we want to find the current density for a more complicated case in which
the magnetization varies from point to point in a material. It is easy to see
qualitatively that if the magnetization is different in two neighboring regions,
there will not be a perfect cancellation of the circulating currents so that there
will be a net current in the volume of the material. It is this effect that we want
to work out quantitatively.

First, we need to recall the results of Section 14-5 that a circulating current I
has a magnetic moment µ given by

µ = IA, (36.9)

where A is the area of the current loop (see Fig. 36-3). Now let’s consider a small
rectangular block inside of a magnetized material, as sketched in Fig. 36-4. We
take the block so small that we can consider that the magnetization is uniform

µ

I

SURFACE AREA A

Fig. 36-3. The dipole moment µ of a current loop is IA.
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Fig. 36-4. A small magnetized block is equivalent to a circulating
surface current.

inside it. If this block has a magnetization Mz in the z-direction, the net effect
will be the same as a surface current going around on the vertical faces, as shown.
We can find the magnitude of these currents from Eq. (36.9). The total magnetic
moment of the block is equal to the magnetization times the volume:

µ = Mz(abc),

from which we get (remembering that the area of the loop is ac)

I = Mzb.

In other words, the current per unit length (vertically) on each of the vertical
surfaces is equal to Mz.

Now suppose that we imagine two such little blocks next to each other, as
shown in Fig. 36-5. Because block 2 is slightly displaced from block 1, it will have
a slightly different vertical component of magnetization, which we callMz +∆Mz.
Now on the surface between the two blocks there will be two contributions to the
total current. Block 1 will produce a current I1 flowing in the positive y-direction,
and block 2 will produce a surface current I2 flowing in the negative y-direction.
The total surface current in the positive y-direction is the sum:

I = I1 − I2 = Mzb− (Mz + ∆Mz)b
= −∆Mzb.
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Fig. 36-5. If the magnetization of two neighboring blocks is not the
same, there is a net surface current in between.

We can write ∆Mz, as the derivative of Mz in the x-direction times the displace-
ment from block 1 to block 2, which is just a:

∆Mz = ∂Mz

∂x
a.

The current flowing between the two blocks is then

I = −∂Mz

∂x
ab.

To relate the current I to an average volume current density j, we must realize
that this current I is really spread over a certain cross-sectional area. If we
imagine the whole volume of the material to be filled with such little blocks, one
such side face (perpendicular to the x-axis) can be associated with each block.*
Then we see that the area to be associated with the current I is just the area ab
of one of the front faces. We get the result

jy = I

ab
= −∂Mz

∂x
.

We have at least the beginning of the curl of M .
* Or, if you prefer, the current I in each face should be split 50–50 with the blocks on the

two sides.
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Fig. 36-6. Two blocks, one above the other, may also contribute to jy .

There should be another term in jy from the variation of the x-component
of the magnetization with z. This contribution to j will come from the surface
between two little blocks stacked one on top of the other, as shown in Fig. 36-6.
Using the same arguments we have just made, you can show that this surface
will contribute to jy the amount ∂Mx/∂z. These are the only surfaces which can
contribute to the y-component of the current so we have that the total current
density in the y-direction is

jy = ∂Mx

∂z
− ∂Mz

∂x
.

Working out the currents on the remaining faces of a cube—or using the fact
that our z-direction is completely arbitrary—we can conclude that the vector
current density is indeed given by the equation

j =∇×M .

So if we choose to describe the magnetic situation in matter in terms of
the average magnetic moment per unit volume M , we find that the circulating
atomic currents are equivalent to an average current density in matter given
by Eq. (36.7). If the material is also a dielectric, there may be, in addition, a
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polarization current jpol = ∂P /∂t. And if the material is also a conductor, we
may have a conduction current jcond as well. We can write the total current as

j = jcond +∇×M + ∂P

∂t
. (36.10)

36-2 The field H

Next, we want to insert the current as written in Eq. (36.10) into Maxwell’s
equations. We get

c2∇×B = j

ε0
+ ∂E

∂t
= 1
ε0

(
jcond +∇×M + ∂P

∂t

)
+ ∂E

∂t
.

We can move the term in M to the left-hand side:

c2∇×
(
B − M

ε0c2

)
= jcond

ε0
+ ∂

∂t

(
E + P

ε0

)
. (36.11)

As we remarked in Chapter 32, many people like to write (E + P /ε0) as a new
vector field D/ε0. Similarly, it is often convenient to write (B −M/ε0c

2) as a
single vector field. We choose to define a new vector field H by

H = B − M

ε0c2
. (36.12)

Then Eq. (36.11) becomes

ε0c
2∇×H = jcond + ∂D

∂t
. (36.13)

It looks simple, but all the complexity is just hidden in the letters D and H.
Now we have to give you a warning. Most people who use the mks units have

chosen to use a different definition of H. Calling their field H ′ (of course, they
still call it H without the prime), it is defined by

H ′ = ε0c
2B −M . (36.14)

(Also, they usually write ε0c2 as a new number 1/µ0; then they have one more
constant to keep track of!) With this definition, Eq. (36.13) looks even simpler:

∇×H ′ = jcond + ∂D

∂t
. (36.15)
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But the difficulties with this definition of H ′ are, first, that it doesn’t agree with
the definition of people who don’t use the mks units, and second, that it makes
H ′ and B have different units. We think it is more convenient for H to have
the same units as B—rather than the units of M , as H ′ does. But if you are
going to be an engineer and work on the design of transformers, magnets, and
such, you will have to watch out. You will find many books which use for H the
definition of Eq. (36.14) rather than our definition of Eq. (36.12), and many other
books—especially handbooks about magnetic materials—that relate B and H
the way we have done. You’ll have to be careful to figure out which convention
they are using.

One way to tell is by the units they use. Remember that in the mks system,
B—and therefore our H—are measured with the unit: one weber per square
meter, equal to 10,000 gauss. In the mks system, a magnetic moment (a cur-
rent times an area) has the unit: one ampere-meter2. The magnetization M ,
then, has the unit: one ampere per meter. For H ′ the units are the same as
for M . You can see that this also agrees with Eq. (36.15), since ∇ has the
dimensions of one over a length. People who are working with electromagnets
also get in the habit of calling the unit of H (with the H ′ definition) “one
ampere turn per meter”—thinking of the turns of wire on a winding. But
a “turn” is really a dimensionless number, so that doesn’t need to confuse
you. Since our H is equal to H ′/ε0c

2, if you are using the mks system, H
(in webers/meter2) is equal to 4π × 10−7 times H ′ (in amperes per meter). It
is perhaps more convenient to remember that H (in gauss) = 0.0126H ′ (in
amp/meter).

There is one more horrible thing. Many people who use our definition of H
have decided to call the units of H and B by different names! Even though they
have the same dimensions, they call the unit of B one gauss, and the unit of H
one oersted (after Gauss and Oersted, of course). So, in many books you will
find graphs with B plotted in gauss and H in oersteds. They are really the same
unit—10−4 of the mks unit. We have summarized the confusion about magnetic
units in Table 36-1.

36-3 The magnetization curve

Now we will look at some simple situations in which the magnetic field is
constant, or in which the fields change slowly enough that we can neglect ∂D/∂t
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Table 36-1

Units of magnetic quantities

[B] = weber/meter2 = 104 gauss
[H] = weber/meter2 = 104 gauss

or 104 oersted
[M ] = ampere/meter
[H ′] = ampere/meter

Convenient conversions

B (gauss) = 104B (weber/meter2)
H (gauss) = H (oersted)

= 0.0126H ′ (amp/meter)

in comparison with jcond. Then the fields obey the equations
∇ ·B = 0, (36.16)

∇×H = jcond/ε0c
2, (36.17)

H = B −M/ε0c
2. (36.18)

Suppose we have a torus (a donut) of iron wrapped with a coil of copper wire,
as shown in Fig. 36-7(a). A current I flows in the wire. What is the magnetic
field? The magnetic field will be mainly inside the iron; there, the lines of B
will be circles, as drawn in Fig. 36-7(b). Since the flux of B is continuous, its
divergence is zero, and Eq. (36.16) is satisfied. Next, we write Eq. (36.17) in
another form by integrating around the closed loop Γ drawn in Fig. 36-7(b).
From Stokes’ theorem, we have that∮

Γ
H · ds = 1

ε0c2

∫
S

jcond · n da, (36.19)

where the integral of j is to be carried out over any surface S bounded by Γ.
This surface is cut once by each turn of the winding. Each turn contributes the
current I to the integral, and, if there are N turns in all, the integral is NI.
From the symmetry of our problem, B is the same all around the curve Γ; if
we assume that the magnetization, and therefore, the field H is also constant
along Γ, Eq. (36.19) becomes

Hl = NI

ε0c2
,
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Fig. 36-7. (a) A torus of iron wound with a coil of insulated wire.
(b) Cross section of torus showing field lines.
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where l is the length of the curve Γ. So,

H = 1
ε0c2

NI

l
. (36.20)

It is because H is directly proportional to the magnetizing current in cases like
this one that H is sometimes called the magnetizing field.

Now all we need is an equation which relates H to B. But there isn’t any
such equation! There is, of course, Eq. (36.18), but it is no help because there is
no direct relation between M and B for a ferromagnetic material like iron. The
magnetization M depends on the whole past history of the iron, and not only
on what B is at the moment.

All is not lost, though. We can get solutions in certain simple cases. If we start
out with unmagnetized iron—let’s say with iron that has been annealed at high
temperatures—then in the simple geometry of the torus, all the iron will have
the same magnetic history. Then we can say something about M—and therefore
about the relation between B and H—from experimental measurements. The
field H in the torus is, from Eq. (36.20), given as a constant times the current I
in the winding. The field B can be measured by integrating over time the emf in
the coil (or in an extra coil wound over the magnetizing coil shown in the figure).
This emf is equal to the rate of change of the flux of B, so the integral of the
emf with time is equal to B times the cross-sectional area of the torus.

Figure 36-8 shows the relation between B and H, observed with a torus of
soft iron. When the current is first turned on, B increases with increasing H
along the curve a. Note the different scales on B and H; initially, it takes only
a relatively small H to make a large B. Why is B so much larger with the iron
than it would be with air? Because there is a large magnetization M which is
equivalent to a large surface current on the iron—the field B comes from the
sum of this current and the conduction current in the winding. Why M should
be so large, we will discuss later.

At higher values ofH , the magnetization curve levels off. We say that the iron
saturates. With the scales of our figure, the curve appears to become horizontal.
Actually, it continues to rise slightly—for large fields, B becomes proportional
to H , and with a unit slope. There is no further increase of M . Incidentally, we
should point out that if the torus were made of some nonmagnetic material, M
would be zero and B would equal H for all fields.

The first thing we notice is that curve a in Fig. 36-8—which is the so-called
magnetization curve—is highly nonlinear. But it’s worse than that. If, after
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Fig. 36-8. Typical magnetization and hysteresis curve for soft iron.

reaching saturation, we decrease the current in the coil to bring H back to zero,
the magnetic field B falls along curve b. When H reaches zero, there is still
some B left. Even with no magnetizing current there is a magnetic field in the
iron—it has become permanently magnetized. If we now turn on a negative
current in the coil, the B-H curve continues along b until the iron is saturated in
the negative direction. If we then bring the current back to zero again, B goes
along curve c. If we alternate the current between large positive and negative
values, the B-H curve goes back and forth along very nearly the curves b and c.
If we varyH in some arbitrary way, however, we can get more complicated curves
which will, in general, lie somewhere between the curves b and c. The loop made
by repeated oscillation of the fields is called a hysteresis loop of the iron.

We see then that we cannot write a functional relationship like B = f(H),
because the value of B at any instant depends not only on what H is at that
time, but on its whole past history. Naturally, the magnetization and hysteresis
curves are different for different substances. The shape of the curves depends

36-16



critically on the chemical composition of the material, and also on the details of
its preparation and subsequent physical treatment. We will discuss some of the
physical explanations for these complications in the next chapter.

36-4 Iron-core inductances

One of the most important applications of magnetic materials is in electrical
circuits—for example, in transformers, electric motors, and so on. One reason is
that with iron we can control where the magnetic fields go, and also get much
larger fields for a given electric current. For example, the typical “toroidal”
inductance is made very much like the object shown in Fig. 36-7. For a given
inductance, it can be much smaller in volume and use much less copper than an
equivalent “air-core” inductance. For a given inductance, we get a much smaller
resistance in the winding, so the inductance is more nearly “ideal”—particularly
for low frequencies. It is very easy to understand, qualitatively, how such an
inductance works. If I is the current in the winding, then the field H which
is produced in the inside is proportional to I—as given by Eq. (36.20). The
voltage V across the terminals is related to the magnetic field B. Neglecting
the resistance of the winding, the voltage V is proportional to ∂B/∂t. The
inductance L, which is the ratio of V to dI/dt (see Section 17-7), thus involves
the relation between B and H in the iron. Since the B is so much bigger than
the H , we get a large factor in the inductance. Physically, what happens is that
a small current in the coil, which would ordinarily produce a small magnetic field,
causes the little “slave” magnets in the iron to line up and produce a tremendously
greater “magnetic” current than the external current in the winding. It is as if
we had a lot more current going through the coil than we really have. When we
reverse the current, all the little magnets flip over—all those internal currents
reverse—and we get a much higher induced emf than we would get without the
iron. If we want to calculate the inductance, we can do so through the energy—as
described in Section 17-8. The rate at which energy is delivered from the current
source is IV. The voltage V is the cross-sectional area A of the core, times N ,
times dB/dt. From Eq. (36.20), I = (ε0c2l/N)H. So we have

dU

dt
= VI = (ε0c2lA)H dB

dt
.

Integrating over time, we have

U = (ε0c2lA)
∫
H dB. (36.21)
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Notice that lA is the volume of the torus, so we have shown that the energy
density u = U/vol in a magnetic material is given by

u = ε0c
2
∫
H dB. (36.22)

An interesting feature is involved here. When we use alternating currents, the
iron is driven around a hysteresis loop. Since B is not a single-valued function
of H, the integral of

∫
H dB around one complete cycle is not equal to zero. It

is the area enclosed inside the hysteresis curve. Thus, the driving source delivers
a certain net energy each cycle—an energy proportional to the area inside the
hysteresis loop. And that energy is “lost.” It is lost from the electromagnetic
goings on, but turns up as heat in the iron. It is called the hysteresis loss. To
keep such energy losses small, we would like the hysteresis loop to be as narrow as
possible. One way to decrease the area of the loop is to reduce the maximum field
that is reached during each cycle. For smaller maximum fields, we get a hysteresis
curve like the one shown in Fig. 36-9. Also, special materials are designed to
have a very narrow loop. The so-called transformer irons—which are iron alloys
with a small amount of silicon—have been developed to have this property.

When an inductance is run over a small hysteresis loop, the relationship
between B and H can be approximated by a linear equation. People usually
write

B = µH. (36.23)

The constant µ is not the magnetic moment we have used before. It is called the
permeability of the iron. (It is also sometimes called the “relative permeability.”)
The permeability of ordinary irons is typically several thousand. There are special
alloys alike “supermalloy” which can have permeabilities as high as a million.

If we use the approximation that B = µH in Eq. (36.21), we can write the
energy in a toroidal inductance as

U = (ε0c2lA)µ
∫
H dH = (ε0c2lA) µH

2

2 . (36.24)

So the energy density is approximately

u ≈ ε0c
2

2 µH2.
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Fig. 36-9. A hysteresis loop that doesn’t reach saturation.

We can now set the energy of Eq. (36.24) equal to the energy LI2/2 of an
inductance, and solve for L. We get

L = (ε0c2lA)µ
(
H

I

)2
.

Using H/I from Eq. (36.20), we have

L = µN2A

ε0c2l
. (36.25)

The inductance is proportional to µ. If you want inductances for such things
as audio amplifiers, you will try to operate them on a hysteresis loop where the
B-H relationship is as linear as possible. (You will remember that we spoke in
Chapter 50, Vol. I, about the generation of harmonics in nonlinear systems.) For
such purposes, Eq. (36.23) is a useful approximation. On the other hand, if you
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want to generate harmonics, you may use an inductance which is intentionally
operated in a highly nonlinear way. Then you will have to use the complete
B-H curves, and analyze what happens by graphical or numerical methods.

A “transformer” is often made by putting two coils on the same torus—or
core—of a magnetic material. (For the larger transformers, the core is made with
rectangular proportions for convenience.) Then a varying current in the “primary”
winding causes the magnetic field in the core to change, which induces an emf
in the “secondary” winding. Since the flux through each turn of both windings
is the same, the emf’s in the two windings are in the same ratio as the number
of turns on each. A voltage applied to the primary is transformed to a different
voltage at the secondary. Since a certain net current around the core is needed
to produce the required change in the magnetic field, the algebraic sum of the
currents in the two windings will be fixed and equal to the required “magnetizing”
current. If the current drawn from the secondary increases, the primary current
must increase in proportion—there is a “transformation” of currents as well as
voltage.

36-5 Electromagnets

Now let’s discuss a practical situation which is a little more complicated. Sup-
pose we have an electromagnet of the rather standard form shown in Fig. 36-10—

I

Fig. 36-10. An electromagnet.
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there is a “C-shaped” yoke of iron, with a coil of many turns of wire wrapped
around the yoke. What is the magnetic field B in the gap?

If the gap thickness is small compared with all the other dimensions, we can,
as a first approximation, assume that the lines of B will go around through the
loop, just as they did in the torus. They will look more or less as shown in
Fig. 36-11(a). They tend to spread out somewhat in the gap, but if the gap is
narrow, this will be a small effect. It is a fair approximation to assume that the

(a)

IRON

COPPER CURRENT

B1, H1 B2, H2

(b)
NI

NI

SURFACE S
CURVE Γ

ℓ2

ℓ1

Fig. 36-11. Cross section of an electromagnet.
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flux of B through any cross section of the yoke is a constant. If the yoke has a
uniform cross-sectional area A—and if we neglect any edge effects at the gaps or
at the corners—we can say that B is uniform around the yoke.

Also, B will have the same value in the gap. This follows from Eq. (36.16).
Imagine the closed surface S, shown in Fig. 36-11(b), which has one face in the
gap and the other in the iron. The total flux of B out of this surface must be
zero. Calling B1 the field in the gap and B2 the field in the iron, we have (to our
approximation) that

B1A−B2A = 0.
It follows that B1 = B2.

Now let’s look at H. We can again use Eq. (36.19), taking the line integral
around the curve Γ in Fig. 36-11(b). As before, the integral on the right-hand
side is NI, the number of turns times the current. Now, however, H will be
different in the iron and in the air. Calling H2 the field in the iron and l2 the path
length around the yoke, this part of the curve will contribute the amount H2l2
to the integral. Calling H1 the field in the gap and l1 the gap thickness, we get
the contribution H1l1 from the gap. We have that

H1l1 +H2l2 = NI

ε0c2
. (36.26)

Now we know something else: that in the air gap, the magnetization is
negligible, so that B1 = H1. Since B1 = B2, Eq. (36.26) becomes

B2l1 +H2l2 = NI

ε0c2
. (36.27)

We still have two unknowns. To find B2 and H2, we need another relationship—
namely, the one which relates B to H in the iron.

If we can make the approximation that B2 = µH2, we can solve the equation
algebraically. However, let’s do the general case, in which the magnetization curve
of the iron is one like that shown in Fig. 36-8. What we want is the simultaneous
solution of this functional relationship together with Eq. (36.27). We can find
it by plotting a graph of Eq. (36.27) on the same graph with the magnetization
curve, as is done in Fig. 36-12. Where the two curves intersect, we have our
solution.

For a given current I, the function (36.27) is the straight line marked I > 0 in
Fig. 36-12. The line intersects the H-axis (B2 = 0) at H2 = NI/ε0c

2l2, and the
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Fig. 36-12. Solving for the field in an electromagnet.

slope is −l2/l1. Different currents just shift the line horizontally. From Fig. 36-12,
we see that for a given current there are several different solutions, depending
on how you got there. If you have just built the magnet and turned the current
up to I, the field B2 (which is also B1) will have the value given by point a. If
you have run the current to some very high value and come down to I, the field
will be given by point b. Or, if you have just had a high negative current in the
magnet and then come up to I, the field is the one at point c. The field in the
gap will depend on what you have done in the past.

When the current in the magnet is zero, the relation between B2 and H2
in Eq. (36.27) is shown by the line marked I = 0 in the figure. There are still
various possible solutions. If you have first saturated the iron, there may be a
considerable residual field in the magnet as given by point d. You can take the coil
off, and you have a permanent magnet. You can see that for a good permanent
magnet, you would want a material with a wide hysteresis loop. Special alloys,
such as Alnico V, have very wide loops.
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36-6 Spontaneous magnetization

We now turn to the question of why it is that in ferromagnetic materials a
small magnetic field produces such a large magnetization. The magnetization of
ferromagnetic materials like iron and nickel comes from the magnetic moment
of the electrons in the inner shell of the atom. Each electron has a magnetic
moment µ equal to q/2m times its g-factor, times its angular momentum J . For
a single electron with no net orbital motion, g = 2, and the component of J in
any direction—say the z-direction—is ±~/2, so the component of µ along the
z-axis is

µz = q~
2m = 0.928× 10−23 amp·m2. (36.28)

In an iron atom, there are actually two electrons that contribute to the ferro-
magnetism, so to keep the discussion simpler we will talk about nickel, which is
ferromagnetic like iron but which has only one electron in the inner shell. (It is
easy to extend the arguments to iron.)

Now the point is that in the presence of an external field B, the atomic
magnets tend to line up with the field, but are knocked about by thermal motions
just as we described for paramagnetic materials. In the last chapter we found out
that the balance between a magnetic field trying to line up the atomic magnets
and the thermal motions trying to derange them produced the result that the
mean magnetic moment per unit volume will end up as

M = Nµ tanh µBa
kT

. (36.29)

By Ba we mean the field acting at the atom, and kT is the Boltzmann energy.
In the theory of paramagnetism we used for Ba just B itself, neglecting the
part of the field at any given atom contributed by the atoms nearby. In the
ferromagnetic case, there is a complication. We shouldn’t use the average field in
the iron for the Ba acting on an individual atom. Instead, we must do as we did
in the case of dielectrics—we have to find the local field acting at a single atom.
For an exact calculation we should add up the fields at the atom in question
contributed by all of the other atoms in the crystal lattice. But as we did for
dielectrics, we will make the approximation that the field at an atom is the same
as we would find in a small spherical hole in the material—assuming that the
moments of the atoms in the neighborhood are not changed by the presence of
the hole.
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Following the arguments we made in Chapter 11, we might think that we
could write

Bhole = B + 1
3
M

ε0c2
(wrong!).

But that is not right. We can, however, make use of the results of Chapter 11 if we
make a careful comparison of the equations of Chapter 11 with the equations for
ferromagnetism in this chapter. Let’s put together the corresponding equations.
For regions where there are no conduction currents or charges we have:

Electrostatics Static ferromagnetism

∇ ·
(
E + P

ε0

)
= 0 ∇ ·B = 0

∇×E = 0 ∇×
(
B − M

ε0c2

)
= 0

(36.30)

These two sets of equations can be thought of as analogous if we make the
following purely mathematical correspondences:

E → B − M

ε0c2
, E + P

ε0
→ B.

This is the same as making the analogy

E →H, P →M/c2. (36.31)

In other words, if we write the equations of ferromagnetism as

∇ ·
(
H + M

ε0c2

)
= 0,

∇×H = 0,
(36.32)

they look like the equations of electrostatics.
This purely algebraic correspondence has led to some confusion in the past.

People tended to think that H was “the magnetic field.” But, as we have seen,
B and E are physically the fundamental fields, and H is a derived idea. So
although the equations are analogous, the physics is not analogous. However,
that doesn’t need to stop us from using the principle that the same equations
have the same solutions.
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We can use our earlier results for the electric field inside of holes of various
shapes in dielectrics—summarized in Fig. 36-1—to find the field H inside of
corresponding holes. Knowing H, we can determine B. For instance (using
the results we summarized in Section 36-1), the field H in a needle-shaped hole
parallel to M is the same as the H in the material,

Hhole = Hmaterial.

But since M in the hole is zero, we have

Bhole = Bmaterial −
M

ε0c2
. (36.33)

On the other hand, for a disc-shaped hole, perpendicular to M , we have

Ehole = Edielectric + P

ε0
,

which translates into
Hhole = Hmaterial + M

ε0c2
.

Or, in terms of B,
Bhole = Bmaterial. (36.34)

Finally, for a spherical hole, by making our analogy with Eq. (36.3) we would
have

Hhole = Hmaterial + M

3ε0c2
or

Bhole = Bmaterial −
2
3
M

ε0c2
. (36.35)

This result is quite different from what we got for E.
It is, of course, possible to get these results in a more physical way, by using

the Maxwell equations directly. For example, Eq. (36.34) follows directly from
∇ ·B = 0. (You use a gaussian surface that is half in the material and half out.)
Similarly, you can get Eq. (36.33) by using a line integral along a curve that goes
up inside the hole and returns through the material. Physically, the field in the
hole is reduced because of the surface currents—which are given by ∇×M . We
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will leave it for you to show that Eq. (36.35) can also be obtained by considering
the effects of the surface currents on the boundary of the spherical cavity.

In finding the equilibrium magnetization from Eq. (36.29), it turns out to be
most convenient to deal with H; so write

Ba = H + λ
M

ε0c2
. (36.36)

In the spherical hole approximation, we would have λ = 1
3 , but, as you will see, we

will want later to use some other value, so we leave it as an adjustable parameter.
Also, we will take all the fields in the same direction so that we won’t need to
worry about the vector directions. If we were now to substitute Eq. (36.36) into
Eq. (36.29), we would have one equation that relates the magnetization M to
the magnetizing field H:

M = Nµ tanh
(
µ
H + λM/ε0c

2

kT

)
.

It is however, an equation that cannot be solved explicitly, so we will do it
graphically.

Let’s put the problem in a generalized form by writing Eq. (36.29) as

M

Msat
= tanh x, (36.37)

where Msat is the saturation value of the magnetization, namely, Nµ, and x
represents µBa/kT . The dependence of M/Msat on x is shown by curve a in
Fig. 36-13. We can also write x as a function of M—using Eq. (36.36) for Ba—as

x = µBa
kT

= µH

kT
+
(
µλMsat

ε0c2kT

)
M

Msat
. (36.38)

For any given value of H, this is a straight-line relationship between M/Msat
and x. The x intercept is at x = µH/kT , and the slope is ε0c2kT/µλMsat. For
any particular H, we would have a line like the one marked b in Fig. 36-13. The
intersection of curves a and b gives us the solution for M/Msat. We have solved
the problem.

Let’s look at how the solutions will go for various circumstances. We start
with H = 0. There are two possible situations, shown by the lines b1 and b2
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Fig. 36-13. A graphical solution of Eqs. (36.37) and (36.38).

in Fig. 36-14. You will notice from Eq. (36.38) that the slope of the line is
proportional to the absolute temperature T . So, at high temperatures we would
have a line like b1. The solution is M/Msat = 0. When the magnetizing field H
is zero, the magnetization is also zero. But at low temperatures, we would have
a line like b2, and there are two solutions for M/Msat—one with M/Msat = 0
and one with M/Msat near one. It turns out that only the upper solution is
stable—as you can see by considering small variations about these solutions.

According to these ideas, then, a magnetic material should magnetize itself
spontaneously at sufficiently low temperatures. In short, when the thermal

x0 0.5 1.0 1.5

M

Msat

0

0.5

1.0

HIGH T Tc LOW T

ab1

b2

b3

Fig. 36-14. Finding the magnetization when H = 0.
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motions are small enough, the coupling between the atomic magnets causes them
all to line up parallel to each other—we have a permanently magnetized material
analogous to the ferroelectrics we discussed in Chapter 11.

If we start at high temperatures and come down, there is a critical temperature,
called the Curie temperature Tc, where the ferromagnetic behavior suddenly sets
in. This temperature corresponds to the line b3 of Fig. 36-14, which is tangent to
the curve a, and has, therefore, a slope of 1. The Curie temperature is given by

ε0c
2kTc

µλMsat
= 1. (36.39)

We can, if we wish, write Eq. (36.38) more simply in terms of Tc as

x = µH

kT
+ Tc
T

(
M

Msat

)
. (36.40)

Now we want to see what happens for small magnetizing fields H. We can
see from Fig. 36-14 how things will go if we shift our straight lines a little to the
right. For the low-temperature case, the intersection point will move out a little
bit along the low-slope part of curve a, and M will change relatively little. For
the high-temperature case, however, the intersection point runs up the steep part
of curve a, and M will change relatively rapidly. In fact, we can approximate
this part of curve a by a straight line of unit slope, and write:

M

Msat
= x = µH

kT
+ Tc
T

(
M

Msat

)
.

Now we can solve for M/Msat:

M

Msat
= µH

k(T − Tc)
. (36.41)

We have a law that is something like the one we had for paramagnetism. For
paramagnetism, we had

M

Msat
= µB

kT
. (36.42)

One difference now is that we have the magnetization in terms of H, which
includes some of the effects of the interaction of the atomic magnets, but the
main difference is that the magnetization is inversely proportional to the difference
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between T and Tc, instead of to the absolute temperate T , alone. Neglecting
the interactions between neighboring atoms corresponds to taking λ = 0, which
from Eq. (36.39) means taking Tc = 0. Then the results are just what we had in
Chapter 35.

We can check our theoretical picture with the experimental data for nickel. It
is observed experimentally that the ferromagnetic behavior of nickel disappears
when its temperature is raised above 631◦K. We can compare this with Tc
calculated from Eq. (36.39). Remembering that Msat = µN , we have

Tc = λ
Nµ2

kε0c2
.

From the density and atomic weight of nickel, we get

N = 9.1× 1028 m−3.

Taking µ from Eq. (36.28), and setting λ = 1
3 , we get

Tc = 0.24◦K.

There is a discrepancy of a factor of about 2600! Our theory of ferromagnetism
fails completely.

We can try to “patch up” the theory as Weiss did by saying that for some
unknown reason λ is not one-third, but (2600)× 1

3—or about 900. It turns out
that one gets similar values for other ferromagnetic materials like iron. To see
what this means, let’s go back to Eq. (36.36). We see that a large λ means that
Ba, the local field on the atom, appears to be much, much larger than we would
think. In fact, writing H = B −M/ε0c

2, we have

Ba = B + (λ− 1)M
ε0c2

.

According to our original idea—with λ = 1
3 the local magnetization M reduces

the effective field Ba by the amount − 2
3M/ε0c

2. Even if our model of a spherical
hole were not very good, we would still expect some reduction. Instead, to explain
the phenomenon of ferromagnetism, we have to imagine that the magnetization
of the field enhances the local field by some large factor—like one thousand
or more. There doesn’t seem to be any reasonable way to manufacture such
tremendous fields at an atom—nor even fields of the proper sign! Clearly, our
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“magnetic” theory of ferromagnetism is a dismal failure. We must conclude, then,
that ferromagnetism has to do with some nonmagnetic interaction between the
spinning electrons in neighboring atoms. This interaction must generate a strong
tendency for all of the nearby spins to line up in one direction. We will see later
that it has to do with quantum mechanics and the Pauli exclusion principle.

Finally, we look at what happens at low temperatures—for T < Tc. We have
seen that there will then be a spontaneous magnetization—even with H = 0—
given by the intersection of the curves a and b2 of Fig. 36-14. If we solve forM for
various temperatures—by varying the slope of the line b2—we get the theoretical
curve shown in Fig. 36-15. This curve should be the same for all ferromagnetic
materials for which the atomic moment comes from a single electron. The curves
for other materials are only slightly different.

In the limit, as T goes to absolute zero, M goes to Msat. As the temperature
is increased, the magnetization decreases, falling to zero at the Curie temperature.
The points in Fig. 36-15 are the experimental observations for nickel. They fit
the theoretical curve fairly well. Even though we don’t understand the basic
mechanism, the general features of the theory seem to be correct.

Finally, there is one more disturbing discrepancy in our attempt to understand
ferromagnetism. We have found that above some temperature the material should

T/Tc

0 0.5 1.0

M
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0.5

1.0

EXPERIMENT
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Fig. 36-15. Spontaneous magnetization as a function of temperature
for nickel.
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behave like a paramagnetic substance with a magnetization M proportional
to H (or B), and that below that temperature it should become spontaneously
magnetized. But that’s not what we found when we measured the magnetization
curve for iron. It only became permanently magnetized after we had “magnetized”
it. According to the ideas just discussed, it would magnetize itself! What is
wrong? Well, it turns out that if you look at a small enough crystal of iron or
nickel, it is indeed completely magnetized! But in large pieces of iron, there are
many small regions or “domains” that are magnetized in different directions, so
that on a large scale the average magnetization appears to be zero. In each small
domain, however, the iron has a locked-in magnetization with M nearly equal
to Msat. The consequences of this domain structure are that gross properties of
large pieces of material are quite different from the microscopic properties that
we have really been treating. We will take up in the next lecture the story of the
practical behavior of bulk magnetic materials.
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37-1 Understanding ferromagnetism
In this chapter we will discuss the behavior and peculiarities of ferromagnetic

materials and of other strange magnetic materials. Before proceeding to study
magnetic materials, however, we will review very quickly some of the things about
the general theory of magnets that we learned in the last chapter.

First, we imagine the atomic currents inside the material that are responsible
for the magnetism, and then describe them in terms of a volume current den-
sity jmag = ∇×M . We emphasize that this is not supposed to represent the
actual currents. When the magnetization is uniform the currents do not really
cancel out precisely; that is, the whirling currents of one electron in one atom
and the whirling currents of an electron in another atom do not overlap in such
a way that the sum is exactly zero. Even within a single atom the distribution
of magnetism is not smooth. For instance, in an iron atom the magnetization
is distributed in a more or less spherical shell, not too close to the nucleus and
not too far away. Thus, magnetism in matter is quite a complicated thing in its
details; it is very irregular. However, we are obliged now to ignore this detailed
complexity and discuss phenomena from a gross, average point of view. Then
it is true that the average current in the interior region, over any finite area
that is big compared with an atom, is zero when M = 0. So, what we mean
by magnetization per unit volume and jmag and so on, at the level we are now
considering, is an average over regions that are large compared with the space
occupied by a single atom.

In the last chapter, we also discovered that a ferromagnetic material has the
following interesting property: above a certain temperature it is not strongly
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magnetic, whereas below this temperature it becomes magnetic. This fact is
easily demonstrated. A piece of nickel wire at room temperature is attracted
by a magnet. However, if we heat it above its Curie temperature with a gas
flame, it becomes nonmagnetic and is not attracted toward the magnet—even
when brought quite close to the magnet. If we let it lie near the magnet while it
cools off, at the instant its temperature falls below the critical temperature it is
suddenly attracted again by the magnet!

The general theory of ferromagnetism that we will use supposes that the
spin of the electron is responsible for the magnetization. The electron has spin
one-half and carries one Bohr magneton of magnetic moment µ = µB = qe~/2m.
The electron spin can be pointed either “up” or “down.” Because the electron
has a negative charge, when its spin is “up” it has a negative moment, and when
its spin is “down” it has a positive moment. With our usual conventions, the
moment µ of the electron is opposite its spin. We have found that the energy of
orientation of a magnetic dipole in a given applied field B is −µ ·B, but the
energy of the spinning electrons depends on the neighboring spin alignments as
well. In iron, if the moment of a nearby atom is “up,” there is a very strong
tendency that the moment of the one next to it will also be “up.” That is what
makes iron, cobalt, and nickel so strongly magnetic—the moments all want to be
parallel. The first question we have to discuss is why.

Soon after the development of quantum mechanics, it was noticed that there
is a very strong apparent force—not a magnetic force or any other kind of actual
force, but only an apparent force—trying to line the spins of nearby electrons
opposite to one another. These forces are closely related to chemical valence forces.
There is a principle in quantum mechanics—called the exclusion principle—that
two electrons cannot occupy exactly the same state, that they cannot be in
exactly the same condition as to location and spin orientation.* For example, if
they are at the same point, the only alternative is to have their spins opposite.
So, if there is a region of space between atoms where electrons like to congregate
(as in a chemical bond) and we want to put another electron on top of one
already there, the only way to do it is to have the spin of the second one pointed
opposite to the spin of the first one. To have the spins parallel is against the law,
unless the electrons stay away from each other. This has the effect that a pair
of parallel-spin electrons near to each other have much more energy than a pair
of opposite-spin electrons; the net effect is as though there were a force trying

* See Chapter 4 of Vol. III (section 4-7).
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to turn the spin over. Sometimes this spin-turning force is called the exchange
force, but that only makes it more mysterious—it is not a very good term. It is
just because of the exclusion principle that electrons have a tendency to make
their spins opposite. In fact, that is the explanation of the lack of magnetism in
almost all substances! The spins of the free electrons on the outside of the atoms
have tremendous tendency to balance in opposite directions. The problem is to
explain why for materials like iron it is just the reverse of what we should expect.

We have summarized the supposed alignment effect by adding a suitable term
in the energy equation, by saying that if the electron magnets in the neighborhood
have a mean magnetization M , then the moment of an electron has a strong
tendency to be in the same direction as the average magnetization of the atoms
in the neighborhood. Thus, we may write for the two possible spin orientations,*

Spin “up” energy = +µ
(
H + λM

ε0c2

)
,

Spin “down” energy = −µ
(
H + λM

ε0c2

)
.

(37.1)

When it was clear that quantum mechanics could supply a tremendous
spin-orientating force—even if, apparently, of the wrong sign—it was suggested
that ferromagnetism might have its origin in this same force, that due to the
complexities of iron and the large number of electrons involved, the sign of the
interaction energy would come out the other way around. Since the time this was
thought of—in about 1927 when quantum mechanics was first being understood—
many people have been making various estimates and semicalculations, trying
to get a theoretical prediction for λ. The most recent calculations of the energy
between the two electron spins in iron—assuming that the interaction is a direct
one between the two electrons in neighboring atoms—still give the wrong sign.
The present understanding of this is again to assume that the complexity of the
situation is somehow responsible and to hope that the next man who makes the
calculation with a more complicated situation will get the right answer!

It is believed that the up-spin of one of the electrons in the inside shell, which
is making the magnetism, tends to make the conduction electrons which fly
around the outside have the opposite spin. One might expect this to happen

* We write these equations with H = B −M/ε0c2 instead of B to agree with the work of
the last chapter. You might prefer to write U = ±µBa = ±µ(B+λ′M/ε0c2), where λ′ = λ− 1.
It’s the same thing.
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because the conduction electrons come into the same region as the “magnetic”
electrons. Since they move around, they can carry their prejudice for being upside
down over to the next atom; that is, one “magnetic” electron tries to force the
conduction electrons to be opposite, and the conduction electron then makes
the next “magnetic” electron opposite to it. The double interaction is equivalent
to an interaction which tries to line up the two “magnetic” electrons. In other
words, the tendency to make parallel spins is the result of an intermediary that
tends to some extent to be opposite to both. This mechanism does not require
that the conduction electrons be completely “upside down.” They could just have
a slight prejudice to be down, just enough to load the “magnetic” odds the other
way. This is the mechanism that the people who have calculated such things now
believe is responsible for ferromagnetism. But we must emphasize that to this day
nobody can calculate the magnitude of λ simply by knowing that the material is
number 26 in the periodic table. In short, we don’t thoroughly understand it.

Now let us continue with the theory, and then come back later to discuss a
certain error involved in the way we have set it up. If the magnetic moment of a
certain electron is “up,” energy comes both from the external field and also from
the tendency of the spins to be parallel. Since the energy is lower when the spins
are parallel, the effect is sometimes thought of as due to an “effective internal
field.” But remember, it is not due to a true magnetic force; it is an interaction
that is more complicated. In any case, we take Eqs. (37.1) as the formulas for
the energies of the two spin states of a “magnetic” electron. At a temperature T ,
the relative probability of these two states is proportional to e−energy/kT , which
we can write as e±x, with x = µ(H + λM/ε0c

2)/kT . Then, if we calculate the
mean value of the magnetic moment, we find (as in the last chapter) that it is

M = Nµ tanh x. (37.2)

Now we would like to calculate the internal energy of the material. We note
that the energy of an electron is exactly proportional to the magnetic moment, so
that the calculation of the mean moment and the calculation of the mean energy
are the same—except that in place of µ in Eq. (37.2) we would write −µB, which
is −µ(H + λM/ε0c

2). The mean energy is then

〈U〉av = −Nµ
(
H + λM

ε0c2

)
tanh x.

Now this is not quite correct. The term λM/ε0c
2 represents interactions of

all possible pairs of atoms, and we must remember to count each pair only once.
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(When we consider the energy of one electron in the field of the rest and then
the energy of a second electron in the field of the rest, we have counted part of
the first energy once more.) Thus, we must divide the mutual interaction term
by two, and our formula for the energy then turns out to be

〈U〉av = −Nµ
(
H + λM

2ε0c2

)
tanh x. (37.3)

In the last chapter we discovered an interesting thing—that below a certain
temperature the material finds a solution to the equations in which the magnetic
moment is not zero, even with no external magnetizing field. When we set H = 0
in Eq. (37.2), we found that

M

Msat
= tanh

(
Tc
T

M

Msat

)
, (37.4)

where Msat = Nµ, and Tc = µλMsat/kε0c
2. When we solve this equation

(graphically or otherwise), we find that the ratio M/Msat as a function of T/Tc is
a curve like that labeled “quantum theory” in Fig. 37-1. The dashed curve marked
“cobalt, nickel” shows the experimental results for crystals of these elements. The
theory and experiment are in reasonably good agreement. The figure also shows
the result of the classical theory in which the calculation is carried out assuming
that the atomic magnets can have all possible orientations in space. You can see
that this assumption gives a prediction that is not even close to the experimental
facts.

Even the quantum theory deviates from the observed behavior at both high
and low temperatures. The reason for the deviations is that we have made a
rather sloppy approximation in the theory: We have assumed that the energy
of an atom depends upon the mean magnetization of its neighboring atoms. In
other words, for each one that is “up” in the neighborhood of a given atom, there
will be a contribution of energy due to that quantum mechanical alignment effect.
But how many are there pointed “up”? On the average, that is measured by
the magnetization M—but only on the average. A particular atom somewhere
might find all its neighbors “up.” Then its energy will be larger than the average.
Another one might find some up and some down, perhaps averaging to zero, and
it would have no energy from that term, and so on. What we ought to do is to
use some more complicated kind of average, because the atoms in different places
have different environments, and the numbers up and down are different for
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Fig. 37-1. The spontaneous magnetization (H = 0) of ferromagnetic
crystals as a function of temperature. [Permission from Encyclopaedia
Britannica.]

different ones. Instead of just taking one atom subjected to the average influence,
we should take each one in its actual situation, compute its energy, and find
the average energy. But how do we find out how many are “up” and how many
are “down” in the neighborhood? That is, of course, just what we are trying
to calculate—the number “up” and “down”—so we have a very complicated
interconnected problem of correlations, a problem which has never been solved.
It is an intriguing and exciting one which has existed for years and on which
some of the greatest names in physics have written papers, but even they have
not completely solved it.

It turns out that at low temperatures, when almost all the atomic magnets
are “up” and only a few are “down,” it is easy to solve; and at high temperatures,
far above the Curie temperature Tc when they are almost all random, it is again
easy. It is often easy to calculate small departures from some simple, idealized
situation, so it is fairly well understood why there are deviations from the simple
theory at low temperature. It is also understood physically that for statistical
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reasons the magnetization should deviate at high temperatures. But the exact
behavior near the Curie point has never been thoroughly figured out. That’s an
interesting problem to work out some day if you want a problem that has never
been solved.

37-2 Thermodynamic properties

In the last chapter we laid the groundwork necessary for calculating the
thermodynamic properties of ferromagnetic materials. These are, naturally,
related to the internal energy of the crystal, which includes interactions of
the various spins, given by Eq. (37.3). For the energy of the spontaneous
magnetization below the Curie point, we can set H = 0 in Eq. (37.3), and—
noticing that tanh x = M/Msat—we find a mean energy proportional to M2:

〈U〉av = − NµλM2

2ε0c2Msat
. (37.5)

If we now plot the energy due to the magnetism as a function of temperature, we
get a curve which is the negative of the square of the curve of Fig. 37-1, as drawn
in Fig. 37-2(a). If we were to measure then the specific heat of such a material we
would obtain a curve which is the derivative of 37-2(a). It is shown in Fig. 37-2(b).
It rises slowly with increasing temperature, but falls suddenly to zero at T = Tc.
The sharp drop is due to the change in slope of the magnetic energy and is
reached right at the Curie point. So without any magnetic measurements at all
we could have discovered that something was going on inside of iron or nickel
by measuring this thermodynamic property. However, both experiment and
improved theory (with fluctuations included) suggest that this simple curve is
wrong and that the true situation is really more complicated. The curve goes
higher at the peak and falls to zero somewhat slowly. Even if the temperature is
high enough to randomize the spins on the average, there are still local regions
where there is a certain amount of polarization, and in these regions the spins
still have a little extra energy of interaction—which only dies out slowly as things
get more and more random with further increases in temperature. So the actual
curve looks like Fig. 37-2(c). One of the challenges of theoretical physics today
is to find an exact theoretical description of the character of the specific heat
near the Curie transition—an intriguing problem which has not yet been solved.
Naturally, this problem is very closely related to the shape of the magnetization
curve in the same region.
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Fig. 37-2. The energy per unit volume and specific heat of a ferro-
magnetic crystal.

Now we want to describe some experiments, other than thermodynamic ones,
which show that there is something right about our interpretation of magnetism.
When the material is magnetized to saturation at low enough temperatures, M
is very nearly equal to Msat—nearly all the spins are parallel, as well as their
magnetic moments. We can check this by an experiment. Suppose we suspend a
bar magnet by a thin fiber and then surround it by a coil so that we can reverse
the magnetic field without touching the magnet or putting any torque on it.
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ELECTRON
SPINS

Fig. 37-3. When the magnetization of a bar of iron is reversed, the
bar is given some angular momentum.

This is a very difficult experiment because the magnetic forces are so enormous
that any irregularities, any lopsidedness, or any lack of perfection in the iron
will produce accidental torques. However, the experiment has been done under
careful conditions in which such accidental torques are minimized. By means
of the magnetic field from a coil that surrounds the bar, we turn all the atomic
magnets over at once. When we do this we also change the angular momenta of
all the spins from “up” to “down” (see Fig. 37-3). If angular momentum is to be
conserved when the spins all turn over, the rest of the bar must have an opposite
change in angular momentum. The whole magnet will start to spin. And sure
enough, when we do the experiment, we find a slight turning of the magnet.
We can measure the total angular momentum given to the whole magnet, and
this is simply N times ~, the change in the angular momentum of each spin.
The ratio of angular momentum to magnetic moment measured this way comes
out to within about 10 percent of what we calculate. Actually, our calculations
assume that the atomic magnets are due purely to the electron spin, but there
is, in addition, some orbital motion also in most materials. The orbital motion
is not completely free of the lattice and does not contribute much more than
a few percent to the magnetism. As a matter of fact, the saturation magnetic
field that one gets taking Msat = Nµ and using the density of iron of 7.9 and
the moment µ of the spinning electron is about 20,000 gauss. But according to
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experiment, it is actually in the neighborhood of 21,500 gauss. This is a typical
magnitude of error—5 or 10 percent—due to neglecting the contributions of the
orbital moments that have not been included in making the analysis. Thus, a
slight discrepancy with the gyromagnetic measurements is quite understandable.

37-3 The hysteresis curve

We have concluded from our theoretical analysis that a ferromagnetic material
should spontaneously become magnetized below a certain temperature so that all
the magnetism would be in the same direction. But we know that this is not true
for an ordinary piece of unmagnetized iron. Why isn’t all iron magnetized? We
can explain it with the help of Fig. 37-4. Suppose the iron were all a big single
crystal of the shape shown in Fig. 37-4(a) and spontaneously magnetized all in
one direction. Then there would be a considerable external magnetic field, which
would have a lot of energy. We can reduce that field energy if we arrange that
one side of the block is magnetized “up” and the other side magnetized “down,”
as in Fig. 37-4(b). Then, of course, the fields outside the iron would extend over
less volume, so there would be less energy there.

(a)

N N N N
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(b)

N N S S

S S N N

(c)

S N S N

N S N S

(d) (e)

Fig. 37-4. The formation of domains in a single crystal of iron. [From
Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956.]
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Ah, but wait! In the layer between the two regions we have up-spinning
electrons adjacent to down-spinning electrons. But ferromagnetism appears only
in those materials for which the energy is reduced if the electrons are parallel
rather than opposite. So, we have added some extra energy along the dotted
line in Fig. 37-4(b); this energy is sometimes called wall energy. A region having
only one direction of magnetization is called a domain. At the interface—the
“wall”—between two domains, where we have atoms on opposite sides which are
spinning in different directions, there is an energy per unit area of the wall. We
have described it as though two adjacent atoms were spinning exactly opposite,
but it turns out that nature adjusts things so that the transition is more gradual.
But we don’t need to worry about such fine details at this point.

Now the question is: When is it better or worse to make a wall? The answer
is that it depends on the size of the domains. Suppose that we were to scale up a
block so that the whole thing was twice as big. The volume in the space outside
filled with a given magnetic field strength would be eight times bigger, and the
energy in the magnetic field, which is proportional to the volume, would also be
eight times greater. But the surface area between two domains, which will give
the wall energy, would be only four times as big. Therefore, if the piece of iron
is big enough, it will pay to split it into more domains. This is why only the very
tiny crystals can have but a single domain. Any large object—one more than
about a hundredth of a millimeter in size—will have at least one domain wall;
and any ordinary, “centimeter-size” object will be split into many domains, as
shown in the figure. Splitting into domains goes on until the energy needed to put
in one extra wall is as large as the energy decrease in the magnetic field outside
the crystal.

Actually nature has discovered still another way to lower the energy: It is
not necessary to have the field go outside at all, if a little triangular region
is magnetized sideways, as in Fig. 37-4(d).* Then with the arrangement of
Fig. 37-4(d) we see that there is no external field, but instead only a little more
domain wall.

But that introduces a new kind of problem. It turns out that when a single
crystal of iron is magnetized, it changes its length in the direction of magnetization,

* You may be wondering how spins that have to be either “up” or “down” can also be
“sideways”! That’s a good question, but we won’t worry about it right now. We’ll simply adopt
the classical point of view, thinking of the atomic magnets as classical dipoles which can be
polarized sideways. Quantum mechanics requires considerable expertness to understand how
things can be quantized both “up-and-down,” and “right-and-left,” all at the same time.
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so an “ideal” cube with its magnetization, say, “up,” is no longer a perfect cube.
The “vertical” dimension will be different from the “horizontal” dimension. This
effect is called magnetostriction. Because of such geometric changes, the little
triangular pieces of Fig. 37-4(d) do not, so to speak, “fit” into the available space
anymore—the crystal has got too long one way and too short the other way. Of
course, it does fit, really, but only by being squashed in; and this involves some
mechanical stresses. So, this arrangement also introduces an extra energy. It is
the balance of all these various energies which determines how the domains finally
arrange themselves in their complicated fashion in a piece of unmagnetized iron.

Now, what happens when we put on an external magnetic field? To take a
simple case, consider a crystal whose domains are as shown in Fig. 37-4(d). If we
apply an external magnetic field in the upward direction, in what manner does
the crystal become magnetized? First, the middle domain wall can move over
sideways (to the right) and reduce the energy. It moves over so that the region
which is “up” becomes bigger than the region which is “down.” There are more
elementary magnets lined up with the field, and this gives a lower energy. So, for a
piece of iron in weak fields—at the very beginning of magnetization—the domain
walls begin to move and eat into the regions which are magnetized opposite to
the field. As the field continues to increase, a whole crystal shifts gradually into
a single large domain which the external field helps to keep lined up. In a strong
field the crystal “likes” to be all one way just because its energy in the applied
field is reduced—it is no longer merely the crystal’s own external field which
matters.

What if the geometry is not so simple? What if the axes of the crystal and
its spontaneous magnetization are in one direction, but we apply the magnetic
field in some other direction—say at 45◦? We might think that domains would
reform themselves with their magnetization parallel to the field, and then as
before, they could all grow into one domain. But this is not easy for the iron
to do, for the energy needed to magnetize a crystal depends on the direction of
magnetization relative to the crystal axis. It is relatively easy to magnetize iron
in a direction parallel to the crystal axes, but it takes more energy to magnetize
it in some other direction—like 45◦ with respect to one of the axes. Therefore,
if we apply a magnetic field in such a direction, what happens first is that the
domains which point along one of the preferred directions which is near to the
applied field grow until the magnetization is all along one of these directions.
Then with much stronger fields, the magnetization is gradually pulled around
parallel to the field, as sketched in Fig. 37-5.
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Fig. 37-5. A magnetizing field H at an angle with respect to the
crystal axis will gradually change the direction of the magnetization
without changing its magnitude.

In Fig. 37-6 are shown some observations of the magnetization curves of single
crystals of iron. To understand them, we must first explain something about
the notation that is used in describing directions in a crystal. There are many
ways in which a crystal can be sliced so as to produce a face which is a plane
of atoms. Everyone who has driven past an orchard or vineyard knows this—it
is fascinating to watch. If you look one way, you see lines of trees—if you look
another way, you see different lines of trees, and so on. In a similar way, a crystal
has definite families of planes that hold many atoms, and the planes have this
important characteristic (we consider a cubic crystal to make it easier): If we
observe where the planes intersect the three coordinate axes—we find that the
reciprocals of the three distances from the origin are in the ratio of simple whole
numbers. These three whole numbers are taken as the definition of the planes.
For example, in Fig. 37-7(a), a plane parallel to the yz-plane is shown. This
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Fig. 37-6. The components of M parallel to H, for different directions
of H (with respect to the crystal axes). [From F. Bitter, Introduction
to Ferromagnetism, McGraw-Hill Book Co., Inc., 1937.]

is called a [100] plane; the reciprocals of its intersection of the y- and z-axes
are both zero. The direction perpendicular to such a plane (in a cubic crystal)
is given the same set of numbers. It is easy to understand the idea in a cubic
crystal, for then the indices [100] mean a vector which has a unit component in
the x-direction and none in the y- or z-directions. The [110] direction is in a
direction 45◦ from the x- and y-axes, as in Fig. 37-7(b); and the [111] direction
is in the direction of the cube diagonal, as in Fig. 37-7(c).

Returning now to Fig. 37-6, we see the magnetization curves of a single crystal
of iron for various directions. First, note that for very tiny fields—so weak that
it is hard to see them on the scale at all—the magnetization increases extremely
rapidly to quite large values. If the field is in the [100] direction—namely along
one of those nice, easy directions of magnetization—the curve goes up to a high
value, curves around a little, and then is saturated. What happened is that the
domains which were already there are very easily removed. Only a small field
is required to make the domain walls move and eat up all of the “wrong-way”
domains. Single crystals of iron are enormously permeable (magnetic sense),
much more so than ordinary polycrystalline iron. A perfect crystal magnetizes
extremely easily. Why is it curved at all? Why doesn’t it just go right up to
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Fig. 37-7. The way crystal planes are labeled.

saturation? We are not sure. You might study that some day. We do understand
why it is flat for high fields. When the whole block is a single domain, the extra
magnetic field cannot make any more magnetization—it is already at Msat, with
all the electrons lines up.

Now, if we try to do the same thing in the [110] direction—which is at 45◦
to the crystal axes—what will happen? We turn on a little bit of field and the
magnetization leaps up as the domains grow. Then as we increase the field some
more, we find that it takes quite a lot of field to get up to saturation, because now
the magnetization is turning away from an “easy” direction. If this explanation
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is correct, the point at which the [110] curve extrapolates back to the vertical
axis should be at 1/

√
2 of the saturation value. It turns out, in fact, to be

very, very close to 1/
√

2. Similarly, in the [111] direction—which is along the
cube diagonal—we find, as we would expect, that the curve extrapolates back to
nearly 1/

√
3 of saturation.
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Fig. 37-8. Magnetization curves for single crystals of iron, nickel, and
cobalt. [From Charles Kittel, Introduction to Solid State Physics, John
Wiley and Sons, Inc., New York, 2nd ed., 1956.]

Figure 37-8 shows the corresponding situation for two other materials, nickel
and cobalt. Nickel is different from iron. In nickel, it turns out that the [111] di-
rection is the easy direction of magnetization. Cobalt has a hexagonal crystal
form, and people have botched up the system of nomenclature for this case. They
want to have three axes on the bottom of the hexagon and one perpendicular
to these, so they have used four indices. The [0001] direction is the direction of
the axis of the hexagon, and [1010] is perpendicular to that axis. We see that
crystals of different metals behave in different ways.

Now we must discuss a polycrystalline material, such as an ordinary piece
of iron. Inside such materials there are many, many little crystals with their
crystalline axes pointing every which way. These are not the same as domains.
Remember that the domains were all part of a single crystal, but in a piece of iron
there are many different crystals with axes at different orientations, as shown in
Fig. 37-9. Within each of these crystals, there will also generally be some domains.
When we apply a small magnetic field to a piece of polycrystalline material, what
happens is that the domain walls begin to move, and the domains which have a
favorable direction of easy magnetization grow larger. This growth is reversible so
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Fig. 37-9. The microscopic structure of an unmagnetized ferromag-
netic material. Each crystal grain has an easy direction of magnetization
and is broken up into domains which are spontaneously magnetized
(usually) parallel to this direction.

long as the field stays very small—if we turn the field off, the magnetization will
return to zero. This part of the magnetization curve is marked a in Fig. 37-10.

For larger fields—in the region b of the magnetization curve shown—things
get much more complicated. In every small crystal of the material, there are
strains and dislocations; there are impurities, dirt, and imperfections. And at all
but the smallest fields, the domain wall, in moving, gets stuck on these. There
is an interaction energy between the domain wall and a dislocation, or a grain
boundary, or an impurity. So when the wall gets to one of them, it gets stuck;
it sticks there at a certain field. But then if the field is raised some more, the

H

B

a

b

c

Fig. 37-10. The magnetization curve for polycrystalline iron.
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wall suddenly snaps past. So the motion of the domain wall is not smooth the
way it is in a perfect crystal—it gets hung up every once in a while and moves in
jerks. If we were to look at the magnetization on a microscopic scale, we would
see something like the insert of Fig. 37-10.

Now the important thing is that these jerks in the magnetization can cause an
energy loss. In the first place, when a boundary finally slips past an impediment,
it moves very quickly to the next one, since the field is already above what would
be required for the unimpeded motion. The rapid motion means that there are
rapidly changing magnetic fields which produce eddy currents in the crystal.
These currents lose energy in heating the metal. A second effect is that when a
domain suddenly changes, part of the crystal changes its dimensions from the
magnetostriction. Each sudden shift of a domain wall sets up a little sound wave
that carries away energy. Because of such effects, the second part of magnetization
curve is irreversible, and there is energy being lost. This is the origin of the
hysteresis effect, because to move a boundary wall forward—snap—and then to
move it backward—snap—produces a different result. It’s like “jerky” friction,
and it takes energy.

Eventually, for high enough fields, when we have moved all the domain walls
and magnetized each crystal in its best direction, there are still some crystallites
which happen to have their easy directions of magnetization not in the direction
of our external magnetic field. Then it takes a lot of extra field to turn those
magnetic moments around. So the magnetization increases slowly, but smoothly,
for high fields—namely in the region marked c in the figure. The magnetization
does not come sharply to its saturation value, because in the last part of the
curve the atomic magnets are turning in the strong field. So we see why the
magnetization curve of an ordinary polycrystalline materials, such as the one
shown in Fig. 37-10, rises a little bit and reversibly at first, then rises irreversibly,
and then curves over slowly. Of course, there is no sharp break-point between
the three regions—they blend smoothly, one into the other.

It is not hard to show that the magnetization process in the middle part of the
magnetization curve is jerky—that the domain walls jerk and snap as they shift.
All you need is a coil of wire—with many thousands of turns—connected to an
amplifier and a loudspeaker, as shown in Fig. 37-11. If you put a few silicon steel
sheets (of the type used in transformers) at the center of the coil and bring a bar
magnet slowly near the stack, the sudden changes in magnetization will produce
impulses of emf in the coil, which are heard as distinct clicks in the loudspeaker.
As you move the magnet nearer to the iron you will hear a whole rush of clicks
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Fig. 37-11. The sudden changes in the magnetization of the steel
strip are heard as clicks in the loudspeaker.

that sound something like the noise of sand grains falling over each other as a
can of sand is tilted. The domain walls are jumping, snapping, and jiggling as
the field is increased. This phenomenon is called the Barkhausen effect.

As you move the magnet even closer to the iron sheets, the noise grows louder
and louder for a while but then there is relatively little noise when the magnet
gets very close. Why? Because nearly all the domain walls have moved as far
as they can go. Any greater field is merely turning the magnetization in each
domain, which is a smooth process.

If you now withdraw the magnet, so as to come back on the downward branch
of the hysteresis loop, the domains all try to get back to low energy again, and
you hear another rush of backward-going jerks. You can also note that if you
bring the magnet to a given place and move it back and forth a little bit, there is
relatively little noise. It is again like tilting a can of sand—once the grains shift
into place, small movements of the can don’t disturb them. In the iron the small
variations in the magnetic field aren’t enough to move any boundaries over any
of the “humps.”

37-4 Ferromagnetic materials

Now we would like to talk about the various kinds of magnetic materials that
there are in the technical world and to consider some of the problems involved in
designing magnetic materials for different purposes. First, the term “the magnetic
properties of iron,” which one often hears, is a misnomer—there is no such thing.
“Iron” is not a well-defined material—the properties of iron depend critically on
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the amount of impurities and also on how the iron is formed. You can appreciate
that the magnetic properties will depend on how easily the domain walls move and
that this is a gross property, not a property of the individual atoms. So practical
ferromagnetism is not really a property of an iron atom—it is a property of solid
iron in a certain form. For example, iron can take on two different crystalline
forms. The common form has a body-centered cubic lattice, but it can also
have a face-centered cubic lattice, which is, however, stable only at temperatures
above 1100◦C. Of course, at that temperature the body-centered cubic structure
is already past the Curie point. However, by alloying chromium and nickel with
the iron (one possible mixture is 18 percent chromium and 8 percent nickel) we
can get what is called stainless steel, which, although it is mainly iron, retains the
face-centered lattice even at low temperatures. Because its crystal structure is
different, it has completely different magnetic properties. Most kinds of stainless
steel are not magnetic to any appreciable degree, although there are some kinds
which are somewhat magnetic—it depends on the composition of the alloy. Even
when such an alloy is magnetic, it is not ferromagnetic like ordinary iron—even
though it is mostly just iron.

We would like now to describe a few of the special materials which have
been developed for their particular magnetic properties. First, if we want to
make a permanent magnet, we would like material with an enormously wide
hysteresis loop so that, when we turn the current off and come down to zero
magnetizing field, the magnetization will remain large. For such materials the
domain boundaries should be “frozen” in place as much as possible. One such
material is the remarkable alloy “Alnico V” (51% Fe, 8% Al, 14% Ni, 24% Co,
3% Cu). (The rather complex composition of this alloy is indicative of the kind of
detailed effort that has gone into making good magnets. What patience it takes
to mix five things together and test them until you find the most ideal substance!)
When Alnico solidifies, there is a “second phase” which precipitates out, making
many tiny grains and very high internal strains. In this material, the domain
boundaries have a hard time moving at all. In addition to having a precise
composition, Alnico is mechanically “worked” in a way that makes the crystals
appear in the form of long grains along the direction in which the magnetization
is going to be. Then the magnetization will have a natural tendency to be
lined up in these directions and will be held there from the anisotropic effects.
Furthermore, the material is even cooled in an external magnetic field when it
is manufactured, so that the grains will grow with the right crystal orientation.
The hysteresis loop of Alnico V is shown in Fig. 37-12. You see that it is about
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Fig. 37-12. The hysteresis curve of Alnico V.

700 times wider than the hysteresis curve for soft iron that we showed in the last
chapter in Fig. 36-8.

Let’s turn now to a different kind of material. For building transformers
and motors, we want a material which is magnetically “soft”—one in which the
magnetism is easily changed so that an enormous amount of magnetization results
from a very small applied field. To arrange this, we need pure, well-annealed
material which will have very few dislocations and impurities so that the domain
walls can move easily. It would also be nice if we could make the anisotropy
small. Then, even if a grain of the material sits at the wrong angle with respect
to the field, it will still magnetize easily. Now we have said that iron prefers to
magnetize along the [100] direction, whereas nickel prefers the [111] direction;
so if we mix iron and nickel in various proportions, we might hope to find that
with just the right proportions the alloy wouldn’t prefer any direction—the [100]
and [111] directions would be equivalent. It turns out that this happens with
a mixture of 70 percent nickel and 30 percent iron. In addition—possibly by
luck or maybe because of some physical relationship between the anisotropy and
the magnetostriction effects—it turns out that the magnetostriction of iron and
nickel has the opposite sign. And in an alloy of the two metals, this property
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goes through zero at about 80 percent nickel. So somewhere between 70 and
80 percent nickel we get very “soft” magnetic materials—alloys that are very easy
to magnetize. They are called the permalloys. Permalloys are useful for high-
quality transformers (at low signal levels), but they would be no good at all for
permanent magnets. Permalloys must be very carefully made and handled. The
magnetic properties of a piece of permalloy are drastically changed if it is stressed
beyond its elastic limit—it mustn’t be bent. Then, its permeability is reduced
because of the dislocations, slip bands, and so on, which are produced by the
mechanical deformations. The domain boundaries are no longer easy to move. The
high permeability can, however, be restored by annealing at high temperatures.

It is often convenient to have some numbers to characterize the various
magnetic materials. Two useful numbers are the intercepts of the hysteresis loop
with the B- and H-axes, as indicated in Fig. 37-12. These intercepts are called
the remanent magnetic field Br and the coercive force Hc. In Table 37-1 we list
these numbers for a few magnetic materials.

Table 37-1

Properties of some ferromagnetic
materials

Br Hc
Residual Coercive
magnetic force

field (gauss)
Material (gauss)

Supermalloy (≈ 5000) 0.004
Silicon steel
(transformer) 12,000 0.05

Armco iron 4,000 0.6
Alnico V 13,000 550.

37-5 Extraordinary magnetic materials

We would now like to discuss some of the more exotic magnetic materials.
There are many elements in the periodic table which have incomplete inner
electron shells and hence have atomic magnetic moments. For instance, right next
to the ferromagnetic elements iron, nickel, and cobalt you will find chromium
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Fig. 37-13. Relative orientation of electron spins in various materials:
(a) ferromagnetic, (b) antiferromagnetic, (c) ferrite, (d) yttrium-iron al-
loy. (Broken arrows show direction of total angular momentum, including
orbital motion.

and manganese. Why aren’t they ferromagnetic? The answer is that the λ term
in Eq. (37.1) has the opposite sign for these elements. In the chromium lattice,
for example, the spins of the chromium atoms alternate atom by atom, as shown
in Fig. 37-13(b). So chromium is “magnetic” from its own point of view, but
it is not technically interesting because there are no external magnetic effects.
Chromium, then, is an example of a material in which quantum mechanical
effects make the spins alternate. Such a material is called antiferromagnetic. The
alignment in antiferromagnetic materials is also temperature dependent. Below a
critical temperature, all the spins are lined up in the alternating array, but when
the material is heated above a certain temperature—which is again called the
Curie temperature—the spins suddenly become random. There is, internally, a
sudden transition. This transition can be seen in the specific heat curve. Also
it shows up in some special “magnetic” effects. For instance, the existence of
the alternating spins can be verified by scattering neutrons from a crystal of
chromium. Because a neutron itself has a spin (and a magnetic moment), it has
a different amplitude to be scattered, depending on whether its spin is parallel
or opposite to the spin of the scatterer. Thus, we get a different interference
pattern when the spins in a crystal are alternating than we do when they have a
random distribution.

There is another kind of substance in which quantum mechanical effects make
the electron spins alternate, but which is nevertheless ferromagnetic—that is,
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Fig. 37-14. Crystal structure of the mineral spinel (MgAl2O4); the
Mg+2 ions occupy tetrahedral sites, each surrounded by four oxygen ions;
the Al+3 ions occupy octahedral sites, each surrounded by six oxygen
ions. [From Charles Kittel, Introduction to Solid State Physics, John
Wiley and Sons, Inc., New York, 2nd ed., 1956.]

the crystal has a permanent net magnetization. The idea behind such materials
is shown in Fig. 37-14. The figure shows the crystal structure of spinel, a
magnesium-aluminum oxide, which—as it is shown—is not magnetic. The oxide
has two kinds of metal atoms: magnesium and aluminum. Now if we replace the
magnesium and the aluminum by two magnetic elements like iron and zinc, or
by zinc and manganese—in other words, if we put in magnetic atoms instead
of the nonmagnetic ones—an interesting thing happens. Let’s call one kind of
metal atom a and the other kind of metal atom b; then the following combination
of forces must be considered. There is an a-b interaction which tries to make
the a atoms and the b atoms have opposite spins—because quantum mechanics
always gives the opposite sign (except for the mysterious crystals of iron, nickel,
and cobalt). Then, there is a direct a-a interaction which tries to make the a’s
opposite, and also a b-b interaction which tries to make the b’s opposite. Now,
of course we cannot have everything opposite everything else—a opposite b, a
opposite a, and b opposite b. Presumably because of the distances between the a’s
and the presence of the oxygen (although we really don’t know why), it turns
out that the a-b interaction is stronger than the a-a or the b-b. So the solution
that nature uses in this case is to make all the a’s parallel to each other, and
all the b’s parallel to each other, but the two systems opposite. That gives the
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lowest energy because of the stronger a-b interaction. The result: all the a’s are
spinning up and all the b’s are spinning down—or vice versa, of course. But if the
magnetic moments of the a-type atom and the b-type atom are not equal, we can
get the situation shown in Fig. 37-13(c), and there can be a net magnetization
in the material. The material will then be ferromagnetic—although somewhat
weak. Such materials are called ferrites. They do not have as high a saturation
magnetization as iron—for obvious reasons—so they are only useful for smaller
fields. But they have a very important difference—they are insulators; the ferrites
are ferromagnetic insulators. In high-frequency fields, they will have very small
eddy currents and so can be used, for example, in microwave systems. The
microwave fields will be able to get inside such an insulating material, whereas
they would be kept out by the eddy currents in a conductor like iron.

There is another class of magnetic materials which has only recently been
discovered—members of the family of the orthosilicates called garnets. They are
again crystals in which the lattice contains two kinds of metallic atoms, and we
have again a situation in which two kinds of atoms can be substituted almost at
will. Among the many compounds of interest there is one which is completely
ferromagnetic. It has yttrium and iron in the garnet structure, and the reason
it is ferromagnetic is very curious. Here again quantum mechanics is making
the neighboring spins opposite, so that there is a locked-in system of spins with
the electron spins of the iron one way and the electron spins of the yttrium the
opposite way. But the yttrium atom is complicated. It is a rare-earth element
and gets a large contribution to its magnetic moment from orbital motion of the
electrons. For yttrium, the orbital motion contribution is opposite that of the
spin and also is bigger. Thus, although quantum mechanics, working through
the exclusion principle, makes the spins of the yttrium opposite those of the
iron, it makes the total magnetic moment of the yttrium atom parallel to the
iron because of the orbital effect—as sketched in Fig. 37-13(d). The compound
is therefore a regular ferromagnet.

Another interesting example of ferromagnetism occurs in some of the rare-
earth elements. It has to do with a still more peculiar arrangement of the spins.
The material is not ferromagnetic in the sense that the spins are all parallel, nor
is it antiferromagnetic in the sense that every atom is opposite. In these crystals
all of the spins in one layer are parallel and lie in the plane of the layer. In the
next layer all spins are again parallel to each other, but point in a somewhat
different direction. In the following layer they are in still another direction, and
so on. The result is that the local magnetization vector varies in the form of a
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spiral—the magnetic moments of the successive layers rotate as we proceed along
a line perpendicular to the layers. It is interesting to try to analyze what happens
when a field is applied to such a spiral—all the twistings and turnings that must
go on in all those atomic magnets. (Some people like to amuse themselves with
the theory of these things!) Not only are there cases of “flat” spirals, but there are
also cases in which the directions the magnetic moments of successive layers map
out a cone, so that it has a spiral component and also a uniform ferromagnetic
component in one direction!

The magnetic properties of materials, worked out on a more advanced level
than we have been able to do here, have fascinated physicists of all kinds. In the
first place, there are those practical people who love to work out ways of making
things in a better way—they love to design better and more interesting magnetic
materials. The discovery of things like ferrites, or their application, immediately
delights people who like to see clever new ways of doing things. Besides this, there
are those who find a fascination in the terrible complexity that nature can produce
using a few basic laws. Starting with one and the same general idea, nature goes
from the ferromagnetism of iron and its domains, to the antiferromagnetism of
chromium, to the magnetism of ferrites and garnets, to the spiral structure of the
rare earth elements, and on, and on. It is fascinating to discover experimentally all
the strange things that go on in these special substances. Then, to the theoretical
physicists, ferromagnetism presents a number of very interesting, unsolved, and
beautiful challenges. One challenge is to understand why it exists at all. Another
is to predict the statistics of the interacting spins in an ideal lattice. Even
neglecting any possible extraneous complications, this problem has, so far, defied
full understanding. The reason that it is so interesting is that it is such an easily
stated problem: Given a lot of electron spins in a regular lattice, interacting
with such-and-such a law, what do they do? It is simply stated, but it has defied
complete analysis for years. Although it has been analyzed rather carefully for
temperatures not too close to the Curie point, the theory of the sudden transition
at the Curie point still needs to be completed.

Finally, the whole subject of the system of spinning atomic magnets—in
ferromagnetic, or in paramagnetic materials and in nuclear magnetism, has also
been a fascinating thing to advanced students in physics. The system of spins
can be pushed on and pulled on with external magnetic fields, so one can do
many tricks with resonances, with relaxation effects, with spin-echoes, and with
other effects. It serves as a prototype of many complicated thermodynamic
systems. But in paramagnetic materials the situation is often fairly simple, and
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people have been delighted both to do experiments and to explain the phenomena
theoretically.

We now close our study of electricity and magnetism. In the first chapter, we
spoke of the great strides that have been made since the early Greek observation of
the strange behaviors of amber and of lodestone. Yet in all our long and involved
discussion we have never explained why it is that when we rub a piece of amber
we get a charge on it, nor have we explained why a lodestone is magnetized! You
may say, “Oh, we just didn’t get the right sign.” No, it is worse than that. Even
if we did get the right sign, we would still have the question: Why is the piece
of lodestone in the ground magnetized? There is the earth’s magnetic field, of
course, but where does the earth’s field come from? Nobody really knows—there
have only been some good guesses. So you see, this physics of ours is a lot of
fakery—we start out with the phenomena of lodestone and amber, and we end up
not understanding either of them very well. But we have learned a tremendous
amount of very exciting and very practical information in the process!
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38

Elasticity

Review: Chapter 47, Vol. I, Sound; the Wave Equation.

38-1 Hooke’s law

The subject of elasticity deals with the behavior of those substances which
have the property of recovering their size and shape when the forces producing
deformations are removed. We find this elastic property to some extent in all
solid bodies. If we had the time to deal with the subject at length, we would
want to look into many things: the behavior of materials, the general laws of
elasticity, the general theory of elasticity, the atomic machinery that determine
the elastic properties, and finally the limitations of elastic laws when the forces
become so great that plastic flow and fracture occur. It would take more time
than we have to cover all these subjects in detail, so we will have to leave out
some things. For example, we will not discuss plasticity or the limitations of
the elastic laws. (We touched on these subjects briefly when we were talking
about dislocations in metals.) Also, we will not be able to discuss the internal
mechanisms of elasticity—so our treatment will not have the completeness we
have tried to achieve in the earlier chapters. Our aim is mainly to give you an
acquaintance with some of the ways of dealing with such practical problems as
the bending of beams.

When you push on a piece of material, it “gives”—the material is deformed.
If the force is small enough, the relative displacements of the various points in
the material are proportional to the force—we say the behavior is elastic. We will
discuss only the elastic behavior. First, we will write down the fundamental laws
of elasticity, and then we will apply them to a number of different situations.

Suppose we take a rectangular block of material of length l, width w, and
height h, as shown in Fig. 38-1. If we pull on the ends with a force F , then
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Fig. 38-1. The stretching of a bar under uniform tension.

the length increases by an amount ∆l. We will suppose in all cases that the
change in length is a small fraction of the original length. As a matter of fact, for
materials like wood and steel, the material will break if the change in length is
more than a few percent of the original length. For a large number of materials,
experiments show that for sufficiently small extensions the force is proportional
to the extension

F ∝ ∆l. (38.1)

This relation is known as Hooke’s law.
The lengthening ∆l of the bar will also depend on its length. We can figure

out how by the following argument. If we cement two identical blocks together,
end to end, the same forces act on each block; each will stretch by ∆l. Thus,
the stretch of a block of length 2l would be twice as big as a block of the same
cross section, but of length l. In order to get a number more characteristic of the
material, and less of any particular shape, we choose to deal with the ratio ∆l/l
of the extension to the original length. This ratio is proportional to the force but
independent of l:

F ∝ ∆l
l
. (38.2)

The force F will also depend on the area of the block. Suppose that we put
two blocks side by side. Then for a given stretch ∆l we would have the force F
on each block, or twice as much on the combination of the two blocks. The
force, for a given amount of stretch, must be proportional to the cross-sectional
area A of the block. To obtain a law in which the coefficient of proportionality is
independent of the dimensions of the body, we write Hooke’s law for a rectangular
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block in the form
F = Y A

∆l
l
. (38.3)

The constant Y is a property only of the nature of the material; it is known as
Young’s modulus. (Usually you will see Young’s modulus called E. But we’ve
used E for electric fields, energy, and emf’s, so we prefer to use a different letter.)

The force per unit area is called the stress, and the stretch per unit length—
the fractional stretch—is called the strain. Equation (38.3) can therefore be
rewritten in the following way:

F

A
= Y × ∆l

l
, (38.4)

Stress = (Young’s modulus)× (Strain).

There is another part to Hooke’s law: When you stretch a block of material
in one direction it contracts at right angles to the stretch. The contraction in
width is proportional to the width w and also to ∆l/l. The sideways contraction
is in the same proportion for both width and height, and is usually written

∆w
w

= ∆h
h

= −σ ∆l
l
, (38.5)

where the constant σ is another property of the material called Poisson’s ratio.
It is always positive in sign and is a number less than 1/2. (It is “reasonable”
that σ should be generally positive, but it is not quite clear that it must be so.)

The two constants Y and σ specify completely the elastic properties of a
homogeneous’ isotropic (that is, noncrystalline) material. In crystalline materials
the stretches and contractions can be different in different directions, so there
can be many more elastic constants. We will restrict our discussion temporarily
to homogeneous’ isotropic materials whose properties can be described by Y
and σ. As usual there are different ways of describing things—some people like
to describe the elastic properties of materials by different constants. It always
takes two, and they can be related to σ and Y .

The last general law we need is the principle of superposition. Since the
two laws (38.4) and (38.5) are linear in the forces and in the displacements,
superposition will work. If you have one set of forces and get some displacements,
and then you add a new set of forces and get some additional displacements, the
resulting displacements will be the sum of the ones you would get with the two
sets of forces acting independently.
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Now we have all the general principles—the superposition principle and Eqs.
(38.4) and (38.5)—and that’s all there is to elasticity. But that is like saying that
once you have Newton’s laws that’s all there is to mechanics. Or, given Maxwell’s
equations, that’s all there is to electricity. It is, of course, true that with these
principles you have a great deal, because with your present mathematical ability
you could go a long way. We will, however, work out a few special applications.

38-2 Uniform strains

As our first example let’s find out what happens to a rectangular block under
uniform hydrostatic pressure. Let’s put a block under water in a pressure tank.
Then there will be a force acting inward on every face of the block proportional
to the area (see Fig. 38-2). Since the hydrostatic pressure is uniform, the stress
(force per unit area) on each face of the block is the same. We will work out first
the change in the length. The change in length of the block can be thought of as
the sum of changes in length that would occur in the three independent problems
which are sketched in Fig. 38-3.

pp

p

p

p

Fig. 38-2. A bar under uniform hydrostatic pressure.

Problem 1. If we push on the ends of the block with a pressure p, the
compressional strain is p/Y , and it is negative,

∆l1
l

= − p
Y
.

Problem 2. If we push on the two sides of the block with pressure p, the
compressional strain is again p/Y , but now we want the lengthwise strain. We
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Fig. 38-3. Hydrostatic pressure is the superposition of three longitudi-
nal compressions.

can get that from the sideways strain multiplied by −σ. The sideways strain is

∆w
w

= − p
Y

;
so

∆l2
l

= +σ p

Y
.

Problem 3. If we push on the top of the block, the compressional strain is once
more p/Y , and the corresponding strain in the sideways direction is again −σp/Y .
We get

∆l3
l

= +σ p

Y
.

38-5



Combining the results of the three problems—that is, taking ∆l = ∆l1 +
∆l2 + ∆l3—we get

∆l
l

= − p
Y

(1− 2σ). (38.6)

The problem is, of course, symmetrical in all three directions; it follows that

∆w
w

= ∆h
h

= − p
Y

(1− 2σ). (38.7)

The change in the volume under hydrostatic pressure is also of some interest.
Since V = lwh, we can write, for small displacements,

∆V
V

= ∆l
l

+ ∆w
w

+ ∆h
h
.

Using (38.6) and (38.7), we have

∆V
V

= −3 p

Y
(1− 2σ). (38.8)

People like to call ∆V/V the volume strain and write

p = −K ∆V
V

.

The volume stress p is proportional to the volume strain—Hooke’s law once more.
The coefficient K is called the bulk modulus; it is related to the other constants
by

K = Y

3(1− 2σ) . (38.9)

Since K is of some practical interest, many handbooks give Y and K instead of
Y and σ. If you want σ you can always get it from Eq. (38.9). We can also see
from Eq. (38.9) that Poisson’s ratio, σ, must be less than one-half. If it were not,
the bulk modulus K would be negative, and the material would expand under
increasing pressure. That would allow us to get mechanical energy out of any old
block—it would mean that the block was in unstable equilibrium. If it started to
expand it would continue by itself with a release of energy.

Now we want to consider what happens when you put a “shear” strain on
something. By shear strain we mean the kind of distortion shown in Fig. 38-4.
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G

Fig. 38-4. A cube in uniform shear.

FF

F

F

Fig. 38-5. A cube with compressing forces on top and bottom and
equal stretching forces on two sides.

As a preliminary to this, let us look at the strains in a cube of material subjected
to the forces shown in Fig. 38-5. Again we can break it up into two problems:
the vertical pushes, and the horizontal pulls. Calling A the area of the cube face,
we have for the change in horizontal length

∆l
l

= 1
Y

F

A
+ σ

1
Y

F

A
= 1 + σ

Y

F

A
. (38.10)

The change in the vertical height is just the negative of this.
Now suppose we have the same cube and subject it to the shearing forces

shown in Fig. 38-6(a). Note that all the forces have to be equal if there are to be
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(a)

AREA A

A B

G

G

G

G

(b)
D

√
2G

√
2G

√
2G√

2G

AREA =
√
2A

Fig. 38-6. The two pairs of shear forces in (a) produce the same
stress as the compressing and stretching forces of (b).

no net torques and the cube is to be in equilibrium. (Similar forces must also
exist in Fig. 38-4, since the block is in equilibrium. They are provided through
the “glue” that holds the block to the table.) The cube is then said to be in a
state of pure shear. But note that if we cut the cube by a plane at 45◦—say along
the diagonal A in the figure—the total force acting across the plane is normal to
plane and is equal to

√
2G. The area over which this force acts is

√
2A; therefore,

the tensile stress normal to this plane is simply G/A. Similarly, if we examine a
plane at an angle of 45◦ the other way—the diagonal B in the figure—we see
that there is a compressional stress normal to this plane of −G/A. From this,
we see that the stress in a “pure shear” is equivalent to a combination of tension
and compression stresses of equal strength and at right angles to each other, and
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at 45◦ to the original faces of the cube. The internal stresses and strains are the
same as we would find in the larger block of material with the forces shown in
Fig. 38-6(b). But this is the problem we have already solved. The change in
length of the diagonal is given by Eq. (38.10),

∆D
D

= 1 + σ

Y

G

A
. (38.11)

(One diagonal is shortened; the other is elongated.)
It is often convenient to express a shear strain in terms of the angle by which

the cube is twisted—the angle θ in Fig. 38-7. From the geometry of the figure
you can see that the horizontal shift δ of the top edge is equal to

√
2 ∆D. So

θ = δ

l
=
√

2 ∆D
l

= 2 ∆D
D

. (38.12)

The shear stress g is defined as the tangential force on one face divided by the
area, g = G/A. Using Eq. (38.11) in (38.12), we get

θ = 2 1 + σ

Y
g.

Or, writing this in the form “stress = constant times strain,”

g = µθ. (38.13)

`

`D

θ

δ

∆D
G

Fig. 38-7. The shear strain θ is 2 ∆D/D.
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The proportionality coefficient µ is called the shear modulus (or, sometimes, the
coefficient of rigidity). It is given in terms of Y and σ by

µ = Y

2(1 + σ) . (38.14)

Incidentally, the shear modulus must be positive—otherwise you could get work
out of a self-shearing block. From Eq. (38.14), σ must be greater than −1. We
know, then, that σ must be between −1 and + 1

2 ; in practice, however, it is always
greater than zero.

As a last example of the type of situation where the stresses are uniform
through the material, let’s consider the problem of a block which is stretched,
while it is at the same time constrained so that no lateral contraction can take
place. (Technically, it’s a little easier to compress it while keeping the sides from
bulging out—but it’s the same problem.) What happens? Well, there must be
sideways forces which keep it from changing its thickness—forces we don’t know
off-hand but will have to calculate. It’s the same kind of problem we have already
done, only with a little different algebra. We imagine forces on all three sides, as
shown in Fig. 38-8; we calculate the changes in dimensions, and we choose the
transverse forces to make the width and height remain constant. Following the
usual arguments, we get for the three strains:

∆lx
lx

= 1
Y

Fx
Ax
− σ

Y

Fy
Ay
− σ

Y

Fz
Az

= 1
Y

[
Fx
Ax
− σ

(
Fy
Ay

+ Fz
Az

)]
, (38.15)

∆ly
ly

= 1
Y

[
Fy
Ay
− σ

(
Fx
Ax

+ Fz
Az

)]
, (38.16)

∆lz
lz

= 1
Y

[
Fz
Az
− σ

(
Fx
Ax

+ Fy
Ay

)]
. (38.17)

Now since ∆ly and ∆lz are supposed to be zero, Eqs. (38.16) and (38.17) give
two equations relating Fy and Fz to Fx. Solving them together, we get that

Fy
Ay

= Fz
Az

= σ

1− σ
Fx
Ax

. (38.18)

Substituting in (38.15), we have

∆lx
lx

= 1
Y

(
1− 2σ2

1− σ

)
Fx
Ax

= 1
Y

(
1− σ − 2σ2

1− σ

)
Fx
Ax

. (38.19)

38-10



Fx Fx

Fy
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Fig. 38-8. Stretching without lateral contraction.

Often, you will see this turned around, and with the quadratic in σ factored out,
it is then written

F

A
= 1− σ

(1 + σ)(1− 2σ) Y
∆l
l
. (38.20)

When we constrain the sides, Young’s modulus gets multiplied by a complicated
function of σ. As you can most easily see from Eq. (38.19), the factor in front
of Y is always greater than 1. It is harder to stretch the block when the sides
are held—which also means that a block is stronger when the sides are held than
when they are not.

38-3 The torsion bar; shear waves

Let’s now turn our attention to an example which is more complicated because
different parts of the material are stressed by different amounts. We consider a
twisted rod such as you would find in a drive shaft of some machinery, or in a
quartz fiber suspension used in a delicate instrument. As you probably know
from experiments with the torsion pendulum, the torque on a twisted rod is
proportional to the angle—the constant of proportionality obviously depending
upon the length of the rod, on the radius of the rod, and on the properties of the
material. The question is: In what way? We are now in a position to answer this
question; it’s just a matter of working out some geometry.

Fig. 38-9(a) shows a cylindrical rod of length L, and radius a, with one end
twisted by the angle φ with respect to the other. If we want to relate the strains
to what we already know, we can think of the rod as being made up of many
cylindrical shells and work out separately what happens to each shell. We start
by looking at a thin, short cylinder of radius r (less than a) and thickness ∆r—as
drawn in Fig. 38-9(b). Now if we look at a piece of this cylinder that was originally
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(a)

L

a

φ

(b)

r

∆r

φ

θ

(c)

∆�

∆r

∆F ∆F

θ

Fig. 38-9. (a) A cylindrical bar in torsion. (b) A cylindrical shell in
torsion. (c) Each small piece of the shell is in shear.

a small square, we see that it has been distorted into a parallelogram. Each such
element of the cylinder is in shear, and the shear angle θ is

θ = rφ

L
.

The shear stress g in the material is, therefore [from Eq. (38.13)],

g = µθ = µ
rφ

L
. (38.21)

The shear stress is the tangential force ∆F on the end of the square divided
by the area ∆l∆r of the end [see Fig. 38-9(c)]

g = ∆F
∆l∆r .
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The force ∆F on the end of such a square contributes a torque ∆τ around the
axis of the rod equal to

∆τ = r∆F = rg∆l∆r. (38.22)

The total torque τ is the sum of such torques around a complete circumference of
the cylinder. So putting together enough pieces so that the ∆l’s add up to 2πr,
we find that the total torque, for a hollow tube, is

rg(2πr) ∆r. (38.23)
Or, using (38.21),

τ = 2πµ r
3 ∆rφ
L

. (38.24)

We get that the rotational stiffness, τ/φ, of a hollow tube is proportional to the
cube of the radius r and to the thickness ∆r, and inversely proportional to the
length L.

We can now imagine a solid rod to be made up of a series of concentric tubes,
each twisted by the same angle φ (although the internal stresses are different for
each tube). The total torque is the sum of the torques required to rotate each
shell; for the solid rod

τ = 2πµ φ
L

∫
r3 dr,

where the integral goes from r = 0 to r = a, the radius of the rod. Integrating,
we have

τ = µ
πa4

2L φ. (38.25)

For a rod in torsion, the torque is proportional to the angle and is proportional
to the fourth power of the diameter—a rod twice as thick is sixteen times as stiff
for torsion.

Before leaving the subject of torsion, let us apply what we have just learned to
an interesting problem: torsional waves. If you take a long rod and suddenly twist
one end, a wave of twist works it way along the rod, as sketched in Fig. 38-10(a).
That’s a little more exciting than a steady twist—let’s see whether we can work
out what happens.

Let z be the distance to some point down the rod. For a static torsion the
torque is the same everywhere along the rod, and is proportional to φ/L, the
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(a)

z

(b)

τ −(τ + ∆τ)

END 1 END 2

z z + ∆z

Fig. 38-10. (a) A torsional wave on a rod. (b) A volume element of
the rod.

total torsion angle over the total length. What matters to the material is the
local torsional strain, which is, you will appreciate, ∂φ/∂z. When the torsion
along the rod is not uniform, we should replace Eq. (38.25) by

τ(z) = µ
πa4

2
∂φ

∂z
. (38.26)

Now let’s look at what happens to an element of length ∆z shown magnified in
Fig. 38-10(b). There is a torque τ(z) at end 1 of the little hunk of rod, and a
different torque τ(z + ∆z) at end 2. If ∆z is small enough, we can use a Taylor
expansion and write

τ(z + ∆z) = τ(z) +
(
∂τ

∂z

)
∆z. (38.27)

The net torque ∆τ acting on the little piece of rod between z and z + ∆z
is clearly the difference between τ(z) and τ(z + ∆z), or ∆τ = (∂τ/∂z) ∆z.
Differentiating Eq. (38.26), we get

∆τ = µ
πa4

2
∂2φ

∂z2 ∆z. (38.28)
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The effect of this net torque is to give an angular acceleration to the little
slice of the rod. The mass of the slice is

∆M = (πa2 ∆z)ρ,

where ρ is the density of the material. We worked out in Chapter 19, Vol. I,
that the moment of inertia of a circular cylinder is mr2/2; calling the moment of
inertia of our piece ∆I, we have

∆I = π

2 ρa
4 ∆z. (38.29)

Newton’s law says the torque is equal to the moment of inertia times the angular
acceleration, or

∆τ = ∆I ∂
2φ

∂t2
. (38.30)

Pulling everything together, we get

µ
πa4

2
∂2φ

∂z2 ∆z = π

2 ρa
4 ∆z ∂

2φ

∂t2
,

or
∂2φ

∂z2 −
ρ

µ

∂2φ

∂t2
= 0. (38.31)

You will recognize this as the one-dimensional wave equation. We have found
that waves of torsion will propagate down the rod with the speed

Cshear =
√
µ

ρ
. (38.32)

The denser the rod—for the same stiffness—the slower the waves; and the stiffer
the rod, the quicker the waves work their way down. The speed does not depend
upon the diameter of the rod.

Torsional waves are a special example of shear waves. In general, shear waves
are those in which the strains do not change the volume of any part of the
material. In torsional waves, we have a particular distribution of such shear
stresses—namely, distributed on a circle. But for any arrangement of shear
stresses, waves will propagate with the same speed—the one given in Eq. (38.32).
For example, the seismologists find such shear waves travelling in the interior of
the earth.
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We can have another kind of a wave in the elastic world inside a solid
material. If you push something, you can start “longitudinal” waves—also called
“compressional” waves. They are like the sound waves in air or in water—the
displacements are in the same direction as the wave propagation. (At the surfaces
of an elastic body there can also be other types of waves—called “Rayleigh waves”
or “Love waves.” In them, the strains are neither purely longitudinal nor purely
transverse. We will not have time to study them.)

While we’re on the subject of waves, what is the velocity of the pure com-
pressional waves in a large solid body like the earth? We say “large” because the
speed of sound in a thick body is different from what it is, for instance, along a
thin rod. By a “thick” body we mean one in which the transverse dimensions are
much larger than the wavelength of the sound. Then, when we push on the object,
it cannot expand sideways—it can only compress in one dimension. Fortunately,
we have already worked out the special case of the compression of a constrained
elastic material. We have also worked out in Chapter 47, Vol. I, the speed of
sound waves in a gas. Following the same arguments you can see that the speed
of sound in a solid is equal to

√
Y ′/ρ, where Y ′ is the “longitudinal modulus”—or

pressure divided by the relative change in length—for the constrained case. This
is just the ratio of ∆l/l to F/A we got in Eq. (38.20). So the speed of the
longitudinal waves is given by

C2
long = Y ′

ρ
= 1− σ

(1 + σ)(1− 2σ)
Y

ρ
. (38.33)

So long as σ is between zero and 1/2, the shear modulus µ is less than Young’s
modulus Y , and also Y ′ is greater than Y , so

µ < Y < Y ′.

This means that longitudinal waves travel faster than shear waves. One of
the most precise ways of measuring the elastic constants of a substance is by
measuring the density of the material and the speeds of the two kinds of waves.
From this information one can get both Y and σ. It is, incidentally, by measuring
the difference in the arrival times of the two kinds of waves from an earthquake
that a seismologist can estimate—even from the signals at only one station—the
distance to the quake.
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38-4 The bent beam

We want now to look at another practical matter—the bending of a rod or a
beam. What are the forces when we bend a bar of some arbitrary cross section?
We will work it out thinking of a bar with a circular cross section, but our answer
will be good for any shape. To save time, however, we will cut some corners, so
our theory we will work out is only approximate. Our results will be correct only
when the radius of the bend is much larger than the thickness of the beam.

L

R

Fig. 38-11. A bent beam.

Suppose you grab the two ends of a straight bar and bend it into some curve
like the one shown in Fig. 38-11. What goes on inside the bar? Well, if it is
curved, that means that the material on the inside of the curve is compressed
and the material on the outside is stretched. There is some surface which goes
along more or less parallel to the axis of the bar that is neither stretched nor
compressed. This is called the neutral surface. You would expect this surface
to be near the “middle” of the cross section. It can be shown (but we won’t
do it here) that, for small bending of simple beams, the neutral surface goes
through the “center of gravity” of the cross section. This is true only for “pure”
bending—if you are not stretching or compressing the beam at the same time.

For pure bending, then, a thin transverse slice of the bar is distorted as shown
in Fig. 38-12(a). The material below the neutral surface has a compressional
strain which is proportional to the distance from the neutral surface; and the
material above is stretched, also in proportion to its distance from the neutral
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y

∆y

NEUTRAL
SURFACE

Fig. 38-12. (a) Small segment of a bent beam. (b) Cross section of
the beam.

surface. So the longitudinal stretch ∆l is proportional to the height y. The
constant of proportionality is just l over the radius of curvature of the bar—see
Fig. 38-12:

∆l
l

= y

R
.

So the force per unit area—the stress—in a small strip at y is also proportional
to the distance from the neutral surface

∆F
∆A = Y

y

R
. (38.34)

Now let’s look at the forces that would produce such a strain. The forces
acting on the little segment drawn in Fig. 38-12 are shown in the figure. If we
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think of any transverse cut, the forces acting across it are one way above the
neutral surface and the other way below. They come in pairs to make a “bending
moment” M—by which we mean the torque about the neutral line. We can
compute the total moment by integrating the force times the distance from the
neutral surface for one of the faces of the segment of Fig. 38-12:

M =
∫
cross
sect

y dF. (38.35)

From Eq. (38.34), dF = Y y/R dA, so

M = Y

R

∫
y2 dA.

The integral of y2 dA is what we can call the “moment of inertia” of the geometric
cross section about a horizontal axis through its “center of mass”;* we will call
it I:

M = Y I

R
(38.36)

I =
∫
y2 dA. (38.37)

Equation (38.36), then, gives us the relation between the bending moment M
and the curvature 1/R of the beam. The “stiffness” of the beam is proportional
to Y and to the moment of inertia I. In other words, if you want the stiffest
possible beam with a given amount of, say, aluminum, you want to put as much of
it as possible as far as you can from the neutral surface, to make a large moment
of inertia. You can’t carry this to an extreme, however, because then the thing
will not curve as we have supposed—it will buckle or twist and become weaker
again. But now you see why structural beams are made in the form of an I or an
H—as shown in Fig. 38-13.

As an example of the use of our beam equation (38.36), let’s work out the
deflection of a cantilevered beam with a concentrated force W acting at the free
end, as sketched in Fig. 38-14. (By “cantilevered” we simply mean that the beam
is supported in such a way that both the position and the slope are fixed at one
end—it is stuck into a cement wall.) What is the shape of the beam? Let’s call

* It is, of course, really the moment of inertia of a slice with unit mass per unit area.
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Fig. 38-13. An “I” beam.

L

x
z

W

Fig. 38-14. A cantilevered beam with a weight at one end.

the deflection at the distance x from the fixed end z; we want to know z(x). We’ll
work it out only for small deflections. We will also assume that the beam is long
in comparison with its cross section. Now, as you know from your mathematics
courses, the curvature 1/R of any curve z(x) is given by

1
R

= d2z/dx2

[1 + (dz/dx)2]3/2 . (38.38)

Since we are interested only in small slopes—this is usually the case in engineering
structures—we neglect (dz/dx)2 in comparison with 1, and take

1
R

= d2z

dx2 . (38.39)

We also need to know the bending moment M. It is a function of x because it
is equal to the torque about the neutral axis of any cross section. Let’s neglect
the weight of the beam and take only the downward force W at the end of the
beam. (You can put in the beam weight yourself if you want.) Then the bending
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moment at x is
M(x) = W (L− x),

because that is the torque about the point at x, exerted by the weight W—the
torque which the beam must support of x. We get

W (L− x) = Y I

R
= Y I

d2z

dx2
or

d2z

dx2 = W

Y I
(L− x). (38.40)

This one we can integrate without any tricks; we get

z = W

Y I

(
Lx2

2 − x3

6

)
, (38.41)

using our assumptions that z(0) = 0 and that dz/dx is also zero at x = 0. That
is the shape of the beam. The displacement of the end is

z(L) = W

Y I

L3

3 ; (38.42)

the displacement of the end of a beam increases as the cube of the length.
In deriving our approximate beam theory, we have assumed that the cross

section of the beam did not change when the beam was bent. When the thickness
of the beam is small compared to the radius of curvature, the cross section
changes very little and our result is O.K. In general, however, this effect cannot
be neglected, as you can easily demonstrate for yourselves by bending a soft-
rubber eraser in your fingers. If the cross section was originally rectangular,
you will find that when it is bent it bulges at the bottom (see Fig. 38-15). This
happens because when we compress the bottom, the material expands sideways—
as described by Poisson’s ratio. Rubber is easy to bend or stretch, but it is
somewhat like a liquid in that it’s hard to change the volume—as shows up nicely
when you bend the eraser. For an incompressible material, Poisson’s ratio would
be exactly 1/2—for rubber it is nearly that.

38-5 Buckling

We want now to use our beam theory to understand the theory of the “buckling”
of beams, or columns, or rods. Consider the situation sketched in Fig. 38-16 in
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(b)

Fig. 38-15. (a) A bent eraser; (b) cross section.

L

x

y

P

F F

Fig. 38-16. A buckled beam.

which a rod that would normally be straight is held in its bent shape by two
opposite forces that push on the ends of the rod. We would like to calculate the
shape of the rod and the magnitude of the forces on the ends.

Let the deflection of the rod from the straight line between the ends be y(x),
where x is the distance from one end. The bending moment M at the point P in
the figure is equal to the force F multiplied by the moment arm, which is the
perpendicular distance y,

M(x) = Fy. (38.43)

Using the beam equation (38.36), we have

Y I

R
= Fy. (38.44)
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For small deflections, we can take 1/R = −d2y/dx2 (the minus sign because the
curvature is downward). We get

d2y

dx2 = − F

Y I
y, (38.45)

which is the differential equation of a sine wave. So for small deflections, the
curve of such a bent beam is a sine curve. The “wavelength” λ of the sine wave
is twice the distance L between the ends. If the bending is small, this is just
twice the unbent length of the rod. So the curve is

y = K sin πx/L.

Taking the second derivative, we get

d2y

dx2 = −π
2

L2 y.

Comparing this to Eq. (38.45), we see that the force is

F = π2 Y I

L2 . (38.46)

For small bendings the force is independent of the bending displacement y!
We have, then, the following thing physically. If the force is less than the F

given in Eq. (38.46), there will be no bending at all. But if it is slightly greater
than this force, the material will suddenly bend a large amount—that is, for
forces above the critical force π2Y I/L2 (often called the “Euler force” the beam
will “buckle.” If the loading on the second floor of a building exceeds the Euler
force” for the supporting columns, the building will collapse. Another place
where the buckling force is most important is in space rockets. On one hand,
the rocket must be able to hold its own weight on the launching pad and endure
the stresses during acceleration; on the other hand, it is important to keep the
weight of the structure to a minimum, so that the payload and fuel capacity may
be made as large as possible.

Actually a beam will not necessarily collapse completely when the force
exceeds the Euler force. When the displacements get large, the force is larger
than what we have found because of the terms in 1/R in Eq. (38.38) that we
have neglected. To find the forces for a large bending of the beam, we have to
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Fig. 38-17. The coordinates S and θ for the curve of a bent beam.

go back to the exact equation, Eq. (38.44), which we had before we used the
approximate relation between R and y. Equation (38.44) has a rather simple
geometrical property.* It’s a little complicated to work out, but rather interesting.
Instead of describing the curve in terms of x and y, we can use two new variables:
S, the distance along the curve, and θ the slope of the tangent to the curve. See
Fig. 38-17. The curvature is the rate of change of angle with distance:

1
R

= dθ

dS
.

We can, therefore write the exact equation (38.44) as

dθ

dS
= − F

Y I
y.

If we take the derivative of this equation with respect to S and replace dy/dS
by sin θ, we get

d2θ

dS2 = − F

Y I
sin θ. (38.47)

[If θ is small, we get back Eq. (38.45). Everything is O.K.]

* The same equation appears, incidentally, in other physical situations—for example, the
meniscus at the surface of a liquid contained between parallel planes—and the same geometrical
solution can be used.
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Now it may or may not delight you to know that Eq. (38.47) is exactly the
same one you get for the large amplitude oscillations of a pendulum—with F/Y I
replaced by another constant, of course. We learned way back in Chapter 9,
Vol. I, how to find the solution of such an equation by a numerical calculation.*
The answers you get are some fascinating curves—known as the curves of the
“Elastica.” Figure 38-18 shows three curves for different values of F/Y I.

F1 F1

F2 F2

F3 F3

Fig. 38-18. Curves of a bent rod.

* The solutions can also be expressed in terms of some functions, called the “Jacobian
elliptic functions,” that someone else has already computed.
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39

Elastic Materials

Reference: C. Kittel, Introduction to Solid State Physics, John Wiley and
Sons, Inc., New York, 2nd ed., 1956.

39-1 The tensor of strain

In the last chapter we talked about the distortions of particular elastic objects.
In this chapter we want to look at what can happen in general inside an elastic
material. We would like to be able to describe the conditions of stress and strain
inside some big glob of jello which is twisted and squashed in some complicated
way. To do this, we need to be able to describe the local strain at every point
in an elastic body; we can do it by giving a set of six numbers—which are the
components of a symmetric tensor—for each point. Earlier, we spoke of the stress
tensor (Chapter 31); now we need the tensor of strain.

Imagine that we start with the material initially unstrained and watch the
motion of a small speck of “dirt” embedded in the material when the strain is
applied. A speck that was at the point P located at r = (x, y, z) moves to a new
position P ′ at r′ = (x′, y′, z′) as shown in Fig. 39-1. We will call u the vector
displacements from P to P ′. Then

u = r′ − r. (39.1)

The displacement u depends, of course, on which point P we start with, so u is
a vector function of r—or, if you prefer, of (x, y, z).

Let’s look first at a simple situation in which the strain is constant over the
material—so we have what is called a homogeneous strain. Suppose, for instance,
that we have a block of material and we stretch it uniformly. We just change
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Fig. 39-1. A speck of the material at the point P in an unstrained
block moves to P ′ where the block is strained.

its dimensions uniformly in one direction—say, in the x-direction, as shown in
Fig. 39-2. The motion ux of a speck at x is proportional to x. In fact,

ux
x

= ∆l
l
.

We will write ux this way:
ux = exxx.

The proportionality constant exx is, of course, the same thing as ∆l/l. (You will
see shortly why we use a double subscript.)

If the strain is not uniform, the relation between ux and x will vary from
place to place in the material. For the general situation, we define the exx by a
kind of local ∆l/l, namely by

exx = ∂ux/∂x. (39.2)

This number—which is now a function of x, y, and z—describes the amount of
stretching in the x-direction throughout the hunk of jello. There may, of course,
also be stretching in the y- and z-directions. We describe them by the numbers

eyy = ∂uy
∂y

, ezz = ∂uz
∂z

. (39.3)
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Fig. 39-2. A homogenous stretch-type strain.

We need to be able to describe also the shear-type strains. Suppose we
imagine a little cube marked out in the initially undisturbed jello. When the
jello is pushed out of shape, this cube may get changed into a parallelogram, as
sketched in Fig. 39-3.* In this kind of a strain, the x-motion of each particle is
proportional to its y-coordinate,

ux = θ

2 y. (39.4)

And there is also a y-motion proportional to x,

uy = θ

2 x. (39.5)

* We choose for the moment to split the total shear angle θ into two equal parts and make
the strain symmetric with respect to x and y.
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Fig. 39-3. A homogenous shear strain.

So we can describe such a shear-type strain by writing

ux = exyy, uy = eyxx

with
exy = eyx = θ

2 .

Now you might think that when the strains are not homogeneous we could
describe the generalized shear strains by defining the quantities exy and eyx by

exy = ∂ux
∂y

, eyx = ∂uy
∂x

. (39.6)

But there is one difficulty. Suppose that the displacements ux and uy were given
by

ux = θ

2 y, uy = −θ2 x

They are like Eqs. (39.4) and (39.5) except that the sign of uy is reversed. With
these displacements a little cube in the jello simply gets shifted by the angle θ/2,
as shown in Fig. 39-4. There is no strain at all—just a rotation in space. There
is no distortion of the material; the relative positions of all the atoms are not
changed at all. We must somehow make our definitions so that pure rotations are
not included in our definitions of a shear strain. The key point is that if ∂uy/∂x
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Fig. 39-4. A homogenous rotation—there is no strain.

and ∂ux/∂y are equal and opposite, there is no strain; so we can fix things up by
defining

exy = eyx = 1
2 (∂uy/∂x+ ∂ux/∂y).

For a pure rotation they are both zero, but for a pure shear we get that exy is
equal to eyx, as we would like.

In the most general distortion—which may include stretching or compression
as well as shear—we define the state of strain by giving the nine numbers

exx = ∂ux
∂x

,

eyy = ∂uy
∂y

,

...

exy = 1
2 (∂uy/∂x+ ∂ux/∂y),
...

(39.7)

These are the terms of a tensor of strain. Because it is a symmetric tensor—our
definitions make exy = eyx, always—there are really only six different numbers.
You remember (see Chapter 31) that the general characteristic of a tensor is that
the terms transform like the products of the components of two vectors. (If A
and B are vectors, Cij = AiBj is a tensor.) Each term of eij is a product (or the
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sum of such products) of the components of the vector u = (ux, uy, uz), and of
the operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z), which we know transforms like a vector.
Let’s let x1, x2, and x3 stand for x, y, and z and u1, u2, and u3 stand for ux, uy,
and uz; then we can write the general term eij of the strain tensor as

eij = 1
2 (∂uj/∂xi + ∂ui/∂xj), (39.8)

where i and j can be 1, 2, or 3.
When we have a homogeneous strain—which may include both stretching

and shear—all of the eij are constants, and we can write

ux = exxx+ exyy + exzz. (39.9)

(We choose our origin of x, y, z at the point where u is zero.) In this case,
the strain tensor eij gives the relationship between two vectors: the coordinate
vector r = (x, y, z) and the displacement vector u = (ux, uy, uz).

When the strains are not homogeneous, any piece of the jello may also get
somewhat twisted—there will be a local rotation. If the distortions are all small,
we would have

∆ui =
∑
j

(eij − ωij) ∆xj , (39.10)

where ωij is an antisymmetric tensor,

ωij = 1
2 (∂uj/∂xi − ∂ui/∂xj), (39.11)

which describes the rotation. We will, however, not worry any more about
rotations, but only about the strains described by the symmetric tensor eij .

39-2 The tensor of elasticity

Now that we have described the strains, we want to relate them to the internal
forces—the stresses in the material. For each small piece of the material, we
assume Hooke’s law holds and write that the stresses are proportional to the
strains. In Chapter 31 we defined the stress tensor Sij as the ith component of the
force across a unit-area perpendicular to the j-axis. Hooke’s law says that each
component of Sij is linearly related to each of the components of strain. Since
S and e each have nine components, there are 9 × 9 = 81 possible coefficients
which describe the elastic properties of the material. They are constants if the
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material itself is homogeneous. We write these coefficients as Cijkl and define
them by the equation

Sij =
∑
k,l

Cijklekl, (39.12)

where i, j, k, l all take on the values 1, 2, or 3. Since the coefficients Cijkl relate
one tensor to another, they also form a tensor—a tensor of the fourth rank. We
can call it the tensor of elasticity.

Suppose that all the C’s are known and that you put a complicated force on
an object of some peculiar shape. There will be all kinds of distortion, and the
thing will settle down with some twisted shape. What are the displacements?
You can see that it is a complicated problem. If you knew the strains, you could
find the stresses from Eq. (39.12)—or vice versa. But the stresses and strains you
end up with at any point depend on what happens in all the rest of the material.

The easiest way to get at the problem is by thinking of the energy. When there
is a force F proportional to a displacement x, say F = kx, the work required for
any displacement x is kx2/2. In a similar way, the work w that goes into each
unit volume of a distorted material turns out to be

w = 1
2

∑
ijkl

Cijkleijekl. (39.13)

The total work W done in distorting the body is the integral of w over its volume:

W =
∫

1
2

∑
ijkl

Cijkleijekl dV. (39.14)

This is then the potential energy stored in the internal stresses of the material.
Now when a body is in equilibrium, this internal energy must be at a minimum.
So the problem of finding the strains in a body can be solved by finding the set
of displacements u throughout the body which will make W a minimum. In
Chapter 19 we gave some of the general ideas of the calculus of variations that
are used in tackling minimization problems like this. We cannot go into the
problem in any more detail here.

What we are mainly interested in now is what we can say about the general
properties of the tensor of elasticity. First, it is clear that there are not really
81 different terms in Cijkl. Since both Sij and eij are symmetric tensors, each
with only six different terms, there can be at most 36 different terms in Cijkl.
There are, however, usually many fewer than this.
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Let’s look at the special case of a cubic crystal. In it, the energy density w
starts out like this:

w = 1
2{Cxxxxe

2
xx + Cxxxyexxexy + Cxxxzexxexz

+ Cxxyxexxexy + Cxxyyexxeyy . . . etc . . .
+ Cyyyye

2
yy + . . . etc . . . etc . . .}, (39.15)

with 81 terms in all! Now a cubic crystal has certain symmetries. In particular,
if the crystal is rotated 90◦, it has the same physical properties. It has the
same stiffness for stretching in the y-direction as for stretching in the x-direction.
Therefore, if we change our definition of the coordinate directions x and y in
Eq. (39.15), the energy wouldn’t change. It must be that for a cubic crystal

Cxxxx = Cyyyy = Czzzz. (39.16)

Next we can show that the terms like Cxxxy must be zero. A cubic crystal has
the property that it is symmetric under a reflection about any plane perpendicular
to one of the axes. If we replace y by −y, nothing is different. But changing
y to −y changes exy to −exy—a displacement which was toward +y is now
toward −y. If the energy is not to change, Cxxxy must go into −Cxxxy when we
make a reflection. But a reflected crystal is the same as before, so Cxxxy must
be the same as −Cxxxy. This can happen only if both are zero.

You say, “But the same argument will make Cyyyy = 0!” No, because there
are four y’s. The sign changes once for each y, and four minuses make a plus.
If there are two or four y’s, the term does not have to be zero. It is zero only
when there is one, or three. So, for a cubic crystal, any nonzero term of C will
have only an even number of identical subscripts. (The arguments we have made
for y obviously hold also for x and z.) We might then have terms like Cxxyy,
Cxyxy, Cxyyx, and so on. We have already shown, however, that if we change
all x’s to y’s and vice versa (or all z’s and x’s, and so on) we must get—for a
cubic crystal—the same number. This means that there are only three different
nonzero possibilities:

Cxxxx (= Cyyyy = Czzzz),
Cxxyy (= Cyyxx = Cxxzz, etc.),
Cxyxy (= Cyxyx = Cxzxz, etc.).

(39.17)
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For a cubic crystal, then, the energy density will look like this:

w = 1
2{Cxxxx(e2

xx + e2
yy + e2

zz)
+ 2Cxxyy(exxeyy + eyyezz + ezzexx)
+ 4Cxyxy(e2

xy + e2
yz + e2

zx)}.
(39.18)

For an isotropic—that is, noncrystalline—material, the symmetry is still
higher. The C’s must be the same for any choice of the coordinate system. Then
it turns out that there is another relation among the C’s, namely, that

Cxxxx = Cxxyy + 2Cxyxy. (39.19)

We can see that this is so by the following general argument. The stress tensor Sij
has to be related to eij in a way that doesn’t depend at all on the coordinate
directions—it must be related only by scalar quantities. “That’s easy,” you say.
“The only way to obtain Sij from eij is by multiplication by a scalar constant.
It’s just Hooke’s law. It must be that Sij = (const)eij .” But that’s not quite
right; there could also be the unit tensor δij multiplied by some scalar, linearly
related to eij . The only invariant you can make that is linear in the e’s is

∑
eii.

(It transforms like x2 + y2 + z2, which is a scalar.) So the most general form for
the equation relating Sij to eij—for isotropic materials—is

Sij = 2µeij + λ
(∑

k

ekk

)
δij . (39.20)

(The first constant is usually written as two times µ; then the coefficient µ is
equal to the shear modulus we defined in the last chapter.) The constants µ and λ
are called the Lamé elastic constants. Comparing Eq. (39.20) with Eq. (39.12),
you see that

Cxxyy = λ,

Cxyxy = µ,

Cxxxx = 2µ+ λ.

(39.21)

So we have proved that Eq. (39.19) is indeed true. You also see that the elastic
properties of an isotropic material are completely given by two constants, as we
said in the last chapter.

The C’s can be put in terms of any two of the elastic constants we have used
earlier—for instance, in terms of Young’s modulus Y and Poisson’s ratio σ. We
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will leave it for you to show that

Cxxxx = Y

1 + σ

(
1 + σ

1− 2σ

)
,

Cxxyy = Y

1 + σ

(
σ

1− 2σ

)
,

Cxyxy = Y

2(1 + σ) .

(39.22)

39-3 The motions in an elastic body

We have pointed out that for an elastic body in equilibrium the internal
stresses adjust themselves to make the energy a minimum. Now we take a look
at what happens when the internal forces are not in equilibrium. Let’s say we
have a small piece of the material inside some surface A. See Fig. 39-5. If the
piece is in equilibrium, the total force F acting on it must be zero. We can think
of this force as being made up of two parts. There could be one part due to
“external” forces like gravity, which act from a distance on the matter in the piece

VOLUME V

SURFACE A

Fig. 39-5. A small volume element V bounded by the surface A.
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to produce a force per unit volume f ext. The total external force F ext is the
integral of f ext over the volume of the piece:

F ext =
∫
f ext dV. (39.23)

In equilibrium, this force would be balanced by the total force F int from the
neighboring material which acts across the surface A. When the piece is not in
equilibrium—if it is moving—the sum of the internal and external forces is equal
to the mass times the acceleration. We would have

F ext + F int =
∫
ρr̈ dV, (39.24)

where ρ is the density of the material, and r̈ is its acceleration. We can now
combine Eqs. (39.23) and (39.24), writing

F int =
∫
v

(−f ext + ρr̈) dV. (39.25)

We will simplify our writing by defining

f = −f ext + ρr̈. (39.26)
Then Eq. (39.25) is written

F int =
∫
v

f dV. (39.27)

What we have called F int is related to the stresses in the material. The stress
tensor Sij was defined (Chapter 31) so that the x-component of the force dF
across a surface element da, whose unit normal is n, is given by

dFx = (Sxxnx + Sxyny + Sxznz) da. (39.28)

The x-component of F int on our little piece is then the integral of dFx over the
surface. Substituting this into the x-component of Eq. (39.27), we get∫

A

(Sxxnx + Sxyny + Sxznz) da =
∫
v

fx dV. (39.29)

We have a surface integral related to a volume integral—and that reminds us
of something we learned in electricity. Note that if you ignore the first subscript x
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on each of the S’s in the left-hand side of Eq. (39.29), it looks just like the integral
of a quantity “S” ·n—that is, the normal component of a vector—over the surface.
It would be the flux of “S” out of the volume. And this could be written, using
Gauss law, as the volume integral of the divergence of “S”. It is, in fact, true
whether the x-subscript is there or not—it is just a mathematical theorem you
get by integrating by parts. In other words, we can change Eq. (39.29) into∫

v

(
∂Sxx
∂x

+ ∂Sxy
∂y

+ ∂Sxz
∂z

)
dV =

∫
v

fx dV. (39.30)

Now we can leave off the volume integrals and write the differential equation for
the general component of f as

fi =
∑
j

∂Sij
∂xj

. (39.31)

This tells us how the force per unit volume is related to the stress tensor Sij .
The theory of the motions inside a solid works this way. If we start out knowing

the initial displacements—given by, say, u—we can work out the strains eij . From
the strains we can get the stresses from Eq. (39.12). From the stresses we can
get the force density f in Eq. (39.31). Knowing f , we can get, from Eq. (39.26),
the acceleration r̈ of the material, which tells us how the displacements will be
changing. Putting everything together, we get the horrible equation of motion for
an elastic solid. We will just write down the results that come out for an isotropic
material. If you use (39.20) for Sij , and write the eij as 1

2 (∂ui/∂xj + ∂uj/∂xi),
you end up with the vector equation

f = (λ+ µ)∇(∇ · u) + µ∇2u. (39.32)

You can, in fact, see that the equation relating f and u must have this form.
The force must depend on the second derivatives of the displacements u. What
second derivatives of u are there that are vectors? One is ∇(∇ ·u); that’s a true
vector. The only other one is ∇2u. So the most general form is

f = a∇(∇ · u) + b∇2u,

which is just (39.32) with a different definition of the constants. You may be
wondering why we don’t have a third term using ∇ ×∇ × u, which is also a
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vector. But remember that ∇×∇× u is the same thing as ∇(∇ · u)−∇2u,
so it is a linear combination of the two terms we have. Adding it would add
nothing new. We have proved once more that isotropic material has only two
elastic constants.

For the equation of motion of the material, we can set (39.32) equal to
ρ ∂2u/∂t2—neglecting for now any body forces like gravity—and get

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u. (39.33)

It looks something like the wave equation we had in electromagnetism, except that
there is an additional complicating term. For materials whose elastic properties
are everywhere the same we can see what the general solutions look like in the
following way. You will remember that any vector field can be written as the
sum of two vectors: one whose divergence is zero, and the other whose curl is
zero. In other words, we can put

u = u1 + u2, (39.34)
where

∇ · u1 = 0, ∇× u2 = 0. (39.35)

Substituting u1 + u2 for u in (39.33), we get

ρ ∂2/∂t2[u1 + u2] = (λ+ µ)∇(∇ · u2) + µ∇2(u1 + u2). (39.36)

We can eliminate u1 by taking the divergence of this equation,

ρ ∂2/∂t2(∇ · u2) = (λ+ µ)∇2(∇ · u2) + µ∇ · ∇2(u2).

Since the operators (∇2) and (∇·) can be interchanged, we can factor out the
divergence to get

∇ · {ρ ∂2u2/∂t
2 − (λ+ 2µ)∇2u2} = 0. (39.37)

Since ∇× u2 is zero by definition, the curl of the bracket {} is also zero; so the
bracket itself is identically zero, and

ρ ∂2u2/∂t
2 = (λ+ 2µ)∇2u2. (39.38)
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This is the vector wave equation for waves which move at the speed C2 =√
(λ+ 2µ)/ρ. Since the curl of u2 is zero, there is no shearing associated with

this wave; this wave is just the compressional—sound-type—wave we discussed
in the last chapter, and the velocity is just what we found for Clong.

In a similar way—by taking the curl of Eq. (39.36)—we can show that u1
satisfies the equation

ρ ∂2u1/∂t
2 = µ∇2u1. (39.39)

This is again a vector wave equation for waves with the speed C2 =
√
µ/ρ. Since

∇ · u1 is zero, u1 produces no changes in density; the vector u1 corresponds to
the transverse, or shear-type, wave we saw in the last chapter, and C2 = Cshear.

If we wished to know the static stresses in an isotropic material, we could,
in principle, find them by solving Eq. (39.32) with f equal to zero—or equal
to the static body forces from gravity such as ρg—under certain conditions
which are related to the forces acting on the surfaces of our large block of
material. This is somewhat more difficult to do than the corresponding problems
in electromagnetism. It is more difficult, first, because the equations are a little
more difficult to handle, and second, because the shape of the elastic bodies we are
likely to be interested in are usually much more complicated. In electromagnetism,
we are often interested in solving Maxwell’s equations around relatively simple
geometric shapes such as cylinders, spheres, and so on, since these are convenient
shapes for electrical devices. In elasticity, the objects we would like to analyze may
have quite complicated shapes—like a crane hook, or an automobile crankshaft,
or the rotor of a gas turbine. Such problems can sometimes be worked out
approximately by numerical methods, using the minimum energy principle we
mentioned earlier. Another way is to use a model of the object and measure the
internal strains experimentally, using polarized light.

It works this way: When a transparent isotropic material—for example, a
clear plastic like lucite—is put under stress, it becomes birefringent. If you put
polarized light through it, the plane of polarization will be rotated by an amount
related to the stress: by measuring the rotation, you can measure the stress.
Figure 39-6 shows how such a setup might look. Figure 39-7 is a photograph of
a photoelastic model of a complicated shape under stress.

39-4 Nonelastic behavior

In all that has been said so far, we have assumed that stress is proportional
to strain; in general, that is not true. Figure 39-8 shows a typical stress-strain
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LUCITE MODEL
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Fig. 39-6. Measuring internal stresses with polarized light.

Fig. 39-7. A stressed plastic model as seen between crossed polaroids.
[From F. W. Sears, Optics, Addison-Wesley Publishing Co., Mass.,
1949.]
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Fig. 39-8. A typical stress-strain relation for large strains.

curve for a ductile material. For small strains, the stress is proportional to the
strain. Eventually, however, after a certain point, the relationship between stress
and strain begins to deviate from a straight line. For many materials—the ones
we would call “brittle”—the object breaks for strains only a little above the point
where the curve starts to bend over. In general, there are other complications in
the stress-strain relationship. For example, if you strain an object, the stresses
may be high at first, but decrease slowly with time. Also if you go to high stresses,
but still not to the “breaking” point, when you lower the strain the stress will
return along a different curve. There is a small hysteresis effect (like the one we
saw between B and H in magnetic materials).

The stress at which a material will break varies widely from one material to
another. Some materials will break when the maximum tensile stress reaches a
certain value. Other materials will fail when the maximum shear stress reaches
a certain value. Chalk is an example of a material which is much weaker in
tension than in shear. If you pull on the ends of a piece of blackboard chalk, the
chalk will break perpendicular to the direction of the applied stress, as shown
in Fig. 39-9(a). It breaks perpendicular to the applied force because it is only a
bunch of particles packed together which are easily pulled apart. The material
is, however, much harder to shear, because the particles get in each other’s way.
Now you will remember that when we had a rod in torsion there was a shear
all around it. Also, we showed that a shear was equivalent to a combination
of a tension and compression at 45◦. For these reasons, if you twist a piece
of blackboard chalk, it will break along a complicated surface which starts out
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(a)

(b)

Fig. 39-9. (a) A piece of chalk broken by pulling on the ends; (b) a
piece broken by twisting.

at 45◦ to the axis. A photograph of a piece of chalk broken in this way is shown
in Fig. 39-9(b). The chalk breaks where the material is in maximum tension.

Other materials behave in strange and complicated ways. The more compli-
cated the materials are, the more interesting their behavior. If we take a sheet of
“Saran-Wrap” and crumple it up into a ball and throw it on the table, it slowly
unfolds itself and returns toward its original flat form. At first sight, we might be
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tempted to think that it is inertia which prevents it from returning to its original
form. However, a simple calculation shows that the inertia is several orders of
magnitude too small to account for the effect. There appear to be two important
competing effects: “something” inside the material “remembers” the shape it
had initially and “tries” to get back there, but something else “prefers” the new
shape and “resists” the return to the old shape.

We will not attempt to describe the mechanism at play in the Saran plastic,
but you can get an idea of how such an effect might come about from the following
model. Suppose you imagine a material made of long, flexible, but strong, fibers
mixed together with some hollow cells filled with a viscous liquid. Imagine also
that there are narrow pathways from one cell to the next so the liquid can leak
slowly from a cell to its neighbor. When we crumple a sheet of this stuff, we
distort the long fibers, squeezing the liquid out of the cells in one place and
forcing it into other cells which are being stretched. When we let go, the long
fibers try to return to their original shape. But to do this, they have to force the
liquid back to its original location—which will happen relatively slowly because
of the viscosity. The forces we apply in crumpling the sheet are much larger
than the forces exerted by the fibers. We can crumple the sheet quickly, but it
will return more slowly. It is undoubtedly a combination of large stiff molecules
and smaller, movable ones in the Saran-Wrap that is responsible for its behavior.
This idea also fits with the fact that the material returns more quickly to its
original shape when it’s warmed up than when it’s cold—the heat increases the
mobility (decreases the viscosity) of the smaller molecules.

Although we have been discussing how Hooke’s law breaks down, the remark-
able thing is perhaps not that Hooke’s law breaks down for large strains but that
it should be so generally true. We can get some idea of why this might be by
looking at the strain energy in a material. To say that the stress is proportional
to the strain is the same thing as saying that the strain energy varies as the
square of the strain. Suppose we have a rod and we twist it through a small
angle θ. If Hooke’s law holds, the strain energy should be proportional to the
square of θ. Suppose we were to assume that the energy were some arbitrary
function of the angle; we could write it as a Taylor expansion about zero angle

U(θ) = U(0) + U ′(0)θ + 1
2U
′′(0)θ2 + 1

6U
′′′(0)θ3 + · · · (39.40)

The torque τ is the derivative of U with respect to angle; we would have

τ(θ) = U ′(0) + U ′′(0)θ + 1
2U
′′′(0)θ2 + · · · (39.41)
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Now if we measure our angles from the equilibrium position, the first term is zero.
So the first remaining term is proportional to θ; and for small enough angles,
it will dominate the term in θ2. [Actually, materials are sufficiently symmetric
internally so that τ(θ) = −τ(−θ); the term in θ2 will be zero, and the departures
from linearity would come only from the θ3 term. There is, however, no reason
why this should be true for compressions and tensions.] The thing we have not
explained is why materials usually break soon after the higher-order terms become
significant.

39-5 Calculating the elastic constants

As our last topic on elasticity we would like to show how one could try to
calculate the elastic constants of a material, starting with some knowledge of
the properties of the atoms which make up the material. We will take only the
simple case of an ionic cubic crystal like sodium chloride. When a crystal is
strained, its volume or its shape is changed. Such changes result in an increase
in the potential energy of the crystal. To calculate the change in strain energy,
we have to know where each atom goes. In complicated crystals, the atoms will
rearrange themselves in the lattice in very complicated ways to make the total
energy as small as possible. This makes the computation of the strain energy
rather difficult. In the case of a simple cubic crystal, however, it is easy to see
what will happen. The distortions inside the crystal will be geometrically similar
to the distortions of the outside boundaries of the crystal.

We can calculate the elastic constants for a cubic crystal in the following way.
First, we assume some force law between each pair of atoms in the crystal. Then,
we calculate the change in the internal energy of the crystal when it is distorted
from its equilibrium shape. This gives us a relation between the energy and the
strains which is quadratic in all the strains. Comparing the energy obtained this
way with Eq. (39.13), we can identify the coefficient of each term with the elastic
constants Cijkl.

For our example we will assume a simple force law: that the force between
neighboring atoms is a central force, by which we mean that it acts along the
line between the two atoms. We would expect the forces in ionic crystals to be
like this, since they are just primarily Coulomb forces. (The forces of covalent
bonds are usually more complicated, since they can exert a sideways push on a
nearby atom; we will leave out this complication.) We are also going to include
only the forces between each atom and its nearest and next-nearest neighbors.
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In other words, we will make an approximation which neglects all forces beyond
the next-nearest neighbor. The forces we will include are shown for the xy-plane
in Fig. 39-10(a). The corresponding forces in the yz- and zx-planes also have to
be included.

Since we are only interested in the elastic coefficients which apply to small
strains, and therefore only want the terms in the energy which vary quadratically
with the strains, we can imagine that the force between each atom pair varies

(a)

Na Cl Na

Cl Na Cl

Na Cl Na

(b) Na Cl Na

Cl Na Cl

Na Cl Na

k1

k1

k1 k1

k2 k2

k2

k2 k2

k2

Fig. 39-10. (a) The interatomic forces we are taking into account;
(b) a model in which the atoms are connected by springs.
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linearly with the displacements. We can then imagine that each pair of atoms is
joined by a linear spring, as drawn in Fig. 39-10(b). All of the springs between a
sodium atom and a chlorine atom should have the same spring constant, say k1.
The springs between two sodiums and between two chlorines could have different
constants, but we will make our discussion simpler by taking them equal; we call
them k2. (We could come back later and make them different after we have seen
how the calculations go.)

Now we assume that the crystal is distorted by a homogeneous strain described
by the strain tensor eij . In general, it will have components involving x, y, and z;
but we will consider now only a strain with the three components exx, exy,
and eyy so that it will be easy to visualize. If we pick one atom as our origin, the
displacement of every other atom is given by equations like Eq. (39.9):

ux = exxx+ exyy,

uy = exyx+ eyyy.
(39.42)

Suppose we call the atom at x = y = 0 “atom 1” and number its neighbors in
the xy-plane as shown in Fig. 39-11. Calling the lattice constant a, we get the x
and y displacements ux and uy listed in Table 39-1.

Now we can calculate the energy stored in the springs, which is k/2 times the
square of the extension for each spring. For example, the energy in the horizontal
spring between atom 1 and atom 2 is

k1(exxa)2

2 . (39.43)

Note that to first order, the y-displacement of atom 2 does not change the length
of the spring between atom 1 and atom 2. To get the strain energy in a diagonal
spring, such as that to atom 3, however, we need to calculate the change in length
due to both the horizontal and vertical displacements. For small displacements
from the original cube, we can write the change in the distance to atom 3 as the
sum of the components of ux and uy in the diagonal direction, namely as

1√
2

(ux + uy).

Using the values of ux and uy from the table, we get the energy

k2

2

(
ux + uy√

2

)2
= k2a

2

4 (exx + eyx + exy + eyy)2. (39.44)
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Fig. 39-11. The displacements of the nearest and next-nearest neigh-
bors of atom 1 (exaggerated).

Table 39-1

Location
Atom x, y ux uy k

1 0, 0 0 0 —
2 a, 0 exxa eyxa k1
3 a, a (exx + exy)a (eyx + eyy)a k2
4 0, a exya eyya k1
5 −a, a (−exx + exy)a (−eyx + eyy)a k2
6 −a, 0 −exxa −eyxa k1
7 −a,−a −(exx + exy)a −(eyx + eyy)a k2
8 0,−a −exya −eyya k1
9 a,−a (exx − exy)a (eyx − eyy)a k2
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For the total energy for all the springs in the xy-plane, we need the sum of
eight terms like (39.43) and (39.44). Calling this energy U0, we get

U0 = a2

2

{
k1e

2
xx + k2

2 (exx + eyx + exy + eyy)2

+ k1e
2
yy + k2

2 (exx − eyx − exy + eyy)2

+ k1e
2
xx + k2

2 (exx + eyx + exy + eyy)2

+ k1e
2
yy + k2

2 (exx − eyx − exy + eyy)2
}
. (39.45)

To get the total energy of all the springs connected to atom 1, we must make
one addition to the energy in Eq. (39.45). Even though we have only x- and y-
components of the strain, there are still some energies associated with the next-
nearest neighbors off the xy-plane. This additional energy is

k2(e2
xxa

2 + e2
yya

2). (39.46)

The elastic constants are related to the energy density w by Eq. (39.13). The
energy we have calculated is the energy associated with one atom, or rather, it is
twice the energy per atom, since one-half of the energy of each spring should be
assigned to each of the two atoms it joins. Since there are 1/a3 atoms per unit
volume, w and U0 are related by

w = U0

2a3 .

To find the elastic constants Cijkl, we need only to expand out the squares in
Eq. (39.45)—adding the terms of (39.46)—and compare the coefficients of eijekl
with the corresponding coefficient in Eq. (39.13). For example, collecting the
terms in e2

xx and in e2
yy, we get the factor

(k1 + 2k2)a2,

so
Cxxxx = Cyyyy = k1 + 2k2

a
.
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For the remaining terms, there is a slight complication. Since we cannot dis-
tinguish the product of two terms like exxeyy, from eyyexx, the coefficient of
such terms in our energy is equal to the sum of two terms in Eq. (39.13). The
coefficient of exxeyy in Eq. (39.45) is 2k2, so we have that

(Cxxyy + Cyyxx) = 2k2

a
.

But because of the symmetry in our crystal, Cxxyy = Cyyxx, so we have that

Cxxyy = Cyyxx = k2

a
.

By a similar process, we can also get

Cxyxy = Cyxyx = k2

a
.

Finally, you will notice that any term which involves either x or y only once
is zero—as we concluded earlier from symmetry arguments. Summarizing our
results:

Cxxxx = Cyyyy = k1 + 2k2

a
,

Cxyxy = Cyxyx = k2

a
,

Cxxyy = Cyyxx = Cxyyx = Cyxxy = k2

a
,

Cxxxy = Cxyyy = etc. = 0.

(39.47)

We have been able to relate the bulk elastic constants to the atomic properties
which appear in the constants k1 and k2. In our particular case, Cxyxy = Cxxyy.
It turns out—as you can perhaps see from the way the calculations went—that
these terms are always equal for a cubic crystal, no matter how many force terms
are taken into account, provided only that the forces act along the line joining
each pair of atoms—that is, so long as the forces between atoms are like springs
and don’t have a sideways part such as you might get from a cantilevered beam
(and you do get in covalent bonds).

We can check this conclusion with the experimental measurements of the
elastic constants. In Table 39-2 we give the observed values of the three elastic
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Table 39-2

Elastic Moduli of Cubic Crystals
in 1012 dynes·cm2*

Cxxxx Cxxyy Cxyxy

Na 0.055 0.042 0.049
K 0.046 0.037 0.026
Fe 2.37 1.41 1.16
Diamond 10.76 1.25 5.76
Al 1.08 0.62 0.28
LiF 1.19 0.54 0.53
NaCl 0.486 0.127 0.128
KCl 0.40 0.062 0.062
NaBr 0.33 0.13 0.13
KI 0.27 0.043 0.042
AgCl 0.60 0.36 0.062

* From: C. Kittel, Introduction to Solid
State Physics, John Wiley and Sons,
Inc., New York, 2nd ed., 1956, p. 93.

coefficients for several cubic crystals.* You will notice that Cxxyy and Cxyxy are,
in general, not equal. The reason is that in metals like sodium and potassium the
interatomic forces are not along the line joining the atoms, as we assumed in our
model. Diamond does not obey the law either, because the forces in diamond are
covalent forces and have some directional properties—the bonds would prefer to be
at the tetrahedral angle. The ionic crystals like lithium fluoride, sodium chloride,
and so on, do have nearly all the physical properties assumed in our model, and
the table shows that the constants Cxxyy and Cxyxy are almost equal. It is not
clear why silver chloride should not satisfy the condition that Cxxyy = Cxyxy.

* In the literature you will often find that a different notation is used. For instance, people
usually write Cxxxx = C11, Cxxyy = C12, and Cxyxy = C44.
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40

The Flow of Dry Water

40-1 Hydrostatics

The subject of the flow of fluids, and particularly of water, fascinates everybody.
We can all remember, as children, playing in the bathtub or in mud puddles with
the strange stuff. As we get older, we watch streams, waterfalls, and whirlpools,
and we are fascinated by this substance which seems almost alive relative to solids.
The behavior of fluids is in many ways very unexpected and interesting—it is the
subject of this chapter and the next. The efforts of a child trying to dam a small
stream flowing in the street and his surprise at the strange way the water works
its way out has its analog in our attempts over the years to understand the flow of
fluids. We have tried to dam the water up—in our understanding—by getting the
laws and the equations that describe the flow. We will describe these attempts
in this chapter. In the next chapter, we will describe the unique way in which
water has broken through the dam and escaped our attempts to understand it.

We suppose that the elementary properties of water are already known to you.
The main property that distinguishes a fluid from a solid is that a fluid cannot
maintain a shear stress for any length of time. If a shear is applied to a fluid, it
will move under the shear. Thicker liquids like honey move less easily than fluids
like air or water. The measure of the ease with which a fluid yields is its viscosity.
In this chapter we will consider only situations in which the viscous effects can
be ignored. The effects of viscosity will be taken up in the next chapter.

We begin by considering hydrostatics, the theory of liquids at rest. When
liquids are at rest, there are no shear forces (even for viscous liquids). The law
of hydrostatics, therefore, is that the stresses are always normal to any surface
inside the fluid. The normal force per unit area is called the pressure. From the
fact that there is no shear in a static fluid it follows that the pressure stress is the
same in all directions (Fig. 40-1). We will let you entertain yourself by proving

40-1



F

F

F F

F

F

Fig. 40-1. In a static fluid the force per unit area across any surface is
normal to the surface and is the same for all orientations of the surface.
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p = p0 − ρgh

p = p0; h = 0
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Fig. 40-2. The pressure in a static liquid.
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that if there is no shear on any plane in a fluid, the pressure must be the same
in any direction.

The pressure in a fluid may vary from place to place. For example, in a static
fluid at the earth’s surface the pressure will vary with height because of the
weight of the fluid. If the density ρ of the fluid is considered constant, and if the
pressure at some arbitrary zero level is called p0 (Fig. 40-2), then the pressure at
a height h above this point is p = p0 − ρgh, where g is the gravitational force
per unit mass. The combination

p+ ρgh

is, therefore, a constant in the static fluid. This relation is familiar to you, but
we will now derive a more general result of which it is a special case.

If we take a small cube of water, what is the net force on it from the pressure?
Since the pressure at any place is the same in all directions, there can be a
net force per unit volume only because the pressure varies from one point to
another. Suppose that the pressure is varying in the x-direction—and we take the
coordinate directions parallel to the cube edges. The pressure on the face at x
gives the force p∆y∆z (Fig. 40-3), and the pressure on the face at x+∆x gives the
force −[p+(∂p/∂x) ∆x] ∆y∆z, so that the resultant force is −(∂p/∂x) ∆x∆y∆z.
If we take the remaining pairs of faces of the cube, we easily see that the pressure
force per unit volume is −∇p. If there are other forces in addition—such as
gravity—then the pressure must balance them to give equilibrium.

x ∆x x + ∆x

∆y

∆z

p
p +

∂p

∂x
∆x

Fig. 40-3. The net pressure force on a cube is −∇p per unit volume.

Let’s take a circumstance in which such an additional force can be described
by a potential energy, as would be true in the case of gravitation; we will let
φ stand for the potential energy per unit mass. (For gravity, for instance, φ is
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just gz.) The force per unit mass is given in terms of the potential by −∇φ, and if
ρ is the density of the fluid, the force per unit volume is −ρ∇φ. For equilibrium
this force per unit volume added to the pressure force per unit volume must give
zero:

−∇p− ρ∇φ = 0. (40.1)

Equation (40.1) is the equation of hydrostatics. In general, it has no solution. If
the density varies in space in an arbitrary way, there is no way for the forces to
be in balance, and the fluid cannot be in static equilibrium. Convection currents
will start up. We can see this from the equation since the pressure term is a pure
gradient, whereas for variable ρ the other term is not. Only when ρ is a constant
is the potential term a pure gradient. Then the equation has a solution

p+ ρφ = const.

Another possibility which allows hydrostatic equilibrium is for ρ to be a function
only of p. However, we will leave the subject of hydrostatics because it is not
nearly so interesting as the situation when fluids are in motion.

40-2 The equations of motion

First, we will discuss fluid motions in a purely abstract, theoretical way and
then consider special examples. To describe the motion of a fluid, we must give its
properties at every point. For example, at different places, the water (let us call
the fluid “water”) is moving with different velocities. To specify the character of
the flow, therefore, we must give the three components of velocity at every point
and for any time. If we can find the equations that determine the velocity, then
we would know how the liquid moves at all times. The velocity, however, is not
the only property that the fluid has which varies from point to point. We have
just discussed the variation of the pressure from point to point. And there are
still other variables. There may also be a variation of density from point to point.
In addition, the fluid may be a conductor and carry an electric current whose
density j varies from point to point in magnitude and direction. There may be
a temperature which varies from point to point, or a magnetic field, and so on.
So the number of fields needed to describe the complete situation will depend on
how complicated the problem is. There are interesting phenomena when currents
and magnetism play a dominant part in determining the behavior of the fluid; the
subject is called magnetohydrodynamics, and great attention is being paid to it at
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the present time. However, we are not going to consider these more complicated
situations because there are already interesting phenomena at a lower level of
complexity, and even the more elementary level will be complicated enough.

We will take the situation where there is no magnetic field and no conductivity,
and we will not worry about the temperature because we will suppose that the
density and pressure determine in a unique manner the temperature at any point.
As a matter of fact, we will reduce the complexity of our work by making the
assumption that the density is a constant—we imagine that the fluid is essentially
incompressible. Putting it another way, we are supposing that the variations of
pressure are so small that the changes in density produced thereby are negligible.
If that is not the case, we would encounter phenomena additional to the ones
we will be discussing here—for example, the propagation of sound or of shock
waves. We have already discussed the propagation of sound and shocks to some
extent, so we will now isolate our consideration of hydrodynamics from these
other phenomena by making the approximation that the density ρ is a constant.
It is easy to determine when the approximation of constant ρ is a good one. We
can say that if the velocities of flow are much less than the speed of a sound
wave in the fluid, we do not have to worry about variations in density. The
escape that water makes in our attempts to understand it is not related to the
approximation of constant density. The complications that do permit the escape
will be discussed in the next chapter.

In the general theory of fluids one must begin with an equation of state for
the fluid which connects the pressure to the density. In our approximation this
equation of state is simply

ρ = const.
This then is the first relation for our variables. The next relation expresses the
conservation of matter—if matter flows away from a point, there must be a
decrease in the amount left behind. If the fluid velocity is v, then the mass which
flows in a unit time across a unit area of surface is the component of ρv normal
to the surface. We have had a similar relation in electricity. We also know from
electricity that the divergence of such a quantity gives the rate of decrease of the
density per unit time. In the same way, the equation

∇ · (ρv) = −∂ρ
∂t

(40.2)

expresses the conservation of mass for a fluid; it is the hydrodynamic equation of
continuity. In our approximation, which is the incompressible fluid approximation,
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ρ is a constant, and the equation of continuity is simply

∇ · v = 0. (40.3)

The fluid velocity v—like the magnetic field B—has zero divergence. (The hydro-
dynamic equations are often closely analogous to the electrodynamic equations;
that’s why we studied electrodynamics first. Some people argue the other way;
they think that one should study hydrodynamics first so that it will be easier
to understand electricity afterwards. But electrodynamics is really much easier
than hydrodynamics.)

We will get our next equation from Newton’s law which tells us how the
velocity changes because of the forces. The mass of an element of volume of the
fluid times its acceleration must be equal to the force on the element. Taking an
element of unit volume, and writing the force per unit volume as f , we have

ρ× (acceleration) = f .

We will write the force density as the sum of three terms. We have already con-
sidered the pressure force per unit volume, −∇p. Then there are the “external”
forces which act at a distance—like gravity or electricity. When they are conser-
vative forces with a potential per unit mass, φ, they give a force density −ρ∇φ.
(If the external forces are not conservative, we would have to write f ext for the
external force per unit volume.) Then there is another “internal” force per unit
volume, which is due to the fact that in a flowing fluid there can also be a shearing
stress. This is called the viscous force, which we will write fvisc. Our equation
of motion is

ρ× (acceleration) = −∇p− ρ∇φ+ fvisc. (40.4)

For this chapter we are going to suppose that the liquid is “thin” in the sense
that the viscosity is unimportant, so we will omit fvisc. When we drop the
viscosity term, we will be making an approximation which describes some ideal
stuff rather than real water. John von Neumann was well aware of the tremendous
difference between what happens when you don’t have the viscous terms and
when you do, and he was also aware that, during most of the development of
hydrodynamics until about 1900, almost the main interest was in solving beautiful
mathematical problems with this approximation which had almost nothing to
do with real fluids. He characterized the theorist who made such analyses as a
man who studied “dry water.” Such analyses leave out an essential property of
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the fluid. It is because we are leaving this property out of our calculations in
this chapter that we have given it the title “The Flow of Dry Water.” We are
postponing a discussion of real water to the next chapter.

PARTICLE
PATH

P1

P2

v ∆t

v(x, y , z, t)

v + ∆v

Fig. 40-4. The acceleration of a fluid particle.

If we leave out fvisc, we have in Eq. (40.4) everything we need except an
expression for the acceleration. You might think that the formula for the acceler-
ation of a fluid particle would be very simple, for it seems obvious that if v is the
velocity of a fluid particle at some place in the fluid, the acceleration would just
be ∂v/∂t. It is not—and for a rather subtle reason. The derivative ∂v/∂t, is the
rate at which the velocity v(x, y, z, t) changes at a fixed point in space. What
we need is how fast the velocity changes for a particular piece of fluid. Imagine
that we mark one of the drops of water with a colored speck so we can watch it.
In a small interval of time ∆t, this drop will move to a different location. If the
drop is moving along some path as sketched in Fig. 40-4, it might in ∆t move
from P1 to P2. In fact, it will move in the x-direction by an amount vx ∆t, in
the y-direction by the amount vy ∆t, and in the z-direction by the amount vz ∆t.
We see that, if v(x, y, z, t) is the velocity of the fluid particle which is at (x, y, z)
at the time t, then the velocity of the same particle, at the time t+ ∆t is given
by v(x+ ∆x, y + ∆y, z + ∆z, t+ ∆t)—with

∆x = vx ∆t, ∆y = vy ∆t, and ∆z = vz ∆t.

From the definition of the partial derivatives—recall Eq. (2.7)—we have, to first
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order, that

v(x+ vx ∆t, y + vy ∆t, z + vz ∆t, t+ ∆t)

= v(x, y, z, t) + ∂v

∂x
vx ∆t+ ∂v

∂y
vy ∆t+ ∂v

∂z
vz ∆t+ ∂v

∂t
∆t.

The acceleration ∆v/∆t is

vx
∂v

∂x
+ vy

∂v

∂y
+ vz

∂v

∂z
+ ∂v

∂t
.

We can write this symbolically—treating ∇ as a vector—as

(v ·∇)v + ∂v

∂t
. (40.5)

Note that there can be an acceleration even though ∂v/∂t = 0 so that velocity
at a given point is not changing. As an example, water flowing in a circle at a
constant speed is accelerating even though the velocity at a given point is not
changing. The reason is, of course, that the velocity of a particular piece of water
which is initially at one point on the circle has a different direction a moment
later; there is a centripetal acceleration.

The rest of our theory is just mathematical—finding solutions of the equation
of motion we get by putting the acceleration (40.5) into Eq. (40.4). We get

∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ, (40.6)

where viscosity has been omitted. We can rearrange this equation by using the
following identity from vector analysis:

(v ·∇)v = (∇× v)× v + 1
2∇(v · v).

If we now define a new vector field Ω, as the curl of v,

Ω =∇× v, (40.7)

the vector identity can be written as

(v ·∇)v = Ω× v + 1
2∇v

2,
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and our equation of motion (40.6) becomes

∂v

∂t
+ Ω× v + 1

2∇v
2 = −∇p

ρ
−∇φ. (40.8)

You can verify that Eqs. (40.6) and (40.8) are equivalent by checking that the
components of the two sides of the equation are equal—and making use of (40.7).

The vector field Ω is called the vorticity. If the vorticity is zero everywhere,
we say that the flow is irrotational. We have already defined in Section 3-5 a
thing called the circulation of a vector field. The circulation around any closed
loop in a fluid is the line integral of the fluid velocity, at a given instant of time,
around that loop:

(Circulation) =
∮
v · ds.

The circulation per unit area for an infinitesimal loop is then—using Stokes’
theorem—equal to ∇ × v. So the vorticity Ω is the circulation around a unit
area (perpendicular to the direction of Ω). It also follows that if you put a little
piece of dirt—not an infinitesimal point—at any place in the liquid it will rotate
with the angular velocity Ω/2. Try to see if you can prove that. You can also
check it out that for a bucket of water on a turntable, Ω is equal to twice the
local angular velocity of the water.

If we are interested only in the velocity field, we can eliminate the pressure
from our equations. Taking the curl of both sides of Eq. (40.8), remembering that
ρ is a constant and that the curl of any gradient is zero, and using Eq. (40.3), we
get

∂Ω
∂t

+∇× (Ω× v) = 0. (40.9)

This equation, together with the equations

Ω =∇× v (40.10)
and

∇ · v = 0, (40.11)

describes completely the velocity field v. Mathematically speaking, if we know
Ω at some time, then we know the curl of the velocity vector, and we also know
that its divergence is zero, so given the physical situation we have all we need
to determine v everywhere. (It is just like the situation in magnetism where we
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had ∇ ·B = 0 and ∇ ×B = j/ε0c
2.) Thus, a given Ω determines v just as a

given j determines B. Then, knowing v, Eq. (40.9) tells us the rate of change
of Ω from which we can get the new Ω for the next instant. Using Eq. (40.10),
again we find the new v, and so on. You see how these equations contain all the
machinery for calculating the flow. Note, however, that this procedure gives the
velocity field only; we have lost all information about the pressure.

We point out one special consequence of our equation. If Ω = 0 everywhere
at any time t, ∂Ω/∂t also vanishes, so that Ω is still zero everywhere at t+ ∆t.
We have a solution to the equation; the flow is permanently irrotational. If a flow
was started with zero rotation, it would always have zero rotation. The equations
to be solved then are

∇ · v = 0, ∇× v = 0.

They are just like the equations for the electrostatic or magnetostatic fields in
free space. We will come back to them and look at some special problems later.

40-3 Steady flow—Bernoulli’s theorem

Now we want to return to the equation of motion, Eq. (40.8), but limit
ourselves to situations in which the flow is “steady.” By steady flow we mean
that at any one place in the fluid the velocity never changes. The fluid at any
point is always replaced by new fluid moving in exactly the same way. The
velocity picture always looks the same—v is a static vector field. In the same
way that we drew “field lines” in magnetostatics, we can now draw lines which
are always tangent to the fluid velocity as shown in Fig. 40-5. These lines are
called streamlines. For steady flow, they are evidently the actual paths of fluid
particles. (In unsteady flow the streamline pattern changes in time, and the
streamline pattern at any instant does not represent the path of a fluid particle.)

A steady flow does not mean that nothing is happening—atoms in the fluid
are moving and changing their velocities. It only means that ∂v/∂t = 0. Then if
we take the dot product of v into the equation of motion, the term v · (Ω× v)
drops out, and we are left with

v ·∇
{
p

ρ
+ φ+ 1

2 v
2
}

= 0. (40.12)

This equation says that for a small displacement in the direction of the fluid
velocity the quantity inside the brackets doesn’t change. Now in steady flow all
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v

Fig. 40-5. Streamlines in steady fluid flow.

displacements are along streamlines, so Eq. (40.12) tells us that for all the points
along a streamline, we can write

p

ρ
+ 1

2 v
2 + φ = const (streamline). (40.13)

This is Bernoulli’s theorem. The constant may in general be different for different
streamlines; all we know is that the left-hand side of Eq. (40.13) is the same all
along a given streamline. Incidentally, we may notice that for steady irrotational
motion for which Ω = 0, the equation of motion (40.8) gives us the relation

∇
{
p

ρ
+ 1

2 v
2 + φ

}
= 0,

so that
p

ρ
+ 1

2 v
2 + φ = const (everywhere). (40.14)

It’s just like Eq. (40.13) except that now the constant has the same value through-
out the fluid.

The theorem of Bernoulli is in fact nothing more than a statement of the
conservation of energy. A conservation theorem such as this gives us a lot
of information about a flow without our actually having to solve the detailed
equations. Bernoulli’s theorem is so important and so simple that we would like
to show you how it can be derived in a way that is different from the formal
calculations we have just used. Imagine a bundle of adjacent streamlines which

40-11



(a)

A1

A2v1

v2

(b)

∆M

∆M

v1∆
t

v2∆t

Fig. 40-6. Fluid motion in a flow tube.

form a stream tube as sketched in Fig. 40-6. Since the walls of the tube consist
of streamlines, no fluid flows out through the wall. Let’s call the area at one end
of the stream tube A1, the fluid velocity there v1, the density of the fluid ρ1, and
the potential energy φ1. At the other end of the tube, we have the corresponding
quantities A2, v2, ρ2, and φ2. Now after a short interval of time ∆t, the fluid
at A1 has moved a distance v1 ∆t, and the fluid at A2 has moved a distance v2 ∆t
[Fig. 40-6(b)]. The conservation of mass requires that the mass which enters
through A1 must be equal to the mass which leaves through A2. These masses
at these two ends must be the same:

∆M = ρ1A1v1 ∆t = ρ2A2v2 ∆t.

So we have the equality
ρ1A1v1 = ρ2A2v2. (40.15)
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This equation tells us that the velocity varies inversely with the area of the stream
tube if ρ is constant.

Now we calculate the work done by the fluid pressure. The work done on
the fluid entering at A1 is p1A1v1 ∆t, and the work given up at A2 is p2A2v2 ∆t.
The net work on the fluid between A1 and A2 is, therefore,

p1A1v1 ∆t− p2A2v2 ∆t,

which must equal the increase in the energy of a mass ∆M of fluid in going from
A1 to A2. In other words,

p1A1v1 ∆t− p2A2v2 ∆t = ∆M(E2 − E1), (40.16)

where E1 is the energy per unit mass of fluid at A1, and E2 is the energy per
unit mass at A2. The energy per unit mass of the fluid can be written as

E = 1
2v

2 + φ+ U,

where 1
2v

2 is the kinetic energy per unit mass, φ is the potential energy per unit
mass, and U is an additional term which represents the internal energy per unit
mass of fluid. The internal energy might correspond, for example, to the thermal
energy in a compressible fluid, or to chemical energy. All these quantities can
vary from point to point. Using this form for the energies in (40.16), we have

p1A1v1 ∆t
∆M − p2A2v2 ∆t

∆M = 1
2 v

2
2 + φ2 + U2 −

1
2 v

2
1 − φ1 − U1.

But we have seen that ∆M = ρAv∆t, so we get

p1

ρ1
+ 1

2 v
2
1 + φ1 + U1 = p2

ρ2
+ 1

2 v
2
2 + φ2 + U2, (40.17)

which is the Bernoulli result with an additional term for the internal energy. If
the fluid is incompressible, the internal energy term is the same on both sides,
and we get again that Eq. (40.14) holds along any streamline.

We consider now some simple examples in which the Bernoulli integral gives
us a description of the flow. Suppose we have water flowing out of a hole near the
bottom of a tank, as drawn in Fig. 40-7. We take a situation in which the flow
speed vout at the hole is much larger than the flow speed near the top of the tank;
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p0

p0

WATER

STREAM LINE

vout

Fig. 40-7. Flow from a tank.

in other words, we imagine that the diameter of the tank is so large that we can
neglect the drop in the liquid level. (We could make a more accurate calculation
if we wished.) At the top of the tank the pressure is p0, the atmospheric pressure,
and the pressure at the sides of the jet is also p0. Now we write our Bernoulli
equation for a streamline, such as the one shown in the figure. At the top of the
tank, we take v equal to zero and we also take the gravity potential φ to be zero.
At the speed vout, and φ = −gh, so that

p0 = p0 + 1
2ρv

2
out − ρgh,

or
vout =

√
2gh. (40.18)

This velocity is just what we would get for something which falls the distance h.
It is not too surprising, since the water at the exit gains kinetic energy at the
expense of the potential energy of the water at the top. Do not get the idea,
however, that you can figure out the rate that the fluid flows out of the tank by
multiplying this velocity by the area of the hole. The fluid velocities as the jet
leaves the hole are not all parallel to each other but have components inward
toward the center of the stream—the jet is converging. After the jet has gone
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a little way, the contraction stops and the velocities do become parallel. So
the total flow is the velocity times the area at that point. In fact, if we have a
discharge opening which is just a round hole with a sharp edge, the jet contracts
to 62 percent of the area of the hole. The reduced effective area of the discharge
varies for different shapes of discharge tubes, and experimental contractions are
available as tables of efflux coefficients.

Fig. 40-8. With a re-entrant discharge tube, the stream contracts to
one-half the area of the opening.

If the discharge tube is re-entrant, as shown in Fig. 40-8, it is possible to
prove in a most beautiful way that the efflux coefficient is exactly 50 percent.
We will give just a hint of how the proof goes. We have used the conservation of
energy to get the velocity, Eq. (40.18), but there is also momentum conservation
to consider. Since there is an outflow of momentum in the discharge jet, there
must be a force applied over the cross section of the discharge tube. Where does
the force come from? The force must come from the pressure on the walls. As
long as the efflux hole is small and away from the walls, the fluid velocity near
the walls of the tank will be very small. Therefore, the pressure on every face is
almost exactly the same as the static pressure in a fluid at rest—from Eq. (40.14).
Then the static pressure at any point on the side of the tank must be matched
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by an equal pressure at the point on the opposite wall, except at the points on
the wall opposite the charge tube. If we calculate the momentum poured out
through the jet by this pressure, we can show that the efflux coefficient is 1/2.
We cannot use this method for a discharge hole like that shown in Fig. 40-7,
however, because the velocity increase along the wall right near the discharge
area gives a pressure fall which we are not able to calculate.

v1
v2 v1

Fig. 40-9. The pressure is lowest where the velocity is highest.

Let’s look at another example—a horizontal pipe with changing cross section,
as shown in Fig. 40-9, with water flowing in one end and out the other. The
conservation of energy, namely Bernoulli’s formula, says that the pressure is lower
in the constricted area where the velocity is higher. We can easily demonstrate
this effect by measuring the pressure at different cross sections with small vertical
columns of water attached to the flow tube through holes small enough so that
they do not disturb the flow. The pressure is then measured by the height of water
in these vertical columns. The pressure is found to be less at the constriction
than it is on either side. If the area beyond the constriction comes back to the
same value it had before the constriction, the pressure rises again. Bernoulli’s
formula would predict that the pressure downstream of the constriction should
be the same as it was upstream, but actually it is noticeably less. The reason
that our prediction is wrong is that we have neglected the frictional, viscous
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forces which cause a pressure drop along the tube. Despite this pressure drop the
pressure is definitely lower at the constriction (because of the increased speed)
than it is on either side of it—as predicted by Bernoulli. The speed v2 must
certainly exceed v1 to get the same amount of water through the narrower tube.
So the water accelerates in going from the wide to the narrow part. The force
that gives this acceleration comes from the drop in pressure.

Fig. 40-10. Proof that v is not equal to
√

2gh.

We can check our results with another simple demonstration. Suppose we
have on a tank a discharge tube which throws a jet of water upward as shown in
Fig. 40-10. If the efflux velocity were exactly

√
2gh, the discharge water should

rise to a level even with the surface of the water in the tank. Experimentally, it
falls somewhat short. Our prediction is roughly right, but again viscous friction
which has not been included in our energy conservation formula has resulted in a
loss of energy.

Have you ever held two pieces of paper close together and tried to blow them
apart? Try it! They come together. The reason, of course, is that the air has a
higher speed going through the constricted space between the sheets than it does
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when it gets outside. The pressure between the sheets is lower than atmospheric
pressure, so they come together rather than separating.

40-4 Circulation
We saw at the beginning of the last section that if we have an incompressible

fluid with no circulation, the flow satisfies the following two equations:
∇ · v = 0, ∇× v = 0. (40.19)

They are the same as the equations of electrostatics or magnetostatics in empty
space. The divergence of the electric field is zero when there are no charges, and
the curl of the electrostatic field is always zero. The curl of the magnetostatic
field is zero if there are no currents, and the divergence of the magnetic field is
always zero. Therefore, Eqs. (40.19) have the same solutions as the equations
for E in electrostatics or for B in magnetostatics. As a matter of fact, we have
already solved the problem of the flow of a fluid past a sphere, as an electrostatic
analogy, in Section 12-5. The electrostatic analog is a uniform electric field plus
a dipole field. The dipole field is so adjusted that the flow velocity normal to the
surface of the sphere is zero. The same problem for the flow past a cylinder can
be worked out in a similar way by using a suitable line dipole with a uniform
flow field. This solution holds for a situation in which the fluid velocity at large
distances is constant—both in magnitude and direction. The solution is sketched
in Fig. 40-11(a).

There is another solution for the flow around a cylinder when the conditions
are such that the fluid at large distances moves in circles around the cylinder.
The flow is, then, circular everywhere, as in Fig. 40-11(b). Such a flow has a
circulation around the cylinder, although ∇×v is still zero in the fluid. How can
there be circulation without a curl? We have a circulation around the cylinder
because the line integral of v around any loop enclosing the cylinder is not zero.
At the same time, the line integral of v around any closed path which does not
include the cylinder is zero. We saw the same thing when we found the magnetic
field around a wire. The curl of B was zero outside of the wire, although a line
integral of B around a path which encloses the wire did not vanish. The velocity
field in an irrotational circulation around a cylinder is precisely the same as the
magnetic field around a wire. For a circular path with its center at the center of
the cylinder, the line integral of the velocity is∮

v · ds = 2πrv.
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(a)

(b)

(c)

F

Fig. 40-11. (a) Ideal fluid flow past a cylinder. (b) Circulation around
a cylinder. (c) The superposition of (a) and (b).

For irrotational flow the integral must be independent of r. Let’s call the constant
value C, then we have that

v = C

2πr , (40.20)

where v is the tangential velocity, and r is the distance from the axis.
There is a nice demonstration of a fluid circulating around a hole. You take a

transparent cylindrical tank with a drain hole in the center of the bottom. You
fill it with water, stir up some circulation with a stick, and pull the drain plug.
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Fig. 40-12. Water with circulation draining from a tank.

You get the pretty effect shown in Fig. 40-12. (You’ve seen a similar thing many
times in the bathtub!) Although you put in some ω at beginning, it soon dies
down because of viscosity and the flow becomes irrotational—although still with
some circulation around the hole.

From the theory, we can calculate the shape of the inner surface of the water.
As a particle of the water moves inward it picks up speed. From Eq. (40.20)
the tangential velocity goes as 1/r—it’s just from the conservation of angular
momentum, like the skater pulling in her arms. Also the radial velocity goes
as 1/r. Ignoring the tangential motion, we have water going radially inward
toward a hole; from ∇ · v = 0, it follows that the radial velocity is proportional
to 1/r. So the total velocity also increases as 1/r, and the water goes in along
Archimedean spirals. The air-water surface is all at atmospheric pressure, so it
must have—from Eq. (40.14)—the property that

gz + 1
2v

2 = const.

But v is proportional to 1/r, so the shape of the surface is

(z − z0) = k

r2 .
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An interesting point—which is not true in general but is true for incompress-
ible, irrotational flow—is that if we have one solution and a second solution, then
the sum is also a solution. This is true because the equations in (40.19) are linear.
The complete equations of hydrodynamics, Eqs. (40.9), (40.10), and (40.11), are
not linear, which makes a vast difference. For the irrotational flow about the
cylinder, however, we can superpose the flow of Fig. 40-11(a) on the flow of
Fig. 40-11(b) and get the new flow pattern shown in Fig. 40-11(c). This flow is
of special interest. The flow velocity is higher on the upper side of the cylinder
than on the lower side. The pressures are therefore lower on the upper side than
on the lower side. So when we have a combination of a circulation around a
cylinder and a net horizontal flow, there is a net vertical force on the cylinder—it
is called a lift force. Of course, if there is no circulation, there is no net force on
any body according to our theory of “dry” water.

40-5 Vortex lines

We have already written down the general equations for the flow of an
incompressible fluid when there may be vorticity. They are

I. ∇ · v = 0,

II. Ω =∇× v,

III. ∂Ω
∂t

+∇× (Ω× v) = 0.

The physical content of these equations has been described in words by Helmholtz
in terms of three theorems. First, imagine that in the fluid we were to draw vortex
lines rather than streamlines. By vortex lines we mean field lines that have the
direction of Ω and have a density in any region proportional to the magnitude
of Ω. From II the divergence of Ω is always zero (remember—Section 3-7—that
the divergence of a curl is always zero). So vortex lines are like lines of B—
they never start or stop, and will tend to go in closed loops. Now Helmholtz
described III in words by the following statement: the vortex lines move with
the fluid. This means that if you were to mark the fluid particles along some
vortex lines—by coloring them with ink, for example—then as the fluid moves
and carries those particles along, they will always mark the new positions of the
vortex lines. In whatever way the atoms of the liquid move, the vortex lines move
with them. That is one way to describe the laws.
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It also suggests a method for solving any problems. Given the initial flow
pattern—say v everywhere—then you can calculate Ω. From the v you can also
tell where the vortex lines are going to be a little later—they move with the
speed v. With the new Ω you can use I and II to find the new v. (That’s just like
the problem of finding B, given the currents.) If we are given the flow pattern at
one instant we can in principle calculate it for all subsequent times. We have the
general solution for nonviscous flow.

(a)

Ω1

AREA A1

(b)

Ω2

AREA A2

Fig. 40-13. (a) A group of vortex lines at t; (b) the same lines at a
later time t ′.

We would like to show how Helmholtz’s statement—and, therefore, III—can
be at least partly understood. It is really just the law of conservation of angular
momentum applied to the fluid. Suppose we imagine a small cylinder of the liquid
whose axis is parallel to the vortex lines, as in Fig. 40-13(a). At some time later,
this same piece of fluid will be somewhere else. Generally it will occupy a cylinder
with a different diameter and be in a different place. It may also have a different
orientation, say as in Fig. 40-13(b). If, however, the diameter has decreased as
shown in Fig. 40-13, the length will have increased to keep the volume constant
(since we are assuming an incompressible fluid). Also, since the vortex lines are
stuck with the material, their density will go up as the cross-sectional area goes
down. The product of the vorticity Ω and area A of the cylinder will remain
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constant, so according to Helmholtz, we should have

Ω2A2 = Ω1A1. (40.21)

Now notice that with zero viscosity all the forces on the surface of the
cylindrical volume (or any volume, for that matter) are perpendicular to the
surface. The pressure forces can cause the volume to be moved from place to place,
or can cause it to change shape; but with no tangential forces the magnitude
of the angular momentum of the material inside cannot change. The angular
momentum of the liquid in the little cylinder is its moment of inertia I times the
angular velocity of the liquid, which is proportional to the vorticity Ω. For a
cylinder, the moment of inertia is proportional to mr2. So from the conservation
of angular momentum, we would conclude that

(M1R
2
1)Ω1 = (M2R

2
2)Ω2.

But the mass is the same, M1 = M2, and the areas are proportional to R2,
so we get again just Eq. (40.21). Helmholtz’s statement—which is equivalent
to III—is just a consequence of the fact that in the absence of viscosity the
angular momentum of an element of the fluid cannot change.

Fig. 40-14. Making a travelling vortex ring.

There is a nice demonstration of a moving vortex which is made with the
simple apparatus of Fig. 40-14. It is a “drum” two feet in diameter and two feet
long made by stretching a thick rubber sheet over the open end of a cylindrical
“box.” The “bottom”—the drum is tipped on its side—is solid except for a 3-inch
diameter hole. If you give a sharp blow on the rubber diaphragm with your hand,
a vortex ring is projected out of the hole. Although the vortex is invisible, you
can tell it’s there because it will blow out a candle 10 to 20 feet away. By the
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delay in the effect, you can tell that “something” is travelling at a finite speed.
You can see better what is going on if you first blow some smoke into the box.
Then you see the vortex as a beautiful round “smoke ring.”

The smoke ring is a torus-shaped bundle of vortex lines, as shown in
Fig. 40-15(a). Since Ω = ∇ × v, these vortex lines represent also a circula-
tion of v as shown in part (b) of the figure. We can understand the forward
motion of the ring in the following way: The circulating velocity around the
bottom of the ring extends up to the top of the ring, having there a forward
motion. Since the lines of Ω move with the fluid, they also move ahead with the
velocity v. (Of course, the circulation of v around the top part of the ring is
responsible for the forward motion of the vortex lines at the bottom.)

We must now mention a serious difficulty. We have already noted that
Eq. (40.9) says that, if Ω is initially zero, it will always be zero. This result is a
great failure of the theory of “dry” water, because it means that once Ω is zero it
is always zero—it is impossible to produce any vorticity under any circumstance.
Yet, in our simple demonstration with the drum, we can generate a vortex ring
starting with air which was initially at rest. (Certainly, v = 0, Ω = 0 everywhere
in the box before we hit it.) Also, we all know that we can start some vorticity
in a lake with a paddle. Clearly, we must go to a theory of “wet” water to get a
complete understanding of the behavior of a fluid.

Another feature of the dry water theory which is incorrect is the supposition
we make regarding the flow at the boundary between it and the surface of a solid.
When we discussed the flow past a cylinder—as in Fig. 40-11, for example—we
permitted the fluid to slide along the surface of the solid. In our theory, the
velocity at a solid surface could have any value depending on how it got started,
and we did not consider any “friction” between the fluid and the solid. It is an
experimental fact, however, that the velocity of a real fluid always goes to zero
at the surface of a solid object. Therefore, our solution for the cylinder, with
or without circulation, is wrong—as is our result regarding the generation of
vorticity. We will tell you about the more correct theories in the next chapter.

40-24



(a)

VORTEX
LINES

DIRECTION OF
MOTION

(b)
VORTEX
LINES

DIRECTION OF
MOTION

v

v

v

v

Fig. 40-15. A moving vortex ring (a smoke ring). (a) The vortex lines.
(b) A cross section of the ring.
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41

The Flow of Wet Water

41-1 Viscosity

In the last chapter we discussed the behavior of water, disregarding the
phenomenon of viscosity. Now we would like to discuss the phenomena of the
flow of fluids, including the effects of viscosity. We want to look at the real
behavior of fluids. We will describe qualitatively the actual behavior of the
fluids under various different circumstances so that you will get some feel for
the subject. Although you will see some complicated equations and hear about
some complicated things, it is not our purpose that you should learn all these
things. This is, in a sense, a “cultural” chapter which will give you some idea of
the way the world is. There is only one item which is worth learning, and that is
the simple definition of viscosity which we will come to in a moment. The rest is
only for your entertainment.

In the last chapter we found that the laws of motion of a fluid are contained
in the equation

∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ+ fvisc

ρ
. (41.1)

In our “dry” water approximation we left out the last term, so we were neglecting
all viscous effects. Also, we sometimes made an additional approximation by
considering the fluid as incompressible; then we had the additional equation

∇ · v = 0.

This last approximation is often quite good—particularly when flow speeds are
much slower than the speed of sound. But in real fluids it is almost never true that
we can neglect the internal friction that we call viscosity; most of the interesting
things that happen come from it in one way or another. For example, we saw
that in “dry” water the circulation never changes—if there is none to start out
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with, there will never be any. Yet, circulation in fluids is an everyday occurrence.
We must fix up our theory.

We begin with an important experimental fact. When we worked out the flow
of “dry” water around or past a cylinder—the so-called “potential flow”—we had
no reason not to permit the water to have a velocity tangent to the surface; only
the normal component had to be zero. We took no account of the possibility
that there might be a shear force between the liquid and the solid. It turns out—
although it is not at all self-evident—that in all circumstances where it has been
experimentally checked, the velocity of a fluid is exactly zero at the surface of a
solid. You have noticed, no doubt, that the blade of a fan will collect a thin layer
of dust—and that it is still there after the fan has been churning up the air. You
can see the same effect even on the great fan of a wind tunnel. Why isn’t the dust
blown off by the air? In spite of the fact that the fan blade is moving at high speed
through the air, the speed of the air relative to the fan blade goes to zero right
at the surface. So the very smallest dust particles are not disturbed.* We must
modify the theory to agree with the experimental fact that in all ordinary fluids,
the molecules next to a solid surface have zero velocity (relative to the surface).†

We originally characterized a liquid by the fact that if you put a shearing stress
on it—no matter how small—it would give way. It flows. In static situations,
there are no shear stresses. But before equilibrium is reached—as long as you
still push on it—there can be shear forces. Viscosity describes these shear forces
which exist in a moving fluid. To get a measure of the shear forces during the
motion of a fluid, we consider the following kind of experiment. Suppose that we
have two solid plane surfaces with water between them, as in Fig. 41-1, and we
keep one stationary while moving the other parallel to it at the slow speed v0. If
you measure the force required to keep the upper plate moving, you find that
it is proportional to the area of the plates and to v0/d, where d is the distance
between the plates. So the shear stress F/A is proportional to v0/d:

F

A
= η

v0

d
.

The constant of proportionality η is called the coefficient of viscosity.

* You can blow large dust particles from a table top, but not the very finest ones. The large
ones stick up into the breeze.

† You can imagine circumstances when it is not true: glass is theoretically a “liquid,” but
it can certainly be made to slide along a steel surface. So our assertion must break down
somewhere.
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Fig. 41-1. Viscous drag between two parallel plates.

If we have a more complicated situation, we can always consider a little, flat,
rectangular cell in the water with its faces parallel to the flow, as in Fig. 41-2.
The shear force across this cell is given by

∆F
∆A = η

∆vx
∆y = η

∂vx
∂y

. (41.2)

Now, ∂vx/∂y is the rate of change of the shear strain we defined in Chapter 39,
so for a liquid, the shear stress is proportional to the rate of change of the shear
strain.

In the general case we write

Sxy = η

(
∂vy
∂x

+ ∂vx
∂y

)
. (41.3)

∆A

∆y

∆F

vx

vx + ∆vx

Fig. 41-2. The shear stress in a viscous fluid.
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If there is a uniform rotation of the fluid, ∂vx/∂y is the negative of ∂vy/∂x and
Sxy is zero—as it should be since there are no stresses in a uniformly rotating
fluid. (We did a similar thing in defining exy in Chapter 39.) There are, of course,
the corresponding expressions for Syz and Szx.

x

y

va

vb

r

a

b

FLUID

Fig. 41-3. The flow in a fluid between two concentric cylinders rotating
at different angular velocities.

As an example of the application of these ideas, we consider the motion of a
fluid between two coaxial cylinders. Let the inner one have the radius a and the
peripheral velocity va, and let the outer one have radius b and velocity vb. See
Fig. 41-3. We might ask, what is the velocity distribution between the cylinders?
To answer this question, we begin by finding a formula for the viscous shear in the
fluid at a distance r from the axis. From the symmetry of the problem, we can
assume that the flow is always tangential and that its magnitude depends only
on r; v = v(r). If we watch a speck in the water at the radius r, its coordinates
as a function of time are

x = r cosωt, y = r sinωt,

where ω = v/r. Then the x- and y-components of velocity are

vx = −rω sinωt = −ωy and vy = rω cosωt = ωx. (41.4)
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From Eq. (41.3), we have

Sxy = η

[
∂

∂x
(xω)− ∂

∂y
(yω)

]
= η

[
x
∂ω

∂x
− y ∂ω

∂y

]
. (41.5)

For a point at y = 0, ∂ω/∂y = 0, and x ∂ω/∂x is the same as r dω/dr. So at that
point

(Sxy)y=0 = ηr
dω

dr
. (41.6)

(It is reasonable that S should depend on ∂ω/∂r; when there is no change in ω
with r, the liquid is in uniform rotation and there are no stresses.)

The stress we have calculated is the tangential shear which is the same all
around the cylinder. We can get the torque acting across a cylindrical surface
at the radius r by multiplying the shear stress by the moment arm r and the
area 2πrl (where l is the length of the cylinder). We get

τ = 2πr2l(Sxy)y=0 = 2πηlr3 dω

dr
. (41.7)

Since the motion of the water is steady—there is no angular acceleration—the
net torque on the cylindrical shell of water between r and r+dr must be zero; that
is, the torque at r must be balanced by an equal and opposite torque at r + dr,
so that τ must be independent of r. In other words, r3 dω/dr is equal to some
constant, say A, and

dω

dr
= A

r3 . (41.8)

Integrating, we find that ω varies with r as

ω = − A

2r2 +B. (41.9)

The constants A and B are to be determined to fit the conditions that ω = ωa
at r = a, and ω = ωb at r = b. We get that

A = 2a2b2

b2 − a2 (ωb − ωa),

B = b2ωb − a2ωa
b2 − a2 .

(41.10)

So we know ω as a function of r, and from it v = ωr.
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If we want the torque, we can get it from Eqs. (41.7) and (41.8):

τ = 2πηlA
or

τ = 4πηla2b2

b2 − a2 (ωb − ωa). (41.11)

It is proportional to the relative angular velocities of the two cylinders. One
standard apparatus for measuring the coefficients of viscosity is built this way.
One cylinder—say the outer one—is on pivots but is held stationary by a spring
balance which measures the torque on it, while the inner one is rotated at a
constant angular velocity. The coefficient of viscosity is then determined from
Eq. (41.11).

From its definition, you see that the units of η are newton·sec/m2. For water
at 20◦C,

η = 10−3 newton·sec/m2.

It is usually more convenient to use the specific viscosity, which is η divided by
the density ρ. The values for water and air are then comparable:

water at 20◦C, η/ρ = 10−6 m2/sec,
air at 20◦C, η/ρ = 15× 10−6 m2/sec.

(41.12)

Viscosities usually depend strongly on temperature. For instance, for water just
above the freezing point, η/ρ is 1.8 times larger than it is at 20◦C.

41-2 Viscous flow

We now go to a general theory of viscous flow—at least in the most general
form known to man. We already understand that the shear stress components
are proportional to the spatial derivatives of the various velocity components
such as ∂vx/∂y or ∂vy/∂x. However, in the general case of a compressible fluid
there is another term in the stress which depends on other derivatives of the
velocity. The general expression is

Sij = η

(
∂vi
∂xj

+ ∂vj
∂xi

)
+ η′ δij(∇ · v), (41.13)
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where xi is any one of the rectangular coordinates x, y, or z, and vi is any one
of the rectangular coordinates of the velocity. (The symbol δij is the Kronecker
delta which is 1 when i = j and 0 for i 6= j.) The additional term adds η′∇ ·v to
all the diagonal elements Sii of the stress tensor. If the liquid is incompressible
∇ ·v = 0, and this extra term doesn’t appear. So it has to do with internal forces
during compression. So two constants are required to describe the liquid, just as
we had two constants to describe a homogeneous elastic solid. The coefficient η
is the “ordinary” coefficient of viscosity which we have already encountered. It
is also called the first coefficient of viscosity or the “shear viscosity coefficient,”
and the new coefficient η′ is called the second coefficient of viscosity.

Now we want to determine the viscous force per unit volume, fvisc, so we can
put it into Eq. (41.1) to get the equation of motion for a real fluid. The force
on a small cubical volume element of a fluid is the resultant of the forces on all
the six faces. Taking them two at a time, we will get differences that depend
on the derivatives of the stresses, and, therefore, on the second derivatives of
the velocity. This is nice because it will get us back to a vector equation. The
component of the viscous force per unit volume in the direction of the rectangular
coordinate xi is

(fvisc)i =
3∑
j=1

∂Sij
∂xj

=
3∑
j=1

∂

∂xj

{
η

(
∂vi
∂xj

+ ∂vj
∂xi

)}
+ ∂

∂xi
(η′∇ · v). (41.14)

Usually, the variation of the viscosity coefficients with position is not significant
and can be neglected. Then, the viscous force per unit volume contains only
second derivatives of the velocity. We saw in Chapter 39 that the most general
form of second derivatives that can occur in a vector equation is the sum of
a term in the Laplacian (∇ ·∇v = ∇2v), and a term in the gradient of the
divergence

(
∇(∇ · v)

)
. Equation (41.14) is just such a sum with the coefficients

η and (η + η′). We get

fvisc = η∇2v + (η + η′)∇(∇ · v). (41.15)

In the incompressible case, ∇ · v = 0, and the viscous force per unit volume is
just η∇2v. That is all that many people use; however, if you should want to
calculate the absorption of sound in a fluid, you would need the second term.
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We can now complete our general equation of motion for a real fluid. Substi-
tuting Eq. (41.15) into Eq. (41.1), we get

ρ

{
∂v

∂t
+ (v ·∇)v

}
= −∇p− ρ∇φ+ η∇2v + (η + η′)∇(∇ · v).

It’s complicated. But that’s the way nature is.
If we introduce the vorticity Ω =∇× v, as we did before, we can write our

equation as

ρ

{
∂v

∂t
+ Ω× v + 1

2∇v
2
}

= −∇p− ρ∇φ+ η∇2v

+ (η + η′)∇(∇ · v). (41.16)

We are supposing again that the only body forces acting are conservative forces
like gravity. To see what the new term means, let’s look at the incompressible
fluid case. Then, if we take the curl of Eq. (41.16), we get

∂Ω
∂t

+∇× (Ω× v) = η

ρ
∇2Ω. (41.17)

This is like Eq. (40.9) except for the new term on the right-hand side. When
the right-hand side was zero, we had the Helmholtz theorem that the vorticity
stays with the fluid. Now, we have the rather complicated nonzero term on the
right-hand side which, however, has straightforward physical consequences. If we
disregard for the moment the term ∇× (Ω× v), we have a diffusion equation.
The new term means that the vorticity Ω diffuses through the fluid. If there is a
large gradient in the vorticity, it will spread out into the neighboring fluid.

This is the term that causes the smoke ring to get thicker as it goes along.
Also, it shows up nicely if you send a “clean” vortex (a “smokeless” ring made by
the apparatus described in the last chapter) through a cloud of smoke. When
it comes out of the cloud, it will have picked up some smoke, and you will see
a hollow shell of a smoke ring. Some of the Ω diffuses outward into the smoke,
while still maintaining its forward motion with the vortex.

41-3 The Reynolds number

We will now describe the changes which are made in the character of fluid
flow as a consequence of the new viscosity term. We will look at two problems in
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some detail. The first of these is the flow of a fluid past a cylinder—a flow which
we tried to calculate in the previous chapter using the theory for nonviscous flow.
It turns out that the viscous equations can be solved by man today only for a
few special cases. So some of what we will tell you is based on experimental
measurements—assuming that the experimental model satisfies Eq. (41.17).

The mathematical problem is this: We would like the solution for the flow
of an incompressible, viscous fluid past a long cylinder of diameter D. The flow
should be given by Eq. (41.17) and by

Ω =∇× v (41.18)

with the conditions that the velocity at large distances is some constant velocity,
say V (parallel to the x-axis), and at the surface of the cylinder is zero. That is,

vx = vy = vz = 0 (41.19)
for

x2 + y2 = D2

4 .

That specifies completely the mathematical problem.
If you look at the equations, you see that there are four different parameters

to the problem: η, ρ, D, and V . You might think that we would have to give a
whole series of cases for different V ’s, different D’s, and so on. However, that is
not the case. All the different possible solutions correspond to different values
of one parameter. This is the most important general thing we can say about
viscous flow. To see why this is so, notice first that the viscosity and density
appear only in the ratio η/ρ—the specific viscosity. That reduces the number of
independent parameters to three. Now suppose we measure all distances in the
only length that appears in the problem, the diameter D of the cylinder; that is,
we substitute for x, y, z, the new variables x′, y′, z′ with

x = x′D, y = y′D, z = z′D.

Then D disappears from (41.19). In the same way, if we measure all velocities in
terms of V—that is, we set v = v′V—we get rid of the V , and v′ is just equal
to 1 at large distances. Since we have fixed our units of length and velocity, our
unit of time is now D/V ; so we should set

t = t′
D

V
. (41.20)
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With our new variables, the derivatives in Eq. (41.18) get changed from ∂/∂x
to (1/D) ∂/∂x′, and so on; so Eq. (41.18) becomes

Ω =∇× v = V

D
∇′ × v′ = V

D
Ω′. (41.21)

Our main equation (41.17) then reads

∂Ω′

∂t′
+∇′ × (Ω′ × v′) = η

ρV D
∇′2Ω′.

All the constants condense into one factor which we write, following tradition,
as 1/R:

R = ρ

η
V D. (41.22)

If we just remember that all of our equations are to be written with all quantities
in the new units, we can omit all the primes. Our equations for the flow are then

∂Ω
∂t

+∇× (Ω× v) = 1
R
∇2Ω. (41.23)

and
Ω =∇× v

with the conditions
v = 0

for
x2 + y2 = 1/4 (41.24)

and
vx = 1, vy = vz = 0

for
x2 + y2 + z2 � 1.

What this all means physically is very interesting. It means, for example,
that if we solve the problem of the flow for one velocity V1 and a certain cylinder
diameter D1, and then ask about the flow for a different diameter D2 and a
different fluid, the flow will be the same for the velocity V2 which gives the same
Reynolds number—that is, when

R1 = ρ1

η1
V1D1 = R2 = ρ2

η2
V2D2. (41.25)
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For any two situations which have the same Reynolds number, the flows will
“look” the same—in terms of the appropriate scaled x′, y′, z′, and t′. This is
an important proposition because it means that we can determine what the
behavior of the flow of air past an airplane wing will be without having to build
an airplane and try it. We can, instead, make a model and make measurements
using a velocity that gives the same Reynolds number. This is the principle which
allows us to apply the results of “wind-tunnel” measurements on small-scale
airplanes, or “model-basin” results on scale model boats, to the full-scale objects.
Remember, however, that we can only do this provided the compressibility of the
fluid can be neglected. Otherwise, a new quantity enters—the speed of sound.
And different situations will really correspond to each other only if the ratio of V
to the sound speed is also the same. This latter ratio is called the Mach number.
So, for velocities near the speed of sound or above, the flows are the same in two
situations if both the Mach number and the Reynolds number are the same for
both situations.

41-4 Flow past a circular cylinder

Let’s go back to the problem of low-speed (nearly incompressible) flow over the
cylinder. We will give a qualitative description of the flow of a real fluid. There
are many things we might want to know about such a flow—for instance, what is
the drag force on the cylinder? The drag force on a cylinder is plotted in Fig. 41-4
as a function of R—which is proportional to the air speed V if everything else is
held fixed. What is actually plotted is the so-called drag coefficient CD, which is
a dimensionless number equal to the force divided by 1

2ρV
2Dl, where D is the

diameter, l is the length of the cylinder, and ρ is the density of the liquid:

CD = F
1
2ρV

2Dl
.

The coefficient of drag varies in a rather complicated way, giving us a pre-hint that
something rather interesting and complicated is happening in the flow. We will
now describe the nature of flow for the different ranges of the Reynolds number.
First, when the Reynolds number is very small, the flow is quite steady; that
is, the velocity is constant at any place, and the flow goes around the cylinder.
The actual distribution of the flow lines is, however, not like it is in potential
flow. They are solutions of a somewhat different equation. When the velocity
is very low or, what is equivalent, when the viscosity is very high so the stuff is
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Fig. 41-4. The drag coefficient CD of a circular cylinder as a function
of the Reynolds number.

like honey, then the inertial terms are negligible and the flow is described by the
equation

∇2Ω = 0.
This equation was first solved by Stokes. He also solved the same problem for a
sphere. If you have a small sphere moving under such conditions of low Reynolds
number, the force needed to drag it is equal to 6πηaV , where a is the radius of
the sphere and V is its velocity. This is a very useful formula because it tells the
speed at which tiny grains of dirt (or other particles which can be approximated as
spheres) move through a fluid under a given force—as, for instance, in a centrifuge,
or in sedimentation, or diffusion. In the low Reynolds number region—for R less
than 1—the lines of v around a cylinder are as drawn in Fig. 41-5.

If we now increase the fluid speed to get a Reynolds number somewhat greater
than 1, we find that the flow is different. There is a circulation behind the
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Fig. 41-5. Viscous flow (low velocities) around a circular cylinder.

sphere, as shown in Fig. 41-6(b). It is still an open question as to whether there
is always a circulation there even at the smallest Reynolds number or whether
things suddenly change at a certain Reynolds number. It used to be thought
that the circulation grew continuously. But it is now thought that it appears
suddenly, and it is certain that the circulation increases with R. In any case,
there is a different character to the flow for R in the region from about 10 to 30.
There is a pair of vortices behind the cylinder.

The flow changes again by the time we get to a number of 40 or so. There
is suddenly a complete change in the character of the motion. What happens
is that one of the vortices behind the cylinder gets so long that it breaks off
and travels downstream with the fluid. Then the fluid curls around behind the
cylinder and makes a new vortex. The vortices peel off alternately on each side,
so an instantaneous view of the flow looks roughly as sketched in Fig. 41-6(c).
The stream of vortices is called a “Kármán vortex street.” They always appear
for R > 40. We show a photograph of such a flow in Fig. 41-7.

The difference between the two flows in Fig. 41-6(c) and 41-6(b) or 41-6(a)
is almost a complete difference in regime. In Fig. 41-6(a) or (b), the velocity
is constant, whereas in Fig. 41-6(c), the velocity at any point varies with time.
There is no steady solution above R = 40—which we have marked on Fig. 41-4
by a dashed line. For these higher Reynolds numbers, the flow varies with time
but in a regular, cyclic fashion.

We can get a physical idea of how these vortices are produced. We know that
the fluid velocity must be zero at the surface of the cylinder and that it also
increases rapidly away from that surface. Vorticity is created by this large local
variation in fluid velocity. Now when the main stream velocity is low enough,
there is sufficient time for this vorticity to diffuse out of the thin region near the
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(a)
R ≈ 10−2

(b)
R ≈ 20

(c)
R ≈ 100

(d)
R ≈ 104

(e)
R ≈ 106

Fig. 41-6. Flow past a cylinder for various Reynolds numbers.
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Fig. 41-7. Photograph by Ludwig Prandtl of the “vortex street” in the
flow behind a cylinder.

solid surface where it is produced and to grow into a large region of vorticity.
This physical picture should help to prepare us for the next change in the nature
of the flow as the main stream velocity, or R, is increased still more.

As the velocity gets higher and higher, there is less and less time for the
vorticity to diffuse into a larger region of fluid. By the time we reach a Reynolds
number of several hundred, the vorticity begins to fill in a thin band, as shown
in Fig. 41-6(d). In this layer the flow is chaotic and irregular. The region is
called the boundary layer and this irregular flow region works its way farther and
farther upstream as R is increased. In the turbulent region, the velocities are
very irregular and “noisy”; also the flow is no longer two-dimensional but twists
and turns in all three dimensions. There is still a regular alternating motion
superimposed on the turbulent one.

As the Reynolds number is increased further, the turbulent region works its
way forward until it reaches the point where the flow lines leave the cylinder—for
flows somewhat above R = 105. The flow is as shown in Fig. 41-6(e), and we
have what is called a “turbulent boundary layer.” Also, there is a drastic change
in, the drag force; it drops by a large factor, as shown in Fig. 41-4. In this speed
region, the drag force actually decreases with increasing speed. There seems to
be little evidence of periodicity.

What happens for still larger Reynolds numbers? As we increase the speed
further, the wake increases in size again and the drag increases. The latest
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experiments—which go up to R = 107 or so—indicate that a new periodicity
appears in the wake, either because the whole wake is oscillating back and forth
in a gross motion or because some new kind of vortex is occurring together with
an irregular noisy motion. The details are as yet not entirely clear, and are still
being studied experimentally.

41-5 The limit of zero viscosity

We would like to point out that none of the flows we have described are
anything like the potential flow solution we found in the preceding chapter. This
is, at first sight, quite surprising. After all, R is proportional to 1/η. So η going
to zero is equivalent to R going to infinity. And if we take the limit of large R in
Eq. (41.23), we get rid of the right-hand side and get just the equations of the
last chapter. Yet, you would find it hard to believe that the highly turbulent
flow at R = 107 was approaching the smooth flow computed from the equations
of “dry” water. How can it be that as we approach R =∞, the flow described
by Eq. (41.23) gives a completely different solution from the one we obtained
taking η = 0 to start out with? The answer is very interesting. Note that the
right-hand term of Eq. (41.23) has 1/R times a second derivative. It is a higher
derivative than any other derivative in the equation. What happens is that
although the coefficient 1/R is small, there are very rapid variations of Ω in
the space near the surface. These rapid variations compensate for the small
coefficient, and the product does not go to zero with increasing R. The solutions
do not approach the limiting case as the coefficient of ∇2Ω goes to zero.

You may be wondering, “What is the fine-grain turbulence and how does it
maintain itself? How can the vorticity which is made somewhere at the edge of
the cylinder generate so much noise in the background?” The answer is again
interesting. Vorticity has a tendency to amplify itself. If we forget for a moment
about the diffusion of vorticity which causes a loss, the laws of flow say (as we
have seen) that the vortex lines are carried along with the fluid, at the velocity v.
We can imagine a certain number of lines of Ω which are being distorted and
twisted by the complicated flow pattern of v. This pulls the lines closer together
and mixes them all up. Lines that were simple before will get knotted and pulled
close together. They will be longer and tighter together. The strength of the
vorticity will increase and its irregularities—the pluses and minuses—will, in
general, increase. So the magnitude of vorticity in three dimensions increases as
we twist the fluid about.
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You might well ask, “When is the potential flow a satisfactory theory at all?”
In the first place, it is satisfactory outside the turbulent region where the vorticity
has not entered appreciably by diffusion. By making special streamlined bodies,
we can keep the turbulent region as small as possible; the flow around airplane
wings—which are carefully designed—is almost entirely true potential flow.

41-6 Couette flow

It is possible to demonstrate that the complex and shifting character of the
flow past a cylinder is not special but that the great variety of flow possibilities
occurs generally. We have worked out in Section 41-1 a solution for the viscous
flow between two cylinders, and we can compare the results with what actually
happens. If we take two concentric cylinders with an oil in the space between
them and put a fine aluminum powder as a suspension in the oil, the flow is easy
to see. Now if we turn the outer cylinder slowly, nothing unexpected happens;
see Fig. 41-8(a). Alternatively, if we turn the inner cylinder slowly, nothing very
striking occurs. However, if we turn the inner cylinder at a higher rate, we get
a surprise. The fluid breaks into horizontal bands, as indicated in Fig. 41-8(b).
When the outer cylinder rotates at a similar rate with the inner one at rest, no
such effect occurs. How can it be that there is a difference between rotating the
inner or the out cylinder? After all, the flow pattern we derived in Section 41-1
depended only on ωb−ωa. We can get the answer by looking at the cross sections
shown in Fig. 41-9. When the inner layers of the fluid are moving more rapidly

(a) (b) (c) (d)

Fig. 41-8. Liquid flow patterns between two transparent rotating
cylinders.
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than the outer ones, they tend to move outward—the centrifugal force is larger
than the pressure holding them in place. A whole layer cannot move out uniformly
because the outer layers are in the way. It must break into cells and circulate, as
shown in Fig. 41-9(b). It is like the convection currents in a room which has hot
air at the bottom. When the inner cylinder is at rest and the outer cylinder has
a high velocity, the centrifugal forces build up a pressure gradient which keeps
everything in equilibrium—see Fig. 41-9(c) (as in a room with hot air at the top).

Now let’s speed up the inner cylinder. At first, the number of bands increases.
Then suddenly you see the bands become wavy, as in Fig. 41-8(c), and the waves
travel around the cylinder. The speed of these waves is easily measured. For high
rotation speeds they approach 1/3 the speed of the inner cylinder. And no one

(a)

v

CENTRIFUGAL FORCES

(b)

(c)

v

CENTRIFUGAL
FORCES

Fig. 41-9. Why the flow breaks up into bands.
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knows why! There’s a challenge. A simple number like 1/3, and no explanation.
In fact, the whole mechanism of the wave formation is not very well understood;
yet it is steady laminar flow.

If we now start rotating the outer cylinder also—but in the opposite direction—
the flow pattern starts to break up. We get wavy regions alternating with
apparently quiet regions, as sketched in Fig. 41-8(d), making a spiral pattern. In
these “quiet” regions, however, we can see that the flow is really quite irregular;
it is, in fact completely turbulent. The wavy regions also begin to show irregular
turbulent flow. If the cylinders are rotated still more rapidly, the whole flow
becomes chaotically turbulent.

In this simple experiment we see many interesting regimes of flow which are
quite different, and yet which are all contained in our simple equation for various
values of the one parameter R. With our rotating cylinders, we can see many of
the effects which occur in the flow past a cylinder: first, there is a steady flow;
second, a flow sets in which varies in time but in a regular, smooth way; finally,
the flow becomes completely irregular. You have all seen the same effects in the
column of smoke rising from a cigarette in quiet air. There is a smooth steady
column followed by a series of twistings as the stream of smoke begins to break
up, ending finally in an irregular churning cloud of smoke.

The main lesson to be learned from all of this is that a tremendous variety of
behavior is hidden in the simple set of equations in (41.23). All the solutions are
for the same equations, only with different values of R. We have no reason to
think that there are any terms missing from these equations. The only difficulty
is that we do not have the mathematical power today to analyze them except for
very small Reynolds numbers—that is, in the completely viscous case. That we
have written an equation does not remove from the flow of fluids its charm or
mystery or its surprise.

If such variety is possible in a simple equation with only one parameter, how
much more is possible with more complex equations! Perhaps the fundamental
equation that describes the swirling nebulae and the condensing, revolving, and
exploding stars and galaxies is just a simple equation for the hydrodynamic
behavior of nearly pure hydrogen gas. Often, people in some unjustified fear of
physics say you can’t write an equation for life. Well, perhaps we can. As a matter
of fact, we very possibly already have the equation to a sufficient approximation
when we write the equation of quantum mechanics:

Hψ = −~
i

∂ψ

∂t
.
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We have just seen that the complexities of things can so easily and dramatically
escape the simplicity of the equations which describe them. Unaware of the scope
of simple equations, man has often concluded that nothing short of God, not
mere equations, is required to explain the complexities of the world.

We have written the equations of water flow. From experiment, we find a set
of concepts and approximations to use to discuss the solution—vortex streets,
turbulent wakes, boundary layers. When we have similar equations in a less
familiar situation, and one for which we cannot yet experiment, we try to solve
the equations in a primitive, halting, and confused way to try to determine what
new qualitative features may come out, or what new qualitative forms are a
consequence of the equations. Our equations for the sun, for example, as a ball of
hydrogen gas, describe a sun without sunspots, without the rice-grain structure
of the surface, without prominences, without coronas. Yet, all of these are really
in the equations; we just haven’t found the way to get them out.

There are those who are going to be disappointed when no life is found on
other planets. Not I—I want to be reminded and delighted and surprised once
again, through interplanetary exploration, with the infinite variety and novelty
of phenomena that can be generated from such simple principles. The test of
science is its ability to predict. Had you never visited the earth, could you predict
the thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful
sunset? A salutary lesson it will be when we learn of all that goes on on each of
those dead planets—those eight or ten balls, each agglomerated from the same
dust cloud and each obeying exactly the same laws of physics.

The next great era of awakening of human intellect may well produce a method
of understanding the qualitative content of equations. Today we cannot. Today
we cannot see that the water flow equations contain such things as the barber
pole structure of turbulence that one sees between rotating cylinders. Today we
cannot see whether Schrödinger’s equation contains frogs, musical composers, or
morality—or whether it does not. We cannot say whether something beyond it
like God is needed, or not. And so we can all hold strong opinions either way.
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42

Curved Space

42-1 Curved spaces with two dimensions

According to Newton everything attracts everything else with a force inversely
proportional to the square of the distance from it, and objects respond to forces
with accelerations proportional to the forces. They are Newton’s laws of universal
gravitation and of motion. As you know, they account for the motions of balls,
planets, satellites, galaxies, and so forth.

Einstein had a different interpretation of the law of gravitation. According
to him, space and time—which must be put together as space-time—are curved
near heavy masses. And it is the attempt of things to go along “straight lines”
in this curved space-time which makes them move the way they do. Now that is
a complex idea—very complex. It is the idea we want to explain in this chapter.

Our subject has three parts. One involves the effects of gravitation. Another
involves the ideas of space-time which we already studied. The third involves the
idea of curved space-time. We will simplify our subject in the beginning by not
worrying about gravity and by leaving out the time—discussing just curved space.
We will talk later about the other parts, but we will concentrate now on the idea
of curved space—what is meant by curved space, and, more specifically, what
is meant by curved space in this application of Einstein. Now even that much
turns out to be somewhat difficult in three dimensions. So we will first reduce
the problem still further and talk about what is meant by the words “curved
space” in two dimensions.

In order to understand this idea of curved space in two dimensions you really
have to appreciate the limited point of view of the character who lives in such a
space. Suppose we imagine a bug with no eyes who lives on a plane, as shown in
Fig. 42-1. He can move only on the plane, and he has no way of knowing that
there is anyway to discover any “outside world.” (He hasn’t got your imagination.)
We are, of course, going to argue by analogy. We live in a three-dimensional
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Fig. 42-1. A bug on a plane surface.

Fig. 42-2. A bug on a sphere.

30◦

40◦

50◦

Fig. 42-3. A bug on a hot plate.

42-2



world, and we don’t have any imagination about going off our three-dimensional
world in a new direction; so we have to think the thing out by analogy. It is as
though we were bugs living on a plane, and there was a space in another direction.
That’s why we will first work with the bug, remembering that he must live on
his surface and can’t get out.

As another example of a bug living in two dimensions, let’s imagine one who
lives on a sphere. We imagine that he can walk around on the surface of the
sphere, as in Fig. 42-2 but that he can’t look “up,” or “down,” or “out.”

Now we want to consider still a third kind of creature. He is also a bug like
the others, and also lives on a plane, as our first bug did, but this time the plane
is peculiar. The temperature is different at different places. Also, the bug and
any rulers he uses are all made of the same material which expands when it is
heated. Whenever he puts a ruler somewhere to measure something the ruler
expands immediately to the proper length for the temperature at that place.
Wherever he puts any object—himself, a ruler, a triangle, or anything—the thing
stretches itself because of the thermal expansion. Everything is longer in the hot
places than it is in the cold places, and everything has the same coefficient of
expansion. We will call the home of our third bug a “hot plate,” although we
will particularly want to think of a special kind of hot plate that is cold in the
center and gets hotter as we go out toward the edges (Fig. 42-3).

Now we are going to imagine that our bugs begin to study geometry. Although
we imagine that they are blind so that they can’t see any “outside” world, they
can do a lot with their legs and feelers. They can draw lines, and they can make
rulers, and measure off lengths. First, let’s suppose that they start with the
simplest idea in geometry. They learn how to make a straight line—defined as
the shortest line between two points. Our first bug—see Fig. 42-4—learns to
make very good lines. But what happens to the bug on the sphere? He draws
his straight line as the shortest distance—for him—between two points, as in
Fig. 42-5. It may look like a curve to us, but he has no way of getting off the
sphere and finding out that there is “really” a shorter line. He just knows that if
he tries any other path in his world it is always longer than his straight line. So
we will let him have his straight line as the shortest arc between two points. (It
is, of course an arc of a great circle.)

Finally, our third bug—the one in Fig. 42-3—will also draw “straight lines”
that look like curves to us. For instance, the shortest distance between A and B
in Fig. 42-6 would be on a curve like the one shown. Why? Because when his line
curves out toward the warmer parts of his hot plate, the rulers get longer (from
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B

Fig. 42-4. Making a “straight” line on a plane.

A

B

Fig. 42-5. Making a “straight line” on a sphere.

A

B

30◦
40◦
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Fig. 42-6. Making a “straight line” on the hot plate.
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our omniscient point of view) and it takes fewer “yardsticks” laid end-to-end to
get from A to B. So for him the line is straight—he has no way of knowing that
there could be someone out in a strange three-dimensional world who would call
a different line “straight.”

We think you get the idea now that all the rest of the analysis will always be
from the point of view of the creatures on the particular surfaces and not from
our point of view. With that in mind let’s see what the rest of their geometries
looks like. Let’s assume that the bugs have all learned how to make two lines
intersect at right angles. (You can figure out how they could do it.) Then our
first bug (the one on the normal plane) finds an interesting fact. If he starts
at the point A and makes a line 100 inches long, then makes a right angle and
marks off another 100 inches, then makes another right angle and goes another
100 inches, then makes a third right angle and a fourth line 100 inches long, he
ends up right at the starting point as shown in Fig. 42-7(a). It is a property of
his world—one of the facts of his “geometry.”

Then he discovers another interesting thing. If he makes a triangle—a figure
with three straight lines—the sum of the angles is equal to 180◦, that is, to the
sum of two right angles. See Fig. 42-7(b).

Then he invents the circle. What’s a circle? A circle is made this way: You
rush off on straight lines in many many directions from a single point, and lay
out a lot of dots that are all the same distance from that point. See Fig. 42-7(c).
(We have to be careful how we define these things because we’ve got to be able
to make the analogs for the other fellows.) Of course, its equivalent to the curve
you can make by swinging a ruler around a point. Anyway, our bug learns how
to make circles. Then one day he thinks of measuring the distance around a
circle. He measures several circles and finds a neat relationship: The distance
around is always the same number times the radius r (which is, of course, the
distance from the center out to the curve). The circumference and the radius
always have the same ratio—approximately 6.283—independent of the size of
the circle.

Now let’s see what our other bugs have been finding out about their geometries.
First, what happens to the bug on the sphere when he tries to make a “square”?
If he follows the prescription we gave above, he would probably think that the
result was hardly worth the trouble. He gets a figure like the one shown in
Fig. 42-8. His endpoint B isn’t on top of the starting point A. It doesn’t work
out to a closed figure at all. Get a sphere and try it. A similar thing would
happen to our friend on the hot plate. If he lays out four straight lines of equal
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Fig. 42-7. A square, triangle, and circle in flat space.
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A

Fig. 42-8. Trying to make a “square” on a sphere.

A

30◦
40◦

50◦

Fig. 42-9. Trying to make a “square” on the hot plate.

90◦

90◦

90◦

Fig. 42-10. On a sphere a “triangle” can have three 90◦ angles.
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length—as measured with his expanding rulers—joined by right angles he gets a
picture like the one in Fig. 42-9.

Now suppose that our bugs had each had their own Euclid who had told them
what geometry “should” be like, and that they had checked him out roughly
by making crude measurements on a small scale. Then as they tried to make
accurate squares on a larger scale they would discover that something was wrong.
The point is, that just by geometrical measurements they would discover that
something was the matter with their space. We define a curved space to be a
space in which the geometry is not what we expect for a plane. The geometry
of the bugs on the sphere or on the hot plate is the geometry of a curved space.
The rules of Euclidean geometry fail. And it isn’t necessary to be able to lift
yourself out of the plane in order to find out that the world that you live in is
curved. It isn’t necessary to circumnavigate the globe in order to find out that it
is a ball. You can find out that you live on a ball by laying out a square. If the
square is very small you will need a lot of accuracy, but if the square is large the
measurement can be done more crudely.

Let’s take the case of a triangle on a plane. The sum of the angles is 180 degrees.
Our friend on the sphere can find triangles that are very peculiar. He can, for
example, find triangles which have three right angles. Yes indeed! One is shown
in Fig. 42-10. Suppose our bug starts at the north pole and makes a straight
line all the way down to the equator. Then he makes a right angle and another
perfect straight line the same length. Then he does it again. For the very special
length he has chosen he gets right back to his starting point, and also meets the
first line with a right angle. So there is no doubt that for him this triangle has
three right angles, or 270 degrees in the sum. It turns out that for him the sum of
the angles of the triangle is always greater than 180 degrees. In fact, the excess
(for the special case shown, the extra 90 degrees) is proportional to how much
area the triangle has. If a triangle on a sphere is very small, its angles add up
to very nearly 180 degrees, only a little bit over. As the triangle gets bigger the
discrepancy goes up. The bugs on the hot plate would discover similar difficulties
with their triangles.

Let’s look next at what our other bugs find out about circles. They make
circles and measure their circumferences. For example, the bug on the sphere
might make a circle like the one shown in Fig. 42-11. And he would discover that
the circumference is less than 2π times the radius. (You can see that because
from the wisdom of our three-dimensional view it is obvious that what he calls
the “radius” is a curve which is longer than the true radius of the circle.) Suppose
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rpred
rmeas

Fig. 42-11. Making a circle on a sphere.

that the bug on the sphere had read Euclid, and decided to predict a radius by
dividing the circumference C by 2π, taking

rpred = C

2π . (42.1)

Then he would find that the measured radius was larger than the predicted radius.
Pursuing the subject, he might define the difference to be the “excess radius,”
and write

rmeas − rpred = rexcess, (42.2)
and study how the excess radius effect depended on the size of the circle.

Our bug on the hot plate would discover a similar phenomenon. Suppose he
was to draw a circle centered at the cold spot on the plate as in Fig. 42-12. If
we were to watch him as he makes the circle we would notice that his rulers are
short near the center and get longer as they are moved outward—although the
bug doesn’t know it, of course. When he measures the circumference the ruler is
long all the time, so he, too, finds out that the measured radius is longer than

30◦
40◦
50◦

Fig. 42-12. Making a circle on the hot plate.
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the predicted radius, C/2π. The hot-plate bug also finds an “excess radius effect.”
And again the size of the effect depends on the radius of the circle.

We will define a “curved space” as one in which these types of geometrical
errors occur: The sum of the angles of a triangle is different from 180 degrees;
the circumference of a circle divided by 2π is not equal to the radius; the rule for
making a square doesn’t give a closed figure. You can think of others.

We have given two different examples of curved space: the sphere and the hot
plate. But it is interesting that if we choose the right temperature variation as a
function of distance on the hot plate, the two geometries will be exactly the same.
It is rather amusing. We can make the bug on the hot plate get exactly the same
answers as the bug on the ball. For those who like geometry and geometrical
problems we’ll tell you how it can be done. If you assume that the length of the
rulers (as determined by the temperature) goes in proportion to one plus some
constant times the square of the distance away from the origin, then you will
find that the geometry of that hot plate is exactly the same in all details* as the
geometry of the sphere.

There are, of course, other kinds of geometry. We could ask about the geometry
of a bug who lived on a pear, namely something which has a sharper curvature in
one place and a weaker curvature in the other place, so that the excess in angles
in triangles is more severe when he makes little triangles in one part of his world
than when he makes them in another part. In other words, the curvature of a
space can vary from place to place. That’s just a generalization of the idea. It
can also be imitated by a suitable distribution of temperature on a hot plate.

We may also point out that the results could come out with the opposite
kind of discrepancies. You could find out, for example, that all triangles when
they are made too large have the sum of their angles less than 180 degrees. That
may sound impossible, but it isn’t at all. First of all, we could have a hot plate
with the temperature decreasing with the distance from the center. Then all
the effects would be reversed. But we can also do it purely geometrically by
looking at the two-dimensional geometry of the surface of a saddle. Imagine a
saddle-shaped surface like the one sketched in Fig. 42-13. Now draw a “circle”
on the surface, defined as the locus of all points the same distance from a center.
This circle is a curve that oscillates up and down with a scallop effect. So its
circumference is larger than you would expect from calculating 2πrmeas. So C/2π
is now greater than rmeas. The “excess radius” would be negative.

* Except for the one point at infinity.
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Fig. 42-13. Making a “circle” on a saddle-shaped surface.

Spheres and pears and such are all surfaces of positive curvatures; and the
others are called surfaces of negative curvature. In general, a two-dimensional
world will have a curvature which varies from place to place and may be positive
in some places and negative in other places. In general, we mean by a curved
space simply one in which the rules of Euclidean geometry break down with one
sign of discrepancy or the other. The amount of curvature—defined, say, by the
excess radius—may vary from place to place.

We might point out that, from our definition of curvature, a cylinder is, surpris-
ingly enough, not curved. If a bug lived on a cylinder, as shown in Fig. 42-14, he
would find out that triangles, squares, and circles would all have the same behavior
they have on a plane. This is easy to see, by just thinking about how all the figures
will look if the cylinder is unrolled onto a plane. Then all the geometrical figures
can be made to correspond exactly to the way they are in a plane. So there is no
way for a bug living on a cylinder (assuming that he doesn’t go all the way around,
but just makes local measurements) to discover that his space is curved. In our
technical sense, then, we consider that his space is not curved. What we want to
talk about is more precisely called intrinsic curvature; that is, a curvature which
can be found by measurements only in a local region. (A cylinder has no intrinsic
curvature.) This was the sense intended by Einstein when he said that our space
is curved. But we as yet only have defined a curved space in two dimensions; we
must go onward to see what the idea might mean in three dimensions.

42-2 Curvature in three-dimensional space

We live in three-dimensional space and we are going to consider the idea that
three-dimensional space is curved. You say, “But how can you imagine it being
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Fig. 42-14. A two-dimensional space with zero intrinsic curvature.

bent in any direction?” Well, we can’t imagine space being bent in any direction
because our imagination isn’t good enough. (Perhaps it’s just as well that we
can’t imagine too much, so that we don’t get too free of the real world.) But we
can still define a curvature without getting out of our three-dimensional world.
All we have been talking about in two dimensions was simply an exercise to show
how we could get a definition of curvature which didn’t require that we be able
to “look in” from the outside.

We can determine whether our world is curved or not in a way quite anal-
ogous to the one used by the gentlemen who live on the sphere and on the
hot plate. We may not be able to distinguish between two such cases but we
certainly can distinguish those cases from the flat space, the ordinary plane.
How? Easy enough: We lay out a triangle and measure the angles. Or we
make a great big circle and measure the circumference and the radius. Or we
try to lay out some accurate squares, or try to make a cube. In each case
we test whether the laws of geometry work. If they don’t work, we say that
our space is curved. If we lay out a big triangle and the sum of its angles
exceeds 180 degrees, we can say our space is curved. Or if the measured radius
of a circle is not equal to its circumference over 2π, we can say our space is
curved.
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Fig. 42-15. The excess radius may be different for circles with different
orientations.

You will notice that in three dimensions the situation can be much more
complicated than in two. At any one place in two dimensions there is a certain
amount of curvature. But in three dimensions there can be several components
to the curvature. If we lay out a triangle in some plane, we may get a different
answer than if we orient the plane of the triangle in a different way. Or take
the example of a circle. Suppose we draw a circle and measure the radius and
it doesn’t check with C/2π so that there is some excess radius. Now we draw
another circle at right angles—as in Fig. 42-15. There’s no need for the excess to
be exactly the same for both circles. In fact, there might be a positive excess for
a circle in one plane, and a defect (negative excess) for a circle in the other plane.

Perhaps you are thinking of a better idea: Can’t we get around all of these
components by using a sphere in three dimensions? We can specify a sphere
by taking all the points that are the same distance from a given point in space.
Then we can measure the surface area by laying out a fine scale rectangular grid
on the surface of the sphere and adding up all the bits of area. According to
Euclid the total area A is supposed to be 4π times the square of the radius; so we
can define a “predicted radius” as

√
A/4π. But we can also measure the radius

directly by digging a hole to the center and measuring the distance. Again, we
can take the measured radius minus the predicted radius and call the difference
the radius excess,

rexcess = rmeas −
(
measured area

4π

)1/2
,

which would be a perfectly satisfactory measure of the curvature. It has the great
advantage that it doesn’t depend upon how we orient a triangle or a circle.
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But the excess radius of a sphere also has a disadvantage; it doesn’t completely
characterize the space. It gives what is called the mean curvature of the three-
dimensional world, since there is an averaging effect over the various curvatures.
Since it is an average, however, it does not solve completely the problem of defining
the geometry. If you know only this number you can’t predict all properties of
the geometry of the space, because you can’t tell what would happen with circles
of different orientation. The complete definition requires the specification of six
“curvature numbers” at each point. Of course the mathematicians know how to
write all those numbers. You can read someday in a mathematics book how to
write them all in a high-class and elegant form, but it is first a good idea to know
in a rough way what it is that you are trying to write about. For most of our
purposes the average curvature will be enough.*

42-3 Our space is curved

Now comes the main question. Is it true? That is, is the actual physical
three-dimensional space we live in curved? Once we have enough imagination to
realize the possibility that space might be curved, the human mind naturally gets
curious about whether the real world is curved or not. People have made direct
geometrical measurements to try to find out, and haven’t found any deviations.
On the other hand, by arguments about gravitation, Einstein discovered that
space is curved, and we’d like to tell you what Einstein’s law is for the amount
of curvature, and also tell you a little bit about how he found out about it.

Einstein said that space is curved and that matter is the source of the curvature.
(Matter is also the source of gravitation, so gravity is related to the curvature—
but that will come later in the chapter.) Let us suppose, to make things a little
easier, that the matter is distributed continuously with some density, which may
vary, however, as much as you want from place to place.† The rule that Einstein
gave for the curvature is the following: If there is a region of space with matter
in it and we take a sphere small enough that the density ρ of matter inside it is

* We should mention one additional point for completeness. If you want to carry the
hot-plate model of curved space over into three dimensions you must imagine that the length
of the ruler depends not only on where you put it, but also on which orientation the ruler
has when it is laid down. It is a generalization of the simple case in which the length of the
ruler depends on where it is, but is the same if set north-south, or east-west, or up-down. This
generalization is needed if you want to represent a three-dimensional space with any arbitrary
geometry with such a model, although it happens not to be necessary for two dimensions.

† Nobody—not even Einstein—knows how to do it if mass comes concentrated at points.
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effectively constant, then the radius excess for the sphere is proportional to the
mass inside the sphere. Using the definition of excess radius, we have

Radius excess = rmeas −
√
A

4π = G

3c2 ·M. (42.3)

Here, G is the gravitational constant (of Newton’s theory), c is the velocity of
light, and M = 4πρr3/3 is the mass of the matter inside the sphere. This is
Einstein’s law for the mean curvature of space.

Suppose we take the earth as an example and forget that the density varies
from point to point—so we won’t have to do any integrals. Suppose we were
to measure the surface of the earth very carefully, and then dig a hole to the
center and measure the radius. From the surface area we could calculate the
predicted radius we would get from setting the area equal to 4πr2. When we
compared the predicted radius with the actual radius, we would find that the
actual radius exceeded the predicted radius by the amount given in Eq. (42.3).
The constant G/3c2 is about 2.5×10−29 cm per gram, so for each gram of material
the measured radius is off by 2.5× 10−29 cm. Putting in the mass of the earth,
which is about 6× 1027 grams, it turns out that the earth has 1.5 millimeters
more radius than it should have for its surface area.* Doing the same calculation
for the sun, you find that the sun’s radius is one-half a kilometer too long.

You should note that the law says that the average curvature above the surface
area of the earth is zero. But that does not mean that all the components of the
curvature are zero. There may still be—and, in fact, there is—some curvature
above the earth. For a circle in a plane there will be an excess radius of one
sign for some orientations and of the opposite sign for other orientations. It just
turns out that the average over a sphere is zero when there is no mass inside it.
Incidentally, it turns out that there is a relation between the various components
of the curvature and the variation of the average curvature from place to place.
So if you know the average curvature everywhere, you can figure out the details
of the curvature components at each place. The average curvature inside the
earth varies with altitude, and this means that some curvature components are
nonzero both inside the earth and outside. It is that curvature that we see as a
gravitational force.

Suppose we have a bug on a plane, and suppose that the “plane” has little
pimples in the surface. Wherever there is a pimple the bug would conclude that

* Approximately, because the density is not independent of radius as we are assuming.
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his space had little local regions of curvature. We have the same thing in three
dimensions. Wherever there is a lump of matter, our three-dimensional space
has a local curvature—a kind of three-dimensional pimple.

If we make a lot of bumps on a plane there might be an overall curvature
besides all the pimples—the surface might become like a ball. It would be
interesting to know whether our space has a net average curvature as well as
the local pimples due to the lumps of matter like the earth and the sun. The
astrophysicists have been trying to answer that question by making measurements
of galaxies at very large distances. For example, if the number of galaxies we see
in a spherical shell at a large distance is different from what we would expect from
our knowledge of the radius of the shell, we would have a measure of the excess
radius of a tremendously large sphere. From such measurements it is hoped to
find out whether our whole universe is flat on the average, or round—whether
it is “closed,” like a sphere, or “open” like a plane. You may have heard about
the debates that are going on about this subject. There are debates because the
astronomical measurements are still completely inconclusive; the experimental
data are not precise enough to give a definite answer. Unfortunately, we don’t
have the slightest idea about the overall curvature of our universe on a large
scale.

42-4 Geometry in space-time

Now we have to talk about time. As you know from the special theory of
relativity, measurements of space and measurements of time are interrelated. And
it would be kind of crazy to have something happening to the space, without the
time being involved in the same thing. You will remember that the measurement
of time depends on the speed at which you move. For instance, if we watch a guy
going by in a spaceship we see that things happen more slowly for him than for
us. Let’s say he takes off on a trip and returns in 100 seconds flat by our watches;
his watch might say that he had been gone for only 95 seconds. In comparison
with ours, his watch—and all other processes, like his heart beat—have been
running slow.

Now let’s consider an interesting problem. Suppose you are the one in the
spaceship. We ask you to start off at a given signal and return to your starting
place just in time to catch a later signal—at, say, exactly 100 seconds later
according to our clock. And you are also asked to make the trip in such a way
that your watch will show the longest possible elapsed time. How should you
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move? You should stand still. If you move at all your watch will read less than
100 sec when you get back.

Suppose, however, we change the problem a little. Suppose we ask you to
start at point A on a given signal and go to point B (both fixed relative to us),
and to do it in such a way that you arrive back just at the time of a second
signal (say 100 seconds later according to our fixed clock). Again you are asked
to make the trip in the way that lets you arrive with the latest possible reading
on your watch. How would you do it? For which path and schedule will your
watch show the greatest elapsed time when you arrive? The answer is that you
will spend the longest time from your point of view if you make the trip by going
at a uniform speed along a straight line. Reason: Any extra motions and any
extra-high speeds will make your clock go slower. (Since the time deviations
depend on the square of the velocity, what you lose by going extra fast at one
place you can never make up by going extra slowly in another place.)

The point of all this is that we can use the idea to define “a straight line” in
space-time. The analog of a straight line in space is for space-time a motion at
uniform velocity in a constant direction.

The curve of shortest distance in space corresponds in space-time not to the
path of shortest time, but to the one of longest time, because of the funny things
that happen to signs of the t-terms in relativity. “Straight-line” motion—the
analog of “uniform velocity along a straight line”—is then that motion which
takes a watch from one place at one time to another place at another time in the
way that gives the longest time reading for the watch. This will be our definition
for the analog of a straight line in space-time.

42-5 Gravity and the principle of equivalence

Now we are ready to discuss the laws of gravitation. Einstein was trying
to generate a theory of gravitation that would fit with the relativity theory
that he had developed earlier. He was struggling along until he latched onto
one important principle which guided him into getting the correct laws. That
principle is based on the idea that when a thing is falling freely everything inside
it seems weightless. For example, a satellite in orbit is falling freely in the earth’s
gravity, and an astronaut in it feels weightless. This idea, when stated with
greater precision, is called Einstein’s principle of equivalence. It depends on the
fact that all objects fall with exactly the same acceleration no matter what their
mass, or what they are made of. If we have a spaceship that is “coasting”—so
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it’s in a free fall—and there is a man inside, then the laws governing the fall of
the man and the ship are the same. So if he puts himself in the middle of the
ship he will stay there. He doesn’t fall with respect to the ship. That’s what we
mean when we say he is “weightless.”

Now suppose you are in a rocket ship which is accelerating. Accelerating with
respect to what? Let’s just say that its engines are on and generating a thrust so
that it is not coasting in a free fall. Also imagine that you are way out in empty
space so that there are practically no gravitational forces on the ship. If the ship
is accelerating with “1 g” you will be able to stand on the “floor” and will feel
your normal weight. Also if you let go of a ball, it will “fall” toward the floor.
Why? Because the ship is accelerating “upward,” but the ball has no forces on
it, so it will not accelerate; it will get left behind. Inside the ship the ball will
appear to have a downward acceleration of “1 g.”

Now let’s compare that with the situation in a spaceship sitting at rest on
the surface of the earth. Everything is the same! You would be pressed toward
the floor, a ball would fall with an acceleration of 1 g, and so on. In fact, how
could you tell inside a space ship whether you are sitting on the earth or are
accelerating in free space? According to Einstein’s equivalence principle there is
no way to tell if you only make measurements of what happens to things inside!

To be strictly correct, that is true only for one point inside the ship. The
gravitational field of the earth is not precisely uniform, so a freely falling ball has
a slightly different acceleration at different places—the direction changes and the
magnitude changes. But if we imagine a strictly uniform gravitational field, it is
completely imitated in every respect by a system with a constant acceleration.
That is the basis of the principle of equivalence.

42-6 The speed of clocks in a gravitational field

Now we want to use the principle of equivalence for figuring out a strange thing
that happens in a gravitational field. We’ll show you something that happens
in a rocket ship which you probably wouldn’t have expected to happen in a
gravitational field. Suppose we put a clock at the “head” of the rocket ship—that
is, at the “front” end—and we put another identical clock at the “tail,” as in
Fig. 42-16. Let’s call the two clocks A and B. If we compare these two clocks
when the ship is accelerating, the clock at the head seems to run fast relative
to the one at the tail. To see that, imagine that the front clock emits a flash
of light each second, and that you are sitting at the tail comparing the arrival
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Fig. 42-16. An accelerating rocket ship with two clocks.

of the light flashes with the ticks of clock B. Let’s say that the rocket is in the
position a of Fig. 42-17 when clock A emits a flash, and at the position b when
the flash arrives at clock B. Later on the ship will be at position c when the
clock A emits its next flash, and at position d when you see it arrive at clock B.

The first flash travels the distance L1 and the second flash travels the shorter
distance L2. It is a shorter distance because the ship is accelerating and has a
higher speed at the time of the second flash. You can see, then, that if the two
flashes were emitted from clock A one second apart, they would arrive at clock B
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Fig. 42-17. A clock at the head of an accelerating rocket ship appears
to run faster than a clock at the tail.

with a separation somewhat less than one second, since the second flash doesn’t
spend as much time on the way. The same thing will also happen for all the later
flashes. So if you were sitting in the tail you would conclude that clock A was
running faster than clock B. If you were to do the same thing in reverse—letting
clock B emit light and observing it at clock A—you would conclude that B was
running slower than A. Everything fits together and there is nothing mysterious
about it all.
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But now let’s think of the rocket ship at rest in the earth’s gravity. The same
thing happens. If you sit on the floor with one clock and watch another one which
is sitting on a high shelf, it will appear to run faster than the one on the floor!
You say, “But that is wrong. The times should be the same. With no acceleration
there’s no reason for the clocks to appear to be out of step.” But they must if
the principle of equivalence is right. And Einstein insisted that the principle was
right, and went courageously and correctly ahead. He proposed that clocks at
different places in a gravitational field must appear to run at different speeds.
But if one always appears to be running at a different speed with respect to the
other, then so far as the first is concerned the other is running at a different rate.

But now you see we have the analog for clocks of the hot ruler we were talking
about earlier, when we had the bug on a hot plate. We imagined that rulers and
bugs and everything changed lengths in the same way at various temperatures so
they could never tell that their measuring sticks were changing as they moved
around on the hot plate. It’s the same with clocks in a gravitational field. Every
clock we put at a higher level is seen to go faster. Heartbeats go faster, all
processes run faster.

If they didn’t you would be able to tell the difference between a gravitational
field and an accelerating reference system. The idea that time can vary from place
to place is a difficult one, but it is the idea Einstein used, and it is correct—believe
it or not.

Using the principle of equivalence we can figure out how much the speed
of a clock changes with height in a gravitational field. We just work out the
apparent discrepancy between the two clocks in the accelerating rocket ship. The
easiest way to do this is to use the result we found in Chapter 34 of Vol. I for
the Doppler effect. There, we found—see Eq. (34.14)—that if v is the relative
velocity of a source and a receiver, the received frequency ω is related to the
emitted frequency ω0 by

ω = ω0
1 + v/c√
1− v2/c2

. (42.4)

Now if we think of the accelerating rocket ship in Fig. 42-17 the emitter and
receiver are moving with equal velocities at any one instant. But in the time that
it takes the light signals to go from clock A to clock B the ship has accelerated. It
has, in fact, picked up the additional velocity gt, where g is the acceleration and
t is time it takes light to travel the distance H from A to B. This time is very
nearly H/c. So when the signals arrive at B, the ship has increased its velocity
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by gH/c. The receiver always has this velocity with respect to the emitter at the
instant the signal left it. So this is the velocity we should use in the Doppler
shift formula, Eq. (42.4). Assuming that the acceleration and the length of the
ship are small enough that this velocity is much smaller than c, we can neglect
the term in v2/c2. We have that

ω = ω0

(
1 + gH

c2

)
. (42.5)

So for the two clocks in the spaceship we have the relation

(Rate at the receiver) = (Rate of emission)
(

1 + gH

c2

)
, (42.6)

where H is the height of the emitter above the receiver.
From the equivalence principle the same result must hold for two clocks

separated by the height H in a gravitational field with the free fall acceleration g.
This is such an important idea we would like to demonstrate that it also

follows from another law of physics—from the conservation of energy. We know
that the gravitational force on an object is proportional to its mass M , which is
related to its total internal energy E by M = E/c2. For instance, the masses of
nuclei determined from the energies of nuclear reactions which transmute one
nucleus into another agree with the masses obtained from atomic weights.

Now think of an atom which has a lowest energy state of total energy E0 and
a higher energy state E1, and which can go from the state E1 to the state E0 by
emitting light. The frequency ω of the light will be given by

~ω = E1 − E0. (42.7)

Now suppose we have such an atom in the state E1 sitting on the floor, and
we carry it from the floor to the height H. To do that we must do some work in
carrying the mass m1 = E1/c

2 up against the gravitational force. The amount
of work done is

E1

c2
gH. (42.8)

Then we let the atom emit a photon and go into the lower energy state E0.
Afterward we carry the atom back to the floor. On the return trip the mass
is E0/c

2; we get back the energy
E0

c2
gH, (42.9)
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so we have done a net amount of work equal to

∆U = E1 − E0

c2
gH. (42.10)

When the atom emitted the photon it gave up the energy E1 − E0. Now
suppose that the photon happened to go down to the floor and be absorbed.
How much energy would it deliver there? You might at first think that it would
deliver just the energy E1 − E0. But that can’t be right if energy is conserved,
as you can see from the following argument. We started with the energy E1 at
the floor. When we finish, the energy at the floor level is the energy E0 of the
atom in its lower state plus the energy Eph received from the photon. In the
meantime we have had to supply the additional energy ∆U of Eq. (42.10). If
energy is conserved, the energy we end up with at the floor must be greater than
we started with by just the work we have done. Namely, we must have that

Eph + E0 = E1 + ∆U,
or (42.11)

Eph = (E1 − E0) + ∆U.

It must be that the photon does not arrive at the floor with just the energy E1−E0
it started with, but with a little more energy. Otherwise some energy would have
been lost. If we substitute in Eq. (42.11) the ∆U we got in Eq. (42.10) we get
that the photon arrives at the floor with the energy

Eph = (E1 − E0)
(

1 + gH

c2

)
. (42.12)

But a photon of energy Eph has the frequency ω = Eph/~. Calling the frequency
of the emitted photon ω0—which is by Eq. (42.7) equal to (E1 − E0)/~—our
result in Eq. (42.12) gives again the relation of (42.5) between the frequency of
the photon when it is absorbed on the floor and the frequency with which it was
emitted.

The same result can be obtained in still another way. A photon of frequency ω0
has the energy E0 = ~ω0. Since the energy E0 has the gravitational mass E0/c

2

the photon has a mass (not rest mass) ~ω0/c
2, and is “attracted” by the earth. In

falling the distance H it will gain an additional energy (~ω0/c
2)gH, so it arrives

with the energy
E = ~ω0

(
1 + gH

c2

)
.
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But its frequency after the fall is E/~, giving again the result in Eq. (42.5). Our
ideas about relativity, quantum physics, and energy conservation all fit together
only if Einstein’s predictions about clocks in a gravitational field are right. The
frequency changes we are talking about are normally very small. For instance, for
an altitude difference of 20 meters at the earth’s surface the frequency difference
is only about two parts in 1015. However, just such a change has recently been
found experimentally using the Mössbauer effect.* Einstein was perfectly correct.

42-7 The curvature of space-time

Now we want to relate what we have just been talking about to the idea of
curved space-time. We have already pointed out that if the time goes at different
rates in different places, it is analogous to the curved space of the hot plate. But
it is more than an analogy; it means that space-time is curved. Let’s try to do
some geometry in space-time. That may at first sound peculiar, but we have
often made diagrams of space-time with distance plotted along one axis and time
along the other. Suppose we try to make a rectangle in space-time. We begin by
plotting a graph of height H versus t as in Fig. 42-18(a). To make the base of
our rectangle we take an object which is at rest at the height H1 and follow its
world line for 100 seconds. We get the line BD in part (b) of the figure which is
parallel to the t-axis. Now let’s take another object which is 100 feet above the
first one at t = 0. It starts at the point A in Fig. 42-18(c). Now we follow its
world line for 100 seconds as measured by a clock at A. The object goes from A
to C, as shown in part (d) of the figure. But notice that since time goes at a
different rate at the two heights—we are assuming that there is a gravitational
field—the two points C and D are not simultaneous. If we try to complete the
square by drawing a line to the point C ′ which is 100 feet above D at the same
time, as in Fig. 42-18(e), the pieces don’t fit. And that’s what we mean when we
say that space-time is curved.

42-8 Motion in curved space-time

Let’s consider an interesting little puzzle. We have two identical clocks, A
and B, sitting together on the surface of the earth as in Fig. 42-19. Now we lift
clock A to some height H, hold it there awhile, and return it to the ground so
that it arrives at just the instant when clock B has advanced by 100 seconds.

* R. V. Pound and G. A. Rebka, Jr., Physical Review Letters Vol. 4, p. 337 (1960).
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Fig. 42-18. Trying to make a rectangle in space-time.

Then clock A will read something like 107 seconds, because it was running faster
when it was up in the air. Now here is the puzzle. How should we move clock A
so that it reads the latest possible time—always assuming that it returns when
B reads 100 seconds? You say, “That’s easy. Just take A as high as you can.
Then it will run as fast as possible, and be the latest when you return.” Wrong.
You forgot something—we’ve only got 100 seconds to go up and back. If we go
very high, we have to go very fast to get there and back in 100 seconds. And
you mustn’t forget the effect of special relativity which causes moving clocks to
slow down by the factor

√
1− v2/c2. This relativity effect works in the direction

of making clock A read less time than clock B. You see that we have a kind of
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Fig. 42-19. In a uniform gravitational field the trajectory with the
maximum proper time for a fixed elapsed time is a parabola.

game. If we stand still with clock A we get 100 seconds. If we go up slowly to a
small height and come down slowly we can get a little more than 100 seconds. If
we go a little higher, maybe we can gain a little more. But if we go too high we
have to move fast to get there, and we may slow down the clock enough that we
end up with less than 100 seconds. What program of height versus time—how
high to go and with what speed to get there, carefully adjusted to bring us back
to clock B when it has increased by 100 seconds—will give us the largest possible
time reading on clock A?

Answer: Find out how fast you have to throw a ball up into the air so that
it will fall back to earth in exactly 100 seconds. The ball’s motion—rising fast,
slowing down, stopping, and coming back down—is exactly the right motion to
make the time the maximum on a wrist watch strapped to the ball.

Now consider a slightly different game. We have two points A and B both
on the earth’s surface at some distance from one another. We play the same
game that we did earlier to find what we call the straight line. We ask how
we should go from A to B so that the time on our moving watch will be the
longest—assuming we start at A on a given signal and arrive at B on another
signal at B which we will say is 100 seconds later by a fixed clock. Now you say,
“Well we found out before that the thing to do is to coast along a straight line at
a uniform speed chosen so that we arrive at B exactly 100 seconds later. If we
don’t go along a straight line it takes more speed, and our watch is slowed down.”
But wait! That was before we took gravity into account. Isn’t it better to curve
upward a little bit and then come down? Then during part of the time we are
higher up and our watch will run a little faster? It is, indeed. If you solve the
mathematical problem of adjusting the curve of the motion so that the elapsed
time of the moving watch is the most it can possibly be, you will find that the
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motion is a parabola—the same curve followed by something that moves on a
free ballistic path in the gravitational field, as in Fig. 42-19. Therefore the law
of motion in a gravitational field can also be stated: An object always moves
from one place to another so that a clock carried on it gives a longer time than it
would on any other possible trajectory—with, of course, the same starting and
finishing conditions. The time measured by a moving clock is often called its
“proper time.” In free fall, the trajectory makes the proper time of an object a
maximum.

Let’s see how this all works out. We begin with Eq. (42.5) which says that
the excess rate of the moving watch is

ω0gH

c2
. (42.13)

Besides this, we have to remember that there is a correction of the opposite sign
for the speed. For this effect we know that

ω = ω0
√

1− v2/c2.

Although the principle is valid for any speed, we take an example in which the
speeds are always much less than c. Then we can write this equation as

ω = ω0(1− v2/2c2),

and the defect in the rate of our clock is

− ω0
v2

2c2 . (42.14)

Combining the two terms in (42.13) and (42.14) we have that

∆ω = ω0

c2

(
gH − v2

2

)
. (42.15)

Such a frequency shift of our moving clock means that if we measure a time dt
on a fixed clock, the moving clock will register the time

dt

[
1 +

(
gH

c2
− v2

2c2

)]
, (42.16)
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The total time excess over the trajectory is the integral of the extra term with
respect to time, namely

1
c2

∫ (
gH − v2

2

)
dt, (42.17)

which is supposed to be a maximum.
The term gH is just the gravitational potential φ. Suppose we multiply the

whole thing by a constant factor −mc2, where m is the mass of the object. The
constant won’t change the condition for the maximum, but the minus sign will
just change the maximum to a minimum. Equation (42.16) then says that the
object will move so that∫ (

mv2

2 −mφ
)
dt = a minimum. (42.18)

But now the integrand is just the difference of the kinetic and potential energies.
And if you look in Chapter 19 of Volume II you will see that when we discussed
the principle of least action we showed that Newton’s laws for an object in any
potential could be written exactly in the form of Eq. (42.18).

42-9 Einstein’s theory of gravitation

Einstein’s form of the equations of motion—that the proper time should be
a maximum in curved space-time—gives the same results as Newton’s laws for
low velocities. As he was circling around the earth, Gordon Cooper’s watch was
reading later than it would have in any other path you could have imagined for
his satellite.*

So the law of gravitation can be stated in terms of the ideas of the geometry of
space-time in this remarkable way. The particles always take the longest proper
time—in space-time a quantity analogous to the “shortest distance.” That’s the
law of motion in a gravitational field. The great advantage of putting it this way
is that the law doesn’t depend on any coordinates, or any other way of defining
the situation.

Now let’s summarize what we have done. We have given you two laws for
gravity:

* Strictly speaking it is only a local maximum. We should have said that the proper time is
larger than for any nearby path. For example, the proper time on an elliptical orbit around the
earth need not be longer than on a ballistic path of an object which is shot to a great height
and falls back down.
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(1) How the geometry of space-time changes when matter is present—namely,
that the curvature expressed in terms of the excess radius is proportional
to the mass inside a sphere, Eq. (42.3).

(2) How objects move if there are only gravitational forces—namely, that
objects move so that their proper time between two end conditions is a
maximum.

Those two laws correspond to similar pairs of laws we have seen earlier. We
originally described motion in a gravitational field in terms of Newton’s inverse
square law of gravitation and his laws of motion. Now laws (1) and (2) take
their places. Our new pair of laws also correspond to what we have seen in
electrodynamics. There we had our law—the set of Maxwell’s equations—which
determines the fields produced by charges. It tells how the character of “space”
is changed by the presence of charged matter, which is what law (1) does for
gravity. In addition, we had a law about how particles move in the given
fields—d(mv)/dt = q(E + v ×B). This, for gravity, is done by law (2).

In the laws (1) and (2) you have a precise statement of Einstein’s theory
of gravitation—although you will usually find it stated in a more complicated
mathematical form. We should, however, make one further addition. Just as time
scales change from place to place in a gravitational field, so do also the length
scales. Rulers change lengths as you move around. It is impossible with space
and time so intimately mixed to have something happen with time that isn’t in
some way reflected in space. Take even the simplest example: You are riding
past the earth. What is “time” from your point of view is partly space from our
point of view. So there must also be changes in space. It is the entire space-time
which is distorted by the presence of matter, and this is more complicated than a
change only in time scale. However, the rule that we gave in Eq. (42.3) is enough
to determine completely all the laws of gravitation, provided that it is understood
that this rule about the curvature of space applies not only from one man’s
point of view but is true for everybody. Somebody riding by a mass of material
sees a different mass content because of the kinetic energy he calculates for its
motion past him, and he must include the mass corresponding to that energy.
The theory must be arranged so that everybody—no matter how he moves—will,
when he draws a sphere, find that the excess radius is G/3c2 times the total
mass (or, better, G/3c4 times the total energy content) inside the sphere. That
this law—law (1)—should be true in any moving system is one of the great laws
of gravitation, called Einstein’s field equation. The other great law is (2)—that
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things must move so that the proper time is a maximum—and is called Einstein’s
equation of motion.

To write these laws in a complete algebraic form, to compare them with
Newton’s laws, or to relate them to electrodynamics is difficult mathematically.
But it is the way our most complete laws of the physics of gravity look today.

Although they gave a result in agreement with Newton’s mechanics for the
simple example we considered, they do not always do so. The three discrepancies
first derived by Einstein have been experimentally confirmed: The orbit of
Mercury is not a fixed ellipse; starlight passing near the sun is deflected twice
as much as you would think; and the rates of clocks depend on their location in
a gravitational field. Whenever the predictions of Einstein have been found to
differ from the ideas of Newtonian mechanics Nature has chosen Einstein’s.

Let’s summarize everything that we have said in the following way. First,
time and distance rates depend on the place in space you measure them and on
the time. This is equivalent to the statement that space-time is curved. From
the measured area of a sphere we can define a predicted radius,

√
A/4π, but

the actual measured radius will have an excess over this which is proportional
(the constant is G/c2) to the total mass contained inside the sphere. This fixes
the exact degree of the curvature of space-time. And the curvature must be
the same no matter who is looking at the matter or how it is moving. Second,
particles move on “straight lines” (trajectories of maximum proper time) in this
curved space-time. This is the content of Einstein’s formulation of the laws of
gravitation.
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Chemical reaction, I-1-12 ff
Chemistry and physics, I-3-1 ff
Cherenkov radiation, I-51-3
Chlorophyll molecule, III-15-20
Chromatic aberration, I-27-13
Chromaticity, I-35-11 f
Circuit elements, 23-1 ff
Active ∼, 22-9
Passive ∼, 22-9

Circuits
Alternating-current ∼, 22-1 ff
Equivalent ∼, 22-22 ff

Circular motion, I-21-6 ff
Circular polarization, I-33-3
Circulation, 1-8, 3-14 ff
Classical electron radius, I-32-6, 28-5
Classical limit, III-7-16 ff
Clausius-Clapeyron equation, I-45-10 ff
Clausius-Mossotti equation, 11-13 ff, 32-11
Cleavage plane, 30-3
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Clebsch-Gordan coefficients, III-18-29,
III-18-34

Coaxial line, 24-2
Coefficient
Absorption ∼, 32-13
Clebsch-Gordan ∼s, III-18-29, III-18-34
Drag ∼, 41-11
Einstein ∼s, III-9-25
of coupling, 17-25
of friction, I-12-6
of viscosity, 41-2

Collision, I-16-10
Elastic ∼, I-10-13 f

Collision cross section, I-43-5 f
Colloidal particles, 7-13 ff
Color vision, I-35-1 ff, I-36-1 ff
Physiochemistry of ∼, I-35-15 ff

Commutation rule, III-20-24
Complex impedance, I-23-12
Complex numbers, I-22-11 ff
and harmonic motion, I-23-1 ff

Complex variable, 7-3 ff
Compound (insect) eye, I-36-12 ff
Compression
Adiabatic ∼, I-39-8
Isothermal ∼, I-44-10

Condensor
Energy of a ∼, 8-4 ff
Parallel-plate ∼, 6-22 ff, 8-5

Conduction band, III-14-2
Conductivity, 32-16
Ionic ∼, I-43-9 ff
Thermal ∼, 2-16, 12-3, 12-6

of a gas, I-43-16 f
Conductor, 1-3
Cone cells, I-35-2 ff, I-35-9, I-35-14,

I-35-17 f, I-36-2 f, I-36-8
Conservation

of angular momentum, I-4-13, I-18-11 ff,
I-20-8

of baryon number, III-11-23
of charge, I-4-14, 13-2 ff
of energy, I-3-3, I-4-1 ff, 27-1 ff, 42-24,

III-7-9 ff
of linear momentum, I-4-13, I-10-1 ff
of strangeness, III-11-21

Conservative force, I-14-5 ff
Constant
Boltzmann’s ∼, I-41-18, 7-14, III-14-7
Dielectric ∼, 10-1 ff
Gravitational ∼, I-7-17
Planck’s ∼, I-4-13, I-5-19, I-17-14,

I-37-18, 15-16, 19-18 f, 28-17,
III-1-18, III-20-24, III-21-2

Stefan-Boltzmann ∼, I-45-14
Constrained motion, I-14-4 f
Contraction hypothesis, I-15-8 f
Coriolis force, I-19-14 ff, I-20-8, I-51-13,

I-52-5, 34-12, III-34-12
Cornea, I-35-1, I-36-5 f, I-36-18
Cornu’s spiral, I-30-16
Cosmic rays, I-2-9, 9-4
Cosmic synchrotron radiation, I-34-10 ff
Couette flow, 41-17 ff
Coulomb’s law, I-28-1, I-28-3, 1-4 f, 1-11,

4-3 ff, 4-8, 4-12, 4-19, 5-11 ff
Coupling, coefficient of, 17-25
Covalent bonds, 30-5
Cross product, 2-14, 31-14 f
Cross section, I-5-15
Collision ∼, I-43-5 f
Nuclear ∼, I-5-15
Scattering ∼, I-32-12
Thomson scattering ∼, I-32-13

Crystal, 30-1 ff
Geometry of ∼s, 30-1 ff
Ionic ∼, 8-8 ff
Molecular ∼, 30-5

Crystal diffraction, I-38-8 ff, III-2-8 ff
Crystal lattice, 30-7 ff
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Cubic ∼, 30-17
Hexagonal ∼, 30-16
Imperfections in a ∼, III-13-16 ff
Monoclinic ∼, 30-16
Orthorhombic ∼, 30-17
Propagation in a ∼, III-13-1 ff
Tetragonal ∼, 30-17
Triclinic ∼, 30-15
Trigonal ∼, 30-16

Cubic lattice, 30-17
Curie point, 37-7, 37-20, 37-26
Curie’s law, 11-9
Curie temperature, 36-29, 36-31, 37-2,

37-6, 37-23
Curie-Weiss law, 11-20
Curl operator, 2-15, 3-1
Current
Ampèrian ∼, 36-4
Atomic ∼s, 13-9 ff, 32-6 f, 36-4 ff
Eddy ∼, 16-11
Electric ∼, 13-2 ff

in the atmosphere, 9-4 ff
Induced ∼s, 16-10 ff

Current density, 13-2
Curtate cycloid, I-34-5, I-34-8
Curvature
in three-dimensional space, 42-11 ff
Intrinsic ∼, 42-11
Mean ∼, 42-14
Negative ∼, 42-11
Positive ∼, 42-11

Curved space, 42-1 ff
Cutoff frequency, 22-30
Cyclotron, 29-10, 29-15
Cytosine, I-3-9

D
D’Alembertian operator, 25-13
Damped oscillation, I-24-4 ff
Debye length, 7-15

Definite energy, states of, III-13-5 ff
Degrees of freedom, I-25-3, I-39-19, I-40-1
Demagnetization, adiabatic, 35-18 f,

III-35-18 f
Density, I-1-6
Current ∼, 13-2
Energy ∼, 27-3
Probability ∼, I-6-13, I-6-15, III-16-9

Derivative, I-8-9 f
Partial ∼, I-14-15

Diamagnetism, 34-1 ff, 34-9 ff, III-34-1 ff,
III-34-9 ff

Diamond lattice, III-14-1
Dielectric, 10-1 ff, 11-1 ff
Dielectric constant, 10-1 ff
Differential calculus, I-8-7, 2-1 ff
Diffraction, I-30-1 ff
by a screen, I-31-17 ff
X-ray ∼, I-30-14, I-38-9, 8-9, 30-3,

III-2-9
Diffraction grating, I-30-6 ff
Resolving power of a ∼, I-30-10 f

Diffusion, I-43-1 ff
Molecular ∼, I-43-11 ff
of neutrons, 12-12 ff

Dipole
Electric ∼, 6-2 ff
Magnetic ∼, 14-13 ff
Molecular ∼, 11-1
Oscillating ∼, 21-8 ff

Dipole moment, I-12-9, 6-5
Magnetic ∼, 14-15

Dipole potential, 6-8 ff
Dipole radiator, I-28-7 ff, I-29-6 ff
Dirac equation, I-20-11
Dislocations, 30-19
and crystal growth, 30-20 f
Screw ∼, 30-20 f
Slip ∼, 30-20

Dispersion, I-31-10 ff
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Anomalous ∼, I-31-14
Normal ∼, I-31-14

Dispersion equation, I-31-10
Distance, I-5-1 ff
Distance measurement
by the color-brightness relationship of

stars, I-5-12
by triangulation, I-5-10 ff

Distribution
Normal (Gaussian) ∼, I-6-15, III-16-12,

III-16-14
Probability ∼, I-6-13 ff

Divergence
of four-vectors, 25-11

Divergence operator, 2-14, 3-1
DNA, I-3-8 ff
Domain, 37-11
Donor site, III-14-9
Doppler effect, I-17-14, I-23-18, I-34-13 ff,

I-38-11, 42-21, III-2-11, III-12-15
Dot product, 2-9

of four-vectors, 25-6
Double stars, I-7-10
Drag coefficient, 41-11
“Dry” water, 40-1 ff
Dyes, III-10-21 f
Dynamical (p-) momentum, III-21-8
Dynamics, I-9-1 ff
Development of ∼, I-7-4
of rotation, I-18-5 f
Relativistic ∼, I-15-15 ff

E
Eddy current, 16-11
Effect
Barkhausen ∼, 37-19
Doppler ∼, I-17-14, I-23-18, I-34-13 ff,

I-38-11, 42-21, III-2-11, III-12-15
Hall ∼, III-14-12 ff
Kerr ∼, I-33-8

Meissner ∼, III-21-14 ff, III-21-22
Mössbauer ∼, 42-24
Purkinje ∼, I-35-4

Effective mass, III-13-12
Efficiency of an ideal engine, I-44-13 ff
Eigenstates, III-11-38
Eigenvalues, III-11-38
Einstein coefficients, III-4-15, III-9-25
Einstein-Podolsky-Rosen paradox,

III-18-16
Einstein’s equation of motion, 42-30
Einstein’s field equation, 42-29
Elastica, curves of the, 38-25
Elastic collision, I-10-13 f
Elastic constants, 39-9, 39-19 ff
Elastic energy, I-4-3, I-4-11 f
Elasticity, 38-1 ff
Elasticity tensor, 39-6 ff
Elastic materials, 39-1 ff
Electret, 11-16
Electrical energy, I-4-3, I-4-12, I-10-15,

15-5 ff
Electrical forces, I-2-5 ff, 1-1 ff, 13-1
in relativistic notation, 25-1 ff

Electric charge density, 2-15, III-21-10
Electric current, 13-2 ff
in the atmosphere, 9-4 ff

Electric current density, 2-15
Electric dipole, 6-2 ff
Electric dipole matrix element, III-9-25
Electric field, I-2-6, I-12-11 ff, 1-4 ff, 6-1 ff,

7-1 ff
Relativity of ∼, 13-13 ff

Electric flux, 1-8
Electric generator, 16-1 ff, 22-9 ff
Electric motor, 16-1 ff
Electric potential, 4-6 ff
Electric susceptibility, 10-7
Electrodynamics, 1-5
Electromagnetic energy, I-29-3 f
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Electromagnetic field, I-2-3, I-2-7,
I-10-15 f

Electromagnetic mass, 28-1 ff
Electromagnetic radiation, I-26-1, I-28-1 ff
Electromagnetic waves, I-2-7, 21-1 ff
Electromagnetism, 1-1 ff
Laws of ∼, 1-9 ff

Electromotive force (EMF), 16-5
Electron, I-2-6, I-37-2, I-37-7 ff, III-1-1,

III-1-6 ff
Charge on ∼, I-12-12
Classical ∼ radius, I-32-6, 28-5

Electron cloud, I-6-20
Electron configuration, III-19-29
Electronic polarization, 11-2 ff
Electron microscope, 29-9 f
Electron-ray tube, I-12-15
Electron volt (unit), I-34-7
Electrostatic energy, 8-1 ff
in nuclei, 8-12 ff
of a point charge, 8-22 f
of charges, 8-1 ff
of ionic crystals, 8-8 ff

Electrostatic equations
with dielectrics, 10-10 ff

Electrostatic field, 5-1 ff, 7-1 ff
Energy in the ∼, 8-18 ff
of a grid, 7-17 ff

Electrostatic lens, 29-5 ff
Electrostatic potential, equations of the,

6-1 f
Electrostatics, 4-1 ff, 5-1 ff
Ellipse, I-7-2
Emission of photons, III-4-13 ff
Emissivity, 6-28
Energy, I-4-1 ff, 22-24 ff
Activation ∼, I-3-6, I-42-12 f
Boltzmann ∼, 36-24
Chemical ∼, I-4-3

Conservation of ∼, I-3-3, I-4-1 ff,
27-1 ff, 42-24, III-7-9 ff

Elastic ∼, I-4-3, I-4-11 f
Electrical ∼, I-4-3, I-4-12, I-10-15,

15-5 ff
Electromagnetic ∼, I-29-3 f
Electrostatic ∼, 8-1 ff

in nuclei, 8-12 ff
of a point charge, 8-22 f
of charges, 8-1 ff
of ionic crystals, 8-8 ff

Field ∼, 27-1 ff
Gravitational ∼, I-4-3 ff
Heat ∼, I-4-3, I-4-11 f, I-10-15
in the electrostatic field, 8-18 ff
Kinetic ∼, I-1-13, I-2-10, I-4-3, I-4-10 f
and temperature, I-39-10 ff

Magnetic ∼, 17-22 ff
Mass ∼, I-4-3, I-4-12
Mechanical ∼, 15-5 ff
Nuclear ∼, I-4-3
of a condensor, 8-4 ff
Potential ∼, I-4-7, I-13-1 ff, I-14-1 ff,

III-7-9 ff
Radiant ∼, I-4-3, I-4-12, I-7-20, I-10-15
Relativistic ∼, I-16-1 ff
Rotational kinetic ∼, I-19-12 ff
Rydberg ∼, III-10-6, III-19-5
Wall ∼, 37-11

Energy density, 27-3
Energy diagram, III-14-2
Energy flux, 27-3
Energy level diagram, III-14-6
Energy levels, I-38-13 ff, III-2-13 ff,

III-12-12 ff
of a harmonic oscillator, I-40-17 f

Energy theorem, I-50-13
Enthalpy, I-45-9
Entropy, I-44-19 ff, I-46-9 ff
Equation
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Clausius-Mossotti ∼, 11-13 ff, 32-11
Diffusion ∼

Heat ∼,
Neutron ∼, 12-13

Dirac ∼, I-20-11
Dispersion ∼, I-31-10
Einstein’s field ∼, 42-29
Einstein’s ∼ of motion, 42-30
Laplace ∼, 7-2
Maxwell’s ∼s, I-46-12, I-47-12, 2-1,

2-15, 4-1 f, 6-1, 7-11, 8-20, 10-11,
13-7, 13-13, 13-22, 15-24 f, 18-1 ff,
22-1 f, 22-13 f, 22-16, 22-23, 23-6,
23-13 f, 23-20 f, 24-9, 25-12, 25-15,
25-19, 26-3, 26-20, 26-23, 27-5,
27-8, 27-13, 27-17, 28-1, 32-7, 33-2,
33-5 ff, 33-12 f, 33-16, 34-14, 36-2,
36-5, 36-11, 36-26, 38-4, 39-14,
42-29, III-34-14

for four-vectors, 25-17
General solution of ∼, 21-6 ff
in a dielectric, 32-4 ff
Modifications of ∼, 28-10 ff
Solutions of ∼ in free space, 20-1 ff
Solutions of ∼ with currents and
charges, 21-1 ff

Solving ∼, 18-17 ff
Poisson ∼, 6-2
Saha ∼, I-42-9
Schrödinger ∼, 15-21, 41-20, III-16-6,

III-16-18 ff
for the hydrogen atom, III-19-1 ff
in a classical context, III-21-1 ff

Wave ∼, I-47-1 ff, 18-17 ff
Equilibrium, I-1-12
Equipotential surfaces, 4-20 ff
Equivalent circuits, 22-22 ff
Ethylene molecule, III-15-13
Euclidean geometry, I-1-1, I-12-4, I-12-19,

I-17-4

Euler force, 38-23
Evaporation, I-1-10, I-1-12
of a liquid, I-40-5 ff, I-42-1 ff

Excess radius, 42-9 ff, 42-13 ff, 42-29
Exchange force, 37-3
Excited state, 8-14, III-13-15
Exciton, III-13-16
Exclusion principle, III-4-23 ff
Expansion
Adiabatic ∼, I-44-10
Isothermal ∼, I-44-10

Exponential atmosphere, I-40-1 ff
Eye
Compound (insect) ∼, I-36-12 ff
Human ∼, I-35-1 ff

F
Farad (unit), I-25-14, 6-24
Faraday’s law of induction, 17-3, 17-6,

18-1, 18-15, 18-18
Fermat’s principle, I-26-5, I-26-7, I-26-9,

I-26-11, I-26-13 ff, I-26-17 f
Fermi (unit), I-5-18
Fermi particles, III-4-1 ff, III-15-11
Ferrites, 37-25 f
Ferroelectricity, 11-17 ff
Ferromagnetic insulators, 37-25
Ferromagnetic materials, 37-19 ff
Ferromagnetism, 36-1 ff, 37-1 ff
Field, I-14-12 ff

Electric ∼, I-2-6, I-12-11 ff, 1-4 ff, 6-1 ff,
7-1 ff

Electromagnetic ∼, I-2-3, I-2-7,
I-10-15 f

Electrostatic ∼, 5-1 ff, 7-1 ff
of a grid, 7-17 ff

Flux of a vector ∼, 3-4 ff
Gravitational ∼, I-12-13 ff, I-13-13 ff
in a cavity, 5-17 ff
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Magnetic ∼, I-12-15 ff, 1-4 ff, 13-1 f,
14-1 ff

of steady currents, 13-6 ff
Magnetizing ∼, 36-15
of a charged conductor, 6-14 f
of a conductor, 5-16 f
Relativity of electric ∼, 13-13 ff
Relativity of magnetic ∼, 13-13 ff
Scalar ∼, 2-3 ff
Superposition of ∼s, I-12-15
Two-dimensional ∼s, 7-3 ff
Vector ∼, 1-8 f, 2-3 ff

Field-emission microscope, 6-27 ff
Field energy, 27-1 ff

of a point charge, 28-1 f
Field index, 29-13
Field-ion microscope, 6-27 ff
Field lines, 4-20 ff
Field momentum, 27-1 ff
of a moving charge, 28-3 f

Field strength, 1-6
Filter, 22-30 ff
Flow
Fluid ∼, 12-16 ff
Heat ∼, 2-16 ff, 12-2 ff
Irrotational ∼, 12-16 ff, 40-9 ff
Steady ∼, 40-10 ff
Viscous ∼, 41-6 ff

Fluid flow, 12-16 ff
Flux, 4-12 ff
Electric ∼, 1-8
Energy ∼, 27-3
of a vector field, 3-4 ff

Flux quantization, III-21-16 ff
Flux rule, 17-1
Focal length
of a lens, I-27-7 ff
of a spherical surface, I-27-2 ff

Focus, I-26-11, I-27-4
Force

Centrifugal ∼, I-7-9, I-12-18, I-16-3,
I-19-13 f, I-20-14, I-43-7, I-52-5,
34-12, 41-18, III-19-20, III-19-25,
III-34-12

Centripetal ∼, I-19-15 f
Components of ∼, I-9-4 ff
Conservative ∼, I-14-5 ff
Coriolis ∼, I-19-14 ff, I-20-8, I-51-13,

I-52-5, 34-12, III-34-12
Electrical ∼s, I-2-5 ff, 1-1 ff, 13-1
in relativistic notation, 25-1 ff

Electromotive ∼ (EMF), 16-5
Euler ∼, 38-23
Exchange ∼, 37-3
Gravitational ∼, I-2-4
Lorentz ∼, 13-1, 15-25
Magnetic ∼, I-12-15 ff, 1-4, 13-1

on a current, 13-5 f
Molecular ∼s, I-12-9 ff
Moment of ∼, I-18-8
Nonconservative ∼, I-14-10 ff
Nuclear ∼s, I-12-20 f, 1-2 f, 8-12 f,

28-18, 28-20 ff, III-10-10 ff
Pseudo ∼, I-12-17 ff

Fortune teller, I-17-8
Foucault pendulum, I-16-3
Fourier analysis, I-25-7, I-50-3 ff, I-50-8 ff
Fourier theorem, 7-17
Fourier transforms, I-25-7
Four-potential, 25-15
Four-vector algebra, I-17-12 ff
Four-vectors, I-15-14 f, I-17-8 ff, 25-1 ff
Fovea, I-35-2 f, I-35-5, I-35-18
Frequency
Angular ∼, I-21-5, I-29-4, I-29-6, I-49-4
Larmor ∼, 34-12, III-34-12
of oscillation, I-2-7
Plasma ∼, 7-12, 32-18 ff

Fresnel’s reflection formulas, I-33-15
Friction, I-10-7, I-12-4 ff
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Coefficient of ∼, I-12-6
Origin of ∼, I-12-9

G
Galilean relativity, I-10-5, I-10-11
Galilean transformation, I-12-18, I-15-4
Gallium, III-19-32 f
Galvanometer, 1-17, 16-2
Gamma rays, I-2-8
Garnets, 37-25 f
Gauss (unit), I-34-7, 36-12
Gaussian distribution, I-6-15, III-16-12,

III-16-14
Gauss’ law, 4-18 f

Applications of ∼, 5-1 ff
for field lines, 4-21

Gauss’ theorem, 3-8 ff, III-21-7
Generator
Alternating-current ∼, 17-11 ff
Electric ∼, 16-1 ff, 22-9 ff
Van de Graaff ∼, 5-19, 8-14

Geology and physics, I-3-12 f
Geometrical optics, I-26-2, I-27-1 ff
Gradient operator, 2-8 ff, 3-1
Gravitation, I-2-4, I-7-1 ff, I-12-2, 42-1

Theory of ∼, 42-28 ff
Gravitational acceleration, I-9-6
Gravitational constant, I-7-17
Gravitational energy, I-4-3 ff
Gravitational field, I-12-13 ff, I-13-13 ff
Gravitational force, I-2-4
Gravity, I-13-5 ff, 42-17 ff

Acceleration of ∼, I-9-6
Greeks’ difficulties with speed, I-8-4 f
Green’s function, I-25-8
Ground state, 8-14, III-7-3
Group velocity, I-48-11 f
Guanine, I-3-9
Gyroscope, I-20-9 ff

H
Haidinger’s brush, I-36-14
Hall effect, III-14-12 ff
Hamiltonian, III-8-16
Hamiltonian matrix, III-8-1 ff
Hamilton’s first principal function, 19-16
Harmonic motion, I-21-6 ff, I-23-1 ff
Harmonic oscillator, I-10-1, I-21-1 ff
Energy levels of a ∼, I-40-17 f
Forced ∼, I-21-9 ff, I-23-4 ff

Harmonics, I-50-1 ff
Heat, I-1-5, I-13-5
Specific ∼, I-40-13 ff, 37-7
and the failure of classical physics,

I-40-16 ff
at constant volume, I-45-3

Heat conduction, 3-10 ff
Heat diffusion equation, 3-10 ff
Heat energy, I-4-3, I-4-11 f, I-10-15
Heat engines, I-44-1 ff
Heat flow, 2-16 ff, 12-2 ff
Helium, I-1-8, I-3-11 f, I-49-9 f, III-19-27
Liquid ∼, III-4-22 f

Helmholtz’s theorem, 40-22 f
Henry (unit), I-25-13
Hermitian adjoint, III-20-5
Hexagonal lattice, 30-16
High-voltage breakdown, 6-25 ff
Hooke’s law, I-12-11, 10-12, 30-29, 31-22,

38-1 ff, 38-6, 39-6, 39-18
Human eye, I-35-1 ff
Hydrodynamics, 40-5 ff
Hydrogen, III-19-26 f
Hyperfine splitting in ∼, III-12-1 ff

Hydrogen atom, III-19-1 ff
Hydrogen molecular ion, III-10-1 ff
Hydrogen molecule, III-10-13 ff
Hydrogen wave functions, III-19-21 ff
Hydrostatic pressure, 40-1
Hydrostatics, 40-1 ff
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Hyperfine splitting in hydrogen, III-12-1 ff
Hysteresis curve, 37-10 ff
Hysteresis loop, 36-16

I
Ideal gas law, I-39-16 ff
Identical particles, III-3-16 ff, III-4-1 ff
Illumination, 12-20 ff
Image charge, 6-17
Impedance, I-25-15 f, 22-1 ff
Complex ∼, I-23-12
of a vacuum, I-32-3

Impure semiconductors, III-14-8 ff
Incidence, angle of, I-26-6, 33-1
Inclined plane, I-4-7
Independent particle approximation,

III-15-1 ff
Index
Field ∼, 29-13
of refraction, I-31-1 ff, 32-1 ff

Induced currents, 16-10 ff
Inductance, I-23-10, 16-7 ff, 17-16 ff, 22-3 f
Mutual ∼, 17-16 ff, 22-36 f
Self-∼, 16-8, 17-20 ff

Induction, laws of, 17-1 ff
Inductor, I-25-13
Inertia, I-2-4, I-7-20
Moment of ∼, I-18-12 f, I-19-1 ff
Principle of ∼, I-9-1

Infrared radiation, I-2-8, I-23-14, I-26-1
Insulator, 1-3, 10-1
Integral, I-8-11 ff
Line ∼, 3-1 ff

Integral calculus, 3-1 ff
Interference, I-28-10 ff, I-29-1 ff
and diffraction, I-30-1
Two-slit ∼, III-3-8 ff

Interfering amplitudes, III-5-16 ff
Interfering waves, I-37-6, III-1-6
Interferometer, I-15-8

Ion, I-1-11
Ionic bonds, 30-5
Ionic conductivity, I-43-9 ff
Ionic crystal, 8-8 ff
Ionic polarizability, 11-17
Ionization energy, I-42-8
of hydrogen, I-38-12, III-2-12

Ionosphere, 7-9, 7-12, 9-6, 32-22
Irreversibility, I-46-9 ff
Irrotational flow, 12-16 ff, 40-9 ff
Isotherm, 2-5
Isothermal atmosphere, I-40-3
Isothermal compression, I-44-10
Isothermal expansion, I-44-10
Isothermal surfaces, 2-5
Isotopes, I-3-7, I-3-12, I-39-17

J
Johnson noise, I-41-4, I-41-14
Josephson junction, III-21-25 ff
Joule (unit), I-13-5
Joule heating, I-24-3

K
Kármán vortex street, 41-13
Kepler’s laws, I-7-2 f, I-7-5, I-7-7, I-9-1,

I-18-11
Kerr cell, I-33-8
Kerr effect, I-33-8
Kilocalorie (unit), 8-9
Kinematic (mv-) momentum, III-21-8
Kinetic energy, I-1-13, I-2-10, I-4-3,

I-4-10 f
and temperature, I-39-10 ff
Rotational ∼, I-19-12 ff

Kinetic theory
Applications of ∼, I-42-1 ff
of gases, I-39-1 ff

Kirchhoff’s laws, I-25-16, 22-14 ff, 22-27
Kronecker delta, 31-10
Krypton, III-19-32 f
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L
Lagrangian, 19-15
Lamé elastic constants, 39-9
Lamb-Retherford measurement, 5-14
Landé g-factor, 34-6, III-34-6
Laplace equation, 7-2
Laplacian operator, 2-20
Larmor frequency, 34-12, III-34-12
Larmor’s theorem, 34-11 ff, III-34-11 ff
Laser, I-5-4, I-32-9, I-42-17 f, I-50-17,

III-9-21
Law
Ampère’s ∼, 13-6 ff
Applications of Gauss’ ∼, 5-1 ff
Biot-Savart ∼, 14-18 f, 21-13
Boltzmann’s ∼, I-40-4 f
Boyle’s ∼, I-40-16
Coulomb’s ∼, I-28-1, I-28-3, 1-4 f, 1-11,

4-3 ff, 4-8, 4-12, 4-19, 5-11 ff
Curie’s ∼, 11-9
Curie-Weiss ∼, 11-20
Faraday’s ∼ of induction, 17-3, 17-6,

18-1, 18-15, 18-18
Gauss’ ∼, 4-18 f

for field lines, 4-21
Hooke’s ∼, I-12-11, 10-12, 30-29, 31-22,

38-1 ff, 38-6, 39-6, 39-18
Ideal gas ∼, I-39-16 ff
Kepler’s ∼s, I-7-2 f, I-7-5, I-7-7, I-9-1,

I-18-11
Kirchhoff’s ∼s, I-25-16, 22-14 ff, 22-27
Lenz’s ∼, 16-9 f, 34-2, III-34-2
Newton’s ∼s, I-2-9, I-7-10, I-7-12,

I-9-1 ff, I-10-1 f, I-10-5, I-11-3 f,
I-11-7 f, I-12-1 f, I-12-4, I-12-18,
I-12-20, I-13-1, I-14-10, I-15-1 ff,
I-15-5, I-15-16, I-16-4, I-16-13 f,
I-18-1, I-19-4, I-20-1, I-28-5, I-39-1,
I-39-3, I-39-17, I-41-2, I-46-1,

I-46-9, I-47-4 f, 7-9, 19-2, 42-1,
42-28

in vector notation, I-11-13 ff
of reflection, I-26-3
Ohm’s ∼, I-23-9, I-25-12, I-43-11, 19-26,

III-14-12
Rayleigh’s ∼, I-41-10
Snell’s ∼, I-26-5, I-26-7, I-26-14, I-31-4,

33-1
Laws
of electromagnetism, 1-9 ff
of induction, 17-1 ff

Least action, principle of, 19-1 ff
Least time, principle of, I-26-1 ff
Legendre functions, associated, III-19-16
Legendre polynomials, III-18-23, III-19-16
Lens
Electrostatic ∼, 29-5 ff
Magnetic ∼, 29-7 ff
Quadrupole ∼, 7-6, 29-15 f

Lens formula, I-27-11
Lenz’s rule, 16-9 f, 34-2, III-34-2
Liénard-Wiechert potentials, 21-16 ff
Light, I-2-7, 21-1 ff
Absorption of ∼, III-9-23 ff
Momentum of ∼, I-34-20 ff
Polarized ∼, I-32-15
Reflection of ∼, 33-1 ff
Refraction of ∼, 33-1 ff
Scattering of ∼, I-32-1 ff
Speed of ∼, I-15-1, 18-16 f

Light cone, I-17-6
Lightning, 9-21 ff
Light pressure, I-34-20
Light waves, I-48-1
Linear momentum
Conservation of ∼, I-4-13, I-10-1 ff

Linear systems, I-25-1 ff
Linear transformation, I-11-11
Line integral, 3-1 ff
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Line of charge, 5-6 f
Liquid helium, III-4-22 f
Lithium, III-19-27 f
Lodestone, 1-20, 37-27
Logarithms, I-22-3
Lorentz contraction, I-15-13
Lorentz force, 13-1, 15-25
Lorentz formula, 21-21 ff
Lorentz group, 25-5
Lorentz transformation, I-15-4 f, I-17-1,

I-34-15, I-52-3, 25-1
of fields, 26-1 ff

Lorenz condition, 25-15
Lorenz gauge, 18-20, 25-15

M
Mach number, 41-11
Magenta, III-10-21
Magnetic dipole, 14-13 ff
Magnetic dipole moment, 14-15
Magnetic energy, 17-22 ff
Magnetic field, I-12-15 ff, 1-4 ff, 13-1 f,

14-1 ff
of steady currents, 13-6 ff
Relativity of ∼, 13-13 ff

Magnetic force, I-12-15 ff, 1-4, 13-1
on a current, 13-5 f

Magnetic induction, I-12-17
Magnetic lens, 29-7 ff
Magnetic materials, 37-1 ff
Magnetic moments, 34-4 ff, III-11-8,

III-34-4 ff
Magnetic resonance, 35-1 ff, III-35-1 ff

Nuclear ∼, 35-19 ff, III-35-19 ff
Magnetic susceptibility, 35-14, III-35-14
Magnetism, I-2-7, 34-1 ff, III-34-1 ff
Dia∼, 34-1 ff, 34-9 ff, III-34-1 ff,

III-34-9 ff
Ferro∼, 36-1 ff, 37-1 ff

Para∼, 34-1 ff, 35-1 ff, III-34-1 ff,
III-35-1 ff

Magnetization currents, 36-1 ff
Magnetizing field, 36-15
Magnetostatics, 4-2, 13-1 ff
Magnetostriction, 37-12, 37-21
Magnification, I-27-10 f
Magnons, III-15-6
Maser, I-42-17
Ammonia ∼, III-9-1 ff

Mass, I-9-2, I-15-1
Center of ∼, I-18-1 ff, I-19-1 ff
Effective ∼, III-13-12
Electromagnetic ∼, 28-1 ff
Relativistic ∼, I-16-9 ff

Mass energy, I-4-3, I-4-12
Mass-energy equivalence, I-15-17 ff
Mathematics and physics, I-3-1
Matrix, III-5-9
Matrix algebra, III-5-24, III-11-5,

III-20-28
Maxwell’s demon, I-46-8 f
Maxwell’s equations, I-15-3 ff, I-25-5,

I-25-8, I-46-12, I-47-12, 2-1, 2-15,
4-1 f, 6-1, 7-11, 8-20, 10-11, 13-7,
13-13, 13-22, 15-24 f, 18-1 ff, 22-1 f,
22-13 f, 22-16, 22-23, 23-6, 23-13 f,
23-20 f, 24-9, 25-12, 25-15, 25-19,
26-3, 26-20, 26-23, 27-5, 27-8,
27-13, 27-17, 28-1, 32-7, 33-2, 33-5,
33-7 ff, 33-12 f, 33-16, 34-14, 36-2,
36-5, 36-11, 36-26, 38-4, 39-14,
42-29, III-10-12, III-21-11,
III-21-24, III-34-14

for four-vectors, 25-17
General solution of ∼, 21-6 ff
in a dielectric, 32-4 ff
Modifications of ∼, 28-10 ff
Solutions of ∼ in free space, 20-1 ff
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Solutions of ∼ with currents and
charges, 21-1 ff

Solving ∼, 18-17 ff
Mean free path, I-43-4 ff
Mean square distance, I-6-9, I-41-15
Mechanical energy, 15-5 ff
Meissner effect, III-21-14 ff, III-21-22
Metastable atom, I-42-17
Meter (unit), I-5-18
MeV (unit), I-2-14
Michelson-Morley experiment, I-15-5 ff,

I-15-13
Microscope
Electron ∼, 29-9 f
Field-emission ∼, 6-27 ff
Field-ion ∼, 6-27 ff

Minkowski space, 31-23
Modes, I-49-1 ff
Normal ∼, I-48-17 f

Mole (unit), I-39-17
Molecular crystal, 30-5
Molecular diffusion, I-43-11 ff
Molecular dipole, 11-1
Molecular forces, I-12-9 ff
Molecular motion, I-41-1
Molecule, I-1-4
Nonpolar ∼, 11-1
Polar ∼, 11-1, 11-5 ff

Mössbauer effect, 42-24
Moment
Dipole ∼, I-12-9, 6-5
of force, I-18-8
of inertia, I-18-12 f, I-19-1 ff

Momentum, I-9-1 ff, I-38-3 ff, III-2-3 ff
Angular ∼, I-18-8 ff, I-20-1, III-18-1 ff,

III-20-22 ff
Composition of ∼, III-18-25 ff
Conservation of ∼, I-4-13, I-18-11 ff,

I-20-8
of a rigid body, I-20-14

Conservation of angular ∼,
Conservation of linear ∼, I-4-13,

I-10-1 ff
Dynamical (p-) ∼, III-21-8
Field ∼, 27-1 ff
in quantum mechanics, I-10-16 f
Kinematic (mv-) ∼, III-21-8
of light, I-34-20 ff
Relativistic ∼, I-10-14 ff, I-16-1 ff

Momentum operator, III-20-4, III-20-15 ff
Momentum spectrometer, 29-2
Momentum spectrum, 29-4
Monatomic gas, I-39-7 ff, I-39-11,

I-39-17 f, I-40-13 f
Monoclinic lattice, 30-16
Motion, I-5-1 f, I-8-1 ff
Brownian ∼, I-1-16, I-6-8, I-41-1 ff,

I-46-2 f, I-46-9
Circular ∼, I-21-6 ff
Constrained ∼, I-14-4 f
Harmonic ∼, I-21-6 ff, I-23-1 ff
of charge, 29-1 ff
Orbital ∼, 34-5, III-34-5
Parabolic ∼, I-8-17
Perpetual ∼, I-46-3
Planetary ∼, I-7-1 ff, I-9-11 ff, I-13-9

Motor, electric, 16-1 ff
Moving charge, field momentum of, 28-3 f
Muscle
Smooth ∼, I-14-3
Striated (skeletal) ∼, I-14-3

Music, I-50-2
Mutual capacitance, 22-38
Mutual inductance, 17-16 ff, 22-36 f
mv-momentum, III-21-8

N
Nabla operator (∇), 2-12 ff
Negative carriers, III-14-3
Neon, III-19-30
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Nernst heat theorem, I-44-22
Neutral K-meson, III-11-21 ff
Neutral pion, III-10-11
Neutron diffusion equation, 12-13
Neutrons, I-2-6
Diffusion of ∼, 12-12 ff

Newton (unit), I-11-10
Newton ·meter (unit), I-13-5
Newton’s laws, I-2-9, I-7-10, I-7-12,

I-9-1 ff, I-10-1 f, I-10-5, I-11-3 f,
I-11-7 f, I-12-1 f, I-12-4, I-12-18,
I-12-20, I-13-1, I-14-10, I-15-1 ff,
I-15-5, I-15-16, I-16-4, I-16-13 f,
I-18-1, I-19-4, I-20-1, I-28-5, I-39-1,
I-39-3, I-39-17, I-41-2, I-46-1,
I-46-9, I-47-4 f, 7-9, 19-2, 42-1,
42-28

in vector notation, I-11-13 ff
Nodes, I-49-3
Noise, I-50-2
Nonconservative force, I-14-10 ff
Nonpolar molecule, 11-1
Normal dispersion, I-31-14
Normal distribution, I-6-15, III-16-12,

III-16-14
Normal modes, I-48-17 f
n-type semiconductor, III-14-10
Nuclear cross section, I-5-15
Nuclear energy, I-4-3
Nuclear forces, I-12-20 f, 1-2 f, 8-12 f,

28-18, 28-20 ff, III-10-10 ff
Nuclear g-factor, 34-6, III-34-6
Nuclear interactions, 8-14
Nuclear magnetic resonance, 35-19 ff,

III-35-19 ff
Nucleon, III-11-5
Nucleus, I-2-6, I-2-9 f, I-2-12 ff
Numerical analysis, I-9-11
Nutation, I-20-12 f

O
Oersted (unit), 36-12
Ohm (unit), I-25-12
Ohm’s law, I-23-9, I-25-12, I-43-11, 19-26,

III-14-12
One-dimensional lattice, III-13-1 ff
Operator, III-8-7, III-20-1 ff
Algebraic ∼, III-20-4
Curl ∼, 2-15, 3-1
D’Alembertian ∼, 25-13
Divergence ∼, 2-14, 3-1
Gradient ∼, 2-8 ff, 3-1
Laplacian ∼, 2-20
Momentum ∼, III-20-4, III-20-15 ff
Nabla ∼ (∇), 2-12 ff
Vector ∼, 2-12

Optic axis, I-33-5
Optic nerve, I-35-3
Optics, I-26-1 ff
Geometrical ∼, I-26-2, I-27-1 ff

Orbital angular momentum, III-19-2
Orbital motion, 34-5, III-34-5
Orientation polarization, 11-5 ff
Oriented magnetic moment, 35-7, III-35-7
Orthorhombic lattice, 30-17
Oscillating dipole, 21-8 ff
Oscillation
Amplitude of ∼, I-21-6
Damped ∼, I-24-4 ff
Frequency of ∼, I-2-7
Periodic ∼, I-9-7
Period of ∼, I-21-4
Phase of ∼, I-21-6
Plasma ∼s, 7-9 ff

Oscillator, I-5-4
Forced harmonic ∼, I-21-9 ff, I-23-4 ff
Harmonic ∼, I-10-1, I-21-1 ff

P
Pappus, theorem of, I-19-6 f
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Parabolic antenna, I-30-12 f
Parabolic motion, I-8-17
Parallel-axis theorem, I-19-9
Parallel-plate capacitor, I-14-16 f, 6-22 ff,

8-5
Paramagnetism, 34-1 ff, 35-1 ff, III-34-1 ff,

III-35-1 ff
Paraxial rays, I-27-3
Partial derivative, I-14-15
Particles
Bose ∼, III-4-1 ff, III-15-10 f
Fermi ∼, III-4-1 ff, III-15-11
Identical ∼, III-3-16 ff, III-4-1 ff
Spin-one ∼, III-5-1 ff
Spin one-half ∼, III-6-1 ff, III-12-1 ff

Precession of ∼, III-7-18 ff
Pascal’s triangle, I-6-7
Passive circuit element, 22-9
Pauli exclusion principle, 36-31
Pauli spin exchange operator, III-12-12,

III-15-3
Pauli spin matrices, III-11-1 ff
Pendulum, I-5-3
Coupled ∼s, I-49-10 ff

Pendulum clock, I-5-3
Periodic table, I-2-14, I-3-2, III-19-25 ff
Period of oscillation, I-21-4
Permalloy, 37-22
Permeability, 36-18

Relative ∼, 36-18
Perpetual motion, I-46-3
Phase of oscillation, I-21-6
Phase shift, I-21-6
Phase velocity, I-48-10, I-48-12
Photon, I-2-11, I-17-14, I-26-2, I-37-13,

III-1-12
Absorption of ∼s, III-4-13 ff
Emission of ∼s, III-4-13 ff
Polarization states of the ∼, III-11-15 ff

Photosynthesis, I-3-4

Physics
Astronomy and ∼, I-3-10 ff
before 1920, I-2-4 ff
Biology and ∼, I-3-3 ff
Chemistry and ∼, I-3-1 ff
Geology and ∼, I-3-12 f
Mathematics and ∼, I-3-1
Psychology and ∼, I-3-13 f
Relationship to other sciences, I-3-1 ff

Piezoelectricity, 11-16, 31-23
Planck’s constant, I-4-13, I-5-19, I-17-14,

I-37-18, 15-16, 19-18 f, 28-17,
III-1-18, III-20-24, III-21-2

Plane lattice, 30-12
Planetary motion, I-7-1 ff, I-9-11 ff, I-13-9
Plane waves, 20-1 ff
Plasma, 7-9
Plasma frequency, 7-12, 32-18 ff
Plasma oscillations, 7-9 ff
p-momentum, III-21-8
Poincaré stress, 28-7 f
Point charge, 1-3
Electrostatic energy of a ∼, 8-22 f
Field energy of a ∼, 28-1 f

Poisson equation, 6-2
Poisson’s ratio, 38-3, 38-6, 38-21
Polarization, I-33-1 ff
Circular ∼, I-33-3
Electronic ∼, 11-2 ff
of matter, 32-1 ff
of scattered light, I-33-4
Orientation ∼, 11-5 ff

Polarization charges, 10-6 ff
Polarization vector, 10-4 ff
Polarized light, I-32-15
Polar molecule, 11-1, 11-5 ff
Polar vector, I-20-6, I-52-10 ff
Positive carriers, III-14-3
Potassium, III-19-31 f
Potential
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Four-∼, 25-15
Quadrupole ∼, 6-14
Vector ∼, 14-1 ff, 15-1 ff

of known currents, 14-5 ff
Potential energy, I-4-7, I-13-1 ff, I-14-1 ff,

III-7-9 ff
Potential gradient of the atmosphere,

9-1 ff
Power, I-13-4
Poynting vector, 27-9
Precession
Angle of ∼, 34-7, III-34-7
of atomic magnets, 34-7 ff, III-34-7 ff

Pressure, I-1-6
Hydrostatic ∼, 40-1
Light ∼, I-34-20
of a gas, I-39-3 ff
Radiation ∼, I-34-20

Principal quantum number, III-19-22
Principle
Exclusion ∼, III-4-23 ff
of equivalence, 42-17 ff
of inertia, I-9-1
of least action, 19-1 ff
of superposition, 1-5, 4-4
of virtual work, I-4-10
Uncertainty ∼, I-2-9 f, I-6-17 ff, I-7-21,

I-37-14 f, I-37-18 ff, I-38-5,
I-38-11 f, I-38-15, III-1-14,
III-1-17 ff, III-2-5, III-2-10 ff,
III-2-15

and stability of atoms, 1-2, 5-5
Probability, I-6-1 ff
Probability amplitudes, I-37-16, III-1-16,

III-3-1 ff, III-16-1 ff
Probability density, I-6-13, I-6-15, III-16-9
Probability distribution, I-6-13 ff, III-16-9
Propagation, in a crystal lattice, III-13-1 ff
Propagation factor, 22-31
Protons, I-2-6

Proton spin, 8-12
Pseudo force, I-12-17 ff
Psychology and physics, I-3-13 f
p-type semiconductor, III-14-10
Purkinje effect, I-35-4
Pyroelectricity, 11-16

Q
Quadrupole lens, 7-6, 29-15 f
Quadrupole potential, 6-14
Quantized magnetic states, 35-1 ff,

III-35-1 ff
Quantum electrodynamics, I-2-12 f, I-2-17,

I-28-5, I-42-16
and point charges, 28-16

Quantum mechanical resonance, III-10-6
Quantum mechanics, I-2-3, I-2-9 ff,

I-6-17 ff, I-37-1 ff, I-38-1 ff,
III-1-1 ff, III-2-1 ff, III-3-1 ff

and vector potential, 15-14 ff, III-21-2 f
Momentum in ∼, I-10-16 f

Quantum numbers, III-12-25

R
Rabi molecular-beam method, 35-7 ff,

III-35-7 ff
Radiant energy, I-4-3, I-4-12, I-7-20,

I-10-15
Radiation
Blackbody ∼, I-41-5 ff
Bremsstrahlung, I-34-12 f
Cherenkov ∼, I-51-3
Cosmic rays, I-2-9, 9-4
Cosmic synchrotron ∼, I-34-10 ff
Electromagnetic ∼, I-26-1, I-28-1 ff
Gamma rays, I-2-8
Infrared ∼, I-2-8, I-23-14, I-26-1
Light, I-2-7
Relativistic effects in ∼, I-34-1 ff
Synchrotron ∼, I-34-6 ff
Ultraviolet ∼, I-2-8, I-26-1
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X-rays, I-2-8, I-26-1, I-31-11, I-34-8,
I-48-10, I-48-12

Radiation damping, I-32-1 ff
Radiation pressure, I-34-20
Radiation resistance, I-32-1 ff
Radioactive clock, I-5-6 ff
Radioactive isotopes, I-3-7, I-5-8, I-52-16
Radius
Bohr ∼, I-38-12, III-2-12, III-19-5,

III-19-9
Classical electron ∼, I-32-6, 28-5
Excess ∼, 42-9 ff, 42-13 ff, 42-29

Random walk, I-6-8 ff, I-41-14 ff
Ratchet and pawl machine, I-46-1 ff
Rayleigh’s criterion, I-30-11
Rayleigh’s law, I-41-10
Rayleigh waves, 38-16
Reactance, 22-25 f
Reciprocity principle, I-26-9, I-30-12
Rectification, I-50-15
Rectifier, 22-34
Reflected waves, 33-14 ff
Reflection, I-26-3 ff
Angle of ∼, I-26-6, 33-1
of light, 33-1 ff
Total internal ∼, 33-22 ff

Refraction, I-26-3 ff
Anomalous ∼, I-33-15 ff
Index of ∼, I-31-1 ff, 32-1 ff
of light, 33-1 ff

Relative permeability, 36-18
Relativistic dynamics, I-15-15 ff
Relativistic energy, I-16-1 ff
Relativistic mass, I-16-9 ff
Relativistic momentum, I-10-14 ff,

I-16-1 ff
Relativity
Galilean ∼, I-10-5, I-10-11
of electric field, 13-13 ff
of magnetic field, 13-13 ff

Special theory of ∼, I-15-1 ff
Theory of ∼, I-7-20 f, I-17-1

Resistance, I-23-9
Resistor, I-23-9, I-41-4 f, I-41-14, 22-7 f
Resolving power, I-27-14 f
of a diffraction grating, I-30-10 f

Resonance, I-23-1 ff
Electrical ∼, I-23-8 ff
in nature, I-23-12 ff
Quantum mechanical ∼, III-10-6

Resonant cavity, 23-11 ff
Resonant circuits, 23-22 ff
Resonant mode, 23-21
Resonator, cavity, 23-1 ff
Retarded time, I-28-4
Retina, I-35-1 f
Reynolds number, 41-8 ff
Rigid body, I-18-1, I-20-1
Angular momentum of a ∼, I-20-14
Rotation of a ∼, I-18-4 ff

Ritz combination principle, I-38-14,
III-2-14

Rod cells, I-35-2 ff, I-35-9, I-35-17 f,
I-36-8, I-36-10 ff, III-13-16

Root-mean-square (RMS) distance, I-6-10
Rotation
in space, I-20-1 ff
in two dimensions, I-18-1 ff
of a rigid body, I-18-4 ff
of axes, I-11-4 ff
Plane ∼, I-18-1

Rotation matrix, III-6-6
Rutherford-Bohr atomic model, 5-4
Rydberg (unit), I-38-12, III-2-12
Rydberg energy, III-10-6, III-19-5

S
Saha equation, I-42-9
Scalar, I-11-8
Scalar field, 2-3 ff
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Scalar product, I-11-15 ff
of four-vectors, 25-5 ff

Scattering of light, I-32-1 ff
Schrödinger equation, 15-21, 41-20,

III-16-6, III-16-18 ff, III-20-28
for the hydrogen atom, III-19-1 ff
in a classical context, III-21-1 ff

Scientific method, I-2-2
Screw dislocations, 30-20 f
Screw jack, I-4-8
Second (unit), I-5-10
Seismograph, I-51-9
Self-inductance, 16-8, 17-20 ff
Semiconductor junction, III-14-15 ff
Rectification at a ∼, III-14-19 ff

Semiconductors, III-14-1 ff
Impure ∼, III-14-8 ff
n-type ∼, III-14-10
p-type ∼, III-14-10

Shear modulus, 38-10
Shear waves, I-51-8, 38-11 ff
Sheet of charge, 5-7 ff
Side bands, I-48-7 ff
Sigma electron, III-12-5
Sigma matrices, III-11-3
Sigma proton, III-12-6
Sigma vector, III-11-7
Simultaneity, I-15-13 f
Sinusoidal waves, I-29-4 ff
Skin depth, 32-18 ff
Slip dislocations, 30-20
Smooth muscle, I-14-3
Snell’s law, I-26-5, I-26-7, I-26-14, I-31-4,

33-1
Sodium, III-19-30 f
Solenoid, 13-11
Solid-state physics, 8-11
Sound, I-2-5, I-47-1 ff, I-50-4
Speed of ∼, I-47-12 f

Space, I-2-4, I-8-4

Curved ∼, 42-1 ff
Space-time, I-2-9, I-17-1 ff, 26-22

Geometry of ∼, I-17-1 ff
Special theory of relativity, I-15-1 ff
Specific heat, I-40-13 ff, 37-7

and the failure of classical physics,
I-40-16 ff

at constant volume, I-45-3
Speed, I-8-4 ff
and velocity, I-9-3 f
Greeks’ difficulties with ∼, I-8-4 f
of light, I-15-1, 18-16 f
of sound, I-47-12 f

Sphere of charge, 5-10 f
Spherical aberration, I-27-13, I-36-6
of an electron microscope, 29-10

Spherical harmonics, III-19-13
Spherically symmetric solutions, III-19-4 ff
Spherical waves, 20-20 ff, 21-4 ff
Spinel (MgAl2O4), 37-24
Spin one-half particles, III-6-1 ff,

III-12-1 ff
Precession of ∼, III-7-18 ff

Spin-one particles, III-5-1 ff
Spin orbit, 8-13
Spin-orbit interaction, III-15-25
Spin waves, III-15-1 ff
Spontaneous emission, I-42-15
Spontaneous magnetization, 36-24 ff
Standard deviation, I-6-15
States
Eigen∼, III-11-38
Excited ∼, 8-14, III-13-15
Ground ∼, III-7-3
of definite energy, III-13-5 ff
Stationary ∼, III-7-1 ff, III-11-38
Time-dependent ∼, III-13-10 ff

State vector, III-8-1 ff
Resolution of ∼s, III-8-4 ff

Stationary states, III-7-1 ff, III-11-38
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Statistical fluctuations, I-6-4 ff
Statistical mechanics, I-3-2, I-40-1 ff
Steady flow, 40-10 ff
Steap leader, 9-21
Stefan-Boltzmann constant, I-45-14
Stern-Gerlach apparatus, III-5-1 ff
Stern-Gerlach experiment, 35-4 ff,

III-35-4 ff
Stokes’ theorem, 3-17 ff
Strain, 38-3
Volume ∼, 38-6
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Striated (skeletal) muscle, I-14-3
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ρ density, I-47-6
ρ electric charge density, 2-15
σ cross section, I-5-15
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τ torque, I-18-7
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χ electric susceptibility, 10-7
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vx, vy, vz cartesian components of the velocity vector, I-8-15
v magnitude or component of velocity vector, I-8-7
V velocity, I-4-11
V voltage, I-23-9
V volume, I-39-4
V voltage, 17-21
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W weight, I-4-7
W work, I-14-2

x cartesian coordinate, I-1-11
xµ = (t, r) four-position, I-34-18

y cartesian coordinate, I-1-11
Yl,m(θ, φ) spherical harmonics, III-19-13
Y Young’s modulus, 38-3

z cartesian coordinate, I-1-11
Z complex impedance, I-23-12
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About Richard Feynman

Born in 1918 in New York City, Richard P. Feynman received his Ph.D.
from Princeton in 1942. Despite his youth, he played an important part in the
Manhattan Project at Los Alamos during World War II. Subsequently, he taught
at Cornell and at the California Institute of Technology. In 1965 he received the
Nobel Prize in Physics, along with Sin-Itiro Tomonaga and Julian Schwinger, for
his work in quantum electrodynamics.

Dr. Feynman won his Nobel Prize for successfully resolving problems with the
theory of quantum electrodynamics. He also created a mathematical theory that
accounts for the phenomenon of superfluidity in liquid helium. Thereafter, with
Murray Gell-Mann, he did fundamental work in the area of weak interactions such
as beta decay. In later years Feynman played a key role in the development of
quark theory by putting forward his parton model of high energy proton collision
processes.

Beyond these achievements, Dr. Feynman introduced basic new computa-
tional techniques and notations into physics—above all, the ubiquitous Feynman
diagrams that, perhaps more than any other formalism in recent scientific history,
have changed the way in which basic physical processes are conceptualized and
calculated.

Feynman was a remarkably effective educator. Of all his numerous awards,
he was especially proud of the Oersted Medal for Teaching, which he won in
1972. The Feynman Lectures on Physics, originally published in 1963, were
described by a reviewer in Scientific American as “tough, but nourishing and full
of flavor. After 25 years it is the guide for teachers and for the best of beginning
students.” In order to increase the understanding of physics among the lay public,
Dr. Feynman wrote The Character of Physical Law and QED: The Strange
Theory of Light and Matter. He also authored a number of advanced publications
that have become classic references and textbooks for researchers and students.

Richard Feynman was a constructive public man. His work on the Challenger
commission is well known, especially his famous demonstration of the susceptibility
of the O-rings to cold, an elegant experiment which required nothing more than
a glass of ice water and a C-clamp. Less well known were Dr. Feynman’s efforts
on the California State Curriculum Committee in the 1960s, where he protested
the mediocrity of textbooks.
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A recital of Richard Feynman’s myriad scientific and educational accomplish-
ments cannot adequately capture the essence of the man. As any reader of
even his most technical publications knows, Feynman’s lively and multi-sided
personality shines through all his work. Besides being a physicist, he was at
various times a repairer of radios, a picker of locks, an artist, a dancer, a bongo
player, and even a decipherer of Mayan Hieroglyphics. Perpetually curious about
his world, he was an exemplary empiricist.

Richard Feynman died on February 15, 1988, in Los Angeles.
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Preface to the New Millennium Edition

Nearly fifty years have passed since Richard Feynman taught the introductory
physics course at Caltech that gave rise to these three volumes, The Feynman
Lectures on Physics. In those fifty years our understanding of the physical
world has changed greatly, but The Feynman Lectures on Physics has endured.
Feynman’s lectures are as powerful today as when first published, thanks to
Feynman’s unique physics insights and pedagogy. They have been studied
worldwide by novices and mature physicists alike; they have been translated
into at least a dozen languages with more than 1.5 millions copies printed in the
English language alone. Perhaps no other set of physics books has had such wide
impact, for so long.

This New Millennium Edition ushers in a new era for The Feynman Lectures
on Physics (FLP): the twenty-first century era of electronic publishing. FLP
has been converted to eFLP, with the text and equations expressed in the LATEX
electronic typesetting language, and all figures redone using modern drawing
software.

The consequences for the print version of this edition are not startling; it
looks almost the same as the original red books that physics students have known
and loved for decades. The main differences are an expanded and improved index,
the correction of 885 errata found by readers over the five years since the first
printing of the previous edition, and the ease of correcting errata that future
readers may find. To this I shall return below.

The eBook Version of this edition, and the Enhanced Electronic Version are
electronic innovations. By contrast with most eBook versions of 20th century tech-
nical books, whose equations, figures and sometimes even text become pixellated
when one tries to enlarge them, the LATEX manuscript of the New Millennium
Edition makes it possible to create eBooks of the highest quality, in which all
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features on the page (except photographs) can be enlarged without bound and
retain their precise shapes and sharpness. And the Enhanced Electronic Version,
with its audio and blackboard photos from Feynman’s original lectures, and its
links to other resources, is an innovation that would have given Feynman great
pleasure.

Memories of Feynman’s Lectures

These three volumes are a self-contained pedagogical treatise. They are also a
historical record of Feynman’s 1961–64 undergraduate physics lectures, a course
required of all Caltech freshmen and sophomores regardless of their majors.

Readers may wonder, as I have, how Feynman’s lectures impacted the students
who attended them. Feynman, in his Preface to these volumes, offered a somewhat
negative view. “I don’t think I did very well by the students,” he wrote. Matthew
Sands, in his memoir in Feynman’s Tips on Physics expressed a far more positive
view. Out of curiosity, in spring 2005 I emailed or talked to a quasi-random set
of 17 students (out of about 150) from Feynman’s 1961–63 class—some who had
great difficulty with the class, and some who mastered it with ease; majors in
biology, chemistry, engineering, geology, mathematics and astronomy, as well as
in physics.

The intervening years might have glazed their memories with a euphoric tint,
but about 80 percent recall Feynman’s lectures as highlights of their college years.
“It was like going to church.” The lectures were “a transformational experience,”
“the experience of a lifetime, probably the most important thing I got from
Caltech.” “I was a biology major but Feynman’s lectures stand out as a high
point in my undergraduate experience . . . though I must admit I couldn’t do
the homework at the time and I hardly turned any of it in.” “I was among the
least promising of students in this course, and I never missed a lecture. . . . I
remember and can still feel Feynman’s joy of discovery. . . . His lectures had an
. . . emotional impact that was probably lost in the printed Lectures.”

By contrast, several of the students have negative memories due largely to two
issues: (i) “You couldn’t learn to work the homework problems by attending the
lectures. Feynman was too slick—he knew tricks and what approximations could
be made, and had intuition based on experience and genius that a beginning
student does not possess.” Feynman and colleagues, aware of this flaw in the
course, addressed it in part with materials that have been incorporated into
Feynman’s Tips on Physics: three problem-solving lectures by Feynman, and
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a set of exercises and answers assembled by Robert B. Leighton and Rochus
Vogt. (ii) “The insecurity of not knowing what was likely to be discussed in
the next lecture, the lack of a text book or reference with any connection to
the lecture material, and consequent inability for us to read ahead, were very
frustrating. . . . I found the lectures exciting and understandable in the hall, but
they were Sanskrit outside [when I tried to reconstruct the details].” This problem,
of course, was solved by these three volumes, the printed version of The Feynman
Lectures on Physics. They became the textbook from which Caltech students
studied for many years thereafter, and they live on today as one of Feynman’s
greatest legacies.

A History of Errata

The Feynman Lectures on Physics was produced very quickly by Feynman
and his co-authors, Robert B. Leighton and Matthew Sands, working from
and expanding on tape recordings and blackboard photos of Feynman’s course
lectures† (both of which are incorporated into the Enhanced Electronic Version
of this New Millennium Edition). Given the high speed at which Feynman,
Leighton and Sands worked, it was inevitable that many errors crept into the first
edition. Feynman accumulated long lists of claimed errata over the subsequent
years—errata found by students and faculty at Caltech and by readers around
the world. In the 1960’s and early 70’s, Feynman made time in his intense life
to check most but not all of the claimed errata for Volumes I and II, and insert
corrections into subsequent printings. But Feynman’s sense of duty never rose
high enough above the excitement of discovering new things to make him deal
with the errata in Volume III.‡ After his untimely death in 1988, lists of errata
for all three volumes were deposited in the Caltech Archives, and there they lay
forgotten.

In 2002 Ralph Leighton (son of the late Robert Leighton and compatriot of
Feynman) informed me of the old errata and a new long list compiled by Ralph’s

† For descriptions of the genesis of Feynman’s lectures and of these volumes, see Feynman’s
Preface and the Forewords to each of the three volumes, and also Matt Sands’ Memoir in
Feynman’s Tips on Physics, and the Special Preface to the Commemorative Edition of FLP,
written in 1989 by David Goodstein and Gerry Neugebauer, which also appears in the 2005
Definitive Edition.

‡ In 1975, he started checking errata for Volume III but got distracted by other things and
never finished the task, so no corrections were made.
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friend Michael Gottlieb. Leighton proposed that Caltech produce a new edition
of The Feynman Lectures with all errata corrected, and publish it alongside a new
volume of auxiliary material, Feynman’s Tips on Physics, which he and Gottlieb
were preparing.

Feynman was my hero and a close personal friend. When I saw the lists of
errata and the content of the proposed new volume, I quickly agreed to oversee
this project on behalf of Caltech (Feynman’s long-time academic home, to which
he, Leighton and Sands had entrusted all rights and responsibilities for The
Feynman Lectures). After a year and a half of meticulous work by Gottlieb, and
careful scrutiny by Dr. Michael Hartl (an outstanding Caltech postdoc who vetted
all errata plus the new volume), the 2005 Definitive Edition of The Feynman
Lectures on Physics was born, with about 200 errata corrected and accompanied
by Feynman’s Tips on Physics by Feynman, Gottlieb and Leighton.

I thought that edition was going to be “Definitive”. What I did not antic-
ipate was the enthusiastic response of readers around the world to an appeal
from Gottlieb to identify further errata, and submit them via a website that
Gottlieb created and continues to maintain, The Feynman Lectures Website,
www.feynmanlectures.info. In the five years since then, 965 new errata have
been submitted and survived the meticulous scrutiny of Gottlieb, Hartl, and Nate
Bode (an outstanding Caltech physics graduate student, who succeeded Hartl
as Caltech’s vetter of errata). Of these, 965 vetted errata, 80 were corrected in
the fourth printing of the Definitive Edition (August 2006) and the remaining
885 are corrected in the first printing of this New Millennium Edition (332 in
volume I, 263 in volume II, and 200 in volume III). For details of the errata, see
www.feynmanlectures.info.

Clearly, making The Feynman Lectures on Physics error-free has become a
world-wide community enterprise. On behalf of Caltech I thank the 50 readers
who have contributed since 2005 and the many more who may contribute over the
coming years. The names of all contributors are posted at www.feynmanlectures.
info/flp_errata.html.

Almost all the errata have been of three types: (i) typographical errors
in prose; (ii) typographical and mathematical errors in equations, tables and
figures—sign errors, incorrect numbers (e.g., a 5 that should be a 4), and missing
subscripts, summation signs, parentheses and terms in equations; (iii) incorrect
cross references to chapters, tables and figures. These kinds of errors, though
not terribly serious to a mature physicist, can be frustrating and confusing to
Feynman’s primary audience: students.
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It is remarkable that among the 1165 errata corrected under my auspices,
only several do I regard as true errors in physics. An example is Volume II,
page 5-9, which now says “. . . no static distribution of charges inside a closed
grounded conductor can produce any [electric] fields outside” (the word grounded
was omitted in previous editions). This error was pointed out to Feynman by a
number of readers, including Beulah Elizabeth Cox, a student at The College of
William and Mary, who had relied on Feynman’s erroneous passage in an exam.
To Ms. Cox, Feynman wrote in 1975,† “Your instructor was right not to give
you any points, for your answer was wrong, as he demonstrated using Gauss’s
law. You should, in science, believe logic and arguments, carefully drawn, and
not authorities. You also read the book correctly and understood it. I made a
mistake, so the book is wrong. I probably was thinking of a grounded conducting
sphere, or else of the fact that moving the charges around in different places
inside does not affect things on the outside. I am not sure how I did it, but I
goofed. And you goofed, too, for believing me.”

How this New Millennium Edition Came to Be

Between November 2005 and July 2006, 340 errata were submitted to The
Feynman Lectures Website www.feynmanlectures.info. Remarkably, the bulk
of these came from one person: Dr. Rudolf Pfeiffer, then a physics postdoctoral
fellow at the University of Vienna, Austria. The publisher, Addison Wesley, fixed
80 errata, but balked at fixing more because of cost: the books were being printed
by a photo-offset process, working from photographic images of the pages from
the 1960s. Correcting an error involved re-typesetting the entire page, and to
ensure no new errors crept in, the page was re-typeset twice by two different
people, then compared and proofread by several other people—a very costly
process indeed, when hundreds of errata are involved.

Gottlieb, Pfeiffer and Ralph Leighton were very unhappy about this, so they
formulated a plan aimed at facilitating the repair of all errata, and also aimed
at producing eBook and enhanced electronic versions of The Feynman Lectures
on Physics. They proposed their plan to me, as Caltech’s representative, in
2007. I was enthusiastic but cautious. After seeing further details, including a
one-chapter demonstration of the Enhanced Electronic Version, I recommended

† Pages 288–289 of Perfectly Reasonable Deviations from the Beaten Track, The Letters of
Richard P. Feynman, ed. Michelle Feynman (Basic Books, New York, 2005).
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that Caltech cooperate with Gottlieb, Pfeiffer and Leighton in the execution of
their plan. The plan was approved by three successive chairs of Caltech’s Division
of Physics, Mathematics and Astronomy—Tom Tombrello, Andrew Lange, and
Tom Soifer—and the complex legal and contractual details were worked out by
Caltech’s Intellectual Property Counsel, Adam Cochran. With the publication of
this New Millennium Edition, the plan has been executed successfully, despite
its complexity. Specifically:

Pfeiffer and Gottlieb have converted into LATEX all three volumes of FLP
(and also more than 1000 exercises from the Feynman course for incorporation
into Feynman’s Tips on Physics). The FLP figures were redrawn in modern
electronic form in India, under guidance of the FLP German translator, Henning
Heinze, for use in the German edition. Gottlieb and Pfeiffer traded non-exclusive
use of their LATEX equations in the German edition (published by Oldenbourg)
for non-exclusive use of Heinze’s figures in this New Millennium English edition.
Pfeiffer and Gottlieb have meticulously checked all the LATEX text and equations
and all the redrawn figures, and made corrections as needed. Nate Bode and
I, on behalf of Caltech, have done spot checks of text, equations, and figures;
and remarkably, we have found no errors. Pfeiffer and Gottlieb are unbelievably
meticulous and accurate. Gottlieb and Pfeiffer arranged for John Sullivan at the
Huntington Library to digitize the photos of Feynman’s 1962–64 blackboards,
and for George Blood Audio to digitize the lecture tapes—with financial support
and encouragement from Caltech Professor Carver Mead, logistical support from
Caltech Archivist Shelley Erwin, and legal support from Cochran.

The legal issues were serious: In the 1960s, Caltech licensed to Addison Wesley
rights to publish the print edition, and in the 1990s, rights to distribute the audio
of Feynman’s lectures and a variant of an electronic edition. In the 2000s, through
a sequence of acquisitions of those licenses, the print rights were transferred to
the Pearson publishing group, while rights to the audio and the electronic version
were transferred to the Perseus publishing group. Cochran, with the aid of Ike
Williams, an attorney who specializes in publishing, succeeded in uniting all of
these rights with Perseus (Basic Books), making possible this New Millennium
Edition.
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Feynman’s Preface

These are the lectures in physics that I gave last year and the year before
to the freshman and sophomore classes at Caltech. The lectures are, of course,
not verbatim—they have been edited, sometimes extensively and sometimes less
so. The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain
the interest of the very enthusiastic and rather smart students coming out of
the high schools and into Caltech. They have heard a lot about how interesting
and exciting physics is—the theory of relativity, quantum mechanics, and other
modern ideas. By the end of two years of our previous course, many would be
very discouraged because there were really very few grand, new, modern ideas
presented to them. They were made to study inclined planes, electrostatics, and
so forth, and after two years it was quite stultifying. The problem was whether
or not we could make a course which would save the more advanced and excited
student by maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. I thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of
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applications of the ideas and concepts in various directions outside the main line
of attack. For this reason, though, I tried very hard to make all the statements
as accurate as possible, to point out in every case where the equations and ideas
fitted into the body of physics, and how—when they learned more—things would
be modified. I also felt that for such students it is important to indicate what
it is that they should—if they are sufficiently clever—be able to understand by
deduction from what has been said before, and what is being put in as something
new. When new ideas came in, I would try either to deduce them if they were
deducible, or to explain that it was a new idea which hadn’t any basis in terms of
things they had already learned and which was not supposed to be provable—but
was just added in.

At the start of these lectures, I assumed that the students knew something
when they came out of high school—such things as geometrical optics, simple
chemistry ideas, and so on. I also didn’t see that there was any reason to make the
lectures in a definite order, in the sense that I would not be allowed to mention
something until I was ready to discuss it in detail. There was a great deal of
mention of things to come, without complete discussions. These more complete
discussions would come later when the preparation became more advanced.
Examples are the discussions of inductance, and of energy levels, which are at
first brought in in a very qualitative way and are later developed more completely.

At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side applications are
merely disquieting and who cannot be expected to learn most of the material
in the lecture at all. For such students I wanted there to be at least a central
core or backbone of material which he could get. Even if he didn’t understand
everything in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to
understand everything, but only the central and most direct features. It takes,
of course, a certain intelligence on his part to see which are the central theorems
and central ideas, and which are the more advanced side issues and applications
which he may understand only in later years.

In giving these lectures there was one serious difficulty: in the way the course
was given, there wasn’t any feedback from the students to the lecturer to indicate
how well the lectures were going over. This is indeed a very serious difficulty, and
I don’t know how good the lectures really are. The whole thing was essentially
an experiment. And if I did it again I wouldn’t do it the same way—I hope I
don’t have to do it again! I think, though, that things worked out—so far as the
physics is concerned—quite satisfactorily in the first year.
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In the second year I was not so satisfied. In the first part of the course, dealing
with electricity and magnetism, I couldn’t think of any really unique or different
way of doing it—of any way that would be particularly more exciting than the
usual way of presenting it. So I don’t think I did very much in the lectures on
electricity and magnetism. At the end of the second year I had originally intended
to go on, after the electricity and magnetism, by giving some more lectures on
the properties of materials, but mainly to take up things like fundamental modes,
solutions of the diffusion equation, vibrating systems, orthogonal functions, . . .
developing the first stages of what are usually called “the mathematical methods
of physics.” In retrospect, I think that if I were doing it again I would go back
to that original idea. But since it was not planned that I would be giving these
lectures again, it was suggested that it might be a good idea to try to give an
introduction to the quantum mechanics—what you will find in Volume III.

It is perfectly clear that students who will major in physics can wait until
their third year for quantum mechanics. On the other hand, the argument was
made that many of the students in our course study physics as a background for
their primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of students
because they have to take so long to learn it. Yet, in its real applications—
especially in its more complex applications, such as in electrical engineering
and chemistry—the full machinery of the differential equation approach is not
actually used. So I tried to describe the principles of quantum mechanics in
a way which wouldn’t require that one first know the mathematics of partial
differential equations. Even for a physicist I think that is an interesting thing
to try to do—to present quantum mechanics in this reverse fashion—for several
reasons which may be apparent in the lectures themselves. However, I think that
the experiment in the quantum mechanics part was not completely successful—in
large part because I really did not have enough time at the end (I should, for
instance, have had three or four more lectures in order to deal more completely
with such matters as energy bands and the spatial dependence of amplitudes).
Also, I had never presented the subject this way before, so the lack of feedback was
particularly serious. I now believe the quantum mechanics should be given at a
later time. Maybe I’ll have a chance to do it again someday. Then I’ll do it right.

The reason there are no lectures on how to solve problems is because there
were recitation sections. Although I did put in three lectures in the first year on
how to solve problems, they are not included here. Also there was a lecture on
inertial guidance which certainly belongs after the lecture on rotating systems,
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but which was, unfortunately, omitted. The fifth and sixth lectures are actually
due to Matthew Sands, as I was out of town.

The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the people
who worked with the students—is pessimistic. I don’t think I did very well by
the students. When I look at the way the majority of the students handled the
problems on the examinations, I think that the system is a failure. Of course,
my friends point out to me that there were one or two dozen students who—very
surprisingly—understood almost everything in all of the lectures, and who were
quite active in working with the material and worrying about the many points
in an excited and interested way. These people have now, I believe, a first-rate
background in physics—and they are, after all, the ones I was trying to get at.
But then, “The power of instruction is seldom of much efficacy except in those
happy dispositions where it is almost superfluous.” (Gibbon)

Still, I didn’t want to leave any student completely behind, as perhaps I did.
I think one way we could help the students more would be by putting more hard
work into developing a set of problems which would elucidate some of the ideas
in the lectures. Problems give a good opportunity to fill out the material of the
lectures and make more realistic, more complete, and more settled in the mind
the ideas that have been exposed.

I think, however, that there isn’t any solution to this problem of education
other than to realize that the best teaching can be done only when there is a
direct individual relationship between a student and a good teacher—a situation
in which the student discusses the ideas, thinks about the things, and talks about
the things. It’s impossible to learn very much by simply sitting in a lecture, or
even by simply doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find some substitute for
the ideal. Perhaps my lectures can make some contribution. Perhaps in some
small place where there are individual teachers and students, they may get some
inspiration or some ideas from the lectures. Perhaps they will have fun thinking
them through—or going on to develop some of the ideas further.

Richard P. Feynman
June, 1963
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Foreword

A great triumph of twentieth-century physics, the theory of quantum mechan-
ics, is now nearly 40 years old, yet we have generally been giving our students
their introductory course in physics (for many students, their last) with hardly
more than a casual allusion to this central part of our knowledge of the physical
world. We should do better by them. These lectures are an attempt to present
them with the basic and essential ideas of the quantum mechanics in a way
that would, hopefully, be comprehensible. The approach you will find here is
novel, particularly at the level of a sophomore course, and was considered very
much an experiment. After seeing how easily some of the students take to it,
however, I believe that the experiment was a success. There is, of course, room
for improvement, and it will come with more experience in the classroom. What
you will find here is a record of that first experiment.

In the two-year sequence of the Feynman Lectures on Physics which were
given from September 1961 through May 1963 for the introductory physics course
at Caltech, the concepts of quantum physics were brought in whenever they were
necessary for an understanding of the phenomena being described. In addition,
the last twelve lectures of the second year were given over to a more coherent
introduction to some of the concepts of quantum mechanics. It became clear
as the lectures drew to a close, however, that not enough time had been left
for the quantum mechanics. As the material was prepared, it was continually
discovered that other important and interesting topics could be treated with the
elementary tools that had been developed. There was also a fear that the too
brief treatment of the Schrödinger wave function which had been included in the
twelfth lecture would not provide a sufficient bridge to the more conventional
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treatments of many books the students might hope to read. It was therefore
decided to extend the series with seven additional lectures; they were given to
the sophomore class in May of 1964. These lectures rounded out and extended
somewhat the material developed in the earlier lectures.

In this volume we have put together the lectures from both years with some
adjustment of the sequence. In addition, two lectures originally given to the
freshman class as an introduction to quantum physics have been lifted bodily
from Volume I (where they were Chapters 37 and 38) and placed as the first two
chapters here—to make this volume a self-contained unit, relatively independent
of the first two. A few ideas about the quantization of angular momentum
(including a discussion of the Stern-Gerlach experiment) had been introduced in
Chapters 34 and 35 of Volume II, and familiarity with them is assumed; for the
convenience of those who will not have that volume at hand, those two chapters
are reproduced here as an Appendix.

This set of lectures tries to elucidate from the beginning those features of the
quantum mechanics which are most basic and most general. The first lectures
tackle head on the ideas of a probability amplitude, the interference of amplitudes,
the abstract notion of a state, and the superposition and resolution of states—
and the Dirac notation is used from the start. In each instance the ideas are
introduced together with a detailed discussion of some specific examples—to try
to make the physical ideas as real as possible. The time dependence of states
including states of definite energy comes next, and the ideas are applied at once
to the study of two-state systems. A detailed discussion of the ammonia maser
provides the frame-work for the introduction to radiation absorption and induced
transitions. The lectures then go on to consider more complex systems, leading to
a discussion of the propagation of electrons in a crystal, and to a rather complete
treatment of the quantum mechanics of angular momentum. Our introduction
to quantum mechanics ends in Chapter 20 with a discussion of the Schrödinger
wave function, its differential equation, and the solution for the hydrogen atom.

The last chapter of this volume is not intended to be a part of the “course.”
It is a “seminar” on superconductivity and was given in the spirit of some of the
entertainment lectures of the first two volumes, with the intent of opening to the
students a broader view of the relation of what they were learning to the general
culture of physics. Feynman’s “epilogue” serves as the period to the three-volume
series.

As explained in the Foreword to Volume I, these lectures were but one aspect
of a program for the development of a new introductory course carried out at the
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California Institute of Technology under the supervision of the Physics Course
Revision Committee (Robert Leighton, Victor Neher, and Matthew Sands). The
program was made possible by a grant from the Ford Foundation. Many people
helped with the technical details of the preparation of this volume: Marylou
Clayton, Julie Curcio, James Hartle, Tom Harvey, Martin Israel, Patricia Preuss,
Fanny Warren, and Barbara Zimmerman. Professors Gerry Neugebauer and
Charles Wilts contributed greatly to the accuracy and clarity of the material by
reviewing carefully much of the manuscript.

But the story of quantum mechanics you will find here is Richard Feynman’s.
Our labors will have been well spent if we have been able to bring to others even
some of the intellectual excitement we experienced as we saw the ideas unfold in
his real-life Lectures on Physics.

Matthew Sands
December, 1964
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1

Quantum Behavior

Note: This chapter is almost exactly the same as Chapter 37 of Volume I.

1-1 Atomic mechanics

“Quantum mechanics” is the description of the behavior of matter and light
in all its details and, in particular, of the happenings on an atomic scale. Things
on a very small scale behave like nothing that you have any direct experience
about. They do not behave like waves, they do not behave like particles, they do
not behave like clouds, or billiard balls, or weights on springs, or like anything
that you have ever seen.

Newton thought that light was made up of particles, but then it was discovered
that it behaves like a wave. Later, however (in the beginning of the twentieth
century), it was found that light did indeed sometimes behave like a particle.
Historically, the electron, for example, was thought to behave like a particle, and
then it was found that in many respects it behaved like a wave. So it really
behaves like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of the 20th century, which gave some indications
about how small things do behave, produced an increasing confusion which was
finally resolved in 1926 and 1927 by Schrödinger, Heisenberg, and Born. They
finally obtained a consistent description of the behavior of matter on a small
scale. We take up the main features of that description in this chapter.
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Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to, and it appears peculiar and mysterious to everyone—both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just
do not act that way. So we have to learn about them in a sort of abstract or
imaginative fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will have told you about
the basic peculiarities of all quantum mechanics.

1-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
familiar behavior of particles like bullets, and with the behavior of waves like
water waves. We consider first the behavior of bullets in the experimental setup
shown diagrammatically in Fig. 1-1. We have a machine gun that shoots a stream

GUN

(a)

WALL

1

2

x

MOVABLE
DETECTOR

BACKSTOP

(b)

P1

P2

(c)

P12

P12 = P1 + P2

Fig. 1-1. Interference experiment with bullets.
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of bullets. It is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
a wall (made of armor plate) that has in it two holes just about big enough to let
a bullet through. Beyond the wall is a backstop (say a thick wall of wood) which
will “absorb” the bullets when they hit it. In front of the wall we have an object
which we shall call a “detector” of bullets. It might be a box containing sand. Any
bullet that enters the detector will be stopped and accumulated. When we wish,
we can empty the box and count the number of bullets that have been caught.
The detector can be moved back and forth (in what we will call the x-direction).
With this apparatus, we can find out experimentally the answer to the question:
“What is the probability that a bullet which passes through the holes in the wall
will arrive at the backstop at the distance x from the center?” First, you should
realize that we should talk about probability, because we cannot say definitely
where any particular bullet will go. A bullet which happens to hit one of the
holes may bounce off the edges of the hole, and may end up anywhere at all. By
“probability” we mean the chance that the bullet will arrive at the detector, which
we can measure by counting the number which arrive at the detector in a certain
time and then taking the ratio of this number to the total number that hit the
backstop during that time. Or, if we assume that the gun always shoots at the
same rate during the measurements, the probability we want is just proportional
to the number that reach the detector in some standard time interval.

For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any
given moment either nothing arrives, or one and only one—exactly one—bullet
arrives at the backstop. Also, the size of the lump certainly does not depend on
the rate of firing of the gun. We shall say: “Bullets always arrive in identical
lumps.” What we measure with our detector is the probability of arrival of a
lump. And we measure the probability as a function of x. The result of such
measurements with this apparatus (we have not yet done the experiment, so we
are really imagining the result) are plotted in the graph drawn in part (c) of
Fig. 1-1. In the graph we plot the probability to the right and x vertically, so
that the x-scale fits the diagram of the apparatus. We call the probability P12
because the bullets may have come either through hole 1 or through hole 2. You
will not be surprised that P12 is large near the middle of the graph but gets
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small if x is very large. You may wonder, however, why P12 has its maximum
value at x = 0. We can understand this fact if we do our experiment again after
covering up hole 2, and once more while covering up hole 1. When hole 2 is
covered, bullets can pass only through hole 1, and we get the curve marked P1 in
part (b) of the figure. As you would expect, the maximum of P1 occurs at the
value of x which is on a straight line with the gun and hole 1. When hole 1 is
closed, we get the symmetric curve P2 drawn in the figure. P2 is the probability
distribution for bullets that pass through hole 2. Comparing parts (b) and (c) of
Fig. 1-1, we find the important result that

P12 = P1 + P2. (1.1)

The probabilities just add together. The effect with both holes open is the sum
of the effects with each hole open alone. We shall call this result an observation
of “no interference,” for a reason that you will see later. So much for bullets.
They come in lumps, and their probability of arrival shows no interference.

1-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus
is shown diagrammatically in Fig. 1-2. We have a shallow trough of water. A
small object labeled the “wave source” is jiggled up and down by a motor and
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Fig. 1-2. Interference experiment with water waves.
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makes circular waves. To the right of the source we have again a wall with two
holes, and beyond that is a second wall, which, to keep things simple, is an
“absorber,” so that there is no reflection of the waves that arrive there. This can
be done by building a gradual sand “beach.” In front of the beach we place a
detector which can be moved back and forth in the x-direction, as before. The
detector is now a device which measures the “intensity” of the wave motion. You
can imagine a gadget which measures the height of the wave motion, but whose
scale is calibrated in proportion to the square of the actual height, so that the
reading is proportional to the intensity of the wave. Our detector reads, then, in
proportion to the energy being carried by the wave—or rather, the rate at which
energy is carried to the detector.

With our wave apparatus, the first thing to notice is that the intensity can have
any size. If the source just moves a very small amount, then there is just a little bit
of wave motion at the detector. When there is more motion at the source, there
is more intensity at the detector. The intensity of the wave can have any value
at all. We would not say that there was any “lumpiness” in the wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked I12 in part (c) of the figure.

We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume I. In this case we would
observe that the original wave is diffracted at the holes, and new circular waves
spread out from each hole. If we cover one hole at a time and measure the
intensity distribution at the absorber we find the rather simple intensity curves
shown in part (b) of the figure. I1 is the intensity of the wave from hole 1 (which
we find by measuring when hole 2 is blocked off) and I2 is the intensity of the
wave from hole 2 (seen when hole 1 is blocked).

The intensity I12 observed when both holes are open is certainly not the sum
of I1 and I2. We say that there is “interference” of the two waves. At some places
(where the curve I12 has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity.
We say that the two waves are “interfering constructively” at such places. There
will be such constructive interference wherever the distance from the detector to
one hole is a whole number of wavelengths larger (or shorter) than the distance
from the detector to the other hole.

At those places where the two waves arrive at the detector with a phase
difference of π (where they are “out of phase”) the resulting wave motion at
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the detector will be the difference of the two amplitudes. The waves “interfere
destructively,” and we get a low value for the wave intensity. We expect such low
values wherever the distance between hole 1 and the detector is different from the
distance between hole 2 and the detector by an odd number of half-wavelengths.
The low values of I12 in Fig. 1-2 correspond to the places where the two waves
interfere destructively.

You will remember that the quantitative relationship between I1, I2, and I12
can be expressed in the following way: The instantaneous height of the water
wave at the detector for the wave from hole 1 can be written as (the real part
of) h1e

iωt, where the “amplitude” h1 is, in general, a complex number. The
intensity is proportional to the mean squared height or, when we use the complex
numbers, to the absolute value squared |h1|2. Similarly, for hole 2 the height
is h2e

iωt and the intensity is proportional to |h2|2. When both holes are open,
the wave heights add to give the height (h1 +h2)eiωt and the intensity |h1 + h2|2.
Omitting the constant of proportionality for our present purposes, the proper
relations for interfering waves are

I1 = |h1|2, I2 = |h2|2, I12 = |h1 + h2|2. (1.2)

You will notice that the result is quite different from that obtained with
bullets (Eq. 1.1). If we expand |h1 + h2|2 we see that

|h1 + h2|2 = |h1|2 + |h2|2 + 2|h1||h2| cos δ, (1.3)

where δ is the phase difference between h1 and h2. In terms of the intensities,
we could write

I12 = I1 + I2 + 2
√
I1I2 cos δ. (1.4)

The last term in (1.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

1-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 1-3. We make an electron gun which consists of a tungsten wire
heated by an electric current and surrounded by a metal box with a hole in it. If
the wire is at a negative voltage with respect to the box, electrons emitted by
the wire will be accelerated toward the walls and some will pass through the hole.
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Fig. 1-3. Interference experiment with electrons.

All the electrons which come out of the gun will have (nearly) the same energy.
In front of the gun is again a wall (just a thin metal plate) with two holes in it.
Beyond the wall is another plate which will serve as a “backstop.” In front of the
backstop we place a movable detector. The detector might be a geiger counter
or, perhaps better, an electron multiplier, which is connected to a loudspeaker.

We should say right away that you should not try to set up this experiment (as
you could have done with the two we have already described). This experiment
has never been done in just this way. The trouble is that the apparatus would
have to be made on an impossibly small scale to show the effects we are interested
in. We are doing a “thought experiment,” which we have chosen because it is easy
to think about. We know the results that would be obtained because there are
many experiments that have been done, in which the scale and the proportions
have been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks” from the detector (that is, from the loudspeaker). And all “clicks” are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click . . . . . click-click . . . click . . . . . . . . click . . . . click-click . . . . . . click . . . , etc.,
just as you have, no doubt, heard a geiger counter operating. If we count the
clicks which arrive in a sufficiently long time—say for many minutes—and then
count again for another equal period, we find that the two numbers are very
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nearly the same. So we can speak of the average rate at which the clicks are
heard (so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower
the temperature of the wire in the gun, the rate of clicking slows down, but still
each click sounds the same. We would notice also that if we put two separate
detectors at the backstop, one or the other would click, but never both at once.
(Except that once in a while, if there were two clicks very close together in time,
our ear might not sense the separation.) We conclude, therefore, that whatever
arrives at the backstop arrives in “lumps.” All the “lumps” are the same size:
only whole “lumps” arrive, and they arrive one at a time at the backstop. We
shall say: “Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find exper-
imentally the answer to the question: “What is the relative probability that
an electron ‘lump’ will arrive at the backstop at various distances x from the
center?” As before, we obtain the relative probability by observing the rate of
clicks, holding the operation of the gun constant. The probability that lumps
will arrive at a particular x is proportional to the average rate of clicks at that x.

The result of our experiment is the interesting curve marked P12 in part (c)
of Fig. 1-3. Yes! That is the way electrons go.

1-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 1-3 to see whether we can understand
the behavior of the electrons. The first thing we would say is that since they
come in lumps, each lump, which we may as well call an electron, has come either
through hole 1 or through hole 2. Let us write this in the form of a “Proposition”:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Proposition A, all electrons that arrive at the backstop can be
divided into two classes: (1) those that come through hole 1, and (2) those that
come through hole 2. So our observed curve must be the sum of the effects of
the electrons which come through hole 1 and the electrons which come through
hole 2. Let us check this idea by experiment. First, we will make a measurement
for those electrons that come through hole 1. We block off hole 2 and make
our counts of the clicks from the detector. From the clicking rate, we get P1.
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The result of the measurement is shown by the curve marked P1 in part (b) of
Fig. 1-3. The result seems quite reasonable. In a similar way, we measure P2, the
probability distribution for the electrons that come through hole 2. The result of
this measurement is also drawn in the figure.

The result P12 obtained with both holes open is clearly not the sum of P1
and P2, the probabilities for each hole alone. In analogy with our water-wave
experiment, we say: “There is interference.”

For electrons: P12 6= P1 + P2. (1.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through
hole 1 or hole 2, because if they did, the probabilities should add. Perhaps they
go in a more complicated way. They split in half and . . . ” But no! They cannot,
they always arrive in lumps . . . “Well, perhaps some of them go through 1, and
then they go around through 2, and then around a few more times, or by some
other complicated path . . . then by closing hole 2, we changed the chance that
an electron that started out through hole 1 would finally get to the backstop . . . ”
But notice! There are some points at which very few electrons arrive when both
holes are open, but which receive many electrons if we close one hole, so closing
one hole increased the number from the other. Notice, however, that at the
center of the pattern, P12 is more than twice as large as P1 + P2. It is as though
closing one hole decreased the number of electrons which come through the other
hole. It seems hard to explain both effects by proposing that the electrons travel
in complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for P12
in terms of individual electrons going around in complicated ways through the
holes. None of them has succeeded. None of them can get the right curve for P12
in terms of P1 and P2.

Yet, surprisingly enough, the mathematics for relating P1 and P2 to P12 is
extremely simple. For P12 is just like the curve I12 of Fig. 1-2, and that was simple.
What is going on at the backstop can be described by two complex numbers that
we can call φ1 and φ2 (they are functions of x, of course). The absolute square
of φ1 gives the effect with only hole 1 open. That is, P1 = |φ1|2. The effect with
only hole 2 open is given by φ2 in the same way. That is, P2 = |φ2|2. And the
combined effect of the two holes is just P12 = |φ1 + φ2|2. The mathematics is the
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same as that we had for the water waves! (It is hard to see how one could get
such a simple result from a complicated game of electrons going back and forth
through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the intensity
as the mean over time of the square of the wave amplitude, and we used complex
numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex
numbers. The real parts alone will not do. That is a technical point, for the
moment, because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
it is not equal to (P1 + P2), that is really all there is to say. But there are a
large number of subtleties involved in the fact that nature does work this way.
We would like to illustrate some of these subtleties for you now. First, since the
number that arrives at a particular point is not equal to the number that arrives
through 1 plus the number that arrives through 2, as we would have concluded
from Proposition A, undoubtedly we should conclude that Proposition A is false.
It is not true that the electrons go either through hole 1 or hole 2. But that
conclusion can be tested by another experiment.

1-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the two holes,
as shown in Fig. 1-4. We know that electric charges scatter light. So when an
electron passes, however it does pass, on its way to the detector, it will scatter
some light to our eye, and we can see where the electron goes. If, for instance, an
electron were to take the path via hole 2 that is sketched in Fig. 1-4, we should
see a flash of light coming from the vicinity of the place marked A in the figure. If
an electron passes through hole 1, we would expect to see a flash from the vicinity
of the upper hole. If it should happen that we get light from both places at the
same time, because the electron divides in half . . . Let us just do the experiment!

Here is what we see: every time that we hear a “click” from our electron
detector (at the backstop), we also see a flash of light either near hole 1 or near
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Fig. 1-4. A different electron experiment.

hole 2, but never both at once! And we observe the same result no matter where
we put the detector. From this observation we conclude that when we look at
the electrons we find that the electrons go either through one hole or the other.
Experimentally, Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t P12
just equal to P1 + P2? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they
went through, by watching for the flashes. We can keep track of things this
way: whenever we hear a “click” we will put a count in Column 1 if we see the
flash near hole 1, and if we see the flash near hole 2, we will record a count
in Column 2. Every electron which arrives is recorded in one of two classes:
those which come through 1 and those which come through 2. From the number
recorded in Column 1 we get the probability P ′1 that an electron will arrive at
the detector via hole 1; and from the number recorded in Column 2 we get P ′2,
the probability that an electron will arrive at the detector via hole 2. If we now
repeat such a measurement for many values of x, we get the curves for P ′1 and P ′2
shown in part (b) of Fig. 1-4.

Well, that is not too surprising! We get for P ′1 something quite similar to
what we got before for P1 by blocking off hole 2; and P ′2 is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
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expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is
open or closed.

But wait! What do we have now for the total probability, the probability
that an electron will arrive at the detector by any route? We already have that
information. We just pretend that we never looked at the light flashes, and we
lump together the detector clicks which we have separated into the two columns.
We must just add the numbers. For the probability that an electron will arrive
at the backstop by passing through either hole, we do find P ′12 = P ′1 + P ′2. That
is, although we succeeded in watching which hole our electrons come through,
we no longer get the old interference curve P12, but a new one, P ′12, showing no
interference! If we turn out the light P12 is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on
our light source that disturbs things? It must be that the electrons are very
delicate, and the light, when it scatters off the electrons, gives them a jolt that
changes their motion. We know that the electric field of the light acting on a
charge will exert a force on it. So perhaps we should expect the motion to be
changed. Anyway, the light exerts a big influence on the electrons. By trying to
“watch” the electrons we have changed their motions. That is, the jolt given to
the electron when the photon is scattered by it is such as to change the electron’s
motion enough so that if it might have gone to where P12 was at a maximum it
will instead land where P12 was a minimum; that is why we no longer see the
wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave will
be weak enough that it will have a negligible effect.” O.K. Let’s try it. The first
thing we observe is that the flashes of light scattered from the electrons as they
pass by does not get weaker. It is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a “click”
from the detector but see no flash at all. The electron has gone by without being
“seen.” What we are observing is that light also acts like electrons, we knew that
it was “wavy,” but now we find that it is also “lumpy.” It always arrives—or is
scattered—in lumps that we call “photons.” As we turn down the intensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some electrons get
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by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we “see” the electron
we see the same-sized flash, then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we
hear a click in the detector we will keep a count in three columns: in Column (1)
those electrons seen by hole 1, in Column (2) those electrons seen by hole 2,
and in Column (3) those electrons not seen at all. When we work up our data
(computing the probabilities) we find these results: Those “seen by hole 1” have
a distribution like P ′1; those “seen by hole 2” have a distribution like P ′2 (so that
those “seen by either hole 1 or 2” have a distribution like P ′12); and those “not
seen at all” have a “wavy” distribution just like P12 of Fig. 1-3! If the electrons
are not seen, we have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized
effects and the effect of the photons being scattered is enough to smear out any
interference effect.

Is there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon” is
inversely proportional to its wavelength (p = h/λ). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! If we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
“see” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler” light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with longer waves. We shall keep repeating our
experiment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave
nature of the light, there is a limitation on how close two spots can be and still
be seen as two separate spots. This distance is of the order of the wavelength of
light. So now, when we make the wavelength longer than the distance between
our holes, we see a big fuzzy flash when the light is scattered by the electrons.
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We can no longer tell which hole the electron went through! We just know it went
somewhere! And it is just with light of this color that we find that the jolts given
to the electron are small enough so that P ′12 begins to look like P12—that we
begin to get some interference effect. And it is only for wavelengths much longer
than the separation of the two holes (when we have no chance at all of telling
where the electron went) that the disturbance due to the light gets sufficiently
small that we again get the curve P12 shown in Fig. 1-3.

In our experiment we find that it is impossible to arrange the light in such
a way that one can tell which hole the electron went through, and at the same
time not disturb the pattern. It was suggested by Heisenberg that the then
new laws of nature could only be consistent if there were some basic limitation
on our experimental capabilities not previously recognized. He proposed, as a
general principle, his uncertainty principle, which we can state in terms of our
experiment as follows: “It is impossible to design an apparatus to determine
which hole the electron passes through, that will not at the same time disturb the
electrons enough to destroy the interference pattern.” If an apparatus is capable
of determining which hole the electron goes through, it cannot be so delicate
that it does not disturb the pattern in an essential way. No one has ever found
(or even thought of) a way around the uncertainty principle. So we must assume
that it describes a basic characteristic of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the uncertainty
principle. Since quantum mechanics is such a successful theory, our belief in
the uncertainty principle is reinforced. But if a way to “beat” the uncertainty
principle were ever discovered, quantum mechanics would give inconsistent results
and would have to be discarded as a valid theory of nature.

“Well,” you say, “what about Proposition A? Is it true, or is it not true,
that the electron either goes through hole 1 or it goes through hole 2?” The only
answer that can be given is that we have found from experiment that there is
a certain special way that we have to think in order that we do not get into
inconsistencies. What we must say (to avoid making wrong predictions) is the
following. If one looks at the holes or, more accurately, if one has a piece of
apparatus which is capable of determining whether the electrons go through
hole 1 or hole 2, then one can say that it goes either through hole 1 or hole 2. But,
when one does not try to tell which way the electron goes, when there is nothing
in the experiment to disturb the electrons, then one may not say that an electron
goes either through hole 1 or hole 2. If one does say that, and starts to make any
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deductions from the statement, he will make errors in the analysis. This is the
logical tightrope on which we must walk if we wish to describe nature successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see an
interference pattern there? It turns out that for the bullets the wavelengths were
so tiny that the interference patterns became very fine. So fine, in fact, that with
any detector of finite size one could not distinguish the separate maxima and
minima. What we saw was only a kind of average, which is the classical curve.
In Fig. 1-5 we have tried to indicate schematically what happens with large-scale
objects. Part (a) of the figure shows the probability distribution one might
predict for bullets, using quantum mechanics. The rapid wiggles are supposed to
represent the interference pattern one gets for waves of very short wavelength.
Any physical detector, however, straddles several wiggles of the probability curve,
so that the measurements show the smooth curve drawn in part (b) of the figure.

(a)

P12

(b)

P12 (smoothed)

x

Fig. 1-5. Interference pattern with bullets: (a) actual (schematic),
(b) observed.

1-7 First principles of quantum mechanics

We will now write a summary of the main conclusions of our experiments. We
will, however, put the results in a form which makes them true for a general class
of such experiments. We can write our summary more simply if we first define
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an “ideal experiment” as one in which there are no uncertain external influences,
i.e., no jiggling or other things going on that we cannot take into account. We
would be quite precise if we said: “An ideal experiment is one in which all of the
initial and final conditions of the experiment are completely specified.” What we
will call “an event” is, in general, just a specific set of initial and final conditions.
(For example: “an electron leaves the gun, arrives at the detector, and nothing
else happens.”) Now for our summary.

Summary

(1) The probability of an event in an ideal experiment is given by the square
of the absolute value of a complex number φ which is called the probability
amplitude:

P = probability,
φ = probability amplitude,
P = |φ|2.

(1.6)

(2) When an event can occur in several alternative ways, the probability
amplitude for the event is the sum of the probability amplitudes for each
way considered separately. There is interference:

φ = φ1 + φ2,

P = |φ1 + φ2|2.
(1.7)

(3) If an experiment is performed which is capable of determining whether one
or another alternative is actually taken, the probability of the event is the
sum of the probabilities for each alternative. The interference is lost:

P = P1 + P2. (1.8)

One might still like to ask: “How does it work? What is the machinery
behind the law?” No one has found any machinery behind the law. No one can
“explain” any more than we have just “explained.” No one will give you any deeper
representation of the situation. We have no ideas about a more basic mechanism
from which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
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will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance, and we
believe now that it is impossible—that the only thing that can be predicted is the
probability of different events. It must be recognized that this is a retrenchment
in our earlier ideal of understanding nature. It may be a backward step, but no
one has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: “Perhaps the electron has some
kind of internal works—some inner variables—that we do not yet know about.
Perhaps that is why we cannot predict what will happen. If we could look more
closely at the electron, we could be able to tell where it would end up.” So far as
we know, that is impossible. We would still be in difficulty. Suppose we were to
assume that inside the electron there is some kind of machinery that determines
where it is going to end up. That machine must also determine which hole it is
going to go through on its way. But we must not forget that what is inside the
electron should not be dependent on what we do, and in particular upon whether
we open or close one of the holes. So if an electron, before it starts, has already
made up its mind (a) which hole it is going to use, and (b) where it is going to
land, we should find P1 for those electrons that have chosen hole 1, P2 for those
that have chosen hole 2, and necessarily the sum P1 + P2 for those that arrive
through the two holes. There seems to be no way around this. But we have
verified experimentally that that is not the case. And no one has figured a way
out of this puzzle. So at the present time we must limit ourselves to computing
probabilities. We say “at the present time,” but we suspect very strongly that
it is something that will be with us forever—that it is impossible to beat that
puzzle—that this is the way nature really is.

1-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component
of its momentum with an uncertainty ∆p, you cannot, at the same time, know its
x-position more accurately than ∆x ≥ ~/2∆p, where ~ is a definite fixed number
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given by nature. It is called the “reduced Planck constant,” and is approximately
1.05× 10−34 joule-seconds. The uncertainties in the position and momentum of
a particle at any instant must have their product greater than half the reduced
Planck constant. This is a special case of the uncertainty principle that was
stated above more generally. The more general statement was that one cannot
design equipment in any way to determine which of two alternatives is taken,
without, at the same time, destroying the pattern of interference.
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Fig. 1-6. An experiment in which the recoil of the wall is measured.

Let us show for one particular case that the kind of relation given by Heisenberg
must be true in order to keep from getting into trouble. We imagine a modification
of the experiment of Fig. 1-3, in which the wall with the holes consists of a plate
mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 1-6. By watching the motion of the plate carefully we can
try to tell which hole an electron goes through. Imagine what happens when
the detector is placed at x = 0. We would expect that an electron which
passes through hole 1 must be deflected downward by the plate to reach the
detector. Since the vertical component of the electron momentum is changed,
the plate must recoil with an equal momentum in the opposite direction. The
plate will get an upward kick. If the electron goes through the lower hole, the
plate should feel a downward kick. It is clear that for every position of the
detector, the momentum received by the plate will have a different value for
a traversal via hole 1 than for a traversal via hole 2. So! Without disturbing
the electrons at all, but just by watching the plate, we can tell which path the
electron used.
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Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is, we cannot say precisely where the two holes
are. They will be in a different place for every electron that goes through. This
means that the center of our interference pattern will have a different location for
each electron. The wiggles of the interference pattern will be smeared out. We
shall show quantitatively in the next chapter that if we determine the momentum
of the plate sufficiently accurately to determine from the recoil measurement
which hole was used, then the uncertainty in the x-position of the plate will,
according to the uncertainty principle, be enough to shift the pattern observed at
the detector up and down in the x-direction about the distance from a maximum
to its nearest minimum. Such a random shift is just enough to smear out the
pattern so that no interference is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg rec-
ognized that if it were possible to measure the momentum and the position
simultaneously with a greater accuracy, the quantum mechanics would collapse.
So he proposed that it must be impossible. Then people sat down and tried to
figure out ways of doing it, and nobody could figure out a way to measure the
position and the momentum of anything—a screen, an electron, a billiard ball,
anything—with any greater accuracy. Quantum mechanics maintains its perilous
but still correct existence.

1-19



2

The Relation of Wave and
Particle Viewpoints

Note: This chapter is almost exactly the same as Chapter 38 of Volume I.

2-1 Probability wave amplitudes

In this chapter we shall discuss the relationship of the wave and particle
viewpoints. We already know, from the last chapter, that neither the wave
viewpoint nor the particle viewpoint is correct. We would always like to present
things accurately, or at least precisely enough that they will not have to be
changed when we learn more—it may be extended, but it will not be changed!
But when we try to talk about the wave picture or the particle picture, both
are approximate, and both will change. Therefore what we learn in this chapter
will not be accurate in a certain sense; we will deal with some half-intuitive
arguments which will be made more precise later. But certain things will be
changed a little bit when we interpret them correctly in quantum mechanics. We
are doing this so that you can have some qualitative feeling for some quantum
phenomena before we get into the mathematical details of quantum mechanics.
Furthermore, all our experiences are with waves and with particles, and so it is
rather handy to use the wave and particle ideas to get some understanding of
what happens in given circumstances before we know the complete mathematics
of the quantum-mechanical amplitudes. We shall try to indicate the weakest
places as we go along, but most of it is very nearly correct—it is just a matter of
interpretation.

First of all, we know that the new way of representing the world in quantum
mechanics—the new framework—is to give an amplitude for every event that can
occur, and if the event involves the reception of one particle, then we can give
the amplitude to find that one particle at different places and at different times.
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The probability of finding the particle is then proportional to the absolute square
of the amplitude. In general, the amplitude to find a particle in different places
at different times varies with position and time.

In some special case it can be that the amplitude varies sinusoidally in space
and time like ei(ωt−k·r), where r is the vector position from some origin. (Do not
forget that these amplitudes are complex numbers, not real numbers.) Such an
amplitude varies according to a definite frequency ω and wave number k. Then
it turns out that this corresponds to a classical limiting situation where we would
have believed that we have a particle whose energy E was known and is related
to the frequency by

E = ~ω, (2.1)

and whose momentum p is also known and is related to the wave number by

p = ~k. (2.2)

(The symbol ~ represents the number h divided by 2π; ~ = h/2π.)
This means that the idea of a particle is limited. The idea of a particle—

its location, its momentum, etc.—which we use so much, is in certain ways
unsatisfactory. For instance, if an amplitude to find a particle at different places
is given by ei(ωt−k·r), whose absolute square is a constant, that would mean that
the probability of finding a particle is the same at all points. That means we do
not know where it is—it can be anywhere—there is a great uncertainty in its
location.

On the other hand, if the position of a particle is more or less well known and
we can predict it fairly accurately, then the probability of finding it in different
places must be confined to a certain region, whose length we call ∆x. Outside
this region, the probability is zero. Now this probability is the absolute square
of an amplitude, and if the absolute square is zero, the amplitude is also zero,
so that we have a wave train whose length is ∆x (Fig. 2-1), and the wavelength

∆x

Fig. 2-1. A wave packet of length ∆x .
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(the distance between nodes of the waves in the train) of that wave train is what
corresponds to the particle momentum.

Here we encounter a strange thing about waves; a very simple thing which
has nothing to do with quantum mechanics strictly. It is something that anybody
who works with waves, even if he knows no quantum mechanics, knows: namely,
we cannot define a unique wavelength for a short wave train. Such a wave train
does not have a definite wavelength; there is an indefiniteness in the wave number
that is related to the finite length of the train, and thus there is an indefiniteness
in the momentum.

2-2 Measurement of position and momentum

Let us consider two examples of this idea—to see the reason that there is an
uncertainty in the position and/or the momentum, if quantum mechanics is right.
We have also seen before that if there were not such a thing—if it were possible
to measure the position and the momentum of anything simultaneously—we
would have a paradox; it is fortunate that we do not have such a paradox, and
the fact that such an uncertainty comes naturally from the wave picture shows
that everything is mutually consistent.

Here is one example which shows the relationship between the position and
the momentum in a circumstance that is easy to understand. Suppose we have a
single slit, and particles are coming from very far away with a certain energy—so
that they are all coming essentially horizontally (Fig. 2-2). We are going to
concentrate on the vertical components of momentum. All of these particles have
a certain horizontal momentum p0, say, in a classical sense. So, in the classical
sense, the vertical momentum py, before the particle goes through the hole, is

B

C

∆θ

Fig. 2-2. Diffraction of particles passing through a slit.
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definitely known. The particle is moving neither up nor down, because it came
from a source that is far away—and so the vertical momentum is of course zero.
But now let us suppose that it goes through a hole whose width is B. Then
after it has come out through the hole, we know the position vertically—the
y-position—with considerable accuracy—namely ±B.† That is, the uncertainty
in position, ∆y, is of order B. Now we might also want to say, since we known the
momentum is absolutely horizontal, that ∆py is zero; but that is wrong. We once
knew the momentum was horizontal, but we do not know it any more. Before the
particles passed through the hole, we did not know their vertical positions. Now
that we have found the vertical position by having the particle come through the
hole, we have lost our information on the vertical momentum! Why? According
to the wave theory, there is a spreading out, or diffraction, of the waves after
they go through the slit, just as for light. Therefore there is a certain probability
that particles coming out of the slit are not coming exactly straight. The pattern
is spread out by the diffraction effect, and the angle of spread, which we can
define as the angle of the first minimum, is a measure of the uncertainty in the
final angle.

How does the pattern become spread? To say it is spread means that there
is some chance for the particle to be moving up or down, that is, to have a
component of momentum up or down. We say chance and particle because we
can detect this diffraction pattern with a particle counter, and when the counter
receives the particle, say at C in Fig. 2-2, it receives the entire particle, so that,
in a classical sense, the particle has a vertical momentum, in order to get from
the slit up to C.

To get a rough idea of the spread of the momentum, the vertical momentum py
has a spread which is equal to p0 ∆θ, where p0 is the horizontal momentum.
And how big is ∆θ in the spread-out pattern? We know that the first minimum
occurs at an angle ∆θ such that the waves from one edge of the slit have to
travel one wavelength farther than the waves from the other side—we worked
that out before (Chapter 30 of Vol. I). Therefore ∆θ is λ/B, and so ∆py in this
experiment is p0λ/B. Note that if we make B smaller and make a more accurate
measurement of the position of the particle, the diffraction pattern gets wider.
So the narrower we make the slit, the wider the pattern gets, and the more is the
likelihood that we would find that the particle has sidewise momentum. Thus the

† More precisely, the error in our knowledge of y is ±B/2. But we are now only interested
in the general idea, so we won’t worry about factors of 2.
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uncertainty in the vertical momentum is inversely proportional to the uncertainty
of y. In fact, we see that the product of the two is equal to p0λ. But λ is the
wavelength and p0 is the momentum, and in accordance with quantum mechanics,
the wavelength times the momentum is Planck’s constant h. So we obtain the
rule that the uncertainties in the vertical momentum and in the vertical position
have a product of the order h:

∆y∆py ≥ ~/2. (2.3)

We cannot prepare a system in which we know the vertical position of a particle
and can predict how it will move vertically with greater certainty than given
by (2.3). That is, the uncertainty in the vertical momentum must exceed ~/2∆y,
where ∆y is the uncertainty in our knowledge of the position.

Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it has gone
through the slit, its position is known. Both position and momentum seem to be
known with arbitrary accuracy. It is quite true that we can receive a particle,
and on reception determine what its position is and what its momentum would
have had to have been to have gotten there. That is true, but that is not what
the uncertainty relation (2.3) refers to. Equation (2.3) refers to the predictability
of a situation, not remarks about the past. It does no good to say “I knew what
the momentum was before it went through the slit, and now I know the position,”
because now the momentum knowledge is lost. The fact that it went through
the slit no longer permits us to predict the vertical momentum. We are talking
about a predictive theory, not just measurements after the fact. So we must talk
about what we can predict.

Now let us take the thing the other way around. Let us take another example
of the same phenomenon, a little more quantitatively. In the previous example
we measured the momentum by a classical method. Namely, we considered the
direction and the velocity and the angles, etc., so we got the momentum by
classical analysis. But since momentum is related to wave number, there exists
in nature still another way to measure the momentum of a particle—photon or
otherwise—which has no classical analog, because it uses Eq. (2.2). We measure
the wavelengths of the waves. Let us try to measure momentum in this way.

Suppose we have a grating with a large number of lines (Fig. 2-3), and send
a beam of particles at the grating. We have often discussed this problem: if
the particles have a definite momentum, then we get a very sharp pattern in a
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Fig. 2-3. Determination of momentum by using a diffraction grating.

certain direction, because of the interference. And we have also talked about how
accurately we can determine that momentum, that is to say, what the resolving
power of such a grating is. Rather than derive it again, we refer to Chapter 30 of
Volume I, where we found that the relative uncertainty in the wavelength that
can be measured with a given grating is 1/Nm, where N is the number of lines
on the grating and m is the order of the diffraction pattern. That is,

∆λ/λ = 1/Nm. (2.4)

Now formula (2.4) can be rewritten as

∆λ/λ2 = 1/Nmλ = 1/L, (2.5)

where L is the distance shown in Fig. 2-3. This distance is the difference between
the total distance that the particle or wave or whatever it is has to travel if
it is reflected from the bottom of the grating, and the distance that it has to
travel if it is reflected from the top of the grating. That is, the waves which form
the diffraction pattern are waves which come from different parts of the grating.
The first ones that arrive come from the bottom end of the grating, from the
beginning of the wave train, and the rest of them come from later parts of the
wave train, coming from different parts of the grating, until the last one finally
arrives, and that involves a point in the wave train a distance L behind the first
point. So in order that we shall have a sharp line in our spectrum corresponding
to a definite momentum, with an uncertainty given by (2.4), we have to have a
wave train of at least length L. If the wave train is too short, we are not using
the entire grating. The waves which form the spectrum are being reflected from
only a very short sector of the grating if the wave train is too short, and the
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grating will not work right—we will find a big angular spread. In order to get a
narrower one, we need to use the whole grating, so that at least at some moment
the whole wave train is scattering simultaneously from all parts of the grating.
Thus the wave train must be of length L in order to have an uncertainty in the
wavelength less than that given by (2.5). Incidentally,

∆λ/λ2 = ∆(1/λ) = ∆k/2π. (2.6)
Therefore

∆k = 2π/L, (2.7)

where L is the length of the wave train.
This means that if we have a wave train whose length is less than L, the

uncertainty in the wave number must exceed 2π/L. Or the uncertainty in a wave
number times the length of the wave train—we will call that for a moment ∆x—
exceeds 2π. We call it ∆x because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that is where we
could find the particle, within an uncertainty ∆x. Now this property of waves,
that the length of the wave train times the uncertainty of the wave number
associated with it is at least 2π, is a property that is known to everyone who
studies them. It has nothing to do with quantum mechanics. It is simply that if
we have a finite train, we cannot count the waves in it very precisely.

Let us try another way to see the reason for that. Suppose that we have a
finite train of length L; then because of the way it has to decrease at the ends,
as in Fig. 2-1, the number of waves in the length L is uncertain by something
like ±1. But the number of waves in L is kL/2π. Thus k is uncertain, and we
again get the result (2.7), a property merely of waves. The same thing works
whether the waves are in space and k is the number of radians per centimeter
and L is the length of the train, or the waves are in time and ω is the number of
oscillations per second and T is the “length” in time that the wave train comes
in. That is, if we have a wave train lasting only for a certain finite time T , then
the uncertainty in the frequency is given by

∆ω = 2π/T. (2.8)

We have tried to emphasize that these are properties of waves alone, and they
are well known, for example, in the theory of sound.

The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p = ~k, so
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that relation (2.7) tells us that ∆p ≈ h/∆x. This, then, is a limitation of the
classical idea of momentum. (Naturally, it has to be limited in some ways if we
are going to represent particles by waves!) It is nice that we have found a rule
that gives us some idea of when there is a failure of classical ideas.

2-3 Crystal diffraction

Next let us consider the reflection of particle waves from a crystal. A crystal
is a thick thing which has a whole lot of similar atoms—we will include some
complications later—in a nice array. The question is how to set the array so that
we get a strong reflected maximum in a given direction for a given beam of, say,
light (x-rays), electrons, neutrons, or anything else. In order to obtain a strong
reflection, the scattering from all of the atoms must be in phase. There cannot
be equal numbers in phase and out of phase, or the waves will cancel out. The
way to arrange things is to find the regions of constant phase, as we have already
explained; they are planes which make equal angles with the initial and final
directions (Fig. 2-4).

If we consider two parallel planes, as in Fig. 2-4, the waves scattered from
the two planes will be in phase, provided the difference in distance traveled by a
wave front is an integral number of wavelengths. This difference can be seen to
be 2d sin θ, where d is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

2d sin θ = nλ (n = 1, 2, . . . ). (2.9)

θ
θ θ
d

d sin θ

d sin θ

Fig. 2-4. Scattering of waves by crystal planes.
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If, for example, the crystal is such that the atoms happen to lie on planes
obeying condition (2.9) with n = 1, then there will be a strong reflection. If,
on the other hand, there are other atoms of the same nature (equal in density)
halfway between, then the intermediate planes will also scatter equally strongly
and will interfere with the others and produce no effect. So d in (2.9) must refer
to adjacent planes; we cannot take a plane five layers farther back and use this
formula!

As a matter of interest, actual crystals are not usually as simple as a single
kind of atom repeated in a certain way. Instead, if we make a two-dimensional
analog, they are much like wallpaper, in which there is some kind of figure
which repeats all over the wallpaper. By “figure” we mean, in the case of atoms,
some arrangement—calcium and a carbon and three oxygens, etc., for calcium
carbonate, and so on—which may involve a relatively large number of atoms.
But whatever it is, the figure is repeated in a pattern. This basic figure is called
a unit cell.

The basic pattern of repetition defines what we call the lattice type; the lattice
type can be immediately determined by looking at the reflections and seeing
what their symmetry is. In other words, where we find any reflections at all
determines the lattice type, but in order to determine what is in each of the
elements of the lattice one must take into account the intensity of the scattering
at the various directions. Which directions scatter depends on the type of lattice,
but how strongly each scatters is determined by what is inside each unit cell, and
in that way the structure of crystals is worked out.

Two photographs of x-ray diffraction patterns are shown in Figs. 2-5 and 2-6;
they illustrate scattering from rock salt and myoglobin, respectively.

Figure 2-5 Figure 2-6
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Incidentally, an interesting thing happens if the spacings of the nearest planes
are less than λ/2. In this case (2.9) has no solution for n. Thus if λ is bigger
than twice the distance between adjacent planes, then there is no side diffraction
pattern, and the light—or whatever it is—will go right through the material
without bouncing off or getting lost. So in the case of light, where λ is much
bigger than the spacing, of course it does go through and there is no pattern of
reflection from the planes of the crystal.

PILE

SHORT-λ NEUTRONS

GRAPHITE

SHORT-λ NEUTRONS

LONG-λ
NEUTRONS

Fig. 2-7. Diffusion of pile neutrons through graphite block.

This fact also has an interesting consequence in the case of piles which make
neutrons (these are obviously particles, for anybody’s money!). If we take these
neutrons and let them into a long block of graphite, the neutrons diffuse and
work their way along (Fig. 2-7). They diffuse because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms because of
diffraction from the crystal planes. It turns out that if we take a very long piece
of graphite, the neutrons that come out the far end are all of long wavelength! In
fact, if one plots the intensity as a function of wavelength, we get nothing except
for wavelengths longer than a certain minimum (Fig. 2-8). In other words, we
can get very slow neutrons that way. Only the slowest neutrons come through;
they are not diffracted or scattered by the crystal planes of the graphite, but
keep going right through like light through glass, and are not scattered out the
sides. There are many other demonstrations of the reality of neutron waves and
waves of other particles.

2-4 The size of an atom

We now consider another application of the uncertainty relation, Eq. (2.3).
It must not be taken too seriously; the idea is right but the analysis is not very
accurate. The idea has to do with the determination of the size of atoms, and
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Fig. 2-8. Intensity of neutrons out of graphite rod as function of
wavelength.

the fact that, classically, the electrons would radiate light and spiral in until
they settle down right on top of the nucleus. But that cannot be right quantum-
mechanically because then we would know where each electron was and how fast
it was moving.

Suppose we have a hydrogen atom, and measure the position of the electron; we
must not be able to predict exactly where the electron will be, or the momentum
spread will then turn out to be infinite. Every time we look at the electron,
it is somewhere, but it has an amplitude to be in different places so there is a
probability of it being found in different places. These places cannot all be at the
nucleus; we shall suppose there is a spread in position of order a. That is, the
distance of the electron from the nucleus is usually about a. We shall determine
a by minimizing the total energy of the atom.

The spread in momentum is roughly ~/a because of the uncertainty relation,
so that if we try to measure the momentum of the electron in some manner,
such as by scattering x-rays off it and looking for the Doppler effect from a
moving scatterer, we would expect not to get zero every time—the electron is
not standing still—but the momenta must be of the order p ≈ ~/a. Then the
kinetic energy is roughly 1

2mv
2 = p2/2m = ~2/2ma2. (In a sense, this is a kind

of dimensional analysis to find out in what way the kinetic energy depends upon
the reduced Planck constant, upon m, and upon the size of the atom. We need
not trust our answer to within factors like 2, π, etc. We have not even defined a
very precisely.) Now the potential energy is minus e2 over the distance from the
center, say −e2/a, where, as defined in Volume I, e2 is the charge of an electron
squared, divided by 4πε0. Now the point is that the potential energy is reduced if
a gets smaller, but the smaller a is, the higher the momentum required, because
of the uncertainty principle, and therefore the higher the kinetic energy. The
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total energy is
E = ~2/2ma2 − e2/a. (2.10)

We do not know what a is, but we know that the atom is going to arrange itself
to make some kind of compromise so that the energy is as little as possible. In
order to minimize E, we differentiate with respect to a, set the derivative equal
to zero, and solve for a. The derivative of E is

dE/da = −~2/ma3 + e2/a2, (2.11)

and setting dE/da = 0 gives for a the value

a0 = ~2/me2 = 0.528 angstrom,
= 0.528× 10−10 meter. (2.12)

This particular distance is called the Bohr radius, and we have thus learned
that atomic dimensions are of the order of angstroms, which is right. This is
pretty good—in fact, it is amazing, since until now we have had no basis for
understanding the size of atoms! Atoms are completely impossible from the
classical point of view, since the electrons would spiral into the nucleus.

Now if we put the value (2.12) for a0 into (2.10) to find the energy, it comes
out

E0 = −e2/2a0 = −me4/2~2 = −13.6 eV. (2.13)

What does a negative energy mean? It means that the electron has less energy
when it is in the atom than when it is free. It means it is bound. It means it takes
energy to kick the electron out; it takes energy of the order of 13.6 eV to ionize
a hydrogen atom. We have no reason to think that it is not two or three times
this—or half of this—or (1/π) times this, because we have used such a sloppy
argument. However, we have cheated, we have used all the constants in such a
way that it happens to come out the right number! This number, 13.6 electron
volts, is called a Rydberg of energy; it is the ionization energy of hydrogen.

So we now understand why we do not fall through the floor. As we walk, our
shoes with their masses of atoms push against the floor with its mass of atoms.
In order to squash the atoms closer together, the electrons would be confined to
a smaller space and, by the uncertainty principle, their momenta would have to
be higher on the average, and that means high energy; the resistance to atomic
compression is a quantum-mechanical effect and not a classical effect. Classically,
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we would expect that if we were to draw all the electrons and protons closer
together, the energy would be reduced still further, and the best arrangement of
positive and negative charges in classical physics is all on top of each other. This
was well known in classical physics and was a puzzle because of the existence of the
atom. Of course, the early scientists invented some ways out of the trouble—but
never mind, we have the right way out, now!

Incidentally, although we have no reason to understand it at the moment, in
a situation where there are many electrons it turns out that they try to keep
away from each other. If one electron is occupying a certain space, then another
does not occupy the same space. More precisely, there are two spin cases, so that
two can sit on top of each other, one spinning one way and one the other way.
But after that we cannot put any more there. We have to put others in another
place, and that is the real reason that matter has strength. If we could put all
the electrons in the same place, it would condense even more than it does. It is
the fact that the electrons cannot all get on top of each other that makes tables
and everything else solid.

Obviously, in order to understand the properties of matter, we will have to
use quantum mechanics and not be satisfied with classical mechanics.

2-5 Energy levels

We have talked about the atom in its lowest possible energy condition, but
it turns out that the electron can do other things. It can jiggle and wiggle in a
more energetic manner, and so there are many different possible motions for the
atom. According to quantum mechanics, in a stationary condition there can only
be definite energies for an atom. We make a diagram (Fig. 2-9) in which we plot
the energy vertically, and we make a horizontal line for each allowed value of the
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Fig. 2-9. Energy diagram for an atom, showing several possible
transitions.
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energy. When the electron is free, i.e., when its energy is positive, it can have
any energy; it can be moving at any speed. But bound energies are not arbitrary.
The atom must have one or another out of a set of allowed values, such as those
in Fig. 2-9.

Now let us call the allowed values of the energy E0, E1, E2, E3. If an atom
is initially in one of these “excited states,” E1, E2, etc., it does not remain in
that state forever. Sooner or later it drops to a lower state and radiates energy
in the form of light. The frequency of the light that is emitted is determined
by conservation of energy plus the quantum-mechanical understanding that the
frequency of the light is related to the energy of the light by (2.1). Therefore
the frequency of the light which is liberated in a transition from energy E3 to
energy E1 (for example) is

ω31 = (E3 − E1)/~. (2.14)

This, then, is a characteristic frequency of the atom and defines a spectral emission
line. Another possible transition would be from E3 to E0. That would have a
different frequency

ω30 = (E3 − E0)/~. (2.15)

Another possibility is that if the atom were excited to the state E1 it could drop
to the ground state E0, emitting a photon of frequency

ω10 = (E1 − E0)/~. (2.16)

The reason we bring up three transitions is to point out an interesting relationship.
It is easy to see from (2.14), (2.15), and (2.16) that

ω30 = ω31 + ω10. (2.17)

In general, if we find two spectral lines, we shall expect to find another line at the
sum of the frequencies (or the difference in the frequencies), and that all the lines
can be understood by finding a series of levels such that every line corresponds
to the difference in energy of some pair of levels. This remarkable coincidence in
spectral frequencies was noted before quantum mechanics was discovered, and it
is called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.
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We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from
what has been said so far, but we are all familiar with the fact that confined
waves have definite frequencies. For instance, if sound is confined to an organ
pipe, or anything like that, then there is more than one way that the sound can
vibrate, but for each such way there is a definite frequency. Thus an object in
which the waves are confined has certain resonance frequencies. It is therefore a
property of waves in a confined space—a subject which we will discuss in detail
with formulas later on—that they exist only at definite frequencies. And since the
general relation exists between frequencies of the amplitude and energy, we are
not surprised to find definite energies associated with electrons bound in atoms.

2-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation affects the phenomenon. It has always been known
that making observations affects a phenomenon, but the point is that the effect
cannot be disregarded or minimized or decreased arbitrarily by rearranging the
apparatus. When we look for a certain phenomenon we cannot help but disturb
it in a certain minimum way, and the disturbance is necessary for the consistency
of the viewpoint. The observer was sometimes important in prequantum physics,
but only in a trivial sense. The problem has been raised: if a tree falls in a forest
and there is nobody there to hear it, does it make a noise? A real tree falling
in a real forest makes a sound, of course, even if nobody is there. Even if no
one is present to hear it, there are other traces left. The sound will shake some
leaves, and if we were careful enough we might find somewhere that some thorn
had rubbed against a leaf and made a tiny scratch that could not be explained
unless we assumed the leaf were vibrating. So in a certain sense we would have
to admit that there is a sound made. We might ask: was there a sensation of
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sound? No, sensations have to do, presumably, with consciousness. And whether
ants are conscious and whether there were ants in the forest, or whether the tree
was conscious, we do not know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we
cannot measure. (Actually relativity theory also said this.) Unless a thing can be
defined by measurement, it has no place in a theory. And since an accurate value
of the momentum of a localized particle cannot be defined by measurement it
therefore has no place in the theory. The idea that this is what was the matter
with classical theory is a false position. It is a careless analysis of the situation.
Just because we cannot measure position and momentum precisely does not a
priori mean that we cannot talk about them. It only means that we need not talk
about them. The situation in the sciences is this: A concept or an idea which
cannot be measured or cannot be referred directly to experiment may or may not
be useful. It need not exist in a theory. In other words, suppose we compare the
classical theory of the world with the quantum theory of the world, and suppose
that it is true experimentally that we can measure position and momentum only
imprecisely. The question is whether the ideas of the exact position of a particle
and the exact momentum of a particle are valid or not. The classical theory
admits the ideas; the quantum theory does not. This does not in itself mean that
classical physics is wrong. When the new quantum mechanics was discovered,
the classical people—which included everybody except Heisenberg, Schrödinger,
and Born—said: “Look, your theory is not any good because you cannot answer
certain questions like: what is the exact position of a particle?, which hole does
it go through?, and some others.” Heisenberg’s answer was: “I do not need to
answer such questions because you cannot ask such a question experimentally.” It
is that we do not have to. Consider two theories (a) and (b); (a) contains an idea
that cannot be checked directly but which is used in the analysis, and the other,
(b), does not contain the idea. If they disagree in their predictions, one could not
claim that (b) is false because it cannot explain this idea that is in (a), because
that idea is one of the things that cannot be checked directly. It is always good
to know which ideas cannot be checked directly, but it is not necessary to remove
them all. It is not true that we can pursue science completely by using only those
concepts which are directly subject to experiment.

In quantum mechanics itself there is a probability amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The
basis of a science is its ability to predict. To predict means to tell what will
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happen in an experiment that has never been done. How can we do that? By
assuming that we know what is there, independent of the experiment. We must
extrapolate the experiments to a region where they have not been done. We
must take our concepts and extend them to places where they have not yet
been checked. If we do not do that, we have no prediction. So it was perfectly
sensible for the classical physicists to go happily along and suppose that the
position—which obviously means something for a baseball—meant something
also for an electron. It was not stupidity. It was a sensible procedure. Today we
say that the law of relativity is supposed to be true at all energies, but someday
somebody may come along and say how stupid we were. We do not know where
we are “stupid” until we “stick our neck out,” and so the whole idea is to put our
neck out. And the only way to find out that we are wrong is to find out what
our predictions are. It is absolutely necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in
physics in a given physical circumstance which is arranged as carefully as possible.
If we have an atom that is in an excited state and so is going to emit a photon,
we cannot say when it will emit the photon. It has a certain amplitude to emit
the photon at any time, and we can predict only a probability for emission; we
cannot predict the future exactly. This has given rise to all kinds of nonsense
and questions on the meaning of freedom of will, and of the idea that the world
is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position
and the velocity of every particle in the world, or in a box of gas, we could predict
exactly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exactly where
just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a
billion, we find an even larger error in the position after the collision. And that
is amplified, of course, in the next collision, so that if we start with only a tiny
error it rapidly magnifies to a very great uncertainty. To give an example: if
water falls over a dam, it splashes. If we stand nearby, every now and then a
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drop will land on our nose. This appears to be completely random, yet such a
behavior would be predicted by purely classical laws. The exact position of all
the drops depends upon the precise wigglings of the water before it goes over
the dam. How? The tiniest irregularities are magnified in falling, so that we get
complete randomness. Obviously, we cannot really predict the position of the
drops unless we know the motion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The
time goes, in fact, only logarithmically with the error, and it turns out that in
only a very, very tiny time we lose all our information. If the accuracy is taken
to be one part in billions and billions and billions—no matter how many billions
we wish, provided we do stop somewhere—then we can find a time less than the
time it took to state the accuracy—after which we can no longer predict what is
going to happen! It is therefore not fair to say that from the apparent freedom
and indeterminacy of the human mind, we should have realized that classical
“deterministic” physics could not ever hope to understand it, and to welcome
quantum mechanics as a release from a “completely mechanistic” universe. For
already in classical mechanics there was indeterminability from a practical point
of view.
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3

Probability Amplitudes

3-1 The laws for combining amplitudes

When Schrödinger first discovered the correct laws of quantum mechanics, he
wrote an equation which described the amplitude to find a particle in various
places. This equation was very similar to the equations that were already known
to classical physicists—equations that they had used in describing the motion of
air in a sound wave, the transmission of light, and so on. So most of the time at the
beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by Born and Dirac,
of the basically new physical ideas behind quantum mechanics. As quantum
mechanics developed further, it turned out that there were a large number of
things which were not directly encompassed in the Schrödinger equation—such
as the spin of the electron, and various relativistic phenomena. Traditionally, all
courses in quantum mechanics have begun in the same way, retracing the path
followed in the historical development of the subject. One first learns a great deal
about classical mechanics so that he will be able to understand how to solve the
Schrödinger equation. Then he spends a long time working out various solutions.
Only after a detailed study of this equation does he get to the “advanced” subject
of the electron’s spin.

We had also originally considered that the right way to conclude these lec-
tures on physics was to show how to solve the equations of classical physics
in complicated situations—such as the description of sound waves in enclosed
regions, modes of electromagnetic radiation in cylindrical cavities, and so on.
That was the original plan for this course. However, we have decided to abandon
that plan and to give instead an introduction to the quantum mechanics. We
have come to the conclusion that what are usually called the advanced parts of
quantum mechanics are, in fact, quite simple. The mathematics that is involved
is particularly simple, involving simple algebraic operations and no differential
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equations or at most only very simple ones. The only problem is that we must
jump the gap of no longer being able to describe the behavior in detail of particles
in space. So this is what we are going to try to do: to tell you about what
conventionally would be called the “advanced” parts of quantum mechanics. But
they are, we assure you, by all odds the simplest parts—in a deep sense of the
word—as well as the most basic parts. This is frankly a pedagogical experiment;
it has never been done before, as far as we know.

In this subject we have, of course, the difficulty that the quantum mechanical
behavior of things is quite strange. Nobody has an everyday experience to lean
on to get a rough, intuitive idea of what will happen. So there are two ways of
presenting the subject: We could either describe what can happen in a rather
rough physical way, telling you more or less what happens without giving the
precise laws of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you wouldn’t know
what they were all about, physically. The latter method is unsatisfactory because
it is completely abstract, and the first way leaves an uncomfortable feeling because
one doesn’t know exactly what is true and what is false. We are not sure how to
overcome this difficulty. You will notice, in fact, that Chapters 1 and 2 showed
this problem. The first chapter was relatively precise; but the second chapter
was a rough description of the characteristics of different phenomena. Here, we
will try to find a happy medium between the two extremes.

We will begin in this chapter by dealing with some general quantum mechanical
ideas. Some of the statements will be quite precise, others only partially precise.
It will be hard to tell you as we go along which is which, but by the time you
have finished the rest of the book, you will understand in looking back which
parts hold up and which parts were only explained roughly. The chapters which
follow this one will not be so imprecise. In fact, one of the reasons we have tried
carefully to be precise in the succeeding chapters is so that we can show you
one of the most beautiful things about quantum mechanics—how much can be
deduced from so little.

We begin by discussing again the superposition of probability amplitudes. As
an example we will refer to the experiment described in Chapter 1, and shown
again here in Fig. 3-1. There is a source s of particles, say electrons; then there
is a wall with two slits in it; after the wall, there is a detector located at some
position x. We ask for the probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability that a particle
will arrive at x, when let out at the source s, can be represented quantitatively
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Fig. 3-1. Interference experiment with electrons.

by the absolute square of a complex number called a probability amplitude—in
this case, the “amplitude that a particle from s will arrive at x.” We will use
such amplitudes so frequently that we will use a shorthand notation—invented
by Dirac and generally used in quantum mechanics—to represent this idea. We
write the probability amplitude this way:

〈Particle arrives at x |particle leaves s〉. (3.1)

In other words, the two brackets 〈 〉 are a sign equivalent to “the amplitude that”;
the expression at the right of the vertical line always gives the starting condition,
and the one at the left, the final condition. Sometimes it will also be convenient
to abbreviate still more and describe the initial and final conditions by single
letters. For example, we may on occasion write the amplitude (3.1) as

〈x | s〉. (3.2)

We want to emphasize that such an amplitude is, of course, just a single number—a
complex number.

We have already seen in the discussion of Chapter 1 that when there are two
ways for the particle to reach the detector, the resulting probability is not the
sum of the two probabilities, but must be written as the absolute square of the
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sum of two amplitudes. We had that the probability that an electron arrives at
the detector when both paths are open is

P12 = |φ1 + φ2|2. (3.3)

We wish now to put this result in terms of our new notation. First, however,
we want to state our second general principle of quantum mechanics: When a
particle can reach a given state by two possible routes, the total amplitude for
the process is the sum of the amplitudes for the two routes considered separately.
In our new notation we write that

〈x | s〉both holes open = 〈x | s〉through 1 + 〈x | s〉through 2. (3.4)

Incidentally, we are going to suppose that the holes 1 and 2 are small enough
that when we say an electron goes through the hole, we don’t have to discuss
which part of the hole. We could, of course, split each hole into pieces with a
certain amplitude that the electron goes to the top of the hole and the bottom
of the hole and so on. We will suppose that the hole is small enough so that we
don’t have to worry about this detail. That is part of the roughness involved;
the matter can be made more precise, but we don’t want to do so at this stage.

Now we want to write out in more detail what we can say about the amplitude
for the process in which the electron reaches the detector at x by way of hole 1.
We can do that by using our third general principle: When a particle goes by
some particular route the amplitude for that route can be written as the product
of the amplitude to go part way with the amplitude to go the rest of the way. For
the setup of Fig. 3-1 the amplitude to go from s to x by way of hole 1 is equal to
the amplitude to go from s to 1, multiplied by the amplitude to go from 1 to x.

〈x | s〉via 1 = 〈x | 1〉〈1 | s〉. (3.5)

Again this result is not completely precise. We should also include a factor for
the amplitude that the electron will get through the hole at 1; but in the present
case it is a simple hole, and we will take this factor to be unity.

You will note that Eq. (3.5) appears to be written in reverse order. It is
to be read from right to left: The electron goes from s to 1 and then from 1
to x. In summary, if events occur in succession—that is, if you can analyze one
of the routes of the particle by saying it does this, then it does this, then it
does that—the resultant amplitude for that route is calculated by multiplying in
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succession the amplitude for each of the successive events. Using this law we can
rewrite Eq. (3.4) as

〈x | s〉both = 〈x | 1〉〈1 | s〉+ 〈x | 2〉〈2 | s〉.

s

1

2

a

b

c

x

Fig. 3-2. A more complicated interference experiment.

Now we wish to show that just using these principles we can calculate a
much more complicated problem like the one shown in Fig. 3-2. Here we have
two walls, one with two holes, 1 and 2, and another which has three holes, a, b,
and c. Behind the second wall there is a detector at x, and we want to know the
amplitude for a particle to arrive there. Well, one way you can find this is by
calculating the superposition, or interference, of the waves that go through; but
you can also do it by saying that there are six possible routes and superposing
an amplitude for each. The electron can go through hole 1, then through hole a,
and then to x; or it could go through hole 1, then through hole b, and then to x;
and so on. According to our second principle, the amplitudes for alternative
routes add, so we should be able to write the amplitude from s to x as a sum of
six separate amplitudes. On the other hand, using the third principle, each of
these separate amplitudes can be written as a product of three amplitudes. For
example, one of them is the amplitude for s to 1, times the amplitude for 1 to a,
times the amplitude for a to x. Using our shorthand notation, we can write the
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complete amplitude to go from s to x as

〈x | s〉 = 〈x | a〉〈a | 1〉〈1 | s〉+ 〈x | b〉〈b | 1〉〈1 | s〉+ · · ·+ 〈x | c〉〈c | 2〉〈2 | s〉.

We can save writing by using the summation notation

〈x | s〉 =
∑
i=1,2
α=a,b,c

〈x |α〉〈α | i〉〈i | s〉. (3.6)

In order to make any calculations using these methods, it is, naturally,
necessary to know the amplitude to get from one place to another. We will
give a rough idea of a typical amplitude. It leaves out certain things like the
polarization of light or the spin of the electron, but aside from such features it
is quite accurate. We give it so that you can solve problems involving various
combinations of slits. Suppose a particle with a definite energy is going in empty
space from a location r1 to a location r2. In other words, it is a free particle
with no forces on it. Except for a numerical factor in front, the amplitude to go
from r1 to r2 is

〈r2 | r1〉 = eip·r12/~

r12
, (3.7)

where r12 = r2 − r1, and p is the momentum which is related to the energy E
by the relativistic equation

p2c2 = E2 − (m0c
2)2,

or the nonrelativistic equation

p2

2m = Kinetic energy.

Equation (3.7) says in effect that the particle has wavelike properties, the ampli-
tude propagating as a wave with a wave number equal to the momentum divided
by ~.

In the most general case, the amplitude and the corresponding probability
will also involve the time. For most of these initial discussions we will suppose
that the source always emits the particles with a given energy so we will not
need to worry about the time. But we could, in the general case, be interested in
some other questions. Suppose that a particle is liberated at a certain place P at
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a certain time, and you would like to know the amplitude for it to arrive at some
location, say r, at some later time. This could be represented symbolically as the
amplitude 〈r, t = t1 |P, t = 0〉. Clearly, this will depend upon both r and t. You
will get different results if you put the detector in different places and measure
at different times. This function of r and t, in general, satisfies a differential
equation which is a wave equation. For example, in a nonrelativistic case it
is the Schrödinger equation. One has then a wave equation analogous to the
equation for electromagnetic waves or waves of sound in a gas. However, it must
be emphasized that the wave function that satisfies the equation is not like a real
wave in space; one cannot picture any kind of reality to this wave as one does for
a sound wave.

Although one may be tempted to think in terms of “particle waves” when
dealing with one particle, it is not a good idea, for if there are, say, two particles,
the amplitude to find one at r1 and the other at r2 is not a simple wave in
three-dimensional space, but depends on the six space variables r1 and r2. If
we are, for example, dealing with two (or more) particles, we will need the
following additional principle: Provided that the two particles do not interact,
the amplitude that one particle will do one thing and the other one something
else is the product of the two amplitudes that the two particles would do the two
things separately. For example, if 〈a | s1〉 is the amplitude for particle 1 to go
from s1 to a, and 〈b | s2〉 is the amplitude for particle 2 to go from s2 to b, the
amplitude that both things will happen together is

〈a | s1〉〈b | s2〉.

There is one more point to emphasize. Suppose that we didn’t know where
the particles in Fig. 3-2 come from before arriving at holes 1 and 2 of the first
wall. We can still make a prediction of what will happen beyond the wall (for
example, the amplitude to arrive at x) provided that we are given two numbers:
the amplitude to have arrived at 1 and the amplitude to have arrived at 2.
In other words, because of the fact that the amplitude for successive events
multiplies, as shown in Eq. (3.6), all you need to know to continue the analysis
is two numbers—in this particular case 〈1 | s〉 and 〈2 | s〉. These two complex
numbers are enough to predict all the future. That is what really makes quantum
mechanics easy. It turns out that in later chapters we are going to do just such a
thing when we specify a starting condition in terms of two (or a few) numbers.
Of course, these numbers depend upon where the source is located and possibly
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other details about the apparatus, but given the two numbers, we do not need to
know any more about such details.

3-2 The two-slit interference pattern

Now we would like to consider a matter which was discussed in some detail
in Chapter 1. This time we will do it with the full glory of the amplitude idea to
show you how it works out. We take the same experiment shown in Fig. 3-1, but
now with the addition of a light source behind the two holes, as shown in Fig. 3-3.
In Chapter 1, we discovered the following interesting result. If we looked behind
slit 1 and saw a photon scattered from there, then the distribution obtained for
the electrons at x in coincidence with these photons was the same as though
slit 2 were closed. The total distribution for electrons that had been “seen” at
either slit 1 or slit 2 was the sum of the separate distributions and was completely
different from the distribution with the light turned off. This was true at least if
we used light of short enough wavelength. If the wavelength was made longer so
we could not be sure at which hole the scattering had occurred, the distribution
became more like the one with the light turned off.

ELECTRON
GUN

1

2

LIGHT
SOURCE

D1

D2

Fig. 3-3. An experiment to determine which hole the electron goes
through.
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Let’s examine what is happening by using our new notation and the principles
of combining amplitudes. To simplify the writing, we can again let φ1 stand for
the amplitude that the electron will arrive at x by way of hole 1, that is,

φ1 = 〈x | 1〉〈1 | s〉.

Similarly, we’ll let φ2 stand for the amplitude that the electron gets to the detector
by way of hole 2:

φ2 = 〈x | 2〉〈2 | s〉.

These are the amplitudes to go through the two holes and arrive at x if there is no
light. Now if there is light, we ask ourselves the question: What is the amplitude
for the process in which the electron starts at s and a photon is liberated by the
light source L, ending with the electron at x and a photon seen behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D1,
as shown in Fig. 3-3, and use a similar detector D2 to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D1 and an
electron at x, and also an amplitude for a photon to arrive at D2 and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude 〈1 | s〉 that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron
is at hole 1 it scatters a photon into the detector D1. Let us represent this
amplitude by a. Then there is the amplitude 〈x | 1〉 that the electron goes from
slit 1 to the electron detector at x. The amplitude that the electron goes from s
to x via slit 1 and scatters a photon into D1 is then

〈x | 1〉 a 〈1 | s〉.

Or, in our previous notation, it is just aφ1.
There is also some amplitude that an electron going through slit 2 will scatter

a photon into counter D1. You say, “That’s impossible; how can it scatter into
counter D1 if it is only looking at hole 1?” If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well
and if we use photons of short wavelength, then the amplitude that a photon will
be scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
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amplitude, which we will call b. Then the amplitude that an electron goes via
slit 2 and scatters a photon into D1 is

〈x | 2〉 b 〈2 | s〉 = bφ2.

The amplitude to find the electron at x and the photon in D1 is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that
the photon is scattered by such an electron into detector 1; we have〈

electron at x
photon at D1

∣∣∣∣ electron from s
photon from L

〉
= aφ1 + bφ2. (3.8)

We can get a similar expression when the photon is found in the other
detector D2. If we assume for simplicity that the system is symmetrical, then a
is also the amplitude for a photon in D2 when an electron passes through hole 2,
and b is the amplitude for a photon in D2 when the electron passes through
hole 1. The corresponding total amplitude for a photon at D2 and an electron
at x is 〈

electron at x
photon at D2

∣∣∣∣ electron from s
photon from L

〉
= aφ2 + bφ1. (3.9)

Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in D1 and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |aφ1 + bφ2|2. Let’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design
the apparatus—then the answer is simply |φ1|2 diminished in total amplitude by
the factor |a|2. This is the probability distribution that you would get if there
were only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if
the wavelength is very long, the scattering behind hole 2 into D1 may be just
about the same as for hole 1. Although there may be some phases involved in a
and b, we can ask about a simple case in which the two phases are equal. If a is
practically equal to b, then the total probability becomes |φ1 + φ2|2 multiplied
by |a|2, since the common factor a can be taken out. This, however, is just
the probability distribution we would have gotten without the photons at all.
Therefore, in the case that the wavelength is very long—and the photon detection
ineffective—you return to the original distribution curve which shows interference
effects, as shown in Fig. 3-4(b). In the case that the detection is partially effective,
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Fig. 3-4. The probability of counting an electron at x in coincidence
with a photon at D in the experiment of Fig. 3-3: (a) for b = 0; (b) for
b = a; (c) for 0 < b < a.

there is an interference between a lot of φ1 and a little of φ2, and you will get an
intermediate distribution such as is sketched in Fig. 3-4(c). Needless to say, if we
look for coincidence counts of photons at D2 and electrons at x, we will get the
same kinds of results. If you remember the discussion in Chapter 1, you will see
that these results give a quantitative description of what was described there.

Now we would like to emphasize an important point so that you will avoid
a common error. Suppose that you only want the amplitude that the electron
arrives at x, regardless of whether the photon was counted at D1 or D2. Should
you add the amplitudes given in Eqs. (3.8) and (3.9)? No! You must never add
amplitudes for different and distinct final states. Once the photon is accepted by
one of the photon counters, we can always determine which alternative occurred
if we want, without any further disturbance to the system. Each alternative
has a probability completely independent of the other. To repeat, do not add
amplitudes for different final conditions, where by “final” we mean at that moment
the probability is desired—that is, when the experiment is “finished.” You do
add the amplitudes for the different indistinguishable alternatives inside the
experiment, before the complete process is finished. At the end of the process
you may say that you “don’t want to look at the photon.” That’s your business,
but you still do not add the amplitudes. Nature does not know what you are
looking at, and she behaves the way she is going to behave whether you bother
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to take down the data or not. So here we must not add the amplitudes. We first
square the amplitudes for all possible different final events and then sum. The
correct result for an electron at x and a photon at either D1 or D2 is∣∣∣∣〈e at x

ph at D1

∣∣∣∣ e from s
ph from L

〉∣∣∣∣2 +
∣∣∣∣〈e at x

ph at D2

∣∣∣∣ e from s
ph from L

〉∣∣∣∣2
= |aφ1 + bφ2|2 + |aφ2 + bφ1|2. (3.10)

3-3 Scattering from a crystal

Our next example is a phenomenon in which we have to analyze the interference
of probability amplitudes somewhat carefully. We look at the process of the
scattering of neutrons from a crystal. Suppose we have a crystal which has a
lot of atoms with nuclei at their centers, arranged in a periodic array, and a
neutron beam that comes from far away. We can label the various nuclei in the
crystal by an index i, where i runs over the integers 1, 2, 3, . . . , N , with N equal
to the total number of atoms. The problem is to calculate the probability of
getting a neutron into a counter with the arrangement shown in Fig. 3-5. For
any particular atom i, the amplitude that the neutron arrives at the counter C
is the amplitude that the neutron gets from the source S to nucleus i, multiplied
by the amplitude a that it gets scattered there, multiplied by the amplitude that
it gets from i to the counter C. Let’s write that down:

〈neutron at C |neutron from S〉via i = 〈C | i〉 a 〈i |S〉. (3.11)

In writing this equation we have assumed that the scattering amplitude a is the
same for all atoms. We have here a large number of apparently indistinguishable

S

NEUTRON
SOURCE

CRYSTAL

θ

C

NEUTRON
COUNTER

Fig. 3-5. Measuring the scattering of neutrons by a crystal.
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routes. They are indistinguishable because a low-energy neutron is scattered
from a nucleus without knocking the atom out of its place in the crystal—no
“record” is left of the scattering. According to the earlier discussion, the total
amplitude for a neutron at C involves a sum of Eq. (3.11) over all the atoms:

〈neutron at C |neutron from S〉 =
N∑
i=1
〈C | i〉 a 〈i |S〉. (3.12)

Because we are adding amplitudes of scattering from atoms with different space
positions, the amplitudes will have different phases giving the characteristic
interference pattern that we have already analyzed in the case of the scattering
of light from a grating.

The neutron intensity as a function of angle in such an experiment is indeed
often found to show tremendous variations, with very sharp interference peaks and
almost nothing in between—as shown in Fig. 3-6(a). However, for certain kinds
of crystals it does not work this way, and there is—along with the interference
peaks discussed above—a general background of scattering in all directions. We
must try to understand the apparently mysterious reasons for this. Well, we
have not considered one important property of the neutron. It has a spin of
one-half, and so there are two conditions in which it can be: either spin “up”
(say perpendicular to the page in Fig. 3-5) or spin “down.” If the nuclei of the
crystal have no spin, the neutron spin doesn’t have any effect. But when the
nuclei of the crystal also have a spin, say a spin of one-half, you will observe the
background of smeared-out scattering described above. The explanation is as
follows.

If the neutron has one direction of spin and the atomic nucleus has the same
spin, then no change of spin can occur in the scattering process. If the neutron
and atomic nucleus have opposite spin, then scattering can occur by two processes,
one in which the spins are unchanged and another in which the spin directions
are exchanged. This rule for no net change of the sum of the spins is analogous
to our classical law of conservation of angular momentum. We can begin to
understand the phenomenon if we assume that all the scattering nuclei are set up
with spins in one direction. A neutron with the same spin will scatter with the
expected sharp interference distribution. What about one with opposite spin?
If it scatters without spin flip, then nothing is changed from the above; but if
the two spins flip over in the scattering, we could, in principle, find out which
nucleus had done the scattering, since it would be the only one with spin turned
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Fig. 3-6. The neutron counting rate as a function of angle: (a) for
spin zero nuclei; (b) the probability of scattering with spin flip; (c) the
observed counting rate with a spin one-half nucleus.
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over. Well, if we can tell which atom did the scattering, what have the other
atoms got to do with it? Nothing, of course. The scattering is exactly the same
as that from a single atom.

To include this effect, the mathematical formulation of Eq. (3.12) must be
modified since we haven’t described the states completely in that analysis. Let’s
start with all neutrons from the source having spin up and all the nuclei of the
crystal having spin down. First, we would like the amplitude that at the counter
the spin of the neutron is up and all spins of the crystal are still down. This
is not different from our previous discussion. We will let a be the amplitude to
scatter with no flip or spin. The amplitude for scattering from the ith atom is,
of course,

〈Cup, crystal all down |Sup, crystal all down〉 = 〈C | i〉 a 〈i |S〉.

Since all the atomic spins are still down, the various alternatives (different values
of i) cannot be distinguished. There is clearly no way to tell which atom did the
scattering. For this process, all the amplitudes interfere.

We have another case, however, where the spin of the detected neutron is
down although it started from S with spin up. In the crystal, one of the spins
must be changed to the up direction—let’s say that of the kth atom. We will
assume that there is the same scattering amplitude with spin flip for every atom,
namely b. (In a real crystal there is the disagreeable possibility that the reversed
spin moves to some other atom, but let’s take the case of a crystal for which this
probability is very low.) The scattering amplitude is then

〈Cdown, nucleus k up |Sup, crystal all down〉 = 〈C | k〉 b 〈k |S〉. (3.13)

If we ask for the probability of finding the neutron spin down and the kth nucleus
spin up, it is equal to the absolute square of this amplitude, which is simply |b|2
times |〈C | k〉〈k |S〉|2. The second factor is almost independent of location in
the crystal, and all phases have disappeared in taking the absolute square. The
probability of scattering from any nucleus in the crystal with spin flip is now

|b|2
N∑
k=1
|〈C | k〉〈k |S〉|2,

which will show a smooth distribution as in Fig. 3-6(b).
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You may argue, “I don’t care which atom is up.” Perhaps you don’t, but
nature knows; and the probability is, in fact, what we gave above—there isn’t
any interference. On the other hand, if we ask for the probability that the spin
is up at the detector and all the atoms still have spin down, then we must take
the absolute square of

N∑
i=1
〈C | i〉 a 〈i |S〉.

Since the terms in this sum have phases, they do interfere, and we get a sharp
interference pattern. If we do an experiment in which we don’t observe the spin
of the detected neutron, then both kinds of events can occur; and the separate
probabilities add. The total probability (or counting rate) as a function of angle
then looks like the graph in Fig. 3-6(c).

Let’s review the physics of this experiment. If you could, in principle, distin-
guish the alternative final states (even though you do not bother to do so), the
total, final probability is obtained by calculating the probability for each state
(not the amplitude) and then adding them together. If you cannot distinguish the
final states even in principle, then the probability amplitudes must be summed
before taking the absolute square to find the actual probability. The thing you
should notice particularly is that if you were to try to represent the neutron by a
wave alone, you would get the same kind of distribution for the scattering of a
down-spinning neutron as for an up-spinning neutron. You would have to say
that the “wave” would come from all the different atoms and interfere just as for
the up-spinning one with the same wavelength. But we know that is not the way
it works. So as we stated earlier, we must be careful not to attribute too much
reality to the waves in space. They are useful for certain problems but not for all.

3-4 Identical particles

The next experiment we will describe is one which shows one of the beautiful
consequences of quantum mechanics. It again involves a physical situation in
which a thing can happen in two indistinguishable ways, so that there is an
interference of amplitudes—as is always true in such circumstances. We are
going to discuss the scattering, at relatively low energy, of nuclei on other nuclei.
We start by thinking of α-particles (which, as you know, are helium nuclei)
bombarding, say, oxygen. To make it easier for us to analyze the reaction, we
will look at it in the center-of-mass system, in which the oxygen nucleus and the
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α-particle have their velocities in opposite directions before the collision and again
in exactly opposite directions after the collision. See Fig. 3-7(a). (The magnitudes
of the velocities are, of course, different, since the masses are different.) We will
also suppose that there is conservation of energy and that the collision energy
is low enough that neither particle is broken up or left in an excited state. The
reason that the two particles deflect each other is, of course, that each particle
carries a positive charge and, classically speaking, there is an electrical repulsion
as they go by. The scattering will happen at different angles with different
probabilities, and we would like to discuss something about the angle dependence
of such scatterings. (It is possible, of course, to calculate this thing classically,
and it is one of the most remarkable accidents of quantum mechanics that the
answer to this problem comes out the same as it does classically. This is a curious
point because it happens for no other force except the inverse square law—so it
is indeed an accident.)

The probability of scattering in different directions can be measured by an
experiment as shown in Fig. 3-7(a). The counter at position 1 could be designed
to detect only α-particles; the counter at position 2 could be designed to detect
only oxygen—just as a check. (In the laboratory system the detectors would
not be opposite; but in the CM system they are.) Our experiment consists in
measuring the probability of scattering in various directions. Let’s call f(θ) the
amplitude to scatter into the counters when they are at the angle θ; then |f(θ)|2
will be our experimentally determined probability.

Now we could set up another experiment in which our counters would respond
to either the α-particle or the oxygen nucleus. Then we have to work out what
happens when we do not bother to distinguish which particles are counted. Of
course, if we are to get an oxygen in the position θ, there must be an α-particle
on the opposite side at the angle (π−θ), as shown in Fig. 3-7(b). So if f(θ) is the
amplitude for α-scattering through the angle θ, then f(π − θ) is the amplitude
for oxygen scattering through the angle θ.† Thus, the probability for having some
particle in the detector at position 1 is:

Probability of some particle in D1 = |f(θ)|2 + |f(π − θ)|2. (3.14)

† In general, a scattering direction should, of course, be described by two angles, the polar
angle φ, as well as the azimuthal angle θ. We would then say that an oxygen nucleus at (θ, φ)
means that the α-particle is at (π − θ, φ+ π). However, for Coulomb scattering (and for many
other cases), the scattering amplitude is independent of φ. Then the amplitude to get an
oxygen at θ is the same as the amplitude to get the α-particle at (π − θ).
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Fig. 3-7. The scattering of α-particles from oxygen nuclei, as seen in
the center-of-mass system.
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Note that the two states are distinguishable in principle. Even though in this
experiment we do not distinguish them, we could. According to the earlier
discussion, then, we must add the probabilities, not the amplitudes.

The result given above is correct for a variety of target nuclei—for α-particles
on oxygen, on carbon, on beryllium, on hydrogen. But it is wrong for α-particles
on α-particles. For the one case in which both particles are exactly the same,
the experimental data disagree with the prediction of (3.14). For example, the
scattering probability at 90◦ is exactly twice what the above theory predicts and
has nothing to do with the particles being “helium” nuclei. If the target is He3,
but the projectiles are α-particles (He4), then there is agreement. Only when
the target is He4—so its nuclei are identical with the incoming α-particle—does
the scattering vary in a peculiar way with angle.

Perhaps you can already see the explanation. There are two ways to get
an α-particle into the counter: by scattering the bombarding α-particle at an
angle θ, or by scattering it at an angle of (π − θ). How can we tell whether
the bombarding particle or the target particle entered the counter? The answer
is that we cannot. In the case of α-particles with α-particles there are two
alternatives that cannot be distinguished. Here, we must let the probability
amplitudes interfere by addition, and the probability of finding an α-particle in
the counter is the square of their sum:

Probability of an α-particle at D1 = |f(θ) + f(π − θ)|2. (3.15)

This is quite a different result than that in Eq. (3.14). We can take an
angle of π/2 as an example, because it is easy to figure out. For θ = π/2,
we obviously have f(θ) = f(π − θ), so the probability in Eq. (3.15) becomes
|f(π/2) + f(π/2)|2 = 4|f(π/2)|2.

On the other hand, if they did not interfere, the result of Eq. (3.14) gives
only 2|f(π/2)|2. So there is twice as much scattering at 90◦ as we might have
expected. Of course, at other angles the results will also be different. And so
you have the unusual result that when particles are identical, a certain new
thing happens that doesn’t happen when particles can be distinguished. In the
mathematical description you must add the amplitudes for alternative process in
which the two particles simply exchange roles and there is an interference.

An even more perplexing thing happens when we do the same kind of experi-
ment by scattering electrons on electrons, or protons on protons. Neither of the
above results is then correct! For these particles, we must invoke still a new rule,
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a most peculiar rule, which is the following: When you have a situation in which
the identity of the electron which is arriving at a point is exchanged with another
one, the new amplitude interferes with the old one with an opposite phase. It is
interference all right, but with a minus sign. In the case of α-particles, when you
exchange the α-particle entering the detector, the interfering amplitudes interfere
with the positive sign. In the case of electrons, the interfering amplitudes for
exchange interfere with a negative sign. Except for another detail to be discussed
below, the proper equation for electrons in an experiment like the one shown in
Fig. 3-8 is

Probability of e at D1 = |f(θ)− f(π − θ)|2. (3.16)

The above statement must be qualified, because we have not considered
the spin of the electron (α-particles have no spin). The electron spin may be
considered to be either “up” or “down” with respect to the plane of the scattering.
If the energy of the experiment is low enough, the magnetic forces due to the
currents will be small and the spin will not be affected. We will assume that this
is the case for the present analysis, so that there is no chance that the spins are
changed during the collision. Whatever spin the electron has, it carries along
with it. Now you see there are many possibilities. The bombarding and target
particles can have both spins up, both down, or opposite spins. If both spins are
up, as in Fig. 3-8 (or if both spins are down), the same will be true of the recoil
particles and the amplitude for the process is the difference of the amplitudes for
the two possibilities shown in Fig. 3-8(a) and (b). The probability of detecting
an electron in D1 is then given by Eq. (3.16).

Suppose, however, the “bombarding” spin is up and the “target” spin is
down. The electron entering counter 1 can have spin up or spin down, and by
measuring this spin we can tell whether it came from the bombarding beam or
from the target. The two possibilities are shown in Fig. 3-9(a) and (b); they are
distinguishable in principle, and hence there will be no interference—merely an
addition of the two probabilities. The same argument holds if both of the original
spins are reversed—that is, if the left-hand spin is down and the right-hand spin
is up.

Now if we take our electrons at random—as from a tungsten filament in which
the electrons are completely unpolarized—then the odds are fifty-fifty that any
particular electron comes out with spin up or spin down. If we don’t bother to
measure the spin of the electrons at any point in the experiment, we have what we
call an unpolarized experiment. The results for this experiment are best calculated
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Fig. 3-8. The scattering of electrons on electrons. If the incoming
electrons have parallel spins, the processes (a) and (b) are indistinguish-
able.
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Fig. 3-9. The scattering of electrons with antiparallel spins.
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Table 3-1

Scattering of unpolarized spin one-half particles

Fraction Spin of Spin of Spin at Spin at Probabilityof cases particle 1 particle 2 D1 D2

1
4 up up up up |f(θ)− f(π − θ)|2
1
4 down down down down |f(θ)− f(π − θ)|2

1
4 up down

{
up down |f(θ)|2

down up |f(π − θ)|2

1
4 down up

{
up down |f(π − θ)|2

down up |f(θ)|2

Total probability = 1
2 |f(θ)− f(π − θ)|2 + 1

2 |f(θ)|2 + 1
2 |f(π − θ)|2

by listing all of the various possibilities as we have done in Table 3-1. A separate
probability is computed for each distinguishable alternative. The total probability
is then the sum of all the separate probabilities. Note that for unpolarized beams
the result for θ = π/2 is one-half that of the classical result with independent
particles. The behavior of identical particles has many interesting consequences;
we will discuss them in greater detail in the next chapter.
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4

Identical Particles

Review: Blackbody radiation in:
Chapter 41, Vol. I, The Brownian Movement

Chapter 42, Vol. I, Applications of Kinetic Theory

4-1 Bose particles and Fermi particles

In the last chapter we began to consider the special rules for the interference
that occurs in processes with two identical particles. By identical particles
we mean things like electrons which can in no way be distinguished one from
another. If a process involves two particles that are identical, reversing which
one arrives at a counter is an alternative which cannot be distinguished and—
like all cases of alternatives which cannot be distinguished—interferes with the
original, unexchanged case. The amplitude for an event is then the sum of the
two interfering amplitudes; but, interestingly enough, the interference is in some
cases with the same phase and, in others, with the opposite phase.

Suppose we have a collision of two particles a and b in which particle a
scatters in the direction 1 and particle b scatters in the direction 2, as sketched in
Fig. 4-1(a). Let’s call f(θ) the amplitude for this process; then the probability P1
of observing such an event is proportional to |f(θ)|2. Of course, it could also
happen that particle b scattered into counter 1 and particle a went into counter 2,
as shown in Fig. 4-1(b). Assuming that there are no special directions defined by
spins or such, the probability P2 for this process is just |f(π − θ)|2, because it is
just equivalent to the first process with counter 1 moved over to the angle π − θ.
You might also think that the amplitude for the second process is just f(π − θ).
But that is not necessarily so, because there could be an arbitrary phase factor.
That is, the amplitude could be

eiδf(π − θ).

Such an amplitude still gives a probability P2 equal to |f(π − θ)|2.
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Fig. 4-1. In the scattering of two identical particles, the processes (a)
and (b) are indistinguishable.

Now let’s see what happens if a and b are identical particles. Then the two
different processes shown in the two diagrams of Fig. 4-1 cannot be distinguished.
There is an amplitude that either a or b goes into counter 1, while the other
goes into counter 2. This amplitude is the sum of the amplitudes for the two
processes shown in Fig. 4-1. If we call the first one f(θ), then the second one
is eiδf(π− θ), where now the phase factor is very important because we are going
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to be adding two amplitudes. Suppose we have to multiply the amplitude by
a certain phase factor when we exchange the roles of the two particles. If we
exchange them again we should get the same factor again. But we are then back
to the first process. The phase factor taken twice must bring us back where we
started—its square must be equal to 1. There are only two possibilities: eiδ is
equal to +1, or is equal to −1. Either the exchanged case contributes with the
same sign, or it contributes with the opposite sign. Both cases exist in nature,
each for a different class of particles. Particles which interfere with a positive sign
are called Bose particles and those which interfere with a negative sign are called
Fermi particles. The Bose particles are the photon, the mesons, and the graviton.
The Fermi particles are the electron, the muon, the neutrinos, the nucleons, and
the baryons. We have, then, that the amplitude for the scattering of identical
particles is:

Bose particles:
(Amplitude direct) + (Amplitude exchanged). (4.1)

Fermi particles:
(Amplitude direct)− (Amplitude exchanged). (4.2)

For particles with spin—like electrons—there is an additional complication.
We must specify not only the location of the particles but the direction of their
spins. It is only for identical particles with identical spin states that the amplitudes
interfere when the particles are exchanged. If you think of the scattering of
unpolarized beams—which are a mixture of different spin states—there is some
extra arithmetic.

Now an interesting problem arises when there are two or more particles bound
tightly together. For example, an α-particle has four particles in it—two neutrons
and two protons. When two α-particles scatter, there are several possibilities.
It may be that during the scattering there is a certain amplitude that one of
the neutrons will leap across from one α-particle to the other, while a neutron
from the other α-particle leaps the other way so that the two alphas which come
out of the scattering are not the original ones—there has been an exchange of a
pair of neutrons. See Fig. 4-2. The amplitude for scattering with an exchange
of a pair of neutrons will interfere with the amplitude for scattering with no
such exchange, and the interference must be with a minus sign because there
has been an exchange of one pair of Fermi particles. On the other hand, if the
relative energy of the two α-particles is so low that they stay fairly far apart—say,
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Fig. 4-2. The scattering of two α-particles. In (a) the two particles
retain their identity; in (b) a neutron is exchanged during the collision.
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due to the Coulomb repulsion—and there is never any appreciable probability
of exchanging any of the internal particles, we can consider the α-particle as
a simple object, and we do not need to worry about its internal details. In
such circumstances, there are only two contributions to the scattering amplitude.
Either there is no exchange, or all four of the nucleons are exchanged in the
scattering. Since the protons and the neutrons in the α-particle are all Fermi
particles, an exchange of any pair reverses the sign of the scattering amplitude.
So long as there are no internal changes in the α-particles, interchanging the two
α-particles is the same as interchanging four pairs of Fermi particles. There is
a change in sign for each pair, so the net result is that the amplitudes combine
with a positive sign. The α-particle behaves like a Bose particle.

So the rule is that composite objects, in circumstances in which the composite
object can be considered as a single object, behave like Fermi particles or Bose
particles, depending on whether they contain an odd number or an even number
of Fermi particles.

All the elementary Fermi particles we have mentioned—such as the electron,
the proton, the neutron, and so on—have a spin j = 1/2. If several such Fermi
particles are put together to form a composite object, the resulting spin may
be either integral or half-integral. For example, the common isotope of helium,
He4, which has two neutrons and two protons, has a spin of zero, whereas Li7,
which has three protons and four neutrons, has a spin of 3/2. We will learn later
the rules for compounding angular momentum, and will just mention now that
every composite object which has a half-integral spin imitates a Fermi particle,
whereas every composite object with an integral spin imitates a Bose particle.

This brings up an interesting question: Why is it that particles with half-
integral spin are Fermi particles whose amplitudes add with the minus sign,
whereas particles with integral spin are Bose particles whose amplitudes add
with the positive sign? We apologize for the fact that we cannot give you an
elementary explanation. An explanation has been worked out by Pauli from
complicated arguments of quantum field theory and relativity. He has shown
that the two must necessarily go together, but we have not been able to find a
way of reproducing his arguments on an elementary level. It appears to be one of
the few places in physics where there is a rule which can be stated very simply,
but for which no one has found a simple and easy explanation. The explanation
is deep down in relativistic quantum mechanics. This probably means that we
do not have a complete understanding of the fundamental principle involved. For
the moment, you will just have to take it as one of the rules of the world.
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4-2 States with two Bose particles

Now we would like to discuss an interesting consequence of the addition rule
for Bose particles. It has to do with their behavior when there are several particles
present. We begin by considering a situation in which two Bose particles are
scattered from two different scatterers. We won’t worry about the details of the
scattering mechanism. We are interested only in what happens to the scattered
particles. Suppose we have the situation shown in Fig. 4-3. The particle a is
scattered into the state 1. By a state we mean a given direction and energy, or
some other given condition. The particle b is scattered into the state 2. We want
to assume that the two states 1 and 2 are nearly the same. (What we really want
to find out eventually is the amplitude that the two particles are scattered into
identical directions, or states; but it is best if we think first about what happens
if the states are almost the same and then work out what happens when they
become identical.)

a

b

1
2

Fig. 4-3. A double scattering into nearby final states.

Suppose that we had only particle a; then it would have a certain amplitude
for scattering in direction 1, say 〈1 | a〉. And particle b alone would have the
amplitude 〈2 | b〉 for landing in direction 2. If the two particles are not identical,
the amplitude for the two scatterings to occur at the same time is just the product

〈1 | a〉〈2 | b〉.
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The probability for such an event is then

|〈1 | a〉〈2 | b〉|2,
which is also equal to

|〈1 | a〉|2|〈2 | b〉|2.

To save writing for the present arguments, we will sometimes set

〈1 | a〉 = a1, 〈2 | b〉 = b2.

Then the probability of the double scattering is

|a1|2|b2|2.

It could also happen that particle b is scattered into direction 1, while particle a
goes into direction 2. The amplitude for this process is

〈2 | a〉〈1 | b〉,

and the probability of such an event is

|〈2 | a〉〈1 | b〉|2 = |a2|2|b1|2.

Imagine now that we have a pair of tiny counters that pick up the two scattered
particles. The probability P2 that they will pick up two particles together is just
the sum

P2 = |a1|2|b2|2 + |a2|2|b1|2. (4.3)

Now let’s suppose that the directions 1 and 2 are very close together. We
expect that a should vary smoothly with direction, so a1 and a2 must approach
each other as 1 and 2 get close together. If they are close enough, the amplitudes
a1 and a2 will be equal. We can set a1 = a2 and call them both just a; similarly,
we set b1 = b2 = b. Then we get that

P2 = 2|a|2|b|2. (4.4)

Now suppose, however, that a and b are identical Bose particles. Then the
process of a going into 1 and b going into 2 cannot be distinguished from the
exchanged process in which a goes into 2 and b goes into 1. In this case the
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amplitudes for the two different processes can interfere. The total amplitude to
obtain a particle in each of the two counters is

〈1 | a〉〈2 | b〉+ 〈2 | a〉〈1 | b〉. (4.5)

And the probability that we get a pair is the absolute square of this amplitude,

P2 = |a1b2 + a2b1|2 = 4|a|2|b|2. (4.6)

We have the result that it is twice as likely to find two identical Bose particles
scattered into the same state as you would calculate assuming the particles were
different.

Although we have been considering that the two particles are observed in
separate counters, this is not essential—as we can see in the following way. Let’s
imagine that both the directions 1 and 2 would bring the particles into a single
small counter which is some distance away. We will let the direction 1 be defined
by saying that it heads toward the element of area dS1 of the counter. Direction 2
heads toward the surface element dS2 of the counter. (We imagine that the
counter presents a surface at right angles to the line from the scatterings.) Now
we cannot give a probability that a particle will go into a precise direction or
to a particular point in space. Such a thing is impossible—the chance for any
exact direction is zero. When we want to be so specific, we shall have to define
our amplitudes so that they give the probability of arriving per unit area of a
counter. Suppose that we had only particle a; it would have a certain amplitude
for scattering in direction 1. Let’s define 〈1 | a〉 = a1 to be the amplitude that a
will scatter into a unit area of the counter in the direction 1. In other words, the
scale of a1 is chosen—we say it is “normalized” so that the probability that it
will scatter into an element of area dS1 is

|〈1 | a〉|2 dS1 = |a1|2 dS1. (4.7)

If our counter has the total area ∆S, and we let dS1 range over this area, the
total probability that the particle a will be scattered into the counter is∫

∆S
|a1|2 dS1. (4.8)

As before, we want to assume that the counter is sufficiently small so that the
amplitude a1 doesn’t vary significantly over the surface of the counter; a1 is then
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a constant amplitude which we can call a. Then the probability that particle a
is scattered somewhere into the counter is

pa = |a|2 ∆S. (4.9)

In the same way, we will have that the probability that particle b—when it is
alone—scatters into some element of area, say dS2, is

|b2|2 dS2.

(We use dS2 instead of dS1 because we will later want a and b to go into different
directions.) Again we set b2 equal to the constant amplitude b; then the probability
that particle b is counted in the detector is

pb = |b|2 ∆S. (4.10)

Now when both particles are present, the probability that a is scattered
into dS1 and b is scattered into dS2 is

|a1b2|2 dS1 dS2 = |a|2|b|2 dS1 dS2. (4.11)

If we want the probability that both a and b get into the counter, we integrate
both dS1 and dS2 over ∆S and find that

P2 = |a|2|b|2 (∆S)2. (4.12)

We notice, incidentally, that this is just equal to pa ·pb, just as you would suppose
assuming that the particles a and b act independently of each other.

When the two particles are identical, however, there are two indistinguishable
possibilities for each pair of surface elements dS1 and dS2. Particle a going
into dS2 and particle b going into dS1 is indistinguishable from a into dS1 and b
into dS2, so the amplitudes for these processes will interfere. (When we had two
different particles above—although we did not in fact care which particle went
where in the counter—we could, in principle, have found out; so there was no
interference. For identical particles we cannot tell, even in principle.) We must
write, then, that the probability that the two particles arrive at dS1 and dS2 is

|a1b2 + a2b1|2 dS1 dS2. (4.13)

Now, however, when we integrate over the area of the counter, we must be careful.
If we let dS1 and dS2 range over the whole area ∆S, we would count each part
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of the area twice since (4.13) contains everything that can happen with any pair
of surface elements dS1 and dS2.† We can still do the integral that way, if we
correct for the double counting by dividing the result by 2. We get then that P2
for identical Bose particles is

P2(Bose) = 1
2{4|a|

2|b|2 (∆S)2} = 2|a|2|b|2 (∆S)2. (4.14)

Again, this is just twice what we got in Eq. (4.12) for distinguishable particles.
If we imagine for a moment that we knew that the b channel had already

sent its particle into the particular direction, we can say that the probability that
a second particle will go into the same direction is twice as great as we would
have expected if we had calculated it as an independent event. It is a property
of Bose particles that if there is already one particle in a condition of some kind,
the probability of getting a second one in the same condition is twice as great
as it would be if the first one were not already there. This fact is often stated
in the following way: If there is already one Bose particle in a given state, the
amplitude for putting an identical one on top of it is

√
2 greater than if it weren’t

there. (This is not a proper way of stating the result from the physical point of
view we have taken, but if it is used consistently as a rule, it will, of course, give
the correct result.)

4-3 States with n Bose particles

Let’s extend our result to a situation in which there are n particles present.
We imagine the circumstance shown in Fig. 4-4. We have n particles a, b, c, . . . ,
which are scattered and end up in the directions 1, 2, 3, . . . , n. All n directions
are headed toward a small counter a long distance away. As in the last section, we
choose to normalize all the amplitudes so that the probability that each particle
acting alone would go into an element of surface dS of the counter is

|〈 〉|2 dS.

First, let’s assume that the particles are all distinguishable; then the proba-
bility that n particles will be counted together in n different surface elements
is

|a1b2c3 · · ·|2 dS1 dS2 dS3 · · · (4.15)
† In (4.11) interchanging dS1 and dS2 gives a different event, so both surface elements

should range over the whole area of the counter. In (4.13) we are treating dS1 and dS2 as a
pair and including everything that can happen. If the integrals include again what happens
when dS1 and dS2 are reversed, everything is counted twice.
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b

c . . .

1
2
3
. . .
n

Fig. 4-4. The scattering of n particles into nearby states.

Again we take that the amplitudes don’t depend on where dS is located in the
counter (assumed small) and call them simply a, b, c, . . . The probability (4.15)
becomes

|a|2|b|2|c|2 · · · dS1 dS2 dS3 · · · (4.16)

Integrating each dS over the surface ∆S of the counter, we have that Pn(different),
the probability of counting n different particles at once, is

Pn(different) = |a|2|b|2|c|2 · · · (∆S)n. (4.17)

This is just the product of the probabilities for each particle to enter the counter
separately. They all act independently—the probability for one to enter does not
depend on how many others are also entering.

Now suppose that all the particles are identical Bose particles. For each set
of directions 1, 2, 3, . . . there are many indistinguishable possibilities. If there
were, for instance, just three particles, we would have the following possibilities:

a→ 1 a→ 1 a→ 2
b→ 2 b→ 3 b→ 1
c→ 3 c→ 2 c→ 3
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a→ 2 a→ 3 a→ 3
b→ 3 b→ 1 b→ 2
c→ 1 c→ 2 c→ 1

There are six different combinations. With n particles, there are n! different, but
indistinguishable, possibilities for which we must add amplitudes. The probability
that n particles will be counted in n surface elements is then

|a1b2c3 · · ·+ a1b3c2 · · ·+ a2b1c3 · · ·
+ a2b3c1 · · ·+ etc. + etc.|2 dS1 dS2 dS3 · · · dSn. (4.18)

Once more we assume that all the directions are so close that we can set a1 =
a2 = · · · = an = a, and similarly for b, c, . . . ; the probability of (4.18) becomes

|n!abc · · ·|2dS1 dS2 · · · dSn. (4.19)

When we integrate each dS over the area ∆S of the counter, each possible
product of surface elements is counted n! times; we correct for this by dividing
by n! and get

Pn(Bose) = 1
n! |n!abc · · ·|2(∆S)n

or
Pn(Bose) = n! |abc · · ·|2(∆S)n. (4.20)

Comparing this result with Eq. (4.17), we see that the probability of counting
n Bose particles together is n! greater than we would calculate assuming that
the particles were all distinguishable. We can summarize our result this way:

Pn(Bose) = n!Pn(different). (4.21)

Thus, the probability in the Bose case is larger by n! than you would calculate
assuming that the particles acted independently.

We can see better what this means if we ask the following question: What is
the probability that a Bose particle will go into a particular state when there
are already n others present? Let’s call the newly added particle w. If we have
(n+ 1) particles, including w, Eq. (4.20) becomes

Pn+1(Bose) = (n+ 1)! |abc · · ·w|2(∆S)n+1. (4.22)
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We can write this as

Pn+1(Bose) = {(n+ 1)|w|2 ∆S}n! |abc · · ·|2(∆S)n
or

Pn+1(Bose) = (n+ 1)|w|2 ∆S Pn(Bose). (4.23)

We can look at this result in the following way: The number |w|2 ∆S is the
probability for getting particle w into the detector if no other particles were
present; Pn(Bose) is the chance that there are already n other Bose particles
present. So Eq. (4.23) says that when there are n other identical Bose particles
present, the probability that one more particle will enter the same state is
enhanced by the factor (n+ 1). The probability of getting a boson, where there
are already n, is (n+ 1) times stronger than it would be if there were none before.
The presence of the other particles increases the probability of getting one more.

4-4 Emission and absorption of photons

Throughout our discussion we have talked about a process like the scattering
of α-particles. But that is not essential; we could have been speaking of the
creation of particles, as for instance the emission of light. When the light is
emitted, a photon is “created.” In such a case, we don’t need the incoming lines in
Fig. 4-4; we can consider merely that there are some atoms emitting n photons,
as in Fig. 4-5. So our result can also be stated: The probability that an atom will
emit a photon into a particular final state is increased by the factor (n + 1) if
there are already n photons in that state.

1
2
3 . . .

n

Fig. 4-5. The creation of n photons in nearby states.
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People like to summarize this result by saying that the amplitude to emit
a photon is increased by the factor

√
n+ 1 when there are already n photons

present. It is, of course, another way of saying the same thing if it is understood
to mean that this amplitude is just to be squared to get the probability.

It is generally true in quantum mechanics that the amplitude to get from any
condition φ to any other condition χ is the complex conjugate of the amplitude
to get from χ to φ:

〈χ |φ〉 = 〈φ |χ〉∗. (4.24)

We will learn about this law a little later, but for the moment we will just assume
it is true. We can use it to find out how photons are scattered or absorbed out of
a given state. We have that the amplitude that a photon will be added to some
state, say i, when there are already n photons present is, say,

〈n+ 1 |n〉 =
√
n+ 1 a, (4.25)

where a = 〈i | a〉 is the amplitude when there are no others present. Using
Eq. (4.24), the amplitude to go the other way—from (n+ 1) photons to n—is

〈n |n+ 1〉 =
√
n+ 1 a∗. (4.26)

This isn’t the way people usually say it; they don’t like to think of going from
(n+ 1) to n, but prefer always to start with n photons present. Then they say
that the amplitude to absorb a photon when there are n present—in other words,
to go from n to (n− 1)—is

〈n− 1 |n〉 =
√
na∗. (4.27)

which is, of course, just the same as Eq. (4.26). Then they have trouble trying to
remember when to use

√
n or

√
n+ 1. Here’s the way to remember: The factor

is always the square root of the largest number of photons present, whether it
is before or after the reaction. Equations (4.25) and (4.26) show that the law is
really symmetric—it only appears unsymmetric if you write it as Eq. (4.27).

There are many physical consequences of these new rules; we want to describe
one of them having to do with the emission of light. Suppose we imagine a
situation in which photons are contained in a box—you can imagine a box
with mirrors for walls. Now say that in the box we have n photons, all of the
same state—the same frequency, direction, and polarization—so they can’t be
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distinguished, and that also there is an atom in the box that can emit another
photon into the same state. Then the probability that it will emit a photon is

(n+ 1)|a|2, (4.28)

and the probability that it will absorb a photon is

n|a|2, (4.29)

where |a|2 is the probability it would emit if no photons were present. We have
already discussed these rules in a somewhat different way in Chapter 42 of Vol. I.
Equation (4.29) says that the probability that an atom will absorb a photon and
make a transition to a higher energy state is proportional to the intensity of the
light shining on it. But, as Einstein first pointed out, the rate at which an atom
will make a transition downward has two parts. There is the probability that
it will make a spontaneous transition |a|2, plus the probability of an induced
transition n|a|2, which is proportional to the intensity of the light—that is, to
the number of photons present. Furthermore, as Einstein said, the coefficients of
absorption and of induced emission are equal and are related to the probability
of spontaneous emission. What we learn here is that if the light intensity is
measured in terms of the number of photons present (instead of as the energy
per unit area, and per sec), the coefficients of absorption of induced emission and
of spontaneous emission are all equal. This is the content of the relation between
the Einstein coefficients A and B of Chapter 42, Vol. I, Eq. (42.18).

4-5 The blackbody spectrum

We would like to use our rules for Bose particles to discuss once more the
spectrum of blackbody radiation (see Chapter 42, Vol. I). We will do it by finding
out how many photons there are in a box if the radiation is in thermal equilibrium
with some atoms in the box. Suppose that for each light frequency ω, there are
a certain number N of atoms which have two energy states separated by the
energy ∆E = ~ω. See Fig. 4-6. We’ll call the lower-energy state the “ground”
state and the upper state the “excited” state. Let Ng and Ne be the average
numbers of atoms in the ground and excited states; then in thermal equilibrium
at the temperature T , we have from statistical mechanics that

Ne
Ng

= e−∆E/kT = e−~ω/kT . (4.30)
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(a)

GROUND STATE
g

e

∆E = h̄ω

(b)

GROUND STATE
g

e

∆E = h̄ω

Fig. 4-6. Radiation and absorption of a photon with the frequency ω.

Each atom in the ground state can absorb a photon and go into the excited
state, and each atom in the excited state can emit a photon and go to the ground
state. In equilibrium, the rates for these two processes must be equal. The rates
are proportional to the probability for the event and to the number of atoms
present. Let’s let n be the average number of photons present in a given state
with the frequency ω. Then the absorption rate from that state is Ngn|a|2, and
the emission rate into that state is Ne(n+ 1)|a|2. Setting the two rates equal,
we have that

Ngn = Ne(n+ 1). (4.31)

Combining this with Eq. (4.30), we have

n

n+ 1 = e−~ω/kT .

Solving for n, we have

n = 1
e~ω/kT − 1 , (4.32)

which is the mean number of photons in any state with frequency ω, for a cavity
in thermal equilibrium. Since each photon has the energy ~ω, the energy in the

4-16



photons of a given state is n~ω, or

~ω
e~ω/kT − 1 . (4.33)

Incidentally, we once found a similar equation in another context [Chapter 41,
Vol. I, Eq. (41.15)]. You remember that for any harmonic oscillator—such as a
weight on a spring—the quantum mechanical energy levels are equally spaced with
a separation ~ω, as drawn in Fig. 4-7. If we call the energy of the nth level n~ω,
we find that the mean energy of such an oscillator is also given by Eq. (4.33). Yet
this equation was derived here for photons, by counting particles, and it gives the
same results. That is one of the marvelous miracles of quantum mechanics. If one
begins by considering a kind of state or condition for Bose particles which do not
interact with each other (we have assumed that the photons do not interact with
each other), and then considers that into this state there can be put either zero,
or one, or two, . . . up to any number n of particles, one finds that this system
behaves for all quantum mechanical purposes exactly like a harmonic oscillator.
By such an oscillator we mean a dynamic system like a weight on a spring or a
standing wave in a resonant cavity. And that is why it is possible to represent the
electromagnetic field by photon particles. From one point of view, we can analyze
the electromagnetic field in a box or cavity in terms of a lot of harmonic oscillators,
treating each mode of oscillation according to quantum mechanics as a harmonic

E

GROUND STATE
0

h̄ω

2h̄ω

3h̄ω

4h̄ω

5h̄ω

.

.

.

Fig. 4-7. The energy levels of a harmonic oscillator.
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oscillator. From a different point of view, we can analyze the same physics in
terms of identical Bose particles. And the results of both ways of working are
always in exact agreement. There is no way to make up your mind whether the
electromagnetic field is really to be described as a quantized harmonic oscillator
or by giving how many photons there are in each condition. The two views turn
out to be mathematically identical. So in the future we can speak either about the
number of photons in a particular state in a box or the number of the energy level
associated with a particular mode of oscillation of the electromagnetic field. They
are two ways of saying the same thing. The same is true of photons in free space.
They are equivalent to oscillations of a cavity whose walls have receded to infinity.

We have computed the mean energy in any particular mode in a box at the
temperature T ; we need only one more thing to get the blackbody radiation law:
We need to know how many modes there are at each energy. (We assume that
for every mode there are some atoms in the box—or in the walls—which have
energy levels that can radiate into that mode, so that each mode can get into
thermal equilibrium.) The blackbody radiation law is usually stated by giving
the energy per unit volume carried by the light in a small frequency interval from
ω to ω + ∆ω. So we need to know how many modes there are in a box with
frequencies in the interval ∆ω. Although this question continually comes up in
quantum mechanics, it is purely a classical question about standing waves.

We will get the answer only for a rectangular box. It comes out the same for
a box of any shape, but it’s very complicated to compute for the arbitrary case.
Also, we are only interested in a box whose dimensions are very large compared
with a wavelength of the light. Then there are billions and billions of modes;
there will be many in any small frequency interval ∆ω, so we can speak of the
“average number” in any ∆ω at the frequency ω. Let’s start by asking how many
modes there are in a one-dimensional case—as for waves on a stretched string.
You know that each mode is a sine wave that has to go to zero at both ends; in
other words, there must be an integral number of half-wavelengths in the length
of the line, as shown in Fig. 4-8. We prefer to use the wave number k = 2π/λ;
calling kj the wave number of the jth mode, we have that

kj = jπ

L
, (4.34)

where j is any integer. The separation δk between successive modes is

δk = kj+1 − kj = π

L
.
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Fig. 4-8. The standing wave modes on a line.

We want to assume that kL is so large that in a small interval ∆k, there are
many modes. Calling ∆N the number of modes in the interval ∆k, we have

∆N = ∆k
δk

= L

π
∆k. (4.35)

Now theoretical physicists working in quantum mechanics usually prefer to
say that there are one-half as many modes; they write

∆N = L

2π ∆k. (4.36)

We would like to explain why. They usually like to think in terms of travelling
waves—some going to the right (with a positive k) and some going to the left
(with a negative k). But a “mode” is a standing wave which is the sum of two
waves, one going in each direction. In other words, they consider each standing
wave as containing two distinct photon “states.” So if by ∆N, one prefers to mean
the number of photon states of a given k (where now k ranges over positive and
negative values), one should then take ∆N half as big. (All integrals must now
go from k = −∞ to k = +∞, and the total number of states up to any given
absolute value of k will come out O.K.) Of course, we are not then describing
standing waves very well, but we are counting modes in a consistent way.

Now we want to extend the results to three dimensions. A standing wave in a
rectangular box must have an integral number of half-waves along each axis. The
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Fig. 4-9. Standing wave modes in two dimensions.

situation for two of the dimensions is shown in Fig. 4-9. Each wave direction and
frequency is described by a vector wave number k, whose x, y, and z components
must satisfy equations like Eq. (4.34). So we have that

kx = jxπ

Lx
,

ky = jyπ

Ly
,

kz = jzπ

Lz
.

The number of modes with kx in an interval ∆kx is, as before,

Lx
2π ∆kx,

and similarly for ∆ky and ∆kz. If we call ∆N(k) the number of modes for a
vector wave number k whose x-component is between kx and kx + ∆kx, whose
y-component is between ky and ky + ∆ky, and whose z-component is between kz
and kz + ∆kz, then

∆N(k) = LxLyLz
(2π)3 ∆kx ∆ky ∆kz. (4.37)
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The product LxLyLz is equal to the volume V of the box. So we have the
important result that for high frequencies (wavelengths small compared with the
dimensions), the number of modes in a cavity is proportional to the volume V
of the box and to the “volume in k-space” ∆kx ∆ky ∆kz. This result comes up
again and again in many problems and should be memorized:

dN(k) = V
d3k

(2π)3 . (4.38)

Although we have not proved it, the result is independent of the shape of the
box.

We will now apply this result to find the number of photon modes for photons
with frequencies in the range ∆ω. We are just interested in the energy in various
modes—but not interested in the directions of the waves. We would like to know
the number of modes in a given range of frequencies. In a vacuum the magnitude
of k is related to the frequency by

|k| = ω

c
. (4.39)

So in a frequency interval ∆ω, these are all the modes which correspond to k’s
with a magnitude between k and k + ∆k, independent of the direction. The
“volume in k-space” between k and k + ∆k is a spherical shell of volume

4πk2 ∆k.

The number of modes is then

∆N(ω) = V 4πk2 ∆k
(2π)3 . (4.40)

However, since we are now interested in frequencies, we should substitute k = ω/c,
so we get

∆N(ω) = V 4πω2 ∆ω
(2π)3c3

. (4.41)

There is one more complication. If we are talking about modes of an electro-
magnetic wave, for any given wave vector k there can be either of two polarizations
(at right angles to each other). Since these modes are independent, we must—for
light—double the number of modes. So we have

∆N(ω) = V ω2 ∆ω
π2c3

(for light). (4.42)
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We have shown, Eq. (4.33), that each mode (or each “state”) has on the average
the energy

n~ω = ~ω
e~ω/kT − 1 .

Multiplying this by the number of modes, we get the energy ∆E in the modes
that lie in the interval ∆ω:

∆E = ~ω
e~ω/kT − 1

V ω2 ∆ω
π2c3

. (4.43)

This is the law for the frequency spectrum of blackbody radiation, which we have
already found in Chapter 41 of Vol. I. The spectrum is plotted in Fig. 4-10. You
see now that the answer depends on the fact that photons are Bose particles,
which have a tendency to try to get all into the same state (because the amplitude
for doing so is large). You will remember, it was Planck’s study of the blackbody
spectrum (which was a mystery to classical physics), and his discovery of the
formula in Eq. (4.43) that started the whole subject of quantum mechanics.
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Fig. 4-10. The frequency spectrum of radiation in a cavity in thermal
equilibrium, the “blackbody” spectrum.

4-6 Liquid helium
Liquid helium has at low temperatures many odd properties which we cannot

unfortunately take the time to describe in detail right now, but many of them
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arise from the fact that a helium atom is a Bose particle. One of the things is that
liquid helium flows without any viscous resistance. It is, in fact, the ideal “dry”
water we have been talking about in one of the earlier chapters—provided that
the velocities are low enough. The reason is the following. In order for a liquid to
have viscosity, there must be internal energy losses; there must be some way for
one part of the liquid to have a motion that is different from that of the rest of the
liquid. This means that it must be possible to knock some of the atoms into states
that are different from the states occupied by other atoms. But at sufficiently
low temperatures, when the thermal motions get very small, all the atoms try
to get into the same condition. So, if some of them are moving along, then all
the atoms try to move together in the same state. There is a kind of rigidity
to the motion, and it is hard to break the motion up into irregular patterns of
turbulence, as would happen, for example, with independent particles. So in a
liquid of Bose particles, there is a strong tendency for all the atoms to go into
the same state—which is represented by the

√
n+ 1 factor we found earlier. (For

a bottle of liquid helium n is, of course, a very large number!) This cooperative
motion does not happen at high temperatures, because then there is sufficient
thermal energy to put the various atoms into various different higher states. But
at a sufficiently low temperature there suddenly comes a moment in which all the
helium atoms try to go into the same state. The helium becomes a superfluid.
Incidentally, this phenomenon only appears with the isotope of helium which
has atomic weight 4. For the helium isotope of atomic weight 3, the individual
atoms are Fermi particles, and the liquid is a normal fluid. Since superfluidity
occurs only with He4, it is evidently a quantum mechanical effect—due to the
Bose nature of the α-particle.

4-7 The exclusion principle

Fermi particles act in a completely different way. Let’s see what happens if
we try to put two Fermi particles into the same state. We will go back to our
original example and ask for the amplitude that two identical Fermi particles
will be scattered into almost exactly the same direction. The amplitude that
particle a will go in direction 1 and particle b will go in direction 2 is

〈1 | a〉〈2 | b〉,

whereas the amplitude that the outgoing directions will be interchanged is

〈2 | a〉〈1 | b〉.
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Since we have Fermi particles, the amplitude for the process is the difference of
these two amplitudes:

〈1 | a〉〈2 | b〉 − 〈2 | a〉〈1 | b〉. (4.44)

Let’s say that by “direction 1” we mean that the particle has not only a certain
direction but also a given direction of its spin, and that “direction 2” is almost
exactly the same as direction 1 and corresponds to the same spin direction. Then
〈1 | a〉 and 〈2 | a〉 are nearly equal. (This would not necessarily be true if the
outgoing states 1 and 2 did not have the same spin, because there might be some
reason why the amplitude would depend on the spin direction.) Now if we let
directions 1 and 2 approach each other, the total amplitude in Eq. (4.44) becomes
zero. The result for Fermi particles is much simpler than for Bose particles. It
just isn’t possible at all for two Fermi particles—such as two electrons—to get
into exactly the same state. You will never find two electrons in the same position
with their two spins in the same direction. It is not possible for two electrons to
have the same momentum and the same spin directions. If they are at the same
location or with the same state of motion, the only possibility is that they must
be spinning opposite to each other.

What are the consequences of this? There are a number of most remarkable
effects which are a consequence of the fact that two Fermi particles cannot get
into the same state. In fact, almost all the peculiarities of the material world
hinge on this wonderful fact. The variety that is represented in the periodic table
is basically a consequence of this one rule.

Of course, we cannot say what the world would be like if this one rule were
changed, because it is just a part of the whole structure of quantum mechanics,
and it is impossible to say what else would change if the rule about Fermi particles
were different. Anyway, let’s just try to see what would happen if only this one rule
were changed. First, we can show that every atom would be more or less the same.
Let’s start with the hydrogen atom. It would not be noticeably affected. The
proton of the nucleus would be surrounded by a spherically symmetric electron
cloud, as shown in Fig. 4-11(a). As we have described in Chapter 2, the electron
is attracted to the center, but the uncertainty principle requires that there be
a balance between the concentration in space and in momentum. The balance
means that there must be a certain energy and a certain spread in the electron
distribution which determines the characteristic dimension of the hydrogen atom.

Now suppose that we have a nucleus with two units of charge, such as the
helium nucleus. This nucleus would attract two electrons, and if they were Bose
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Fig. 4-11. How atoms might look if electrons behaved like Bose particles.

particles, they would—except for their electric repulsion—both crowd in as close
as possible to the nucleus. A helium atom might look as shown in part (b) of
the figure. Similarly, a lithium atom which has a triply charged nucleus would
have an electron distribution like that shown in part (c) of Fig. 4-11. Every atom
would look more or less the same—a little round ball with all the electrons sitting
near the nucleus, nothing directional and nothing complicated.

Because electrons are Fermi particles, however, the actual situation is quite
different. For the hydrogen atom the situation is essentially unchanged. The
only difference is that the electron has a spin which we indicate by the little
arrow in Fig. 4-12(a). In the case of a helium atom, however, we cannot put
two electrons on top of each other. But wait, that is only true if their spins are
the same. Two electrons can occupy the same state if their spins are opposite.
So the helium atom does not look much different either. It would appear as
shown in part (b) of Fig. 4-12. For lithium, however, the situation becomes quite
different. Where can we put the third electron? The third electron cannot go on
top of the other two because both spin directions are occupied. (You remember
that for an electron or any particle with spin 1/2 there are only two possible
directions for the spin.) The third electron can’t go near the place occupied by
the other two, so it must take up a special condition in a different kind of state
farther away from the nucleus in part (c) of the figure. (We are speaking only
in a rather rough way here, because in reality all three electrons are identical;
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Fig. 4-12. Atomic configurations for real, Fermi-type, spin one-half
electrons.

since we cannot really distinguish which one is which, our picture is only an
approximate one.)

Now we can begin to see why different atoms will have different chemical
properties. Because the third electron in lithium is farther out, it is relatively
more loosely bound. It is much easier to remove an electron from lithium than
from helium. (Experimentally, it takes 25 electron volts to ionize helium but only
5 electron volts to ionize lithium.) This accounts for the valence of the lithium
atom. The directional properties of the valence have to do with the pattern of
the waves of the outer electron, which we will not go into at the moment. But we
can already see the importance of the so-called exclusion principle—which states
that no two electrons can be found in exactly the same state (including spin).
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The exclusion principle is also responsible for the stability of matter on a large
scale. We explained earlier that the individual atoms in matter did not collapse
because of the uncertainty principle; but this does not explain why it is that two
hydrogen atoms can’t be squeezed together as close as you want—why it is that
all the protons don’t get close together with one big smear of electrons around
them. The answer is, of course, that since no more than two electrons—with
opposite spins—can be in roughly the same place, the hydrogen atoms must
keep away from each other. So the stability of matter on a large scale is really a
consequence of the Fermi particle nature of the electrons.

Of course, if the outer electrons on two atoms have spins in opposite direc-
tions, they can get close to each other. This is, in fact, just the way that the
chemical bond comes about. It turns out that two atoms together will generally
have the lowest energy if there is an electron between them. It is a kind of
an electrical attraction for the two positive nuclei toward the electron in the
middle. It is possible to put two electrons more or less between the two nuclei
so long as their spins are opposite, and the strongest chemical binding comes
about this way. There is no stronger binding, because the exclusion principle
does not allow there to be more than two electrons in the space between the
atoms. We expect the hydrogen molecule to look more or less as shown in
Fig. 4-13.

+ +

Fig. 4-13. The hydrogen molecule.

We want to mention one more consequence of the exclusion principle. You
remember that if both electrons in the helium atom are to be close to the nucleus,
their spins are necessarily opposite. Now suppose that we would like to try to
arrange to have both electrons with the same spin—as we might consider doing
by putting on a fantastically strong magnetic field that would try to line up the
spins in the same direction. But then the two electrons could not occupy the
same state in space. One of them would have to take on a different geometrical
position, as indicated in Fig. 4-14. The electron which is located farther from
the nucleus has less binding energy. The energy of the whole atom is therefore
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Fig. 4-14. Helium with one electron in a higher energy state.

quite a bit higher. In other words, when the two spins are opposite, there is a
much stronger total attraction.

So, there is an apparent, enormous force trying to line up spins opposite to
each other when two electrons are close together. If two electrons are trying to go
in the same place, there is a very strong tendency for the spins to become lined
opposite. This apparent force trying to orient the two spins opposite to each other
is much more powerful than the tiny force between the two magnetic moments of
the electrons. You remember when we were speaking of ferromagnetism there
was the mystery of why the electrons in different atoms had a strong tendency to
line up parallel. Although there is still no quantitative explanation, it is believed
that what happens is that the electrons around the core of one atom interact
through the exclusion principle with the outer electrons which have become free
to wander throughout the crystal. This interaction causes the spins of the free
electrons and the inner electrons to take on opposite directions. But the free
electrons and the inner atomic electrons can only be opposite provided all the
inner electrons have the same spin direction, as indicated in Fig. 4-15. It seems
probable that it is the effect of the exclusion principle acting indirectly through
the free electrons that gives rise to the strong aligning forces responsible for
ferromagnetism.

We will mention one further example of the influence of the exclusion principle.
We have said earlier that the nuclear forces are the same between the neutron and
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Fig. 4-15. The likely mechanism in a ferromagnetic crystal; the
conduction electron is antiparallel to the unpaired inner electrons.

the proton, between the proton and the proton, and between the neutron and the
neutron. Why is it then that a proton and a neutron can stick together to make a
deuterium nucleus, whereas there is no nucleus with just two protons or with just
two neutrons? The deuteron is, as a matter of fact, bound by an energy of about
2.2 million electron volts, yet, there is no corresponding binding between a pair
of protons to make an isotope of helium with the atomic weight 2. Such nuclei
do not exist. The combination of two protons does not make a bound state.

The answer is a result of two effects: first, the exclusion principle; and second,
the fact that the nuclear forces are somewhat sensitive to the direction of spin.
The force between a neutron and a proton is attractive and somewhat stronger
when the spins are parallel than when they are opposite. It happens that these
forces are just different enough that a deuteron can only be made if the neutron
and proton have their spins parallel; when their spins are opposite, the attraction
is not quite strong enough to bind them together. Since the spins of the neutron
and proton are each one-half and are in the same direction, the deuteron has a
spin of one. We know, however, that two protons are not allowed to sit on top of
each other if their spins are parallel. If it were not for the exclusion principle, two
protons would be bound, but since they cannot exist at the same place and with
the same spin directions, the He2 nucleus does not exist. The protons could come
together with their spins opposite, but then there is not enough binding to make
a stable nucleus, because the nuclear force for opposite spins is too weak to bind
a pair of nucleons. The attractive force between neutrons and protons of opposite
spins can be seen by scattering experiments. Similar scattering experiments with
two protons with parallel spins show that there is the corresponding attraction.
So it is the exclusion principle that helps explain why deuterium can exist when
He2 cannot.
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5

Spin One

Review: Chapter 35, Vol. II, Paramagnetism and Magnetic Resonance. For
your convenience this chapter is reproduced in the Appendix of this
volume.

5-1 Filtering atoms with a Stern-Gerlach apparatus

In this chapter we really begin the quantum mechanics proper—in the sense
that we are going to describe a quantum mechanical phenomenon in a completely
quantum mechanical way. We will make no apologies and no attempt to find
connections to classical mechanics. We want to talk about something new
in a new language. The particular situation which we are going to describe
is the behavior of the so-called quantization of the angular momentum, for a
particle of spin one. But we won’t use words like “angular momentum” or other
concepts of classical mechanics until later. We have chosen this particular example
because it is relatively simple, although not the simplest possible example. It is
sufficiently complicated that it can stand as a prototype which can be generalized
for the description of all quantum mechanical phenomena. Thus, although
we are dealing with a particular example, all the laws which we mention are
immediately generalizable, and we will give the generalizations so that you will
see the general characteristics of a quantum mechanical description. We begin
with the phenomenon of the splitting of a beam of atoms into three separate
beams in a Stern-Gerlach experiment.

You remember that if we have an inhomogeneous magnetic field made by a
magnet with a pointed pole tip and we send a beam through the apparatus, the
beam of particles may be split into a number of beams—the number depending
on the particular kind of atom and its state. We are going to take the case of an
atom which gives three beams, and we are going to call that a particle of spin
one. You can do for yourself the case of five beams, seven beams, two beams,

5-1



y

z

rBATOMIC
BEAM

Fig. 5-1. In a Stern-Gerlach experiment, atoms of spin one are split
into three beams.

etc.—you just copy everything down and where we have three terms, you will
have five terms, seven terms, and so on.

Imagine the apparatus drawn schematically in Fig. 5-1. A beam of atoms (or
particles of any kind) is collimated by some slits and passes through a nonuniform
field. Let’s say that the beam moves in the y-direction and that the magnetic
field and its gradient are both in the z-direction. Then, looking from the side, we
will see the beam split vertically into three beams, as shown in the figure. Now
at the output end of the magnet we could put small counters which count the
rate of arrival of particles in any one of the three beams. Or we can block off
two of the beams and let the third one go on.

Suppose we block off the lower two beams and let the top-most beam go
on and enter a second Stern-Gerlach apparatus of the same kind, as shown in
Fig. 5-2. What happens? There are not three beams in the second apparatus;
there is only the top beam.† This is what you would expect if you think of the

rB

rB

Fig. 5-2. The atoms from one of the beams are sent into a second
identical apparatus.

† We are assuming that the deflection angles are very small.
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second apparatus as simply an extension of the first. Those atoms which are
being pushed upward continue to be pushed upward in the second magnet.

You can see then that the first apparatus has produced a beam of “purified”
objects—atoms that get bent upward in the particular inhomogeneous field. The
atoms, as they enter the original Stern-Gerlach apparatus, are of three “varieties,”
and the three kinds take different trajectories. By filtering out all but one of
the varieties, we can make a beam whose future behavior in the same kind of
apparatus is determined and predictable. We will call this a filtered beam, or a
polarized beam, or a beam in which the atoms all are known to be in a definite
state.

For the rest of our discussion, it will be more convenient if we consider a
somewhat modified apparatus of the Stern-Gerlach type. The apparatus looks
more complicated at first, but it will make all the arguments simpler. Anyway,
since they are only “thought experiments,” it doesn’t cost anything to complicate
the equipment. (Incidentally, no one has ever done all of the experiments we
will describe in just this way, but we know what would happen from the laws of
quantum mechanics, which are, of course, based on other similar experiments.
These other experiments are harder to understand at the beginning, so we want
to describe some idealized—but possible—experiments.)

Figure 5-3(a) shows a drawing of the “modified Stern-Gerlach apparatus”
we would like to use. It consists of a sequence of three high-gradient magnets.
The first one (on the left) is just the usual Stern-Gerlach magnet and splits
the incoming beam of spin-one particles into three separate beams. The second
magnet has the same cross section as the first, but is twice as long and the
polarity of its magnetic field is opposite the field in magnet 1. The second magnet
pushes in the opposite direction on the atomic magnets and bends their paths
back toward the axis, as shown in the trajectories drawn in the lower part of the
figure. The third magnet is just like the first, and brings the three beams back
together again, so that leaves the exit hole along the axis. Finally, we would
like to imagine that in front of the hole at A there is some mechanism which
can get the atoms started from rest and that after the exit hole at B there is a
decelerating mechanism that brings the atoms back to rest at B. That is not
essential, but it will mean that in our analysis we won’t have to worry about
including any effects of the motion as the atoms come out, and can concentrate
on those matters having only to do with the spin. The whole purpose of the
“improved” apparatus is just to bring all the particles to the same place, and
with zero speed.
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Now if we want to do an experiment like the one in Fig. 5-2, we can first make
a filtered beam by putting a plate in the middle of the apparatus that blocks two
of the beams, as shown in Fig. 5-4. If we now put the polarized atoms through
a second identical apparatus, all the atoms will take the upper path, as can be
verified by putting similar plates in the way of the various beams of the second
S filter and seeing whether particles get through.

y

z

S

+

0

−

S

+

0

−

Fig. 5-4. The “improved” Stern-Gerlach apparatus as a filter.

Suppose we call the first apparatus by the name S. (We are going to consider
all sorts of combinations, and we will need labels to keep things straight.) We
will say that the atoms which take the top path in S are in the “plus state
with respect to S”; the ones which take the middle path are in the “zero state
with respect to S”; and the ones which take the lowest path are in the “minus
state with respect to S.” (In the more usual language we would say that the
z-component of the angular momentum was +1~, 0, and −1~, but we are not
using that language now.) Now in Fig. 5-4 the second apparatus is oriented just
like the first, so the filtered atoms will all go on the upper path. Or if we had
blocked off the upper and lower beams in the first apparatus and let only the
zero state through, all the filtered atoms would go through the middle path of
the second apparatus. And if we had blocked off all but the lowest beam in the
first, there would be only a low beam in the second. We can say that in each
case our first apparatus has produced a filtered beam in a pure state with respect
to S (+, 0, or −), and we can test which state is present by putting the atoms
through a second, identical apparatus.

We can make our second apparatus so that it transmits only atoms of a
particular state—by putting masks inside it as we did for the first one—and
then we can test the state of the incoming beam just by seeing whether anything
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comes out the far end. For instance, if we block off the two lower paths in the
second apparatus, 100 percent of the atoms will still come through; but if we
block off the upper path, nothing will get through.

To make this kind of discussion easier, we are going to invent a shorthand
symbol to represent one of our improved Stern-Gerlach apparatuses. We will let
the symbol +

0−
S

(5.1)

stand for one complete apparatus. (This is not a symbol you will ever find used
in quantum mechanics; we’ve just invented it for this chapter. It is simply meant
to be a shorthand picture of the apparatus of Fig. 5-3.) Since we are going to
want to use several apparatuses at once, and with various orientations, we will
identify each with a letter underneath. So the symbol in (5.1) stands for the
apparatus S. When we block off one or more of the beams inside, we will show
that by some vertical bars indicating which beam is blocked, like this:+

.0
−
S

(5.2)

The various possible combinations we will be using are shown in Fig. 5-5.
If we have two filters in succession (as in Fig. 5-4), we will put the two symbols

next to each other, like this: +
0

−
S

+
.0
−
S

(5.3)

For this setup, everything that comes through the first also gets through the
second. In fact, even if we block off the “zero” and “minus” channels of the
second apparatus, so that we have+

0
−
S

+
,0

−
S

(5.4)
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(a)


+

0− =

+

0

−

(b)


+

0− =

(c)


+

0− =

(d)


+

0− =

Fig. 5-5. Special shorthand symbols for Stern-Gerlach type filters.

we still get 100 percent transmission through the second apparatus. On the other
hand, if we have +

0
−
S

+
,0

−
S

(5.5)

nothing at all comes out of the far end. Similarly,

+
0

−
S

+
0

−
S

(5.6)
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would give nothing out. On the other hand,+
0

−
S

+
0

−
S

(5.7)

would be just equivalent to +
0

−
S

by itself.
Now we want to describe these experiments quantum mechanically. We will

say that an atom is in the (+S) state if it has gone through the apparatus
of Fig. 5-5(b), that it is in a (0S) state if it has gone through (c), and in a
(−S) state if it has gone through (d).† Then we let 〈b | a〉 be the amplitude that
an atom which is in state a will get through an apparatus into the b state. We
can say: 〈b | a〉 is the amplitude for an atom in the state a to get into the state b.
The experiment (5.4) gives us that

〈+S |+S〉 = 1,
whereas (5.5) gives us

〈−S |+S〉 = 0.
Similarly, the result of (5.6) is

〈+S | −S〉 = 0,
and of (5.7) is

〈−S | −S〉 = 1.
As long as we deal only with “pure” states—that is, we have only one channel

open—there are nine such amplitudes, and we can write them in a table:
from

+S 0S −S
to +S 1 0 0

0S 0 1 0
−S 0 0 1

(5.8)

† Read: (+S) = “plus-S”; ( 0 S) = “zero-S”; (−S) = “minus-S.”
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This array of nine numbers—called a matrix—summarizes the phenomena we’ve
been describing.

5-2 Experiments with filtered atoms

Now comes the big question: What happens if the second apparatus is tipped
to a different angle, so that its field axis is no longer parallel to the first? It could
be not only tipped, but also pointed in a different direction—for instance, it could
take the beam off at 90◦ with respect to the original direction. To take it easy at
first, let’s first think about an arrangement in which the second Stern-Gerlach
experiment is tilted by some angle α about the y-axis, as shown in Fig. 5-6.
We’ll call the second apparatus T . Suppose that we now set up the following
experiment: +

0
−
S

+
,0

−
T

or the experiment: +
0

−
S

+
.0

−
T

What comes out at the far end in these cases?
The answer is this: If the atoms are in a definite state with respect to S, they

are not in the same state with respect to T—a (+S) state is not also a (+T ) state.

y

z S T

α

Fig. 5-6. Two Stern-Gerlach type filters in series; the second is tilted
at the angle α with respect to the first.
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There is, however, a certain amplitude to find the atom in a (+T ) state—or a
(0T ) state or a (−T ) state.

In other words, as careful as we have been to make sure that we have the atoms
in a definite condition, the fact of the matter is that if it goes through an apparatus
which is tilted at a different angle it has, so to speak, to “reorient” itself—which it
does, don’t forget, by luck. We can put only one particle through at a time, and
then we can only ask the question: What is the probability that it gets through?
Some of the atoms that have gone through S will end in a (+T ) state, some
of them will end in a (0T ), and some in a (−T ) state—all with different odds.
These odds can be calculated by the absolute squares of complex amplitudes;
what we want is some mathematical method, or quantum mechanical description,
for these amplitudes. What we need to know are various quantities like

〈−T |+S〉,

by which we mean the amplitude that an atom initially in the (+S) state can get
into the (−T ) condition (which is not zero unless T and S are lined up parallel
to each other). There are other amplitudes like

〈+T | 0S〉, or 〈0T | −S〉, etc.

There are, in fact, nine such amplitudes—another matrix—that a theory of
particles should tell us how to calculate. Just as F = ma tells us how to calculate
what happens to a classical particle in any circumstance, the laws of quantum
mechanics permit us to determine the amplitude that a particle will get through a
particular apparatus. The central problem, then, is to be able to calculate—for any
given tilt angle α, or in fact for any orientation whatever—the nine amplitudes:

〈+T |+S〉, 〈+T | 0S〉, 〈+T | −S〉,
〈0T |+S〉, 〈0T | 0S〉, 〈0T | −S〉,
〈−T |+S〉, 〈−T | 0S〉, 〈−T | −S〉.

(5.9)

We can already figure out some relations among these amplitudes. First,
according to our definitions, the absolute square

|〈+T |+S〉|2

is the probability that an atom in a (+S) state will enter a (+T ) state. We will
often find it more convenient to write such squares in the equivalent form

〈+T |+S〉〈+T |+S〉∗.
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In the same notation the number

〈0T |+S〉〈0T |+S〉∗

is the probability that a particle in the (+S) state will enter the (0T ) state, and

〈−T |+S〉〈−T |+S〉∗

is the probability that it will enter the (−T ) state. But the way our apparatuses
are made, every atom which enters the T apparatus must be found in some one
of the three states of the T apparatus—there’s nowhere else for a given kind of
atom to go. So the sum of the three probabilities we’ve just written must be
equal to 100 percent. We have the relation

〈+T |+S〉〈+T |+S〉∗ + 〈0T |+S〉〈0T |+S〉∗

+ 〈−T |+S〉〈−T |+S〉∗ = 1. (5.10)

There are, of course, two other such equations that we get if we start with a (0S)
or a (−S) state. But they are all we can easily get, so we’ll go on to some other
general questions.

5-3 Stern-Gerlach filters in series

Here is an interesting question: Suppose we had atoms filtered into the
(+S) state, then we put them through a second filter, say into a (0T ) state,
and then through another +S filter. (We’ll call the last filter S′ just so we can
distinguish it from the first S-filter.) Do the atoms remember that they were
once in a (+S) state? In other words, we have the following experiment:+

0
−
S

+
0

−
T

+
.0

−
S′

(5.11)

We want to know whether all those that get through T also get through S′. They
do not. Once they have been filtered by T , they do not remember in any way
that they were in a (+S) state when they entered T . Note that the second
S apparatus in (5.11) is oriented exactly the same as the first, so it is still an
S-type filter. The states filtered by S′ are, of course, still (+S), (0S), and (−S).
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The important point is this: If the T filter passes only one beam, the fraction
that gets through the second S filter depends only on the setup of the T filter,
and is completely independent of what precedes it. The fact that the same atoms
were once sorted by an S filter has no influence whatever on what they will do
once they have been sorted again into a pure beam by a T apparatus. From then
on, the probability for getting into different states is the same no matter what
happened before they got into the T apparatus.

As an example, let’s compare the experiment of (5.11) with the following
experiment: +

0
−
S

+
0

−
T

+
0

−
S′

(5.12)

in which only the first S is changed. Let’s say that the angle α (between S and T )
is such that in experiment (5.11) one-third of the atoms that get through T also
get through S′. In experiment (5.12), although there will, in general, be a different
number of atoms coming through T , the same fraction of these—one-third—will
also get through S′.

We can, in fact, show from what you have learned earlier that the fraction of
the atoms that come out of T and get through any particular S′ depends only on
T and S′, not on anything that happened earlier. Let’s compare experiment (5.12)
with +

0
−
S

+
0

−
T

+
.0

−
S′

(5.13)

The amplitude that an atom that comes out of S will also get through both T
and S′ is, for the experiments of (5.12),

〈+S | 0T 〉〈0T | 0S〉.

The corresponding probability is

|〈+S | 0T 〉〈0T | 0S〉|2 = |〈+S | 0T 〉|2|〈0T | 0S〉|2.

The probability for experiment (5.13) is

|〈0S | 0T 〉〈0T | 0S〉|2 = |〈0S | 0T 〉|2|〈0T | 0S〉|2.
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The ratio is
|〈0S | 0T 〉|2
|〈+S | 0T 〉|2 .

and depends only on T and S′, and not at all on which beam (+S), (0S), or (−S)
is selected by S. (The absolute numbers may go up and down together depending
on how much gets through T .) We would, of course, find the same result if we
compared the probabilities that the atoms would go into the plus or the minus
states with respect to S′, or the ratio of the probabilities to go into the zero or
minus states.

In fact, since these ratios depend only on which beam is allowed to pass
through T , and not on the selection made by the first S filter, it is clear that
we would get the same result even if the last apparatus were not an S fil-
ter. If we use for the third apparatus—which we will now call R—one rotated
by some arbitrary angle with respect to T , we would find that a ratio such
as |〈0R | 0T 〉|2/|〈+R | 0T 〉|2 was independent of which beam was passed by the
first filter S.

5-4 Base states

These results illustrate one of the basic principles of quantum mechanics:
Any atomic system can be separated by a filtering process into a certain set of
what we will call base states, and the future behavior of the atoms in any single
given base state depends only on the nature of the base state—it is independent
of any previous history.† The base states depend, of course, on the filter used;
for instance, the three states (+T ), (0T ), and (−T ) are one set of base states;
the three states (+S), (0S), and (−S) are another. There are any number of
possibilities each as good as any other.

We should be careful to say that we are considering good filters which do
indeed produce “pure” beams. If, for instance, our Stern-Gerlach apparatus didn’t
produce a good separation of the three beams so that we could not separate
them cleanly by our masks, then we could not make a complete separation into
base states. We can tell if we have pure base states by seeing whether or not the

† We do not intend the word “base state” to imply anything more than what is said here.
They are not to be thought of as “basic” in any sense. We are using the word base with the
thought of a basis for a description, somewhat in the sense that one speaks of “numbers to the
base ten.”
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beams can be split again in another filter of the same kind. If we have a pure
(+T ) state, for instance, all the atoms will go through+

,0
−
T

and none will go through +
,0

−
T

or through +
.0

−
T

Our statement about base states means that it is possible to filter to some pure
state, so that no further filtering by an identical apparatus is possible.

We must also point out that what we are saying is exactly true only in
rather idealized situations. In any real Stern-Gerlach apparatus, we would
have to worry about diffraction by the slits that could cause some atoms to
go into states corresponding to different angles, or about whether the beams
might contain atoms with different excitations of their internal states, and so
on. We have idealized the situation so that we are talking only about the
states that are split in a magnetic field; we are ignoring things having to do
with position, momentum, internal excitations, and the like. In general, one
would need to consider also base states which are sorted out with respect to
such things also. But to keep the concepts simple, we are considering only
our set of three states, which is sufficient for the exact treatment of the ide-
alized situation in which the atoms don’t get torn up in going through the
apparatus, or otherwise badly treated, and come to rest when they leave the
apparatus.

You will note that we always begin our thought experiments by taking a
filter with only one channel open, so that we start with some definite base state.
We do this because atoms come out of a furnace in various states determined
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at random by the accidental happenings inside the furnace. (It gives what
is called an “unpolarized” beam.) This randomness involves probabilities of
the “classical” kind—as in coin tossing—which are different from the quantum
mechanical probabilities we are worrying about now. Dealing with an unpolarized
beam would get us into additional complications that are better to avoid until
after we understand the behavior of polarized beams. So don’t try to consider
at this point what happens if the first apparatus lets more than one beam
through. (We will tell you how you can handle such cases at the end of the
chapter.)

Let’s now go back and see what happens when we go from a base state for
one filter to a base state for a different filter. Suppose we start again with+

0
−
S

+
.0

−
T

The atoms which come out of T are in the base state (0T ) and have no memory
that they were once in the state (+S). Some people would say that in the filtering
by T we have “lost the information” about the previous state (+S) because we
have “disturbed” the atoms when we separated them into three beams in the
apparatus T . But that is not true. The past information is not lost by the
separation into three beams, but by the blocking masks that are put in—as we
can see by the following set of experiments.

We start with a +S filter and will call N the number of atoms that come
through it. If we follow this by a 0T filter, the number of atoms that come out is
some fraction of the original number, say αN . If we then put another +S filter,
only some fraction β of these atoms will get to the far end. We can indicate this
in the following way: +

 N−→0
−
S

+
 αN−→0

−
T

+
βαN−→.0

−
S′

(5.14)

If our third apparatus S′ selected a different state, say the (0S) state, a different
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fraction, say γ, would get through.† We would have+
 N−→0

−
S

+
 αN−→0

−
T

+
γαN−→.0

−
S′

(5.15)

Now suppose we repeat these two experiments but remove all the masks from T .
We would then find the remarkable results as follows:+

 N−→0
−
S

+
 N−→0
−
T

+
 N−→,0

−
S′

(5.16)

+
 N−→0

−
S

+
 N−→0
−
T

+
 0−→.0

−
S′

(5.17)

All the atoms get through S′ in the first case, but none in the second case! This
is one of the great laws of quantum mechanics. That nature works this way is not
self-evident, but the results we have given correspond for our idealized situation
to the quantum mechanical behavior observed in innumerable experiments.

5-5 Interfering amplitudes

How can it be that in going from (5.15) to (5.17)—by opening more channels—
we let fewer atoms through? This is the old, deep mystery of quantum mechanics—
the interference of amplitudes. It’s the same kind of thing we first saw in the
two-slit interference experiment with electrons. We saw that we could get fewer
electrons at some places with both slits open than we got with one slit open. It
works quantitatively this way. We can write the amplitude that an atom will get
through T and S′ in the apparatus of (5.17) as the sum of three amplitudes, one
for each of the three beams in T ; the sum is equal to zero:

〈0S |+T 〉〈+T |+S〉+ 〈0S | 0T 〉〈0T |+S〉+ 〈0S | −T 〉〈−T |+S〉 = 0. (5.18)

† In terms of our earlier notation α = |〈 0 T |+S〉|2, β = |〈+S | 0 T 〉|2, and γ = |〈 0 S | 0 T 〉|2.
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None of the three individual amplitudes is zero—for example, the absolute square
of the second amplitude is γα, see (5.15)—but the sum is zero. We would have
also the same answer if S′ were set to select the (−S) state. However, in the
setup of (5.16), the answer is different. If we call a the amplitude to get through
T and S′, in this case we have†

a = 〈+S |+T 〉〈+T |+S〉+ 〈+S | 0T 〉〈0T |+S〉
+ 〈+S | −T 〉〈−T |+S〉 = 1. (5.19)

In the experiment (5.16) the beam has been split and recombined. Humpty
Dumpty has been put back together again. The information about the original
(+S) state is retained—it is just as though the T apparatus were not there at all.
This is true whatever is put after the “wide-open” T apparatus. We could follow
it with an R filter—a filter at some odd angle—or anything we want. The answer
will always be the same as if the atoms were taken directly from the first S filter.

So this is the important principle: A T filter—or any filter—with wide-open
masks produces no change at all. We should make one additional condition. The
wide-open filter must not only transmit all three beams, but it must also not
produce unequal disturbances on the three beams. For instance, it should not
have a strong electric field near one beam and not the others. The reason is that
even if this extra disturbance would still let all the atoms through the filter, it
could change the phases of some of the amplitudes. Then the interference would
be changed, and the amplitudes in Eqs. (5.18) and (5.19) would be different. We
will always assume that there are no such extra disturbances.

Let’s rewrite Eqs. (5.18) and (5.19) in an improved notation. We will let i
stand for any one of the three states (+T ), (0T ), or (−T ); then the equations
can be written: ∑

all i
〈0S | i〉〈i |+S〉 = 0 (5.20)

and ∑
all i
〈+S | i〉〈i |+S〉 = 1. (5.21)

Similarly, for an experiment where S′ is replaced by a completely arbitrary

† We really cannot conclude from the experiment that a = 1, but only that |a|2 = 1, so a
might be eiδ, but it can be shown that the choice δ = 0 represents no real loss of generality.
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filter R, we have +
0

−
S

+
0−
T

+
.0

−
R

(5.22)

The results will always be the same as if the T apparatus were left out and we
had only +

0
−
S

+
.0

−
R

Or, expressed mathematically,∑
all i
〈+R | i〉〈i |+S〉 = 〈+R |+S〉. (5.23)

This is our fundamental law, and it is generally true so long as i stands for the
three base states of any filter.

You will notice that in the experiment (5.22) there is no special relation of
S and R to T . Furthermore, the arguments would be the same no matter what
states they selected. To write the equation in a general way, without having
to refer to the specific states selected by S and R, let’s call φ (“phi”) the state
prepared by the first filter (in our special example, +S) and χ (“khi”) the state
tested by the final filter (in our example, +R). Then we can state our fundamental
law of Eq. (5.23) in the form

〈χ |φ〉 =
∑
all i
〈χ | i〉〈i |φ〉, (5.24)

where i is to range over the three base states of some particular filter.
We want to emphasize again what we mean by base states. They are like

the three states which can be selected by one of our Stern-Gerlach apparatuses.
One condition is that if you have a base state, then the future is independent
of the past. Another condition is that if you have a complete set of base states,
Eq. (5.24) is true for any set of beginning and ending states φ and χ. There is,
however, no unique set of base states. We began by considering base states with
respect to a particular apparatus T . We could equally well consider a different
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set of base states with respect to an apparatus S, or with respect to R, etc.† We
usually speak of the base states “in a certain representation.”

Another condition on a set of base states in any particular representation
is that they are all completely different. By that we mean that if we have a
(+T ) state, there is no amplitude for it to go into a (0T ) or a (−T ) state. If we
let i and j stand for any two base states of a particular set, the general rules
discussed in connection with (5.8) are that

〈j | i〉 = 0

for all i and j that are not equal. Of course, we know that

〈i | i〉 = 1.

These two equations are usually written as

〈j | i〉 = δji, (5.25)

where δji (the “Kronecker delta”) is a symbol that is defined to be zero for i 6= j,
and to be one for i = j.

Equation (5.25) is not independent of the other laws we have mentioned. It
happens that we are not particularly interested in the mathematical problem
of finding the minimum set of independent axioms that will give all the laws
as consequences.‡ We are satisfied if we have a set that is complete and not
apparently inconsistent. We can, however, show that Eqs. (5.25) and (5.24) are
not independent. Suppose we let φ in Eq. (5.24) represent one of the base states
of the same set as i, say the jth state; then we have

〈χ | j〉 =
∑
i

〈χ | i〉〈i | j〉.

But Eq. (5.25) says that 〈i | j〉 is zero unless i = j, so the sum becomes just 〈χ | j〉
and we have an identity, which shows that the two laws are not independent.

We can see that there must be another relation among the amplitudes if both
Eqs. (5.10) and (5.24) are true. Equation (5.10) is

〈+T |+S〉〈+T |+S〉∗ + 〈0T |+S〉〈0T |+S〉∗ + 〈−T |+S〉〈−T |+S〉∗ = 1.
† In fact, for atomic systems with three or more base states, there exist other kinds of

filters—quite different from a Stern-Gerlach apparatus—which can be used to get more choices
for the set of base states (each set with the same number of states).

‡ Redundant truth doesn’t bother us!
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If we write Eq. (5.24), letting both φ and χ be the state (+S), the left-hand side
is 〈+S |+S〉, which is clearly = 1; so we get once more Eq. (5.19),

〈+S |+T 〉〈+T |+S〉+ 〈+S | 0T 〉〈0T |+S〉+ 〈+S | −T 〉〈−T |+S〉 = 1.

These two equations are consistent (for all relative orientations of the T and S
apparatuses) only if

〈+S |+T 〉 = 〈+T |+S〉∗,
〈+S | 0T 〉 = 〈0T |+S〉∗,
〈+S | −T 〉 = 〈−T |+S〉∗.

And it follows that for any states φ and χ,

〈φ |χ〉 = 〈χ |φ〉∗. (5.26)

If this were not true, probability wouldn’t be “conserved,” and particles would
get “lost.”

Before going on, we want to summarize the three important general laws
about amplitudes. They are Eqs. (5.24), (5.25), and (5.26):

I 〈j | i〉 = δji,

II 〈χ |φ〉 =
∑
all i
〈χ | i〉〈i |φ〉,

III 〈φ |χ〉 = 〈χ |φ〉∗.

(5.27)

In these equations the i and j refer to all the base states of some one representa-
tion, while φ and χ represent any possible states of the atom. It is important
to note that II is valid only if the sum is carried out over all the base states of
the system (in our case, three: +T , 0T , −T ). These laws say nothing about
what we should choose for a base for our set of base states. We began by using
a T apparatus, which is a Stern-Gerlach experiment with some arbitrary ori-
entation; but any other orientation, say W , would be just as good. We would
have a different set of states to use for i and j, but all the laws would still be
good—there is no unique set. One of the great games of quantum mechanics is
to make use of the fact that things can be calculated in more than one way.
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5-6 The machinery of quantum mechanics

We want to show you why these laws are useful. Suppose we have an atom in
a given condition (by which we mean that it was prepared in a certain way), and
we want to know what will happen to it in some experiment. In other words, we
start with our atom in the state φ and want to know what are the odds that it
will go through some apparatus which accepts atoms only in the condition χ. The
laws say that we can describe the apparatus completely in terms of three complex
numbers 〈χ | i〉, the amplitudes for each base state to be in the condition χ; and
that we can tell what will happen if an atom is put into the apparatus if we
describe the state of the atom by giving three numbers 〈i |φ〉, the amplitudes for
the atom in its original condition to be found in each of the three base states.
This is an important idea.

Let’s consider another illustration. Think of the following problem: We start
with an S apparatus; then we have a complicated mess of junk, which we can
call A, and then an R apparatus—like this:+

0
−
S


A

+
.0

−
R

(5.28)

By A we mean any complicated arrangement of Stern-Gerlach apparatuses with
masks or half-masks, oriented at peculiar angles, with odd electric and magnetic
fields . . . almost anything you want to put. (It’s nice to do thought experiments—
you don’t have to go to all the trouble of actually building the apparatus!) The
problem then is: With what amplitude does a particle that enters the section A
in a (+S) state come out of A in the (0R) state, so that it will get through the
last R filter? There is a regular notation for such an amplitude; it is

〈0R |A |+S〉.

As usual, it is to be read from right to left (like Hebrew):

〈finish | through | start〉.

If by chance A doesn’t do anything—but is just an open channel—then we write

〈0R | 1 |+S〉 = 〈0R |+S〉; (5.29)
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the two symbols are equivalent. For a more general problem, we might replace
(+S) by a general starting state φ and (0R) by a general finishing state χ, and
we would want to know the amplitude

〈χ |A |φ〉.

A complete analysis of the apparatus A would have to give the amplitude 〈χ |A |φ〉
for every possible pair of states φ and χ—an infinite number of combinations!
How then can we give a concise description of the behavior of the apparatus A?
We can do it in the following way. Imagine that the apparatus of (5.28) is
modified to be +

0
−
S

+
0−
T


A

+
0−
T

+
.0

−
R

(5.30)

This is really no modification at all since the wide-open T apparatuses don’t
do anything. But they do suggest how we can analyze the problem. There is a
certain set of amplitudes 〈i |+S〉 that the atoms from S will get into the i state
of T . Then there is another set of amplitudes that an i state (with respect to T )
entering A will come out as a j state (with respect to T ). And finally there is an
amplitude that each j state will get through the last filter as a (0R) state. For
each possible alternative path, there is an amplitude of the form

〈0R | j〉〈j |A | i〉〈i |+S〉,

and the total amplitude is the sum of the terms we can get with all possible
combinations of i and j. The amplitude we want is∑

ij

〈0R | j〉〈j |A | i〉〈i |+S〉. (5.31)

If (0R) and (+S) are replaced by general states χ and φ, we would have the
same kind of expression; so we have the general result

〈χ |A |φ〉 =
∑
ij

〈χ | j〉〈j |A | i〉〈i |φ〉. (5.32)

Now notice that the right-hand side of Eq. (5.32) is really “simpler” than
the left-hand side. The apparatus A is completely described by the nine num-
bers 〈j |A | i〉 which tell the response of A with respect to the three base states
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of the apparatus T . Once we know these nine numbers, we can handle any two
incoming and outgoing states φ and χ if we define each in terms of the three
amplitudes for going into, or from, each of the three base states. The result of
an experiment is predicted using Eq. (5.32).

This then is the machinery of quantum mechanics for a spin-one particle.
Every state is described by three numbers which are the amplitudes to be in
each of some selected set of base states. Every apparatus is described by nine
numbers which are the amplitudes to go from one base state to another in the
apparatus. From these numbers anything can be calculated.

The nine amplitudes which describe the apparatus are often written as a
square matrix—called the matrix 〈j |A | i〉:

from
+ 0 −

to + 〈+ |A |+〉 〈+ |A | 0 〉 〈+ |A | −〉
0 〈0 |A |+〉 〈0 |A | 0 〉 〈0 |A | −〉
− 〈− |A |+〉 〈− |A | 0 〉 〈− |A | −〉

(5.33)

The mathematics of quantum mechanics is just an extension of this idea. We
will give you a simple illustration. Suppose we have an apparatus C that we wish
to analyze—that is, we want to calculate the various 〈j |C | i〉. For instance, we
might want to know what happens in an experiment like+

0
−
S


C

+
.0

−
R

(5.34)

But then we notice that C is just built of two pieces of apparatus A and B
in series—the particles go through A and then through B—so we can write
symbolically 

C =


A ·


.B (5.35)

We can call the C apparatus the “product” of A and B. Suppose also that we
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already know how to analyze the two parts; so we can get the matrices (with
respect to T ) of A and B. Our problem is then solved. We can easily find

〈χ |C |φ〉

for any input and output states. First we write that

〈χ |C |φ〉 =
∑
k

〈χ |B | k〉〈k |A |φ〉.

Do you see why? (Hint: Imagine putting a T apparatus between A and B.) Then
if we consider the special case in which φ and χ are also base states (of T ), say i
and j, we have

〈j |C | i〉 =
∑
k

〈j |B | k〉〈k |A | i〉. (5.36)

This equation gives the matrix for the “product” apparatus C in terms of
the two matrices of the apparatuses A and B. Mathematicians call the new
matrix 〈j |C | i〉—formed from two matrices 〈j |B | i〉 and 〈j |A | i〉 according to
the sum specified in Eq. (5.36)—the “product” matrix BA of the two matrices
B and A. (Note that the order is important, AB 6= BA.) Thus, we can say that
the matrix for a succession of two pieces of apparatus is the matrix product of
the matrices for the two apparatuses (putting the first apparatus on the right
in the product). Anyone who knows matrix algebra then understands that we
mean just Eq. (5.36).

5-7 Transforming to a different base

We want to make one final point about the base states used in the cal-
culations. Suppose we have chosen to work with some particular base—say
the S base—and another fellow decides to do the same calculations with a
different base—say the T base. To keep things straight let’s call our base
states the (iS) states, where i = +, 0, −. Similarly, we can call his base
states (jT ). How can we compare our work with his? The final answers for
the result of any measurement should come out the same, but in the calcu-
lations the various amplitudes and matrices used will be different. How are
they related? For instance, if we both start with the same φ, we will describe
it in terms of the three amplitudes 〈iS |φ〉 that φ goes into our base states
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in the S representation, whereas he will describe it by the amplitudes 〈jT |φ〉
that the state φ goes into the base states in his T representation. How can
we check that we are really both describing the same state φ? We can do it
with the general rule II in (5.27). Replacing χ by any one of his states jT , we
have

〈jT |φ〉 =
∑
i

〈jT | iS〉〈iS |φ〉. (5.37)

To relate the two representations, we need only give the nine complex numbers of
the matrix 〈jT | iS〉. This matrix can then be used to convert all of our equations
to his form. It tells us how to transform from one set of base states to another.
(For this reason 〈jT | iS〉 is sometimes called “the transformation matrix from
representation S to representation T .” Big words!)

For the case of spin-one particles for which we have only three base states (for
higher spins, there are more) the mathematical situation is analogous to what
we have seen in vector algebra. Every vector can be represented by giving three
numbers—the components along the axes x, y, and z. That is, every vector can
be resolved into three “base” vectors which are vectors along the three axes. But
suppose someone else chooses to use a different set of axes—x′, y′, and z′. He will
be using different numbers to represent any particular vector. His calculations
will look different, but the final results will be the same. We have considered
this before and know the rules for transforming vectors from one set of axes to
another.

You may want to see how the quantum mechanical transformations work
by trying some out; so we will give here, without proof, the transformation
matrices for converting the spin-one amplitudes in one representation S to an-
other representation T , for various special relative orientations of the S and
T filters. (We will show you in a later chapter how to derive these same re-
sults.)

First case: The T apparatus has the same y-axis (along which the particles
move) as the S apparatus, but is rotated about the common y-axis by the
angle α (as in Fig. 5-6). (To be specific, a set of coordinates x′, y′, z′ is fixed
in the T apparatus, related to the x, y, z coordinates of the S apparatus by:
z′ = z cosα + x sinα, x′ = x cosα − z sinα, y′ = y.) Then the transformation
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amplitudes are:
〈+T |+S〉 = 1

2 (1 + cosα),

〈0T |+S〉 = − 1√
2

sinα,

〈−T |+S〉 = 1
2 (1− cosα),

〈+T | 0S〉 = + 1√
2

sinα,

〈0T | 0S〉 = cosα,

〈−T | 0S〉 = − 1√
2

sinα,

〈+T | −S〉 = 1
2 (1− cosα),

〈0T | −S〉 = + 1√
2

sinα,

〈−T | −S〉 = 1
2 (1 + cosα).

(5.38)

Second Case: The T apparatus has the same z-axis as S, but is rotated
around the z-axis by the angle β. (The coordinate transformation is z′ = z,
x′ = x cosβ+ y sin β, y′ = y cosβ−x sin β.) Then the transformation amplitudes
are:

〈+T |+S〉 = e+iβ ,

〈0T | 0S〉 = 1,

〈−T | −S〉 = e−iβ ,

all others = 0.

(5.39)

Note that any rotations of T whatever can be made up of the two rotations
described.

If a state φ is defined by the three numbers

C+ = 〈+S |φ〉, C0 = 〈0S |φ〉, C− = 〈−S |φ〉, (5.40)

and the same state is described from the point of view of T by the three numbers

C ′+ = 〈+T |φ〉, C ′0 = 〈0T |φ〉, C ′− = 〈−T |φ〉, (5.41)

then the coefficients 〈jT | iS〉 of (5.38) or (5.39) give the transformation connect-
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ing Ci and C ′i. In other words, the Ci are very much like the components of a
vector that appear different from the point of view of S and T .

For a spin-one particle only—because it requires three amplitudes—the corre-
spondence with a vector is very close. In each case, there are three numbers that
must transform with coordinate changes in a certain definite way. In fact, there
is a set of base states which transform just like the three components of a vector.
The three combinations

Cx = − 1√
2

(C+ − C−), Cy = − i√
2

(C+ + C−), Cz = C0 (5.42)

transform to C ′x, C ′y, and C ′z just the way that x, y, z transform to x′, y′, z′.
[You can check that this is so by using the transformation laws (5.38) and (5.39).]
Now you see why a spin-one particle is often called a “vector particle.”

5-8 Other situations

We began by pointing out that our discussion of spin-one particles would be a
prototype for any quantum mechanical problem. The generalization has only to
do with the numbers of states. Instead of only three base states, any particular
situation may involve n base states.† Our basic laws in Eq. (5.27) have exactly
the same form—with the understanding that i and j must range over all n base
states. Any phenomenon can be analyzed by giving the amplitudes that it starts
in each one of the base states and ends in any other one of the base states, and
then summing over the complete set of base states. Any proper set of base states
can be used, and if someone wishes to use a different set, it is just as good; the
two can be connected by using an n by n transformation matrix. We will have
more to say later about such transformations.

Finally, we promised to remark on what to do if atoms come directly from
a furnace, go through some apparatus, say A, and are then analyzed by a filter
which selects the state χ. You do not know what the state φ is that they start
out in. It is perhaps best if you don’t worry about this problem just yet, but
instead concentrate on problems that always start out with pure states. But if
you insist, here is how the problem can be handled.

First, you have to be able to make some reasonable guess about the way the
states are distributed in the atoms that come from the furnace. For example, if

† The number of base states n may be, and generally is, infinite.
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there were nothing “special” about the furnace, you might reasonably guess that
atoms would leave the furnace with random “orientations.” Quantum mechanically,
that corresponds to saying that you don’t know anything about the states, but
that one-third are in the (+S) state, one-third are in the (0S) state, and one-third
are in the (−S) state. For those that are in the (+S) state the amplitude to get
through is 〈χ |A |+S〉 and the probability is |〈χ |A |+S〉|2, and similarly for the
others. The overall probability is then

1
3 |〈χ |A |+S〉|

2 + 1
3 |〈χ |A | 0S〉|

2 + 1
3 |〈χ |A | −S〉|

2.

Why did we use S rather than, say, T? The answer is, surprisingly, the same no
matter what we choose for our initial resolution—so long as we are dealing with
completely random orientations. It comes about in the same way that∑

i

|〈χ | iS〉|2 =
∑
j

|〈χ | jT 〉|2

for any χ. (We leave it for you to prove.)
Note that it is not correct to say that the input state has the amplitudes

√
1/3

to be in (+S),
√

1/3 to be in (0S), and
√

1/3 to be in (−S); that would imply
that certain interferences might be possible. It is simply that you do not know,
what the initial state is; you have to think in terms of the probability that the
system starts out in the various possible initial states, and then you have to take
a weighted average over the various possibilities.
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6

Spin One-Half†

6-1 Transforming amplitudes

In the last chapter, using a system of spin one as an example, we outlined
the general principles of quantum mechanics:

Any state ψ can be described in terms of a set of base states by giving
the amplitudes to be in each of the base states.

The amplitude to go from any state to another can, in general, be written
as a sum of products, each product being the amplitude to go into one of
the base states times the amplitude to go from that base state to the final
condition, with the sum including a term for each base state:

〈χ |ψ〉 =
∑
i

〈χ | i〉〈i |ψ〉. (6.1)

The base states are orthogonal—the amplitude to be in one if you are in
the other is zero:

〈i | j〉 = δij . (6.2)

The amplitude to get from one state to another directly is the complex
conjugate of the reverse:

〈χ |ψ〉∗ = 〈ψ |χ〉. (6.3)

We also discussed a little bit about the fact that there can be more than one
base for the states and that we can use Eq. (6.1) to convert from one base to

† This chapter is a rather long and abstract side tour, and it does not introduce any idea
which we will not also come to by a different route in later chapters. You can, therefore, skip
over it, and come back later if you are interested.
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another. Suppose, for example, that we have the amplitudes 〈iS |ψ〉 to find the
state ψ in every one of the base states i of a base system S, but that we then
decide that we would prefer to describe the state in terms of another set of base
states, say the states j belonging to the base T . In the general formula, Eq. (6.1),
we could substitute jT for χ and obtain this formula:

〈jT |ψ〉 =
∑
i

〈jT | iS〉〈iS |ψ〉. (6.4)

The amplitudes for the state (ψ) to be in the base states (jT ) are related to the
amplitudes to be in the base states (iS) by the set of coefficients 〈jT | iS〉. If
there are N base states, there are N2 such coefficients. Such a set of coefficients
is often called the “transformation matrix to go from the S-representation to
the T -representation.” This looks rather formidable mathematically, but with a
little renaming we can see that it is really not so bad. If we call Ci the amplitude
that the state ψ is in the base state iS—that is, Ci = 〈iS |ψ〉—and call C ′j the
corresponding amplitudes for the base system T—that is, C ′j = 〈jT |ψ〉, then
Eq. (6.4) can be written as

C ′j =
∑
i

RjiCi, (6.5)

where Rji means the same thing as 〈jT | iS〉. Each amplitude C ′j is equal to a sum
over all i of one of the coefficients Rji times each amplitude Ci. It has the same
form as the transformation of a vector from one coordinate system to another.

In order to avoid being too abstract for too long, we have given you some
examples of these coefficients for the spin-one case, so you can see how to use
them in practice. On the other hand, there is a very beautiful thing in quantum
mechanics—that from the sheer fact that there are three states and from the
symmetry properties of space under rotations, these coefficients can be found
purely by abstract reasoning. Showing you such arguments at this early stage
has a disadvantage in that you are immersed in another set of abstractions before
we get “down to earth.” However, the thing is so beautiful that we are going to
do it anyway.

We will show you in this chapter how the transformation coefficients can
be derived for spin one-half particles. We pick this case, rather than spin one,
because it is somewhat easier. Our problem is to determine the coefficients Rji for
a particle—an atomic system—which is split into two beams in a Stern-Gerlach
apparatus. We are going to derive all the coefficients for the transformation from
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one representation to another by pure reasoning—plus a few assumptions. Some
assumptions are always necessary in order to use “pure” reasoning! Although
the arguments will be abstract and somewhat involved, the result we get will
be relatively simple to state and easy to understand—and the result is the most
important thing. You may, if you wish, consider this as a sort of cultural excursion.
We have, in fact, arranged that all the essential results derived here are also
derived in some other way when they are needed in later chapters. So you need
have no fear of losing the thread of our study of quantum mechanics if you omit this
chapter entirely, or study it at some later time. The excursion is “cultural” in the
sense that it is intended to show that the principles of quantum mechanics are not
only interesting, but are so deep that by adding only a few extra hypotheses about
the structure of space, we can deduce a great many properties of physical systems.
Also, it is important that we know where the different consequences of quantum
mechanics come from, because so long as our laws of physics are incomplete—as
we know they are—it is interesting to find out whether the places where our
theories fail to agree with experiment is where our logic is the best or where our
logic is the worst. Until now, it appears that where our logic is the most abstract
it always gives correct results—it agrees with experiment. Only when we try to
make specific models of the internal machinery of the fundamental particles and
their interactions are we unable to find a theory that agrees with experiment. The
theory then that we are about to describe agrees with experiment wherever it has
been tested—for the strange particles as well as for electrons, protons, and so on.

One remark on an annoying, but interesting, point before we proceed: It is
not possible to determine the coefficients Rji uniquely, because there is always
some arbitrariness in the probability amplitudes. If you have a set of amplitudes
of any kind, say the amplitudes to arrive at some place by a whole lot of different
routes, and if you multiply every single amplitude by the same phase factor—say
by eiδ—you have another set that is just as good. So, it is always possible to
make an arbitrary change in phase of all the amplitudes in any given problem if
you want to.

Suppose you calculate some probability by writing a sum of several amplitudes,
say (A + B + C + · · · ) and taking the absolute square. Then somebody else
calculates the same thing by using the sum of the amplitudes (A′+B′+C ′+ · · · )
and taking the absolute square. If all the A′, B′, C ′, etc., are equal to the
A, B, C, etc., except for a factor eiδ, all probabilities obtained by taking the
absolute squares will be exactly the same, since (A′ + B′ + C ′ + · · · ) is then
equal to eiδ(A+B +C + · · · ). Or suppose, for instance, that we were computing
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something with Eq. (6.1), but then we suddenly change all of the phases of a
certain base system. Every one of the amplitudes 〈i |ψ〉 would be multiplied by
the same factor eiδ. Similarly, the amplitudes 〈i |χ〉 would also be changed by eiδ,
but the amplitudes 〈χ | i〉 are the complex conjugates of the amplitudes 〈i |χ〉;
therefore, the former gets changed by the factor e−iδ. The plus and minus iδ’s in
the exponents cancel out, and we would have the same expression we had before.
So it is a general rule that if we change all the amplitudes with respect to a given
base system by the same phase—or even if we just change all the amplitudes
in any problem by the same phase—it makes no difference. There is, therefore,
some freedom to choose the phases in our transformation matrix. Every now and
then we will make such an arbitrary choice—usually following the conventions
that are in general use.

6-2 Transforming to a rotated coordinate system

We consider again the “improved” Stern-Gerlach apparatus described in the
last chapter. A beam of spin one-half particles, entering at the left, would, in
general, be split into two beams, as shown schematically in Fig. 6-1. (There were
three beams for spin one.) As before, the beams are put back together again
unless one or the other of them is blocked off by a “stop” which intercepts the

SIDE VIEW

TOP VIEW

FIELD
GRADIENT

z
y

y

x

+

−

Fig. 6-1. Top and side views of an “improved” Stern-Gerlach apparatus
with beams of a spin one-half particle.
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beam at its half-way point. In the figure we show an arrow which points in the
direction of the increase of the magnitude of the field—say toward the magnet
pole with the sharp edges. This arrow we take to represent the “up” axis of any
particular apparatus. It is fixed relative to the apparatus and will allow us to
indicate the relative orientations when we use several apparatuses together. We
also assume that the direction of the magnetic field in each magnet is always the
same with respect to the arrow.

We will say that those atoms which go in the “upper” beam are in the (+) state
with respect to that apparatus and that those in the “lower” beam are in the
(−) state. (There is no “zero” state for spin one-half particles.)

(a)
S

T

α

(b)

S

T

α

Fig. 6-2. Two equivalent experiments.

Now suppose we put two of our modified Stern-Gerlach apparatuses in se-
quence, as shown in Fig. 6-2(a). The first one, which we call S, can be used to
prepare a pure (+S) or a pure (−S) state by blocking one beam or the other. [As
shown it prepares a pure (+S) state.] For each condition, there is some amplitude
for a particle that comes out of S to be in either the (+T ) or the (−T ) beam of
the second apparatus. There are, in fact, just four amplitudes: the amplitude
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to go from (+S) to (+T ), from (+S) to (−T ), from (−S) to (+T ), from (−S)
to (−T ). These amplitudes are just the four coefficients of the transformation
matrix Rji to go from the S-representation to the T -representation. We can
consider that the first apparatus “prepares” a particular state in one representa-
tion and that the second apparatus “analyzes” that state in terms of the second
representation. The kind of question we want to answer, then, is this: If an atom
has been prepared in a given condition—say the (+S) state—by blocking one of
the beams in the apparatus S, what is the chance that it will get through the
second apparatus T if this is set for, say, the (−T ) state. The result will depend,
of course, on the angles between the two systems S and T .

We should explain why it is that we could have any hope of finding the
coefficients Rji by deduction. You know that it is almost impossible to believe
that if a particle has its spin lined up in the +z-direction, that there is some
chance of finding the same particle with its spin pointing in the +x-direction—or
in any other direction at all. In fact, it is almost impossible, but not quite. It is
so nearly impossible that there is only one way it can be done, and that is the
reason we can find out what that unique way is.

The first kind of argument we can make is this. Suppose we have a setup
like the one in Fig. 6-2(a), in which we have the two apparatuses S and T ,
with T cocked at the angle α with respect to S, and we let only the (+) beam
through S and the (−) beam through T . We would observe a certain number for
the probability that the particles coming out of S get through T . Now suppose
we make another measurement with the apparatus of Fig. 6-2(b). The relative
orientation of S and T is the same, but the whole system sits at a different angle
in space. We want to assume that both of these experiments give the same
number for the chance that a particle in a pure state with respect to S will get
into some particular state with respect to T . We are assuming, in other words,
that the result of any experiment of this type is the same—that the physics is
the same—no matter how the whole apparatus is oriented in space. (You say,
“That’s obvious.” But it is an assumption, and it is “right” only if it is actually
what happens.) That means that the coefficients Rji depend only on the relation
in space of S and T , and not on the absolute situation of S and T . To say this in
another way, Rji depends only on the rotation which carries S to T , for evidently
what is the same in Fig. 6-2(a) and Fig. 6-2(b) is the three-dimensional rotation
which would carry apparatus S into the orientation of apparatus T . When the
transformation matrix Rji depends only on a rotation, as it does here, it is called
a rotation matrix.
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(a)

S

T

U

(b)

S

U

Fig. 6-3. If T is “wide open,” (b) is equivalent to (a).

For our next step we will need one more piece of information. Suppose we
add a third apparatus which we can call U , which follows T at some arbitrary
angle, as in Fig. 6-3(a). (It’s beginning to look horrible, but that’s the fun of
abstract thinking—you can make the most weird experiments just by drawing
lines!) Now what is the S → T → U transformation? What we really want to
ask for is the amplitude to go from some state with respect to S to some other
state with respect to U , when we know the transformation from S to T and from
T to U . We are then asking about an experiment in which both channels of T
are open. We can get the answer by applying Eq. (6.5) twice in succession. For
going from the S-representation to the T -representation, we have

C ′j =
∑
i

RTSji Ci, (6.6)
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where we put the superscripts TS on the R, so that we can distinguish it from
the coefficients RUT we will have for going from T to U .

Assuming the amplitudes to be in the base states of the U -representation C ′′k ,
we can relate them to the T -amplitudes by using Eq. (6.5) once more; we get

C ′′k =
∑
j

RUTkj C
′
j . (6.7)

Now we can combine Eqs. (6.6) and (6.7) to get the transformation to U directly
from S. Substituting C ′j from Eq. (6.6) in Eq. (6.7), we have

C ′′k =
∑
j

RUTkj
∑
i

RTSji Ci. (6.8)

Or, since i does not appear in RUTkj , we can put the i-summation also in front,
and write

C ′′k =
∑
i

∑
j

RUTkj R
TS
ji Ci. (6.9)

This is the formula for a double transformation.
Notice, however, that so long as all the beams in T are unblocked, the state

coming out of T is the same as the one that went in. We could just as well have
made a transformation from the S-representation directly to the U -representation.
It should be the same as putting the U apparatus right after S, as in Fig. 6-3(b).
In that case, we would have written

C ′′k =
∑
i

RUSki Ci, (6.10)

with the coefficients RUSki belonging to this transformation. Now, clearly, Eqs.
(6.9) and (6.10) should give the same amplitudes C ′′k , and this should be true
no matter what the original state φ was which gave us the amplitudes Ci. So it
must be that

RUSki =
∑
j

RUTkj R
TS
ji . (6.11)

In other words, for any rotation S → U of a reference base, which is viewed
as a compounding of two successive rotations S → T and T → U , the rotation
matrix RUSki can be obtained from the matrices of the two partial rotations by
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Eq. (6.11). If you wish, you can find Eq. (6.11) directly from Eq. (6.1), for it is
only a different notation for 〈kU | iS〉 =

∑
j〈kU | jT 〉〈jT | iS〉.

To be thorough, we should add the following parenthetical remarks. They are not
terribly important, however, so you can skip to the next section if you want. What
we have said is not quite right. We cannot really say that Eq. (6.9) and Eq. (6.10)
must give exactly the same amplitudes. Only the physics should be the same; all the
amplitudes could be different by some common phase factor like eiδ without changing
the result of any calculation about the real world. So, instead of Eq. (6.11), all we can
say, really, is that

eiδRUSki =
∑
j

RUTkj R
TS
ji , (6.12)

where δ is some real constant. What this extra factor of eiδ means, of course, is that the
amplitudes we get if we use the matrix RUS might all differ by the same phase (e−iδ)
from the amplitude we would get using the two rotations RUT and RTS . We know that
it doesn’t matter if all amplitudes are changed by the same phase, so we could just
ignore this phase factor if we wanted to. It turns out, however, that if we define all of our
rotation matrices in a particular way, this extra phase factor will never appear—the δ in
Eq. (6.12) will always be zero. Although it is not important for the rest of our arguments,
we can give a quick proof by using a mathematical theorem about determinants. [If
you don’t yet know much about determinants, don’t worry about the proof and just
skip to the definition of Eq. (6.15).]

First, we should say that Eq. (6.11) is the mathematical definition of a “product”
of two matrices. (It is just convenient to be able to say: “RUS is the product of RUT
and RTS .”) Second, there is a theorem of mathematics—which you can easily prove for
the two-by-two matrices we have here—which says that the determinant of a “product”
of two matrices is the product of their determinants. Applying this theorem to Eq. (6.12),
we get

ei2δ (DetRUS) = (DetRUT ) · (DetRTS). (6.13)
(We leave off the subscripts, because they don’t tell us anything useful.) Yes, the 2δ
is right. Remember that we are dealing with two-by-two matrices; every term in the
matrix RUSki is multiplied by eiδ, so each product in the determinant—which has two
factors—gets multiplied by ei2δ. Now let’s take the square root of Eq. (6.13) and divide
it into Eq. (6.12); we get

RUSki√
DetRUS

=
∑
j

RUTkj√
DetRUT

RTSji√
DetRTS

. (6.14)

The extra phase factor has disappeared.

6-9



Now it turns out that if we want all of our amplitudes in any given representation
to be normalized (which means, you remember, that

∑
i
〈φ | i〉〈i |φ〉 = 1), the rotation

matrices will all have determinants that are pure imaginary exponentials, like eiα. (We
won’t prove it; you will see that it always comes out that way.) So we can, if we wish,
choose to make all our rotation matrices R have a unique phase by making DetR = 1.
It is done like this. Suppose we find a rotation matrix R in some arbitrary way. We
make it a rule to “convert” it to “standard form” by defining

Rstandard = R√
DetR

. (6.15)

We can do this because we are just multiplying each term of R by the same phase factor,
to get the phases we want. In what follows, we will always assume that our matrices
have been put in the “standard form”; then we can use Eq. (6.11) without having any
extra phase factors.

6-3 Rotations about the z-axis

We are now ready to find the transformation matrix Rji between two different
representations. With our rule for compounding rotations and our assumption
that space has no preferred direction, we have the keys we need for finding the
matrix of any arbitrary rotation. There is only one solution. We begin with
the transformation which corresponds to a rotation about the z-axis. Suppose
we have two apparatuses S and T placed in series along a straight line with
their axes parallel and pointing out of the page, as shown in Fig. 6-4(a). We
take our “z-axis” in this direction. Surely, if the beam goes “up” (toward +z)
in the S apparatus, it will do the same in the T apparatus. Similarly, if it goes
down in S, it will go down in T . Suppose, however, that the T apparatus were
placed at some other angle, but still with its axis parallel to the axis of S, as
in Fig. 6-4(b). Intuitively, you would say that a (+) beam in S would still go
with a (+) beam in T , because the fields and field gradients are still in the same
physical direction. And that would be quite right. Also, a (−) beam in S would
still go into a (−) beam in T . The same result would apply for any orientation
of T in the xy-plane of S. What does this tell us about the relation between
C ′+ = 〈+T |ψ〉, C ′− = 〈−T |ψ〉 and C+ = 〈+S |ψ〉, C− = 〈−S |ψ〉? You might
conclude that any rotation about the z-axis of the “frame of reference” for base
states leaves the amplitudes to be “up” and “down” the same as before. We
could write C ′+ = C+ and C ′− = C−—but that is wrong. All we can conclude is
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(a)

x
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FIELD GRADIENT

P1

(b)

x

y

S

x ′

y ′

T

P1

Fig. 6-4. Rotating 90◦ about the z-axis.

that for such rotations the probabilities to be in the “up” beam are the same for
the S and T apparatuses. That is,

|C ′+| = |C+| and |C ′−| = |C−|.

We cannot say that the phases of the amplitudes referred to the T apparatus
may not be different for the two different orientations in (a) and (b) of Fig. 6-4.

The two apparatuses in (a) and (b) of Fig. 6-4 are, in fact, different, as we
can see in the following way. Suppose that we put an apparatus in front of S
which produces a pure (+x) state. (The x-axis points toward the bottom of the
figure.) Such particles would be split into (+z) and (−z) beams in S, but the
two beams would be recombined to give a (+x) state again at P1—the exit of S.
The same thing happens again in T . If we follow T by a third apparatus U ,
whose axis is in the (+x) direction and, as shown in Fig. 6-5(a), all the particles
would go into the (+) beam of U . Now imagine what happens if T and U are
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(a)

x
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S T U
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P1

(b)

x

y

x ′

y ′

(+x)

S

T

U

(+?)

P1

Fig. 6-5. Particle in a (+x) state behaves differently in (a) and (b).

swung around together by 90◦ to the positions shown in Fig. 6-5(b). Again, the
T apparatus puts out just what it takes in, so the particles that enter U are in a
(+x) state with respect to S. But U now analyzes for the (+y) state with respect
to S, which is different. (By symmetry, we would now expect only one-half of
the particles to get through.)

What could have changed? The apparatuses T and U are still in the same
physical relationship to each other. Can the physics be changed just because T
and U are in a different orientation? Our original assumption is that it should
not. It must be that the amplitudes with respect to T are different in the two
cases shown in Fig. 6-5—and, therefore, also in Fig. 6-4. There must be some
way for a particle to know that it has turned the corner at P1. How could it tell?
Well, all we have decided is that the magnitudes of C ′+ and C+ are the same in
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the two cases, but they could—in fact, must—have different phases. We conclude
that C ′+ and C+ must be related by

C ′+ = eiλC+,

and that C ′− and C− must be related by

C ′− = eiµC−,

where λ and µ are real numbers which must be related in some way to the angle
between S and T .

The only thing we can say at the moment about λ and µ is that they must
not be equal [except for the special case shown in Fig. 6-5(a), when T is in the
same orientation as S]. We have seen that equal phase changes in all amplitudes
have no physical consequence. For the same reason, we can always add the
same arbitrary amount to both λ and µ without changing anything. So we are
permitted to choose to make λ and µ equal to plus and minus the same number.
That is, we can always take

λ′ = λ− (λ+ µ)
2 , µ′ = µ− (λ+ µ)

2 .

Then
λ′ = λ

2 −
µ

2 = −µ′.

So we adopt the convention† that µ = −λ. We have then the general rule that
for a rotation of the reference apparatus by some angle about the z-axis, the
transformation is

C ′+ = e+iλC+, C ′− = e−iλC−. (6.16)
The absolute values are the same, only the phases are different. These phase
factors are responsible for the different results in the two experiments of Fig. 6-5.

Now we would like to know the law that relates λ to the angle between S
and T . We already know the answer for one case. If the angle is zero, λ is zero.
Now we will assume that the phase shift λ is a continuous function of angle φ
between S and T (see Fig. 6-4) as φ goes to zero—as only seems reasonable. In
other words, if we rotate T from the straight line through S by the small angle ε,

† Looking at it another way, we are just putting the transformation in the “standard form”
described in Section 6-2 by using Eq. (6.15).
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the λ is also a small quantity, say mε, where m is some number. We write it
this way because we can show that λ must be proportional to ε. Suppose we
were to put after T another apparatus T ′ which makes the angle ε with T , and,
therefore, the angle 2ε with S. Then, with respect to T , we have

C ′+ = eiλC+,

and with respect to T ′, we have

C ′′+ = eiλC ′+ = ei2λC+.

But we know that we should get the same result if we put T ′ right after S.
Thus, when the angle is doubled, the phase is doubled. We can evidently extend
the argument and build up any rotation at all by a sequence of infinitesimal
rotations. We conclude that for any angle φ, λ is proportional to the angle. We
can, therefore, write λ = mφ.

The general result we get, then, is that for T rotated about the z-axis by the
angle φ with respect to S

C ′+ = eimφC+, C ′− = e−imφC−. (6.17)

For the angle φ, and for all rotations we speak of in the future, we adopt the
standard convention that a positive rotation is a right-handed rotation about the
positive direction of the reference axis. A positive φ has the sense of rotation of
a right-handed screw advancing in the positive z-direction.

Now we have to find what m must be. First, we might try this argument:
Suppose T is rotated by 360◦; then, clearly, it is right back at zero degrees, and
we should have C ′+ = C+ and C ′− = C−, or, what is the same thing, eim2π = 1.
We get m = 1. This argument is wrong! To see that it is, consider that T is
rotated by 180◦. If m were equal to 1, we would have C ′+ = eiπC+ = −C+
and C ′− = e−iπC− = −C−. However, this is just the original state all over
again. Both amplitudes are just multiplied by −1 which gives back the original
physical system. (It is again a case of a common phase change.) This means
that if the angle between T and S in Fig. 6-5(b) is increased to 180◦, the system
(with respect to T ) would be indistinguishable from the zero-degree situation,
and the particles would again go through the (+) state of the U apparatus.
At 180◦, though, the (+) state of the U apparatus is the (−x) state of the original
S apparatus. So a (+x) state would become a (−x) state. But we have done
nothing to change the original state; the answer is wrong. We cannot have m = 1.

6-14



We must have the situation that a rotation by 360◦ and no smaller angle
reproduces the same physical state. This will happen if m = 1

2 . Then, and only
then, will the first angle that reproduces the same physical state be φ = 360◦.†
It gives

C ′+ = −C+

C ′− = −C−

 360◦ about z-axis. (6.18)

It is very curious to say that if you turn the apparatus 360◦ you get new amplitudes.
They aren’t really new, though, because the common change of sign doesn’t give
any different physics. If someone else had decided to change all the signs of the
amplitudes because he thought he had turned 360◦, that’s all right; he gets the
same physics.‡ So our final answer is that if we know the amplitudes C+ and C−
for spin one-half particles with respect to a reference frame S, and we then use a
base system referred to T which is obtained from S by a rotation of φ around
the z-axis, the new amplitudes are given in terms of the old by

C ′+ = eiφ/2C+

C ′− = e−iφ/2C−

φ about z. (6.19)

6-4 Rotations of 180◦ and 90◦ about y

Next, we will try to guess the transformation for a rotation of T with respect
to S of 180◦ around an axis perpendicular to the z-axis—say, about the y-axis.
(We have defined the coordinate axes in Fig. 6-1.) In other words, we start with
two identical Stern-Gerlach equipments, with the second one, T , turned “upside
down” with respect to the first one, S, as in Fig. 6-6. Now if we think of our
particles as little magnetic dipoles, a particle that is in the (+S) state—so that it
goes on the “upper” path in the first apparatus—will also take the “upper” path
in the second, so that it will be in the minus state with respect to T . (In the
inverted T apparatus, both the gradients and the field direction are reversed; for

† It appears that m = − 1
2 would also work. However, we see in (6.17) that the change in

sign merely redefines the notation for a spin-up particle.
‡ Also, if something has been rotated by a sequence of small rotations whose net result

is to return it to the original orientation, it is possible to define the idea that it has been
rotated 360◦—as distinct from zero net rotation—if you have kept track of the whole history.
(Interestingly enough, this is not true for a net rotation of 720◦.)
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Fig. 6-6. A rotation of 180◦ about the y -axis.

a particle with its magnetic moment in a given direction, the force is unchanged.)
Anyway, what is “up” with respect to S will be “down” with respect to T . For
these relative positions of S and T , then, we know that the transformation must
give

|C ′+| = |C−|, |C ′−| = |C+|.
As before, we cannot rule out some additional phase factors; we could have
(for 180◦ about the y-axis)

C ′+ = eiβC− and C ′− = eiγC+, (6.20)

where β and γ are still to be determined.
What about a rotation of 360◦ about the y-axis? Well, we already know

the answer for a rotation of 360◦ about the z-axis—the amplitude to be in any
state changes sign. A rotation of 360◦ around any axis always brings us back
to the original position. It must be that for any 360◦ rotation, the result is
the same as a 360◦ rotation about the z-axis—all amplitudes simply change
sign. Now suppose we imagine two successive rotations of 180◦ about y—using
Eq. (6.20)—we should get the result of Eq. (6.18). In other words,

C ′′+ = eiβC ′− = eiβeiγC+ = −C+

and (6.21)
C ′′− = eiγC ′+ = eiγeiβC− = −C−.

This means that
eiβeiγ = −1 or eiγ = −e−iβ .

So the transformation for a rotation of 180◦ about the y-axis can be written

C ′+ = eiβC−, C ′− = −e−iβC+. (6.22)
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The arguments we have just used would apply equally well to a rotation
of 180◦ about any axis in the xy-plane, although different axes can, of course,
give different numbers for β. However, that is the only way they can differ. Now
there is a certain amount of arbitrariness in the number β, but once it is specified
for one axis of rotation in the xy-plane it is determined for any other axis. It is
conventional to choose to set β = 0 for a 180◦ rotation about the y-axis.

To show that we have this choice, suppose we imagine that β was not equal
to zero for a rotation about the y-axis; then we can show that there is some other
axis in the xy-plane, for which the corresponding phase factor will be zero. Let’s
find the phase factor βA for an axis A that makes the angle α with the y-axis, as
shown in Fig. 6-7(a). (For clarity, the figure is drawn with α equal to a negative
number, but that doesn’t matter.) Now if we take a T apparatus which is initially
lined up with the S apparatus and is then rotated 180◦ about the axis A, its
axes—which we will call x′′, y′′, and z′′—will be as shown in Fig. 6-7(a). The
amplitudes with respect to T will then be

C ′′+ = eiβAC−, C ′′− = −e−iβAC+. (6.23)

We can now think of getting to the same orientation by the two successive
rotations shown in (b) and (c) of the figure. First, we imagine an apparatus U
which is rotated with respect to S by 180◦ about the y-axis. The axes x′, y′,
and z′ of U will be as shown in Fig. 6-7(b), and the amplitudes with respect to U
are given by (6.22).

Now notice that we can go from U to T by a rotation about the “z-axis” of U ,
namely about z′, as shown in Fig. 6-7(c). From the figure you can see that the
angle required is two times the angle α but in the opposite direction (with respect
to z′). Using the transformation of (6.19) with φ = −2α, we get

C ′′+ = e−iαC ′+, C ′′− = e+iαC ′−. (6.24)

Combining Eqs. (6.24) and (6.22), we get that

C ′′+ = ei(β−α)C−, C ′′− = −e−i(β−α)C+. (6.25)

These amplitudes must, of course, be the same as we got in (6.23). So βA must
be related to α and β by

βA = β − α. (6.26)
This means that if the angle α between the A-axis and the y-axis (of S) is equal
to β, the transformation for a rotation of 180◦ about A will have βA = 0.
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Fig. 6-7. A 180◦ rotation about the axis A is equivalent to a rotation
of 180◦ about y , followed by a rotation about z ′.

Now so long as some axis perpendicular to the z-axis is going to have β = 0,
we may as well take it to be the y-axis. It is purely a matter of convention, and
we adopt the one in general use. Our result: For a rotation of 180◦ about the
y-axis, we have

C ′+ = C−

C ′− = −C+

 180◦ about y. (6.27)
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While we are thinking about the y-axis, let’s next ask for the transformation
matrix for a rotation of 90◦ about y. We can find it because we know that two
successive 90◦ rotations about the same axis must equal one 180◦ rotation. We
start by writing the transformation for 90◦ in the most general form:

C ′+ = aC+ + bC−, C ′− = cC+ + dC−. (6.28)

A second rotation of 90◦ about the same axis would have the same coefficients:

C ′′+ = aC ′+ + bC ′−, C ′′− = cC ′+ + dC ′−. (6.29)

Combining Eqs. (6.28) and (6.29), we have

C ′′+ = a(aC+ + bC−) + b(cC+ + dC−),

C ′′− = c(aC+ + bC−) + d(cC+ + dC−).
(6.30)

However, from (6.27) we know that

C ′′+ = C−, C ′′− = −C+,

so that we must have that
ab+ bd = 1,
a2 + bc = 0,
ac+ cd = −1,
bc+ d2 = 0.

(6.31)

These four equations are enough to determine all our unknowns: a, b, c, and d. It
is not hard to do. Look at the second and fourth equations. Deduce that a2 = d2,
which means that a = d or else that a = −d. But a = −d is out, because then the
first equation wouldn’t be right. So d = a. Using this, we have immediately that
b = 1/2a and that c = −1/2a. Now we have everything in terms of a. Putting,
say, the second equation all in terms of a, we have

a2 − 1
4a2 = 0 or a4 = 1

4 .

This equation has four different solutions, but only two of them give the standard
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value for the determinant. We might as well take a = 1/
√

2; then†

a = 1/
√

2, b = 1/
√

2,

c = −1/
√

2, d = 1/
√

2.

In other words, for two apparatuses S and T , with T rotated with respect
to S by 90◦ about the y-axis, the transformation is

C ′+ = 1√
2

(C+ + C−)

C ′− = 1√
2

(−C+ + C−)

 90◦ about y. (6.32)

We can, of course, solve these equations for C+ and C−, which will give us
the transformation for a rotation of minus 90◦ about y. Changing the primes
around, we would conclude that

C ′+ = 1√
2

(C+ − C−)

C ′− = 1√
2

(C+ + C−)

−90◦ about y. (6.33)

6-5 Rotations about x

You may be thinking: “This is getting ridiculous. What are they going to do
next, 47◦ around y, then 33◦ about x, and so on, forever?” No, we are almost
finished. With just two of the transformations we have—90◦ about y, and an
arbitrary angle about z (which we did first if you remember)—we can generate
any rotation at all.

As an illustration, suppose that we want the angle α around x. We know
how to deal with the angle α around z, but now we want it around x. How do
we get it? First, we turn the axis z down onto x—which is a rotation of +90◦
about y, as shown in Fig. 6-8. Then we turn through the angle α around z′.

† The other solution changes all signs of a, b, c, and d and corresponds to a −270◦ rotation.
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α
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x, x ′′′

y
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−90◦
y ′′′

z ′′′

Fig. 6-8. A rotation by α about the x-axis is equivalent to: (a) a
rotation by +90◦ about y , followed by (b) a rotation by α about z ′,
followed by (c) a rotation of −90◦ about y ′′.

Then we rotate −90◦ about y′′. The net result of the three rotations is the same
as turning around x by the angle α. It is a property of space.

(These facts of the combinations of rotations, and what they produce, are
hard to grasp intuitively. It is rather strange, because we live in three dimensions,
but it is hard for us to appreciate what happens if we turn this way and then
that way. Perhaps, if we were fish or birds and had a real appreciation of what
happens when we turn somersaults in space, we could more easily appreciate
such things.)

Anyway, let’s work out the transformation for a rotation by α around the
x-axis by using what we know. From the first rotation by +90◦ around y the
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amplitudes go according to Eq. (6.32). Calling the rotated axes x′, y′, and z′,
the next rotation by the angle α around z′ takes us to a frame x′′, y′′, z′′, for
which

C ′′+ = eiα/2C ′+, C ′′− = e−iα/2C ′−.

The last rotation of −90◦ about y′′ takes us to x′′′, y′′′, z′′′; by (6.33),

C ′′′+ = 1√
2

(C ′′+ − C ′′−), C ′′′− = 1√
2

(C ′′+ + C ′′−).

Combining these last two transformations, we get

C ′′′+ = 1√
2

(e+iα/2C ′+ − e−iα/2C ′−),

C ′′′− = 1√
2

(e+iα/2C ′+ + e−iα/2C ′−).

Using Eqs. (6.32) for C ′+ and C ′−, we get the complete transformation:

C ′′′+ = 1
2{e

+iα/2(C+ + C−)− e−iα/2(−C+ + C−)},

C ′′′− = 1
2{e

+iα/2(C+ + C−) + e−iα/2(−C+ + C−)}.

We can put these formulas in a simpler form by remembering that

eiθ + e−iθ = 2 cos θ, and eiθ − e−iθ = 2i sin θ.
We get

C ′′′+ =
(

cos α2

)
C+ + i

(
sin α2

)
C−

C ′′′− = i

(
sin α2

)
C+ +

(
cos α2

)
C−

α about x. (6.34)

Here is our transformation for a rotation about the x-axis by any angle α. It is
only a little more complicated than the others.

6-6 Arbitrary rotations

Now we can see how to do any angle at all. First, notice that any relative
orientation of two coordinate frames can be described in terms of three angles,
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Fig. 6-9. The orientation of any coordinate frame x ′, y ′, z ′ relative to
another frame x , y , z can be defined in terms of Euler’s angles α, β, γ.

as shown in Fig. 6-9. If we have a set of axes x′, y′, and z′ oriented in any way
at all with respect to x, y, and z, we can describe the relationship between the
two frames by means of the three Euler angles α, β, and γ, which define three
successive rotations that will bring the x, y, z frame into the x′, y′, z′ frame.
Starting at x, y, z, we rotate our frame through the angle β about the z-axis,
bringing the x-axis to the line x1. Then, we rotate by α about this temporary
x-axis, to bring z down to z′. Finally, a rotation about the new z-axis (that
is, z′) by the angle γ will bring the x-axis into x′ and the y-axis into y′.† We
know the transformations for each of the three rotations—they are given in (6.19)
and (6.34). Combining them in the proper order, we get

C ′+ = cos α2 e
i(β+γ)/2C+ + isin α2 e

−i(β−γ)/2C−,

C ′− = isin α2 e
i(β−γ)/2C+ + cos α2 e

−i(β+γ)/2C−.
(6.35)

† With a little work you can show that the frame x, y, z can also be brought into the frame
x′, y′, z′ by the following three rotations about the original axes: (1) rotate by the angle γ
around the original z-axis; (2) rotate by the angle α around the original x-axis; (3) rotate by
the angle β around the original z-axis.
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So just starting from some assumptions about the properties of space, we
have derived the amplitude transformation for any rotation at all. That means
that if we know the amplitudes for any state of a spin one-half particle to go into
the two beams of a Stern-Gerlach apparatus S, whose axes are x, y, and z, we
can calculate what fraction would go into either beam of an apparatus T with the
axes x′, y′, and z′. In other words, if we have a state ψ of a spin one-half particle,
whose amplitudes are C+ = 〈+ |ψ〉 and C− = 〈− |ψ〉 to be “up” and “down”
with respect to the z-axis of the x, y, z frame, we also know the amplitudes C ′+
and C ′− to be “up” and “down” with respect to the z′-axis of any other frame x′,
y′, z′. The four coefficients in Eqs. (6.35) are the terms of the “transformation
matrix” with which we can project the amplitudes of a spin one-half particle into
any other coordinate system.

We will now work out a few examples to show you how it all works. Let’s
take the following simple question. We put a spin one-half atom through a Stern-
Gerlach apparatus that transmits only the (+z) state. What is the amplitude
that it will be in the (+x) state? The +x axis is the same as the +z′ axis of a
system rotated 90◦ about the y-axis. For this problem, then, it is simplest to use
Eqs. (6.32)—although you could, of course, use the complete equations of (6.35).
Since C+ = 1 and C− = 0, we get C ′+ = 1/

√
2. The probabilities are the absolute

square of these amplitudes; there is a 50 percent chance that the particle will
go through an apparatus that selects the (+x) state. If we had asked about the
(−x) state the amplitude would have been −1/

√
2, which also gives a probabil-

ity 1/2—as you would expect from the symmetry of space. So if a particle is in
the (+z) state, it is equally likely to be in (+x) or (−x), but with opposite phase.

There’s no prejudice in y either. A particle in the (+z) state has a 50–50
chance of being in (+y) or in (−y). However, for these (using the formula for
rotating −90◦ about x), the amplitudes are 1/

√
2 and −i/

√
2. In this case, the

two amplitudes have a phase difference of 90◦ instead of 180◦, as they did for the
(+x) and (−x). In fact, that’s how the distinction between x and y shows up.

As our final example, suppose that we know that a spin one-half particle is in
a state ψ such that it is polarized “up” along some axis A, defined by the angles
θ and φ in Fig. 6-10. We want to know the amplitude C+ that the particle is
“up” along z and the amplitude C− that it is “down” along z. We can find these
amplitudes by imagining that A is the z-axis of a system whose x-axis lies in
some arbitrary direction—say in the plane formed by A and z. We can then
bring the frame of A into x, y, z by three rotations. First, we make a rotation
by −π/2 about the axis A, which brings the x-axis into the line B in the figure.
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Fig. 6-10. An axis A defined by the polar angles θ and φ.

Then we rotate by θ about line B (the new x-axis of frame A) to bring A to the
z-axis. Finally, we rotate by the angle (π/2− φ) about z. Remembering that we
have only a (+) state with respect to A, we get

C+ = cos θ2 e
−iφ/2, C− = sin θ2 e

+iφ/2. (6.36)

We would like, finally, to summarize the results of this chapter in a form
that will be useful for our later work. First, we remind you that our primary
result in Eqs. (6.35) can be written in another notation. Note that Eqs. (6.35)
mean just the same thing as Eq. (6.4). That is, in Eqs. (6.35) the coefficients of
C+ = 〈+S |ψ〉 and C− = 〈−S |ψ〉 are just the amplitudes 〈jT | iS〉 of Eq. (6.4)—
the amplitudes that a particle in the i-state with respect to S will be in the
j-state with respect to T (when the orientation of T with respect to S is given in
terms of the angles α, β, and γ). We also called them RTSji in Eq. (6.6). (We have
a plethora of notations!) For example, RTS−+ = 〈−T |+S〉 is the coefficient of C+
in the formula for C ′−, namely, i sin (α/2) ei(β−γ)/2. We can, therefore, make a
summary of our results in the form of a table, as we have done in Table 6-1.

It will occasionally be handy to have these amplitudes already worked out for
some simple special cases. Let’s let Rz(φ) stand for a rotation by the angle φ

6-25



Table 6-1

The amplitudes 〈jT | iS〉 for a rotation defined by the
Euler angles α, β, γ of Fig. 6-9

Rji(α, β, γ)

〈jT | iS〉 +S −S

+T cos α2 e
i(β+γ)/2 i sin α2 e

−i(β−γ)/2

−T i sin α2 e
i(β−γ)/2 cos α2 e

−i(β+γ)/2

Table 6-2

The amplitudes 〈jT | iS〉 for a rotation R(φ) by the angle
φ about the z-axis, x-axis, or y-axis

Rz(φ)

〈jT | iS〉 +S −S

+T eiφ/2 0

−T 0 e−iφ/2

Rx(φ)

〈jT | iS〉 +S −S

+T cosφ/2 i sinφ/2
−T i sinφ/2 cosφ/2

Ry(φ)

〈jT | iS〉 +S −S

+T cosφ/2 sinφ/2
−T − sinφ/2 cosφ/2
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about the z-axis. We can also let it stand for the corresponding rotation matrix
(omitting the subscripts i and j, which are to be implicitly understood). In
the same spirit Rx(φ) and Ry(φ) will stand for rotations by the angle φ about
the x-axis or the y-axis. We give in Table 6-2 the matrices—the tables of
amplitudes 〈jT | iS〉—which project the amplitudes from the S-frame into the
T -frame, where T is obtained from S by the rotation specified.
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7

The Dependence of Amplitudes on Time

Review: Chapter 17, Vol. I, Space-Time
Chapter 48, Vol. I, Beats

7-1 Atoms at rest; stationary states

We want now to talk a little bit about the behavior of probability amplitudes
in time. We say a “little bit,” because the actual behavior in time necessarily
involves the behavior in space as well. Thus, we get immediately into the most
complicated possible situation if we are to do it correctly and in detail. We are
always in the difficulty that we can either treat something in a logically rigorous
but quite abstract way, or we can do something which is not at all rigorous
but which gives us some idea of a real situation—postponing until later a more
careful treatment. With regard to energy dependence, we are going to take the
second course. We will make a number of statements. We will not try to be
rigorous—but will just be telling you things that have been found out, to give
you some feeling for the behavior of amplitudes as a function of time. As we go
along, the precision of the description will increase, so don’t get nervous that we
seem to be picking things out of the air. It is, of course, all out of the air—the
air of experiment and of the imagination of people. But it would take us too
long to go over the historical development, so we have to plunge in somewhere.
We could plunge into the abstract and deduce everything—which you would not
understand—or we could go through a large number of experiments to justify
each statement. We choose to do something in between.

An electron alone in empty space can, under certain circumstances, have a
certain definite energy. For example, if it is standing still (so it has no transla-
tional motion, no momentum, or kinetic energy), it has its rest energy. A more
complicated object like an atom can also have a definite energy when standing
still, but it could also be internally excited to another energy level. (We will
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describe later the machinery of this.) We can often think of an atom in an excited
state as having a definite energy, but this is really only approximately true. An
atom doesn’t stay excited forever because it manages to discharge its energy by
its interaction with the electromagnetic field. So there is some amplitude that a
new state is generated—with the atom in a lower state, and the electromagnetic
field in a higher state, of excitation. The total energy of the system is the same
before and after, but the energy of the atom is reduced. So it is not precise to
say an excited atom has a definite energy; but it will often be convenient and
not too wrong to say that it does.

[Incidentally, why does it go one way instead of the other way? Why does
an atom radiate light? The answer has to do with entropy. When the energy
is in the electromagnetic field, there are so many different ways it can be—so
many different places where it can wander—that if we look for the equilibrium
condition, we find that in the most probable situation the field is excited with
a photon, and the atom is de-excited. It takes a very long time for the photon
to come back and find that it can knock the atom back up again. It’s quite
analogous to the classical problem: Why does an accelerating charge radiate? It
isn’t that it “wants” to lose energy, because, in fact, when it radiates, the energy
of the world is the same as it was before. Radiation or absorption goes in the
direction of increasing entropy.]

Nuclei can also exist in different energy levels, and in an approximation which
disregards the electromagnetic effects, we can say that a nucleus in an excited
state stays there. Although we know that it doesn’t stay there forever, it is
often useful to start out with an approximation which is somewhat idealized and
easier to think about. Also it is often a legitimate approximation under certain
circumstances. (When we first introduced the classical laws of a falling body,
we did not include friction, but there is almost never a case in which there isn’t
some friction.)

Then there are the subnuclear “strange particles,” which have various masses.
But the heavier ones disintegrate into other light particles, so again it is not
correct to say that they have a precisely definite energy. That would be true
only if they lasted forever. So when we make the approximation that they have
a definite energy, we are forgetting the fact that they must blow up. For the
moment, then, we will intentionally forget about such processes and learn later
how to take them into account.

Suppose we have an atom—or an electron, or any particle—which at rest
would have a definite energy E0. By the energy E0 we mean the mass of the
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whole thing times c2. This mass includes any internal energy; so an excited atom
has a mass which is different from the mass of the same atom in the ground state.
(The ground state means the state of lowest energy.) We will call E0 the “energy
at rest.”

For an atom at rest, the quantum mechanical amplitude to find an atom at a
place is the same everywhere; it does not depend on position. This means, of
course, that the probability of finding the atom anywhere is the same. But it
means even more. The probability could be independent of position, and still the
phase of the amplitude could vary from point to point. But for a particle at rest,
the complete amplitude is identical everywhere. It does, however, depend on the
time. For a particle in a state of definite energy E0, the amplitude to find the
particle at (x, y, z) at the time t is

ae−i(E0/~)t, (7.1)

where a is some constant. The amplitude to be at any point in space is the same
for all points, but depends on time according to (7.1). We shall simply assume
this rule to be true.

Of course, we could also write (7.1) as

ae−iωt, (7.2)
with

~ω = E0 = Mc2,

whereM is the rest mass of the atomic state, or particle. There are three different
ways of specifying the energy: by the frequency of an amplitude, by the energy
in the classical sense, or by the inertia. They are all equivalent; they are just
different ways of saying the same thing.

You may be thinking that it is strange to think of a “particle” which has equal
amplitudes to be found throughout all space. After all, we usually imagine a
“particle” as a small object located “somewhere.” But don’t forget the uncertainty
principle. If a particle has a definite energy, it has also a definite momentum. If
the uncertainty in momentum is zero, the uncertainty relation, ∆p∆x = ~, tells
us that the uncertainty in the position must be infinite, and that is just what we
are saying when we say that there is the same amplitude to find the particle at
all points in space.

If the internal parts of an atom are in a different state with a different total
energy, then the variation of the amplitude with time is different. If you don’t
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know in which state it is, there will be a certain amplitude to be in one state
and a certain amplitude to be in another—and each of these amplitudes will
have a different frequency. There will be an interference between these different
components—like a beat-note—which can show up as a varying probability.
Something will be “going on” inside of the atom—even though it is “at rest” in
the sense that its center of mass is not drifting. However, if the atom has one
definite energy, the amplitude is given by (7.1), and the absolute square of this
amplitude does not depend on time. You see, then, that if a thing has a definite
energy and if you ask any probability question about it, the answer is independent
of time. Although the amplitudes vary with time, if the energy is definite they
vary as an imaginary exponential, and the absolute value doesn’t change.

That’s why we often say that an atom in a definite energy level is in a
stationary state. If you make any measurements of the things inside, you’ll
find that nothing (in probability) will change in time. In order to have the
probabilities change in time, we have to have the interference of two amplitudes
at two different frequencies, and that means that we cannot know what the energy
is. The object will have one amplitude to be in a state of one energy and another
amplitude to be in a state of another energy. That’s the quantum mechanical
description of something when its behavior depends on time.

If we have a “condition” which is a mixture of two different states with
different energies, then the amplitude for each of the two states varies with time
according to Eq. (7.2), for instance, as

e−i(E1/~)t and e−i(E2/~)t. (7.3)

And if we have some combination of the two, we will have an interference. But
notice that if we added a constant to both energies, it wouldn’t make any difference.
If somebody else were to use a different scale of energy in which all the energies
were increased (or decreased) by a constant amount—say, by the amount A—then
the amplitudes in the two states would, from his point of view, be

e−i(E1+A)t/~ and e−i(E2+A)t/~. (7.4)

All of his amplitudes would be multiplied by the same factor e−i(A/~)t, and all
linear combinations, or interferences, would have the same factor. When we take
the absolute squares to find the probabilities, all the answers would be the same.
The choice of an origin for our energy scale makes no difference; we can measure
energy from any zero we want. For relativistic purposes it is nice to measure
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the energy so that the rest mass is included, but for many purposes that aren’t
relativistic it is often nice to subtract some standard amount from all energies
that appear. For instance, in the case of an atom, it is usually convenient to
subtract the energy Msc

2, where Ms is the mass of all the separate pieces—the
nucleus and the electrons—which is, of course, different from the mass of the
atom. For other problems it may be useful to subtract from all energies the
amount Mgc

2, where Mg is the mass of the whole atom in the ground state; then
the energy that appears is just the excitation energy of the atom. So, sometimes
we may shift our zero of energy by some very large constant, but it doesn’t make
any difference, provided we shift all the energies in a particular calculation by
the same constant. So much for a particle standing still.

7-2 Uniform motion

If we suppose that the relativity theory is right, a particle at rest in one
inertial system can be in uniform motion in another inertial system. In the rest
frame of the particle, the probability amplitude is the same for all x, y, and z but
varies with t. The magnitude of the amplitude is the same for all t, but the phase
depends on t. We can get a kind of a picture of the behavior of the amplitude if
we plot lines of equal phase—say, lines of zero phase—as a function of x and t.

x

t

x ′

t ′

Fig. 7-1. Relativistic transformation of the amplitude of a particle at
rest in the x-t systems.
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For a particle at rest, these equal-phase lines are parallel to the x-axis and are
equally spaced in the t-coordinate, as shown by the dashed lines in Fig. 7-1.

In a different frame—x′, y′, z′, t′—that is moving with respect to the particle
in, say, the x-direction, the x′ and t′ coordinates of any particular point in space
are related to x and t by the Lorentz transformation. This transformation can
be represented graphically by drawing x′ and t′ axes, as is done in Fig. 7-1. (See
Chapter 17, Vol. I, Fig. 17-2) You can see that in the x′-t′ system, points of
equal phase† have a different spacing along the t′-axis, so the frequency of the
time variation is different. Also there is a variation of the phase with x′, so the
probability amplitude must be a function of x′.

Under a Lorentz transformation for the velocity v, say along the negative
x-direction, the time t is related to the time t′ by

t = t′ − x′v/c2√
1− v2/c2

,

so our amplitude now varies as

e−(i/~)E0t = e−(i/~)(E0t
′/
√

1−v2/c2−E0vx
′/c2
√

1−v2/c2).

In the prime system it varies in space as well as in time. If we write the amplitude
as

e−(i/~)(E′
pt

′−p′x′),

we see that E′p = E0/
√

1− v2/c2 is the energy computed classically for a particle
of rest energy E0 travelling at the velocity v, and p′ = E′pv/c

2 is the corresponding
particle momentum.

You know that xµ = (t, x, y, z) and pµ = (E, px, py, pz) are four-vectors, and
that pµxµ = Et − p · x is a scalar invariant. In the rest frame of the particle,
pµxµ is just Et; so if we transform to another frame, Et will be replaced by

E′t′ − p′ · x′.

Thus, the probability amplitude of a particle which has the momentum p will be
proportional to

e−(i/~)(Ept−p·x), (7.5)
† We are assuming that the phase should have the same value at corresponding points in

the two systems. This is a subtle point, however, since the phase of a quantum mechanical
amplitude is, to a large extent, arbitrary. A complete justification of this assumption requires a
more detailed discussion involving interferences of two or more amplitudes.
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where Ep is the energy of the particle whose momentum is p, that is,

Ep =
√

(pc)2 + E2
0 , (7.6)

where E0 is, as before, the rest energy. For nonrelativistic problems, we can write

Ep = Msc
2 +Wp, (7.7)

where Wp is the energy over and above the rest energy Msc
2 of the parts of the

atom. In general, Wp would include both the kinetic energy of the atom as well
as its binding or excitation energy, which we can call the “internal” energy. We
would write

Wp = Wint + p2

2M , (7.8)

and the amplitudes would be

e−(i/~)(Wpt−p·x). (7.9)

Because we will generally be doing nonrelativistic calculations, we will use this
form for the probability amplitudes.

Note that our relativistic transformation has given us the variation of the
amplitude of an atom which moves in space without any additional assumptions.
The wave number of the space variations is, from (7.9),

k = p

~
; (7.10)

so the wavelength is

λ = 2π
k

= h

p
. (7.11)

This is the same wavelength we have used before for particles with the momen-
tum p. This formula was first arrived at by de Broglie in just this way. For a
moving particle, the frequency of the amplitude variations is still given by

~ω = Wp. (7.12)

The absolute square of (7.9) is just 1, so for a particle in motion with a
definite energy, the probability of finding it is the same everywhere and does not
change with time. (It is important to notice that the amplitude is a complex

7-7



wave. If we used a real sine wave, the square would vary from point to point,
which would not be right.)

We know, of course, that there are situations in which particles move from
place to place so that the probability depends on position and changes with
time. How do we describe such situations? We can do that by considering
amplitudes which are a superposition of two or more amplitudes for states of
definite energy. We have already discussed this situation in Chapter 48 of Vol. I—
even for probability amplitudes! We found that the sum of two amplitudes with
different wave numbers k (that is, momenta) and frequencies ω (that is, energies)
gives interference humps, or beats, so that the square of the amplitude varies
with space and time. We also found that these beats move with the so-called
“group velocity” given by

vg = ∆ω
∆k ,

where ∆k and ∆ω are the differences between the wave numbers and frequencies
for the two waves. For more complicated waves—made up of the sum of many
amplitudes all near the same frequency—the group velocity is

vg = dω

dk
. (7.13)

Taking ω = Ep/~ and k = p/~, we see that

vg = dEp
dp

. (7.14)

Using Eq. (7.6), we have
dEp
dp

= c2
p

Ep
. (7.15)

But Ep = Mc2, so
dEp
dp

= p

M
, (7.16)

which is just the classical velocity of the particle. Alternatively, if we use the
nonrelativistic expressions, we have

ω = Wp

~
and k = p

~
,
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and
dω

dk
= dWp

dp
= d

dp

(
p2

2M

)
= p

M
, (7.17)

which is again the classical velocity.
Our result, then, is that if we have several amplitudes for pure energy states

of nearly the same energy, their interference gives “lumps” in the probability that
move through space with a velocity equal to the velocity of a classical particle
of that energy. We should remark, however, that when we say we can add
two amplitudes of different wave number together to get a beat-note that will
correspond to a moving particle, we have introduced something new—something
that we cannot deduce from the theory of relativity. We said what the amplitude
did for a particle standing still and then deduced what it would do if the particle
were moving. But we cannot deduce from these arguments what would happen
when there are two waves moving with different speeds. If we stop one, we cannot
stop the other. So we have added tacitly the extra hypothesis that not only
is (7.9) a possible solution, but that there can also be solutions with all kinds
of p’s for the same system, and that the different terms will interfere.

7-3 Potential energy; energy conservation

Now we would like to discuss what happens when the energy of a particle can
change. We begin by thinking of a particle which moves in a force field described
by a potential. We discuss first the effect of a constant potential. Suppose that

M

p

φ

+

−

Fig. 7-2. A particle of mass M and momentum p in a region of
constant potential.
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we have a large metal can which we have raised to some electrostatic potential φ,
as in Fig. 7-2. If there are charged objects inside the can, their potential energy
will be qφ, which we will call V , and will be absolutely independent of position.
Then there can be no change in the physics inside, because the constant potential
doesn’t make any difference so far as anything going on inside the can is concerned.
Now there is no way we can deduce what the answer should be, so we must make
a guess. The guess which works is more or less what you might expect: For the
energy, we must use the sum of the potential energy V and the energy Ep—which
is itself the sum of the internal and kinetic energies. The amplitude is proportional
to

e−(i/~)[(Ep+V )t−p·x]. (7.18)

The general principle is that the coefficient of t, which we may call ω, is always
given by the total energy of the system: internal (or “mass”) energy, plus kinetic
energy, plus potential energy:

~ω = Ep + V. (7.19)

Or, for nonrelativistic situations,

~ω = Wint + p2

2M + V. (7.20)

Now what about physical phenomena inside the box? If there are several
different energy states, what will we get? The amplitude for each state has the
same additional factor

e−(i/~)V t

over what it would have with V = 0. That is just like a change in the zero of
our energy scale. It produces an equal phase change in all amplitudes, but as we
have seen before, this doesn’t change any of the probabilities. All the physical
phenomena are the same. (We have assumed that we are talking about different
states of the same charged object, so that qφ is the same for all. If an object
could change its charge in going from one state to another, we would have quite
another result, but conservation of charge prevents this.)

So far, our assumption agrees with what we would expect for a change of
energy reference level. But if it is really right, it should hold for a potential
energy that is not just a constant. In general, V could vary in any arbitrary way
with both time and space, and the complete result for the amplitude must be
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given in terms of a differential equation. We don’t want to get concerned with the
general case right now, but only want to get some idea about how some things
happen, so we will think only of a potential that is constant in time and varies
very slowly in space. Then we can make a comparison between the classical and
quantum ideas.

φ1 φ2

DISTR
e
(A
m
p
)

λ1 λ2

(FOR φ2 < φ1)

Fig. 7-3. The amplitude for a particle in transit from one potential to
another.

Suppose we think of the situation in Fig. 7-3, which has two boxes held at
the constant potentials φ1 and φ2 and a region in between where we will assume
that the potential varies smoothly from one to the other. We imagine that some
particle has an amplitude to be found in any one of the regions. We also assume
that the momentum is large enough so that in any small region in which there
are many wavelengths, the potential is nearly constant. We would then think
that in any part of the space the amplitude ought to look like (7.18) with the
appropriate V for that part of the space.

Let’s think of a special case in which φ1 = 0, so that the potential energy
there is zero, but in which qφ2 is negative, so that classically the particle would
have more energy in the second box. Classically, it would be going faster in the
second box—it would have more energy and, therefore, more momentum. Let’s
see how that might come out of quantum mechanics.

With our assumption, the amplitude in the first box would be proportional to

e−(i/~)[(Wint+p2
1/2M+V1)t−p1·x], (7.21)
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and the amplitude in the second box would be proportional to

e−(i/~)[(Wint+p2
2/2M+V2)t−p2·x]. (7.22)

(Let’s say that the internal energy is not being changed, but remains the same
in both regions.) The question is: How do these two amplitudes match together
through the region between the boxes?

We are going to suppose that the potentials are all constant in time—so that
nothing in the conditions varies. We will then suppose that the variations of the
amplitude (that is, its phase) have the same frequency everywhere—because, so
to speak, there is nothing in the “medium” that depends on time. If nothing in
the space is changing, we can consider that the wave in one region “generates”
subsidiary waves all over space which will all oscillate at the same frequency—just
as light waves going through materials at rest do not change their frequency. If
the frequencies in (7.21) and (7.22) are the same, we must have that

Wint + p2
1

2M + V1 = Wint + p2
2

2M + V2. (7.23)

Both sides are just the classical total energies, so Eq. (7.23) is a statement of the
conservation of energy. In other words, the classical statement of the conservation
of energy is equivalent to the quantum mechanical statement that the frequencies
for a particle are everywhere the same if the conditions are not changing with
time. It all fits with the idea that ~ω = E.

In the special example that V1 = 0 and V2 is negative, Eq. (7.23) gives that
p2 is greater than p1, so the wavelength of the waves is shorter in region 2. The
surfaces of equal phase are shown by the dashed lines in Fig. 7-3. We have also
drawn a graph of the real part of the amplitude, which shows again how the
wavelength decreases in going from region 1 to region 2. The group velocity of
the waves, which is p/M , also increases in the way one would expect from the
classical energy conservation, since it is just the same as Eq. (7.23).

There is an interesting special case where V2 gets so large that V2 − V1 is
greater than p2

1/2M . Then p2
2, which is given by

p2
2 = 2M

[
p2

1
2M − V2 + V1

]
, (7.24)

is negative. That means that p2 is an imaginary number, say, ip′. Classically,
we would say that the particle never gets into region 2—it doesn’t have enough
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energy to climb the potential hill. Quantum mechanically, however, the amplitude
is still given by Eq. (7.22); its space variation still goes as

e(i/~)p2·x.

But if p2 is imaginary, the space dependence becomes a real exponential. Say
that the particle was initially going in the +x-direction; then the amplitude
would vary as

e−p
′x/~. (7.25)

The amplitude decreases rapidly with increasing x.
Imagine that the two regions at different potentials were very close together, so

that the potential energy changed suddenly from V1 to V2, as shown in Fig. 7-4(a).
If we plot the real part of the probability amplitude, we get the dependence shown
in part (b) of the figure. The wave in the first region corresponds to a particle
trying to get into the second region, but the amplitude there falls off rapidly.

(b)

x

R
e

(A
m

p
)

h

p1

h̄

|p2|

(a)

V1

p2
1/2m > 0

V2

p2
2/2m < 0

Fig. 7-4. The amplitude for a particle approaching a strongly repulsive
potential.
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There is some chance that it will be observed in the second region—where it
could never get classically—but the amplitude is very small except right near the
boundary. The situation is very much like what we found for the total internal
reflection of light. The light doesn’t normally get out, but we can observe it if
we put something within a wavelength or two of the surface.

You will remember that if we put a second surface close to the boundary where
light was totally reflected, we could get some light transmitted into the second
piece of material. The corresponding thing happens to particles in quantum
mechanics. If there is a narrow region with a potential V , so great that the
classical kinetic energy would be negative, the particle would classically never
get past. But quantum mechanically, the exponentially decaying amplitude can
reach across the region and give a small probability that the particle will be found
on the other side where the kinetic energy is again positive. The situation is
illustrated in Fig. 7-5. This effect is called the quantum mechanical “penetration
of a barrier.”

The barrier penetration by a quantum mechanical amplitude gives the ex-
planation—or description—of the α-particle decay of a uranium nucleus. The

x

R
e
(A
m
p
)

V1
p21/2m > 0

V3
p23
2m
<0

V2
p22/2m > 0

Fig. 7-5. The penetration of the amplitude through a potential barrier.
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Fig. 7-6. (a) The potential function for an α-particle in a uranium
nucleus. (b) The qualitative form of the probability amplitude.

potential energy of an α-particle, as a function of the distance from the center, is
shown in Fig. 7-6(a). If one tried to shoot an α-particle with the energy E into
the nucleus, it would feel an electrostatic repulsion from the nuclear charge z and
would, classically, get no closer than the distance r1 where its total energy is equal
to the potential energy V . Closer in, however, the potential energy is much lower
because of the strong attraction of the short-range nuclear forces. How is it then
that in radioactive decay we find α-particles which started out inside the nucleus
coming out with the energy E? Because they start out with the energy E inside
the nucleus and “leak” through the potential barrier. The probability amplitude
is roughly as sketched in part (b) of Fig. 7-6, although actually the exponential
decay is much larger than shown. It is, in fact, quite remarkable that the mean
life of an α-particle in the uranium nucleus is as long as 4 1

2 billion years, when
the natural oscillations inside the nucleus are so extremely rapid—about 1022 per
sec! How can one get a number like 109 years from 10−22 sec? The answer is that
the exponential gives the tremendously small factor of about e−45—which gives
the very small, though definite, probability of leakage. Once the α-particle is in
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Fig. 7-7. The deflection of a particle by a transverse potential gradient.

the nucleus, there is almost no amplitude at all for finding it outside; however, if
you take many nuclei and wait long enough, you may be lucky and find one that
has come out.

7-4 Forces; the classical limit

Suppose that we have a particle moving along and passing through a region
where there is a potential that varies at right angles to the motion. Classically,
we would describe the situation as sketched in Fig. 7-7. If the particle is moving
along the x-direction and enters a region where there is a potential that varies
with y, the particle will get a transverse acceleration from the force F = −∂V/∂y.
If the force is present only in a limited region of width w, the force will act only
for the time w/v. The particle will be given the transverse momentum

py = F
w

v
.

The angle of deflection δθ is then

δθ = py
p

= Fw

pv
,

where p is the initial momentum. Using −∂V/∂y for F , we get

δθ = − w
pv

∂V

∂y
. (7.26)

It is now up to us to see if our idea that the waves go as (7.20) will explain
the same result. We look at the same thing quantum mechanically, assuming that
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Fig. 7-8. The probability amplitude in a region with a transverse
potential gradient.

everything is on a very large scale compared with a wavelength of our probability
amplitudes. In any small region we can say that the amplitude varies as

e−(i/~)[(W+p2/2M+V )t−p·x]. (7.27)

Can we see that this will also give rise to a deflection of the particle when V has a
transverse gradient? We have sketched in Fig. 7-8 what the waves of probability
amplitude will look like. We have drawn a set of “wave nodes” which you can
think of as surfaces where the phase of the amplitude is zero. In every small
region, the wavelength—the distance between successive nodes—is

λ = h

p
,

where p is related to V through

W + p2

2M + V = const. (7.28)

In the region where V is larger, p is smaller, and the wavelength is longer. So
the angle of the wave nodes gets changed as shown in the figure.

To find the change in angle of the wave nodes we notice that for the two
paths a and b in Fig. 7-8 there is a difference of potential ∆V = (∂V/∂y)D, so
there is a difference ∆p in the momentum along the two tracks which can be
obtained from (7.28):

∆
(
p2

2M

)
= p

M
∆p = −∆V. (7.29)
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The wave number p/~ is, therefore, different along the two paths, which means
that the phase is advancing at a different rate. The difference in the rate of
increase of phase is ∆k = ∆p/~, so the accumulated phase difference in the total
distance w is

∆(phase) = ∆k · w = ∆p
~
· w = −M

p~
∆V · w. (7.30)

This is the amount by which the phase on path b is “ahead” of the phase on
path a as the wave leaves the strip. But outside the strip, a phase advance of
this amount corresponds to the wave node being ahead by the amount

∆x = λ

2π ∆(phase) = ~
p

∆(phase)
or

∆x = −M
p2 ∆V · w. (7.31)

Referring to Fig. 7-8, we see that the new wavefronts will be at the angle δθ
given by

∆x = D δθ; (7.32)
so we have

D δθ = −M
p2 ∆V · w. (7.33)

This is identical to Eq. (7.26) if we replace p/M by v and ∆V/D by ∂V/∂y.
The result we have just got is correct only if the potential variations are slow

and smooth—in what we call the classical limit. We have shown that under these
conditions we will get the same particle motions we get from F = ma, provided
we assume that a potential contributes a phase to the probability amplitude equal
to V t/~. In the classical limit, the quantum mechanics will agree with Newtonian
mechanics.

7-5 The “precession” of a spin one-half particle

Notice that we have not assumed anything special about the potential energy—
it is just that energy whose derivative gives a force. For instance, in the Stern-
Gerlach experiment we had the energy U = −µ ·B, which gives a force if B

7-18



has a spatial variation. If we wanted to give a quantum mechanical description,
we would have said that the particles in one beam had an energy that varied
one way and that those in the other beam had an opposite energy variation.
(We could put the magnetic energy U into the potential energy V or into the
“internal” energy W ; it doesn’t matter.) Because of the energy variation, the
waves are refracted, and the beams are bent up or down. (We see now that
quantum mechanics would give us the same bending as we would compute from
the classical mechanics.)

From the dependence of the amplitude on potential energy we would also
expect that if a particle sits in a uniform magnetic field along the z-direction, its
probability amplitude must be changing with time according to

e−(i/~)(−µzB)t.

(We can consider that this is, in effect, a definition of µz.) In other words, if we
place a particle in a uniform field B for a time τ , its probability amplitude will
be multiplied by

e−(i/~)(−µzB)τ

over what it would be in no field. Since for a spin one-half particle, µz can be
either plus or minus some number, say µ, the two possible states in a uniform
field would have their phases changing at the same rate but in opposite directions.
The two amplitudes get multiplied by

e±(i/~)µBτ . (7.34)

This result has some interesting consequences. Suppose we have a spin one-
half particle in some state that is not purely spin up or spin down. We can
describe its condition in terms of the amplitudes to be in the pure up and pure
down states. But in a magnetic field, these two states will have phases changing
at a different rate. So if we ask some question about the amplitudes, the answer
will depend on how long it has been in the field.

As an example, we consider the disintegration of the muon in a magnetic
field. When muons are produced as disintegration products of π-mesons, they
are polarized (in other words, they have a preferred spin direction). The muons,
in turn, disintegrate—in about 2.2 microseconds on the average—emitting an
electron and two neutrinos:

µ→ e+ ν + ν̄.
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Fig. 7-9. A muon-decay experiment.

In this disintegration it turns out that (for at least the highest energies) the
electrons are emitted preferentially in the direction opposite to the spin direction
of the muon.

Suppose then that we consider the experimental arrangement shown in Fig. 7-9.
If polarized muons enter from the left and are brought to rest in a block of material
at A, they will, a little while later, disintegrate. The electrons emitted will, in
general, go off in all possible directions. Suppose, however, that the muons
all enter the stopping block at A with their spins in the x-direction. Without
a magnetic field there would be some angular distribution of decay directions;
we would like to know how this distribution is changed by the presence of the
magnetic field. We expect that it may vary in some way with time. We can find
out what happens by asking, for any moment, what the amplitude is that the
muon will be found in the (+x) state.

We can state the problem in the following way: A muon is known to have
its spin in the +x-direction at t = 0; what is the amplitude that it will be in
the same state at the time τ? Now we do not have any rule for the behavior of
a spin one-half particle in a magnetic field at right angles to the spin, but we
do know what happens to the spin up and spin down states with respect to the
field—their amplitudes get multiplied by the factor (7.34). Our procedure then is
to choose the representation in which the base states are spin up and spin down
with respect to the z-direction (the field direction). Any question can then be
expressed with reference to the amplitudes for these states.

Let’s say that ψ(t) represents the muon state. When it enters the block A,
its state is ψ(0), and we want to know ψ(τ) at the later time τ . If we represent
the two base states by (+z) and (−z) we know the two amplitudes 〈+z |ψ(0)〉
and 〈−z |ψ(0)〉—we know these amplitudes because we know that ψ(0) represents
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a state with the spin in the (+x) state. From the results of the last chapter,
these amplitudes are†

〈+z |+x〉 = C+ = 1√
2

and (7.35)

〈−z |+x〉 = C− = 1√
2
.

They happen to be equal. Since these amplitudes refer to the condition at t = 0,
let’s call them C+(0) and C−(0).

Now we know what happens to these two amplitudes with time. Using (7.34),
we have

C+(t) = C+(0)e−(i/~)µBt

and (7.36)
C−(t) = C−(0)e+(i/~)µBt.

But if we know C+(t) and C−(t), we have all there is to know about the condition
at t. The only trouble is that what we want to know is the probability that at t
the spin will be in the +x-direction. Our general rules can, however, take care
of this problem. We write that the amplitude to be in the (+x) state at time t,
which we may call A+(t), is

A+(t) = 〈+x |ψ(t)〉 = 〈+x |+z〉〈+z |ψ(t)〉+ 〈+x | −z〉〈−z |ψ(t)〉
or

A+(t) = 〈+x |+z〉C+(t) + 〈+x | −z〉C−(t). (7.37)

Again using the results of the last chapter—or better the equality 〈φ |χ〉 = 〈χ |φ〉∗
from Chapter 5—we know that

〈+x |+z〉 = 1√
2
, 〈+x | −z〉 = 1√

2
.

So we know all the quantities in Eq. (7.37). We get

A+(t) = 1
2e

(i/~)µBt + 1
2e
−(i/~)µBt,

† If you skipped Chapter 6, you can just take (7.35) as an underived rule for now. We will
give later (in Chapter 10) a more complete discussion of spin precession, including a derivation
of these amplitudes.
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or
A+(t) = cos µB

~
t.

A particularly simple result! Notice that the answer agrees with what we expect
for t = 0. We get A+(0) = 1, which is right, because we assumed that the muon
was in the (+x) state at t = 0.

The probability P+ that the muon will be found in the (+x) state at t
is (A+)2 or

P+ = cos2 µBt

~
.

The probability oscillates between zero and one, as shown in Fig. 7-10. Note that
the probability returns to one for µBt/~ = π (not 2π). Because we have squared
the cosine function, the probability repeats itself with the frequency 2µB/~.
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Fig. 7-10. Time dependence of the probability that a spin one-half
particle will be in a (+) state with respect to the x-axis.

Thus, we find that the chance of catching the decay electron in the electron
counter of Fig. 7-9 varies periodically with the length of time the muon has been
sitting in the magnetic field. The frequency depends on the magnetic moment µ.
The magnetic moment of the muon has, in fact, been measured in just this way.

We can, of course, use the same method to answer any other questions about
the muon decay. For example, how does the chance of detecting a decay electron
in the y-direction at 90◦ to the x-direction but still at right angles to the field
depend on t? If you work it out, the amplitude to be in the (+y) state varies
as cos2{(µBt/~)− π/4}, which oscillates with the same period but reaches its
maximum one-quarter cycle later, when µBt/~ = π/4. In fact, what is happening
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is that as time goes on, the muon goes through a succession of states which
correspond to complete polarization in a direction that is continually rotating
about the z-axis. We can describe this by saying that the spin is precessing at
the frequency

ωp = 2µB
~

. (7.38)

You can begin to see the form that our quantum mechanical description will
take when we are describing how things behave in time.
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8

The Hamiltonian Matrix

Review: Chapter 49, Vol. I, Modes

8-1 Amplitudes and vectors

Before we begin the main topic of this chapter, we would like to describe a
number of mathematical ideas that are used a lot in the literature of quantum
mechanics. Knowing them will make it easier for you to read other books or
papers on the subject. The first idea is the close mathematical resemblance
between the equations of quantum mechanics and those of the scalar product
of two vectors. You remember that if χ and φ are two states, the amplitude to
start in φ and end up in χ can be written as a sum over a complete set of base
states of the amplitude to go from φ into one of the base states and then from
that base state out again into χ:

〈χ |φ〉 =
∑
all i
〈χ | i〉〈i |φ〉. (8.1)

We explained this in terms of a Stern-Gerlach apparatus, but we remind you
that there is no need to have the apparatus. Equation (8.1) is a mathematical
law that is just as true whether we put the filtering equipment in or not—it is
not always necessary to imagine that the apparatus is there. We can think of it
simply as a formula for the amplitude 〈χ |φ〉.

We would like to compare Eq. (8.1) to the formula for the dot product of two
vectors B and A. If B and A are ordinary vectors in three dimensions, we can
write the dot product this way:∑

all i
(B · ei)(ei ·A), (8.2)
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with the understanding that the symbol ei stands for the three unit vectors in
the x, y, and z-directions. Then B · e1 is what we ordinarily call Bx; B · e2 is
what we ordinarily call By; and so on. So Eq. (8.2) is equivalent to

BxAx +ByAy +BzAz,

which is the dot product B ·A.
Comparing Eqs. (8.1) and (8.2), we can see the following analogy: The states

χ and φ correspond to the two vectors B and A. The base states i correspond
to the special vectors ei to which we refer all other vectors. Any vector can be
represented as a linear combination of the three “base vectors” ei. Furthermore,
if you know the coefficients of each “base vector” in this combination—that is, its
three components—you know everything about a vector. In a similar way, any
quantum mechanical state can be described completely by the amplitude 〈i |φ〉 to
go into the base states; and if you know these coefficients, you know everything
there is to know about the state. Because of this close analogy, what we have
called a “state” is often also called a “state vector.”

Since the base vectors ei are all at right angles, we have the relation

ei · ej = δij . (8.3)

This corresponds to the relations (5.25) among the base states i,

〈i | j〉 = δij . (8.4)

You see now why one says that the base states i are all “orthogonal.”
There is one minor difference between Eq. (8.1) and the dot product. We

have that
〈φ |χ〉 = 〈χ |φ〉∗. (8.5)

But in vector algebra,
A ·B = B ·A.

With the complex numbers of quantum mechanics we have to keep straight the
order of the terms, whereas in the dot product, the order doesn’t matter.

Now consider the following vector equation:

A =
∑
i

ei(ei ·A). (8.6)
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It’s a little unusual, but correct. It means the same thing as

A =
∑
i

Aiei = Axex +Ayey +Azez. (8.7)

Notice, though, that Eq. (8.6) involves a quantity which is different from a dot
product. A dot product is just a number, whereas Eq. (8.6) is a vector equation.
One of the great tricks of vector analysis was to abstract away from the equations
the idea of a vector itself. One might be similarly inclined to abstract a thing that
is the analog of a “vector” from the quantum mechanical formula Eq. (8.1)—and
one can indeed. We remove the 〈χ | from both sides of Eq. (8.1) and write the
following equation (don’t get frightened—it’s just a notation and in a few minutes
you will find out what the symbols mean):

|φ〉 =
∑
i

| i〉〈i |φ〉. (8.8)

One thinks of the bracket 〈χ |φ〉 as being divided into two pieces. The second
piece |φ〉 is often called a ket, and the first piece 〈χ | is called a bra (put together,
they make a “bra-ket”—a notation proposed by Dirac); the half-symbols |φ〉
and 〈χ | are also called state vectors. In any case, they are not numbers, and, in
general, we want the results of our calculations to come out as numbers; so such
“unfinished” quantities are only part-way steps in our calculations.

It happens that until now we have written all our results in terms of numbers.
How have we managed to avoid vectors? It is amusing to note that even in
ordinary vector algebra we could make all equations involve only numbers. For
instance, instead of a vector equation like

F = ma,

we could always have written

C · F = C · (ma).

We have then an equation between dot products that is true for any vector C.
But if it is true for any C, it hardly makes sense at all to keep writing the C!

Now look at Eq. (8.1). It is an equation that is true for any χ. So to save
writing, we should just leave out the χ and write Eq. (8.8) instead. It has the
same information provided we understand that it should always be “finished” by
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“multiplying on the left by”—which simply means reinserting—some 〈χ | on both
sides. So Eq. (8.8) means exactly the same thing as Eq. (8.1)—no more, no less.
When you want numbers, you put in the 〈χ | you want.

Maybe you have already wondered about the φ in Eq. (8.8). Since the equation
is true for any φ, why do we keep it? Indeed, Dirac suggests that the φ also can
just as well be abstracted away, so that we have only

| =
∑
i

| i〉〈i |. (8.9)

And this is the great law of quantum mechanics! (There is no analog in vector
analysis.) It says that if you put in any two states χ and φ on the left and right
of both sides, you get back Eq. (8.1). It is not really very useful, but it’s a nice
reminder that the equation is true for any two states.

8-2 Resolving state vectors

Let’s look at Eq. (8.8) again; we can think of it in the following way. Any state
vector |φ〉 can be represented as a linear combination with suitable coefficients of
a set of base “vectors”—or, if you prefer, as a superposition of “unit vectors” in
suitable proportions. To emphasize that the coefficients 〈i |φ〉 are just ordinary
(complex) numbers, suppose we write

〈i |φ〉 = Ci.

Then Eq. (8.8) is the same as
|φ〉 =

∑
i

| i〉Ci. (8.10)

We can write a similar equation for any other state vector, say |χ〉, with, of
course, different coefficients—say Di. Then we have

|χ〉 =
∑
i

| i〉Di. (8.11)

The Di are just the amplitudes 〈i |χ〉.
Suppose we had started by abstracting the φ from Eq. (8.1). We would have

had
〈χ | =

∑
i

〈χ | i〉〈i |. (8.12)

8-4



Remembering that 〈χ | i〉 = 〈i |χ〉∗, we can write this as

〈χ | =
∑
i

D∗i 〈i |. (8.13)

Now the interesting thing is that we can just multiply Eq. (8.13) and Eq. (8.10)
to get back 〈χ |φ〉. When we do that, we have to be careful of the summation
indices, because they are quite distinct in the two equations. Let’s first rewrite
Eq. (8.13) as

〈χ | =
∑
j

D∗j 〈j |,

which changes nothing. Then putting it together with Eq. (8.10), we have

〈χ |φ〉 =
∑
ij

D∗j 〈j | i〉Ci. (8.14)

Remember, though, that 〈j | i〉 = δij , so that in the sum we have left only the
terms with j = i. We get

〈χ |φ〉 =
∑
i

D∗i Ci, (8.15)

where, of course, D∗i = 〈i |χ〉∗ = 〈χ | i〉, and Ci = 〈i |φ〉. Again we see the close
analogy with the dot product

B ·A =
∑
i

BiAi.

The only difference is the complex conjugate on Di. So Eq. (8.15) says that if
the state vectors 〈χ | and |φ〉 are expanded in terms of the base vectors 〈i | or | i〉,
the amplitude to go from φ to χ is given by the kind of dot product in Eq. (8.15).
This equation is, of course, just Eq. (8.1) written with different symbols. So we
have just gone in a circle to get used to the new symbols.

We should perhaps emphasize again that while space vectors in three dimen-
sions are described in terms of three orthogonal unit vectors, the base vectors | i〉
of the quantum mechanical states must range over the complete set applicable to
any particular problem. Depending on the situation, two, or three, or five, or an
infinite number of base states may be involved.

We have also talked about what happens when particles go through an
apparatus. If we start the particles out in a certain state φ, then send them
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through an apparatus, and afterward make a measurement to see if they are in
state χ, the result is described by the amplitude

〈χ |A |φ〉. (8.16)

Such a symbol doesn’t have a close analog in vector algebra. (It is closer to
tensor algebra, but the analogy is not particularly useful.) We saw in Chapter 5,
Eq. (5.32), that we could write (8.16) as

〈χ |A |φ〉 =
∑
ij

〈χ | i〉〈i |A | j〉〈j |φ〉. (8.17)

This is just an example of the fundamental rule Eq. (8.9), used twice.
We also found that if another apparatus B was added in series with A, then

we could write

〈χ |BA |φ〉 =
∑
ijk

〈χ | i〉〈i |B | j〉〈j |A | k〉〈k |φ〉. (8.18)

Again, this comes directly from Dirac’s method of writing Eq. (8.9)—remember
that we can always place a bar (|), which is just like the factor 1, between B
and A.

Incidentally, we can think of Eq. (8.17) in another way. Suppose we think
of the particle entering apparatus A in the state φ and coming out of A in the
state ψ, (“psi”). In other words, we could ask ourselves this question: Can we
find a ψ such that the amplitude to get from ψ to χ is always identically and
everywhere the same as the amplitude 〈χ |A |φ〉? The answer is yes. We want
Eq. (8.17) to be replaced by

〈χ |ψ〉 =
∑
i

〈χ | i〉〈i |ψ〉. (8.19)

We can clearly do this if

〈i |ψ〉 =
∑
j

〈i |A | j〉〈j |φ〉 = 〈i |A |φ〉, (8.20)

which determines ψ. “But it doesn’t determine ψ,” you say; “it only deter-
mines 〈i |ψ〉.” However, 〈i |ψ〉 does determine ψ, because if you have all the
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coefficients that relate ψ to the base states i, then ψ is uniquely defined. In fact,
we can play with our notation and write the last term of Eq. (8.20) as

〈i |ψ〉 =
∑
j

〈i | j〉〈j |A |φ〉. (8.21)

Then, since this equation is true for all i, we can write simply

|ψ〉 =
∑
j

| j〉〈j |A |φ〉. (8.22)

Then we can say: “The state ψ is what we get if we start with φ and go through
the apparatus A.”

One final example of the tricks of the trade. We start again with Eq. (8.17).
Since it is true for any χ and φ, we can drop them both! We then get†

A =
∑
ij

| i〉〈i |A | j〉〈j |. (8.23)

What does it mean? It means no more, no less, than what you get if you put
back the φ and χ. As it stands, it is an “open” equation and incomplete. If we
multiply it “on the right” by |φ〉, it becomes

A |φ〉 =
∑
ij

| i〉〈i |A | j〉〈j |φ〉, (8.24)

which is just Eq. (8.22) all over again. In fact, we could have just dropped the j’s
from that equation and written

|ψ〉 = A |φ〉. (8.25)

The symbol A is neither an amplitude, nor a vector; it is a new kind of thing
called an operator . It is something which “operates on” a state to produce a new
state—Eq. (8.25) says that |ψ〉 is what results if A operates on |φ〉. Again, it is
still an open equation until it is completed with some bra like 〈χ | to give

〈χ |ψ〉 = 〈χ |A |φ〉. (8.26)
† You might think we should write |A | instead of just A. But then it would look like the

symbol for “absolute value of A,” so the bars are usually dropped. In general, the bar (|)
behaves much like the factor one.
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The operator A is, of course, described completely if we give the matrix of
amplitudes 〈i |A | j〉—also written Aij—in terms of any set of base vectors.

We have really added nothing new with all of this new mathematical notation.
One reason for bringing it all up was to show you the way of writing pieces of
equations, because in many books you will find the equations written in the
incomplete forms, and there’s no reason for you to be paralyzed when you come
across them. If you prefer, you can always add the missing pieces to make an
equation between numbers that will look like something more familiar.

Also, as you will see, the “bra” and “ket” notation is a very convenient one.
For one thing, we can from now on identify a state by giving its state vector.
When we want to refer to a state of definite momentum p we can say: “the
state |p〉.” Or we may speak of some arbitrary state |ψ〉. For consistency we will
always use the ket, writing |ψ〉, to identify a state. (It is, of course an arbitrary
choice; we could equally well have chosen to use the bra, 〈ψ |.)

8-3 What are the base states of the world?

We have discovered that any state in the world can be represented as a
superposition—a linear combination with suitable coefficients—of base states.
You may ask, first of all, what base states? Well, there are many different
possibilities. You can, for instance, project a spin in the z-direction or in some
other direction. There are many, many different representations, which are the
analogs of the different coordinate systems one can use to represent ordinary
vectors. Next, what coefficients? Well, that depends on the physical circumstances.
Different sets of coefficients correspond to different physical conditions. The
important thing to know about is the “space” in which you are working—in other
words, what the base states mean physically. So the first thing you have to know
about, in general, is what the base states are like. Then you can understand how
to describe a situation in terms of these base states.

We would like to look ahead a little and speak a bit about what the general
quantum mechanical description of nature is going to be—in terms of the now
current ideas of physics, anyway. First, one decides on a particular representation
for the base states—different representations are always possible. For example,
for a spin one-half particle we can use the plus and minus states with respect to
the z-axis. But there’s nothing special about the z-axis—you can take any other
axis you like. For consistency we’ll always pick the z-axis, however. Suppose we
begin with a situation with one electron. In addition to the two possibilities for
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the spin (“up” and “down” along the z-direction), there is also the momentum of
the electron. We pick a set of base states, each corresponding to one value of
the momentum. What if the electron doesn’t have a definite momentum? That’s
all right; we’re just saying what the base states are. If the electron hasn’t got a
definite momentum, it has some amplitude to have one momentum and another
amplitude to have another momentum, and so on. And if it is not necessarily
spinning up, it has some amplitude to be spinning up going at this momentum,
and some amplitude to be spinning down going at that momentum, and so on.
The complete description of an electron, so far as we know, requires only that the
base states be described by the momentum and the spin. So one acceptable set
of base states | i〉 for a single electron refer to different values of the momentum
and whether the spin is up or down. Different mixtures of amplitudes—that is,
different combinations of the C’s describe different circumstances. What any
particular electron is doing is described by telling with what amplitude it has an
up-spin or a down-spin and one momentum or another—for all possible momenta.
So you can see what is involved in a complete quantum mechanical description
of a single electron.

What about systems with more than one electron? Then the base states get
more complicated. Let’s suppose that we have two electrons. We have, first of
all, four possible states with respect to spin: both electrons spinning up, the first
one down and the second one up, the first one up and the second one down, or
both down. Also we have to specify that the first electron has the momentum p1,
and the second electron, the momentum p2. The base states for two electrons
require the specification of two momenta and two spin characters. With seven
electrons, we have to specify seven of each.

If we have a proton and an electron, we have to specify the spin direction
of the proton and its momentum, and the spin direction of the electron and its
momentum. At least that’s approximately true. We do not really know what
the correct representation is for the world. It is all very well to start out by
supposing that if you specify the spin in the electron and its momentum, and
likewise for a proton, you will have the base states; but what about the “guts” of
the proton? Let’s look at it this way. In a hydrogen atom which has one proton
and one electron, we have many different base states to describe—up and down
spins of the proton and electron and the various possible momenta of the proton
and electron. Then there are different combinations of amplitudes Ci which
together describe the character of the hydrogen atom in different states. But
suppose we look at the whole hydrogen atom as a “particle.” If we didn’t know
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that the hydrogen atom was made out of a proton and an electron, we might have
started out and said: “Oh, I know what the base states are—they correspond to
a particular momentum of the hydrogen atom.” No, because the hydrogen atom
has internal parts. It may, therefore, have various states of different internal
energy, and describing the real nature requires more detail.

The question is: Does a proton have internal parts? Do we have to describe a
proton by giving all possible states of protons, and mesons, and strange particles?
We don’t know. And even though we suppose that the electron is simple, so that
all we have to tell about it is its momentum and its spin, maybe tomorrow we will
discover that the electron also has inner gears and wheels. It would mean that
our representation is incomplete, or wrong, or approximate—in the same way
that a representation of the hydrogen atom which describes only its momentum
would be incomplete, because it disregarded the fact that the hydrogen atom
could have become excited inside. If an electron could become excited inside and
turn into something else like, for instance, a muon, then it would be described
not just by giving the states of the new particle, but presumably in terms of
some more complicated internal wheels. The main problem in the study of the
fundamental particles today is to discover what are the correct representations
for the description of nature. At the present time, we guess that for the electron
it is enough to specify its momentum and spin. We also guess that there is
an idealized proton which has its π-mesons, and K-mesons, and so on, that
all have to be specified. Several dozen particles—that’s crazy! The question
of what is a fundamental particle and what is not a fundamental particle—a
subject you hear so much about these days—is the question of what is the final
representation going to look like in the ultimate quantum mechanical description
of the world. Will the electron’s momentum still be the right thing with which
to describe nature? Or even, should the whole question be put this way at all!
This question must always come up in any scientific investigation. At any rate,
we see a problem—how to find a representation. We don’t know the answer. We
don’t even know whether we have the “right” problem, but if we do, we must
first attempt to find out whether any particular particle is “fundamental” or not.

In the nonrelativistic quantum mechanics—if the energies are not too high,
so that you don’t disturb the inner workings of the strange particles and so
forth—you can do a pretty good job without worrying about these details. You
can just decide to specify the momenta and spins of the electrons and of the nuclei;
then everything will be all right. In most chemical reactions and other low-energy
happenings, nothing goes on in the nuclei; they don’t get excited. Furthermore,
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if a hydrogen atom is moving slowly and bumping quietly against other hydrogen
atoms—never getting excited inside, or radiating, or anything complicated like
that, but staying always in the ground state of energy for internal motion—you
can use an approximation in which you talk about the hydrogen atom as one
object, or particle, and not worry about the fact that it can do something inside.
This will be a good approximation as long as the kinetic energy in any collision
is well below 10 electron volts—the energy required to excite the hydrogen atom
to a different internal state. We will often be making an approximation in which
we do not include the possibility of inner motion, thereby decreasing the number
of details that we have to put into our base states. Of course, we then omit
some phenomena which would appear (usually) at some higher energy, but by
making such approximations we can simplify very much the analysis of physical
problems. For example, we can discuss the collision of two hydrogen atoms at
low energy—or any chemical process—without worrying about the fact that the
atomic nuclei could be excited. To summarize, then, when we can neglect the
effects of any internal excited states of a particle we can choose a base set which
are the states of definite momentum and z-component of angular momentum.

One problem then in describing nature is to find a suitable representation
for the base states. But that’s only the beginning. We still want to be able to
say what “happens.” If we know the “condition” of the world at one moment, we
would like to know the condition at a later moment. So we also have to find the
laws that determine how things change with time. We now address ourselves to
this second part of the framework of quantum mechanics—how states change
with time.

8-4 How states change with time

We have already talked about how we can represent a situation in which we
put something through an apparatus. Now one convenient, delightful “apparatus”
to consider is merely a wait of a few minutes; that is, you prepare a state φ,
and then before you analyze it, you just let it sit. Perhaps you let it sit in some
particular electric or magnetic field—it depends on the physical circumstances
in the world. At any rate, whatever the conditions are, you let the object sit
from time t1 to time t2. Suppose that it is let out of your first apparatus in the
condition φ at t1. And then it goes through an “apparatus,” but the “apparatus”
consists of just delay until t2. During the delay, various things could be going on—
external forces applied or other shenanigans—so that something is happening. At

8-11



the end of the delay, the amplitude to find the thing in some state χ is no longer
exactly the same as it would have been without the delay. Since “waiting” is just
a special case of an “apparatus,” we can describe what happens by giving an
amplitude with the same form as Eq. (8.17). Because the operation of “waiting”
is especially important, we’ll call it U instead of A, and to specify the starting
and finishing times t1 and t2, we’ll write U(t2, t1). The amplitude we want is

〈χ |U(t2, t1) |φ〉. (8.27)

Like any other such amplitude, it can be represented in some base system or
other by writing it ∑

ij

〈χ | i〉〈i |U(t2, t1) | j〉〈j |φ〉. (8.28)

Then U is completely described by giving the whole set of amplitudes—the matrix

〈i |U(t2, t1) | j〉. (8.29)

We can point out, incidentally, that the matrix 〈i |U(t2, t1) | j〉 gives much
more detail than may be needed. The high-class theoretical physicist working in
high-energy physics considers problems of the following general nature (because
it’s the way experiments are usually done). He starts with a couple of particles,
like a proton and a proton, coming together from infinity. (In the lab, usually
one particle is standing still, and the other comes from an accelerator that is
practically at infinity on atomic level.) The things go crash and out come, say,
two K-mesons, six π-mesons, and two neutrons in certain directions with certain
momenta. What’s the amplitude for this to happen? The mathematics looks
like this: The φ-state specifies the spins and momenta of the incoming particles.
The χ would be the question about what comes out. For instance, with what
amplitude do you get the six mesons going in such-and-such directions, and the
two neutrons going off in these directions, with their spins so-and-so. In other
words, χ would be specified by giving all the momenta, and spins, and so on of the
final products. Then the job of the theorist is to calculate the amplitude (8.27).
However, he is really only interested in the special case that t1 is −∞ and t2
is +∞. (There is no experimental evidence on the details of the process, only on
what comes in and what goes out.) The limiting case of U(t2, t1) as t1 → −∞
and t2 → +∞ is called S, and what he wants is

〈χ |S |φ〉.
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Or, using the form (8.28), he would calculate the matrix

〈i |S | j〉,

which is called the S-matrix. So if you see a theoretical physicist pacing the floor
and saying, “All I have to do is calculate the S-matrix,” you will know what he
is worried about.

How to analyze—how to specify the laws for—the S-matrix is an interesting
question. In relativistic quantum mechanics for high energies, it is done one way,
but in nonrelativistic quantum mechanics it can be done another way, which is
very convenient. (This other way can also be done in the relativistic case, but
then it is not so convenient.) It is to work out the U -matrix for a small interval
of time—in other words for t2 and t1 close together. If we can find a sequence
of such U ’s for successive intervals of time we can watch how things go as a
function of time. You can appreciate immediately that this way is not so good
for relativity, because you don’t want to have to specify how everything looks
“simultaneously” everywhere. But we won’t worry about that—we’re just going
to worry about nonrelativistic mechanics.

Suppose we think of the matrix U for a delay from t1 until t3 which is greater
than t2. In other words, let’s take three successive times: t1 less than t2 less
than t3. Then we claim that the matrix that goes between t1 and t3 is the product
in succession of what happens when you delay from t1 until t2 and then from t2
until t3. It’s just like the situation when we had two apparatuses B and A in
series. We can then write, following the notation of Section 5-6,

U(t3, t1) = U(t3, t2) · U(t2, t1). (8.30)

In other words, we can analyze any time interval if we can analyze a sequence of
short time intervals in between. We just multiply together all the pieces; that’s
the way that quantum mechanics is analyzed nonrelativistically.

Our problem, then, is to understand the matrix U(t2, t1) for an infinitesimal
time interval—for t2 = t1 + ∆t. We ask ourselves this: If we have a state φ now,
what does the state look like an infinitesimal time ∆t later? Let’s see how we
write that out. Call the state at the time t, |ψ(t)〉 (we show the time dependence
of ψ to be perfectly clear that we mean the condition at the time t). Now we
ask the question: What is the condition after the small interval of time ∆t later?
The answer is

|ψ(t+ ∆t)〉 = U(t+ ∆t, t) |ψ(t)〉. (8.31)
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This means the same as we meant by (8.25), namely, that the amplitude to find
χ at the time t+ ∆t, is

〈χ |ψ(t+ ∆t)〉 = 〈χ |U(t+ ∆t, t) |ψ(t)〉. (8.32)

Since we’re not yet too good at these abstract things, let’s project our am-
plitudes into a definite representation. If we multiply both sides of Eq. (8.31)
by 〈i |, we get

〈i |ψ(t+ ∆t)〉 = 〈i |U(t+ ∆t, t) |ψ(t)〉. (8.33)

We can also resolve the |ψ(t)〉 into base states and write

〈i |ψ(t+ ∆t)〉 =
∑
j

〈i |U(t+ ∆t, t) | j〉〈j |ψ(t)〉. (8.34)

We can understand Eq. (8.34) in the following way. If we let Ci(t) = 〈i |ψ(t)〉
stand for the amplitude to be in the base state i at the time t, then we can think
of this amplitude (just a number, remember!) varying with time. Each Ci becomes
a function of t. And we also have some information on how the amplitudes Ci
vary with time. Each amplitude at (t+ ∆t) is proportional to all of the other
amplitudes at t multiplied by a set of coefficients. Let’s call the U -matrix Uij ,
by which we mean

Uij = 〈i |U | j〉.

Then we can write Eq. (8.34) as

Ci(t+ ∆t) =
∑
j

Uij(t+ ∆t, t)Cj(t). (8.35)

This, then, is how the dynamics of quantum mechanics is going to look.
We don’t know much about the Uij yet, except for one thing. We know that

if ∆t goes to zero, nothing can happen—we should get just the original state.
So, Uii → 1 and Uij → 0, if i 6= j. In other words, Uij → δij for ∆t→ 0. Also,
we can suppose that for small ∆t, each of the coefficients Uij should differ from
δij by amounts proportional to ∆t; so we can write

Uij = δij +Kij ∆t. (8.36)
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However, it is usual to take the factor (−i/~)† out of the coefficients Kij , for
historical and other reasons; we prefer to write

Uij(t+ ∆t, t) = δij −
i

~
Hij(t) ∆t. (8.37)

It is, of course, the same as Eq. (8.36) and, if you wish, just defines the coeffi-
cients Hij(t). The terms Hij are just the derivatives with respect to t2 of the
coefficients Uij(t2, t1), evaluated at t2 = t1 = t.

Using this form for U in Eq. (8.35), we have

Ci(t+ ∆t) =
∑
j

[
δij −

i

~
Hij(t) ∆t

]
Cj(t). (8.38)

Taking the sum over the δij term, we get just Ci(t), which we can put on the
other side of the equation. Then dividing by ∆t, we have what we recognize as a
derivative

Ci(t+ ∆t)− Ci(t)
∆t = − i

~
∑
j

Hij(t)Cj(t)

or

i~
dCi(t)
dt

=
∑
j

Hij(t)Cj(t). (8.39)

You remember that Ci(t) is the amplitude 〈i |ψ〉 to find the state ψ in one
of the base states i (at the time t). So Eq. (8.39) tells us how each of the
coefficients 〈i |ψ〉 varies with time. But that is the same as saying that Eq. (8.39)
tells us how the state ψ varies with time, since we are describing ψ in terms
of the amplitudes 〈i |ψ〉. The variation of ψ in time is described in terms of
the matrix Hij , which has to include, of course, the things we are doing to the
system to cause it to change. If we know the Hij—which contains the physics
of the situation and can, in general, depend on the time—we have a complete
description of the behavior in time of the system. Equation (8.39) is then the
quantum mechanical law for the dynamics of the world.

(We should say that we will always take a set of base states which are fixed
and do not vary with time. There are people who use base states that also vary.

† We are in a bit of trouble here with notation. In the factor (−i/~), the i means the
imaginary unit

√
−1, and not the index i that refers to the ith base state! We hope that you

won’t find it too confusing.
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However, that’s like using a rotating coordinate system in mechanics, and we
don’t want to get involved in such complications.)

8-5 The Hamiltonian matrix

The idea, then, is that to describe the quantum mechanical world we need to
pick a set of base states i and to write the physical laws by giving the matrix of
coefficients Hij . Then we have everything—we can answer any question about
what will happen. So we have to learn what the rules are for finding the H’s
to go with any physical situation—what corresponds to a magnetic field, or an
electric field, and so on. And that’s the hardest part. For instance, for the new
strange particles, we have no idea what Hij ’s to use. In other words, no one
knows the complete Hij for the whole world. (Part of the difficulty is that one
can hardly hope to discover the Hij when no one even knows what the base states
are!) We do have excellent approximations for nonrelativistic phenomena and for
some other special cases. In particular, we have the forms that are needed for
the motions of electrons in atoms—to describe chemistry. But we don’t know
the full true H for the whole universe.

The coefficients Hij are called the Hamiltonian matrix or, for short, just the
Hamiltonian. (How Hamilton, who worked in the 1830’s, got his name on a
quantum mechanical matrix is a tale of history.) It would be much better called
the energy matrix, for reasons that will become apparent as we work with it. So
the problem is: Know your Hamiltonian!

The Hamiltonian has one property that can be deduced right away, namely,
that

H∗ij = Hji. (8.40)

This follows from the condition that the total probability that the system is
in some state does not change. If you start with a particle—an object or the
world—then you’ve still got it as time goes on. The total probability of finding it
somewhere is ∑

i

|Ci(t)|2,

which must not vary with time. If this is to be true for any starting condition φ,
then Eq. (8.40) must also be true.

As our first example, we take a situation in which the physical circumstances
are not changing with time; we mean the external physical conditions, so that
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H is independent of time. Nobody is turning magnets on and off. We also pick
a system for which only one base state is required for the description; it is an
approximation we could make for a hydrogen atom at rest, or something similar.
Equation (8.39) then says

i~
dC1

dt
= H11C1. (8.41)

Only one equation—that’s all! And if H11 is constant, this differential equation
is easily solved to give

C1 = (const)e−(i/~)H11t. (8.42)

This is the time dependence of a state with a definite energy E = H11. You see
why Hij ought to be called the energy matrix. It is the generalization of the
energy for more complex situations.

Next, to understand a little more about what the equations mean, we look at
a system which has two base states. Then Eq. (8.39) reads

i~
dC1

dt
= H11C1 +H12C2,

i~
dC2

dt
= H21C1 +H22C2.

(8.43)

If the H’s are again independent of time, you can easily solve these equations.
We leave you to try for fun, and we’ll come back and do them later. Yes, you
can solve the quantum mechanics without knowing the H’s, so long as they are
independent of time.

8-6 The ammonia molecule

We want now to show you how the dynamical equation of quantum mechanics
can be used to describe a particular physical circumstance. We have picked an
interesting but simple example in which, by making some reasonable guesses
about the Hamiltonian, we can work out some important—and even practical—
results. We are going to take a situation describable by two states: the ammonia
molecule.

The ammonia molecule has one nitrogen atom and three hydrogen atoms
located in a plane below the nitrogen so that the molecule has the form of a
pyramid, as drawn in Fig. 8-1(a). Now this molecule, like any other, has an
infinite number of states. It can spin around any possible axis; it can be moving in
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Fig. 8-1. Two equivalent geometric arrangements of the ammonia
molecule.

any direction; it can be vibrating inside, and so on, and so on. It is, therefore, not
a two-state system at all. But we want to make an approximation that all other
states remain fixed, because they don’t enter into what we are concerned with at
the moment. We will consider only that the molecule is spinning around its axis
of symmetry (as shown in the figure), that it has zero translational momentum,
and that it is vibrating as little as possible. That specifies all conditions except
one: there are still the two possible positions for the nitrogen atom—the nitrogen
may be on one side of the plane of hydrogen atoms or on the other, as shown in
Fig. 8-1(a) and (b). So we will discuss the molecule as though it were a two-state
system. We mean that there are only two states we are going to really worry
about, all other things being assumed to stay put. You see, even if we know that
it is spinning with a certain angular momentum around the axis and that it is
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moving with a certain momentum and vibrating in a definite way, there are still
two possible states. We will say that the molecule is in the state | 1〉 when the
nitrogen is “up,” as in Fig. 8-1(a), and is in the state | 2〉 when the nitrogen is
“down,” as in (b). The states | 1〉 and | 2〉 will be taken as the set of base states
for our analysis of the behavior of the ammonia molecule. At any moment, the
actual state |ψ〉 of the molecule can be represented by giving C1 = 〈1 |ψ〉, the
amplitude to be in state | 1〉, and C2 = 〈2 |ψ〉, the amplitude to be in state | 2〉.
Then, using Eq. (8.8) we can write the state vector |ψ〉 as

|ψ〉 = | 1〉〈1 |ψ〉+ | 2〉〈2 |ψ〉
or

|ψ〉 = | 1〉C1 + | 2〉C2. (8.44)

Now the interesting thing is that if the molecule is known to be in some state
at some instant, it will not be in the same state a little while later. The two C-
coefficients will be changing with time according to the equations (8.43)—which
hold for any two-state system. Suppose, for example, that you had made some
observation—or had made some selection of the molecules—so that you know
that the molecule is initially in the state | 1〉. At some later time, there is some
chance that it will be found in state | 2〉. To find out what this chance is, we
have to solve the differential equation which tells us how the amplitudes change
with time.

The only trouble is that we don’t know what to use for the coefficients Hij in
Eq. (8.43). There are some things we can say, however. Suppose that once the
molecule was in the state | 1〉 there was no chance that it could ever get into | 2〉,
and vice versa. Then H12 and H21 would both be zero, and Eq. (8.43) would
read

i~
dC1

dt
= H11C1, i~

dC2

dt
= H22C2.

We can easily solve these two equations; we get

C1 = (const)e−(i/~)H11t, C2 = (const)e−(i/~)H22t. (8.45)

These are just the amplitudes for stationary states with the energies E1 = H11
and E2 = H22. We note, however, that for the ammonia molecule the two states
| 1〉 and | 2〉 have a definite symmetry. If nature is at all reasonable, the matrix
elements H11 and H22 must be equal. We’ll call them both E0, because they
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correspond to the energy the states would have if H12 and H21 were zero. But
Eqs. (8.45) do not tell us what ammonia really does. It turns out that it is
possible for the nitrogen to push its way through the three hydrogens and flip
to the other side. It is quite difficult; to get half-way through requires a lot of
energy. How can it get through if it hasn’t got enough energy? There is some
amplitude that it will penetrate the energy barrier. It is possible in quantum
mechanics to sneak quickly across a region which is illegal energetically. There
is, therefore, some small amplitude that a molecule which starts in | 1〉 will get
to the state | 2〉. The coefficients H12 and H21 are not really zero. Again, by
symmetry, they should both be the same—at least in magnitude. In fact, we
already know that, in general, Hij must be equal to the complex conjugate of Hji,
so they can differ only by a phase. It turns out, as you will see, that there is no
loss of generality if we take them equal to each other. For later convenience we
set them equal to a negative number; we take H12 = H21 = −A. We then have
the following pair of equations:

i~
dC1

dt
= E0C1 −AC2, (8.46)

i~
dC2

dt
= E0C2 −AC1. (8.47)

These equations are simple enough and can be solved in any number of ways.
One convenient way is the following. Taking the sum of the two, we get

i~
d

dt
(C1 + C2) = (E0 −A)(C1 + C2),

whose solution is
C1 + C2 = ae−(i/~)(E0−A)t. (8.48)

Then, taking the difference of (8.46) and (8.47), we find that

i~
d

dt
(C1 − C2) = (E0 +A)(C1 − C2),

which gives
C1 − C2 = be−(i/~)(E0+A)t. (8.49)

We have called the two integration constants a and b; they are, of course, to
be chosen to give the appropriate starting condition for any particular physical
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problem. Now, by adding and subtracting (8.48) and (8.49), we get C1 and C2:

C1(t) = a

2 e
−(i/~)(E0−A)t + b

2 e
−(i/~)(E0+A)t, (8.50)

C2(t) = a

2 e
−(i/~)(E0−A)t − b

2 e
−(i/~)(E0+A)t. (8.51)

They are the same except for the sign of the second term.
We have the solutions; now what do they mean? (The trouble with quan-

tum mechanics is not only in solving the equations but in understanding what
the solutions mean!) First, notice that if b = 0, both terms have the same fre-
quency ω = (E0 −A)/~. If everything changes at one frequency, it means that
the system is in a state of definite energy—here, the energy (E0−A). So there is
a stationary state of this energy in which the two amplitudes C1 and C2 are equal.
We get the result that the ammonia molecule has a definite energy (E0 −A) if
there are equal amplitudes for the nitrogen atom to be “up” and to be “down.”

There is another stationary state possible if a = 0; both amplitudes then
have the frequency (E0 + A)/~. So there is another state with the definite
energy (E0 + A) if the two amplitudes are equal but with the opposite sign;
C2 = −C1. These are the only two states of definite energy. We will discuss
the states of the ammonia molecule in more detail in the next chapter; we will
mention here only a couple of things.

We conclude that because there is some chance that the nitrogen atom can flip
from one position to the other, the energy of the molecule is not just E0, as we
would have expected, but that there are two energy levels (E0 +A) and (E0−A).
Every one of the possible states of the molecule, whatever energy it has, is “split”
into two levels. We say every one of the states because, you remember, we picked
out one particular state of rotation, and internal energy, and so on. For each
possible condition of that kind there is a doublet of energy levels because of the
flip-flop of the molecule.

Let’s now ask the following question about an ammonia molecule. Suppose
that at t = 0, we know that a molecule is in the state | 1〉 or, in other words,
that C1(0) = 1 and C2(0) = 0. What is the probability that the molecule will
be found in the state | 2〉 at the time t, or will still be found in state | 1〉 at the
time t? Our starting condition tells us what a and b are in Eqs. (8.50) and (8.51).
Letting t = 0, we have that

C1(0) = a+ b

2 = 1, C2(0) = a− b
2 = 0.
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Clearly, a = b = 1. Putting these values into the formulas for C1(t) and C2(t)
and rearranging some terms, we have

C1(t) = e−(i/~)E0t

(
e(i/~)At + e−(i/~)At

2

)
,

C2(t) = e−(i/~)E0t

(
e(i/~)At − e−(i/~)At

2

)
.

We can rewrite these as

C1(t) = e−(i/~)E0t cos At
~
, (8.52)

C2(t) = ie−(i/~)E0t sin At
~
. (8.53)

The two amplitudes have a magnitude that varies harmonically with time.
The probability that the molecule is found in state | 2〉 at the time t is the

absolute square of C2(t):
|C2(t)|2 = sin2 At

~
. (8.54)

The probability starts at zero (as it should), rises to one, and then oscillates back
and forth between zero and one, as shown in the curve marked P2 of Fig. 8-2.
The probability of being in the | 1〉 state does not, of course, stay at one. It
“dumps” into the second state until the probability of finding the molecule in the
first state is zero, as shown by the curve P1 of Fig. 8-2. The probability sloshes
back and forth between the two.

A long time ago we saw what happens when we have two equal pendulums
with a slight coupling. (See Chapter 49, Vol. I.) When we lift one back and let
go, it swings, but then gradually the other one starts to swing. Pretty soon
the second pendulum has picked up all the energy. Then, the process reverses,
and pendulum number one picks up the energy. It is exactly the same kind of
a thing. The speed at which the energy is swapped back and forth depends on
the coupling between the two pendulums—the rate at which the “oscillation” is
able to leak across. Also, you remember, with the two pendulums there are two
special motions—each with a definite frequency—which we call the fundamental
modes. If we pull both pendulums out together, they swing together at one
frequency. On the other hand, if we pull one out one way and the other out the
other way, there is another stationary mode also at a definite frequency.
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Fig. 8-2. The probability P1 that an ammonia molecule in state | 1〉
at t = 0 will be found in state | 1〉 at t. The probability P2 that it will
be found in state | 2〉.

Well, here we have a similar situation—the ammonia molecule is mathemat-
ically like the pair of pendulums. These are the two frequencies—(E0 − A)/~
and (E0 +A)/~—for when they are oscillating together, or oscillating opposite.

The pendulum analogy is not much deeper than the principle that the same
equations have the same solutions. The linear equations for the amplitudes (8.39)
are very much like the linear equations of harmonic oscillators. (In fact, this is
the reason behind the success of our classical theory of the index of refraction, in
which we replaced the quantum mechanical atom by a harmonic oscillator, even
though, classically, this is not a reasonable view of electrons circulating about
a nucleus.) If you pull the nitrogen to one side, then you get a superposition of
these two frequencies, and you get a kind of beat note, because the system is not
in one or the other states of definite frequency. The splitting of the energy levels
of the ammonia molecule is, however, strictly a quantum mechanical effect.

The splitting of the energy levels of the ammonia molecule has important
practical applications which we will describe in the next chapter. At long last we
have an example of a practical physical problem that you can understand with
the quantum mechanics!
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9

The Ammonia Maser

MASER = Microwave Amplification by Stimulated Emission of Radiation

9-1 The states of an ammonia molecule

In this chapter we are going to discuss the application of quantum mechanics
to a practical device, the ammonia maser. You may wonder why we stop our
formal development of quantum mechanics to do a special problem, but you
will find that many of the features of this special problem are quite common
in the general theory of quantum mechanics, and you will learn a great deal
by considering this one problem in detail. The ammonia maser is a device for
generating electromagnetic waves, whose operation is based on the properties of
the ammonia molecule which we discussed briefly in the last chapter. We begin
by summarizing what we found there.

The ammonia molecule has many states, but we are considering it as a two-
state system, thinking now only about what happens when the molecule is in any
specific state of rotation or translation. A physical model for the two states can be
visualized as follows. If the ammonia molecule is considered to be rotating about
an axis passing through the nitrogen atom and perpendicular to the plane of the
hydrogen atoms, as shown in Fig. 9-1, there are still two possible conditions—the
nitrogen may be on one side of the plane of hydrogen atoms or on the other. We
call these two states | 1〉 and | 2〉. They are taken as a set of base states for our
analysis of the behavior of the ammonia molecule.

In a system with two base states, any state |ψ〉 of the system can always
be described as a linear combination of the two base states; that is, there is a
certain amplitude C1 to be in one base state and an amplitude C2 to be in the
other. We can write its state vector as

|ψ〉 = | 1〉C1 + | 2〉C2, (9.1)
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Fig. 9-1. A physical model of two base states for the ammonia
molecule. These states have the electric dipole moments µ.

where
C1 = 〈1 |ψ〉 and C2 = 〈2 |ψ〉.

These two amplitudes change with time according to the Hamiltonian equa-
tions, Eq. (8.43). Making use of the symmetry of the two states of the ammonia
molecule, we set H11 = H22 = E0, and H12 = H21 = −A, and get the solution
[see Eqs. (8.50) and (8.51)]

C1 = a

2 e
−(i/~)(E0−A)t + b

2 e
−(i/~)(E0+A)t, (9.2)

C2 = a

2 e
−(i/~)(E0−A)t − b

2 e
−(i/~)(E0+A)t. (9.3)

We want now to take a closer look at these general solutions. Suppose that
the molecule was initially put into a state |ψII 〉 for which the coefficient b was
equal to zero. Then at t = 0 the amplitudes to be in the states | 1〉 and | 2〉 are
identical, and they stay that way for all time. Their phases both vary with time
in the same way—with the frequency (E0 −A)/~. Similarly, if we were to put
the molecule into a state |ψI 〉 for which a = 0, the amplitude C2 is the negative
of C1, and this relationship would stay that way forever. Both amplitudes would
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now vary with time with the frequency (E0 + A)/~. These are the only two
possibilities of states for which the relation between C1 and C2 is independent of
time.

We have found two special solutions in which the two amplitudes do not vary
in magnitude and, furthermore, have phases which vary at the same frequencies.
These are stationary states as we defined them in Section 7-1, which means that
they are states of definite energy. The state |ψII 〉 has the energy EII = E0 −A,
and the state |ψI 〉 has the energy EI = E0 +A. They are the only two stationary
states that exist, so we find that the molecule has two energy levels, with the
energy difference 2A. (We mean, of course, two energy levels for the assumed
state of rotation and vibration which we referred to in our initial assumptions.)†

If we hadn’t allowed for the possibility of the nitrogen flipping back and forth,
we would have taken A equal to zero and the two energy levels would be on top
of each other at energy E0. The actual levels are not this way; their average
energy is E0, but they are split apart by ±A, giving a separation of 2A between
the energies of the two states. Since A is, in fact, very small, the difference in
energy is also very small.

In order to excite an electron inside an atom, the energies involved are
relatively very high—requiring photons in the optical or ultraviolet range. To
excite the vibrations of the molecules involves photons in the infrared. If you
talk about exciting rotations, the energy differences of the states correspond
to photons in the far infrared. But the energy difference 2A is lower than any
of those and is, in fact, below the infrared and well into the microwave region.
Experimentally, it has been found that there is a pair of energy levels with a
separation of 10−4 electron volt—corresponding to a frequency 24,000 megacycles.
Evidently this means that 2A = hf , with f = 24,000 megacycles (corresponding
to a wavelength of 1 1

4 cm). So here we have a molecule that has a transition
which does not emit light in the ordinary sense, but emits microwaves.

For the work that follows we need to describe these two states of definite
energy a little bit better. Suppose we were to construct an amplitude CII by
taking the sum of the two numbers C1 and C2:

CII = C1 + C2 = 〈1 |Φ〉+ 〈2 |Φ〉. (9.4)

† In what follows it is helpful—in reading to yourself or in talking to someone else—to have
a handy way of distinguishing between the Arabic 1 and 2 and the Roman I and II. We find it
convenient to reserve the names “one” and “two” for the Arabic numbers, and to call I and II
by the names “eins” and “zwei” (although “unus” and “duo” might be more logical!).
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What would that mean? Well, this is just the amplitude to find the state |Φ〉 in a
new state | II 〉 in which the amplitudes of the original base states are equal. That
is, writing CII = 〈II |Φ〉, we can abstract the |Φ〉 away from Eq. (9.4)—because
it is true for any Φ—and get

〈II | = 〈1 |+ 〈2 |,
which means the same as

| II 〉 = | 1〉+ | 2〉. (9.5)

The amplitude for the state | II 〉 to be in the state | 1〉 is

〈1 | II 〉 = 〈1 | 1〉+ 〈1 | 2〉,

which is, of course, just 1, since | 1〉 and | 2〉 are base states. The amplitude for
the state | II 〉 to be in the state | 2〉 is also 1, so the state | II 〉 is one which has
equal amplitudes to be in the two base states | 1〉 and | 2〉.

We are, however, in a bit of trouble. The state | II 〉 has a total probability
greater than one of being in some base state or other. That simply means,
however, that the state vector is not properly “normalized.” We can take care of
that by remembering that we should have 〈II | II 〉 = 1, which must be so for any
state. Using the general relation that

〈χ |Φ〉 =
∑
i

〈χ | i〉〈i |Φ〉,

letting both Φ and χ be the state II , and taking the sum over the base states
| 1〉 and | 2〉, we get that

〈II | II 〉 = 〈II | 1〉〈1 | II 〉+ 〈II | 2〉〈2 | II 〉.

This will be equal to one as it should if we change our definition of CII—in
Eq. (9.4)—to read

CII = 1√
2

[C1 + C2].

In the same way we can construct an amplitude

CI = 1√
2

[C1 − C2],
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or
CI = 1√

2
[〈1 |Φ〉 − 〈2 |Φ〉]. (9.6)

This amplitude is the projection of the state |Φ〉 into a new state | I 〉 which has
opposite amplitudes to be in the states | 1〉 and | 2〉. Namely, Eq. (9.6) means
the same as

〈I | = 1√
2

[〈1 | − 〈2 |],
or

| I 〉 = 1√
2

[| 1〉 − | 2〉], (9.7)

from which it follows that
〈1 | I 〉 = 1√

2
= −〈2 | I 〉.

Now the reason we have done all this is that the states | I 〉 and | II 〉 can be
taken as a new set of base states which are especially convenient for describing the
stationary states of the ammonia molecule. You remember that the requirement
for a set of base states is that

〈i | j〉 = δij .

We have already fixed things so that

〈I | I 〉 = 〈II | II 〉 = 1.

You can easily show from Eqs. (9.5) and (9.7) that

〈I | II 〉 = 〈II | I 〉 = 0.

The amplitudes CI = 〈I |Φ〉 and CII = 〈II |Φ〉 for any state Φ to be in our
new base states | I 〉 and | II 〉 must also satisfy a Hamiltonian equation with the
form of Eq. (8.39). In fact, if we just subtract the two equations (9.2) and (9.3)
and differentiate with respect to t, we see that

i~
dCI
dt

= (E0 +A)CI = EICI . (9.8)

And taking the sum of Eqs. (9.2) and (9.3), we see that

i~
dCII
dt

= (E0 −A)CII = EIICII . (9.9)
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Using | I 〉 and | II 〉 for base states, the Hamiltonian matrix has the simple form

HI ,I = EI , HI ,II = 0,

HII ,I = 0, HII ,II = EII .

Note that each of the Eqs. (9.8) and (9.9) look just like what we had in Section 8-6
for the equation of a one-state system. They have a simple exponential time
dependence corresponding to a single energy. As time goes on, the amplitudes to
be in each state act independently.

The two stationary states |ψI 〉 and |ψII 〉 we found above are, of course,
solutions of Eqs. (9.8) and (9.9). The state |ψI 〉 (for which C1 = −C2) has

CI = e−(i/~)(E0+A)t, CII = 0. (9.10)

And the state |ψII 〉 (for which C1 = C2) has

CI = 0, CII = e−(i/~)(E0−A)t. (9.11)

Remember that the amplitudes in Eq. (9.10) are

CI = 〈I |ψI 〉, and CII = 〈II |ψI 〉;

so Eq. (9.10) means the same thing as

|ψI 〉 = | I 〉 e−(i/~)(E0+A)t.

That is, the state vector of the stationary state |ψI 〉 is the same as the state
vector of the base state | I 〉 except for the exponential factor appropriate to the
energy of the state. In fact at t = 0

|ψI 〉 = | I 〉;

the state | I 〉 has the same physical configuration as the stationary state of
energy E0 +A. In the same way, we have for the second stationary state that

|ψII 〉 = | II 〉 e−(i/~)(E0−A)t.

The state | II 〉 is just the stationary state of energy E0 − A at t = 0. Thus
our two new base states | I 〉 and | II 〉 have physically the form of the states of
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definite energy, with the exponential time factor taken out so that they can be
time-independent base states. (In what follows we will find it convenient not
to have to distinguish always between the stationary states |ψI 〉 and |ψII 〉 and
their base states | I 〉 and | II 〉, since they differ only by the obvious time factors.)

In summary, the state vectors | I 〉 and | II 〉 are a pair of base vectors which
are appropriate for describing the definite energy states of the ammonia molecule.
They are related to our original base vectors by

| I 〉 = 1√
2

[| 1〉 − | 2〉], | II 〉 = 1√
2

[| 1〉+ | 2〉]. (9.12)

The amplitudes to be in | I 〉 and | II 〉 are related to C1 and C2 by

CI = 1√
2

[C1 − C2], CII = 1√
2

[C1 + C2]. (9.13)

Any state at all can be represented by a linear combination of | 1〉 and | 2〉—with
the coefficients C1 and C2—or by a linear combination of the definite energy base
states | I 〉 and | II 〉—with the coefficients CI and CII . Thus,

|Φ〉 = | 1〉C1 + | 2〉C2

or
|Φ〉 = | I 〉CI + | II 〉CII .

The second form gives us the amplitudes for finding the state |Φ〉 in a state with
the energy EI = E0 +A or in a state with the energy EII = E0 −A.

9-2 The molecule in a static electric field

If the ammonia molecule is in either of the two states of definite energy and
we disturb it at a frequency ω such that ~ω = EI −EII = 2A, the system may
make a transition from one state to the other. Or, if it is in the upper state,
it may change to the lower state and emit a photon. But in order to induce
such transitions you must have a physical connection to the states—some way of
disturbing the system. There must be some external machinery for affecting the
states, such as magnetic or electric fields. In this particular case, these states are
sensitive to an electric field. We will, therefore, look next at the problem of the
behavior of the ammonia molecule in an external electric field.
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To discuss the behavior in an electric field, we will go back to the original
base system | 1〉 and | 2〉, rather than using | I 〉 and | II 〉. Suppose that there is
an electric field in a direction perpendicular to the plane of the hydrogen atoms.
Disregarding for the moment the possibility of flipping back and forth, would
it be true that the energy of this molecule is the same for the two positions
of the nitrogen atom? Generally, no. The electrons tend to lie closer to the
nitrogen than to the hydrogen nuclei, so the hydrogens are slightly positive. The
actual amount depends on the details of electron distribution. It is a complicated
problem to figure out exactly what this distribution is, but in any case the net
result is that the ammonia molecule has an electric dipole moment, as indicated
in Fig. 9-1. We can continue our analysis without knowing in detail the direction
or amount of displacement of the charge. However, to be consistent with the
notation of others, let’s suppose that the electric dipole moment is µ, with its
direction pointing from the nitrogen atom and perpendicular to the plane of the
hydrogen atoms.

Now, when the nitrogen flips from one side to the other, the center of mass will
not move, but the electric dipole moment will flip over. As a result of this moment,
the energy in an electric field E will depend on the molecular orientation.† With
the assumption made above, the potential energy will be higher if the nitrogen
atom points in the direction of the field, and lower if it is in the opposite direction;
the separation in the two energies will be 2µE.

In the discussion up to this point, we have assumed values of E0 and A
without knowing how to calculate them. According to the correct physical theory,
it should be possible to calculate these constants in terms of the positions and
motions of all the nuclei and electrons. But nobody has ever done it. Such a
system involves ten electrons and four nuclei and that’s just too complicated a
problem. As a matter of fact, there is no one who knows much more about this
molecule than we do. All anyone can say is that when there is an electric field,
the energy of the two states is different, the difference being proportional to the
electric field. We have called the coefficient of proportionality 2µ, but its value
must be determined experimentally. We can also say that the molecule has the
amplitude A to flip over, but this will have to be measured experimentally. Nobody
can give us accurate theoretical values of µ and A, because the calculations are
too complicated to do in detail.

† We are sorry that we have to introduce a new notation. Since we have been using p and E
for momentum and energy, we don’t want to use them again for dipole moment and electric
field. Remember, in this section µ is the electric dipole moment.
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For the ammonia molecule in an electric field, our description must be changed.
If we ignored the amplitude for the molecule to flip from one configuration to the
other, we would expect the energies of the two states | 1〉 and | 2〉 to be (E0±µE).
Following the procedure of the last chapter, we take

H11 = E0 + µE, H22 = E0 − µE. (9.14)

Also we will assume that for the electric fields of interest the field does not affect
appreciably the geometry of the molecule and, therefore, does not affect the
amplitude that the nitrogen will jump from one position to the other. We can
then take that H12 and H21 are not changed; so

H12 = H21 = −A. (9.15)

We must now solve the Hamiltonian equations, Eq. (8.43), with these new values
of Hij . We could solve them just as we did before, but since we are going to
have several occasions to want the solutions for two-state systems, let’s solve the
equations once and for all in the general case of arbitrary Hij—assuming only
that they do not change with time.

We want the general solution of the pair of Hamiltonian equations

i~
dC1

dt
= H11C1 +H12C2, (9.16)

i~
dC2

dt
= H21C1 +H22C2. (9.17)

Since these are linear differential equations with constant coefficients, we can
always find solutions which are exponential functions of the dependent variable t.
We will first look for a solution in which C1 and C2 both have the same time
dependence; we can use the trial functions

C1 = a1e
−iωt, C2 = a2e

−iωt.

Since such a solution corresponds to a state of energy E = ~ω, we may as well
write right away

C1 = a1e
−(i/~)Et, (9.18)

C2 = a2e
−(i/~)Et, (9.19)
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where E is as yet unknown and to be determined so that the differential equations
(9.16) and (9.17) are satisfied.

When we substitute C1 and C2 from (9.18) and (9.19) in the differential
equations (9.16) and (9.17), the derivatives give us just −iE/~ times C1 or C2,
so the left sides become just EC1 and EC2. Cancelling the common exponential
factors, we get

Ea1 = H11a1 +H12a2, Ea2 = H21a1 +H22a2.

Or, rearranging the terms, we have

(E −H11)a1 −H12a2 = 0, (9.20)

−H21a1 + (E −H22)a2 = 0. (9.21)

With such a set of homogeneous algebraic equations, there will be nonzero
solutions for a1 and a2 only if the determinant of the coefficients of a1 and a2 is
zero, that is, if

Det
(
E −H11 −H12

−H21 E −H22

)
= 0. (9.22)

However, when there are only two equations and two unknowns, we don’t
need such a sophisticated idea. The two equations (9.20) and (9.21) each give
a ratio for the two coefficients a1 and a2, and these two ratios must be equal.
From (9.20) we have that

a1

a2
= H12

E −H11
, (9.23)

and from (9.21) that
a1

a2
= E −H22

H21
. (9.24)

Equating these two ratios, we get that E must satisfy

(E −H11)(E −H22)−H12H21 = 0.

This is the same result we would get by solving Eq. (9.22). Either way, we have
a quadratic equation for E which has two solutions:

E = H11 +H22

2 ±
√

(H11 −H22)2

4 +H12H21. (9.25)
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There are two possible values for the energy E. Note that both solutions give
real numbers for the energy, because H11 and H22 are real, and H12H21 is equal
to H12H

∗
12 = |H12|2, which is both real and positive.

Using the same convention we took before, we will call the upper energy EI
and the lower energy EII . We have

EI = H11 +H22

2 +
√

(H11 −H22)2

4 +H12H21, (9.26)

EII = H11 +H22

2 −
√

(H11 −H22)2

4 +H12H21. (9.27)

Using each of these two energies separately in Eqs. (9.18) and (9.19), we have
the amplitudes for the two stationary states (the states of definite energy). If
there are no external disturbances, a system initially in one of these states will
stay that way forever—only its phase changes.

We can check our results for two special cases. If H12 = H21 = 0, we have
that EI = H11 and EII = H22. This is certainly correct, because then Eqs. (9.16)
and (9.17) are uncoupled, and each represents a state of energy H11 and H22.
Next, if we set H11 = H22 = E0 and H21 = H12 = −A, we get the solution we
found before:

EI = E0 +A and EII = E0 −A.

For the general case, the two solutions EI and EII refer to two states—which
we can again call the states

|ψI 〉 = | I 〉e−(i/~)EI t and |ψII 〉 = | II 〉e−(i/~)EII t.

These states will have C1 and C2 as given in Eqs. (9.18) and (9.19), where a1
and a2 are still to be determined. Their ratio is given by either Eq. (9.23) or
Eq. (9.24). They must also satisfy one more condition. If the system is known
to be in one of the stationary states, the sum of the probabilities that it will be
found in | 1〉 or | 2〉 must equal one. We must have that

|C1|2 + |C2|2 = 1, (9.28)
or, equivalently,

|a1|2 + |a2|2 = 1. (9.29)
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These conditions do not uniquely specify a1 and a2; they are still undetermined
by an arbitrary phase—in other words, by a factor like eiδ. Although general
solutions for the a’s can be written down,† it is usually more convenient to work
them out for each special case.

Let’s go back now to our particular example of the ammonia molecule in an
electric field. Using the values for H11, H22, and H12 given in (9.14) and (9.15),
we get for the energies of the two stationary states

EI = E0 +
√
A2 + µ2E2, EII = E0 −

√
A2 + µ2E2. (9.30)

These two energies are plotted as a function of the electric field strength E in

µE/A1 2 3 4

E

E0 + A

E0

E0 − A

E0 + µE

E0 − µE

E0 +
√
A2 + µ2E2

E0 −
√
A2 + µ2E2

Fig. 9-2. Energy levels of the ammonia molecule in an electric field.

† For example, the following set is one acceptable solution, as you can easily verify:

a1 =
H12

[(E −H11)2 +H12H21]1/2 , a2 =
E −H11

[(E −H11)2 +H12H21]1/2 .
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Fig. 9-2. When the electric field is zero, the two energies are, of course, just E0±A.
When an electric field is applied, the splitting between the two levels increases.
The splitting increases at first slowly with E, but eventually becomes proportional
to E. (The curve is a hyperbola.) For enormously strong fields, the energies are
just

EI = E0 + µE = H11, EII = E0 − µE = H22. (9.31)

The fact that there is an amplitude for the nitrogen to flip back and forth has little
effect when the two positions have very different energies. This is an interesting
point which we will come back to again later.

We are at last ready to understand the operation of the ammonia maser. The
idea is the following. First, we find a way of separating molecules in the state | I 〉
from those in the state | II 〉.† Then the molecules in the higher energy state | I 〉
are passed through a cavity which has a resonant frequency of 24,000 megacycles.
The molecules can deliver energy to the cavity—in a way we will discuss later—
and leave the cavity in the state | II 〉. Each molecule that makes such a transition
will deliver the energy E = EI −EII to the cavity. The energy from the molecules
will appear as electrical energy in the cavity.

How can we separate the two molecular states? One method is as follows.
The ammonia gas is let out of a little jet and passed through a pair of slits to give
a narrow beam, as shown in Fig. 9-3. The beam is then sent through a region in
which there is a large transverse electric field. The electrodes to produce the field
are shaped so that the electric field varies rapidly across the beam. Then the

NH3

SLITS
INCREASING E2

I

II

Fig. 9-3. The ammonia beam may be separated by an electric field in
which E2 has a gradient perpendicular to the beam.

† From now on we will write | I 〉 and | II 〉 instead of |ψI 〉 and |ψII 〉. You must remember
that the actual states |ψI 〉 and |ψII 〉 are the energy base states multiplied by the appropriate
exponential factor.
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square of the electric field E · E will have a large gradient perpendicular to the
beam. Now a molecule in state | I 〉 has an energy which increases with E2, and
therefore this part of the beam will be deflected toward the region of lower E2.
A molecule in state | II 〉 will, on the other hand, be deflected toward the region
of larger E2, since its energy decreases as E2 increases.

Incidentally, with the electric fields which can be generated in the laboratory,
the energy µE is always much smaller than A. In such cases, the square root in
Eqs. (9.30) can be approximated by

A

(
1 + 1

2
µ2E2

A2

)
. (9.32)

So the energy levels are, for all practical purposes,

EI = E0 +A+ µ2E2

2A (9.33)

and

EII = E0 −A−
µ2E2

2A . (9.34)

And the energies vary approximately linearly with E2. The force on the molecules
is then

F = µ2

2A ∇E2. (9.35)

Many molecules have an energy in an electric field which is proportional to E2.
The coefficient is the polarizability of the molecule. Ammonia has an unusually
high polarizability because of the small value of A in the denominator. Thus,
ammonia molecules are unusually sensitive to an electric field. (What would you
expect for the dielectric coefficient of NH3 gas?)

9-3 Transitions in a time-dependent field

In the ammonia maser, the beam with molecules in the state | I 〉 and with
the energy EI is sent through a resonant cavity, as shown in Fig. 9-4. The other
beam is discarded. Inside the cavity, there will be a time-varying electric field, so
the next problem we must discuss is the behavior of a molecule in an electric field
that varies with time. We have a completely different kind of a problem—one
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Fig. 9-4. Schematic diagram of the ammonia maser.

with a time-varying Hamiltonian. Since Hij depends upon E, the Hij vary with
time, and we must determine the behavior of the system in this circumstance.

To begin with, we write down the equations to be solved:

i~
dC1

dt
= (E0 + µE)C1 −AC2,

i~
dC2

dt
= −AC1 + (E0 − µE)C2.

(9.36)

To be definite, let’s suppose that the electric field varies sinusoidally; then we
can write

E = 2E0 cosωt = E0(eiωt + e−iωt). (9.37)

In actual operation the frequency ω will be very nearly equal to the resonant
frequency of the molecular transition ω0 = 2A/~, but for the time being we want
to keep things general, so we’ll let it have any value at all. The best way to solve
our equations is to form linear combinations of C1 and C2 as we did before. So
we add the two equations, divide by the square root of 2, and use the definitions
of CI and CII that we had in Eq. (9.13). We get

i~
dCII
dt

= (E0 −A)CII + µECI . (9.38)

You’ll note that this is the same as Eq. (9.9) with an extra term due to the
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electric field. Similarly, if we subtract the two equations (9.36), we get

i~
dCI
dt

= (E0 +A)CI + µECII . (9.39)

Now the question is, how to solve these equations? They are more difficult
than our earlier set, because E depends on t; and, in fact, for a general E(t) the
solution is not expressible in elementary functions. However, we can get a good
approximation so long as the electric field is small. First we will write

CI = γIe
−i(E0+A)t/~ = γIe

−i(EI )t/~,

CII = γIIe
−i(E0−A)t/~ = γIIe

−i(EII )t/~.
(9.40)

If there were no electric field, these solutions would be correct with γI and γII
just chosen as two complex constants. In fact, since the probability of being in
state | I 〉 is the absolute square of CI and the probability of being in state | II 〉 is
the absolute square of CII , the probability of being in state | I 〉 or in state | II 〉 is
just |γI |2 or |γII |2. For instance, if the system were to start originally in state | II 〉
so that γI was zero and |γII |2 was one, this condition would go on forever. There
would be no chance, if the molecule were originally in state | II 〉, ever to get into
state | I 〉.

Now the idea of writing our equations in the form of Eq. (9.40) is that if
µE is small in comparison with A, the solutions can still be written in this way,
but then γI and γII become slowly varying functions of time—where by “slowly
varying” we mean slowly in comparison with the exponential functions. That
is the trick. We use the fact that γI and γII vary slowly to get an approximate
solution.

We want now to substitute CI from Eq. (9.40) in the differential equa-
tion (9.39), but we must remember that γI is also a function of t. We have

i~
dCI
dt

= EIγIe
−iEI t/~ + i~

dγI
dt

e−iEI t/~.

The differential equation becomes(
EIγI + i~

dγI
dt

)
e−(i/~)EI t = EIγIe

−(i/~)EI t + µEγIIe
−(i/~)EII t. (9.41)
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Similarly, the equation in dCII/dt becomes(
EIIγII + i~

dγII
dt

)
e−(i/~)EII t = EIIγIIe

−(i/~)EII t + µEγIe
−(i/~)EI t. (9.42)

Now you will notice that we have equal terms on both sides of each equation. We
cancel these terms, and we also multiply the first equation by e+iEI t/~ and the
second by e+iEII t/~. Remembering that (EI − EII ) = 2A = ~ω0, we have finally,

i~
dγI
dt

= µE(t)eiω0tγII ,

i~
dγII
dt

= µE(t)e−iω0tγI .

(9.43)

Now we have an apparently simple pair of equations—and they are still
exact, of course. The derivative of one variable is a function of time µE(t)eiω0t,
multiplied by the second variable; the derivative of the second is a similar time
function, multiplied by the first. Although these simple equations cannot be
solved in general, we will solve them for some special cases.

We are, for the moment at least, interested only in the case of an oscillating
electric field. Taking E(t) as given in Eq. (9.37), we find that the equations for
γI and γII become

i~
dγI
dt

= µE0[ei(ω+ω0)t + e−i(ω−ω0)t]γII ,

i~
dγII
dt

= µE0[ei(ω−ω0)t + e−i(ω+ω0)t]γI .

(9.44)

Now if E0 is sufficiently small, the rates of change of γI and γII are also small.
The two γ’s will not vary much with t, especially in comparison with the rapid
variations due to the exponential terms. These exponential terms have real and
imaginary parts that oscillate at the frequency ω + ω0 or ω − ω0. The terms
with ω + ω0 oscillate very rapidly about an average value of zero and, therefore,
do not contribute very much on the average to the rate of change of γ. So we can
make a reasonably good approximation by replacing these terms by their average
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value, namely, zero. We will just leave them out, and take as our approximation:

i~
dγI
dt

= µE0e
−i(ω−ω0)tγII ,

i~
dγII
dt

= µE0e
i(ω−ω0)tγI .

(9.45)

Even the remaining terms, with exponents proportional to (ω−ω0), will also vary
rapidly unless ω is near ω0. Only then will the right-hand side vary slowly enough
that any appreciable amount will accumulate when we integrate the equations
with respect to t. In other words, with a weak electric field the only significant
frequencies are those near ω0.

With the approximation made in getting Eq. (9.45), the equations can be
solved exactly, but the work is a little elaborate, so we won’t do that until later
when we take up another problem of the same type. Now we’ll just solve them
approximately—or rather, we’ll find an exact solution for the case of perfect
resonance, ω = ω0, and an approximate solution for frequencies near resonance.

9-4 Transitions at resonance

Let’s take the case of perfect resonance first. If we take ω = ω0, the exponen-
tials are equal to one in both equations of (9.45), and we have just

dγI
dt

= − iµE0

~
γII ,

dγII
dt

= − iµE0

~
γI . (9.46)

If we eliminate first γI and then γII from these equations, we find that each
satisfies the differential equation of simple harmonic motion:

d2γ

dt2
= −

(
µE0

~

)2
γ. (9.47)

The general solutions for these equations can be made up of sines and cosines.
As you can easily verify, the following equations are a solution:

γI = a cos
(
µE0

~

)
t+ b sin

(
µE0

~

)
t,

γII = ib cos
(
µE0

~

)
t− ia sin

(
µE0

~

)
t,

(9.48)
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where a and b are constants to be determined to fit any particular physical
situation.

For instance, suppose that at t = 0 our molecular system was in the upper
energy state | I 〉, which would require—from Eq. (9.40)—that γI = 1 and γII = 0
at t = 0. For this situation we would need a = 1 and b = 0. The probability that
the molecule is in the state | I 〉 at some later t is the absolute square of γI , or

PI = |γI |2 = cos2
(
µE0

~

)
t. (9.49)

Similarly, the probability that the molecule will be in the state | II 〉 is given by
the absolute square of γII ,

PII = |γII |2 = sin2
(
µE0

~

)
t. (9.50)

So long as E is small and we are on resonance, the probabilities are given by
simple oscillating functions. The probability to be in state | I 〉 falls from one
to zero and back again, while the probability to be in the state | II 〉 rises from
zero to one and back. The time variation of the two probabilities is shown in
Fig. 9-5. Needless to say, the sum of the two probabilities is always equal to one;
the molecule is always in some state!

t

t in units of πh̄/2µE0

1 2

P

0

1

PI

PII

Fig. 9-5. Probabilities for the two states of the ammonia molecule in
a sinusoidal electric field.
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Let’s suppose that it takes the molecule the time T to go through the cavity.
If we make the cavity just long enough so that µE0T/~ = π/2, then a molecule
which enters in state | I 〉 will certainly leave it in state | II 〉. If it enters the cavity
in the upper state, it will leave the cavity in the lower state. In other words, its
energy is decreased, and the loss of energy can’t go anywhere else but into the
machinery which generates the field. The details by which you can see how the
energy of the molecule is fed into the oscillations of the cavity are not simple;
however, we don’t need to study these details, because we can use the principle
of conservation of energy. (We could study them if we had to, but then we would
have to deal with the quantum mechanics of the field in the cavity in addition to
the quantum mechanics of the atom.)

In summary: the molecule enters the cavity, the cavity field—oscillating at
exactly the right frequency—induces transitions from the upper to the lower state,
and the energy released is fed into the oscillating field. In an operating maser
the molecules deliver enough energy to maintain the cavity oscillations—not only
providing enough power to make up for the cavity losses but even providing small
amounts of excess power that can be drawn from the cavity. Thus, the molecular
energy is converted into the energy of an external electromagnetic field.

Remember that before the beam enters the cavity, we have to use a filter which
separates the beam so that only the upper state enters. It is easy to demonstrate
that if you were to start with molecules in the lower state, the process will go the
other way and take energy out of the cavity. If you put the unfiltered beam in, as
many molecules are taking energy out as are putting energy in, so nothing much
would happen. In actual operation it isn’t necessary, of course, to make (µE0T/~)
exactly π/2. For any other value (except an exact integral multiple of π), there
is some probability for transitions from state | I 〉 to state | II 〉. For other values,
however, the device isn’t 100 percent efficient; many of the molecules which leave
the cavity could have delivered some energy to the cavity but didn’t.

In actual use, the velocity of all the molecules is not the same; they have
some kind of Maxwell distribution. This means that the ideal periods of time
for different molecules will be different, and it is impossible to get 100 percent
efficiency for all the molecules at once. In addition, there is another complication
which is easy to take into account, but we don’t want to bother with it at this
stage. You remember that the electric field in a cavity usually varies from place
to place across the cavity. Thus, as the molecules drift across the cavity, the
electric field at the molecule varies in a way that is more complicated than the
simple sinusoidal oscillation in time that we have assumed. Clearly, one would

9-20



E
E′

EI

EII

h̄ω1 h̄ω2

h̄ω0

Fig. 9-6. The energy levels of a “three-state” maser.

have to use a more complicated integration to do the problem exactly, but the
general idea is still the same.

There are other ways of making masers. Instead of separating the atoms
in state | I 〉 from those in state | II 〉 by a Stern-Gerlach apparatus, one can
have the atoms already in the cavity (as a gas or a solid) and shift atoms from
state | II 〉 to state | I 〉 by some means. One way is one used in the so-called
three-state maser. For it, atomic systems are used which have three energy levels,
as shown in Fig. 9-6, with the following special properties. The system will
absorb radiation (say, light) of frequency ~ω1 and go from the lowest energy
level EII , to some high-energy level E′, and then will quickly emit photons of
frequency ~ω2 and go to the state | I 〉 with energy EI . The state | I 〉 has a long
lifetime so its population can be raised, and the conditions are then appropriate
for maser operation between states | I 〉 and | II 〉. Although such a device is called
a “three-state” maser, the maser operation really works just as a two-state system
such as we are describing.

A laser (Light Amplification by Stimulated Emission of Radiation) is just a
maser working at optical frequencies. The “cavity” for a laser usually consists of
just two plane mirrors between which standing waves are generated.

9-5 Transitions off resonance

Finally, we would like to find out how the states vary in the circumstance
that the cavity frequency is nearly, but not exactly, equal to ω0. We could solve
this problem exactly, but instead of trying to do that, we’ll take the important
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case that the electric field is small and also the period of time T is small, so
that µE0T/~ is much less than one. Then, even in the case of perfect resonance
which we have just worked out, the probability of making a transition is small.
Suppose that we start again with γI = 1 and γII = 0. During the time T we
would expect γI to remain nearly equal to one, and γII to remain very small
compared with unity. Then the problem is very easy. We can calculate γII from
the second equation in (9.45), taking γI equal to one and integrating from t = 0
to t = T . We get

γII = µE0

~

[
1− ei(ω−ω0)T

ω − ω0

]
. (9.51)

This γII , used with Eq. (9.40), gives the amplitude to have made a transition from
the state | I 〉 to the state | II 〉 during the time interval T . The probability P (I →
II ) to make the transition is |γII |2, or

P (I → II ) = |γII |2 =
[
µE0T

~

]2 sin2[(ω − ω0)T/2]
[(ω − ω0)T/2]2 . (9.52)

It is interesting to plot this probability for a fixed length of time as a function
of the frequency of the cavity in order to see how sensitive it is to frequencies
near the resonant frequency ω0. We show such a plot of P (I → II ) in Fig. 9-7.
(The vertical scale has been adjusted to be 1 at the peak by dividing by the value
of the probability when ω = ω0.) We have seen a curve like this in the diffraction
theory, so you should already be familiar with it. The curve falls rather abruptly
to zero for (ω − ω0) = 2π/T and never regains significant size for large frequency
deviations. In fact, by far the greatest part of the area under the curve lies
within the range ±π/T . It is possible to show† that the area under the curve is
just 2π/T and is equal to the area of the shaded rectangle drawn in the figure.

Let’s examine the implication of our results for a real maser. Suppose that
the ammonia molecule is in the cavity for a reasonable length of time, say for
one millisecond. Then for f0 = 24,000 megacycles, we can calculate that the
probability for a transition falls to zero for a frequency deviation of (f −f0)/f0 =
1/f0T , which is five parts in 108. Evidently the frequency must be very close
to ω0 to get a significant transition probability. Such an effect is the basis of the
great precision that can be obtained with “atomic” clocks, which work on the
maser principle.

† Using the formula
∫∞
−∞(sin2 x/x2) dx = π.
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Fig. 9-7. Transition probability for the ammonia molecule as function
of frequency.

9-6 The absorption of light

Our treatment above applies to a more general situation than the ammonia
maser. We have treated the behavior of a molecule under the influence of an
electric field, whether that field was confined in a cavity or not. So we could be
simply shining a beam of “light”—at microwave frequencies—at the molecule and
ask for the probability of emission or absorption. Our equations apply equally
well to this case, but let’s rewrite them in terms of the intensity of the radiation
rather than the electric field. If we define the intensity I to be the average energy
flow per unit area per second, then from Chapter 27 of Volume II, we can write

I = ε0c
2|E×B|ave = 1

2ε0c
2|E×B|max = 2ε0cE2

0.

(The maximum value of E is 2E0.) The transition probability now becomes:

P (I → II ) = 2π
[

µ2

4πε0~2c

]
IT 2 sin2[(ω − ω0)T/2]

[(ω − ω0)T/2]2 . (9.53)

Ordinarily the light shining on such a system is not exactly monochromatic.
It is, therefore, interesting to solve one more problem—that is, to calculate the
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transition probability when the light has intensity I(ω) per unit frequency interval,
covering a broad range which includes ω0. Then, the probability of going from
| I 〉 to | II 〉 will become an integral:

P (I → II ) = 2π
[

µ2

4πε0~2c

]
T 2
∫ ∞

0
I(ω) sin2[(ω − ω0)T/2]

[(ω − ω0)T/2]2 dω. (9.54)

In general, I(ω) will vary much more slowly with ω than the sharp resonance
term. The two functions might appear as shown in Fig. 9-8. In such cases, we
can replace I(ω) by its value I(ω0) at the center of the sharp resonance curve and
take it outside of the integral. What remains is just the integral under the curve
of Fig. 9-7, which is, as we have seen, just equal to 2π/T . We get the result that

P (I → II ) = 4π2
[

µ2

4πε0~2c

]
I(ω0)T. (9.55)

This is an important result, because it is the general theory of the absorption
of light by any molecular or atomic system. Although we began by considering
a case in which state | I 〉) had a higher energy than state | II 〉, none of our

ωω0

I(ω)

I(ω)

I(ω0)

Fig. 9-8. The spectral intensity I(ω) can be approximated by its value
at ω0.
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arguments depended on that fact. Equation (9.55) still holds if the state | I 〉 has
a lower energy than the state | II 〉; then P (I → II ) represents the probability for
a transition with the absorption of energy from the incident electromagnetic wave.
The absorption of light by any atomic system always involves the amplitude for
a transition in an oscillating electric field between two states separated by an
energy E = ~ω0. For any particular case, it is always worked out in just the way we
have done here and gives an expression like Eq. (9.55). We, therefore, emphasize
the following features of this result. First, the probability is proportional to T .
In other words, there is a constant probability per unit time that transitions
will occur. Second, this probability is proportional to the intensity of the light
incident on the system. Finally, the transition probability is proportional to µ2,
where, you remember, µE defined the shift in energy due to the electric field E.
Because of this, µE also appeared in Eqs. (9.38) and (9.39) as the coupling term
that is responsible for the transition between the otherwise stationary states | I 〉
and | II 〉. In other words, for the small E we have been considering, µE is the
so-called “perturbation term” in the Hamiltonian matrix element which connects
the states | I 〉 and | II 〉. In the general case, we would have that µE gets replaced
by the matrix element 〈II |H | I 〉 (see Section 5-6).

In Volume I (Section 42-5) we talked about the relations among light absorp-
tion, induced emission, and spontaneous emission in terms of the Einstein A-
and B-coefficients. Here, we have at last the quantum mechanical procedure for
computing these coefficients. What we have called P (I → II ) for our two-state
ammonia molecule corresponds precisely to the absorption coefficient Bnm of the
Einstein radiation theory. For the complicated ammonia molecule—which is too
difficult for anyone to calculate—we have taken the matrix element 〈II |H | I 〉
as µE, saying that µ is to be gotten from experiment. For simpler atomic systems,
the µmn which belongs to any particular transition can be calculated from the
definition

µmnE = 〈m |H |n〉 = Hmn, (9.56)

where Hmn is the matrix element of the Hamiltonian which includes the effects
of a weak electric field. The µmn calculated in this way is called the electric
dipole matrix element. The quantum mechanical theory of the absorption and
emission of light is, therefore, reduced to a calculation of these matrix elements
for particular atomic systems.

Our study of a simple two-state system has thus led us to an understanding
of the general problem of the absorption and emission of light.
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10

Other Two-State Systems

10-1 The hydrogen molecular ion

In the last chapter we discussed some aspects of the ammonia molecule under
the approximation that it can be considered as a two-state system. It is, of
course, not really a two-state system—there are many states of rotation, vibration,
translation, and so on—but each of these states of motion must be analyzed in
terms of two internal states because of the flip-flop of the nitrogen atom. Here we
are going to consider other examples of systems which, to some approximation or
other, can be considered as two-state systems. Lots of things will be approximate
because there are always many other states, and in a more accurate analysis they
would have to be taken into account. But in each of our examples we will be able
to understand a great deal by just thinking about two states.

Since we will only be dealing with two-state systems, the Hamiltonian we need
will look just like the one we used in the last chapter. When the Hamiltonian is
independent of time, we know that there are two stationary states with definite—
and usually different—energies. Generally, however, we start our analysis with a
set of base states which are not these stationary states, but states which may,
perhaps, have some other simple physical meaning. Then, the stationary states
of the system will be represented by a linear combination of these base states.

For convenience, we will summarize the important equations from Chapter 9.
Let the original choice of base states be | 1〉 and | 2〉. Then any state |ψ〉 is
represented by the linear combination

|ψ〉 = | 1〉〈1 |ψ〉+ | 2〉〈2 |ψ〉 = | 1〉C1 + | 2〉C2. (10.1)

The amplitudes Ci (by which we mean either C1 or C2) satisfy the two linear
differential equations

i~
dCi
dt

=
∑
j

HijCj , (10.2)

where both i and j take on the values 1 and 2.
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When the terms of the Hamiltonian Hij do not depend on t, the two states
of definite energy (the stationary states), which we call

|ψI 〉 = | I 〉e−(i/~)EI t and |ψII 〉 = | II 〉e−(i/~)EII t,

have the energies

EI = H11 +H22

2 +

√(
H11 −H22

2

)2
+H12H21,

EII = H11 +H22

2 −

√(
H11 −H22

2

)2
+H12H21.

(10.3)

The two C’s for each of these states have the same time dependence. The state
vectors | I 〉 and | II 〉 which go with the stationary states are related to our original
base states | 1〉 and | 2〉 by

| I 〉 = | 1〉a1 + | 2〉a2,

| II 〉 = | 1〉a′1 + | 2〉a′2.
(10.4)

The a’s are complex constants, which satisfy

|a1|2 + |a2|2 = 1,

a1

a2
= H12

EI −H11
, (10.5)

|a′1|2 + |a′2|2 = 1,

a′1
a′2

= H12

EII −H11
. (10.6)

If H11 and H22 are equal—say both are equal to E0—and H12 = H21 = −A,
then EI = E0 + A, EII = E0 − A, and the states | I 〉 and | II 〉 are particularly
simple:

| I 〉 = 1√
2

[
| 1〉 − | 2〉

]
, | II 〉 = 1√

2

[
| 1〉+ | 2〉

]
. (10.7)
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Now we will use these results to discuss a number of interesting examples
taken from the fields of chemistry and physics. The first example is the hydrogen
molecular ion. A positively ionized hydrogen molecule consists of two protons
with one electron worming its way around them. If the two protons are very far
apart, what states would we expect for this system? The answer is pretty clear:
The electron will stay close to one proton and form a hydrogen atom in its lowest
state, and the other proton will remain alone as a positive ion. So, if the two
protons are far apart, we can visualize one physical state in which the electron is
“attached” to one of the protons. There is, clearly, another state symmetric to
that one in which the electron is near the other proton, and the first proton is the
one that is an ion. We will take these two as our base states, and we’ll call them
| 1〉 and | 2〉. They are sketched in Fig. 10-1. Of course, there are really many
states of an electron near a proton, because the combination can exist as any one
of the excited states of the hydrogen atom. We are not interested in that variety
of states now; we will consider only the situation in which the hydrogen atom is
in the lowest state—its ground state—and we will, for the moment, disregard
spin of the electron. We can just suppose that for all our states the electron has
its spin “up” along the z-axis.†

| 1〉 + +

ELECTRON

PROTONS

| 2〉 + +

Fig. 10-1. A set of base states for two protons and an electron.

Now to remove an electron from a hydrogen atom requires 13.6 electron volts
of energy. So long as the two protons of the hydrogen molecular ion are far apart,
it still requires about this much energy—which is for our present considerations a

† This is satisfactory so long as there are no important magnetic fields. We will discuss the
effects of magnetic fields on the electron later in this chapter, and the very small effects of spin
in the hydrogen atom in Chapter 12.
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great deal of energy—to get the electron somewhere near the midpoint between
the protons. So it is impossible, classically, for the electron to jump from one
proton to the other. However, in quantum mechanics it is possible—though not
very likely. There is some small amplitude for the electron to move from one
proton to the other. As a first approximation, then, each of our base states | 1〉
and | 2〉 will have the energy E0, which is just the energy of one hydrogen atom
plus one proton. We can take that the Hamiltonian matrix elements H11 and H22
are both approximately equal to E0. The other matrix elements H12 and H21,
which are the amplitudes for the electron to go back and forth, we will again
write as −A.

You see that this is the same game we played in the last two chapters. If we
disregard the fact that the electron can flip back and forth, we have two states
of exactly the same energy. This energy will, however, be split into two energy
levels by the possibility of the electron going back and forth—the greater the
probability of the transition, the greater the split. So the two energy levels of the
system are E0 +A and E0 −A; and the states which have these definite energies
are given by Eqs. (10.7).

From our solution we see that if a proton and a hydrogen atom are put
anywhere near together, the electron will not stay on one of the protons but will
flip back and forth between the two protons. If it starts on one of the protons, it
will oscillate back and forth between the states | 1〉 and | 2〉—giving a time-varying
solution. In order to have the lowest energy solution (which does not vary with
time), it is necessary to start the system with equal amplitudes for the electron
to be around each proton. Remember, there are not two electrons—we are not
saying that there is an electron around each proton. There is only one electron,
and it has the same amplitude—1/

√
2 in magnitude—to be in either position.

Now the amplitude A for an electron which is near one proton to get to the
other one depends on the separation between the protons. The closer the protons
are together, the larger the amplitude. You remember that we talked in Chapter 7
about the amplitude for an electron to “penetrate a barrier,” which it could not
do classically. We have the same situation here. The amplitude for an electron to
get across decreases roughly exponentially with the distance—for large distances.
Since the transition probability, and therefore A, gets larger when the protons
are closer together, the separation of the energy levels will also get larger. If the
system is in the state | I 〉, the energy E0 +A increases with decreasing distance,
so these quantum mechanical effects make a repulsive force tending to keep the
protons apart. On the other hand, if the system is in the state | II 〉, the total
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EI = E0 + A

EII = E0 − A

E0

Fig. 10-2. The energies of the two stationary states of the H+2 ion as
a function of the distance between the two protons.

energy decreases if the protons are brought closer together; there is an attractive
force pulling the protons together. The variation of the two energies with the
distance between the two protons should be roughly as shown in Fig. 10-2. We
have, then, a quantum-mechanical explanation of the binding force that holds
the H+

2 ion together.
We have, however, forgotten one thing. In addition to the force we have

just described, there is also an electrostatic repulsive force between the two
protons. When the two protons are far apart—as in Fig. 10-1—the “bare” proton
sees only a neutral atom, so there is a negligible electrostatic force. At very
close distances, however, the “bare” proton begins to get “inside” the electron
distribution—that is, it is closer to the proton on the average than to the electron.
So there begins to be some extra electrostatic energy which is, of course, positive.
This energy—which also varies with the separation—should be included in E0. So
for E0 we should take something like the broken-line curve in Fig. 10-2 which rises
rapidly for distances less than the radius of a hydrogen atom. We should add and
subtract the flip-flop energy A from this E0. When we do that, the energies EI
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Fig. 10-3. The energy levels of the H+2 ion as a function of the
interproton distance D. (EH = 13.6 eV.)

and EII will vary with the interproton distance D as shown in Fig. 10-3. [In this
figure, we have plotted the results of a more detailed calculation. The interproton
distance is given in units of 1 Å (10−8 cm), and the excess energy over a proton
plus a hydrogen atom is given in units of the binding energy of the hydrogen
atom—the so-called “Rydberg” energy, 13.6 eV.] We see that the state | II 〉
has a minimum-energy point. This will be the equilibrium configuration—the
lowest energy condition—for the H+

2 ion. The energy at this point is lower than
the energy of a separated proton and hydrogen ion, so the system is bound. A
single electron acts to hold the two protons together. A chemist would call it a
“one-electron bond.”

This kind of chemical binding is also often called “quantum mechanical
resonance” (by analogy with the two coupled pendulums we have described
before). But that really sounds more mysterious than it is, it’s only a “resonance”
if you start out by making a poor choice for your base states—as we did also! If
you picked the state | II 〉, you would have the lowest energy state—that’s all.

We can see in another way why such a state should have a lower energy
than a proton and a hydrogen atom. Let’s think about an electron near two
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protons with some fixed, but not too large, separation. You remember that with a
single proton the electron is “spread out” because of the uncertainty principle. It
seeks a balance between having a low Coulomb potential energy and not getting
confined into too small a space, which would make a high kinetic energy (because
of the uncertainty relation ∆p∆x ≈ ~). Now if there are two protons, there is
more space where the electron can have a low potential energy. It can spread
out—lowering its kinetic energy—without increasing its potential energy. The
net result is a lower energy than a proton and a hydrogen atom. Then why does
the other state | I 〉 have a higher energy? Notice that this state is the difference
of the states | 1〉 and | 2〉. Because of the symmetry of | 1〉 and | 2〉, the difference
must have zero amplitude to find the electron half-way between the two protons.
This means that the electron is somewhat more confined, which leads to a larger
energy.

We should say that our approximate treatment of the H+
2 ion as a two-state

system breaks down pretty badly once the protons get as close together as they
are at the minimum in the curve of Fig. 10-3, and so, will not give a good value for
the actual binding energy. For small separations, the energies of the two “states”
we imagined in Fig. 10-1 are not really equal to E0; a more refined quantum
mechanical treatment is needed.

Suppose we ask now what would happen if instead of two protons, we had two
different objects—as, for example, one proton and one lithium positive ion (both
particles still with a single positive charge). In such a case, the two terms H11
and H22 of the Hamiltonian would no longer be equal; they would, in fact, be
quite different. If it should happen that the difference (H11−H22) is, in absolute
value, much greater than A = −H12, the attractive force gets very weak, as we
can see in the following way.

If we put H12H21 = A2 into Eqs. (10.3) we get

E = H11 +H22

2 ± H11 −H22

2

√
1 + 4A2

(H11 −H22)2 .

When H11−H22 is much greater than A2, the square root is very nearly equal to

1 + 2A2

(H11 −H22)2 .
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The two energies are then

EI = H11 + A2

(H11 −H22) ,

EII = H22 −
A2

(H11 −H22) .
(10.8)

They are now very nearly just the energies H11 and H22 of the isolated atoms,
pushed apart only slightly by the flip-flop amplitude A.

The energy difference EI − EII is

(H11 −H22) + 2A2

H11 −H22
.

The additional separation from the flip-flop of the electron is no longer equal
to 2A; it is smaller by the factor A/(H11 −H22), which we are now taking to
be much less than one. Also, the dependence of EI − EII on the separation of
the two nuclei is much smaller than for the H+

2 ion—it is also reduced by the
factor A/(H11−H22). We can now see why the binding of unsymmetric diatomic
molecules is generally very weak.

In our theory of the H+
2 ion we have discovered an explanation for the

mechanism by which an electron shared by two protons provides, in effect, an
attractive force between the two protons which can be present even when the
protons are at large distances. The attractive force comes from the reduced energy
of the system due to the possibility of the electron jumping from one proton to
the other. In such a jump the system changes from the configuration (hydrogen
atom, proton) to the configuration (proton, hydrogen atom), or switches back.
We can write the process symbolically as

(H, p) 
 (p,H).

The energy shift due to this process is proportional to the amplitude A that an
electron whose energy is −WH (its binding energy in the hydrogen atom) can
get from one proton to the other.

For large distances R between the two protons, the electrostatic potential
energy of the electron is nearly zero over most of the space it must go when
it makes its jump. In this space, then, the electron moves nearly like a free
particle in empty space—but with a negative energy! We have seen in Chapter 3
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[Eq. (3.7)] that the amplitude for a particle of definite energy to get from one
place to another a distance r away is proportional to

e(i/~)pr

r
,

where p is the momentum corresponding to the definite energy. In the present
case (using the nonrelativistic formula), p is given by

p2

2m = −WH . (10.9)

This means that p is an imaginary number,

p = i
√

2mWH

(the other sign for the radical gives nonsense here).
We should expect, then, that the amplitude A for the H+

2 ion will vary as

A ∝ e−(
√

2mWH/~)R

R
(10.10)

for large separations R between the two protons. The energy shift due to the
electron binding is proportional to A, so there is a force pulling the two protons
together which is proportional—for large R—to the derivative of (10.10) with
respect to R.

Finally, to be complete, we should remark that in the two-proton, one-electron
system there is still one other effect which gives a dependence of the energy on R.
We have neglected it until now because it is usually rather unimportant—the
exception is just for those very large distances where the energy of the exchange
term A has decreased exponentially to very small values. The new effect we
are thinking of is the electrostatic attraction of the proton for the hydrogen
atom, which comes about in the same way any charged object attracts a neutral
object. The bare proton makes an electric field E (varying as 1/R2) at the
neutral hydrogen atom. The atom becomes polarized, taking on an induced
dipole moment µ proportional to E. The energy of the dipole is µE, which is
proportional to E2—or to 1/R4. So there is a term in the energy of the system
which decreases with the fourth power of the distance. (It is a correction to E0.)
This energy falls off with distance more slowly than the shift A given by (10.10);
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at some large separation R it becomes the only remaining important term giving
a variation of energy with R—and, therefore, the only remaining force. Note
that the electrostatic term has the same sign for both of the base states (the
force is attractive, so the energy is negative) and so also for the two stationary
states, whereas the electron exchange term A gives opposite signs for the two
stationary states.

10-2 Nuclear forces

We have seen that the system of a hydrogen atom and a proton has an energy
of interaction due to the exchange of the single electron which varies at large
separations R as

e−αR

R
, (10.11)

with α =
√

2mWH/~. (One usually says that there is an exchange of a “virtual”
electron when—as here—the electron has to jump across a space where it would
have a negative energy. More specifically, a “virtual exchange” means that the
phenomenon involves a quantum mechanical interference between an exchanged
state and a nonexchanged state.)

Now we might ask the following question: Could it be that forces between
other kinds of particles have an analogous origin? What about, for example,
the nuclear force between a neutron and a proton, or between two protons? In
an attempt to explain the nature of nuclear forces, Yukawa proposed that the
force between two nucleons is due to a similar exchange effect—only, in this case,
due to the virtual exchange, not of an electron, but of a new particle, which he
called a “meson.” Today, we would identify Yukawa’s meson with the π-meson
(or “pion”) produced in high-energy collisions of protons or other particles.

Let’s see, as an example, what kind of a force we would expect from the
exchange of a positive pion (π+) of mass mπ between a proton and a neutron.
Just as a hydrogen atom H0 can go into a proton p+ by giving up an electron e−,

H0 → p+ + e−, (10.12)

a proton p+ can go into a neutron n0 by giving up a π+ meson:

p+ → n0 + π+. (10.13)
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So if we have a proton at a and a neutron at b separated by the distance R, the
proton can become a neutron by emitting a π+, which is then absorbed by the
neutron at b, turning it into a proton. There is an energy of interaction of the
two-nucleon (plus pion) system which depends on the amplitude A for the pion
exchange—just as we found for the electron exchange in the H+

2 ion.
In the process (10.12), the energy of the H0 atom is less than that of the

proton by WH (calculating nonrelativistically, and omitting the rest energy mc2
of the electron), so the electron has a negative kinetic energy—or imaginary
momentum—as in Eq. (10.9). In the nuclear process (10.13), the proton and
neutron have almost equal masses, so the π+ will have zero total energy. The
relation between the total energy E and the momentum p for a pion of mass mπ

is
E2 = p2c2 +m2

πc
4.

Since E is zero (or at least negligible in comparison with mπ), the momentum is
again imaginary:

p = imπc.

Using the same arguments we gave for the amplitude that a bound electron
would penetrate the barrier in the space between two protons, we get for the
nuclear case an exchange amplitude A which should—for large R—go as

e−(mπc/~)R

R
. (10.14)

The interaction energy is proportional to A, and so varies in the same way. We
get an energy variation in the form of the so-called Yukawa potential between
two nucleons. Incidentally, we obtained this same formula earlier directly from
the differential equation for the motion of a pion in free space [see Chapter 28,
Vol. II, Eq. (28.18)].

We can, following the same line of argument, discuss the interaction between
two protons (or between two neutrons) which results from the exchange of a
neutral pion (π0). The basic process is now

p+ → p+ + π0. (10.15)

A proton can emit a virtual π0, but then it remains still a proton. If we have two
protons, proton No. 1 can emit a virtual π0 which is absorbed by proton No. 2.
At the end, we still have two protons. This is somewhat different from the H+

2
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ion. There the H0 went into a different condition—the proton—after emitting
the electron. Now we are assuming that a proton can emit a π0 without changing
its character. Such processes are, in fact, observed in high-energy collisions. The
process is analogous to the way that an electron emits a photon and ends up still
an electron:

e→ e + photon. (10.16)

We do not “see” the photons inside the electrons before they are emitted or
after they are absorbed, and their emission does not change the “nature” of the
electron.

Going back to the two protons, there is an interaction energy which arises
from the amplitude A that one proton emits a neutral pion which travels across
(with imaginary momentum) to the other proton and is absorbed there. This
amplitude is again proportional to (10.14), with mπ the mass of the neutral
pion. All the same arguments give an equal interaction energy for two neutrons.
Since the nuclear forces (disregarding electrical effects) between neutron and
proton, between proton and proton, between neutron and neutron are the same,
we conclude that the masses of the charged and neutral pions should be the
same. Experimentally, the masses are indeed very nearly equal, and the small
difference is about what one would expect from electric self-energy corrections
(see Chapter 28, Vol. II).

There are other kinds of particles—like K-mesons—which can be exchanged
between two nucleons. It is also possible for two pions to be exchanged at the
same time. But all of these other exchanged “objects” have a rest mass mx higher
than the pion mass mπ, and lead to terms in the exchange amplitude which vary
as

e−(mxc/~)R

R
.

These terms die out faster with increasing R than the one-meson term. No one
knows, today, how to calculate these higher-mass terms, but for large enough
values of R only the one-pion term survives. And, indeed, those experiments which
involve nuclear interactions only at large distances do show that the interaction
energy is as predicted from the one-pion exchange theory.

In the classical theory of electricity and magnetism, the Coulomb electrostatic
interaction and the radiation of light by an accelerating charge are closely related—
both come out of the Maxwell equations. We have seen in the quantum theory that
light can be represented as the quantum excitations of the harmonic oscillations
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of the classical electromagnetic fields in a box. Alternatively, the quantum theory
can be set up by describing light in terms of particles—photons—which obey
Bose statistics. We emphasized in Section 4-5 that the two alternative points of
view always give identical predictions. Can the second point of view be carried
through completely to include all electromagnetic effects? In particular, if we
want to describe the electromagnetic field purely in terms of Bose particles—that
is, in terms of photons—what is the Coulomb force due to?

From the “particle” point of view the Coulomb interaction between two
electrons comes from the exchange of a virtual photon. One electron emits a
photon—as in reaction (10.16)—which goes over to the second electron, where
it is absorbed in the reverse of the same reaction. The interaction energy is
again given by a formula like (10.14), but now with mπ replaced by the rest
mass of the photon—which is zero. So the virtual exchange of a photon between
two electrons gives an interaction energy that varies simply inversely as R, the
distance between the two electrons—just the normal Coulomb potential energy!
In the “particle” theory of electromagnetism, the process of a virtual photon
exchange gives rise to all the phenomena of electrostatics.

10-3 The hydrogen molecule

As our next two-state system we will look at the neutral hydrogen molecule
H2. It is, naturally, more complicated to understand because it has two electrons.
Again, we start by thinking of what happens when the two protons are well
separated. Only now we have two electrons to add. To keep track of them, we’ll
call one of them “electron a” and the other “electron b.” We can again imagine two
possible states. One possibility is that “electron a” is around the first proton and
“electron b” is around the second, as shown in the top half of Fig. 10-4. We have
simply two hydrogen atoms. We will call this state | 1〉. There is also another
possibility: that “electron b” is around the first proton and that “electron a” is
around the second. We call this state | 2〉. From the symmetry of the situation,
those two possibilities should be energetically equivalent, but, as we will see, the
energy of the system is not just the energy of two hydrogen atoms. We should
mention that there are many other possibilities. For instance, “electron a” might
be near the first proton and “electron b” might be in another state around the
same proton. We’ll disregard such a case, since it will certainly have higher energy
(because of the large Coulomb repulsion between the two electrons). For greater
accuracy, we would have to include such states, but we can get the essentials of
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| 1〉 + +

a b
ELECTRONS

PROTONS

| 2〉 + +

b a

Fig. 10-4. A set of base states for the H2 molecule.

the molecular binding by considering just the two states of Fig. 10-4. To this
approximation we can describe any state by giving the amplitude 〈1 |φ〉 to be
in the state | 1〉 and an amplitude 〈2 |φ〉 to be in state | 2〉. In other words, the
state vector |φ〉 can be written as the linear combination

|φ〉 =
∑
i

| i〉〈i |φ〉.

To proceed, we assume—as usual—that there is some amplitude A that the
electrons can move through the intervening space and exchange places. This
possibility of exchange means that the energy of the system is split, as we have
seen for other two-state systems. As for the hydrogen molecular ion, the splitting
is very small when the distance between the protons is large. As the protons
approach each other, the amplitude for the electrons to go back and forth increases,
so the splitting increases. The decrease of the lower energy state means that there
is an attractive force which pulls the atoms together. Again the energy levels
rise when the protons get very close together because of the Coulomb repulsion.
The net final result is that the two stationary states have energies which vary
with the separation as shown in Fig. 10-5. At a separation of about 0.74 Å, the
lower energy level reaches a minimum; this is the proton-proton distance of the
true hydrogen molecule.
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Fig. 10-5. The energy levels of the H2 molecule for different interpro-
ton distances D. (EH = 13.6 eV.)

Now you have probably been thinking of an objection. What about the
fact that the two electrons are identical particles? We have been calling them
“electron a” and “electron b,” but there really is no way to tell which is which.
And we have said in Chapter 4 that for electrons—which are Fermi particles—if
there are two ways something can happen by exchanging the electrons, the two
amplitudes will interfere with a negative sign. This means that if we switch which
electron is which, the sign of the amplitude must reverse. We have just concluded,
however, that the bound state of the hydrogen molecule would be (at t = 0)

| II 〉 = 1√
2

(| 1〉+ | 2〉).

However, according to our rules of Chapter 4, this state is not allowed. If we
reverse which electron is which, we get the state

1√
2

(| 2〉+ | 1〉).

and we get the same sign instead of the opposite one.
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These arguments are correct if both electrons have the same spin. It is true
that if both electrons have spin up (or both have spin down), the only state that
is permitted is

| I 〉 = 1√
2

(| 1〉 − | 2〉).

For this state, an interchange of the two electrons gives

1√
2

(| 2〉 − | 1〉).

which is −| I 〉, as required. So if we bring two hydrogen atoms near to each other
with their electrons spinning in the same direction, they can go into the state | I 〉
and not state | II 〉. But notice that state | I 〉 is the upper energy state. Its curve
of energy versus separation has no minimum. The two hydrogens will always
repel and will not form a molecule. So we conclude that the hydrogen molecule
cannot exist with parallel electron spins. And that is right.

On the other hand, our state | II 〉 is perfectly symmetric for the two electrons.
In fact, if we interchange which electron we call a and which we call b we get
back exactly the same state. We saw in Section 4-7 that if two Fermi particles
are in the same state, they must have opposite spins. So, the bound hydrogen
molecule must have one electron with spin up and one with spin down.

The whole story of the hydrogen molecule is really somewhat more complicated
if we want to include the proton spins. It is then no longer right to think of the
molecule as a two-state system. It should really be looked at as an eight-state
system—there are four possible spin arrangements for each of our states | 1〉
and | 2〉—so we were cutting things a little short by neglecting the spins. Our
final conclusions are, however, correct.

We find that the lowest energy state—the only bound state—of the H2 molecule
has the two electrons with spins opposite. The total spin angular momentum
of the electrons is zero. On the other hand, two nearby hydrogen atoms with
spins parallel—and so with a total angular momentum ~—must be in a higher
(unbound) energy state; the atoms repel each other. There is an interesting
correlation between the spins and the energies. It gives another illustration of
something we mentioned before, which is that there appears to be an “interaction”
energy between two spins because the case of parallel spins has a higher energy
than the opposite case. In a certain sense you could say that the spins try to
reach an antiparallel condition and, in doing so, have the potential to liberate
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energy—not because there is a large magnetic force, but because of the exclusion
principle.

We saw in Section 10-1 that the binding of two different ions by a single
electron is likely to be quite weak. This is not true for binding by two electrons.
Suppose the two protons in Fig. 10-4 were replaced by any two ions (with closed
inner electron shells and a single ionic charge), and that the binding energies of
an electron at the two ions are different. The energies of states | 1〉 and | 2〉 would
still be equal because in each of these states we have one electron bound to each
ion. Therefore, we always have the splitting proportional to A. Two-electron
binding is ubiquitous—it is the most common valence bond. Chemical binding
usually involves this flip-flop game played by two electrons. Although two atoms
can be bound together by only one electron, it is relatively rare—because it
requires just the right conditions.

Finally, we want to mention that if the energy of attraction for an electron to
one nucleus is much greater than to the other, then what we have said earlier
about ignoring other possible states is no longer right. Suppose nucleus a (or
it may be a positive ion) has a much stronger attraction for an electron than
does nucleus b. It may then happen that the total energy is still fairly low
even when both electrons are at nucleus a, and no electron is at nucleus b. The
strong attraction may more than compensate for the mutual repulsion of the two
electrons. If it does, the lowest energy state may have a large amplitude to find
both electrons at a (making a negative ion) and a small amplitude to find any
electron at b. The state looks like a negative ion with a positive ion. This is, in
fact, what happens in an “ionic” molecule like NaCl. You can see that all the
gradations between covalent binding and ionic binding are possible.

You can now begin to see how it is that many of the facts of chemistry can
be most clearly understood in terms of a quantum mechanical description.

10-4 The benzene molecule

Chemists have invented nice diagrams to represent complicated organic
molecules. Now we are going to discuss one of the most interesting of them—the
benzene molecule shown in Fig. 10-6. It contains six carbon and six hydrogen
atoms in a symmetrical array. Each bar of the diagram represents a pair of
electrons, with spins opposite, doing the covalent bond dance. Each hydrogen
atom contributes one electron and each carbon atom contributes four electrons
to make up the total of 30 electrons involved. (There are two more electrons
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Fig. 10-6. The benzene molecule, C6H6.

close to the nucleus of the carbon which form the first, or K, shell. These are
not shown since they are so tightly bound that they are not appreciably involved
in the covalent binding.) So each bar in the figure represents a bond, or pair
of electrons, and the double bonds mean that there are two pairs of electrons
between alternate pairs of carbon atoms.

There is a mystery about this benzene molecule. We can calculate what
energy should be required to form this chemical compound, because the chemists
have measured the energies of various compounds which involve pieces of the
ring—for instance, they know the energy of a double bond by studying ethylene,
and so on. We can, therefore, calculate the total energy we should expect for the
benzene molecule. The actual energy of the benzene ring, however, is much lower
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Fig. 10-7. Two possibilities of orthodibromobenzene. The two
bromines could be separated by a single bond or by a double bond.
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than we get by such a calculation; it is more tightly bound than we would expect
from what is called an “unsaturated double bond system.” Usually a double bond
system which is not in such a ring is easily attacked chemically because it has a
relatively high energy—the double bonds can be easily broken by the addition of
other hydrogens. But in benzene the ring is quite permanent and hard to break
up. In other words, benzene has a much lower energy than you would calculate
from the bond picture.

Then there is another mystery. Suppose we replace two adjacent hydrogens
by bromine atoms to make ortho-dibromobenzene. There are two ways to do
this, as shown in Fig. 10-7. The bromines could be on the opposite ends of a
double bond as shown in part (a) of the figure, or could be on the opposite ends
of a single bond as in (b). One would think that ortho-dibromobenzene should
have two different forms, but it doesn’t. There is only one such chemical.†

Now we want to resolve these mysteries—and perhaps you have already
guessed how: by noticing, of course, that the “ground state” of the benzene ring
is really a two-state system. We could imagine that the bonds in benzene could
be in either of the two arrangements shown in Fig. 10-8. You say, “But they
are really the same; they should have the same energy.” Indeed, they should.
And for that reason they must be analyzed as a two-state system. Each state
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Fig. 10-8. A set of base states for the benzene molecule.

† We are oversimplifying a little. Originally, the chemists thought that there should
be four forms of dibromobenzene: two forms with the bromines on adjacent carbon atoms
(ortho-dibromobenzene), a third form with the bromines on next-nearest carbons (meta-
dibromobenzene), and a fourth form with the bromines opposite to each other (para-
dibromobenzene). However, they found only three forms—there is only one form of the
ortho-molecule.
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represents a different configuration of the whole set of electrons, and there is
some amplitude A that the whole bunch can switch from one arrangement to the
other—there is a chance that the electrons can flip from one dance to the other.

As we have seen, this chance of flipping makes a mixed state whose energy is
lower than you would calculate by looking separately at either of the two pictures
in Fig. 10-8. Instead, there are two stationary states—one with an energy above
and one with an energy below the expected value. So actually, the true normal
state (lowest energy) of benzene is neither of the possibilities shown in Fig. 10-8,
but it has the amplitude 1/

√
2 to be in each of the states shown. It is the

only state that is involved in the chemistry of benzene at normal temperatures.
Incidentally, the upper state also exists; we can tell it is there because benzene
has a strong absorption for ultraviolet light at the frequency ω = (EI − EII )/~.
You will remember that in ammonia, where the object flipping back and forth was
three protons, the energy separation was in the microwave region. In benzene,
the objects are electrons, and because they are much lighter, they find it easier to
flip back and forth, which makes the coefficient A very much larger. The result
is that the energy difference is much larger—about 1.5 eV, which is the energy of
an ultraviolet photon.†

What happens if we substitute bromine? Again the two “possibilities” (a)
and (b) in Fig. 10-7 represent the two different electron configurations. The only
difference is that the two base states we start with would have slightly different
energies. The lowest energy stationary state will still involve a linear combination
of the two states, but with unequal amplitudes. The amplitude for state | 1〉
might have a value something like

√
2/3, say, whereas state | 2〉 would have the

magnitude
√

1/3. We can’t say for sure without more information, but once the
two energies H11 and H22 are no longer equal, then the amplitudes C1 and C2
no longer have equal magnitudes. This means, of course, that one of the two
possibilities in the figure is more likely than the other, but the electrons are
mobile enough so that there is some amplitude for both. The other state has

† What we have said is a little misleading. Absorption of ultraviolet light would be very
weak in the two-state system we have taken for benzene, because the dipole moment matrix
element between the two states is zero. [The two states are electrically symmetric, so in our
formula Eq. (9.55) for the probability of a transition, the dipole moment µ is zero and no light
is absorbed.] If these were the only states, the existence of the upper state would have to be
shown in other ways. A more complete theory of benzene, however, which begins with more
base states (such as those having adjacent double bonds) shows that the true stationary states
of benzene are slightly distorted from the ones we have found. The resulting dipole moments
permit the transition we mentioned in the text to occur by the absorption of ultraviolet light.

10-20



different amplitudes (like
√

1/3 and −
√

2/3) but lies at a higher energy. There
is only one lowest state, not two as the naive theory of fixed chemical bonds
would suggest.

10-5 Dyes

We will give you one more chemical example of the two-state phenomenon—
this time on a larger molecular scale. It has to do with the theory of dyes. Many
dyes—in fact, most artificial dyes—have an interesting characteristic; they have
a kind of symmetry. Figure 10-9 shows an ion of a particular dye called magenta,
which has a purplish red color. The molecule has three ring structures—two of
which are benzene rings. The third is not exactly the same as a benzene ring
because it has only two double bonds inside the ring. The figure shows two
equally satisfactory pictures, and we would guess that they should have equal
energies. But there is a certain amplitude that all the electrons can flip from
one condition to the other, shifting the position of the “unfilled” position to
the opposite end. With so many electrons involved, the flipping amplitude is
somewhat lower than it is in the case of benzene, and the difference in energy
between the two stationary states is smaller. There are, nevertheless, the usual
two stationary states | I 〉 and | II 〉 which are the sum and difference combinations
of the two base states shown in the figure. The energy separation of | I 〉 and | II 〉
comes out to be equal to the energy of a photon in the optical region. If one

j 1i j 1i

H2N C NH2
+

j 2i j 2i

H2N C NH2
+

Fig. 10-9. Two base states for the molecule of the dye magenta.
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shines light on the molecule, there is a very strong absorption at one frequency,
and it appears to be brightly colored. That’s why it’s a dye!

Another interesting feature of such a dye molecule is that in the two base
states shown, the center of electric charge is located at different places. As a
result, the molecule should be strongly affected by an external electric field. We
had a similar effect in the ammonia molecule. Evidently we can analyze it by
using exactly the same mathematics, provided we know the numbers E0 and A.
Generally, these are obtained by gathering experimental data. If one makes
measurements with many dyes, it is often possible to guess what will happen
with some related dye molecule. Because of the large shift in the position of the
center of electric charge the value of µ in formula (9.55) is large and the material
has a high probability for absorbing light of the characteristic frequency 2A/~.
Therefore, it is not only colored but very strongly so—a small amount of substance
absorbs a lot of light.

The rate of flipping—and, therefore, A—is very sensitive to the complete
structure of the molecule. By changing A, the energy splitting, and with it
the color of the dye, can be changed. Also, the molecules do not have to be
perfectly symmetrical. We have seen that the same basic phenomenon exists
with slight modifications, even if there is some small asymmetry present. So, one
can get some modification of the colors by introducing slight asymmetries in the
molecules. For example, another important dye, malachite green, is very similar
to magenta, but has two of the hydrogens replaced by CH3. It’s a different color
because the A is shifted and the flip-flop rate is changed.

10-6 The Hamiltonian of a spin one-half particle in a magnetic field

Now we would like to discuss a two-state system involving an object of spin
one-half. Some of what we will say has been covered in earlier chapters, but doing
it again may help to make some of the puzzling points a little clearer. We can
think of an electron at rest as a two-state system. Although we will be talking
in this section about “an electron,” what we find out will be true for any spin
one-half particle. Suppose we choose for our base states | 1〉 and | 2〉 the states
in which the z-component of the electron spin is +~/2 and −~/2.

These states are, of course, the same ones we have called (+) and (−) in
earlier chapters. To keep the notation of this chapter consistent, though, we
call the “plus” spin state | 1〉 and the “minus” spin state | 2〉—where “plus” and
“minus” refer to the angular momentum in the z-direction.
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Any possible state ψ for the electron can be described as in Eq. (10.1) by
giving the amplitude C1 that the electron is in state | 1〉, and the amplitude C2
that it is in state | 2〉. To treat this problem, we will need to know the Hamiltonian
for this two-state system—that is, for an electron in a magnetic field. We begin
with the special case of a magnetic field in the z-direction.

Suppose that the vector B has only a z-component Bz. From the definition
of the two base states (that is, spins parallel and antiparallel to B) we know that
they are already stationary states with a definite energy in the magnetic field.
State | 1〉 corresponds to an energy† equal to −µBz and state | 2〉 to +µBz. The
Hamiltonian must be very simple in this case since C1, the amplitude to be in
state | 1〉, is not affected by C2, and vice versa:

i~
dC1

dt
= E1C1 = −µBzC1,

i~
dC2

dt
= E2C2 = +µBzC2.

(10.17)

For this special case, the Hamiltonian is

H11 = −µBz, H12 = 0,

H21 = 0, H22 = +µBz. (10.18)

So we know what the Hamiltonian is for the magnetic field in the z-direction,
and we know the energies of the stationary states.

Now suppose the field is not in the z-direction. What is the Hamiltonian?
How are the matrix elements changed if the field is not in the z-direction? We are
going to make an assumption that there is a kind of superposition principle for
the terms of the Hamiltonian. More specifically, we want to assume that if two
magnetic fields are superposed, the terms in the Hamiltonian simply add—if we
know the Hij for a pure Bz and we know the Hij for a pure Bx, then the Hij for
both Bz and Bx together is simply the sum. This is certainly true if we consider
only fields in the z-direction—if we double Bz, then all the Hij are doubled. So
let’s assume that H is linear in the field B. That’s all we need to be able to find
the Hij for any magnetic field.

† We are taking the rest energy m0c2 as our “zero” of energy and treating the magnetic
moment µ of the electron as a negative number, since it points opposite to the spin.
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Suppose we have a constant field B. We could have chosen our z-axis in its
direction, and we would have found two stationary states with the energies ∓µB.
Just choosing our axes in a different direction won’t change the physics. Our
description of the stationary states will be different, but their energies will still
be ∓µB—that is,

EI = −µ
√
B2
x +B2

y +B2
z

and (10.19)
EII = +µ

√
B2
x +B2

y +B2
z .

The rest of the game is easy. We have here the formulas for the energies. We
want a Hamiltonian which is linear in Bx, By, and Bz, and which will give these
energies when used in our general formula of Eq. (10.3). The problem: find the
Hamiltonian. First, notice that the energy splitting is symmetric, with an average
value of zero. Looking at Eq. (10.3), we can see directly that that requires

H22 = −H11.

(Note that this checks with what we already know when Bx and By are both
zero; in that case H11 = −µBz, and H22 = µBz.) Now if we equate the energies
of Eq. (10.3) with what we know from Eq. (10.19), we have(

H11 −H22

2

)2
+ |H12|2 = µ2(B2

x +B2
y +B2

z ). (10.20)

(We have also made use of the fact that H21 = H∗12, so that H12H21 can also be
written as |H12|2.) Again for the special case of a field in the z-direction, this
gives

µ2B2
z + |H12|2 = µ2B2

z .

Clearly, |H12| must be zero in this special case, which means that H12 cannot
have any terms in Bz. (Remember, we have said that all terms must be linear in
Bx, By, and Bz.)

So far, then, we have discovered that H11 and H22 have terms in Bz, while
H12 and H21 do not. We can make a simple guess that will satisfy Eq. (10.20) if
we say that

H11 = −µBz,
H22 = µBz, (10.21)
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and
|H12|2 = µ2(B2

x +B2
y).

And it turns out that that’s the only way it can be done!
“Wait”—you say—“H12 is not linear in B; Eq. (10.21) gives H12 =

µ
√
B2
x +B2

y .” Not necessarily. There is another possibility which is linear, namely,

H12 = µ(Bx + iBy).

There are, in fact, several such possibilities—most generally, we could write

H12 = µ(Bx ± iBy)eiδ,

where δ is some arbitrary phase. Which sign and phase should we use? It turns
out that you can choose either sign, and any phase you want, and the physical
results will always be the same. So the choice is a matter of convention. People
ahead of us have chosen to use the minus sign and to take eiδ = −1. We might
as well follow suit and write

H12 = −µ(Bx − iBy), H21 = −µ(Bx + iBy).

(Incidentally, these conventions are related to, and consistent with, some of the
arbitrary choices we made in Chapter 6.)

The complete Hamiltonian for an electron in an arbitrary magnetic field is,
then

H11 = −µBz, H12 = −µ(Bx − iBy),

H21 = −µ(Bx + iBy), H22 = +µBz.
(10.22)

And the equations for the amplitudes C1 and C2 are

i~
dC1

dt
= −µ[BzC1 + (Bx − iBy)C2],

i~
dC2

dt
= −µ[(Bx + iBy)C1 −BzC2].

(10.23)

So we have discovered the “equations of motion for the spin states” of an
electron in a magnetic field. We guessed at them by making some physical
argument, but the real test of any Hamiltonian is that it should give predictions
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in agreement with experiment. According to any tests that have been made,
these equations are right. In fact, although we made our arguments only for
constant fields, the Hamiltonian we have written is also right for magnetic fields
which vary with time. So we can now use Eq. (10.23) to look at all kinds of
interesting problems.

10-7 The spinning electron in a magnetic field

Example number one: We start with a constant field in the z-direction.
There are just the two stationary states with energies ∓µBz. Suppose we add
a small field in the x-direction. Then the equations look like our old two-state
problem. We get the flip-flop business once more, and the energy levels are
split a little farther apart. Now let’s let the x-component of the field vary with
time—say, as cosωt. The equations are then the same as we had when we put
an oscillating electric field on the ammonia molecule in Chapter 9. You can
work out the details in the same way. You will get the result that the oscillating
field causes transitions from the +z-state to the −z-state—and vice versa—when
the horizontal field oscillates near the resonant frequency ω0 = 2µBz/~. This
gives the quantum mechanical theory of the magnetic resonance phenomena we
described in Chapter 35 of Volume II (see Appendix).

It is also possible to make a maser which uses a spin one-half system. A
Stern-Gerlach apparatus is used to produce a beam of particles polarized in, say,
the +z-direction, which are sent into a cavity in a constant magnetic field. The
oscillating fields in the cavity can couple with the magnetic moment and induce
transitions which give energy to the cavity.

Now let’s look at the following question. Suppose we have a magnetic field B
which points in the direction whose polar angle is θ and azimuthal angle is φ,
as in Fig. 10-10. Suppose, additionally, that there is an electron which has been
prepared with its spin pointing along this field. What are the amplitudes C1
and C2 for such an electron? In other words, calling the state of the electron |ψ〉,
we want to write

|ψ〉 = | 1〉C1 + | 2〉C2,

where C1 and C2 are
C1 = 〈1 |ψ〉, C2 = 〈2 |ψ〉,

where by | 1〉 and | 2〉 we mean the same thing we used to call |+〉 and | −〉
(referred to our chosen z-axis).
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Fig. 10-10. The direction of B is defined by the polar angle θ and the
azimuthal angle φ.

The answer to this question is also in our general equations for two-state
systems. First, we know that since the electron’s spin is parallel to B it is in
a stationary state with energy EI = −µB. Therefore, both C1 and C2 must
vary as e−iEI t/~, as in (9.18); and their coefficients a1 and a2 are given by (10.5),
namely,

a1

a2
= H12

EI −H11
. (10.24)

An additional condition is that a1 and a2 should be normalized so that |a1|2 +
|a2|2 = 1. We can take H11 and H12 from (10.22) using

Bz = B cos θ, Bx = B sin θ cosφ, By = B sin θ sinφ.

So we have
H11 = −µB cos θ,

H12 = −µB sin θ (cosφ− i sinφ).
(10.25)

The last factor in the second equation is, incidentally, e−iφ, so it is simpler to
write

H12 = −µB sin θ e−iφ. (10.26)
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Using these matrix elements in Eq. (10.24)—and canceling −µB from numer-
ator and denominator—we find

a1

a2
= sin θ e−iφ

1− cos θ . (10.27)

With this ratio and the normalization condition, we can find both a1 and a2.
That’s not hard, but we can make a short cut with a little trick. Notice that
1 − cos θ = 2 sin2 (θ/2), and that sin θ = 2 sin (θ/2) cos (θ/2). Then Eq. (10.27)
is equivalent to

a1

a2
=

cos θ2 e
−iφ

sin θ2

. (10.28)

So one possible answer is

a1 = cos θ2 e
−iφ, a2 = sin θ2 , (10.29)

since it fits with (10.28) and also makes

|a1|2 + |a2|2 = 1.

As you know, multiplying both a1 and a2 by an arbitrary phase factor doesn’t
change anything. People generally prefer to make Eqs. (10.29) more symmetric
by multiplying both by eiφ/2. So the form usually used is

a1 = cos θ2 e
−iφ/2, a2 = sin θ2 e

+iφ/2, (10.30)

and this is the answer to our question. The numbers a1 and a2 are the amplitudes
to find an electron with its spin up or down along the z-axis when we know that
its spin is along the axis at θ and φ. (The amplitudes C1 and C2 are just a1
and a2 times e−iEI t/~.)

Now we notice an interesting thing. The strength B of the magnetic field does
not appear anywhere in (10.30). The result is clearly the same in the limit that
B goes to zero. This means that we have answered in general the question of
how to represent a particle whose spin is along an arbitrary axis. The amplitudes
of (10.30) are the projection amplitudes for spin one-half particles corresponding
to the projection amplitudes we gave in Chapter 5 [Eqs. (5.38)] for spin-one
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particles. We can now find the amplitudes for filtered beams of spin one-half
particles to go through any particular Stern-Gerlach filter.

Let |+z〉 represent a state with spin up along the z-axis, and | −z〉 represent
the spin down state. If |+z′〉 represents a state with spin up along a z′-axis
which makes the polar angles θ and φ with the z-axis, then in the notation of
Chapter 5, we have

〈+z |+z′〉 = cos θ2 e
−iφ/2, 〈−z |+z′〉 = sin θ2 e

+iφ/2. (10.31)

These results are equivalent to what we found in Chapter 6, Eq. (6.36), by purely
geometrical arguments. (So if you decided to skip Chapter 6, you now have the
essential results anyway.)

As our final example lets look again at one which we’ve already mentioned a
number of times. Suppose that we consider the following problem. We start with
an electron whose spin is in some given direction, then turn on a magnetic field
in the z-direction for 25 minutes, and then turn it off. What is the final state?
Again let’s represent the state by the linear combination |ψ〉 = | 1〉C1 + | 2〉C2.
For this problem, however, the states of definite energy are also our base states
| 1〉 and | 2〉. So C1 and C2 only vary in phase. We know that

C1(t) = C1(0)e−iEI t/~ = C1(0)e+iµBt/~,

and
C2(t) = C2(0)e−iEII t/~ = C2(0)e−iµBt/~.

Now initially we said the electron spin was set in a given direction. That means
that initially C1 and C2 are two numbers given by Eqs. (10.30). After we
wait for a period of time T , the new C1 and C2 are the same two numbers
multiplied respectively by eiµBzT/~ and e−iµBzT/~. What state is that? That’s
easy. It’s exactly the same as if the angle φ had been changed by the subtraction
of 2µBzT/~ and the angle θ had been left unchanged. That means that at the
end of the time T , the state |ψ〉 represents an electron lined up in a direction
which differs from the original direction only by a rotation about the z-axis
through the angle ∆φ = 2µBzT/~. Since this angle is proportional to T , we can
also say the direction of the spin precesses at the angular velocity 2µBz/~ around
the z-axis. This result we discussed several times previously in a less complete
and rigorous manner. Now we have obtained a complete and accurate quantum
mechanical description of the precession of atomic magnets.
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B(t)

Spin

Rotates at ω(t)

Fig. 10-11. The spin direction of an electron in a varying magnetic
field B(t) precesses at the frequency ω(t) about an axis parallel to B.

It is interesting that the mathematical ideas we have just gone over for the
spinning electron in a magnetic field can be applied to any two-state system.
That means that by making a mathematical analogy to the spinning electron, any
problem about two-state systems can be solved by pure geometry. It works like
this. First you shift the zero of energy so that (H11 +H22) is equal to zero so that
H11 = −H22. Then any two-state problem is formally the same as the electron in
a magnetic field. All you have to do is identify −µBz with H11 and −µ(Bx− iBy)
with H12. No matter what the physics is originally—an ammonia molecule, or
whatever—you can translate it into a corresponding electron problem. So if we
can solve the electron problem in general, we have solved all two-state problems.

And we have the general solution for the electron! Suppose you have some
state to start with that has spin “up” in some direction, and you have a magnetic
field B that points in some other direction. You just rotate the spin direction
around the axis of B with the vector angular velocity ω(t) equal to a constant
times the vector B (namely ω = 2µB/~). As B varies with time, you keep
moving the axis of the rotation to keep it parallel with B, and keep changing
the speed of rotation so that it is always proportional to the strength of B.
See Fig. 10-11. If you keep doing this, you will end up with a certain final
orientation of the spin axis, and the amplitudes C1 and C2 are just given by
the projections—using (10.30)—into your coordinate frame. You see, it’s just
a geometric problem to keep track of where you end up after all the rotating.
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Although it’s easy to see what’s involved, this geometric problem (of finding the
net result of a rotation with a varying angular velocity vector) is not easy to solve
explicitly in the general case. Anyway, we see, in principle, the general solution
to any two-state problem. In the next chapter we will look some more into
the mathematical techniques for handling the important case of a spin one-half
particle—and, therefore, for handling two-state systems in general.
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11

More Two-State Systems

Review: Chapter 33, Vol. I, Polarization

11-1 The Pauli spin matrices

We continue our discussion of two-state systems. At the end of the last
chapter we were talking about a spin one-half particle in a magnetic field. We
described the spin state by giving the amplitude C1 that the z-component of
spin angular momentum is +~/2 and the amplitude C2 that it is −~/2. In earlier
chapters we have called these base states |+〉 and | −〉. We will now go back to
that notation, although we may occasionally find it convenient to use |+〉 or | 1〉,
and | −〉 or | 2〉, interchangeably.

We saw in the last chapter that when a spin one-half particle with a magnetic
moment µ is in a magnetic field B = (Bx, By, Bz), the amplitudes C+ (= C1)
and C− (= C2) are connected by the following differential equations:

i~
dC+

dt
= −µ[BzC+ + (Bx − iBy)C−],

i~
dC−
dt

= −µ[(Bx + iBy)C+ −BzC−].
(11.1)

In other words, the Hamiltonian matrix Hij is

H11 = −µBz, H12 = −µ(Bx − iBy),

H21 = −µ(Bx + iBy), H22 = +µBz.
(11.2)

And Eqs. (11.1) are, of course, the same as

i~
dCi
dt

=
∑
j

HijCj , (11.3)

where i and j take on the values + and − (or 1 and 2).
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The two-state system of the electron spin is so important that it is very useful
to have a neater way of writing things. We will now make a little mathematical
digression to show you how people usually write the equations of a two-state
system. It is done this way: First, note that each term in the Hamiltonian is
proportional to µ and to some component of B; we can then—purely formally—
write that

Hij = −µ[σxijBx + σyijBy + σzijBz]. (11.4)
There is no new physics here; this equation just means that the coefficients σxij ,
σyij , and σzij—there are 4× 3 = 12 of them—can be figured out so that (11.4) is
identical with (11.2).

Let’s see what they have to be. We start with Bz. Since Bz appears only in
H11 and H22, everything will be O.K. if

σz11 = 1, σz12 = 0,

σz21 = 0, σz22 = −1.

We often write the matrix Hij as a little table like this:

Hij =
i↓
j→(
H11 H12
H21 H22

)
.

For the Hamiltonian of a spin one-half particle in the magnetic field Bz, this
is the same as

Hij =
i↓
j→(

−µBz −µ(Bx − iBy)
−µ(Bx + iBy) +µBz

)
.

In the same way, we can write the coefficients σzij as the matrix

σzij =
i↓
j→(
1 0
0 −1

)
. (11.5)

Working with the coefficients of Bx, we get that the terms of σx have to be

σx11 = 0, σx12 = 1,

σx21 = 1, σx22 = 0.
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Or, in shorthand,

σxij =
(

0 1
1 0

)
. (11.6)

Finally, looking at By, we get

σy11 = 0, σy12 = −i,

σy21 = i, σy22 = 0;
or

σyij =
(

0 −i
i 0

)
. (11.7)

With these three sigma matrices, Eqs. (11.2) and (11.4) are identical. To leave
room for the subscripts i and j, we have shown which σ goes with which component
of B by putting x, y, and z as superscripts. Usually, however, the i and j are
omitted—it’s easy to imagine they are there—and the x, y, z are written as
subscripts. Then Eq. (11.4) is written

H = −µ[σxBx + σyBy + σzBz]. (11.8)

Because the sigma matrices are so important—they are used all the time by the
professionals—we have gathered them together in Table 11-1. (Anyone who is
going to work in quantum physics really has to memorize them.) They are also
called the Pauli spin matrices after the physicist who invented them.

Table 11-1

The Pauli spin matrices

σz =
(

1 0
0 −1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
1 =

(
1 0
0 1

)
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In the table we have included one more two-by-two matrix which is needed if
we want to be able to take care of a system which has two spin states of the same
energy, or if we want to choose a different zero energy. For such situations we
must add E0C+ to the first equation in (11.1) and E0C− to the second equation.
We can include this in the new notation if we define the unit matrix “1” as δij ,

1 = δij =
(

1 0
0 1

)
, (11.9)

and rewrite Eq. (11.8) as

H = E0δij − µ(σxBx + σyBy + σzBz). (11.10)

Usually, it is understood that any constant like E0 is automatically to be multiplied
by the unit matrix; then one writes simply

H = E0 − µ(σxBx + σyBy + σzBz). (11.11)

One reason the spin matrices are useful is that any two-by-two matrix at all
can be written in terms of them. Any matrix you can write has four numbers in
it, say,

M =
(
a b
c d

)
.

It can always be written as a linear combination of four matrices. For example,

M = a

(
1 0
0 0

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
+ d

(
0 0
0 1

)
.

There are many ways of doing it, but one special way is to say thatM is a certain
amount of σx, plus a certain amount of σy, and so on, like this:

M = α1 + βσx + γσy + δσz,

where the “amounts” α, β, γ, and δ may, in general, be complex numbers.
Since any two-by-two matrix can be represented in terms of the unit matrix

and the sigma matrices, we have all that we ever need for any two-state system.
No matter what the two-state system—the ammonia molecule, the magenta
dye, anything—the Hamiltonian equation can be written in terms of the sigmas.
Although the sigmas seem to have a geometrical significance in the physical
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situation of an electron in a magnetic field, they can also be thought of as just
useful matrices, which can be used for any two-state problem.

For instance, in one way of looking at things a proton and a neutron can
be thought of as the same particle in either of two states. We say the nucleon
(proton or neutron) is a two-state system—in this case, two states with respect
to its charge. When looked at that way, the | 1〉 state can represent the proton
and the | 2〉 state can represent the neutron. People say that the nucleon has
two “isotopic-spin” states.

Since we will be using the sigma matrices as the “arithmetic” of the quantum
mechanics of two-state systems, let’s review quickly the conventions of matrix
algebra. By the “sum” of any two or more matrices we mean just what was
obvious in Eq. (11.4). In general, if we “add” two matrices A and B, the “sum” C
means that each term Cij is given by

Cij = Aij +Bij .

Each term of C is the sum of the terms in the same slots of A and B.
In Section 5-6 we have already encountered the idea of a matrix “product.”

The same idea will be useful in dealing with the sigma matrices. In general, the
“product” of two matrices A and B (in that order) is defined to be a matrix C
whose elements are

Cij =
∑
k

AikBkj . (11.12)

It is the sum of products of terms taken in pairs from the ith row of A and the
jth column of B. If the matrices are written out in tabular form as in Fig. 11-1,
there is a good “system” for getting the terms of the product matrix. Suppose
you are calculating C23. You run your left index finger along the second row of A
and your right index finger down the third column of B, multiplying each pair
and adding as you go. We have tried to indicate how to do it in the figure.

It is, of course, particularly simple for two-by-two matrices. For instance, if
we multiply σx times σx, we get

σ2
x = σx · σx =

(
0 1
1 0

)
·
(

0 1
1 0

)
=
(

1 0
0 1

)
,

which is just the unit matrix 1. Or, for another example, let’s work out σxσy:

σxσy =
(

0 1
1 0

)
·
(

0 −i
i 0

)
=
(
i 0
0 −i

)
.
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Referring to Table 11-1, you see that the product is just i times the matrix σz.
(Remember that a number times a matrix just multiplies each term of the matrix.)
Since the products of the sigmas taken two at a time are important—as well as
rather amusing—we have listed them all in Table 11-2. You can work them out
as we have done for σ2

x and σxσy.

Table 11-2

Products of the spin matrices

σ2
x = 1
σ2
y = 1
σ2
z = 1

σxσy = −σyσx = iσz

σyσz = −σzσy = iσx

σzσx = −σxσz = iσy

There’s another very important and interesting point about these σ matrices.
We can imagine, if we wish, that the three matrices σx, σy, and σz are analogous
to the three components of a vector—it is sometimes called the “sigma vector”
and is written σ. It is really a “matrix vector” or a “vector matrix.” It is three
different matrices—one matrix associated with each axis, x, y, and z. With it,
we can write the Hamiltonian of the system in a nice form which works in any
coordinate system:

H = −µσ ·B. (11.13)

Although we have written our three matrices in the representation in which
“up” and “down” are in the z-direction—so that σz has a particular simplicity—we
could figure out what the matrices would look like in some other representation.
Although it takes a lot of algebra, you can show that they change among them-
selves like the components of a vector. (We won’t, however, worry about proving
it right now. You can check it if you want.) You can use σ in different coordinate
systems as though it is a vector.

You remember that the H is related to energy in quantum mechanics. It
is, in fact, just equal to the energy in the simple situation where there is only
one state. Even for two-state systems of the electron spin, when we write the
Hamiltonian as in Eq. (11.13), it looks very much like the classical formula for
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the energy of a little magnet with magnetic moment µ in a magnetic field B.
Classically, we would say

U = −µ ·B, (11.14)

where µ is the property of the object and B is an external field. We can imagine
that Eq. (11.14) can be converted to (11.13) if we replace the classical energy by
the Hamiltonian and the classical µ by the matrix µσ. Then, after this purely
formal substitution, we interpret the result as a matrix equation. It is sometimes
said that to each quantity in classical physics there corresponds a matrix in
quantum mechanics. It is really more correct to say that the Hamiltonian matrix
corresponds to the energy, and any quantity that can be defined via energy has a
corresponding matrix.

For example, the magnetic moment can be defined via energy by saying
that the energy in an external field B is −µ · B. This defines the magnetic
moment vector µ. Then we look at the formula for the Hamiltonian of a real
(quantum) object in a magnetic field and try to identify whatever the matrices
are that correspond to the various quantities in the classical formula. That’s
the trick by which sometimes classical quantities have their quantum counter-
parts.

You may try, if you want, to understand how a classical vector is equal to
a matrix µσ, and maybe you will discover something—but don’t break your
head on it. That’s not the idea—they are not equal. Quantum mechanics is a
different kind of a theory to represent the world. It just happens that there are
certain correspondences which are hardly more than mnemonic devices—things
to remember with. That is, you remember Eq. (11.14) when you learn classical
physics; then if you remember the correspondence µ→ µσ, you have a handle
for remembering Eq. (11.13). Of course, nature knows the quantum mechanics,
and the classical mechanics is only an approximation; so there is no mystery in
the fact that in classical mechanics there is some shadow of quantum mechanical
laws—which are truly the ones underneath. To reconstruct the original object
from the shadow is not possible in any direct way, but the shadow does help
you to remember what the object looks like. Equation (11.13) is the truth, and
Eq. (11.14) is the shadow. Because we learn classical mechanics first, we would
like to be able to get the quantum formula from it, but there is no sure-fire
scheme for doing that. We must always go back to the real world and discover
the correct quantum mechanical equations. When they come out looking like
something in classical physics, we are in luck.
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If the warnings above seem repetitious and appear to you to be belaboring
self-evident truths about the relation of classical physics to quantum physics,
please excuse the conditioned reflexes of a professor who has usually taught
quantum mechanics to students who hadn’t heard about Pauli spin matrices
until they were in graduate school. Then they always seemed to be hoping that,
somehow, quantum mechanics could be seen to follow as a logical consequence of
classical mechanics which they had learned thoroughly years before. (Perhaps they
wanted to avoid having to learn something new.) You have learned the classical
formula, Eq. (11.14), only a few months ago—and then with warnings that it was
inadequate—so maybe you will not be so unwilling to take the quantum formula,
Eq. (11.13), as the basic truth.

11-2 The spin matrices as operators

While we are on the subject of mathematical notation, we would like to
describe still another way of writing things—a way which is used very often
because it is so compact. It follows directly from the notation introduced in
Chapter 8. If we have a system in a state |ψ(t)〉, which varies with time, we
can—as we did in Eq. (8.34)—write the amplitude that the system would be in
the state | i〉 at t+ ∆t as

〈i |ψ(t+ ∆t)〉 =
∑
j

〈i |U(t+ ∆t, t) | j〉〈j |ψ(t)〉

The matrix element 〈i |U(t+ ∆t, t) | j〉 is the amplitude that the base state | j〉
will be converted into the base state | i〉 in the time interval ∆t. We then defined
Hij by writing

〈i |U(t+ ∆t, t) | j〉 = δij −
i

~
Hij(t) ∆t,

and we showed that the amplitudes Ci(t) = 〈i |ψ(t)〉 were related by the differen-
tial equations

i~
dCi
dt

=
∑
j

HijCj . (11.15)

If we write out the amplitudes Ci explicitly, the same equation appears as

i~
d

dt
〈i |ψ〉 =

∑
j

Hij〈j |ψ〉. (11.16)
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Now the matrix elements Hij are also amplitudes which we can write as 〈i |H | j〉;
our differential equation looks like this:

i~
d

dt
〈i |ψ〉 =

∑
j

〈i |H | j〉〈j |ψ〉. (11.17)

We see that −i/~ 〈i |H | j〉 dt is the amplitude that—under the physical conditions
described by H—a state | j〉 will, during the time dt, “generate” the state | i〉.
(All of this is implicit in the discussion of Section 8-4.)

Now following the ideas of Section 8-2, we can drop out the common term 〈i |
in Eq. (11.17)—since it is true for any state | i〉—and write that equation simply
as

i~
d

dt
|ψ〉 =

∑
j

H | j〉〈j |ψ〉. (11.18)

Or, going one step further, we can also remove the j and write

i~
d

dt
|ψ〉 = H |ψ〉. (11.19)

In Chapter 8 we pointed out that when things are written this way, the H in
H | j〉 or H |ψ〉 is called an operator. From now on we will put the little hat (ˆ)
over an operator to remind you that it is an operator and not just a number.
We will write Ĥ |ψ〉. Although the two equations (11.18) and (11.19) mean
exactly the same thing as Eq. (11.17) or Eq. (11.15), we can think about them
in a different way. For instance, we would describe Eq. (11.18) in this way:
“The time derivative of the state vector |ψ〉 times i~ is equal to what you get
by operating with the Hamiltonian operator Ĥ on each base state, multiplying
by the amplitude 〈j |ψ〉 that ψ is in the state j, and summing over all j.” Or
Eq. (11.19) is described this way. “The time derivative (times i~) of a state |ψ〉
is equal to what you get if you operate with the Hamiltonian Ĥ on the state
vector |ψ〉.” It’s just a shorthand way of saying what is in Eq. (11.17), but, as
you will see, it can be a great convenience.

If we wish, we can carry the “abstraction” idea one more step. Equation (11.19)
is true for any state |ψ〉. Also the left-hand side, i~ d/dt, is also an operator—it’s
the operation “differentiate by t and multiply by i~.” Therefore, Eq. (11.19) can
also be thought of as an equation between operators—the operator equation

i~
d

dt
= Ĥ.
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The Hamiltonian operator (within a constant) produces the same result as
does d/dt when acting on any state. Remember that this equation—as well
as Eq. (11.19)—is not a statement that the Ĥ operator is just the identical
operation as i~ d/dt. The equations are the dynamical law of nature—the law of
motion—for a quantum system.

Just to get some practice with these ideas, we will show you another way we
could get to Eq. (11.18). You know that we can write any state |ψ〉 in terms of
its projections into some base set [see Eq. (8.8)],

|ψ〉 =
∑
i

| i〉〈i |ψ〉. (11.20)

How does |ψ〉 change with time? Well, just take its derivative:

d

dt
|ψ〉 = d

dt

∑
i

| i〉〈i |ψ〉. (11.21)

Now the base states | i〉 do not change with time (at least we are always taking
them as definite fixed states), but the amplitudes 〈i |ψ〉 are numbers which may
vary. So Eq. (11.21) becomes

d

dt
|ψ〉 =

∑
i

| i〉 d
dt
〈i |ψ〉. (11.22)

Since we know d〈i |ψ〉/dt from Eq. (11.16), we get

d

dt
|ψ〉 = − i

~
∑
i

| i〉
∑
j

Hij〈j |ψ〉

= − i
~
∑
ij

| i〉〈i |H | j〉〈j |ψ〉 = − i
~
∑
j

H | j〉〈j |ψ〉.

This is Eq. (11.18) all over again.
So we have many ways of looking at the Hamiltonian. We can think of

the set of coefficients Hij as just a bunch of numbers, or we can think of the
“amplitudes” 〈i |H | j〉, or we can think of the “matrix” Hij , or we can think of
the “operator” Ĥ. It all means the same thing.

Now let’s go back to our two-state systems. If we write the Hamiltonian in
terms of the sigma matrices (with suitable numerical coefficients like Bx, etc.),
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we can clearly also think of σxij as an amplitude 〈i |σx | j〉 or, for short, as the
operator σ̂x. If we use the operator idea, we can write the equation of motion of
a state |ψ〉 in a magnetic field as

i~
d

dt
|ψ〉 = −µ(Bxσ̂x +Byσ̂y +Bzσ̂z) |ψ〉. (11.23)

When we want to “use” such an equation we will normally have to express |ψ〉
in terms of base vectors (just as we have to find the components of space vectors
when we want specific numbers). So we will usually want to put Eq. (11.23) in
the somewhat expanded form:

i~
d

dt
|ψ〉 = −µ

∑
i

(Bxσ̂x +Byσ̂y +Bzσ̂z) | i〉〈i |ψ〉. (11.24)

Now you will see why the operator idea is so neat. To use Eq. (11.24) we need
to know what happens when the σ̂ operators work on each of the base states.
Let’s find out. Suppose we have σ̂z |+〉; it is some vector | ?〉, but what? Well,
let’s multiply it on the left by 〈+ |; we have

〈+ | σ̂z |+〉 = σz11 = 1

(using Table 11-1). So we know that

〈+ | ?〉 = 1. (11.25)

Now let’s multiply σ̂z |+〉 on the left by 〈− |. We get

〈− | σ̂z |+〉 = σz21 = 0;
so

〈− | ?〉 = 0. (11.26)

There is only one state vector that satisfies both (11.25) and (11.26); it is |+〉.
We discover then that

σ̂z |+〉 = |+〉. (11.27)

By this kind of argument you can easily show that all of the properties of the
sigma matrices can be described in the operator notation by the set of rules given
in Table 11-3.

11-12



Table 11-3

Properties of the σ̂-operator

σ̂z |+〉 = |+〉
σ̂z | −〉 = −|−〉
σ̂x |+〉 = | −〉
σ̂x | −〉 = |+〉
σ̂y |+〉 = i| −〉
σ̂y | −〉 = −i|+〉

If we have products of sigma matrices, they go over into products of operators.
When two operators appear together as a product, you carry out first the operation
with the operator which is farthest to the right. For instance, by σ̂xσ̂y |+〉 we
are to understand σ̂x(σ̂y |+〉). From Table 11-3, we get σ̂y |+〉 = i | −〉, so

σ̂xσ̂y |+〉 = σ̂x(i | −〉). (11.28)

Now any number—like i—just moves through an operator (operators work only
on state vectors); so Eq. (11.28) is the same as

σ̂xσ̂y |+〉 = iσ̂x | −〉 = i |+〉.

If you do the same thing for σ̂xσ̂y | −〉, you will find that

σ̂xσ̂y | −〉 = −i | −〉.

Looking at Table 11-3, you see that σ̂xσ̂y operating on |+〉 or | −〉 gives just what
you get if you operate with σ̂z and multiply by i. We can, therefore, say that the
operation σ̂xσ̂y is identical with the operation iσ̂z and write this statement as
an operator equation:

σ̂xσ̂y = iσ̂z. (11.29)
Notice that this equation is identical with one of our matrix equations of Table 11-2.
So again we see the correspondence between the matrix and operator points of
view. Each of the equations in Table 11-2 can, therefore, also be considered as
equations about the sigma operators. You can check that they do indeed follow
from Table 11-3. It is best, when working with these things, not to keep track of
whether a quantity like σ or H is an operator or a matrix. All the equations are
the same either way, so Table 11-2 is for sigma operators, or for sigma matrices,
as you wish.
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11-3 The solution of the two-state equations

We can now write our two-state equation in various forms, for example, either
as

i~
dCi
dt

=
∑
j

HijCj

or

i~
d |ψ〉
dt

= Ĥ |ψ〉. (11.30)

They both mean the same thing. For a spin one-half particle in a magnetic field,
the Hamiltonian H is given by Eq. (11.8) or by Eq. (11.13).

If the field is in the z-direction, then—as we have seen several times by now—
the solution is that the state |ψ〉, whatever it is, precesses around the z-axis
(just as if you were to take the physical object and rotate it bodily around the
z-axis) at an angular velocity equal to twice the magnetic field times µ/~. The
same is true, of course, for a magnetic field along any other direction, because
the physics is independent of the coordinate system. If we have a situation where
the magnetic field varies from time to time in a complicated way, then we can
analyze the situation in the following way. Suppose you start with the spin in the
+z-direction and you have an x-magnetic field. The spin starts to turn. Then if
the x-field is turned off, the spin stops turning. Now if a z-field is turned on, the
spin precesses about z, and so on. So depending on how the fields vary in time,
you can figure out what the final state is—along what axis it will point. Then you
can refer that state back to the original |+〉 and | −〉 with respect to z by using
the projection formulas we had in Chapter 10 (or Chapter 6). If the state ends up
with its spin in the direction (θ, φ), it will have an up-amplitude cos (θ/2)e−iφ/2
and a down-amplitude sin (θ/2)e+iφ/2. That solves any problem. It is a word
description of the solution of the differential equations.

The solution just described is sufficiently general to take care of any two-state
system. Let’s take our example of the ammonia molecule—including the effects
of an electric field. If we describe the system in terms of the states | I 〉 and | II 〉,
the equations (9.38) and (9.39) look like this:

i~
dCI
dt

= +ACI + µECII ,

i~
dCII
dt

= −ACII + µECI .

(11.31)
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You say, “No, I remember there was an E0 in there.” Well, we have shifted the
origin of energy to make the E0 zero. (You can always do that by changing both
amplitudes by the same factor—eiE0T/~—and get rid of any constant energy.)
Now if corresponding equations always have the same solutions, then we really
don’t have to do it twice. If we look at these equations and look at Eq. (11.1),
then we can make the following identification. Let’s call | I 〉 the state |+〉 and
| II 〉 the state | −〉. That does not mean that we are lining-up the ammonia
in space, or that |+〉 and | −〉 has anything to do with the z-axis. It is purely
artificial. We have an artificial space that we might call the “ammonia molecule
representative space,” or something—a three-dimensional “diagram” in which
being “up” corresponds to having the molecule in the state | I 〉 and being “down”
along this false z-axis represents having a molecule in the state | II 〉. Then, the
equations will be identified as follows. First of all, you see that the Hamiltonian
can be written in terms of the sigma matrices as

H = +Aσz + µEσx. (11.32)

Or, putting it another way, µBz in Eq. (11.1) corresponds to −A in Eq. (11.32),
and µBx corresponds to −µE. In our “model” space, then, we have a constant
B field along the z-direction. If we have an electric field E which is changing with
time, then we have a B field along the x-direction which varies in proportion.
So the behavior of an electron in a magnetic field with a constant component in
the z-direction and an oscillating component in the x-direction is mathematically
analogous and corresponds exactly to the behavior of an ammonia molecule in
an oscillating electric field. Unfortunately, we do not have the time to go any
further into the details of this correspondence, or to work out any of the technical
details. We only wished to make the point that all systems of two states can be
made analogous to a spin one-half object precessing in a magnetic field.

11-4 The polarization states of the photon

There are a number of other two-state systems which are interesting to
study, and the first new one we would like to talk about is the photon. To
describe a photon we must first give its vector momentum. For a free photon, the
frequency is determined by the momentum, so we don’t have to say also what the
frequency is. After that, though, we still have a property called the polarization.
Imagine that there is a photon coming at you with a definite monochromatic
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frequency (which will be kept the same throughout all this discussion so that
we don’t have a variety of momentum states). Then there are two directions of
polarization. In the classical theory, light can be described as having an electric
field which oscillates horizontally or an electric field which oscillates vertically
(for instance); these two kinds of light are called x-polarized and y-polarized light.
The light can also be polarized in some other direction, which can be made up
from the superposition of a field in the x-direction and one in the y-direction.
Or if you take the x- and the y-components out of phase by 90◦, you get an
electric field that rotates—the light is elliptically polarized. (This is just a quick
reminder of the classical theory of polarized light that we studied in Chapter 33,
Vol. I.)

Now, however, suppose we have a single photon—just one. There is no electric
field that we can discuss in the same way. All we have is one photon. But a
photon has to have the analog of the classical phenomena of polarization. There
must be at least two different kinds of photons. At first, you might think there
should be an infinite variety—after all, the electric vector can point in all sorts of
directions. We can, however, describe the polarization of a photon as a two-state
system. A photon can be in the state |x〉 or in the state | y〉. By |x〉 we mean the
polarization state of each one of the photons in a beam of light which classically
is x-polarized light. On the other hand, by | y〉 we mean the polarization state of
each of the photons in a y-polarized beam. And we can take |x〉 and | y〉 as our
base states of a photon of given momentum pointing at you—in what we will
call the z-direction. So there are two base states |x〉 and | y〉, and they are all
that are needed to describe any photon at all.

For example, if we have a piece of polaroid set with its axis to pass light
polarized in what we call the x-direction, and we send in a photon which we
know is in the state | y〉, it will be absorbed by the polaroid. If we send in a
photon which we know is in the state |x〉, it will come right through as |x〉. If
we take a piece of calcite which takes a beam of polarized light and splits it
into an |x〉 beam and a | y〉 beam, that piece of calcite is the complete analog
of a Stern-Gerlach apparatus which splits a beam of silver atoms into the two
states |+〉 and | −〉. So everything we did before with particles and Stern-Gerlach
apparatuses, we can do again with light and pieces of calcite. And what about
light filtered through a piece of polaroid set at an angle θ? Is that another state?
Yes, indeed, it is another state. Let’s call the axis of the polaroid x′ to distinguish
it from the axes of our base states. See Fig. 11-2. A photon that comes out will be
in the state |x′〉. However, any state can be represented as a linear combination
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Fig. 11-2. Coordinates at right angles to the momentum vector of
the photon.

of base states, and the formula for the combination is, here,

|x′〉 = cos θ |x〉+ sin θ | y〉. (11.33)

That is, if a photon comes through a piece of polaroid set at the angle θ (with
respect to x), it can still be resolved into |x〉 and | y〉 beams—by a piece of calcite,
for example. Or you can, if you wish, just analyze it into x- and y-components
in your imagination. Either way, you will find the amplitude cos θ to be in the
|x〉 state and the amplitude sin θ to be in the | y〉 state.

Now we ask this question: Suppose a photon is polarized in the x′-direction
by a piece of polaroid set at the angle θ and arrives at a polaroid at the angle
zero—as in Fig. 11-3; what will happen? With what probability will it get
through? The answer is the following. After it gets through the first polaroid, it
is definitely in the state |x′〉. The second polaroid will let the photon through
if it is in the state |x〉 (but absorb it if it is the state | y〉). So we are asking
with what probability does the photon appear to be in the state |x〉? We get
that probability from the absolute square of amplitude 〈x |x′〉 that a photon in
the state |x′〉 is also in the state |x〉. What is 〈x |x′〉? Just multiply Eq. (11.33)
by 〈x | to get

〈x |x′〉 = cos θ 〈x |x〉+ sin θ 〈x | y〉.
Now 〈x | y〉 = 0, from the physics—as they must be if |x〉 and | y〉 are base
states—and 〈x |x〉 = 1. So we get

〈x |x′〉 = cos θ,
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and the probability is cos2 θ. For example, if the first polaroid is set at 30◦, a
photon will get through 3/4 of the time, and 1/4 of the time it will heat the
polaroid by being absorbed therein.

x

y

z

x

y

θLIGHT

AXIS OF POLARIZER

STATE | x ′〉

Fig. 11-3. Two sheets of polaroid with angle θ between planes of
polarization.

Now let us see what happens classically in the same situation. We would
have a beam of light with an electric field which is varying in some way or
another—say “unpolarized.” After it gets through the first polaroid, the electric
field is oscillating in the x′-direction with a size E; we would draw the field as an
oscillating vector with a peak value E0 in a diagram like Fig. 11-4. Now when
the light arrives at the second polaroid, only the x-component, E0 cos θ, of the
electric field gets through. The intensity is proportional to the square of the field
and, therefore, to E2

0 cos2 θ. So the energy coming through is cos2 θ weaker than
the energy which was entering the last polaroid.

The classical picture and the quantum picture give similar results. If you were
to throw 10 billion photons at the second polaroid, and the average probability of
each one going through is, say, 3/4, you would expect 3/4 of 10 billion would get
through. Likewise, the energy that they would carry would be 3/4 of the energy
that you attempted to put through. The classical theory says nothing about the
statistics of the thing—it simply says that the energy that comes through will
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Fig. 11-4. The classical picture of the electric vector E.

be precisely 3/4 of the energy which you were sending in. That is, of course,
impossible if there is only one photon. There is no such thing as 3/4 of a photon.
It is either all there, or it isn’t there at all. Quantum mechanics tells us it is all
there 3/4 of the time. The relation of the two theories is clear.

What about the other kinds of polarization? For example, right-hand circular
polarization? In the classical theory, right-hand circular polarization has equal
components in x and y which are 90◦ out of phase. In the quantum theory,
a right-hand circularly polarized (RHC) photon has equal amplitudes to be
polarized |x〉 or | y〉, and the amplitudes are 90◦ out of phase. Calling a RHC
photon a state |R〉 and a LHC photon a state |L〉, we can write (see Vol. I,
Section 33-1)

|R〉 = 1√
2

(|x〉+ i | y〉),

|L〉 = 1√
2

(|x〉 − i | y〉).

(11.34)

—the 1/
√

2 is put in to get normalized states. With these states you can calculate
any filtering or interference effects you want, using the laws of quantum theory. If
you want, you can also choose |R〉 and |L〉 as base states and represent everything
in terms of them. You only need to show first that 〈R |L〉 = 0—which you can
do by taking the conjugate form of the first equation above [see Eq. (8.13)] and
multiplying it by the other. You can resolve light into x- and y-polarizations, or
into x′- and y′-polarizations, or into right and left polarizations as a basis.
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Just as an example, let’s try to turn our formulas around. Can we represent
the state |x〉 as a linear combination of right and left? Yes, here it is:

|x〉 = 1√
2

(|R〉+ |L〉),

| y〉 = − i√
2

(|R〉 − |L〉).

(11.35)

Proof: Add and subtract the two equations in (11.34). It is easy to go from
one base to the other.

One curious point has to be made, though. If a photon is right circularly
polarized, it shouldn’t have anything to do with the x- and y-axes. If we were
to look at the same thing from a coordinate system turned at some angle about
the direction of flight, the light would still be right circularly polarized—and
similarly for left. The right and left circularly polarized light are the same for
any such rotation; the definition is independent of any choice of the x-direction
(except that the photon direction is given). Isn’t that nice—it doesn’t take any
axes to define it. Much better than x and y. On the other hand, isn’t it rather a
miracle that when you add the right and left together you can find out which
direction x was? If “right” and “left” do not depend on x in any way, how is
it that we can put them back together again and get x? We can answer that
question in part by writing out the state |R′〉, which represents a photon RHC
polarized in the frame x′, y′. In that frame, you would write

|R′〉 = 1√
2

(|x′〉+ i | y′〉).

How does such a state look in the frame x, y? Just substitute |x′〉 from Eq. (11.33)
and the corresponding | y′〉—we didn’t write it down, but it is (− sin θ) |x〉 +
(cos θ) | y〉. Then

|R′〉 = 1√
2

[cos θ |x〉+ sin θ | y〉 − i sin θ |x〉+ i cos θ | y〉]

= 1√
2

[(cos θ − i sin θ) |x〉+ i(cos θ − i sin θ) | y〉]

= 1√
2

(|x〉+ i | y〉)(cos θ − i sin θ).
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The first term is just |R〉, and the second is e−iθ; our result is that

|R′〉 = e−iθ |R〉. (11.36)

The states |R′〉 and |R〉 are the same except for the phase factor e−iθ. If you
work out the same thing for |L′〉, you get that†

|L′〉 = e+iθ |L〉. (11.37)

Now you see what happens. If we add |R〉 and |L〉, we get something different
from what we get when we add |R′〉 and |L′〉. For instance, an x-polarized
photon is [Eq. (11.35)] the sum of |R〉 and |L〉, but a y-polarized photon is
the sum with the phase of one shifted 90◦ backward and the other 90◦ forward.
That is just what we would get from the sum of |R′〉 and |L′〉 for the special
angle θ = 90◦, and that’s right. An x-polarization in the prime frame is the same
as a y-polarization in the original frame. So it is not exactly true that a circularly
polarized photon looks the same for any set of axes. Its phase (the phase relation
of the right and left circularly polarized states) keeps track of the x-direction.

11-5 The neutral K-meson‡

We will now describe a two-state system in the world of the strange particles—
a system for which quantum mechanics gives a most remarkable prediction. To
describe it completely would involve us in a lot of stuff about strange particles,
so we will, unfortunately, have to cut some corners. We can only give an outline
of how a certain discovery was made—to show you the kind of reasoning that
was involved. It begins with the discovery by Gell-Mann and Nishijima of the
concept of strangeness and of a new law of conservation of strangeness. It was
when Gell-Mann and Pais were analyzing the consequences of these new ideas

† It’s similar to what we found (in Chapter 6) for a spin one-half particle when we rotated
the coordinates about the z-axis—then we got the phase factors e±iφ/2. It is, in fact, exactly
what we wrote down in Section 5-7 for the |+〉 and | −〉 states of a spin-one particle—which is
no coincidence. The photon is a spin-one particle which has, however, no “zero” state.

‡ We now feel that the material of this section is longer and harder than is appropriate at
this point in our development. We suggest that you skip it and continue with Section 11-6.
If you are ambitious and have time you may wish to come back to it later. We leave it here,
because it is a beautiful example—taken from recent work in high-energy physics—of what can
be done with our formulation of the quantum mechanics of two-state systems.
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that they came across the prediction of a most remarkable phenomenon we are
going to describe. First, though, we have to tell you a little about “strangeness.”

We must begin with what are called the strong interactions of nuclear particles.
These are the interactions which are responsible for the strong nuclear forces—as
distinct, for instance, from the relatively weaker electromagnetic interactions.
The interactions are “strong” in the sense that if two particles get close enough
to interact at all, they interact in a big way and produce other particles very
easily. The nuclear particles have also what is called a “weak interaction” by
which certain things can happen, such as beta decay, but always very slowly on
a nuclear time scale—the weak interactions are many, many orders of magnitude
weaker than the strong interactions and even much weaker than electromagnetic
interactions.

When the strong interactions were being studied with the big accelerators,
people were surprised to find that certain things that “should” happen—that
were expected to happen—did not occur. For instance, in some interactions a
particle of a certain type did not appear when it was expected. Gell-Mann and
Nishijima noticed that many of these peculiar happenings could be explained
at once by inventing a new conservation law: the conservation of strangeness.
They proposed that there was a new kind of attribute associated with each
particle—which they called its “strangeness” number—and that in any strong
interaction the “quantity of strangeness” is conserved.

Suppose, for instance, that a high-energy negative K-meson—with, say, an
energy of many Bev—collides with a proton. Out of the interaction may come
many other particles: π-mesons, K-mesons, lambda particles, sigma particles—any
of the mesons or baryons listed in Table 2-2 of Vol. I. It is observed, however, that
only certain combinations appear, and never others. Now certain conservation
laws were already known to apply. First, energy and momentum are always
conserved. The total energy and momentum after an event must be the same as
before the event. Second, there is the conservation of electric charge which says
that the total charge of the outgoing particles must be equal to the total charge
carried by the original particles. In our example of a K-meson and a proton
coming together, the following reactions do occur:

K− + p→ p + K− + π+ + π− + π0

or (11.38)
K− + p→ Σ− + π+.
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We would never get:

K− + p→ p + K− + π+ or K− + p→ Λ0 + π+, (11.39)

because of the conservation of charge. It was also known that the number of
baryons is conserved. The number of baryons out must be equal to the number
of baryons in. For this law, an antiparticle of a baryon is counted as minus one
baryon. This means that we can—and do—see

K− + p→ Λ0 + π0

or (11.40)
K− + p→ p + K− + p + p

(where p is the antiproton, which carries a negative charge). But we never see

K− + p→ K− + π+ + π0

or (11.41)
K− + p→ p + K− + n

(even when there is plenty of energy), because baryons would not be conserved.
These laws, however, do not explain the strange fact that the following

reactions—which do not immediately appear to be especially different from some
of those in (11.38) or (11.40)—are also never observed:

K− + p→ p + K− + K0

or
K− + p→ p + π− (11.42)

or
K− + p→ Λ0 + K0.

The explanation is the conservation of strangeness. With each particle goes a
number—its strangeness S—and there is a law that in any strong interaction, the
total strangeness out must equal the total strangeness that went in. The proton
and antiproton (p, p), the neutron and antineutron (n, n), and the π-mesons
(π+, π0, π−) all have the strangeness number zero; the K+ and K0 mesons have
strangeness +1; the K− and K0 (the anti-K0),† the Λ0 and the Σ-particles (+,

† Read as: “K-naught-bar,” or “K-zero-bar.”
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Table 11-4

The strangeness numbers of the strongly interacting particles

S

−2 −1 0 +1

Baryons Σ+ p
Ξ0 Λ0, Σ0 n
Ξ− Σ−

Mesons π+ K+

K0 π0 K0

K− π−

Note: The π− is the antiparticle of the π+ (or vice versa).

0, −) have strangeness −1. There is also a particle with strangeness −2—the
Ξ-particle (capital “ksi”)—and perhaps others as yet unknown. We have made a
list of these strangenesses in Table 11-4.

Let’s see how the strangeness conservation works in some of the reactions
we have written down. If we start with a K− and a proton, we have a total
strangeness of (−1 + 0) = −1. The conservation of strangeness says that the
strangeness of products after the reaction must also add up to −1. You see that
that is so for the reactions of (11.38) and (11.40). But in the reactions of (11.42)
the strangeness of the right-hand side is zero in each case. Such reactions do not
conserve strangeness, and do not occur. Why? Nobody knows. Nobody knows
any more than what we have just told you about this. Nature just works that way.

Now let’s look at the following reaction: a π− hits a proton. You might, for
instance, get a Λ0 particle plus a neutral K-particle—two neutral particles. Now
which neutral K do you get? Since the Λ-particle has a strangeness −1 and the
π and p+ have a strangeness zero, and since this is a fast production reaction,
the strangeness must not change. The K-particle must have strangeness +1—it
must therefore be the K0. The reaction is

π− + p→ Λ0 + K0,

with
S = 0 + 0 = −1 + +1 (conserved).
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If the K0 were there instead of the K0, the strangeness on the right would be −2—
which nature does not permit, since the strangeness on the left side is zero. On
the other hand, a K0 can be produced in other reactions, such as

n + n→ n + p + K0 + K+,

S = 0 + 0 = 0 + 0 +−1 + +1
or

K− + p→ n + K0,

S = −1 + 0 = 0 +−1.

You may be thinking, “That’s all a lot of stuff, because how do you know
whether it is a K0 or a K0? They look exactly the same. They are antiparticles
of each other, so they have exactly the same mass, and both have zero electric
charge. How do you distinguish them?” By the reactions they produce. For
example, a K0 can interact with matter to produce a Λ-particle, like this:

K0 + p→ Λ0 + π+,

but a K0 cannot. There is no way a K0 can produce a Λ-particle when it interacts
with ordinary matter (protons and neutrons).† So the experimental distinction
between the K0 and the K0 would be that one of them will and one of them will
not produce Λ’s.

One of the predictions of the strangeness theory is then this—if, in an
experiment with high-energy pions, a Λ-particle is produced with a neutral K-
meson, then that neutral K-meson going into other pieces of matter will never
produce a Λ. The experiment might run something like this. You send a beam
of π−-mesons into a large hydrogen bubble chamber. A π− track disappears, but
somewhere else a pair of tracks appear (a proton and a π−) indicating that a
Λ-particle has disintegrated‡—see Fig. 11-5. Then you know that there is a K0

somewhere which you cannot see.

† Except, of course, if it also produces two K+’s or other particles with a total strangeness
of +2. We can think here of reactions in which there is insufficient energy to produce these
additional strange particles.

‡ The free Λ-particle decays slowly via a weak interaction (so strangeness need not be
conserved). The decay products are either a p and a π−, or an n and a π0. The lifetime
is 2.2× 10−10 sec.
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Fig. 11-5. High-energy events as seen in a hydrogen bubble chamber.
(a) A π− meson interacts with a hydrogen nucleus (proton) producing
a Λ0 particle and a K0 meson. Both particles decay in the chamber.
(b) A K0 meson interacts with a proton producing a π+ meson and a
Λ0 particle which then decays. (The neutral particles leave no tracks.
Their inferred trajectories are indicated here by light dashed lines.)

You can, however, figure out where it is going by using the conservation of
momentum and energy. [It could reveal itself later by disintegrating into two
charged particles, as shown in Fig. 11-5(a).] As the K0 goes flying along, it may
interact with one of the hydrogen nuclei (protons), producing perhaps some other
particles. The prediction of the strangeness theory is that it will never produce
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a Λ-particle in a simple reaction like, say,

K0 + p→ Λ0 + π+,

although a K0 can do just that. That is, in a bubble chamber a K0 might produce
the event sketched in Fig. 11-5(b)—in which the Λ0 is seen because it decays—but
a K0 will not. That’s the first part of our story. That’s the conservation of
strangeness.

The conservation of strangeness is, however, not perfect. There are very
slow disintegrations of the strange particles—decays taking a long† time like
10−10 second in which the strangeness is not conserved. These are called the
“weak” decays. For example, the K0 disintegrates into a pair of π-mesons (+
and −) with a lifetime of 10−10 second. That was, in fact, the way K-particles
were first seen. Notice that the decay reaction

K0 → π+ + π−

does not conserve strangeness, so it cannot go “fast” by the strong interaction; it
can only go through the weak decay process.

Now the K0 also disintegrates in the same way—into a π+ and a π−—and
also with the same lifetime

K0 → π− + π+.

Again we have a weak decay because it does not conserve strangeness. There is a
principle that for any reaction there is the corresponding reaction with “matter”
replaced by “antimatter” and vice versa. Since the K0 is the antiparticle of the K0,
it should decay into the antiparticles of the π+ and π−, but the antiparticle of
a π+ is the π−. (Or, if you prefer, vice versa. It turns out that for the π-mesons
it doesn’t matter which one you call “matter.”) So as a consequence of the weak
decays, the K0 and K0 can go into the same final products. When “seen” through
their decays—as in a bubble chamber—they look like the same particle. Only
their strong interactions are different.

At last we are ready to describe the work of Gell-Mann and Pais. They first
noticed that since the K0 and the K0 can both turn into states of two π-mesons
there must be some amplitude that a K0 can turn into a K0, and also that a K0

can turn into a K0. Writing the reactions as one does in chemistry, we would
have

K0 
 π− + π+ 
 K0. (11.43)
† A typical time for strong interactions is more like 10−23 sec.
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These reactions imply that there is some amplitude per unit time, say −i/~
times 〈K0 |W |K0〉, that a K0 will turn into a K0 through the weak interaction
responsible for the decay into two π-mesons. And there is the corresponding
amplitude 〈K0 |W |K0〉 for the reverse process. Because matter and antimatter
behave in exactly the same way, these two amplitudes are numerically equal;
we’ll call them both A:

〈K0 |W |K0〉 = 〈K0 |W |K0〉 = A. (11.44)

Now—said Gell-Mann and Pais—here is an interesting situation. What people
have been calling two distinct states of the world—the K0 and the K0—should
really be considered as one two-state system, because there is an amplitude to
go from one state to the other. For a complete treatment, one would, of course,
have to deal with more than two states, because there are also the states of 2π’s,
and so on; but since they were mainly interested in the relation of K0 and K0,
they did not have to complicate things and could make the approximation of a
two-state system. The other states were taken into account to the extent that
their effects appeared implicitly in the amplitudes of Eq. (11.44).

Accordingly, Gell-Mann and Pais analyzed the neutral particle as a two-state
system. They began by choosing as their two base states the states |K0〉 and |K0〉.
(From here on, the story goes very much as it did for the ammonia molecule.)
Any state |ψ〉 of the neutral K-particle could then be described by giving the
amplitudes that it was in either base state. We’ll call these amplitudes

C+ = 〈K0 |ψ〉, C− = 〈K0 |ψ〉. (11.45)

The next step was to write the Hamiltonian equations for this two-state
system. If there were no coupling between the K0 and the K0, the equations
would be simply

i~
dC+

dt
= E0C+,

i~
dC−
dt

= E0C−.

(11.46)

But since there is the amplitude 〈K0 |W |K0〉 for the K0 to turn into a K0 there
should be the additional term

〈K0 |W |K0〉C− = AC−
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added to the right-hand side of the first equation. And similarly, the term AC+
should be inserted in the equation for the rate of change of C−.

But that’s not all. When the two-pion effect is taken into account there is an
additional amplitude for the K0 to turn into itself through the process

K0 → π− + π+ → K0.

The additional amplitude, which we would write 〈K0 |W |K0〉, is just equal to
the amplitude 〈K0 |W |K0〉, since the amplitudes to go to and from a pair of
π-mesons are identical for the K0 and the K0. If you wish, the argument can be
written out in detail like this. First write†

〈K0 |W |K0〉 = 〈K0 |W | 2π〉〈2π |W |K0〉
and

〈K0 |W |K0〉 = 〈K0 |W | 2π〉〈2π |W |K0〉.

Because of the symmetry of matter and antimatter

〈2π |W |K0〉 = 〈2π |W |K0〉,
and also

〈K0 |W | 2π〉 = 〈K0 |W | 2π〉.

It then follows that 〈K0 |W |K0〉 = 〈K0 |W |K0〉, and also that 〈K0 |W |K0〉 =
〈K0 |W |K0〉, as we said earlier. Anyway, there are the two additional amplitudes
〈K0 |W |K0〉 and 〈K0 |W |K0〉, both equal to A, which should be included in
the Hamiltonian equations. The first gives a term AC+ on the right-hand
side of the equation for dC+/dt, and the second gives a new term AC− in the
equation for dC−/dt. Reasoning this way, Gell-Mann and Pais concluded that
the Hamiltonian equations for the K0 K0 system should be

i~
dC+

dt
= E0C+ +AC− +AC+,

i~
dC−
dt

= E0C− +AC+ +AC−.

(11.47)

† We are making a simplification here. The 2π-system can have many states corresponding
to various momenta of the π-mesons, and we should make the right-hand side of this equation
into a sum over the various base states of the π’s. The complete treatment still leads to the
same conclusions.
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We must now correct something we have said in earlier chapters: that two
amplitudes like 〈K0 |W |K0〉 and 〈K0 |W |K0〉 which are the reverse of each
other, are always complex conjugates. That was true when we were talking
about particles that did not decay. But if particles can decay—and can, therefore,
become “lost”—the two amplitudes are not necessarily complex conjugates. So
the equality of (11.44) does not mean that the amplitudes are real numbers; they
are in fact complex numbers. The coefficient A is, therefore, complex; and we
can’t just incorporate it into the energy E0.

Having played often with electron spins and such, our heroes knew that the
Hamiltonian equations of (11.47) meant that there was another pair of base states
which could also be used to represent the K-particle system and which would
have especially simple behaviors. They said, “Let’s take the sum and difference
of these two equations. Also, let’s measure all our energies from E0, and use
units for energy and time that make ~ = 1.” (That’s what modern theoretical
physicists always do. It doesn’t change the physics but makes the equations take
on a simple form.) Their result:

i
d

dt
(C+ + C−) = 2A(C+ + C−), i

d

dt
(C+ − C−) = 0. (11.48)

It is apparent that the combinations of amplitudes (C+ +C−) and (C+−C−)
act independently from each other (corresponding, of course, to the stationary
states we have been studying earlier). So they concluded that it would be more
convenient to use a different representation for the K-particle. They defined the
two states

|K1〉 = 1√
2

(|K0〉+ |K0〉), |K2〉 = 1√
2

(|K0〉 − |K0〉). (11.49)

They said that instead of thinking of the K0 and K0 mesons, we can equally
well think in terms of the two “particles” (that is, “states”) K1 and K2. (These
correspond, of course, to the states we have usually called | I 〉 and | II 〉. We are
not using our old notation because we want now to follow the notation of the
original authors—and the one you will see in physics seminars.)

Now Gell-Mann and Pais didn’t do all this just to get different names for the
particles—there is also some strange new physics in it. Suppose that C1 and C2
are the amplitudes that some state |ψ〉 will be either a K1 or a K2 meson:

C1 = 〈K1 |ψ〉, C2 = 〈K2 |ψ〉.
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From the equations of (11.49),

C1 = 1√
2

(C+ + C−), C2 = 1√
2

(C+ − C−). (11.50)

Then the Eqs. (11.48) become

i
dC1

dt
= 2AC1, i

dC2

dt
= 0. (11.51)

The solutions are

C1(t) = C1(0)e−i2At, C2(t) = C2(0), (11.52)

where, of course, C1(0) and C2(0) are the amplitudes at t = 0.
These equations say that if a neutral K-particle starts out in the state |K1〉

at t = 0 [then C1(0) = 1 and C2(0) = 0], the amplitudes at the time t are

C1(t) = e−i2At, C2(t) = 0.

Remembering that A is a complex number, it is convenient to take 2A = α−iβ.
(Since the imaginary part of 2A turns out to be negative, we write it as minus iβ.)
With this substitution, C1(t) reads

C1(t) = C1(0)e−βte−iαt. (11.53)

The probability of finding a K1 particle at t is the absolute square of this amplitude,
which is e−2βt. And, from Eqs. (11.52), the probability of finding the K2 state at
any time is zero. That means that if you make a K-particle in the state |K1〉, the
probability of finding it in the same state decreases exponentially with time—but
you will never find it in state |K2〉. Where does it go? It disintegrates into two
π-mesons with the mean life τ = 1/2β which is, experimentally, 10−10 sec. We
made provisions for that when we said that A was complex.

On the other hand, Eq. (11.52) says that if we make a K-particle completely
in the K2 state, it stays that way forever. Well, that’s not really true. It is
observed experimentally to disintegrate into three π-mesons, but 600 times slower
than the two-pion decay we have described. So there are some other small terms
we have left out in our approximation. But so long as we are considering only
the two-pion decay, the K2 lasts “forever.”

Now to finish the story of Gell-Mann and Pais. They went on to consider what
happens when a K-particle is produced with a Λ0 particle in a strong interaction.
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Since it must then have a strangeness of +1, it must be produced in the K0 state.
So at t = 0 it is neither a K1 nor a K2 but a mixture. The initial conditions are

C+(0) = 1, C−(0) = 0.

But that means—from Eq. (11.50)—that

C1(0) = 1√
2
, C2(0) = 1√

2
,

and—from Eqs. (11.52) and (11.53)—that

C1(t) = 1√
2
e−βte−iαt, C2(t) = 1√

2
. (11.54)

Now remember that K0 and K0 are each linear combinations of K1 and K2. In
Eqs. (11.54) the amplitudes have been chosen so that at t = 0 the K0 parts
cancel each other out by interference, leaving only a K0 state. But the |K1〉 state
changes with time, and the |K2〉 state does not. After t = 0 the interference of
C1 and C2 will give finite amplitudes for both K0 and K0.

What does all this mean? Let’s go back and think of the experiment we
sketched in Fig. 11-5. A π− meson has produced a Λ0 particle and a K0 meson
which is tooting along through the hydrogen in the chamber. As it goes along,
there is some small but uniform chance that it will collide with a hydrogen nucleus.
At first, we thought that strangeness conservation would prevent the K-particle
from making a Λ0 in such an interaction. Now, however, we see that that is
not right. For although our K-particle starts out as a K0—which cannot make
a Λ0—it does not stay this way. After a while, there is some amplitude that it
will have flipped to the K0 state. We can, therefore, sometimes expect to see
a Λ0 produced along the K-particle track. The chance of this happening is given
by the amplitude C−, which we can [by using Eq. (11.50)) backwards] relate to
C1 and C2. The relation is

C− = 1√
2

(C1 − C2) = 1
2 (e−βte−iαt − 1). (11.55)

As our K-particle goes along, the probability that it will “act like” a K0 is equal
to |C−|2, which is

|C−|2 = 1
4 (1 + e−2βt − 2e−βt cosαt). (11.56)

A complicated and strange result!
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This, then, is the remarkable prediction of Gell-Mann and Pais: when a K0

is produced, the chance that it will turn into a K0—as it can demonstrate by
being able to produce a Λ0—varies with time according to Eq. (11.56). This
prediction came from using only sheer logic and the basic principles of the
quantum mechanics—with no knowledge at all of the inner workings of the K-
particle. Since nobody knows anything about the inner machinery, that is as far
as Gell-Mann and Pais could go. They could not give any theoretical values for
α and β. And nobody has been able to do so to this date. They were able to
give a value of β obtained from the experimentally observed rate of decay into
two π’s (2β = 1010 sec−1), but they could say nothing about α.

We have plotted the function of Eq. (11.56) for two values of α in Fig. 11-6.
You can see that the form depends very much on the ratio of α to β. There is
no K0 probability at first; then it builds up. If α is large, the probability would
have large oscillations. If α is small, there will be little or no oscillation—the
probability will just rise smoothly to 1/4.

Now, typically, the K-particle will be travelling at a constant speed near the
speed of light. The curves of Fig. 11-6 then also represent the probability along
the track of observing a K0—with typical distances of several centimeters. You
can see why this prediction is so remarkably peculiar. You produce a single
particle and instead of just disintegrating, it does something else. Sometimes
it disintegrates, and other times it turns into a different kind of a particle. Its
characteristic probability of producing an effect varies in a strange way as it goes
along. There is nothing else quite like it in nature. And this most remarkable
prediction was made solely by arguments about the interference of amplitudes.

If there is any place where we have a chance to test the main principles of
quantum mechanics in the purest way—does the superposition of amplitudes
work or doesn’t it?—this is it. In spite of the fact that this effect has been
predicted now for several years, there is no experimental determination that is
very clear. There are some rough results which indicate that the α is not zero,
and that the effect really occurs—they indicate that α is between 2β and 4β.
That’s all there is, experimentally. It would be very beautiful to check out the
curve exactly to see if the principle of superposition really still works in such a
mysterious world as that of the strange particles—with unknown reasons for the
decays, and unknown reasons for the strangeness.

The analysis we have just described is very characteristic of the way quantum
mechanics is being used today in the search for an understanding of the strange
particles. All the complicated theories that you may hear about are no more
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Fig. 11-6. The function of Eq. (11.56): (a) for α = 4πβ, (b) for
α = πβ (with 2β = 1010 sec−1).

and no less than this kind of elementary hocus-pocus using the principles of
superposition and other principles of quantum mechanics of that level. Some
people claim that they have theories by which it is possible to calculate the β
and α, or at least the α given the β, but these theories are completely useless.
For instance, the theory that predicts the value of α, given the β, tells us that
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the value of α should be infinite. The set of equations with which they originally
start involves two π-mesons and then goes from the two π’s back to a K0, and so
on. When it’s all worked out, it does indeed produce a pair of equations like the
ones we have here; but because there are an infinite number of states of two π’s,
depending on their momenta, integrating over all the possibilities gives an α
which is infinite. But nature’s α is not infinite. So the dynamical theories are
wrong. It is really quite remarkable that the phenomena which can be predicted
at all in the world of the strange particles come from the principles of quantum
mechanics at the level at which you are learning them now.

11-6 Generalization to N -state systems

We have finished with all the two-state systems we wanted to talk about. In
the following chapters we will go on to study systems with more states. The
extension to N -state systems of the ideas we have worked out for two states is
pretty straightforward. It goes like this.

If a system has N distinct states, we can represent any state |ψ(t)〉 as a linear
combination of any set of base states | i〉, where i = 1, 2, 3, . . . , N ;

|ψ(t)〉 =
∑
all i
| i〉Ci(t). (11.57)

The coefficients Ci(t) are the amplitudes 〈i |ψ(t)〉. The behavior of the ampli-
tudes Ci with time is governed by the equations

i~
dCi(t)
dt

=
∑
j

HijCj , (11.58)

where the energy matrix Hij describes the physics of the problem. It looks the
same as for two states. Only now, both i and j must range over all N base
states, and the energy matrix Hij—or, if you prefer, the Hamiltonian—is an N
by N matrix with N2 numbers. As before, H∗ij = Hji—so long as particles are
conserved—and the diagonal elements Hii are real numbers.

We have found a general solution for the C’s of a two-state system when the
energy matrix is constant (doesn’t depend on t). It is also not difficult to solve
Eq. (11.58) for an N -state system when H is not time dependent. Again, we
begin by looking for a possible solution in which the amplitudes all have the
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same time dependence. We try

Ci = aie
−(i/~)Et. (11.59)

When these Ci’s are substituted into (11.58), the derivatives dCi(t)/dt become
just (−i/~)ECi. Canceling the common exponential factor from all terms, we get

Eai =
∑
j

Hijaj . (11.60)

This is a set of N linear algebraic equations for the N unknowns a1, a2, . . . , aN ,
and there is a solution only if you are lucky—only if the determinant of the
coefficients of all the a’s is zero. But it’s not necessary to be that sophisticated;
you can just start to solve the equations any way you want, and you will find
that they can be solved only for certain values of E. (Remember that E is the
only adjustable thing we have in the equations.)

If you want to be formal, however, you can write Eq. (11.60) as∑
j

(Hij − δijE)aj = 0. (11.61)

Then you can use the rule—if you know it—that these equations will have a
solution only for those values of E for which

Det (Hij − δijE) = 0. (11.62)

Each term of the determinant is just Hij , except that E is subtracted from every
diagonal element. That is, (11.62) means just

Det


H11 − E H12 H13 . . .

H21 H22 − E H23 . . .

H31 H32 H33 − E . . .

. . . . . . . . . . . .

 = 0. (11.63)

This is, of course, just a special way of writing an algebraic equation for E which
is the sum of a bunch of products of all the terms taken a certain way. These
products will give all the powers of E up to EN .
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So we have an Nth order polynomial equal to zero, and there are, in general,
N roots. (We must remember, however, that some of them may be multiple
roots—meaning that two or more roots are equal.) Let’s call the N roots

EI , EII , EIII , . . . , En, . . . , EN. (11.64)

(We will use n to represent the nth Roman numeral, so that n takes on the
values I , II , . . . , N.) It may be that some of these energies are equal—say
EII = EIII—but we will still choose to call them by different names.

The equations (11.60)—or (11.61)—have one solution for each value of E. If
you put any one of the E’s—say En—into (11.60) and solve for the ai, you get a
set which belongs to the energy En. We will call this set ai(n).

Using these ai(n) in Eq. (11.59), we have the amplitudes Ci(n) that the
definite energy states are in the base state | i〉. Letting |n〉 stand for the state
vector of the definite energy state at t = 0, we can write

Ci(n) = 〈i |n〉e−(i/~)Ent,

with
〈i |n〉 = ai(n). (11.65)

The complete definite energy state |ψn(t)〉 can then be written as

|ψn(t)〉 =
∑
i

| i〉ai(n)e−(i/~)Ent,

or
|ψn(t)〉 = |n〉e−(i/~)Ent. (11.66)

The state vectors |n〉 describe the configuration of the definite energy states, but
have the time dependence factored out. Then they are constant vectors which
can be used as a new base set if we wish.

Each of the states |n〉 has the property—as you can easily show—that when
operated on by the Hamiltonian operator Ĥ it gives just En times the same state:

Ĥ |n〉 = En |n〉. (11.67)

The energy En is, then, a number which is a characteristic of the Hamiltonian
operator Ĥ. As we have seen, a Hamiltonian will, in general, have several
characteristic energies. In the mathematician’s world these would be called
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the “characteristic values” of the matrix Hij . Physicists usually call them the
“eigenvalues” of Ĥ. (“Eigen” is the German word for “characteristic” or “proper.”)
With each eigenvalue of Ĥ—in other words, for each energy—there is the state of
definite energy, which we have called the “stationary state.” Physicists usually call
the states |n〉 “the eigenstates of Ĥ.” Each eigenstate corresponds to a particular
eigenvalue En.

Now, generally, the states |n〉—of which there are N—can also be used as a
base set. For this to be true, all of the states must be orthogonal, meaning that
for any two of them, say |n〉 and |m〉,

〈n |m〉 = 0. (11.68)

This will be true automatically if all the energies are different. Also, we can
multiply all the ai(n) by a suitable factor so that all the states are normalized—by
which we mean that

〈n |n〉 = 1 (11.69)
for all n.

When it happens that Eq. (11.63) accidentally has two (or more) roots with
the same energy, there are some minor complications. First, there are still two
different sets of ai’s which go with the two equal energies, but the states they
give may not be orthogonal. Suppose you go through the normal procedure and
find two stationary states with equal energies—let’s call them |µ〉 and | ν〉. Then
it will not necessarily be so that they are orthogonal—if you are unlucky,

〈µ | ν〉 6= 0.

It is, however, always true that you can cook up two new states, which we will
call |µ′〉 and | ν′〉, that have the same energies and are also orthogonal, so that

〈µ′ | ν′〉 = 0. (11.70)

You can do this by making |µ′〉 and | ν′〉 a suitable linear combination of |µ〉
and | ν〉, with the coefficients chosen to make it come out so that Eq. (11.70) is
true. It is always convenient to do this. We will generally assume that this has
been done so that we can always assume that our proper energy states |n〉 are
all orthogonal.

We would like, for fun, to prove that when two of the stationary states
have different energies they are indeed orthogonal. For the state |n〉 with the
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energy En, we have that
Ĥ |n〉 = En |n〉. (11.71)

This operator equation really means that there is an equation between numbers.
Filling the missing parts, it means the same as∑

j

〈i | Ĥ | j〉〈j |n〉 = En〈i |n〉. (11.72)

If we take the complex conjugate of this equation, we get∑
j

〈i | Ĥ | j〉∗〈j |n〉∗ = E∗n〈i |n〉∗. (11.73)

Remember now that the complex conjugate of an amplitude is the reverse ampli-
tude, so (11.73) can be rewritten as∑

j

〈n | j〉〈j | Ĥ | i〉 = E∗n〈n | i〉. (11.74)

Since this equation is valid for any i, its “short form” is

〈n | Ĥ = E∗n〈n |, (11.75)

which is called the adjoint to Eq. (11.71).
Now we can easily prove that En is a real number. We multiply Eq. (11.71)

by 〈n | to get
〈n | Ĥ |n〉 = En, (11.76)

since 〈n |n〉 = 1. Then we multiply Eq. (11.75) on the right by |n〉 to get

〈n | Ĥ |n〉 = E∗n . (11.77)

Comparing (11.76) with (11.77) it is clear that

En = E∗n , (11.78)

which means that En is real. We can erase the star on En in Eq. (11.75).
Finally we are ready to show that the different energy states are orthogonal.

Let |n〉 and |m〉 be any two of the definite energy base states. Using Eq. (11.75)
for the state m, and multiplying it by |n〉, we get that

〈m | Ĥ |n〉 = Em〈m |n〉.
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But if we multiply (11.71) by 〈m |, we get

〈m | Ĥ |n〉 = En〈m |n〉.

Since the left sides of these two equations are equal, the right sides are, also:

Em〈m |n〉 = En〈m |n〉. (11.79)

If Em = En the equation does not tell us anything. But if the energies of the
two states |m〉 and |n〉 are different (Em 6= En), Eq. (11.79) says that 〈m |n〉
must be zero, as we wanted to prove. The two states are necessarily orthogonal
so long as En and Em are numerically different.
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12

The Hyperfine Splitting in Hydrogen

12-1 Base states for a system with two spin one-half particles

In this chapter we take up the “hyperfine splitting” of hydrogen, because
it is a physically interesting example of what we can already do with quantum
mechanics. It’s an example with more than two states, and it will be illustrative
of the methods of quantum mechanics as applied to slightly more complicated
problems. It is enough more complicated that once you see how this one is
handled you can get immediately the generalization to all kinds of problems.

As you know, the hydrogen atom consists of an electron sitting in the neigh-
borhood of the proton, where it can exist in any one of a number of discrete
energy states in each one of which the pattern of motion of the electron is different.
The first excited state, for example, lies 3/4 of a Rydberg, or about 10 electron
volts, above the ground state. But even the so-called ground state of hydrogen
is not really a single, definite-energy state, because of the spins of the electron
and the proton. These spins are responsible for the “hyperfine structure” in the
energy levels, which splits all the energy levels into several nearly equal levels.

The electron can have its spin either “up” or “down” and, the proton can
also have its spin either “up” or “down.” There are, therefore, four possible spin
states for every dynamical condition of the atom. That is, when people say “the
ground state” of hydrogen, they really mean the “four ground states,” and not
just the very lowest state. The four spin states do not all have exactly the same
energy; there are slight shifts from the energies we would expect with no spins.
The shifts are, however, much, much smaller than the 10 electron volts or so from
the ground state to the next state above. As a consequence, each dynamical state
has its energy split into a set of very close energy levels—the so-called hyperfine
splitting.

The energy differences among the four spin states is what we want to calculate
in this chapter. The hyperfine splitting is due to the interaction of the magnetic
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moments of the electron and proton, which gives a slightly different magnetic
energy for each spin state. These energy shifts are only about ten-millionths of
an electron volt—really very small compared with 10 electron volts! It is because
of this large gap that we can think about the ground state of hydrogen as a
“four-state” system, without worrying about the fact that there are really many
more states at higher energies. We are going to limit ourselves here to a study of
the hyperfine structure of the ground state of the hydrogen atom.

For our purposes we are not interested in any of the details about the positions
of the electron and proton because that has all been worked out by the atom so
to speak—it has worked itself out by getting into the ground state. We need
know only that we have an electron and proton in the neighborhood of each
other with some definite spatial relationship. In addition, they can have various
different relative orientations of their spins. It is only the effect of the spins that
we want to look into.

The first question we have to answer is: What are the base states for the
system? Now the question has been put incorrectly. There is no such thing as
“the” base states, because, of course, the set of base states you may choose is
not unique. New sets can always be made out of linear combinations of the old.
There are always many choices for the base states, and among them, any choice
is equally legitimate. So the question is not what is the base set, but what could
a base set be? We can choose any one we wish for our own convenience. It is
usually best to start with a base set which is physically the clearest. It may not
be the solution to any problem, or may not have any direct importance, but it
will generally make it easier to understand what is going on.

We choose the following four base states:

State 1: The electron and proton are both spin “up.”
State 2: The electron is “up” and the proton is “down.”
State 3: The electron is “down” and the proton is “up.”
State 4: The electron and proton are both “down.”

We need a handy notation for these four states, so we’ll represent them this way:

State 1: |+ +〉; electron up, proton up.
State 2: |+−〉; electron up, proton down.
State 3: | −+〉; electron down, proton up.
State 4: | −−〉; electron down, proton down.

(12.1)
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PROTON

ELECTRON

|++〉, | 1〉

|+−〉, | 2〉

|−+〉, | 3〉

|−−〉, | 4〉

Fig. 12-1. A set of base states for the ground state of the hydrogen
atom.

You will have to remember that the first plus or minus sign refers to the electron
and the second, to the proton. For handy reference, we’ve also summarized the
notation in Fig. 12-1. Sometimes it will also be convenient to call these states
| 1〉, | 2〉, | 3〉, and | 4〉.

You may say, “But the particles interact, and maybe these aren’t the right base
states. It sounds as though you are considering the two particles independently.”
Yes, indeed! The interaction raises the problem: what is the Hamiltonian for the
system, but the interaction is not involved in the question of how to describe the
system. What we choose for the base states has nothing to do with what happens
next. It may be that the atom cannot ever stay in one of these base states, even
if it is started that way. That’s another question. That’s the question: How do
the amplitudes change with time in a particular (fixed) base? In choosing the
base states, we are just choosing the “unit vectors” for our description.

While we’re on the subject, let’s look at the general problem of finding a set
of base states when there is more than one particle. You know the base states
for a single particle. An electron, for example, is completely described in real
life—not in our simplified cases, but in real life—by giving the amplitudes to be
in each of the following states:

| electron “up” with momentum p〉
or

| electron “down” with momentum p〉.

12-3



There are really two infinite sets of states, one state for each value of p. That
is to say that an electron state |ψ〉 is completely described if you know all the
amplitudes

〈+,p |ψ〉 and 〈−,p |ψ〉,

where the + and − represent the components of angular momentum along some
axis—usually the z-axis—and p is the vector momentum. There must, therefore,
be two amplitudes for every possible momentum (a multi-infinite set of base
states). That is all there is to describing a single particle.

When there is more than one particle, the base states can be written in a
similar way. For instance, if there were an electron and a proton in a more
complicated situation than we are considering, the base states could be of the
following kind:

| an electron with spin “up,” moving with momentum p1 and
a proton with spin “down,” moving with momentum p2〉.

And so on for other spin combinations. If there are more than two particles—same
idea. So you see that to write down the possible base states is really very easy.
The only problem is, what is the Hamiltonian?

For our study of the ground state of hydrogen we don’t need to use the full sets
of base states for the various momenta. We are specifying particular momentum
states for the proton and electron when we say “the ground state.” The details
of the configuration—the amplitudes for all the momentum base states—can be
calculated, but that is another problem. Now we are concerned only with the
effects of the spin, so we can take only the four base states of (12.1). Our next
problem is: What is the Hamiltonian for this set of states?

12-2 The Hamiltonian for the ground state of hydrogen

We’ll tell you in a moment what it is. But first, we should remind you of one
thing: any state can always be written as a linear combination of the base states.
For any state |ψ〉 we can write

|ψ〉 = |+ +〉〈+ + |ψ〉+ |+−〉〈+− |ψ〉+ | −+〉〈−+ |ψ〉
+ | −−〉〈−− |ψ〉. (12.2)
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Remember that the complete brackets are just complex numbers, so we can also
write them in the usual fashion as Ci, where i = 1, 2, 3, or 4, and write Eq. (12.2)
as

|ψ〉 = |+ +〉C1 + |+−〉C2 + | −+〉C3 + | −−〉C4. (12.3)

By giving the four amplitudes Ci we completely describe the spin state |ψ〉. If
these four amplitudes change with time, as they will, the rate of change in time
is given by the operator Ĥ. The problem is to find the Ĥ.

There is no general rule for writing down the Hamiltonian of an atomic
system, and finding the right formula is much more of an art than finding a set
of base states. We were able to tell you a general rule for writing a set of base
states for any problem of a proton and an electron, but to describe the general
Hamiltonian of such a combination is too hard at this level. Instead, we will lead
you to a Hamiltonian by some heuristic argument—and you will have to accept
it as the correct one because the results will agree with the test of experimental
observation.

You will remember that in the last chapter we were able to describe the
Hamiltonian of a single, spin one-half particle by using the sigma matrices—
or the exactly equivalent sigma operators. The properties of the operators
are summarized in Table 12-1. These operators—which are just a convenient,
shorthand way of keeping track of the matrix elements of the type 〈+ |σz |+〉—
were useful for describing the behavior of a single particle of spin one-half. The
question is: Can we find an analogous device to describe a system with two
spins? The answer is yes, very simply, as follows. We invent a thing which we
will call “sigma electron,” which we represent by the vector operator σe, and
which has the x-, y-, and z-components, σex, σey, σez. We now make the convention
that when one of these things operates on any one of our four base states of the

Table 12-1

σz |+〉 = + |+〉
σz | −〉 = − |−〉
σx |+〉 = + | −〉
σx | −〉 = + |+〉
σy |+〉 = +i | −〉
σy | −〉 = −i |+〉
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hydrogen atom, it acts only on the electron spin, and in exactly the same way as
if the electron were all by itself. Example: What is σey | −+〉? Since σy on an
electron “down” is −i times the corresponding state with the electron “up”,

σey | −+〉 = −i |+ +〉.

(When σey acts on the combined state it flips over the electron, but does nothing
to the proton and multiplies the result by −i.) Operating on the other states, σey
would give

σey |+ +〉 = i | −+〉,

σey |+−〉 = i | −−〉,

σey | −−〉 = −i |+−〉.

Just remember that the operators σe work only on the first spin symbol—that
is, on the electron spin.

Next we define the corresponding operator “sigma proton” for the proton
spin. Its three components σpx, σpy , σpz act in the same way as σe, only on the
proton spin. For example, if we have σpx acting on each of the four base states,
we get—always using Table 12-1—

σpx |+ +〉 = |+−〉,

σpx |+−〉 = |+ +〉,

σpx | −+〉 = | −−〉,

σpx | −−〉 = | −+〉.

As you can see, it’s not very hard.
Now in the most general case we could have more complex things. For instance,

we could have products of the two operators like σeyσpz . When we have such a
product we do first what the operator on the right says, and then do what the
other one says.† For example, we would have that

σexσ
p
z |+−〉 = σex(σpz |+−〉) = σex(− |+−〉) = −σex |+−〉 = −|−−〉.

† For these particular operators, you will notice it turns out that the sequence of the
operators doesn’t matter.
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Note that these operators don’t do anything on pure numbers—we have used
this fact when we wrote σex(−1) = (−1)σex. We say that the operators “commute”
with pure numbers, or that a number “can be moved through” the operator. You
can practice by showing that the product σexσpz gives the following results for the
four states:

σexσ
p
z |+ +〉 = + | −+〉,

σexσ
p
z |+−〉 = − |−−〉,

σexσ
p
z | −+〉 = + |+ +〉,

σexσ
p
z | −−〉 = − |+−〉.

If we take all the possible operators, using each kind of operator only once,
there are sixteen possibilities. Yes, sixteen—provided we include also the “unit
operator” 1̂. First, there are the three: σex, σey, σez. Then the three σpx, σpy ,
σpz—that makes six. In addition, there are the nine possible products of the
form σexσ

p
y which makes a total of 15. And there’s the unit operator which just

leaves any state unchanged. Sixteen in all.
Now note that for a four-state system, the Hamiltonian matrix has to be

a four-by-four matrix of coefficients—it will have sixteen entries. It is easily
demonstrated that any four-by-four matrix—and, therefore, the Hamiltonian
matrix in particular—can be written as a linear combination of the sixteen
double-spin matrices corresponding to the set of operators we have just made
up. Therefore, for the interaction between a proton and an electron that involves
only their spins, we can expect that the Hamiltonian operator can be written as
a linear combination of the same 16 operators. The only question is, how?

Well, first, we know that the interaction doesn’t depend on our choice of axes
for a coordinate system. If there is no external disturbance—like a magnetic
field—to determine a unique direction in space, the Hamiltonian can’t depend
on our choice of the direction of the x-, y-, and z-axes. That means that the
Hamiltonian can’t have a term like σex all by itself. It would be ridiculous, because
then somebody with a different coordinate system would get different results.

The only possibilities are a term with the unit matrix, say a constant a
(times 1̂), and some combination of the sigmas that doesn’t depend on the
coordinates—some “invariant” combination. The only scalar invariant combina-
tion of two vectors is the dot product, which for our σ’s is

σe · σp = σexσ
p
x + σeyσ

p
y + σezσ

p
z . (12.4)
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This operator is invariant with respect to any rotation of the coordinate system.
So the only possibility for a Hamiltonian with the proper symmetry in space is a
constant times the unit matrix plus a constant times this dot product, say,

Ĥ = E0 +Aσe · σp. (12.5)

That’s our Hamiltonian. It’s the only thing that it can be, by the symmetry of
space, so long as there is no external field. The constant term doesn’t tell us
much; it just depends on the level we choose to measure energies from. We may
just as well take E0 = 0. The second term tells us all we need to know to find
the level splitting of the hydrogen.

If you want to, you can think of the Hamiltonian in a different way. If there
are two magnets near each other with magnetic moments µe and µp, the mutual
energy will depend on µe · µp—among other things. And, you remember, we
found that the classical thing we call µe appears in quantum mechanics as µeσe.
Similarly, what appears classically as µp will usually turn out in quantum
mechanics to be µpσp (where µp is the magnetic moment of the proton, which is
about 1000 times smaller than µe, and has the opposite sign). So Eq. (12.5) says
that the interaction energy is like the interaction between two magnets—only
not quite, because the interaction of the two magnets depends on the radial
distance between them. But Eq. (12.5) could be—and, in fact, is—some kind
of an average interaction. The electron is moving all around inside the atom,
and our Hamiltonian gives only the average interaction energy. All it says is
that for a prescribed arrangement in space for the electron and proton there
is an energy proportional to the cosine of the angle between the two magnetic
moments, speaking classically. Such a classical qualitative picture may help you
to understand where it comes from, but the important thing is that Eq. (12.5) is
the correct quantum mechanical formula.

The order of magnitude of the classical interaction between two magnets
would be the product of the two magnetic moments divided by the cube of the
distance between them. The distance between the electron and the proton in the
hydrogen atom is, speaking roughly, one half an atomic radius, or 0.5 angstrom.
It is, therefore, possible to make a crude estimate that the constant A should
be about equal to the product of the two magnetic moments µe and µp divided
by the cube of 1/2 angstrom. Such an estimate gives a number in the right ball
park. It turns out that A can be calculated accurately once you understand the
complete quantum theory of the hydrogen atom—which we so far do not. It has,
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in fact, been calculated to an accuracy of about 30 parts in one million. So, unlike
the flip-flop constant A of the ammonia molecule, which couldn’t be calculated
at all well by a theory, our constant A for the hydrogen can be calculated from a
more detailed theory. But never mind, we will for our present purposes think of
the A as a number which could be determined by experiment, and analyze the
physics of the situation.

Taking the Hamiltonian of Eq. (12.5), we can use it with the equation

i~Ċi =
∑
j

HijCj (12.6)

to find out what the spin interactions do to the energy levels. To do that, we
need to work out the sixteen matrix elements Hij = 〈i |H | j〉 corresponding to
each pair of the four base states in (12.1).

We begin by working out what Ĥ | j〉 is for each of the four base states. For
example,

Ĥ |+ +〉 = Aσe · σp |+ +〉 = A{σexσpx + σeyσ
p
y + σezσ

p
z} |+ +〉. (12.7)

Using the method we described a little earlier—it’s easy if you have memorized
Table 12-1—we find what each pair of σ’s does on |+ +〉. The answer is

σexσ
p
x |+ +〉 = + | −−〉,

σeyσ
p
y |+ +〉 = − |−−〉,

σezσ
p
z |+ +〉 = + |+ +〉.

(12.8)

So (12.7) becomes

Ĥ |+ +〉 = A{|−−〉 − |−−〉+ |+ +〉} = A |+ +〉. (12.9)

Since our four base states are all orthogonal, that gives us immediately that

〈+ + |H |+ +〉 = A〈+ + |+ +〉 = A,

〈+− |H |+ +〉 = A〈+− |+ +〉 = 0,

〈−+ |H |+ +〉 = A〈−+ |+ +〉 = 0,

〈−− |H |+ +〉 = A〈−− |+ +〉 = 0.

(12.10)

12-9



Remembering that 〈j |H | i〉 = 〈i |H | j〉∗, we can already write down the differ-
ential equation for the amplitudes C1:

i~Ċ1 = H11C1 +H12C2 +H13C3 +H14C4

or
i~Ċ1 = AC1. (12.11)

That’s all! We get only the one term.

Table 12-2

Spin operators for the hydrogen atom

σe
xσ

p
x |+ +〉 = + | −−〉

σe
xσ

p
x |+−〉 = + | −+〉

σe
xσ

p
x | −+〉 = + |+−〉

σe
xσ

p
x | −−〉 = + |+ +〉

σe
yσ

p
y |+ +〉 = − |−−〉

σe
yσ

p
y |+−〉 = + | −+〉

σe
yσ

p
y | −+〉 = + |+−〉

σe
yσ

p
y | −−〉 = − |+ +〉

σe
zσ

p
z |+ +〉 = + |+ +〉

σe
zσ

p
z |+−〉 = − |+−〉

σe
zσ

p
z | −+〉 = − |−+〉

σe
zσ

p
z | −−〉 = + | −−〉

Now to get the rest of the Hamiltonian equations we have to crank through
the same procedure for Ĥ operating on the other states. First, we will let you
practice by checking out all of the sigma products we have written down in
Table 12-2. Then we can use them to get:

Ĥ |+−〉 = A{2 | −+〉 − |+−〉},

Ĥ | −+〉 = A{2 |+−〉 − |−+〉},

Ĥ | −−〉 = A | −−〉.

(12.12)
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Then, multiplying each one in turn on the left by all the other state vectors, we
get the following Hamiltonian matrix, Hij :

Hij =

i↓
j→
A 0 0 0
0 −A 2A 0
0 2A −A 0
0 0 0 A

 . (12.13)

It means, of course, nothing more than that our differential equations for the
four amplitudes Ci are

i~Ċ1 = AC1,

i~Ċ2 = −AC2 + 2AC3,

i~Ċ3 = 2AC2 −AC3,

i~Ċ4 = AC4.

(12.14)

Before solving these equations we can’t resist telling you about a clever rule
due to Dirac—it will make you feel that you are really advanced—although we
don’t need it for our work. We have—from the equations (12.9) and (12.12)—that

σe · σp |+ +〉 = |+ +〉,

σe · σp |+−〉 = 2 | −+〉 − |+−〉,

σe · σp | −+〉 = 2 |+−〉 − |−+〉,

σe · σp | −−〉 = | −−〉.

(12.15)

Look, said Dirac, I can also write the first and last equations as

σe · σp |+ +〉 = 2 |+ +〉 − |+ +〉,

σe · σp | −−〉 = 2 | −−〉 − |−−〉;

then they are all quite similar. Now I invent a new operator, which I will
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call Pspin exch and which I define to have the following properties:†

Pspin exch |+ +〉 = |+ +〉,
Pspin exch |+−〉 = | −+〉,
Pspin exch | −+〉 = |+−〉,
Pspin exch | −−〉 = | −−〉.

All the operator does is interchange the spin directions of the two particles. Then
I can write the whole set of equations in (12.15) as a simple operator equation:

σe · σp = 2Pspin exch − 1. (12.16)

That’s the formula of Dirac. His “spin exchange operator” gives a handy rule
for figuring out σe · σp. (You see, you can do everything now. The gates are
open.)

12-3 The energy levels

Now we are ready to work out the energy levels of the ground state of hydrogen
by solving the Hamiltonian equations (12.14). We want to find the energies of
the stationary states. This means that we want to find those special states |ψ〉
for which each amplitude Ci = 〈i |ψ〉 in the set belonging to |ψ〉 has the same
time dependence—namely, e−iωt. Then the state will have the energy E = ~ω.
So we want a set for which

Ci = aie
−(i/~)Et, (12.17)

where the four coefficients ai are independent of time. To see whether we can get
such amplitudes, we substitute (12.17) into Eq. (12.14) and see what happens.
Each i~ dC/dt in Eq. (12.14) turns into EC, and—after cancelling out the common
exponential factor—each C becomes an a; we get

Ea1 = Aa1,

Ea2 = −Aa2 + 2Aa3,

Ea3 = 2Aa2 −Aa3,

Ea4 = Aa4,

(12.18)

† This operator is now called the “Pauli spin exchange operator.”
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which we have to solve for a1, a2, a3, and a4. Isn’t it nice that the first equation
is independent of the rest—that means we can see one solution right away. If we
choose E = A,

a1 = 1, a2 = a3 = a4 = 0,

gives a solution. (Of course, taking all the a’s equal to zero also gives a solution,
but that’s no state at all!) Let’s call our first solution the state | I 〉:†

| I 〉 = | 1〉 = |+ +〉. (12.19)
Its energy is

EI = A.

With that clue you can immediately see another solution from the last equation
in (12.18):

a1 = a2 = a3 = 0, a4 = 1,

E = A.

We’ll call that solution state | II 〉:

| II 〉 = | 4〉 = | −−〉, (12.20)

EII = A.

Now it gets a little harder; the two equations left in (12.18) are mixed up.
But we’ve done it all before. Adding the two, we get

E(a2 + a3) = A(a2 + a3). (12.21)
Subtracting, we have

E(a2 − a3) = −3A(a2 − a3). (12.22)

By inspection—and remembering ammonia—we see that there are two solutions:

a2 = a3, E = A

and (12.23)
a2 = −a3, E = −3A.

† The state is really | I 〉e−(i/~)EI t; but, as usual we will identify the states by the constant
vectors which are equal to the complete vectors at t = 0.
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They are mixtures of | 2〉 and | 3〉. Calling these states | III 〉 and | IV 〉, and
putting in a factor 1/

√
2 to make the states properly normalized, we have

| III 〉 = 1√
2

(| 2〉+ | 3〉) = 1√
2

(|+−〉+ | −+〉),

EIII = A

(12.24)

and
| IV 〉 = 1√

2
(| 2〉 − | 3〉) = 1√

2
(|+−〉 − |−+〉),

EIV = −3A.
(12.25)

We have found four stationary states and their energies. Notice, incidentally,
that our four states are orthogonal, so they also can be used for base states if
desired. Our problem is completely solved.

Three of the states have the energy A, and the last has the energy −3A. The
average is zero—which means that when we took E0 = 0 in Eq. (12.5), we were
choosing to measure all the energies from the average energy. We can draw the
energy-level diagram for the ground state of hydrogen as shown in Fig. 12-2.

I, II, III

IV

|∆E| = h̄ω

E0 + A

E0

E0 − 3A

Fig. 12-2. Energy-level diagram for the ground state of atomic hydrogen.

Now the difference in energy between state | IV 〉 and any one of the others
is 4A. An atom which happens to have gotten into state | I 〉 could fall from there
to state | IV 〉 and emit light. Not optical light, because the energy is so tiny—it
would emit a microwave quantum. Or, if we shine microwaves on hydrogen
gas, we will find an absorption of energy as the atoms in state | IV 〉 pick up
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energy and go into one of the upper states—but only at the frequency ω = 4A/~.
This frequency has been measured experimentally; the best result, obtained very
recently,† is

f = ω/2π = (1,420,405,751.800± 0.028) cycles per second. (12.26)

The error is only two parts in 100 billion! Probably no basic physical quantity
is measured better than that—it’s one of the most remarkably accurate mea-
surements in physics. The theorists were very happy that they could compute
the energy to an accuracy of 3 parts in 105, but in the meantime it has been
measured to 2 parts in 1011—a million times more accurate than the theory. So
the experimenters are way ahead of the theorists. In the theory of the ground
state of the hydrogen atom you are as good as anybody. You, too, can just
take your value of A from experiment—that’s what everybody has to do in the
end.

You have probably heard before about the “21-centimeter line” of hydrogen.
That’s the wavelength of the 1420 megacycle spectral line between the hyperfine
states. Radiation of this wavelength is emitted or absorbed by the atomic
hydrogen gas in the galaxies. So with radio telescopes tuned in to 21-cm waves
(or 1420 megacycles approximately) we can observe the velocities and the location
of concentrations of atomic hydrogen gas. By measuring the intensity, we can
estimate the amount of hydrogen. By measuring the frequency shift due to the
Doppler effect, we can find out about the motion of the gas in the galaxy. That
is one of the big programs of radio astronomy. So now we are talking about
something that’s very real—it is not an artificial problem.

12-4 The Zeeman splitting

Although we have finished the problem of finding the energy levels of the
hydrogen ground state, we would like to study this interesting system some more.
In order to say anything more about it—for instance, in order to calculate the rate
at which the hydrogen atom absorbs or emits radio waves at 21 centimeters—we
have to know what happens when the atom is disturbed. We have to do as we
did for the ammonia molecule—after we found the energy levels we went on and
studied what happened when the molecule was in an electric field. We were
then able to figure out the effects from the electric field in a radio wave. For the

† Crampton, Kleppner, and Ramsey; Physical Review Letters, Vol. 11, page 338 (1963).
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hydrogen atom, the electric field does nothing to the levels, except to move them
all by some constant amount proportional to the square of the field—which is not
of any interest because that won’t change the energy differences. It is now the
magnetic field which is important. So the next step is to write the Hamiltonian
for a more complicated situation in which the atom sits in an external magnetic
field.

What, then, is the Hamiltonian? We’ll just tell you the answer, because we
can’t give you any “proof” except to say that this is the way the atom works.

The Hamiltonian is

Ĥ = A(σe · σp)− µeσe ·B − µpσp ·B. (12.27)

It now consists of three parts. The first term Aσe · σp represents the magnetic
interaction between the electron and the proton—it is the same one that would
be there if there were no magnetic field. This is the term we have already
had; and the influence of the magnetic field on the constant A is negligible.
The effect of the external magnetic field shows up in the last two terms. The
second term, −µeσe ·B, is the energy the electron would have in the magnetic
field if it were there alone.† In the same way, the last term −µpσp ·B, would
have been the energy of a proton alone. Classically, the energy of the two
of them together would be the sum of the two, and that works also quantum
mechanically. In a magnetic field, the energy of interaction due to the magnetic
field is just the sum of the energy of interaction of the electron with the external
field, and of the proton with the field—both expressed in terms of the sigma
operators. In quantum mechanics these terms are not really the energies, but
thinking of the classical formulas for the energy is a way of remembering the
rules for writing down the Hamiltonian. Anyway, the correct Hamiltonian is
Eq. (12.27).

Now we have to go back to the beginning and do the problem all over again.
Much of the work is, however, done—we need only to add the effects of the new
terms. Let’s take a constant magnetic field B in the z-direction. Then we have
to add to our Hamiltonian operator Ĥ the two new pieces—which we can call Ĥ ′:

Ĥ ′ = −(µeσez + µpσ
p
z )B.

† Remember that classically U = −µ ·B, so the energy is lowest when the moment is along
the field. For positive particles, the magnetic moment is parallel to the spin and for negative
particles it is opposite. So in Eq. (12.27), µp is a positive number, but µe is a negative number.
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Using Table 12-1, we get right away that

Ĥ ′ |+ +〉 = −(µe + µp)B |+ +〉,

Ĥ ′ |+−〉 = −(µe − µp)B |+−〉,

Ĥ ′ | −+〉 = −(−µe + µp)B | −+〉,

Ĥ ′ | −−〉 = (µe + µp)B | −−〉.

(12.28)

How very convenient! The Ĥ ′ operating on each state just gives a number times
that state. The matrix 〈i |H ′ | j〉 has, therefore, only diagonal elements—we can
just add the coefficients in (12.28) to the corresponding diagonal terms of (12.13),
and the Hamiltonian equations of (12.14) become

i~ dC1/dt = {A− (µe + µp)B}C1,

i~ dC2/dt = −{A+ (µe − µp)B}C2 + 2AC3,

i~ dC3/dt = 2AC2 − {A− (µe − µp)B}C3,

i~ dC4/dt = {A+ (µe + µp)B}C4.

(12.29)

The form of the equations is not different—only the coefficients. So long
as B doesn’t vary with time, we can continue as we did before. Substituting
Ci = aie

−(i/~)Et, we get—as a modification of (12.18)—

Ea1 = {A− (µe + µp)B}a1,

Ea2 = −{A+ (µe − µp)B}a2 + 2Aa3,

Ea3 = 2Aa2 − {A− (µe − µp)B}a3,

Ea4 = {A+ (µe + µp)B}a4.

(12.30)

Fortunately, the first and fourth equations are still independent of the rest, so
the same technique works again.

One solution is the state | I 〉 for which a1 = 1, a2 = a3 = a4 = 0, or

| I 〉 = | 1〉 = |+ +〉,
with (12.31)

EI = A− (µe + µp)B.
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Another is
| II 〉 = | 4〉 = | −−〉,

with (12.32)
EII = A+ (µe + µp)B.

A little more work is involved for the remaining two equations, because the
coefficients of a2 and a3 are no longer equal. But they are just like the pair we
had for the ammonia molecule. Looking back at Eq. (9.20), we can make the
following analogy (remembering that the labels 1 and 2 there correspond to 2
and 3 here):

H11 → −A− (µe − µp)B,

H12 → 2A,

H21 → 2A,

H22 → −A+ (µe − µp)B.

(12.33)

The energies are then given by (9.25), which was

E = H11 +H22

2 ±
√

(H11 −H22)2

4 +H12H21. (12.34)

Making the substitutions from (12.33), the energy formula becomes

E = −A±
√

(µe − µp)2B2 + 4A2.

Although in Chapter 9 we used to call these energies EI and EII , and we are in
this problem calling them EIII and EIV ,

EIII = A{−1 + 2
√

1 + (µe − µp)2B2/4A2},

EIV = −A{1 + 2
√

1 + (µe − µp)2B2/4A2}.
(12.35)

So we have found the energies of the four stationary states of a hydrogen
atom in a constant magnetic field. Let’s check our results by letting B go to zero
and seeing whether we get the same energies we had in the preceding section.
You see that we do. For B = 0, the energies EI , EII , and EIII go to +A, and
EIV goes to −3A. Even our labeling of the states agrees with what we called
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them before. When we turn on the magnetic field though, all of the energies
change in a different way. Let’s see how they go.

First, we have to remember that for the electron, µe is negative, and about
1000 times larger than µp—which is positive. So µe + µp and µe − µp are both
negative numbers, and nearly equal. Let’s call them −µ and −µ′:

µ = −(µe + µp), µ′ = −(µe − µp). (12.36)

(Both µ and µ′ are positive numbers, nearly equal to magnitude of µe—which is
about one Bohr magneton.) Then our four energies are

EI = A+ µB,

EII = A− µB,

EIII = A{−1 + 2
√

1 + µ′2B2/4A2},

EIV = −A{1 + 2
√

1 + µ′2B2/4A2}.

(12.37)

The energy EI starts at A and increases linearly with B—with the slope µ. The
energy EII also starts at A but decreases linearly with increasing B—its slope
is −µ. These two levels vary with B as shown in Fig. 12-3. We show also in
the figure the energies EIII and EIV . They have a different B-dependence. For
small B, they depend quadratically on B, so they start out with horizontal slopes.
Then they begin to curve, and for large B they approach straight lines with
slopes ±µ′, which are nearly the same as the slopes of EI and EII .

The shift of the energy levels of an atom due to a magnetic field is called the
Zeeman effect. We say that the curves in Fig. 12-3 show the Zeeman splitting of
the ground state of hydrogen. When there is no magnetic field, we get just one
spectral line from the hyperfine structure of hydrogen. The transitions between
state | IV 〉 and any one of the others occurs with the absorption or emission of a
photon whose frequency 1420 megacycles is 1/h times the energy difference 4A.
When the atom is in a magnetic field B, however, there are many more lines.
There can be transitions between any two of the four states. So if we have atoms
in all four states, energy can be absorbed—or emitted—in any one of the six
transitions shown by the vertical arrows in Fig. 12-4. Many of these transitions
can be observed by the Rabi molecular beam technique we described in Volume II,
Section 35-3 (see Appendix).

What makes the transitions go? The transitions will occur if you apply a
small disturbing magnetic field that varies with time (in addition to the steady
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Fig. 12-3. The energy levels of the ground state of hydrogen in a
magnetic field B.
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Fig. 12-4. Transitions between the levels of ground state energy levels
of hydrogen in some particular magnetic field B.
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strong field B). It’s just as we saw for a varying electric field on the ammonia
molecule. Only here, it is the magnetic field which couples with the magnetic
moments and does the trick. But the theory follows through in the same way
that we worked it out for the ammonia. The theory is the simplest if you take a
perturbing magnetic field that rotates in the xy-plane—although any horizontal
oscillating field will do. When you put in this perturbing field as an additional
term in the Hamiltonian, you get solutions in which the amplitudes vary with
time—as we found for the ammonia molecule. So you can calculate easily and
accurately the probability of a transition from one state to another. And you
find that it all agrees with experiment.

12-5 The states in a magnetic field

We would like now to discuss the shapes of the curves in Fig. 12-3. In the first
place, the energies for large fields are easy to understand, and rather interesting.
For B large enough (namely for µB/A� 1) we can neglect the 1 in the formulas
of (12.37). The four energies become

EI = A+ µB, EII = A− µB,

EIII = −A+ µ′B, EIV = −A− µ′B.
(12.38)

These are the equations of the four straight lines in Fig. 12-3. We can understand
these energies physically in the following way. The nature of the stationary states
in a zero field is determined completely by the interaction of the two magnetic
moments. The mixtures of the base states |+−〉 and | −+〉 in the stationary
states | III 〉 and | IV 〉 are due to this interaction. In large external fields, however,
the proton and electron will be influenced hardly at all by the field of the other;
each will act as if it were alone in the external field. Then—as we have seen many
times—the electron spin will be either parallel to or opposite to the external
magnetic field.

Suppose the electron spin is “up”—that is, along the field; its energy will
be −µeB. The proton can still be either way. If the proton spin is also “up,” its
energy is −µpB. The sum of the two is −(µe + µp)B = µB. That is just what
we find for EI—which is fine, because we are describing the state |+ +〉 = | I 〉.
There is still the small additional term A (now µB � A) which represents the
interaction energy of the proton and electron when their spins are parallel. (We
originally took A as positive because the theory we spoke of says it should be,
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and experimentally it is indeed so.) On the other hand, the proton can have
its spin down. Then its energy in the external field goes to +µpB, so it and
the electron have the energy −(µe − µp)B = µ′B. And the interaction energy
becomes −A. The sum is just the energy EIII , in (12.38). So the state | III 〉
must for large fields become the state |+−〉.

Suppose now the electron spin is “down.” Its energy in the external field is µeB.
If the proton is also “down,” the two together have the energy (µe+µp)B = −µB,
plus the interaction energy A—since their spins are parallel. That makes just
the energy EII in (12.38) and corresponds to the state | −−〉 = | II 〉—which
is nice. Finally if the electron is “down” and the proton is “up,” we get the
energy (µe−µp)B−A (minus A for the interaction because the spins are opposite)
which is just EIV . And the state corresponds to | −+〉.

“But, wait a moment!”, you are probably saying, “The states | III 〉 and | IV 〉
are not the states |+−〉 and | −+〉; they are mixtures of the two.” Well, only
slightly. They are indeed mixtures for B = 0, but we have not yet figured out
what they are for large B. When we used the analogies of (12.33) in our formulas
of Chapter 9 to get the energies of the stationary states, we could also have taken
the amplitudes that go with them. They come from Eq. (9.24), which is

a2

a3
= E −H22

H21
.

The ratio a2/a3 is, of course, just C2/C3. Plugging in the analogous quantities
from (12.33), we get

C2

C3
= E +A− (µe − µp)B

2A
or

C2

C3
= E +A+ µ′B

2A , (12.39)

where for E we are to use the appropriate energy—either EIII or EIV . For
instance, for state | III 〉 we have(

C2

C3

)
III
≈ µ′B

A
. (12.40)

So for large B the state | III 〉 has C2 � C3; the state becomes almost completely
the state | 2〉 = |+−〉. Similarly, if we put EIV into (12.39) we get (C2/C3)IV �
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1; for high fields state | IV 〉 becomes just the state | 3〉 = | −+〉. You see that
the coefficients in the linear combinations of our base states which make up the
stationary states depend on B. The state we call | III 〉 is a 50-50 mixture of
|+−〉 and | −+〉 at very low fields, but shifts completely over to |+−〉 at high
fields. Similarly, the state | IV 〉, which at low fields is also a 50-50 mixture (with
opposite signs) of |+−〉 and | −+〉, goes over into the state | −+〉 when the
spins are uncoupled by a strong external field.

B

E

+A

0

−3A

j m

I 1 +1

III 1 0

II 1 −1

IV 0 0

Fig. 12-5. The states of the hydrogen atom for small magnetic fields.

We would also like to call your attention particularly to what happens at
very low magnetic fields. There is one energy—at −3A—which does not change
when you turn on a small magnetic field. And there is another energy—at +A—
which splits into three different energy levels when you turn on a small magnetic
field. For weak fields the energies vary with B as shown in Fig. 12-5. Suppose
that we have somehow selected a bunch of hydrogen atoms which all have the
energy −3A. If we put them through a Stern-Gerlach experiment—with fields
that are not too strong—we would find that they just go straight through. (Since
their energy doesn’t depend on B, there is—according to the principle of virtual
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work—no force on them in a magnetic field gradient.) Suppose, on the other
hand, we were to select a bunch of atoms with the energy +A, and put them
through a Stern-Gerlach apparatus, say an S apparatus. (Again the fields in
the apparatus should not be so great that they disrupt the insides of the atom,
by which we mean a field small enough that the energies vary linearly with B.)
We would find three beams. The states | I 〉 and | II 〉 get opposite forces—their
energies vary linearly with B with the slopes ±µ so the forces are like those on a
dipole with µz = ∓µ; but the state | III 〉 goes straight through. So we are right
back in Chapter 5. A hydrogen atom with the energy +A is a spin-one particle.
This energy state is a “particle” for which j = 1, and it can be described—with
respect to some set of axes in space—in terms of the base states |+S〉, | 0S〉,
and | −S〉 we used in Chapter 5. On the other hand, when a hydrogen atom has
the energy −3A, it is a spin-zero particle. (Remember, what we are saying is
only strictly true for infinitesimal magnetic fields.) So we can group the states of
hydrogen in zero magnetic field this way:

| I 〉 = |+ +〉

| III 〉 = |+−〉+ | −+〉√
2

| II 〉 = | −−〉

 spin 1


|+S〉

| 0S〉

| −S〉

(12.41)

| IV 〉 = |+−〉 − |−+〉√
2

spin 0. (12.42)

We have said in Chapter 35 of Volume II (Appendix) that for any particle its
component of angular momentum along any axis can have only certain values
always ~ apart. The z-component of angular momentum Jz can be j~, (j − 1)~,
(j − 2)~, . . . , (−j)~, where j is the spin of the particle (which can be an integer
or half-integer). Although we neglected to say so at the time, people usually
write

Jz = m~, (12.43)

where m stands for one of the numbers j, j−1, j−2, . . . , −j. You will, therefore,
see people in books label the four ground states of hydrogen by the so-called
quantum numbers j and m [often called the “total angular momentum quantum
number” (j) and “magnetic quantum number” (m)]. Then, instead of our state
symbols | I 〉, | II 〉, and so on, they will write a state as | j,m〉. So they would
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write our little table of states for zero field in (12.41) and (12.42) as shown in
Table 12-3. It’s not new physics, it’s all just a matter of notation.

Table 12-3

Zero field states of the hydrogen atom

State | j,m〉 j m Our notation

| 1,+1〉 1 +1 | I 〉 = |+S〉
| 1, 0〉 1 0 | III 〉 = | 0S〉
| 1,−1〉 1 −1 | II 〉 = | −S〉
| 0, 0〉 0 0 | IV 〉

12-6 The projection matrix for spin one†

We would like now to use our knowledge of the hydrogen atom to do something
special. We discussed in Chapter 5 that a particle of spin one which was in one
of the base states (+, 0, or −) with respect to a Stern-Gerlach apparatus of a
particular orientation—say an S apparatus—would have a certain amplitude to
be in each of the three states with respect to a T apparatus with a different
orientation in space. There are nine such amplitudes 〈jT | iS〉 which make up
the projection matrix. In Section 5-7 we gave without proof the terms of this
matrix for various orientations of T with respect to S. Now we will show you
one way they can be derived.

In the hydrogen atom we have found a spin-one system which is made up of
two spin one-half particles. We have already worked out in Chapter 6 how to
transform the spin one-half amplitudes. We can use this information to calculate
the transformation for spin one. This is the way it works: We have a system—a
hydrogen atom with the energy +A—which has spin one. Suppose we run it
through a Stern-Gerlach filter S, so that we know it is in one of the base states
with respect to S, say |+S〉. What is the amplitude that it will be in one of the
base states, say |+T 〉, with respect to the T apparatus? If we call the coordinate
system of the S apparatus the x, y, z system, the |+S〉 state is what we have
been calling the state |+ +〉. But suppose another guy took his z-axis along the
axis of T . He will be referring his states to what we will call the x′, y′, z′ frame.

† Those who chose to jump over Chapter 6 should skip this section also.
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His “up” and “down” states for the electron and proton would be different from
ours. His “plus-plus” state—which we can write |+′+′〉, referring to the “prime”
frame—is the |+T 〉 state of the spin-one particle. What we want is 〈+T |+S〉
which is just another way of writing the amplitude 〈+′+′ |+ +〉.

We can find the amplitude 〈+′+′ |+ +〉 in the following way. In our frame
the electron in the |+ +〉 state has its spin “up”. That means that it has some
amplitude 〈+′ |+〉e of being “up” in his frame, and some amplitude 〈−′ |+〉e of
being “down” in that frame. Similarly, the proton in the |+ +〉 state has spin
“up” in our frame and the amplitudes 〈+′ |+〉p and 〈−′ |+〉p of having spin “up”
or spin “down” in the “prime” frame. Since we are talking about two distinct
particles, the amplitude that both particles will be “up” together in his frame is
the product of the two amplitudes,

〈+′+′ |+ +〉 = 〈+′ |+〉e〈+′ |+〉p. (12.44)

We have put the subscripts e and p on the amplitudes 〈+′ |+〉 to make it clear
what we were doing. But they are both just the transformation amplitudes for
a spin one-half particle, so they are really identical numbers. They are, in fact,
just the amplitude we have called 〈+T |+S〉 in Chapter 6, and which we listed
in the tables at the end of that chapter.

Now, however, we are about to get into trouble with notation. We have
to be able to distinguish the amplitude 〈+T |+S〉 for a spin one-half particle
from what we have also called 〈+T |+S〉 for a spin-one particle—yet they are
completely different! We hope it won’t be too confusing, but for the moment at
least, we will have to use some different symbols for the spin one-half amplitudes.
To help you keep things straight, we summarize the new notation in Table 12-4.
We will continue to use the notation |+S〉, | 0S〉, and | −S〉 for the states of a
spin-one particle.

Table 12-4

Spin one-half amplitudes

This chapter Chapter 6

a = 〈+′ |+〉 〈+T |+S〉
b = 〈−′ |+〉 〈−T |+S〉
c = 〈+′ | −〉 〈+T | −S〉
d = 〈−′ | −〉 〈−T | −S〉
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With our new notation, Eq. (12.44) becomes simply

〈+′+′ |+ +〉 = a2,

and this is just the spin-one amplitude 〈+T |+S〉. Now, let’s suppose, for instance,
that the other guy’s coordinate frame—that is, the T , or “primed,” apparatus—is
just rotated with respect to our z-axis by the angle φ; then from Table 6-2,

a = 〈+′ |+〉 = eiφ/2.

So from (12.44) we have that the spin-one amplitude is

〈+T |+S〉 = 〈+′+′ |+ +〉 = (eiφ/2)2 = eiφ. (12.45)

You can see how it goes.
Now we will work through the general case for all the states. If the proton

and electron are both “up” in our frame—the S-frame—the amplitudes that
it will be in any one of the four possible states in the other guy’s frame—the
T -frame—are

〈+′+′ |+ +〉 = 〈+′ |+〉e〈+′ |+〉p = a2,

〈+′−′ |+ +〉 = 〈+′ |+〉e〈−′ |+〉p = ab,

〈−′+′ |+ +〉 = 〈−′ |+〉e〈+′ |+〉p = ba,

〈−′−′ |+ +〉 = 〈−′ |+〉e〈−′ |+〉p = b2.

(12.46)

We can, then, write the state |+ +〉 as the following linear combination:

|+ +〉 = a2 |+′+′〉+ ab{|+′−′〉+ | −′+′〉}+ b2 | −′−′〉. (12.47)

Now we notice that |+′+′〉 is the state |+T 〉, that {|+′−′〉 + | −′+′〉} is just√
2 times the state | 0T 〉—see (12.41)—and that | −′−′〉 = | −T 〉. In other words,

Eq. (12.47) can be rewritten as

|+S〉 = a2 |+T 〉+
√

2 ab | 0T 〉+ b2 | −T 〉. (12.48)

In a similar way you can easily show that

| −S〉 = c2 |+T 〉+
√

2 cd | 0T 〉+ d2 | −T 〉. (12.49)
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For | 0S〉 it’s a little more complicated, because

| 0S〉 = 1√
2
{|+−〉+ | −+〉}.

But we can express each of the states |+−〉 and | −+〉 in terms of the “prime”
states and take the sum. That is,

|+−〉 = ac |+′+′〉+ ad |+′−′〉+ bc | −′+′〉+ bd | −′−′〉 (12.50)
and

| −+〉 = ac |+′+′〉+ bc |+′−′〉+ ad | −′+′〉+ bd | −′−′〉. (12.51)

Taking 1/
√

2 times the sum, we get

| 0S〉 = 2√
2
ac |+′+′〉+ ad+ bc√

2
{|+′−′〉+ | −′+′〉}+ 2√

2
bd | −′−′〉.

It follows that

| 0S〉 =
√

2 ac |+T 〉+ (ad+ bc) | 0T 〉+
√

2 bd | −T 〉. (12.52)

We have now all of the amplitudes we wanted. The coefficients of Eqs.
(12.48), (12.49), and (12.52) are the matrix elements 〈jT | iS〉. Let’s pull them
all together:

〈jT | iS〉 =

jT↓
iS→

a2 √
2 ac c2

√
2 ab ad+ bc

√
2 cd

b2
√

2 bd d2

 . (12.53)

We have expressed the spin-one transformation in terms of the spin one-half
amplitudes a, b, c, and d.

For instance, if the T -frame is rotated with respect to S by the angle α about
the y-axis—as in Fig. 5-6—the amplitudes in Table 12-4 are just the matrix
elements of Ry(α) in Table 6-2.

a = cos α2 , b = − sin α2 ,

c = sin α2 , d = cos α2 .
(12.54)
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Using these in (12.53), we get the formulas of (5.38), which we gave there without
proof.

What ever happened to the state | IV 〉?! Well, it is a spin-zero system, so it
has only one state—it is the same in all coordinate systems. We can check that
everything works out by taking the difference of Eq. (12.50) and (12.51); we get
that

|+−〉 − |−+〉 = (ad− bc){|+′−′〉 − |−′+′〉}.

But (ad− bc) is the determinant of the spin one-half matrix, and so is equal to 1.
We get that

| IV ′〉 = | IV 〉

for any relative orientation of the two coordinate frames.
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13

Propagation in a Crystal Lattice

13-1 States for an electron in a one-dimensional lattice

You would, at first sight, think that a low-energy electron would have great
difficulty passing through a solid crystal. The atoms are packed together with
their centers only a few angstroms apart, and the effective diameter of the atom
for electron scattering is roughly an angstrom or so. That is, the atoms are
large, relative to their spacing, so that you would expect the mean free path
between collisions to be of the order of a few angstroms—which is practically
nothing. You would expect the electron to bump into one atom or another almost
immediately. Nevertheless, it is a ubiquitous phenomenon of nature that if the
lattice is perfect, the electrons are able to travel through the crystal smoothly
and easily—almost as if they were in a vacuum. This strange fact is what lets
metals conduct electricity so easily; it has also permitted the development of
many practical devices. It is, for instance, what makes it possible for a transistor
to imitate the radio tube. In a radio tube electrons move freely through a vacuum,
while in the transistor they move freely through a crystal lattice. The machinery
behind the behavior of a transistor will be described in this chapter; the next
one will describe the application of these principles in various practical devices.

The conduction of electrons in a crystal is one example of a very common
phenomenon. Not only can electrons travel through crystals, but other “things”
like atomic excitations can also travel in a similar manner. So the phenomenon
which we want to discuss appears in many ways in the study of the physics of
the solid state.

You will remember that we have discussed many examples of two-state systems.
Let’s now think of an electron which can be in either one of two positions, in
each of which it is in the same kind of environment. Let’s also suppose that there
is a certain amplitude to go from one position to the other, and, of course, the
same amplitude to go back, just as we have discussed for the hydrogen molecular
ion in Section 10-1. The laws of quantum mechanics then give the following
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results. There are two possible states of definite energy for the electron. Each
state can be described by the amplitude for the electron to be in each of the two
basic positions. In either of the definite-energy states, the magnitudes of these
two amplitudes are constant in time, and the phases vary in time with the same
frequency. On the other hand, if we start the electron in one position, it will
later have moved to the other, and still later will swing back again to the first
position. The amplitude is analogous to the motions of two coupled pendulums.

Now consider a perfect crystal lattice in which we imagine that an electron
can be situated in a kind of “pit” at one particular atom and with some particular
energy. Suppose also that the electron has some amplitude to move into a different
pit at one of the nearby atoms. It is something like the two-state system—but
with an additional complication. When the electron arrives at the neighboring
atom, it can afterward move on to still another position as well as return to its
starting point. Now we have a situation analogous not to two coupled pendulums,
but to an infinite number of pendulums all coupled together. It is something like
what you see in one of those machines—made with a long row of bars mounted on
a torsion wire—that is used in first-year physics to demonstrate wave propagation.

If you have a harmonic oscillator which is coupled to another harmonic
oscillator, and that one to another, and so on . . . , and if you start an irregularity
in one place, the irregularity will propagate as a wave along the line. The same
situation exists if you place an electron at one atom of a long chain of atoms.

Usually, the simplest way of analyzing the mechanical problem is not to think
in terms of what happens if a pulse is started at a definite place, but rather in
terms of steady-wave solutions. There exist certain patterns of displacements
which propagate through the crystal as a wave of a single, fixed frequency. Now
the same thing happens with the electron—and for the same reason, because it’s
described in quantum mechanics by similar equations.

You must appreciate one thing, however; the amplitude for the electron to be
at a place is an amplitude, not a probability. If the electron were simply leaking
from one place to another, like water going through a hole, the behavior would be
completely different. For example, if we had two tanks of water connected by a
tube to permit some leakage from one to the other, then the levels would approach
each other exponentially. But for the electron, what happens is amplitude leakage
and not just a plain probability leakage. And it’s a characteristic of the imaginary
term—the i in the differential equations of quantum mechanics—which changes
the exponential solution to an oscillatory solution. What happens then is quite
different from the leakage between interconnected tanks.
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| n−1〉

(c)

| n〉

(d)

| n+1〉

Fig. 13-1. The base states of an electron in a one-dimensional crystal.

We want now to analyze quantitatively the quantum mechanical situation.
Imagine a one-dimensional system made of a long line of atoms as shown in
Fig. 13-1(a). (A crystal is, of course, three-dimensional but the physics is very
much the same; once you understand the one-dimensional case you will be able
to understand what happens in three dimensions.) Next, we want to see what
happens if we put a single electron on this line of atoms. Of course, in a real
crystal there are already millions of electrons. But most of them (nearly all for an
insulating crystal) take up positions in some pattern of motion each around its
own atom—and everything is quite stationary. However, we now want to think
about what happens if we put an extra electron in. We will not consider what
the other ones are doing because we suppose that to change their motion involves
a lot of excitation energy. We are going to add an electron as if to produce one
slightly bound negative ion. In watching what the one extra electron does we are
making an approximation which disregards the mechanics of the inside workings
of the atoms.

Of course the electron could then move to another atom, transferring the
negative ion to another place. We will suppose that just as in the case of an
electron jumping between two protons, the electron can jump from one atom to
the neighbor on either side with a certain amplitude.

Now how do we describe such a system? What will be reasonable base states?
If you remember what we did when we had only two possible positions, you can
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guess how it will go. Suppose that in our line of atoms the spacings are all equal;
and that we number the atoms in sequence, as shown in Fig. 13-1(a). One of
the base states is that the electron is at atom number 6, another base state is
that the electron is at atom number 7, or at atom number 8, and so on. We
can describe the nth base state by saying that the electron is at atom number n.
Let’s say that this is the base state |n〉. Figure 13-1 shows what we mean by the
three base states

|n− 1〉, |n〉, and |n+ 1〉.
Using these base states, any state |φ〉 of the electron in our one-dimensional
crystal can be described by giving all the amplitudes 〈n |φ〉 that the state |φ〉 is
in one of the base states—which means the amplitude that it is located at one
particular atom. Then we can write the state |φ〉 as a superposition of the base
states

|φ〉 =
∑
n

|n〉〈n |φ〉. (13.1)

Next, we are going to suppose that when the electron is at one atom, there
is a certain amplitude that it will leak to the atom on either side. And we’ll
take the simplest case for which it can only leak to the nearest neighbors—to
get to the next-nearest neighbor, it has to go in two steps. We’ll take that the
amplitudes for the electron jump from one atom to the next is iA/~ (per unit
time).

For the moment we would like to write the amplitude 〈n |φ〉 to be on the
nth atom as Cn. Then Eq. (13.1) will be written

|φ〉 =
∑
n

|n〉Cn. (13.2)

If we knew each of the amplitudes Cn at a given moment, we could take their
absolute squares and get the probability that you would find the electron if you
looked at atom n at that time.

What will the situation be at some later time? By analogy with the two-state
systems we have studied, we would propose that the Hamiltonian equations for
this system should be made up of equations like this:

i~
dCn(t)
dt

= E0Cn(t)−ACn+1(t)−ACn−1(t). (13.3)

The first coefficient on the right, E0, is, physically, the energy the electron
would have if it couldn’t leak away from one of the atoms. (It doesn’t matter
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what we call E0; as we have seen many times, it represents really nothing but
our choice of the zero of energy.) The next term represents the amplitude per
unit time that the electron is leaking into the nth pit from the (n+ 1)st pit; and
the last term is the amplitude for leakage from the (n− 1)st pit. As usual, we’ll
assume that A is a constant (independent of t).

For a full description of the behavior of any state |φ〉, we would have one
equation like (13.3) for every one of the amplitudes Cn. Since we want to
consider a crystal with a very large number of atoms, we’ll assume that there
are an indefinitely large number of states—that the atoms go on forever in both
directions. (To do the finite case, we will have to pay special attention to what
happens at the ends.) If the number N of our base states is indefinitely large,
then also our full Hamiltonian equations are infinite in number! We’ll write down
just a sample:

...
...

i~
dCn−1

dt
= E0Cn−1 −ACn−2 −ACn,

i~
dCn
dt

= E0Cn −ACn−1 −ACn+1,

i~
dCn+1

dt
= E0Cn+1 −ACn −ACn+2,

...
...

(13.4)

13-2 States of definite energy

We could study many things about an electron in a lattice, but first let’s try
to find the states of definite energy. As we have seen in earlier chapters this
means that we have to find a situation in which the amplitudes all change at the
same frequency if they change with time at all. We look for solutions of the form

Cn = ane
−iEt/~. (13.5)

The complex numbers an tell us about the non-time-varying part of the amplitude
to find the electron at the nth atom. If we put this trial solution into the equations
of (13.4) to test them out, we get the result

Ean = E0an −Aan+1 −Aan−1. (13.6)
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We have an infinite number of such equations for the infinite number of un-
knowns an—which is rather petrifying.

All we have to do is take the determinant . . . but wait! Determinants are
fine when there are 2, 3, or 4 equations. But if there are a large number—or an
infinite number—of equations, the determinants are not very convenient. We’d
better just try to solve the equations directly. First, let’s label the atoms by their
positions; we’ll say that the atom n is at xn and the atom (n+ 1) is at xn+1. if
the atomic spacing is b—as in Fig. 13-1—we will have that xn+1 = xn + b. By
choosing our origin at atom zero, we can even have it that xn = nb. We can
rewrite Eq. (13.5) as

Cn = a(xn)e−iEt/~, (13.7)

and Eq. (13.6) would become

Ea(xn) = E0a(xn)−Aa(xn+1)−Aa(xn−1). (13.8)

Or, using the fact that xn+1 = xn + b, we could also write

Ea(xn) = E0a(xn)−Aa(xn + b)−Aa(xn − b). (13.9)

This equation is somewhat similar to a differential equation. It tells us that a
quantity, a(x), at one point, (xn), is related to the same physical quantity at
some neighboring points, (xn ± b). (A differential equation relates the value of a
function at a point to the values at infinitesimally nearby points.) Perhaps the
methods we usually use for solving differential equations will also work here; let’s
try.

Linear differential equations with constant coefficients can always be solved
in terms of exponential functions. We can try the same thing here; let’s take as
a trial solution

a(xn) = eikxn . (13.10)

Then Eq. (13.9) becomes

Eeikxn = E0e
ikxn −Aeik(xn+b) −Aeik(xn−b). (13.11)

We can now divide out the common factor eikxn ; we get

E = E0 −Aeikb −Ae−ikb. (13.12)
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The last two terms are just equal to (2A cos kb), so

E = E0 − 2A cos kb. (13.13)

We have found that for any choice at all for the constant k there is a solution
whose energy is given by this equation. There are various possible energies
depending on k, and each k corresponds to a different solution. There are an
infinite number of solutions—which is not surprising, since we started out with
an infinite number of base states.

Let’s see what these solutions mean. For each k, the a’s are given by
Eq. (13.10). The amplitudes Cn are then given by

Cn = eikxne−(i/~)Et, (13.14)

where you should remember that the energy E also depends on k as given in
Eq. (13.13). The space dependence of the amplitudes is eikxn . The amplitudes
oscillate as we go along from one atom to the next.

We mean that, in space, the amplitude goes as a complex oscillation—the
magnitude is the same at every atom, but the phase at a given time advances by
the amount (ikb) from one atom to the next. We can visualize what is going on
by plotting a vertical line to show just the real part at each atom as we have done
in Fig. 13-2. The envelope of these vertical lines (as shown by the broken-line
curve) is, of course, a cosine curve. The imaginary part of Cn is also an oscillating
function, but is shifted 90◦ in phase so that the absolute square (which is the
sum of the squares of the real and imaginary parts) is the same for all the C’s.

Thus if we pick a k, we get a stationary state of a particular energy E. And
for any such state, the electron is equally likely to be found at every atom—there

x

Re Cn

xn

Fig. 13-2. Variation of the real part of Cn with xn.
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is no preference for one atom or the other. Only the phase is different for different
atoms. Also, as time goes on the phases vary. From Eq. (13.14) the real and
imaginary parts propagate along the crystal as waves—namely as the real or
imaginary parts of

ei[kxn−(E/~)t]. (13.15)

The wave can travel toward positive or negative x depending on the sign we have
picked for k.

Notice that we have been assuming that the number k that we put in our
trial solution, Eq. (13.10), was a real number. We can see now why that must
be so if we have an infinite line of atoms. Suppose that k were an imaginary
number, say ik′. Then the amplitudes an would go as ek′xn , which means that
the amplitude would get larger and larger as we go toward large x’s—or toward
large negative x’s if k′ is a negative number. This kind of solution would be
O.K. if we were dealing with line of atoms that ended, but cannot be a physical
solution for an infinite chain of atoms. It would give infinite amplitudes—and,
therefore, infinite probabilities—which can’t represent a real situation. Later on
we will see an example in which an imaginary k does make sense.

The relation between the energy E and the wave number k as given in
Eq. (13.13) is plotted in Fig. 13-3. As you can see from the figure, the energy
can go from (E0 − 2A) at k = 0 to (E0 + 2A) at k = ±π/b. The graph is plotted
for positive A; if A were negative, the curve would simply be inverted, but the
range would be the same. The significant result is that any energy is possible
within a certain range or “band” of energies, but no others. According to our
assumptions, if an electron in a crystal is in a stationary state, it can have no
energy other than values in this band.

According to Eq. (13.13), the smallest k’s correspond to low-energy states—
E ≈ (E0 − 2A). As k increases in magnitude (toward either positive or negative
values) the energy at first increases, but then reaches a maximum at k = ±π/b,
as shown in Fig. 13-3. For k’s larger than π/b, the energy would start to decrease
again. But we do not really need to consider such values of k, because they do not
give new states—they just repeat states we already have for smaller k. We can
see that in the following way. Consider the lowest energy state for which k = 0.
The coefficient a(xn) is the same for all xn. Now we would get the same energy
for k = 2π/b. But then, using Eq. (13.10), we have that

a(xn) = ei(2π/b)xn .

13-8



k

E

−π/b 0 π/b

E0 + 2A

E0

E0 − 2A

Fig. 13-3. The energy of the stationary states as a function of the
parameter k.

However, taking x0 to be at the origin, we can set xn = nb; then a(xn) becomes

a(xn) = ei2πn = 1.

The state described by these a(xn) is physically the same state we got for k = 0.
It does not represent a different solution.

As another example, suppose that k were −π/4b. The real part of a(xn)
would vary as shown by curve 1 in Fig. 13-4. If k were 7π/4b, the real part
of a(xn) would vary as shown by curve 2 in the figure. (The complete cosine
curves don’t mean anything, of course; all that matters is their values at the
points xn. The curves are just to help you see how things are going.) You see
that both values of k give the same amplitudes at all of the xn’s.

x

Re a(xn)
12

Fig. 13-4. Two values of k which represent the same physical situation;
curve 1 is for k = −π/4b, curve 2 is for k = 7π/4b.
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The upshot is that we have all the possible solutions of our problem if we
take only k’s in a certain limited range. We’ll pick the range between −π/b
and +π/b—the one shown in Fig. 13-3. In this range, the energy of the stationary
states increases uniformly with an increase in the magnitude of k.

One side remark about something you can play with. Suppose that the
electron cannot only jump to the nearest neighbor with amplitude iA/~, but
also has the possibility to jump in one direct leap to the next nearest neighbor
with some other amplitude iB/~. You will find that the solution can again be
written in the form an = eikxn—this type of solution is universal. You will
also find that the stationary states with wave number k have an energy equal
to (E0 − 2A cos kb − 2B cos 2kb). This shows that the shape of the curve of E
against k is not universal, but depends upon the particular assumptions of the
problem. It is not always a cosine wave—it’s not even necessarily symmetrical
about some horizontal line. It is true, however, that the curve always repeats
itself outside of the interval from −π/b to π/b, so you never need to worry about
other values of k.

Let’s look a little more closely at what happens for small k—that is, when
the variations of the amplitudes from one xn to the next are quite slow. Suppose
we choose our zero of energy by defining E0 = 2A; then the minimum of the
curve in Fig. 13-3 is at the zero of energy. For small enough k, we can write that

cos kb ≈ 1− k2b2/2,

and the energy of Eq. (13.13) becomes

E = Ak2b2. (13.16)

We have that the energy of the state is proportional to the square of the wave
number which describes the spatial variations of the amplitudes Cn.

13-3 Time-dependent states

In this section we would like to discuss the behavior of states in the one-
dimensional lattice in more detail. If the amplitude for an electron to be at xn
is Cn, the probability of finding it there is |Cn|2. For the stationary states
described by Eq. (13.14), this probability is the same for all xn and does not
change with time. How can we represent a situation which we would describe
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roughly by saying an electron of a certain energy is localized in a certain region—
so that it is more likely to be found at one place than at some other place? We
can do that by making a superposition of several solutions like Eq. (13.14) with
slightly different values of k—and, therefore, slightly different energies. Then
at t = 0, at least, the amplitude Cn will vary with position because of the
interference between the various terms, just as one gets beats when there is a
mixture of waves of different wavelengths (as we discussed in Chapter 48, Vol. I).
So we can make up a “wave packet” with a predominant wave number k0, but
with various other wave numbers near k0.†

In our superposition of stationary states, the amplitudes with different k’s will
represent states of slightly different energies, and, therefore, of slightly different
frequencies; the interference pattern of the total Cn will, therefore, also vary
with time—there will be a pattern of “beats.” As we have seen in Chapter 48 of
Volume I, the peaks of the beats [the place where |C(xn)|2 is large] will move
along in x as time goes on; they move with the speed we have called the “group
velocity.” We found that this group velocity was related to the variation of k with
frequency by

vgroup = dω

dk
; (13.17)

the same derivation would apply equally well here. An electron state which is
a “clump”—namely one for which the Cn vary in space like the wave packet of
Fig. 13-5—will move along our one-dimensional “crystal” with the speed v equal
to dω/dk, where ω = E/~. Using (13.16) for E, we get that

v = 2Ab2
~

k. (13.18)

In other words, the electrons move along with a speed proportional to the
typical k. Equation (13.16) then says that the energy of such an electron is
proportional to the square of its velocity—it acts like a classical particle. So long
as we look at things on a scale gross enough that we don’t see the fine structure,
our quantum mechanical picture begins to give results like classical physics. In
fact, if we solve Eq. (13.18) for k and substitute into (13.16), we can write

E = 1
2meff v

2, (13.19)

† Provided we do not try to make the packet too narrow.
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x

Re C(xn) v

Fig. 13-5. The real part of C(xn) as a function of x for a superposition
of several states of similar energy. (The spacing b is very small on the
scale of x shown.)

where meff is a constant. The extra “energy of motion” of the electron in a packet
depends on the velocity just as for a classical particle. The constant meff—called
the “effective mass”—is given by

meff = ~2

2Ab2 . (13.20)

Also notice that we can write
meff v = ~k. (13.21)

If we choose to call meff v the “momentum,” it is related to the wave number k
in the way we have described earlier for a free particle.

Don’t forget that meff has nothing to do with the real mass of an electron. It
may be quite different—although in real crystals it often happens to turn out to
be the same general order of magnitude, about 2 to 20 times the free-space mass
of the electron.

We have now explained a remarkable mystery—how an electron in a crystal
(like an extra electron put into germanium) can ride right through the crystal
and flow perfectly freely even though it has to hit all the atoms. It does so by
having its amplitudes going pip-pip-pip from one atom to the next, working its
way through the crystal. That is how a solid can conduct electricity.

13-4 An electron in a three-dimensional lattice

Let’s look for a moment at how we could apply the same ideas to see what
happens to an electron in three dimensions. The results turn out to be very
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similar. Suppose we have a rectangular lattice of atoms with lattice spacings
of a, b, c in the three directions. (If you want a cubic lattice, take the three
spacings all equal.) Also suppose that the amplitude to leap in the x-direction to
a neighbor is (iAx/~), to leap in the y-direction is (iAy/~), and to leap in the
z-direction is (iAz/~). Now how should we describe the base states? As in the
one-dimensional case, one base state is that the electron is at the atom whose
locations are x, y, z, where (x, y, z) is one of the lattice points. Choosing our
origin at one atom, these points are all at

x = nxa, y = nyb, and z = nzc,

where nx, ny, nz are any three integers. Instead of using subscripts to indicate
such points, we will now just use x, y, and z, understanding that they take on
only their values at the lattice points. Thus the base state is represented by the
symbol | electron at x, y, z〉, and the amplitude for an electron in some state |ψ〉
to be in this base state is C(x, y, z) = 〈electron at x, y, z |ψ〉.

As before, the amplitudes C(x, y, z) may vary with time. With our assump-
tions, the Hamiltonian equations should be like this:

i~
dC(x, y, z)

dt
= E0C(x, y, z)−AxC(x+ a, y, z)−AxC(x− a, y, z)

−AyC(x, y + b, z)−AyC(x, y − b, z)
−AzC(x, y, z + c)−AzC(x, y, z − c). (13.22)

It looks rather long, but you can see where each term comes from.
Again we can try to find a stationary state in which all the C’s vary with

time in the same way. Again the solution is an exponential:

C(x, y, z) = e−iEt/~ei(kxx+kyy+kzz). (13.23)

If you substitute this into (13.22) you see that it works, provided that the energy E
is related to kx, ky, and kz in the following way:

E = E0 − 2Ax cos kxa− 2Ay cos kyb− 2Az cos kzc. (13.24)

The energy now depends on the three wave numbers kx, ky, kz, which, incidentally,
are the components of a three-dimensional vector k. In fact, we can write
Eq. (13.23) in vector notation as

C(x, y, z) = e−iEt/~eik·r. (13.25)
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The amplitude varies as a complex plane wave in three dimensions, moving in
the direction of k, and with the wave number k = (kx + ky + kz)1/2.

The energy associated with these stationary states depends on the three
components of k in the complicated way given in Eq. (13.24). The nature, of
the variation of E with k depends on relative signs and magnitudes of Ax, Ay,
and Az. If these three numbers are all positive, and if we are interested in small
values of k, the dependence is relatively simple.

Expanding the cosines as we did before to get Eq. (13.16), we can now get
that

E = Emin +Axa
2k2
x +Ayb

2k2
y +Azc

2k2
z . (13.26)

For a simple cubic lattice with lattice spacing a we expect that Ax and Ay
and Az would be equal—say all are just A—and we would have just

E = Emin +Aa2(k2
x + k2

y + k2
z),

or
E = Emin +Aa2k2. (13.27)

This is just like Eq. (13.16). Following the arguments used there, we would
conclude that an electron packet in three dimensions (made up by superposing
many states with nearly equal energies) also moves like a classical particle with
some effective mass.

In a crystal with a lower symmetry than cubic (or even in a cubic crystal
in which the state of the electron at each atom is not symmetrical) the three
coefficients Ax, Ay, and Az are different. Then the “effective mass” of an electron
localized in a small region depends on its direction of motion. It could, for
instance, have a different inertia for motion in the x-direction than for motion
in the y-direction. (The details of such a situation are sometimes described in
terms of an “effective mass tensor.”)

13-5 Other states in a lattice

According to Eq. (13.24) the electron states we have been talking about can
have energies only in a certain “band” of energies which covers the energy range
from the minimum energy

E0 − 2(Ax +Ay +Az)
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to the maximum energy
E0 + 2(Ax +Ay +Az).

Other energies are possible, but they belong to a different class of electron states.
For the states we have described, we imagined base states in which an electron is
placed on an atom of the crystal in some particular state, say the lowest energy
state.

If you have an atom in empty space, and add an electron to make an ion,
the ion can be formed in many ways. The electron can go on in such a way as
to make the state of lowest energy, or it can go on to make one or another of
many possible “excited states” of the ion each with a definite energy above the
lowest energy. The same thing can happen in a crystal. Let’s suppose that the
energy E0 we picked above corresponds to base states which are ions of the lowest
possible energy. We could also imagine a new set of base states in which the
electron sits near the nth atom in a different way—in one of the excited states
of the ion—so that the energy E0 is now quite a bit higher. As before there is
some amplitude A (different from before) that the electron will jump from its
excited state at one atom to the same excited state at a neighboring atom. The
whole analysis goes as before; we find a band of possible energies centered at a
higher energy. There can, in general, be many such bands each corresponding to
a different level of excitation.

There are also other possibilities. There may be some amplitude that the
electron jumps from an excited condition at one atom to an unexcited condition at
the next atom. (This is called an interaction between bands.) The mathematical
theory gets more and more complicated as you take into account more and more
bands and add more and more coefficients for leakage between the possible states.
No new ideas are involved, however; the equations are set up much as we have
done in our simple example.

We should remark also that there is not much more to be said about the various
coefficients, such as the amplitude A, which appear in the theory. Generally they
are very hard to calculate, so in practical cases very little is known theoretically
about these parameters and for any particular real situation we can only take
values determined experimentally.

There are other situations where the physics and mathematics are almost
exactly like what we have found for an electron moving in a crystal, but in which
the “object” that moves is quite different. For instance, suppose that our original
crystal—or rather linear lattice—was a line of neutral atoms, each with a loosely

13-15



bound outer electron. Then imagine that we were to remove one electron. Which
atom has lost its electron? Let Cn now represent the amplitude that the electron
is missing from the atom at xn. There will, in general, be some amplitude iA/~
that the electron at a neighboring atom—say the (n− 1)st atom—will jump to
the nth leaving the (n − 1)st atom without its electron. This is the same as
saying that there is an amplitude A for the “missing electron” to jump from the
nth atom to the (n− 1)st atom. You can see that the equations will be exactly
the same—of course, the value of A need not be the same as we had before.
Again we will get the same formulas for the energy levels, for the “waves” of
probability which move through the crystal with the group velocity of Eq. (13.18),
for the effective mass, and so on. Only now the waves describe the behavior of the
missing electron—or “hole” as it is called. So a “hole” acts just like a particle with
a certain mass meff. You can see that this particle will appear to have a positive
charge. We’ll have some more to say about such holes in the next chapter.

As another example, we can think of a line of identical neutral atoms one of
which has been put into an excited state—that is, with more than its normal
ground state energy. Let Cn be the amplitude that the nth atom has the
excitation. It can interact with a neighboring atom by handing over to it the
extra energy and returning to the ground state. Call the amplitude for this
process iA/~. You can see that it’s the same mathematics all over again. Now
the object which moves is called an exciton. It behaves like a neutral “particle”
moving through the crystal, carrying the excitation energy. Such motion may
be involved in certain biological processes such as vision, or photosynthesis. It
has been guessed that the absorption of light in the retina produces an “exciton”
which moves through some periodic structure (such as the layers in the rods we
described in Chapter 36, Vol. I; see Fig. 36-5) to be accumulated at some special
station where the energy is used to induce a chemical reaction.

13-6 Scattering from imperfections in the lattice

We want now to consider the case of a single electron in a crystal which is not
perfect. Our earlier analysis says that perfect crystals have perfect conductivity—
that electrons can go slipping through the crystal, as in a vacuum, without friction.
One of the most important things that can stop an electron from going on forever
is an imperfection or irregularity in the crystal. As an example, suppose that
somewhere in the crystal there is a missing atom; or suppose that someone put
one wrong atom at one of the atomic sites so that things there are different
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than at the other atomic sites. Say the energy E0 or the amplitude A could be
different. How would we describe what happens then?

To be specific, we will return to the one-dimensional case and we will assume
that atom number “zero” is an “impurity” atom and has a different value of E0
than any of the other atoms. Let’s call this energy (E0 + F ). What happens?
When an electron arrives at atom “zero” there is some probability that the
electron is scattered backwards. If a wave packet is moving along and it reaches
a place where things are a little bit different, some of it will continue onward and
some of it will bounce back. It’s quite difficult to analyze such a situation using
a wave packet, because everything varies in time. It is much easier to work with
steady-state solutions. So we will work with stationary states, which we will find
can be made up of continuous waves which have transmitted and reflected parts.
In three dimensions we would call the reflected part the scattered wave, since it
would spread out in various directions.

We start out with a set of equations which are just like the ones in Eq. (13.6)
except that the equation for n = 0 is different from all the rest. The five equations
for n = −2, −1, 0, +1, and +2 look like this:

...
...

Ea−2 = E0a−2 −Aa−1 −Aa−3,

Ea−1 = E0a−1 −Aa0 −Aa−2,

Ea0 = (E0 + F )a0 −Aa1 −Aa−1,

Ea1 = E0a1 −Aa2 −Aa0,

Ea2 = E0a2 −Aa3 −Aa1,

...
...

(13.28)

There are, of course, all the other equations for |n| is greater than 2. They will
look just like Eq. (13.6).

For the general case, we really ought to use a different A for the amplitude
that the electron jumps to or from atom “zero,” but the main features of what
goes on will come out of a simplified example in which all the A’s are equal.

Equation (13.10) would still work as a solution for all of the equations except
the one for atom “zero”—it isn’t right for that one equation. We need a different
solution which we can cook up in the following way. Equation (13.10) represents
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a wave going in the positive x-direction. A wave going in the negative x-direction
would have been an equally good solution. It would be written

a(xn) = e−ikxn .

The most general solution we could have taken for Eq. (13.6) would be a combi-
nation of a forward and a backward wave, namely

an = αeikxn + βe−ikxn . (13.29)

This solution represents a complex wave of amplitude α moving in the +x-
direction and a wave of amplitude β moving in the −x-direction.

Now take a look at the set of equations for our new problem—the ones
in (13.28) together with those for all the other atoms. The equations involving an’s
with n ≤ −1 are all satisfied by Eq. (13.29), with the condition that k is related
to E and the lattice spacing b by

E = E0 − 2A cos kb. (13.30)

The physical meaning is an “incident” wave of amplitude α approaching atom
“zero” (the “scatterer”) from the left, and a “scattered” or “reflected” wave of
amplitude β going back toward the left. We do not loose any generality if we set
the amplitude α of the incident wave equal to 1. Then the amplitude β is, in
general, a complex number.

We can say all the same things about the solutions of an for n ≥ 1. The
coefficients could be different, so we would have for them

an = γeikxn + δe−ikxn , for n ≥ 1. (13.31)

Here, γ is the amplitude of a wave going to the right and δ a wave coming from
the right. We want to consider the physical situation in which a wave is originally
started only from the left, and there is only a “transmitted” wave that comes out
beyond the scatterer—or impurity atom. We will try for a solution in which δ = 0.
We can, certainly, satisfy all of the equations for the an except for the middle
three in Eq. (13.28) by the following trial solutions.

an (for n < 0) = eikxn + βe−ikxn ,

an (for n > 0) = γeikxn . (13.32)

The situation we are talking about is illustrated in Fig. 13-6.
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n → −4 −3 −2 −1 0 1 2 3 4

1

β
γINCIDENT WAVE

SCATTERED WAVE

TRANSMITTED WAVE

Fig. 13-6. Waves in a one-dimensional lattice with one “impurity”
atom at n = 0.

By using the formulas in Eq. (13.32) for a−1 and a+1, the three middle
equations of Eq. (13.28) will allow us to solve for a0 and also for the two coefficients
β and γ. So we have found a complete solution. Setting xn = nb, we have to
solve the three equations

(E − E0){eik(−b) + βe−ik(−b)} = −A{a0 + eik(−2b) + βe−ik(−2b)},

(E − E0 − F )a0 = −A{γeikb + eik(−b) + βe−ik(−b)},

(E − E0)γeikb = −A{γeik(2b) + a0}.

(13.33)

Remember that E is given in terms of k by Eq. (13.30). If you substitute this
value for E into the equations, and remember that cosx = 1

2 (eix + e−ix), you
get from the first equation that

a0 = 1 + β, (13.34)

and from the third equation that

a0 = γ. (13.35)
These are consistent only if

γ = 1 + β. (13.36)

This equation says that the transmitted wave (γ) is just the original incident
wave (1) with an added wave (β) equal to the reflected wave. This is not always
true, but happens to be so for a scattering at one atom only. If there were a
clump of impurity atoms, the amount added to the forward wave would not
necessarily be the same as the reflected wave.
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We can get the amplitude β of the reflected wave from the middle equation
of Eq. (13.33); we find that

β = −F
F − 2iA sin kb . (13.37)

We have the complete solution for the lattice with one unusual atom.
You may be wondering how the transmitted wave can be “more” than the

incident wave as it appears in Eq. (13.34). Remember, though, that β and γ are
complex numbers and that the number of particles (or rather, the probability
of finding a particle) in a wave is proportional to the absolute square of the
amplitude. In fact, there will be “conservation of electrons” only if

|β|2 + |γ|2 = 1. (13.38)

You can show that this is true for our solution.

13-7 Trapping by a lattice imperfection

There is another interesting situation that can arise if F is a negative number.
If the energy of the electron is lower at the impurity atom (at n = 0) than it
is anywhere else, then the electron can get caught on this atom. That is, if
(E0 + F ) is below the bottom of the band at (E0 − 2A), then the electron can
get “trapped” in a state with E < E0 − 2A. Such a solution cannot come out of
what we have done so far. We can get this solution, however, if we permit the
trial solution we took in Eq. (13.10) to have an imaginary number for k. Let’s
set k = ±iκ. Again, we can have different solutions for n < 0 and for n > 0. A
possible solution for n < 0 might be

an (for n < 0) = ce+κxn . (13.39)

We have to take a plus sign in the exponent; otherwise the amplitude would get
indefinitely large for large negative values of n. Similarly, a possible solution
for n > 0 would be

an (for n > 0) = c′e−κxn . (13.40)

If we put these trial solutions into Eq. (13.28) all but the middle three are
satisfied provided that

E = E0 −A(eκb + e−κb). (13.41)
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Since the sum of the two exponential terms is always greater than 2, this energy
is below the regular band, and is what we are looking for. The remaining three
equations in Eq. (13.28) are satisfied if a0 = c = c′ and if κ is chosen so that

A(eκb − e−κb) = −F. (13.42)

Combining this equation with Eq. (13.41) we can find the energy of the trapped
electron; we get

E = E0 −
√

4A2 + F 2. (13.43)
The trapped electron has a unique energy—located somewhat below the conduc-
tion band.

Notice that the amplitudes we have in Eq. (13.39) and (13.40) do not say that
the trapped electron sits right on the impurity atom. The probability of finding
the electron at nearby atoms is given by the square of these amplitudes. For one
particular choice of the parameters it might vary as shown in the bar graph of
Fig. 13-7. The probability is greatest for finding the electron on the impurity atom.
For nearby atoms the probability drops off exponentially with the distance from
the impurity atom. This is another example of “barrier penetration.” From the
point-of-view of classical physics the electron doesn’t have enough energy to get
away from the energy “hole” at the trapping center. But quantum mechanically
it can leak out a little way.

n → −4 −3 −2 −1 0 1 2 3 4

x

PROBABILITY

Impurity Atom

c2e+2κx c2e−2κx

Fig. 13-7. The relative probabilities of finding a trapped electron at
atomic sites near the trapping impurity atom.

13-8 Scattering amplitudes and bound states

Finally, our example can be used to illustrate a point which is very useful
these days in the physics of high-energy particles. It has to do with a relationship
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between scattering amplitudes and bound states. Suppose we have discovered—
through experiment and theoretical analysis—the way that pions scatter from
protons. Then a new particle is discovered and someone wonders whether maybe
it is just a combination of a pion and a proton held together in some bound state
(in an analogy to the way an electron is bound to a proton to make a hydrogen
atom). By a bound state we mean a combination which has a lower energy than
the two free-particles.

There is a general theory which says that a bound state will exist at that energy
at which the scattering amplitude becomes infinite if extrapolated algebraically
(the mathematical term is “analytically continued”) to energy regions outside of
the permitted band.

The physical reason for this is as follows. A bound state is a situation in
which there are only waves tied on to a point and there’s no wave coming in to
get it started, it just exists there by itself. The relative proportion between the
so-called “scattered” or created wave and the wave being “sent in” is infinite.
We can test this idea in our example. Let’s write our expression Eq. (13.37) for
the scattered amplitude directly in terms of the energy E of the particle being
scattered (instead of in terms of k). Since Equation (13.30) can be rewritten as

2A sin kb =
√

4A2 − (E − E0)2,

the scattered amplitude is

β = −F
F − i

√
4A2 − (E − E0)2

. (13.44)

From our derivation, this equation should be used only for real states—those with
energies in the energy band, E = E0 ± 2A. But suppose we forget that fact and
extend the formula into the “unphysical” energy regions where |E − E0| > 2A.
For these unphysical regions we can write†√

4A2 − (E − E0)2 = i
√

(E − E0)2 − 4A2.

Then the “scattering amplitude,” whatever it may mean, is

β = −F
F +

√
(E − E0)2 − 4A2

. (13.45)

† The sign of the root to be chosen here is a technical point related to the allowed signs of κ
in Eqs. (13.39) and (13.40). We won’t go into it here.
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Now we ask: Is there any energy E for which β becomes infinite (i.e., for which
the expression for β has a “pole”)? Yes, so long as F is negative, the denominator
of Eq. (13.45) will be zero when

(E − E0)2 − 4A2 = F 2,

or when
E = E0 ±

√
4A2 + F 2.

The minus sign gives just the energy we found in Eq. (13.43) for the trapped
energy.

What about the plus sign? This gives an energy above the allowed energy
band. And indeed there is another bound state there which we missed when we
solved the equations of Eq. (13.28). We leave it as a puzzle for you to find the
energy and amplitudes an for this bound state.

The relation between scattering and bound states provides one of the most
useful clues in the current search for an understanding of the experimental
observations about the new strange particles.
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14

Semiconductors

Reference: C. Kittel, Introduction to Solid State Physics, John Wiley and
Sons, Inc., New York, 2nd ed., 1956. Chapters 13, 14, and 18.

14-1 Electrons and holes in semiconductors

One of the remarkable and dramatic developments in recent years has been the
application of solid state science to technical developments in electrical devices
such as transistors. The study of semiconductors led to the discovery of their
useful properties and to a large number of practical applications. The field is
changing so rapidly that what we tell you today may be incorrect next year. It
will certainly be incomplete. And it is perfectly clear that with the continuing
study of these materials many new and more wonderful things will be possible as
time goes on. You will not need to understand this chapter for what comes later
in this volume, but you may find it interesting to see that at least something of
what you are learning has some relation to the practical world.

There are large numbers of semiconductors known, but we’ll concentrate on
those which now have the greatest technical application. They are also the ones
that are best understood, and in understanding them we will obtain a degree
of understanding of many of the others. The semiconductor substances in most
common use today are silicon and germanium. These elements crystallize in the
diamond lattice, a kind of cubic structure in which the atoms have tetrahedral
bonding with their four nearest neighbors. They are insulators at very low
temperatures—near absolute zero—although they do conduct electricity somewhat
at room temperature. They are not metals; they are called semiconductors.

If we somehow put an extra electron into a crystal of silicon or germanium
which is at a low temperature, we will have just the situation we described in the
last chapter. The electron will be able to wander around in the crystal jumping
from one atomic site to the next. Actually, we have looked only at the behavior of
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electrons in a rectangular lattice, and the equations would be somewhat different
for the real lattice of silicon or germanium. All of the essential points are, however,
illustrated by the results for the rectangular lattice.

As we saw in Chapter 13, these electrons can have energies only in a certain
energy band—called the conduction band. Within this band the energy is related
to the wave-number k of the probability amplitude C (see Eq. (13.24)) by

E = E0 − 2Ax cos kxa− 2Ay cos kyb− 2Az cos kzc. (14.1)

The A’s are the amplitudes for jumping in the x-, y-, and z-directions, and a, b,
and c are the lattice spacings in these directions.

For energies near the bottom of the band, we can approximate Eq. (14.1) by

E = Emin +Axa
2k2
x +Ayb

2k2
y +Azc

2k2
z (14.2)

(see Section 13-4).
If we think of electron motion in some particular direction, so that the

components of k are always in the same ratio, the energy is a quadratic function
of the wave number—and as we have seen of the momentum of the electron. We
can write

E = Emin + αk2, (14.3)
where α is some constant, and we can make a graph of E versus k as in Fig. 14-1.
We’ll call such a graph an “energy diagram.” An electron in a particular state of
energy and momentum can be indicated by a point such as S in the figure.

k

E

Emin

S

Fig. 14-1. The energy diagram for an electron in an insulating crystal.
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As we also mentioned in Chapter 13, we can have a similar situation if we
remove an electron from a neutral insulator. Then, an electron can jump over
from a nearby atom and fill the “hole,” but leaving another “hole” at the atom
it started from. We can describe this behavior by writing an amplitude to find
the hole at any particular atom, and by saying that the hole can jump from
one atom to the next. (Clearly, the amplitudes A that the hole jumps from
atom a to atom b is just the same as the amplitude that an electron on atom b
jumps into the hole at atom a.) The mathematics is just the same for the hole
as it was for the extra electron, and we get again that the energy of the hole is
related to its wave number by an equation just like Eq. (14.1) or (14.2), except,
of course, with different numerical values for the amplitudes Ax, Ay, and Az.
The hole has an energy related to the wave number of its probability amplitudes.
Its energy lies in a restricted band, and near the bottom of the band its energy
varies quadratically with the wave number—or momentum—just as in Fig. 14-1.
Following the arguments of Section 13-3, we would find that the hole also behaves
like a classical particle with a certain effective mass—except that in noncubic
crystals the mass depends on the direction of motion. So the hole behaves like a
positive particle moving through the crystal. The charge of the hole-particle is
positive, because it is located at the site of a missing electron; and when it moves
in one direction there are actually electrons moving in the opposite direction.

If we put several electrons into a neutral crystal, they will move around much
like the atoms of a low-pressure gas. If there are not too many, their interactions
will not be very important. If we then put an electric field across the crystal, the
electrons will start to move and an electric current will flow. Eventually they
would all be drawn to one edge of the crystal, and, if there is a metal electrode
there, they would be collected, leaving the crystal neutral.

Similarly we could put many holes into a crystal. They would roam around
at random unless there is an electric field. With a field they would flow toward
the negative terminal, and would be “collected”—what actually happens is that
they are neutralized by electrons from the metal terminal.

One can also have both holes and electrons together. If there are not too
many, they will all go their way independently. With an electric field, they will all
contribute to the current. For obvious reasons, electrons are called the negative
carriers and the holes are called the positive carriers.

We have so far considered that electrons are put into the crystal from the
outside, or are removed to make a hole. It is also possible to “create” an electron-
hole pair by taking a bound electron away from one neutral atom and putting it
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some distance away in the same crystal. We then have a free electron and a free
hole, and the two can move about as we have described.

E

k

S

E−min

E−

Fig. 14-2. The energy E− is required to “create” a free electron.

The energy required to put an electron into a state S—we say to “create” the
state S—is the energy E− shown in Fig. 14-2. It is some energy above E−min. The
energy required to “create” a hole in some state S′ is the energy E+ of Fig. 14-3,
which is some energy greater than E+

min. Now if we create a pair in the states S
and S′, the energy required is just E− + E+.

E

k

S′

E+
min

E+

Fig. 14-3. The energy E+ is required to “create” a hole in the state S′.
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The creation of pairs is a common process (as we will see later), so many
people like to put Fig. 14-2 and Fig. 14-3 together on the same graph—with the
hole energy plotted downward, although it is, of course a positive energy. We
have combined our two graphs in this way in Fig. 14-4. The advantage of such
a graph is that the energy Epair = E− + E+ required to create a pair with the
electron in S and the hole in S′ is just the vertical distance between S and S′ as
shown in Fig. 14-4. The minimum energy required to create a pair is called the
“gap” energy and is equal to E−min + E+

min.

k

E− (electron)

E+ (hole)

(Positive energy downward)

ELECTRON

HOLE

E−min

E+min

Epair

S

S′

Fig. 14-4. Energy diagrams for an electron and a hole drawn together.
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Sometimes you will see a simpler diagram called an energy level diagram which
is drawn when people are not interested in the k variable. Such a diagram—shown
in Fig. 14-5—just shows the possible energies for the electrons and holes.†

How can electron-hole pairs be created? There are several ways. For example,
photons of light (or x-rays) can be absorbed and create a pair if the photon

E− (electron)

E+ (hole)

E−min

E+min

Egap

STATE S

STATE S′

ELECTRON
CONDUCTION

BAND

HOLE
CONDUCTION

BAND

Fig. 14-5. Energy level diagram for electrons and holes.

† In many books this same energy diagram is interpreted in a different way. The energy
scale refers only to electrons. Instead of thinking of the energy of the hole, they think of the
energy an electron would have if it filled the hole. This energy is lower than the free-electron
energy—in fact, just the amount lower that you see in Fig. 14-5. With this interpretation of
the energy scale, the gap energy is the minimum energy which must be given to an electron to
move it from its bound state to the conduction band.
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energy is above the energy of the gap. The rate at which pairs are produced is
proportional to the light intensity. If two electrodes are plated on a wafer of the
crystal and a “bias” voltage is applied, the electrons and holes will be drawn to
the electrodes. The circuit current will be proportional to the intensity of the
light. This mechanism is responsible for the phenomenon of photoconductivity
and the operation of photoconductive cells.

Electron hole pairs can also be produced by high-energy particles. When a
fast-moving charged particle—for instance, a proton or a pion with an energy
of tens or hundreds of MeV—goes through a crystal, its electric field will knock
electrons out of their bound states creating electron-hole pairs. Such events occur
hundreds of thousands of times per millimeter of track. After the passage of
the particle, the carriers can be collected and in doing so will give an electrical
pulse. This is the mechanism at play in the semiconductor counters recently
put to use for experiments in nuclear physics. Such counters do not require
semiconductors, they can also be made with crystalline insulators. In fact, the
first of such counters was made using a diamond crystal which is an insulator
at room temperature. Very pure crystals are required if the holes and electrons
are to be able to move freely to the electrodes without being trapped. The
semiconductors silicon and germanium are used because they can be produced
with high purity in reasonable large sizes (centimeter dimensions).

So far we have been concerned with semiconductor crystals at temperatures
near absolute zero. At any finite temperature there is still another mechanism
by which electron-hole pairs can be created. The pair energy can be provided
from the thermal energy of the crystal. The thermal vibrations of the crystal
can transfer their energy to a pair—giving rise to “spontaneous” creation.

The probability per unit time that the energy as large as the gap energy Egap
will be concentrated at one atomic site is proportional to e−Egap/κT , where T
is the temperature and κ is Boltzmann’s constant (see Chapter 40, Vol. I).
Near absolute zero there is no appreciable probability, but as the tempera-
ture rises there is an increasing probability of producing such pairs. At any
finite temperature the production should continue forever at a constant rate
giving more and more negative and positive carriers. Of course that does not
happen because after a while the electrons and holes accidentally find each other—
the electron drops into the hole and the excess energy is given to the lattice.
We say that the electron and hole “annihilate.” There is a certain probability
per second that a hole meets an electron and the two things annihilate each
other.
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If the number of electrons per unit volume is Nn (n for negative carriers) and
the density of positive carriers is Np, the chance per unit time that an electron
and a hole will find each other and annihilate is proportional to the product NnNp.
In equilibrium this rate must equal the rate that pairs are created. You see that
in equilibrium the product of Nn and Np should be given by some constant times
the Boltzmann factor:

NnNp = const e−Egap/κT . (14.4)

When we say constant, we mean nearly constant. A more complete theory—which
includes more details about how holes and electrons “find” each other—shows that
the “constant” is slightly dependent upon temperature, but the major dependence
on temperature is in the exponential.

Let’s consider, as an example, a pure material which is originally neutral.
At a finite temperature you would expect the number of positive and negative
carriers to be equal, Nn = Np. Then each of them should vary with temperature
as e−Egap/2κT . The variation of many of the properties of a semiconductor—the
conductivity for example—is mainly determined by the exponential factor because
all the other factors vary much more slowly with temperature. The gap energy
for germanium is about 0.72 eV and for silicon 1.1 eV.

At room temperature κT is about 1/40 of an electron volt. At these tempera-
tures there are enough holes and electrons to give a significant conductivity, while
at, say, 30◦K—one-tenth of room temperature—the conductivity is imperceptible.
The gap energy of diamond is 6 or 7 eV and diamond is a good insulator at room
temperature.

14-2 Impure semiconductors

So far we have talked about two ways that extra electrons can be put into
an otherwise ideally perfect crystal lattice. One way was to inject the electron
from an outside source; the other way, was to knock a bound electron off a
neutral atom creating simultaneously an electron and a hole. It is possible to
put electrons into the conduction band of a crystal in still another way. Suppose
we imagine a crystal of germanium in which one of the germanium atoms is
replaced by an arsenic atom. The germanium atoms have a valence of 4 and
the crystal structure is controlled by the four valence electrons. Arsenic, on the
other hand, has a valence of 5. It turns out that a single arsenic atom can sit
in the germanium lattice (because it has approximately the correct size), but in
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doing so it must act as a valence 4 atom—using four of its valence electrons to
form the crystal bonds and having one electron left over. This extra electron
is very loosely attached—the binding energy is only about 1/100 of an electron
volt. At room temperature the electron easily picks up that much energy from
the thermal energy of the crystal, and then takes off on its own—moving about
in the lattice as a free electron. An impurity atom such as the arsenic is called a
donor site because it can give up a negative carrier to the crystal. If a crystal of
germanium is grown from a melt to which a very small amount of arsenic has
been added, the arsenic donor sites will be distributed throughout the crystal
and the crystal will have a certain density of negative carriers built in.

You might think that these carriers would get swept away as soon as any
small electric field was put across the crystal. This will not happen, however,
because the arsenic atoms in the body of the crystal each have a positive charge.
If the body of the crystal is to remain neutral, the average density of negative
carrier electrons must be equal to the density of donor sites. If you put two
electrodes on the edges of such a crystal and connect them to a battery, a current
will flow; but as the carrier electrons are swept out at one end, new conduction
electrons must be introduced from the electrode on the other end so that the
average density of conduction electrons is left very nearly equal to the density of
donor sites.

Since the donor sites are positively charged, there will be some tendency
for them to capture some of the conduction electrons as they diffuse around
inside the crystal. A donor site can, therefore, act as a trap such as those we
discussed in the last section. But if the trapping energy is sufficiently small—as
it is for arsenic—the number of carriers which are trapped at any one time is
a small fraction of the total. For a complete understanding of the behavior of
semiconductors one must take into account this trapping. For the rest of our
discussion, however, we will assume that the trapping energy is sufficiently low
and the temperature is sufficiently high, that all of the donor sites have given up
their electrons. This is, of course, just an approximation.

It is also possible to build into a germanium crystal some impurity atom
whose valence is 3, such as aluminum. The aluminum atom tries to act as a
valence 4 object by stealing an extra electron. It can steal an electron from
some nearby germanium atom and end up as a negatively charged atom with an
effective valence of 4. Of course, when it steals the electron from a germanium
atom, it leaves a hole there; and this hole can wander around in the crystal as a
positive carrier. An impurity atom which can produce a hole in this way is called
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an acceptor because it “accepts” an electron. If a germanium or a silicon crystal
is grown from a melt to which a small amount of aluminum impurity has been
added, the crystal will have built-in a certain density of holes which can act as
positive carriers.

When a donor or an acceptor impurity is added to a semiconductor, we say
that the material has been “doped.”

When a germanium crystal with some built-in donor impurities is at room
temperature, some conduction electrons are contributed by the thermally induced
electron-hole pair creation as well as by the donor sites. The electrons from both
sources are, naturally, equivalent, and it is the total number Nn which comes
into play in the statistical processes that lead to equilibrium. If the temperature
is not too low, the number of negative carriers contributed by the donor impurity
atoms is roughly equal to the number of impurity atoms present. In equilibrium
Eq. (14.4) must still be valid; at a given temperature the product NnNp is
determined. This means that if we add some donor impurity which increases Nn,
the number Np of positive carriers will have to decrease by such an amount that
NnNp is unchanged. If the impurity concentration is high enough, the number Nn
of negative carriers is determined by the number of donor sites and is nearly
independent of temperature—all of the variation in the exponential factor is
supplied by Np, even though it is much less than Nn. An otherwise pure crystal
with a small concentration of donor impurity will have a majority of negative
carriers; such a material is called an “n-type” semiconductor.

If an acceptor-type impurity is added to the crystal lattice, some of the new
holes will drift around and annihilate some of the free electrons produced by
thermal fluctuation. This process will go on until Eq. (14.4) is satisfied. Under
equilibrium conditions the number of positive carriers will be increased and the
number of negative carriers will be decreased, leaving the product a constant. A
material with an excess of positive carriers is called a “p-type” semiconductor.

If we put two electrodes on a piece of semiconductor crystal and connect
them to a source of potential difference, there will be an electric field inside the
crystal. The electric field will cause the positive and the negative carriers to
move, and an electric current will flow. Let’s consider first what will happen in
an n-type material in which there is a large majority of negative carriers. For
such material we can disregard the holes; they will contribute very little to the
current because there are so few of them. In an ideal crystal the carriers would
move across without any impediment. In a real crystal at a finite temperature,
however,—especially in a crystal with some impurities—the electrons do not move
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completely freely. They are continually making collisions which knock them out
of their original trajectories, that is, changing their momentum. These collisions
are just exactly the scatterings we talked about in the last chapter and occur
at any irregularity in the crystal lattice. In an n-type material the main causes
of scattering are the very donor sites that are producing the carriers. Since the
conduction electrons have a very slightly different energy at the donor sites, the
probability waves are scattered from that point. Even in a perfectly pure crystal,
however, there are (at any finite temperature) irregularities in the lattice due to
thermal vibrations. From the classical point of view we can say that the atoms
aren’t lined up exactly on a regular lattice, but are, at any instant, slightly out
of place due to their thermal vibrations. The energy E0 associated with each
lattice point in the theory we described in Chapter 13 varies a little bit from
place to place so that the waves of probability amplitude are not transmitted
perfectly but are scattered in an irregular fashion. At very high temperatures or
for very pure materials this scattering may become important, but in most doped
materials used in practical devices the impurity atoms contribute most of the
scattering. We would like now to make an estimate of the electrical conductivity
of such a material.

When an electric field is applied to an n-type semiconductor, each negative
carrier will be accelerated in this field, picking up velocity until it is scattered
from one of the donor sites. This means that the carriers which are ordinarily
moving about in a random fashion with their thermal energies will pick up an
average drift velocity along the lines of the electric field and give rise to a current
through the crystal. The drift velocity is in general rather small compared with
the typical thermal velocities so that we can estimate the current by assuming
that the average time that the carrier travels between scatterings is a constant.
Let’s say that the negative carrier has an effective electric charge qn. In an
electric field E, the force on the carrier will be qnE. In Section 43-3 of Volume I
we calculated the average drift velocity under such circumstances and found that
it is given by Fτ/m, where F is the force on the charge, τ is the mean free
time between collisions, and m is the mass. We should use the effective mass we
calculated in the last chapter but since we want to make a rough calculation we
will suppose that this effective mass is the same in all directions. Here we will
call it mn. With this approximation the average drift velocity will be

vdrift = qnEτn
mn

. (14.5)
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Knowing the drift velocity we can find the current. Electric current density j is
just the number of carriers per unit volume, Nn, multiplied by the average drift
velocity, and by the charge on each carrier. The current density is therefore

j = Nnvdriftqn = Nnq
2
nτn

mn
E. (14.6)

We see that the current density is proportional to the electric field; such a
semiconductor material obeys Ohm’s law. The coefficient of proportionality
between j and E, the conductivity σ, is

σ = Nnq
2
nτn

mn
. (14.7)

For an n-type material the conductivity is relatively independent of temperature.
First, the number of majority carriers Nn is determined primarily by the density
of donors in the crystal (so long as the temperature is not so low that too many of
the carriers are trapped). Second, the mean time between collisions τn is mainly
controlled by the density of impurity atoms, which is, of course, independent of
the temperature.

We can apply all the same arguments to a p-type material, changing only the
values of the parameters which appear in Eq. (14.7). If there are comparable
numbers of both negative and positive carriers present at the same time, we must
add the contributions from each kind of carrier. The total conductivity will be
given by

σ = Nnq
2
nτn

mn
+
Npq

2
pτp

mp
. (14.8)

For very pure materials, Np and Nn will be nearly equal. They will be smaller
than in a doped material, so the conductivity will be less. Also they will vary
rapidly with temperature (like e−Egap/2κT , as we have seen), so the conductivity
may change extremely fast with temperature.

14-3 The Hall effect

It is certainly a peculiar thing that in a substance where the only relatively free
objects are electrons, there should be an electrical current carried by holes that
behave like positive particles. We would like, therefore, to describe an experiment
that shows in a rather clear way that the sign of the carrier of electric current
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Fig. 14-6. The Hall effect comes from the magnetic forces on the
carriers.

is quite definitely positive. Suppose we have a block made of semiconductor
material—it could also be a metal—and we put an electric field on it so as to draw
a current in some direction, say the horizontal direction as drawn in Fig. 14-6.
Now suppose we put a magnetic field on the block pointing at a right angle to
the current, say into the plane of the figure. The moving carriers will feel a
magnetic force q(v ×B). And since the average drift velocity is either right or
left—depending on the sign of the charge on the carrier—the average magnetic
force on the carriers will be either up or down. No, that is not right! For the
directions we have assumed for the current and the magnetic field the magnetic
force on the moving charges will always be up. Positive charges moving in the
direction of j (to the right) will feel an upward force. If the current is carried by
negative charges, they will be moving left (for the same sign of the conduction
current) and they will also feel an upward force. Under steady conditions, however,
there is no upward motion of the carriers because the current can flow only from
left to right. What happens is that a few of the charges initially flow upward,
producing a surface charge density along the upper surface of semiconductor—
leaving an equal and opposite surface charge density along the bottom surface of
the crystal. The charges pile up on the top and bottom surfaces until the electric
forces they produce on the moving charges just exactly cancel the magnetic force
(on the average) so that the steady current flows horizontally. The charges on
the top and bottom surfaces will produce a potential difference vertically across
the crystal which can be measured with a high-resistance voltmeter, as shown in
Fig. 14-7. The sign of the potential difference registered by the voltmeter will
depend on the sign of the carrier charges responsible for the current.

When such experiments were first done it was expected that the sign of the
potential difference would be negative as one would expect for negative conduction
electrons. People were, therefore, quite surprised to find that for some materials
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Fig. 14-7. Measuring the Hall effect.

the sign of the potential difference was in the opposite direction. It appeared that
the current carrier was a particle with a positive charge. From our discussion of
doped semiconductors it is understandable that an n-type semiconductor should
produce the sign of potential difference appropriate to negative carriers, and that
a p-type semiconductor should give an opposite potential difference, since the
current is carried by the positively charged holes.

The original discovery of the anomalous sign of the potential difference in
the Hall effect was made in a metal rather than a semiconductor. It had been
assumed that in metals the conduction was always by electron; however, it was
found out that for beryllium the potential difference had the wrong sign. It
is now understood that in metals as well as in semiconductors it is possible,
in certain circumstances, that the “objects” responsible for the conduction are
holes. Although it is ultimately the electrons in the crystal which do the moving,
nevertheless, the relationship of the momentum and the energy, and the response
to external fields is exactly what one would expect for an electric current carried
by positive particles.

Let’s see if we can make a quantitative estimate of the magnitude of the
voltage difference expected from the Hall effect. If the voltmeter in Fig. 14-7 draws
a negligible current, then the charges inside the semiconductor must be moving
from left to right and the vertical magnetic force must be precisely cancelled by
a vertical electric field which we will call Etr (the “tr” is for “transverse”). If this
electric field is to cancel the magnetic forces, we must have

Etr = −vdrift ×B. (14.9)
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Using the relation between the drift velocity and the electric current density
given in Eq. (14.6), we get

Etr = − 1
qN

jB.

The potential difference between the top and the bottom of the crystal is, of
course, this electric field strength multiplied by the height of the crystal. The
electric field strength Etr in the crystal is proportional to the current density and
to the magnetic field strength. The constant of proportionality 1/qN is called the
Hall coefficient and is usually represented by the symbol RH. The Hall coefficient
depends just on the density of carriers—provided that carriers of one sign are
in a large majority. Measurement of the Hall effect is, therefore, one convenient
way of determining experimentally the density of carriers in a semiconductor.

14-4 Semiconductor junctions

We would like to discuss now what happens if we take two pieces of germanium
or silicon with different internal characteristics—say different kinds or amounts
of doping—and put them together to make a “junction.” Let’s start out with
what is called a p-n junction in which we have p-type germanium on one side
of the boundary and n-type germanium on the other side of the boundary—as
sketched in Fig. 14-8. Actually, it is not practical to put together two separate
pieces of crystal and have them in uniform contact on an atomic scale. Instead,
junctions are made out of a single crystal which has been modified in the two
separate regions. One way is to add some suitable doping impurity to the “melt”
after only half of the crystal has grown. Another way is to paint a little of the
impurity element on the surface and then heat the crystal causing some impurity
atoms to diffuse into the body of the crystal. Junctions made in these ways do
not have a sharp boundary, although the boundaries can be made as thin as
10−4 centimeters or so. For our discussions we will imagine an ideal situation

p-type material n-type material

Fig. 14-8. A p-n junction.
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Fig. 14-9. The electric potential and the carrier densities in an unbiased
semiconductor junction.

in which these two regions of the crystal with different properties meeting at a
sharp boundary.

On the n-type side of the p-n junction there are free electrons which can move
about, as well as the fixed donor sites which balance the overall electric charge.
On the p-type side there are free holes moving about and an equal number of
negative acceptor sites keeping the charge balanced. Actually, that describes the
situation before we put the two materials in contact. Once they are connected
together the situation will change near the boundary. When the electrons in
the n-type material arrive at the boundary they will not be reflected back as
they would at a free surface, but are able to go right on into the p-type material.
Some of the electrons of the n-type material will, therefore, tend to diffuse over
into the p-type material where there are fewer electrons. This cannot go on
forever because as we lose electrons from the n-side the net positive charge there
increases until finally an electric voltage is built up which retards the diffusion
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of electrons into the p-side. In a similar way, the positive carriers of the p-type
material can diffuse across the junction into the n-type material. When they do
this they leave behind an excess of negative charge. Under equilibrium conditions
the net diffusion current must be zero. This is brought about by the electric
fields, which are established in such a way as to draw the positive carriers back
toward the p-type material.

The two diffusion processes we have been describing go on simultaneously
and, you will notice, both act in the direction which will charge up the n-type
material in a positive sense and the p-type material in a negative sense. Because
of the finite conductivity of the semiconductor material, the change in potential
from the p-side to the n-side will occur in a relatively narrow region near the
boundary; the main body of each block of material will have a uniform potential.
Let’s imagine an x-axis in a direction perpendicular to the boundary surface.
Then the electric potential will vary with x, as shown in Fig. 14-9(b). We have
also shown in part (c) of the figure the expected variation of the density Nn of
n-carriers and the density Np of p-carriers. Far away from the junction the carrier
densities Np and Nn should be just the equilibrium density we would expect for
individual blocks of materials at the same temperature. (We have drawn the
figure for a junction in which the p-type material is more heavily doped than the
n-type material.) Because of the potential gradient at the junction, the positive
carriers have to climb up a potential hill to get to the n-type side. This means
that under equilibrium conditions there can be fewer positive carriers in the
n-type material than there are in the p-type material. Remembering the laws of
statistical mechanics, we expect that the ratio of p-type carriers on the two sides
to be given by the following equation:

Np(n-side)
Np(p-side)

= e−qpV/κT . (14.10)

The product qpV in the numerator of the exponential is just the energy required
to carry a charge of qp through a potential difference V .

We have a precisely similar equation for the densities of the n-type carriers:
Nn(n-side)
Nn(p-side) = e−qnV/κT . (14.11)

If we know the equilibrium densities in each of the two materials, we can use
either of the two equations above to determine the potential difference across the
junction.
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Notice that if Eqs. (14.10) and (14.11) are to give the same value for the
potential difference V , the product NpNn must be the same for the p-side as
for the n-side. (Remember that qn = −qp.) We have seen earlier, however, that
this product depends only on the temperature and the gap energy of the crystal.
Provided both sides of the crystal are at the same temperature, the two equations
are consistent with the same value of the potential difference.

Since there is a potential difference from one side of the junction to the
other, it looks something like a battery. Perhaps if we connect a wire from the
n-type side to the p-type side we will get an electrical current. That would be
nice because then the current would flow forever without using up any material
and we would have an infinite source of energy in violation of the second law
of thermodynamics! There is, however, no current if you connect a wire from
the p-side to the n-side. And the reason is easy to see. Suppose we imagine
first a wire made out of a piece of undoped material. When we connect this
wire to the n-type side, we have a junction. There will be a potential difference
across this junction. Let’s say that it is just one-half the potential difference
from the p-type material to the n-type material. When we connect our undoped
wire to the p-type side of the junction, there is also a potential difference at
this junction—again, one-half the potential drop across the p-n junction. At all
the junctions the potential differences adjust themselves so that there is no net
current flow in the circuit. Whatever kind of wire you use to connect together
the two sides of the n-p junction, you are producing two new junctions, and so
long as all the junctions are at the same temperature, the potential jumps at the
junctions all compensate each other and no current will flow in the circuit. It
does turn out, however—if you work out the details—that if some of the junctions
are at a different temperature than the other junctions, currents will flow. Some
of the junctions will be heated and others will be cooled by this current and
thermal energy will be converted into electrical energy. This effect is responsible
for the operation of thermocouples which are used for measuring temperatures,
and of thermoelectric generators. The same effect is also used to make small
refrigerators.

If we cannot measure the potential difference between the two sides of an
n-p junction, how can we really be sure that the potential gradient shown in
Fig. 14-9 really exists? One way is to shine light on the junction. When the
light photons are absorbed they can produce an electron-hole pair. In the strong
electric field that exists at the junction (equal to the slope of the potential curve
of Fig. 14-9) the hole will be driven into the p-type region and the electron will be
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driven into the n-type region. If the two sides of the junction are now connected
to an external circuit, these extra charges will provide a current. The energy of
the light will be converted into electrical energy in the junction. The solar cells
which generate electrical power for the operation of some of our satellites operate
on this principle.

In our discussion of the operation of a semiconductor junction we have
been assuming that the holes and the electrons act more-or-less independently—
except that they somehow get into proper statistical equilibrium. When we
were describing the current produced by light shining on the junction, we were
assuming that an electron or a hole produced in the junction region would
get into the main body of the crystal before being annihilated by a carrier of
the opposite polarity. In the immediate vicinity of the junction, where the
density of carriers of both signs is approximately equal, the effect of electron-hole
annihilation (or as it is often called, “recombination”) is an important effect,
and in a detailed analysis of a semiconductor junction must be properly taken
into account. We have been assuming that a hole or an electron produced in a
junction region has a good chance of getting into the main body of the crystal
before recombining. The typical time for an electron or a hole to find an opposite
partner and annihilate it is for typical semiconductor materials in the range
between 10−3 and 10−7 seconds. This time is, incidentally, much longer than the
mean free time τ between collisions with scattering sites in the crystal which we
used in the analysis of conductivity. In a typical n-p junction, the time for an
electron or hole formed in the junction region to be swept away into the body of
the crystal is generally much shorter than the recombination time. Most of the
pairs will, therefore, contribute to an external current.

14-5 Rectification at a semiconductor junction

We would like to show next how it is that a p-n junction can act like a rectifier.
If we put a voltage across the junction, a large current will flow if the polarity is
in one direction, but a very small current will flow if the same voltage is applied
in the opposite direction. If an alternating voltage is applied across the junction,
a net current will flow in one direction—the current is “rectified.” Let’s look
again at what is going on in the equilibrium condition described by the graphs
of Fig. 14-9. In the p-type material there is a large concentration Np of positive
carriers. These carriers are diffusing around and a certain number of them each
second approach the junction. This current of positive carriers which approaches
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the junction is proportional to Np. Most of them, however, are turned back by
the high potential hill at the junction and only the fraction e−qV/κT gets through.
There is also a current of positive carriers approaching the junction from the
other side. This current is also proportional to the density of positive carriers in
the n-type region, but the carrier density here is much smaller than the density
on the p-type side. When the positive carriers approach the junction from the
n-type side, they find a hill with a negative slope and immediately slide downhill
to the p-type side of the junction. Let’s call this current I0. Under equilibrium
the currents from the two directions are equal. We expect then the following
relation:

I0 ∝ Np(n-side) = Np(p-side)e−qV/κT . (14.12)

You will notice that this equation is really just the same as Eq. (14.10). We have
just derived it in a different way.

Suppose, however, that we lower the voltage on the n-side of the junction by
an amount ∆V—which we can do by applying an external potential difference
to the junction. Now the difference in potential across the potential hill is no
longer V but V −∆V . The current of positive carriers from the p-side to the
n-side will now have this potential difference in its exponential factor. Calling
this current I1, we have

I1 ∝ Np(p-side)e−q(V−∆V )/κT .

This current is larger than I0 by just the factor eq∆V/κT . So we have the following
relation between I1 and I0:

I1 = I0e
+q∆V/κT . (14.13)

The current from the p-side increases exponentially with the externally applied
voltage ∆V . The current of positive carriers from the n-side, however, remains
constant so long as ∆V is not too large. When they approach the barrier, these
carriers will still find a downhill potential and will all fall down to the p-side. (If
∆V is larger than the natural potential difference V , the situation would change,
but we will not consider what happens at such high voltages.) The net current I
of positive carriers which flows across the junction is then the difference between
the currents from the two sides:

I1 = I0(e+q∆V/κT − 1). (14.14)
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The net current I of holes flows into the n-type region. There the holes diffuse
into the body of the n-region, where they are eventually annihilated by the
majority n-type carriers—the electrons. The electrons which are lost in this
annihilation will be made up by a current of electrons from the external terminal
of the n-type material.

When ∆V is zero, the net current in Eq. (14.14) is zero. For positive ∆V
the current increases rapidly with the applied voltage. For negative ∆V the
current reverses in sign, but the exponential term soon becomes negligible and
the negative current never exceeds I0—which under our assumptions is rather
small. This back current I0 is limited by the small density of the minority p-type
carriers on the n-side of the junction.

If you go through exactly the same analysis for the current of negative carriers
which flows across the junction, first with no potential difference and then with
a small externally applied potential difference ∆V , you get again an equation
just like (14.14) for the net electron current. Since the total current is the sum
of the currents contributed by the two carriers, Eq. (14.14) still applies for the
total current provided we identify I0 as the maximum current which can flow for
a reversed voltage.

The voltage-current characteristic of Eq. (14.14) is shown in Fig. 14-10. It
shows the typical behavior of solid state diodes—such as those used in modern
computers. We should remark that Eq. (14.14) is true only for small voltages. For
voltages comparable to or larger than the natural internal voltage difference V ,
other effects come into play and the current no longer obeys the simple equation.

You may remember, incidentally, that we got exactly the same equation we
have found here in Eq. (14.14) when we discussed the “mechanical rectifier”—the
ratchet and pawl—in Chapter 46 of Volume I. We get the same equations in the
two situations because the basic physical processes are quite similar.

14-6 The transistor

Perhaps the most important application of semiconductors is in the transistor.
The transistor consists of two semiconductor junctions very close together. Its
operation is based in part on the same principles that we just described for the
semiconductor diode—the rectifying junction. Suppose we make a little bar of
germanium with three distinct regions, a p-type region, an n-type region, and
another p-type region, as shown in Fig. 14-11(a). This combination is called a
p-n-p transistor. Each of the two junctions in the transistor will behave much
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Fig. 14-10. The current through a junction as a function of the
voltage across it.
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Fig. 14-11. The potential distribution in a transistor with no applied
voltages.
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in the way we have described in the last section. In particular, there will be
a potential gradient at each junction having a certain potential drop from the
n-type region to each p-type region. If the two p-type regions have the same
internal properties, the variation in potential as we go across the crystal will be
as shown in the graph of Fig. 14-11(b).

Now let’s imagine that we connect each of the three regions to external
voltage sources as shown in part (a) of Fig. 14-12. We will refer all voltages to the
terminal connected to the left-hand p-region so it will be, by definition, at zero
potential. We will call this terminal the emitter. The n-type region is called the
base and it is connected to a slightly negative potential. The right-hand p-type
region is called the collector, and is connected to a somewhat larger negative
potential. Under these circumstances the variation of potential across the crystal
will be as shown in the graph of Fig. 14-12(b).

(a) p n p

e b c
Ie Ib Ic

Ve = 0 Vb < 0 Vc � Vb

(b)

V

Vb

Vc

Fig. 14-12. The potential distribution in an operating transistor.

Let’s first see what happens to the positive carriers, since it is primarily their
behavior which controls the operation of the p-n-p transistor. Since the emitter is
at a relatively more positive potential than the base, a current of positive carriers
will flow from the emitter region into the base region. A relatively large current
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flows, since we have a junction operating with a “forward voltage”—corresponding
to the right-hand half of the graph in Fig. 14-10. With these conditions, positive
carriers or holes are being “emitted” from the p-type region into the n-type
region. You might think that this current would flow out of the n-type region
through the base terminal b. Now, however, comes the secret of the transistor.
The n-type region is made very thin—typically 10−3 cm or less, much narrower
than its transverse dimensions. This means that as the holes enter the n-type
region they have a very good chance of diffusing across to the other junction
before they are annihilated by the electrons in the n-type region. When they
get to the right-hand boundary of the n-type region they find a steep downward
potential hill and immediately fall into the right-hand p-type region. This side of
the crystal is called the collector because it “collects” the holes after they have
diffused across the n-type region. In a typical transistor, all but a fraction of
a percent of the hole current which leaves the emitter and enters the base is
collected in the collector region, and only the small remainder contributes to the
net base current. The sum of the base and collector currents is, of course, equal
to the emitter current.

Now imagine what happens if we vary slightly the potential Vb on the base
terminal. Since we are on a relatively steep part of the curve of Fig. 14-10, a
small variation of the potential Vb will cause a rather large change in the emitter
current Ie. Since the collector voltage Vc is much more negative than the base
voltage, these slight variations in potential will not effect appreciably the steep
potential hill between the base and the collector. Most of the positive carriers
emitted into the n-region will still be caught by the collector. Thus as we vary
the potential of the base electrode, there will be a corresponding variation in
the collector current Ic. The essential point, however, is that the base current Ib
always remains a small fraction of the collector current. The transistor is an
amplifier; a small current Ib introduced into the base electrode gives a large
current—100 or so times higher—at the collector electrode.

What about the electrons—the negative carriers that we have been neglecting
so far? First, note that we do not expect any significant electron current to
flow between the base and the collector. With a large negative voltage on the
collector, the electrons in the base would have to climb a very high potential
energy hill and the probability of doing that is very small. There is a very small
current of electrons to the collector.

On the other hand, the electrons in the base can go into the emitter region.
In fact, you might expect the electron current in this direction to be comparable

14-24



to the hole current from the emitter into the base. Such an electron current isn’t
useful, and, on the contrary, is bad because it increases the total base current
required for a given current of holes to the collector. The transistor is, therefore,
designed to minimize the electron current to the emitter. The electron current is
proportional to Nn(base), the density of negative carriers in the base material
while the hole current from the emitter depends on Np(emitter), the density of
positive carriers in the emitter region. By using relatively little doping in the
n-type material Nn(base) can be made much smaller than Np(emitter). (The
very thin base region also helps a great deal because the sweeping out of the holes
in this region by the collector increases significantly the average hole current
from the emitter into the base, while leaving the electron current unchanged.)
The net result is that the electron current across the emitter-base junction can
be made much less than the hole current, so that the electrons do not play any
significant role in operation of the p-n-p transistor. The currents are dominated
by motion of the holes, and the transistor performs as an amplifier as we have
described above.

It is also possible to make a transistor by interchanging the p-type and n-type
materials in Fig. 14-11. Then we have what is called an n-p-n transistor. In
the n-p-n transistor the main currents are carried by the electrons which flow
from the emitter into the base and from there to the collector. Obviously, all the
arguments we have made for the p-n-p transistor also apply to the n-p-n transistor
if the potentials of the electrodes are chosen with the opposite signs.
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15

The Independent Particle Approximation

15-1 Spin waves

In Chapter 13 we worked out the theory for the propagation of an electron
or of some other “particle,” such as an atomic excitation, through a crystal
lattice. In the last chapter we applied the theory to semiconductors. But when
we talked about situations in which there are many electrons we disregarded any
interactions between them. To do this is of course only an approximation. In this
chapter we will discuss further the idea that you can disregard the interaction
between the electrons. We will also use the opportunity to show you some more
applications of the theory of the propagation of particles. Since we will generally
continue to disregard the interactions between particles, there is very little really
new in this chapter except for the new applications. The first example to be
considered is, however, one in which it is possible to write down quite exactly the
correct equations when there is more than one “particle” present. From them
we will be able to see how the approximation of disregarding the interactions is
made. We will not, though, analyze the problem very carefully.

As our first example we will consider a “spin wave” in a ferromagnetic crystal.
We have discussed the theory of ferromagnetism in Chapter 36 of Volume II.
At zero temperature all the electron spins that contribute to the magnetism in
the body of a ferromagnetic crystal are parallel. There is an interaction energy
between the spins, which is lowest when all the spins are down. At any nonzero
temperature, however, there is some chance that some of the spins are turned
over. We calculated the probability in an approximate manner in Chapter 36.
This time we will describe the quantum mechanical theory—so you will see what
you would have to do if you wanted to solve the problem more exactly. (We will
still make some idealizations by assuming that the electrons are localized at the
atoms and that the spins interact only with neighboring spins.)

15-1



We consider a model in which the electrons at each atom are all paired except
one, so that all of the magnetic effects come from one spin- 1

2 electron per atom.
Further, we imagine that these electrons are localized at the atomic sites in the
lattice. The model corresponds roughly to metallic nickel.

We also assume that there is an interaction between any two adjacent spinning
electrons which gives a term in the energy of the system

E = −
∑
i,j

Kσi · σj , (15.1)

where σ’s represent the spins and the summation is over all adjacent pairs of
electrons. We have already discussed this kind of interaction energy when we
considered the hyperfine splitting of hydrogen due to the interaction of the
magnetic moments of the electron and proton in a hydrogen atom. We expressed
it then as Aσe · σp. Now, for a given pair, say the electrons at atom 4 and at
atom 5, the Hamiltonian would be −Kσ4 · σ5. We have a term for each such
pair, and the Hamiltonian is (as you would expect for classical energies) the
sum of these terms for each interacting pair. The energy is written with the
factor −K so that a positive K will correspond to ferromagnetism—that is, the
lowest energy results when adjacent spins are parallel. In a real crystal, there
may be other terms which are the interactions of next nearest neighbors, and so
on, but we don’t need to consider such complications at this stage.

With the Hamiltonian of Eq. (15.1) we have a complete description of the
ferromagnet—within our approximation—and the properties of the magnetization
should come out. We should also be able to calculate the thermodynamic
properties due to the magnetization. If we can find all the energy levels, the
properties of the crystal at a temperature T can be found from the principle
that the probability that a system will be found in a given state of energy E is
proportional to e−E/κT . This problem has never been completely solved.

We will show some of the problems by taking a simple example in which all
the atoms are in a line—a one-dimensional lattice. You can easily extend the
ideas to three dimensions. At each atomic location there is an electron which
has two possible states, either spin up or spin down, and the whole system is
described by telling how all of the spins are arranged. We take the Hamiltonian
of the system to be the operator of the interaction energy. Interpreting the spin
vectors of Eq. (15.1) as the sigma-operators—or the sigma-matrices—we write
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for the linear lattice
Ĥ =

∑
n

−A2 σ̂n · σ̂n+1. (15.2)

In this equation we have written the constant as A/2 for convenience (so that
some of the later equations will be exactly the same as the ones in Chapter 13).

Now what is the lowest state of this system? The state of lowest energy is
the one in which all the spins are parallel—let’s say, all up.† We can write this
state as | · · ·+ + + + · · ·〉, or | gnd〉 for the “ground,” or lowest, state. It’s easy
to figure out the energy for this state. One way is to write out all the vector
sigmas in terms of σ̂x, σ̂y, and σ̂z, and work through carefully what each term
of the Hamiltonian does to the ground state, and then add the results. We can,
however, also use a good short cut. We saw in Section 12-2, that σ̂i · σ̂j could
be written in terms of the Pauli spin exchange operator like this:

σ̂i · σ̂j = (2P̂ spin ex
ij − 1), (15.3)

where the operator P̂ spin ex
ij interchanges the spins of the ith and jth electrons.

With this substitution the Hamiltonian becomes

Ĥ = −A
∑
n

(P̂ spin ex
n,n+1 − 1

2 ). (15.4)

It is now easy to work out what happens to different states. For instance if
i and j are both up, then exchanging the spins leaves everything unchanged,
so P̂ij acting on the state just gives the same state back, and is equivalent to
multiplying by +1. The expression (P̂ij − 1

2 ) is just equal to one-half. (From now
on we will leave off the descriptive superscript on the P̂ .)

For the ground state all spins are up; so if you exchange a particular pair of
spins, you get back the original state. The ground state is a stationary state. If
you operate on it with the Hamiltonian you get the same state again multiplied
by a sum of terms, −(A/2) for each pair of spins. That is, the energy of the
system in the ground state is −A/2 per atom.

Next we would like to look at the energies of some of the excited states. It
will be convenient to measure the energies with respect to the ground state—that

† The ground state here is really “degenerate”; there are other states with the same energy—
for example, all spins down, or all in any other direction. The slightest external field in the
z-direction will give a different energy to all these states, and the one we have chosen will be
the true ground state.
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is, to choose the ground state as our zero of energy. We can do that by adding
the energy A/2 to each term in the Hamiltonian. That just changes the “ 1

2” in
Eq. (15.4) to “1.” Our new Hamiltonian is

Ĥ = −A
∑
n

(P̂n,n+1 − 1). (15.5)

With this Hamiltonian the energy of the lowest state is zero; the spin exchange
operator is equivalent to multiplying by unity (for the ground state) which is
cancelled by the “1” in each term.

For describing states other than the ground state we will need a suitable
set of base states. One convenient approach is to group the states according to
whether one electron has spin down, or two electrons have spin down, and so on.
There are, of course, many states with one spin down. The down spin could be at
atom “4,” or at atom “5,” or at atom “6,” . . . We can, in fact, choose just such
states for our base states. We could write them this way: | 4〉, | 5〉, | 6〉, . . . It will,
however, be more convenient later if we label the “odd atom”—the one with the
down-spinning electron—by its coordinate x. That is, we’ll define the state |x5〉
to be one with all the electrons spinning up except for the one on the atom at x5,
which has a down-spinning electron (see Fig. 15-1). In general, |xn〉 is the state
with one down spin that is located at the coordinate xn of the nth atom.

−3 −2 −1 0 1 2 3 4 5 6 7

b

x5

Fig. 15-1. The base state | x5〉 of a linear array of spins. All the spins
are up except the one at x5, which is down.

What is the action of the Hamiltonian (15.5) on the state |x5〉? One term of
the Hamiltonian is say −A(P̂7,8 − 1). The operator P̂7,8 exchanges the two spins
of the adjacent atoms 7, 8. But in the state |x5〉 these are both up, and nothing
happens; P̂7,8 is equivalent to multiplying by 1:

P̂7,8 |x5〉 = |x5〉.
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It follows that
(P̂7,8 − 1) |x5〉 = 0.

Thus all the terms of the Hamiltonian give zero—except those involving atom 5,
of course. On the state |x5〉, the operation P̂4,5 exchanges the spin of atom 4
(up) and atom 5 (down). The result is the state with all spins up except the
atom at 4. That is

P̂4,5 |x5〉 = |x4〉.
In the same way

P̂5,6 |x5〉 = |x6〉.

Hence, the only terms of the Hamiltonian which survive are −A(P̂4,5 − 1)
and −A(P̂5,6− 1). Acting on |x5〉 they produce −A |x4〉+A |x5〉 and −A |x6〉+
A |x5〉, respectively. The result is

Ĥ |x5〉 = −A
∑
n

(P̂n,n+1 − 1) |x5〉 = −A{|x6〉+ |x4〉 − 2 |x5〉}. (15.6)

When the Hamiltonian acts on state |x5〉 it gives rise to some amplitude to
be in states |x4〉 and |x6〉. That just means that there is a certain amplitude to
have the down spin jump over to the next atom. So because of the interaction
between the spins, if we begin with one spin down, then there is some probability
that at a later time another one will be down instead. Operating on the general
state |xn〉, the Hamiltonian gives

Ĥ |xn〉 = −A{|xn+1〉+ |xn−1〉 − 2 |xn〉}. (15.7)

Notice particularly that if we take a complete set of states with only one spin
down, they will only be mixed among themselves. The Hamiltonian will never
mix these states with others that have more spins down. So long as you only
exchange spins you never change the total number of down spins.

It will be convenient to use the matrix notation for the Hamiltonian, say
Hn,m ≡ 〈xn | Ĥ |xm〉; Eq. (15.7) is equivalent to

Hn,n = 2A;

Hn,n+1 = Hn,n−1 = −A;

Hn,m = 0, for |n−m| > 1.

(15.8)
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Now what are the energy levels for states with one spin down? As usual we
let Cn be the amplitude that some state |ψ〉 is in the state |xn〉. If |ψ〉 is to be a
definite energy state, all the Cn’s must vary with time in the same way, namely,

Cn = ane
−iEt/~. (15.9)

We can put this trial solution into our usual Hamiltonian equation

i~
dCn
dt

=
∑
m

HnmCm, (15.10)

using Eq. (15.8) for the matrix elements. Of course we get an infinite number of
equations, but they can all be written as

Ean = 2Aan −Aan−1 −Aan+1. (15.11)

We have again exactly the same problem we worked out in Chapter 13, except that
where we had E0 we now have 2A. The solutions correspond to amplitudes Cn
(the down-spin amplitude) which propagate along the lattice with a propagation
constant k and an energy

E = 2A(1− cos kb), (15.12)

where b is the lattice constant.
The definite energy solutions correspond to “waves” of down spin—called

“spin waves.” And for each wavelength there is a corresponding energy. For large
wavelengths (small k) this energy varies as

E = Ab2k2. (15.13)

Just as before, we can consider a localized wave packet (containing, however,
only long wavelengths) which corresponds to a spin-down electron in one part of
the lattice. This down spin will behave like a “particle.” Because its energy is
related to k by (15.13) the “particle” will have an effective mass:

meff = ~2

2Ab2 . (15.14)

These “particles” are sometimes called “magnons.”

15-6



15-2 Two spin waves

Now we would like to discuss what happens if there are two down spins. Again
we pick a set of base states. We’ll choose states in which there are down spins at
two atomic locations, such as the state shown in Fig. 15-2. We can label such a
state by the x-coordinates of the two sites with down spins. The one shown can
be called |x2, x5〉. In general the base states are |xn, xm〉—a doubly infinite set!
In this system of description, the state |x4, x9〉 and the state |x9, x4〉 are exactly
the same state, because each simply says that there is a down spin at 4 and one
at 9; there is no meaning to the order. Furthermore, the state |x4, x4〉 has no
meaning, there isn’t such a thing. We can describe any state |ψ〉 by giving the
amplitudes to be in each of the base states. Thus Cm,n = 〈xm, xn |ψ〉 now means
the amplitude for a system in the state |ψ〉 to be in a state in which both the
mth and nth atoms have a down spin. The complications which now arise are
not complications of ideas—they are merely complexities in bookkeeping. (One
of the complexities of quantum mechanics is just the bookkeeping. With more
and more down spins, the notation becomes more and more elaborate with lots
of indices and the equations always look very horrifying; but the ideas are not
necessarily more complicated than in the simplest case.)

−3 −2 −1 0 1 2 3 4 5 6 7

Fig. 15-2. A state with two down spins.

The equations of motion of the spin system are the differential equations for
the Cn,m. They are

i~
dCn,m
dt

=
∑
i,j

(Hnm,ij)Cij . (15.15)

Suppose we want to find the stationary states. As usual, the derivatives with
respect to time become E times the amplitudes and the Cm,n can be replaced by
the coefficients am,n. Next we have to work out carefully the effect of H on a state
with spins m and n down. It is not hard to figure out. Suppose for a moment that
m and n are far enough apart so that we don’t have to worry about the obvious
trouble. The operation of exchange at the location xn will move the down spin
either to the (n+ 1) or (n−1) atom, and so there’s an amplitude that the present
state has come from the state |xm, xn+1〉 and also an amplitude that it has come

15-7



from the state |xm, xn−1〉. Or it may have been the other spin that moved; so
there’s a certain amplitude that Cm,n is fed from Cm+1,n or from Cm−1,n. These
effects should all be equal. The final result for the Hamiltonian equation on Cm,n
is

Eam,n = −A(am+1,n + am−1,n + am,n+1 + am,n−1) + 4Aam,n. (15.16)

This equation is correct except in two situations. If m = n there is no
equation at all, and if m = n± 1, then two of the terms in Eq. (15.16) should
be missing. We are going to disregard these exceptions. We simply ignore the
fact that some few of these equations are slightly altered. After all, the crystal is
supposed to be infinite, and we have an infinite number of terms; neglecting a
few might not matter much. So for a first rough approximation let’s forget about
the altered equations. In other words, we assume that Eq. (15.16) is true for all
m and n, even for m and n next to each other. This is the essential part of our
approximation.

Then the solution is not hard to find. We get immediately

Cm,n = am,ne
−iEt/~, (15.17)

with
am,n = (const.) eik1xmeik2xn , (15.18)

where
E = 4A− 2A cos k1b− 2A cos k2b. (15.19)

Think for a moment what would happen if we had two independent, single
spin waves (as in the previous section) corresponding to k = k1 and k = k2; they
would have energies, from Eq. (15.12), of

ε1 = (2A− 2A cos k1b)
and

ε2 = (2A− 2A cos k2b).

Notice that the energy E in Eq. (15.19) is just their sum,

E = ε(k1) + ε(k2). (15.20)

In other words we can think of our solution in this way. There are two particles—
that is, two spin waves. One of them has a momentum described by k1, the other
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by k2, and the energy of the system is the sum of the energies of the two objects.
The two particles act completely independently. That’s all there is to it.

Of course we have made some approximations, but we do not wish to discuss
the precision of our answer at this point. However, you might guess that in a
reasonable size crystal with billions of atoms—and, therefore, billions of terms
in the Hamiltonian—leaving out a few terms wouldn’t make much of an error.
If we had so many down spins that there was an appreciable density, then we
would certainly have to worry about the corrections.

[Interestingly enough, an exact solution can be written down if there are just
the two down spins. The result is not particularly important. But it is interesting
that the equations can be solved exactly for this case. The solution is:

am,n = exp[ikc(xm + xn)] sin(k|xm − xn|), (15.21)
with the energy

E = 4A− 2A cos k1b− 2A cos k2b,

and with the wave numbers kc and k related to k1 and k2 by

k1 = kc − k, k2 = kc + k. (15.22)

This solution includes the “interaction” of the two spins. It describes the fact
that when the spins come together there is a certain chance of scattering. The
spins act very much like particles with an interaction. But the detailed theory of
their scattering goes beyond what we want to talk about here.]

15-3 Independent particles

In the last section we wrote down a Hamiltonian, Eq. (15.15), for a two-
particle system. Then using an approximation which is equivalent to neglecting
any “interaction” of the two particles, we found the stationary states described
by Eqs. (15.17) and (15.18). This state is just the product of two single-particle
states. The solution we have given for am,n in Eq. (15.18) is, however, really not
satisfactory. We have very carefully pointed out earlier that the state |x9, x4〉 is
not a different state from |x4, x9〉—the order of xm and xn has no significance.
In general, the algebraic expression for the amplitude Cm,n must be unchanged
if we interchange the values of xm and xn, since that doesn’t change the state.
Either way, it should represent the amplitude to find a down spin at xm and a
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down spin at xn. But notice that (15.18) is not symmetric in xm and xn—since
k1 and k2 can in general be different.

The trouble is that we have not forced our solution of Eq. (15.15) to satisfy
this additional condition. Fortunately it is easy to fix things up. Notice first that
a solution of the Hamiltonian equation just as good as (15.18) is

am,n = Keik2xmeik1xn . (15.23)

It even has the same energy we got for (15.18). Any linear combination of (15.18)
and (15.23) is also a good solution, and has an energy still given by Eq. (15.19).
The solution we should have chosen—because of our symmetry requirement—is
just the sum of (15.18) and (15.23):

am,n = K[eik1xmeik2xn + eik2xmeik1xn ]. (15.24)

Now, given any k1 and k2 the amplitude Cm,n is independent of which way
we put xm and xn—if we should happen to define xm and xn reversed we get
the same amplitude. Our interpretation of Eq. (15.24) in terms of “magnons”
must also be different. We can no longer say that the equation represents one
particle with wave number k1 and a second particle with wave number k2. The
amplitude (15.24) represents one state with two particles (magnons). The state
is characterized by the two wave numbers k1 and k2. Our solution looks like
a compound state of one particle with the momentum p1 = ~k1 and another
particle with the momentum p2 = ~k2, but in our state we can’t say which
particle is which.

By now, this discussion should remind you of Chapter 4 and our story of
identical particles. We have just been showing that the particles of the spin
waves—the magnons—behave like identical Bose particles. All amplitudes must
be symmetric in the coordinates of the two particles—which is the same as
saying that if we “interchange the two particles,” we get back the same amplitude
and with the same sign. But, you may be thinking, why did we choose to add
the two terms in making Eq. (15.24). Why not subtract? With a minus sign,
interchanging xm and xn would just change the sign of am,n which doesn’t matter.
But interchanging xm and xn doesn’t change anything—all the electrons of the
crystal are exactly where they were before, so there is no reason for even the sign
of the amplitude to change. The magnons will behave like Bose particles.†

† In general, the quasi particles of the kind we are discussing may act like either Bose
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The main points of this discussion have been twofold: First, to show you
something about spin waves, and, second, to demonstrate a state whose amplitude
is a product of two amplitudes, and whose energy is the sum of the energies
corresponding to the two amplitudes. For independent particles the amplitude
is the product and the energy is the sum. You can easily see why the energy is
the sum. The energy is the coefficient of t in an imaginary exponential—it is
proportional to the frequency. If two objects are doing something, one of them
with the amplitude e−iE1t/~ and the other with the amplitude e−iE2t/~, and if the
amplitude for the two things to happen together is the product of the amplitudes
for each, then there is a single frequency in the product which is the sum of the
two frequencies. The energy corresponding to the amplitude product is the sum
of the two energies.

We have gone through a rather long-winded argument to tell you a simple
thing. When you don’t take into account any interaction between particles, you
can think of each particle independently. They can individually exist in the
various different states they would have alone, and they will each contribute the
energy they would have had if they were alone. However, you must remember
that if they are identical particles, they may behave either as Bose or as Fermi
particles depending upon the problem. Two extra electrons added to a crystal,
for instance, would have to behave like Fermi particles. When the positions of
two electrons are interchanged, the amplitude must reverse sign. In the equation
corresponding to Eq. (15.24) there would have to be a minus sign between the
two terms on the right. As a consequence, two Fermi particles cannot be in
exactly the same condition—with equal spins and equal k’s. The amplitude for
this state is zero.

15-4 The benzene molecule

Although quantum mechanics provides the basic laws that determine the
structures of molecules, these laws can be applied exactly only to the most simple
compounds. The chemists have, therefore, worked out various approximate
methods for calculating some of the properties of complicated molecules. We
would now like to show you how the independent particle approximation is used
by the organic chemists. We begin with the benzene molecule.

particles or Fermi particles, and as for free particles, the particles with integral spin are bosons
and those with half-integral spins are fermions. The “magnon” stands for a spin-up electron
turned over. The change in spin is one. The magnon has an integral spin, and is a boson.
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Fig. 15-3. The two base states for the benzene molecules used in
Chapter 10.

We discussed the benzene molecule from another point of view in Chapter 10.
There we took an approximate picture of the molecule as a two-state system,
with the two base states shown in Fig. 15-3. There is a ring of six carbons with a
hydrogen bonded to the carbon at each location. With the conventional picture of
valence bonds it is necessary to assume double bonds between half of the carbon
atoms, and in the lowest energy condition there are the two possibilities shown
in the figure. There are also other, higher-energy states. When we discussed
benzene in Chapter 10, we just took the two states and forgot all the rest. We
found that the ground-state energy of the molecule was not the energy of one of
the states in the figure, but was lower than that by an amount proportional to
the amplitude to flip from one of these states to the other.

Now we’re going to look at the same molecule from a completely different
point of view—using a different kind of approximation. The two points of view
will give us different answers, but if we improve either approximation it should
lead to the truth, a valid description of benzene. However, if we don’t bother
to improve them, which is of course the usual situation, then you should not be
surprised if the two descriptions do not agree exactly. We shall at least show
that also with the new point-of-view the lowest energy of the benzene molecule
is lower than either of the three-bond structures of Fig. 15-3.

Now we want to use the following picture. Suppose we imagine the six carbon
atoms of a benzene molecule connected only by single bonds as in Fig. 15-4. We
have removed six electrons—since a bond stands for a pair of electrons—so we
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Fig. 15-4. A benzene ring with six electrons removed.

have a six-times ionized benzene molecule. Now we will consider what happens
when we put back the six electrons one at a time, imagining that each one can
run freely around the ring. We assume also that all the bonds shown in Fig. 15-4
are satisfied, and don’t need to be considered further.

What happens when we put one electron back into the molecular ion? It
might, of course, be located in any one of the six positions around the ring—
corresponding to six base states. It would also have a certain amplitude, say A,
to go from one position to the next. If we analyze the stationary states, there
would be certain possible energy levels. That’s only for one electron.

Next put a second electron in. And now we make the most ridiculous ap-
proximation that you can think of—that what one electron does is not affected
by what the other is doing. Of course they really will interact; they repel each
other through the Coulomb force, and furthermore when they are both at the
same site, they must have considerably different energy than twice the energy
for one being there. Certainly the approximation of independent particles is not
legitimate when there are only six sites—particularly when we want to put in
six electrons. Nevertheless the organic chemists have been able to learn a lot by
making this kind of an approximation.

H

H
C C

H

H

Fig. 15-5. The ethylene molecule.

Before we work out the benzene molecule in detail, let’s consider a simpler
example—the ethylene molecule which contains just two carbon atoms with
two hydrogen atoms on either side as shown in Fig. 15-5. This molecule has
one “extra” bond involving two electrons between the two carbon atoms. Now
remove one of these electrons; what do we have? We can look at it as a two-state
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system—the remaining electron can be at one carbon or the other. We can
analyze it as a two-state system. The possible energies for the single electron are
either (E0 −A) or (E0 +A), as shown in Fig. 15-6.

E

E0 + A

E0

E0 − A

Fig. 15-6. The possible energy levels for the “extra” electrons in the
ethylene molecule.

Now add the second electron. Good, if we have two electrons, we can put
the first one in the lower state and the second one in the upper. Not quite; we
forgot something. Each one of the states is really double. When we say there’s
a possible state with the energy (E0 − A), there are really two. Two electrons
can go into the same state if one has its spin up and the other, its spin down.
(No more can be put in because of the exclusion principle.) So there really are
two possible states of energy (E0 −A). We can draw a diagram, as in Fig. 15-7,
which indicates both the energy levels and their occupancy. In the condition of
lowest energy both electrons will be in the lowest state with their spins opposite.
The energy of the extra bond in the ethylene molecule therefore is 2(E0 −A) if
we neglect the interaction between the two electrons.

Let’s go back to the benzene. Each of the two states of Fig. 15-3 has three
double bonds. Each of these is just like the bond in ethylene, and contributes
2(E0 −A) to the energy if E0 is now the energy to put an electron on a site in
benzene and A is the amplitude to flip to the next site. So the energy should be
roughly 6(E0 −A). But when we studied benzene before, we got that the energy
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Fig. 15-7. In the extra bond of the ethylene molecule two electrons
(one spin up, one spin down) can occupy the lowest energy level.

was lower than the energy of the structure with three extra bonds. Let’s see if
the energy for benzene comes out lower than three bonds from our new point of
view.

We start with the six-times ionized benzene ring and add one electron. Now
we have a six-state system. We haven’t solved such a system yet, but we know
what to do. We can write six equations in the six amplitudes, and so on. But
let’s save some work—by noticing that we’ve already solved the problem, when
we worked out the problem of an electron on an infinite line of atoms. Of course,
the benzene is not an infinite line, it has 6 atomic sites in a circle. But imagine
that we open out the circle to a line, and number the atoms along the line from
1 to 6. In an infinite line the next location would be 7, but if we insist that this
location be identical with number 1 and so on, the situation will be just like the
benzene ring. In other words we can take the solution for an infinite line with an
added requirement that the solution must be periodic with a cycle six atoms long.
From Chapter 13 the electron on a line has states of definite energy when the
amplitude at each site is eikxn = eikbn. For each k the energy is

E = E0 − 2A cos kb. (15.25)

We want to use now only those solutions which repeat every 6 atoms. Let’s do
first the general case for a ring of N atoms. If the solution is to have a period of
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N atomic spacing, eikbN must be unity; or kbN must be a multiple of 2π. Taking
s to represent any integer, our condition is that

kbN = 2πs. (15.26)

We have seen before that there is no meaning to taking k’s outside the range ±π/b.
This means that we get all possible states by taking values of s in the range ±N/2.

We find then that for an N -atom ring there are N definite energy states† and
they have wave numbers ks given by

ks = 2π
Nb

s. (15.27)

Each state has the energy (15.25). We have a line spectrum of possible energy
levels. The spectrum for benzene (N = 6) is shown in Fig. 15-8(b). (The numbers
in parentheses indicate the number of different states with the same energy.)

(a)

s=0

s=1

s=2

s=3

s=−2

s=−1

2π/6

2A

(b)

E

E0+2A

E0+A

E0

E0−A

E0−2A

(1)

(2)

(2)

(1)

Fig. 15-8. The energy levels in a ring with six electron locations (for
example, a benzene ring).

There’s a nice way to visualize the six energy levels, as we have shown in
part (a) of the figure. Imagine a circle centered on a level with E0, and with a
radius of 2A. If we start at the bottom and mark off six equal arcs (at angles
from the bottom point of ksb = 2πs/N , or 2πs/6 for benzene), then the vertical

† You might think that for N an even number there are N + 1 states. That is not so because
s = ±N/2 give the same state.

15-16



heights of the points on the circle are the solutions of Eq. (15.25). The six points
represent the six possible states. The lowest energy level is at (E0 − 2A); there
are two states with the same energy (E0 − A), and so on.† These are possible
states for one electron. If we have more than one electron, two—with opposite
spins—can go into each state.

For the benzene molecule we have to put in six electrons. For the ground state
they will go into the lowest possible energy states—two at s = 0, two at s = +1,
and two at s = −1. According to the independent particle approximation the
energy of the ground state is

Eground = 2(E0 − 2A) + 4(E0 −A)

= 6E0 − 8A. (15.28)

The energy is indeed less than that of three separate double bonds—by the
amount 2A.

By comparing the energy of benzene to the energy of ethylene it is possible to
determine A. It comes out to be 0.8 electron volt, or, in the units the chemists
like, 18 kilocalories per mole.

We can use this description to calculate or understand other properties of
benzene. For example, using Fig. 15-8 we can discuss the excitation of benzene
by light. What would happen if we tried to excite one of the electrons? It could
move up to one of the empty higher states. The lowest energy of excitation would
be a transition from the highest filled level to the lowest empty level. That takes
the energy 2A. Benzene will absorb light of frequency ν when hν = 2A. There
will also be absorption of photons with the energies 3A and 4A. Needless to
say, the absorption spectrum of benzene has been measured and the pattern of
spectral lines is more or less correct except that the lowest transition occurs in
the ultraviolet; and to fit the data one would have to choose a value of A between
1.4 and 2.4 electron volts. That is, the numerical value of A is two or three times
larger than is predicted from the chemical binding energy.

What the chemist does in situations like this is to analyze many molecules
of a similar kind and get some empirical rules. He learns, for example: For
calculating binding energy use such and such a value of A, but for getting the
absorption spectrum approximately right use another value of A. You may feel

† When there are two states (which will have different amplitude distributions) with the
same energy, we say that the two states are “degenerate.” Notice that four electrons can have
the energy E0 −A.

15-17



that this sounds a little absurd. It is not very satisfactory from the point of view
of a physicist who is trying to understand nature from first principles. But the
problem of the chemist is different. He must try to guess ahead of time what
is going to happen with molecules that haven’t been made yet, or which aren’t
understood completely. What he needs is a series of empirical rules; it doesn’t
make much difference where they come from. So he uses the theory in quite
a different way than the physicist. He takes equations that have some shadow
of the truth in them, but then he must alter the constants in them—making
empirical corrections.

In the case of benzene, the principal reason for the inconsistency is our
assumption that the electrons are independent—the theory we started with is
really not legitimate. Nevertheless, it has some shadow of the truth because its
results seem to be going in the right direction. With such equations plus some
empirical rules—including various exceptions—the organic chemist makes his way
through the morass of complicated things he chooses to study. (Don’t forget that
the reason a physicist can really calculate from first principles is that he chooses
only simple problems. He never solves a problem with 42 or even 6 electrons in
it. So far, he has been able to calculate reasonably accurately only the hydrogen
atom and the helium atom.)

15-5 More organic chemistry

Let’s see how the same ideas can be used to study other molecules. Consider
a molecule like butadiene (1, 3)—it is drawn in Fig. 15-9 according to the usual
valence bond picture.

H

H
C C C C

H

H

Fig. 15-9. The valence band representation of the molecule butadi-
ene (1, 3).

We can play the same game with the extra four electrons corresponding to
the two double bonds. If we remove four electrons, we have four carbon atoms
in a line. You already know how to solve a line. You say, “Oh no, I only know
how to solve an infinite line.” But the solutions for the infinite line also include
the ones for a finite line. Watch. Let N be the number of atoms on the line and
number them from 1 to N as shown in Fig. 15-10. In writing the equations for
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Fig. 15-10. A line of N molecules.

the amplitude at position 1 you would not have a term feeding from position 0.
Similarly, the equation for position N would differ from the one that we used
for an infinite line because there would be nothing feeding from position N + 1.
But suppose that we can obtain a solution for the infinite line which has the
following property: the amplitude to be at atom 0 is zero and the amplitude to
be at atom (N + 1) is also zero. Then the set of equations for all the locations
from 1 to N on the finite line are also satisfied. You might think no such solution
exists for the infinite line because our solutions all looked like eikxn which has
the same absolute value of the amplitude everywhere. But you will remember
that the energy depends only on the absolute value of k, so that another solution,
which is equally legitimate for the same energy, would be e−ikxn . And the same
is true of any superposition of these two solutions. By subtracting them we can
get the solution sin kxn, which satisfies the requirement that the amplitude be
zero at x = 0. It still corresponds to the energy (E0 − 2A cos kb). Now by a
suitable choice for the value of k we can also make the amplitude zero at xN+1.
This requires that (N + 1)kb be a multiple of π, or that

kb = π

(N + 1) s, (15.29)

where s is an integer from 1 to N . (We take only positive k’s because each
solution contains +k and −k; changing the sign of k gives the same state all over
again.) For the butadiene molecule, N = 4, so there are four states with

kb = π/5, 2π/5, 3π/5, and 4π/5. (15.30)

We can represent the energy levels using a circle diagram similar to the one
for benzene. This time we use a semicircle divided into five equal parts as shown
in Fig. 15-11. The point at the bottom corresponds to s = 0, which gives no state
at all. The same is true of the point at the top, which corresponds to s = N + 1.
The remaining 4 points give us four allowed energies. There are four stationary
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Fig. 15-11. The energy levels of butadiene.

states, which is what we expect having started with four base states. In the circle
diagram, the angular intervals are π/5 or 36 degrees. The lowest energy comes
out (E0 − 1.618A). (Ah, what wonders mathematics holds; the golden mean of
the Greeks† gives us the lowest energy state of the butadiene molecule according
to this theory!)

Now we can calculate the energy of the butadiene molecule when we put in
four electrons. With four electrons, we fill up the lowest two levels, each with
two electrons of opposite spin. The total energy is

E = 2(E0 − 1.618A) + 2(E0 − 0.618A) = 4(E0 −A)− 0.472A. (15.31)

This result seems reasonable. The energy is a little lower than for two simple
double bonds, but the binding is not so strong as in benzene. Anyway this is the
way the chemist analyzes some organic molecules.

The chemist can use not only the energies but the probability amplitudes as
well. Knowing the amplitudes for each state, and which states are occupied, he
can tell the probability of finding an electron anywhere in the molecule. Those
places where the electrons are more likely to be are apt to be reactive in chemical
substitutions which require that an electron be shared with some other group
of atoms. The other sites are more likely to be reactive in those substitutions
which have a tendency to yield an extra electron to the system.

The same ideas we have been using can give us some understanding of a
molecule even as complicated as chlorophyll, one version of which is shown in

† The ratio of the sides of a rectangle which can be divided into a square and a similar
rectangle.
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Fig. 15-12. A chlorophyll molecule.

Fig. 15-12. Notice that the double and single bonds we have drawn with heavy
lines form a long closed ring with twenty intervals. The extra electrons of the
double bonds can run around this ring. Using the independent particle method
we can get a whole set of energy levels. There are strong absorption lines from
transitions between these levels which lie in the visible part of the spectrum, and
give this molecule its strong color. Similar complicated molecules such as the
xanthophylls, which make leaves turn red, can be studied in the same way.

There is one more idea which emerges from the application of this kind of
theory in organic chemistry. It is probably the most successful or, at least in a
certain sense, the most accurate. This idea has to do with the question: In what
situations does one get a particularly strong chemical binding? The answer is
very interesting. Take the example, first, of benzene, and imagine the sequence of
events that occurs as we start with the six-times ionized molecule and add more
and more electrons. We would then be thinking of various benzene ions—negative
or positive. Suppose we plot the energy of the ion (or neutral molecule) as a
function of the number of electrons. If we take E0 = 0 (since we don’t know what
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−8A

Fig. 15-13. The sum of all the electron energies when the lowest
states in Fig. 15-8 are occupied by n electrons if we take that E0 = 0.

it is), we get the curve shown in Fig. 15-13. For the first two electrons the slope
of the function is a straight line. For each successive group the slope increases,
and there is a discontinuity in slope between the groups of electrons. The slope
changes when one has just finished filling a set of levels which all have the same
energy and must move up to the next higher set of levels for the next electron.

The actual energy of the benzene ion is really quite different from the curve of
Fig. 15-13 because of the interactions of the electrons and because of electrostatic
energies we have been neglecting. These corrections will, however, vary with n
in a rather smooth way. Even if we were to make all these corrections, the
resulting energy curve would still have kinks at those values of n which just fill
up a particular energy level.

Now consider a very smooth curve that fits the points on the average like the
one drawn in Fig. 15-14. We can say that the points above this curve have “higher-

n

E

0 2 4 6 8 10 12

Fig. 15-14. The points of Fig. 15-13 with a smooth curve. Molecules
with n = 2, 6, 10 are more stable than the others.
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than-normal” energies, and the points below the curve have “lower-than-normal”
energies. We would, in general, expect that those configurations with a lower-
than-normal energy would have an above average stability—chemically speaking.
Notice that the configurations farther below the curve always occur at the end of
one of the straight line segments—namely when there are enough electrons to fill
up an “energy shell,” as it is called. This is the very accurate prediction of the
theory. Molecules—or ions—are particularly stable (in comparison with other
similar configurations) when the available electrons just fill up an energy shell.

E

E0 + A

E0

E0 − A

(2)

(1)

Fig. 15-15. Energy diagram for a ring of three.

This theory has explained and predicted some very peculiar chemical facts.
To take a very simple example, consider a ring of three. It’s almost unbelievable
that the chemist can make a ring of three and have it stable, but it has been
done. The energy circle for three electrons is shown in Fig. 15-15. Now if you
put two electrons in the lower state, you have only two of the three electrons
that you require. The third electron must be put in at a much higher level.
By our argument this molecule should not be particularly stable, whereas the
two-electron structure should be stable. It does turn out, in fact, that the neutral
molecule of triphenyl cyclopropenyl is very hard to make, but that the positive
ion shown in Fig. 15-16 is relatively easy to make. The ring of three is never
really easy because there is always a large stress when the bonds in an organic
molecule make an equilateral triangle. To make a stable compound at all, the
structure must be stabilized in some way. Anyway if you add three benzene rings
on the corners, the positive ion can be made. (The reason for this requirement
of added benzene rings is not really understood.)
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Fig. 15-16. The triphenyl cyclopropanyl cation.

In a similar way the five-sided ring can also be analyzed. If you draw the
energy diagram, you can see in a qualitative way that the six-electron structure
should be an especially stable structure, so that such a molecule should be most
stable as a negative ion. Now the five-ring is well known and easy to make and
always acts as a negative ion. Similarly, you can easily verify that a ring of 4
or 8 is not very interesting, but that a ring of 14 or 10—like a ring of 6—should
be especially stable as a neutral object.

15-6 Other uses of the approximation

There are two other similar situations which we will describe only briefly.
In considering the structure of an atom, we can consider that the electrons fill
successive shells. The Schrödinger theory of electron motion can be worked out
easily only for a single electron moving in a “central” field—one which varies
only with the distance from a point. How can we then understand what goes on
in an atom which has 22 electrons?! One way is to use a kind of independent
particle approximation. First you calculate what happens with one electron. You
get a number of energy levels. You put an electron into the lowest energy state.
You can, for a rough model, continue to ignore the electron interactions and go
on filling successive shells, but there is a way to get better answers by taking into
account—in an approximate way at least—the effect of the electric charge carried
by the electron. Each time you add an electron you compute its amplitude to be
at various places, and then use this amplitude to estimate a kind of spherically
symmetric charge distribution. You use the field of this distribution—together
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with the field of the positive nucleus and all the previous electrons—to calculate
the states available for the next electron. In this way you can get reasonably
correct estimates for the energies for the neutral atom and for various ionized
states. You find that there are energy shells, just as we saw for the electrons in a
ring molecule. With a partially filled shell, the atom will show a preference for
taking on one or more extra electrons, or for losing some electrons so as to get
into the most stable state of a filled shell.

This theory explains the machinery behind the fundamental chemical proper-
ties which show up in the periodic table of the elements. The inert gases are those
elements in which a shell has just been completed, and it is especially difficult to
make them react. (Some of them do react of course—with fluorine and oxygen,
for example; but such compounds are very weakly bound; the so-called inert gases
are nearly inert.) An atom which has one electron more or one electron less than
an inert gas will easily lose or gain an electron to get into the especially stable
(low-energy) condition which comes from having a completely filled shell—they
are the very active chemical elements of valence +1 or −1.

The other situation is found in nuclear physics. In atomic nuclei the protons
and neutrons interact with each other quite strongly. Even so, the independent
particle model can again be used to analyze nuclear structure. It was first
discovered experimentally that nuclei were especially stable if they contained
certain particular numbers of neutrons—namely 2, 8, 20, 28, 50, 82. Nuclei
containing protons in these numbers are also especially stable. Since there was
initially no explanation for these numbers they were called the “magic numbers” of
nuclear physics. It is well known that neutrons and protons interact strongly with
each other; people were, therefore, quite surprised when it was discovered that
an independent particle model predicted a shell structure which came out with
the first few magic numbers. The model assumed that each nucleon (proton or
neutron) moved in a central potential which was created by the average effects of
all the other nucleons. This model failed, however, to give the correct values for the
higher magic numbers. Then it was discovered by Maria Mayer, and independently
by Jensen and his collaborators, that by taking the independent particle model
and adding only a correction for what is called the “spin-orbit interaction,” one
could make an improved model which gave all of the magic numbers. (The
spin-orbit interaction causes the energy of a nucleon to be lower if its spin has the
same direction as its orbital angular momentum from motion in the nucleus.) The
theory gives even more—its picture of the so—called “shell structure” of the nuclei
enables us to predict certain characteristics of nuclei and of nuclear reactions.
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The independent particle approximation has been found useful in a wide range
of subjects—from solid-state physics, to chemistry, to biology, to nuclear physics.
It is often only a crude approximation, but is able to give an understanding of
why there are especially stable conditions—in shells. Since it omits all of the
complexity of the interactions between the individual particles, we should not be
surprised that it often fails completely to give correctly many important details.
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16

The Dependence of Amplitudes on Position

16-1 Amplitudes on a line

We are now going to discuss how the probability amplitudes of quantum
mechanics vary in space. In some of the earlier chapters you may have had a
rather uncomfortable feeling that some things were being left out. For example,
when we were talking about the ammonia molecule, we chose to describe it in
terms of two base states. For one base state we picked the situation in which the
nitrogen atom was “above” the plane of the three hydrogen atoms, and for the
other base state we picked the condition in which the nitrogen atom was “below”
the plane of the three hydrogen atoms. Why did we pick just these two states?
Why is it not possible that the nitrogen atom could be at 2 angstroms above
the plane of the three hydrogen atoms, or at 3 angstroms, or at 4 angstroms
above the plane? Certainly, there are many positions that the nitrogen atom
could occupy. Again when we talked about the hydrogen molecular ion, in which
there is one electron shared by two protons, we imagined two base states: one
for the electron in the neighborhood of proton number one, and the other for the
electron in the neighborhood of proton number two. Clearly we were leaving out
many details. The electron is not exactly at proton number two but is only in
the neighborhood. It could be somewhere above the proton, somewhere below
the proton, somewhere to the left of the proton, or somewhere to the right of the
proton.

We intentionally avoided discussing these details. We said that we were
interested in only certain features of the problem, so we were imagining that
when the electron was in the vicinity of proton number one, it would take up a
certain rather definite condition. In that condition the probability to find the
electron would have some rather definite distribution around the proton, but we
were not interested in the details.
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We can also put it another way. In our discussion of a hydrogen molecular ion
we chose an approximate description when we described the situation in terms of
two base states. In reality there are lots and lots of these states. An electron can
take up a condition around a proton in its lowest, or ground, state, but there are
also many excited states. For each excited state the distribution of the electron
around the proton is different. We ignored these excited states, saying that we
were interested in only the conditions of low energy. But it is just these other
excited states which give the possibility of various distributions of the electron
around the proton. If we want to describe in detail the hydrogen molecular ion,
we have to take into account also these other possible base states. We could do
this in several ways, and one way is to consider in greater detail states in which
the location of the electron in space is more carefully described.

We are now ready to consider a more elaborate procedure which will allow
us to talk in detail about the position of the electron, by giving a probability
amplitude to find the electron anywhere and everywhere in a given situation.
This more complete theory provides the underpinning for the approximations we
have been making in our earlier discussions. In a sense, our early equations can
be derived as a kind of approximation to the more complete theory.

You may be wondering why we did not begin with the more complete theory
and make the approximations as we went along. We have felt that it would be
much easier for you to gain an understanding of the basic machinery of quantum
mechanics by beginning with the two-state approximations and working gradually
up to the more complete theory than to approach the subject the other way
around. For this reason our approach to the subject appears to be in the reverse
order to the one you will find in many books.

As we go into the subject of this chapter you will notice that we are breaking
a rule we have always followed in the past. Whenever we have taken up any
subject we have always tried to give a more or less complete description of the
physics—showing you as much as we could about where the ideas led to. We
have tried to describe the general consequences of a theory as well as describing
some specific detail so that you could see where the theory would lead. We are
now going to break that rule; we are going to describe how one can talk about
probability amplitudes in space and show you the differential equations which
they satisfy. We will not have time to go on and discuss many of the obvious
implications which come out of the theory. Indeed we will not even be able to
get far enough to relate this theory to some of the approximate formulations we
have used earlier—for example, to the hydrogen molecule or to the ammonia
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molecule. For once, we must leave our business unfinished and open-ended.
We are approaching the end of our course, and we must satisfy ourselves with
trying to give you an introduction to the general ideas and with indicating the
connections between what we have been describing and some of the other ways of
approaching the subject of quantum mechanics. We hope to give you enough of
an idea that you can go off by yourself and by reading books learn about many
of the implications of the equations we are going to describe. We must, after all,
leave something for the future.

Let’s review once more what we have found out about how an electron can
move along a line of atoms. When an electron has an amplitude to jump from
one atom to the next, there are definite energy states in which the probability
amplitude for finding the electron is distributed along the lattice in the form of a
traveling wave. For long wavelengths—for small values of the wave number k—the
energy of the state is proportional to the square of the wave number. For a
crystal lattice with the spacing b, in which the amplitude per unit time for the
electron to jump from one atom to the next is iA/~, the energy of the state is
related to k (for small kb) by

E = Ak2b2 (16.1)

(see Section 13-2). We also saw that groups of such waves with similar energies
would make up a wave packet which would behave like a classical particle with a
mass meff given by:

meff = ~2

2Ab2 . (16.2)

Since waves of probability amplitude in a crystal behave like a particle, one
might well expect that the general quantum mechanical description of a particle
would show the same kind of wave behavior we observed for the lattice. Suppose
we were to think of a lattice on a line and imagine that the lattice spacing b
were to be made smaller and smaller. In the limit we would be thinking of a
case in which the electron could be anywhere along the line. We would have
gone over to a continuous distribution of probability amplitudes. We would have
the amplitude to find an electron anywhere along the line. This would be one
way to describe the motion of an electron in a vacuum. In other words, if we
imagine that space can be labeled by an infinity of points all very close together
and we can work out the equations that relate the amplitudes at one point to
the amplitudes at neighboring points, we will have the quantum mechanical laws
of motion of an electron in space.

16-3



Let’s begin by recalling some of the general principles of quantum mechanics.
Suppose we have a particle which can exist in various conditions in a quantum
mechanical system. Any particular condition an electron can be found in, we
call a “state,” which we label with a state vector, say |φ〉. Some other condition
would be labeled with another state vector, say |ψ〉. We then introduce the
idea of base states. We say that there is a set of states | 1〉, | 2〉, | 3〉, | 4〉, and
so on, which have the following properties. First, all of these states are quite
distinct—we say they are orthogonal. By this we mean that for any two of the
base states | i〉 and | j〉 the amplitude 〈i | j〉 that an electron known to be in the
state | i〉 is also in the state | j〉 is equal to zero—unless, of course, | i〉 and | j〉
stand for the same state. We represent this symbolically by

〈i | j〉 = δij . (16.3)

You will remember that δij = 0 if i and j are different, and δij = 1 if i and j are
the same number.

Second, the base states | i〉 must be a complete set, so that any state at all
can be described in terms of them. That is, any state |φ〉 at all can be described
completely by giving all of the amplitudes 〈i |φ〉 that a particle in the state |φ〉
will also be found in the state | i〉. In fact, the state vector |φ〉 is equal to the
sum of the base states each multiplied by a coefficient which is the amplitude of
the state |φ〉 is also in the state | i〉:

|φ〉 =
∑
i

| i〉〈i |φ〉. (16.4)

Finally, if we consider any two states |φ〉 and |ψ〉, the amplitude that the
state |ψ〉 will also be in the state |φ〉 can be found by first projecting the state |ψ〉
into the base states and then projecting from each base state into the state |φ〉.
We write that in the following way:

〈φ |ψ〉 =
∑
i

〈φ | i〉〈i |ψ〉. (16.5)

The summation is, of course, to be carried out over the whole set of base state | i〉.
In Chapter 13 when we were working out what happens with an electron

placed on a linear array of atoms, we chose a set of base states in which the
electron was localized at one or other of the atoms in the line. The base state |n〉
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represented the condition in which the electron was localized at atom number “n.”
(There is, of course, no significance to the fact that we called our base states |n〉
instead of | i〉.) A little later, we found it convenient to label the base states by
the coordinate xn of the atom rather than by the number of the atom in the array.
The state |xn〉 is just another way of writing the state |n〉. Then, following the
general rules, any state at all, say |ψ〉 is described by giving the amplitudes and
that an electron in the state |ψ〉 is also in one of the states |xn〉. For convenience
we have chosen to let the symbol Cn stand for these amplitudes,

Cn = 〈xn |ψ〉. (16.6)

Since the base states are associated with a location along the line, we can
think of the amplitude Cn as a function of the coordinate x and write it as C(xn).
The amplitudes C(xn) will, in general, vary with time and are, therefore, also
functions of t. We will not generally bother to show explicitly this dependence.

In Chapter 13 we then proposed that the amplitudes C(xn) should vary with
time in a way described by the Hamiltonian equation (Eq. 13.3). In our new
notation this equation is

i~
∂C(xn)
∂t

= E0C(xn)−AC(xn + b)−AC(xn − b). (16.7)

The last two terms on the right-hand side represent the process in which an
electron at atom (n+ 1) or at atom (n− 1) can feed into atom n.

We found that Eq. (16.7) has solutions corresponding to definite energy states,
which we wrote as

C(xn) = e−iEt/~eikxn . (16.8)

For the low-energy states the wavelengths are large (k is small), and the energy
is related to k by

E = (E0 − 2A) +Ak2b2, (16.9)

or, choosing our zero of energy so that (E0 − 2A) = 0, the energy is given by
Eq. (16.1).

Let’s see what might happen if we were to let the lattice spacing b go to zero,
keeping the wave number k fixed. If that is all that were to happen the last term
in Eq. (16.9) would just go to zero and there would be no physics. But suppose
A and b are varied together so that as b goes to zero the product Ab2 is kept
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constant†—using Eq. (16.2) we will write Ab2 as the constant ~2/2meff. Under
these circumstances, Eq. (16.9) would be unchanged, but what would happen to
the differential equation (16.7)?

First we will rewrite Eq. (16.7) as

i~
∂C(xn)
∂t

= (E0 − 2A)C(xn) +A[2C(xn)− C(xn + b)− C(xn − b)]. (16.10)

For our choice of E0, the first term drops out. Next, we can think of a continuous
function C(x) that goes smoothly through the proper values C(xn) at each xn.
As the spacing b goes to zero, the points xn get closer and closer together, and
(if we keep the variation of C(x) fairly smooth) the quantity in the brackets is
just proportional to the second derivative of C(x). We can write—as you can see
by making a Taylor expansion of each term—the equality

2C(x)− C(x+ b)− C(x− b) ≈ −b2 ∂
2C(x)
∂x2 . (16.11)

In the limit, then, as b goes to zero, keeping b2A equal to K, Eq. (16.7) goes over
into

i~
∂C(x)
∂t

= − ~2

2meff

∂2C(x)
∂x2 . (16.12)

We have an equation which says that the time rate of change of C(x)—the
amplitude to find the electron at x—depends on the amplitude to find the
electron at nearby points in a way which is proportional to the second derivative
of the amplitude with respect to position.

The correct quantum mechanical equation for the motion of an electron in
free space was first discovered by Schrödinger. For motion along a line it has
exactly the form of Eq. (16.12) if we replace meff by m, the free-space mass of
the electron. For motion along a line in free space the Schrödinger equation is

i~
∂C(x)
∂t

= − ~2

2m
∂2C(x)
∂x2 . (16.13)

We do not intend to have you think we have derived the Schrödinger equation
but only wish to show you one way of thinking about it. When Schrödinger first

† You can imagine that as the points xn get closer together, the amplitude A to jump from
xn±1 to xn will increase.
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wrote it down, he gave a kind of derivation based on some heuristic arguments and
some brilliant intuitive guesses. Some of the arguments he used were even false,
but that does not matter; the only important thing is that the ultimate equation
gives a correct description of nature. The purpose of our discussion is then simply
to show you that the correct fundamental quantum mechanical equation (16.13)
has the same form you get for the limiting case of an electron moving along a line
of atoms. This means that we can think of the differential equation in (16.13) as
describing the diffusion of a probability amplitude from one point to the next
along the line. That is, if an electron has a certain amplitude to be at one point,
it will, a little time later, have some amplitude to be at neighboring points. In
fact, the equation looks something like the diffusion equations which we have
used in Volume I. But there is one main difference: the imaginary coefficient in
front of the time derivative makes the behavior completely different from the
ordinary diffusion such as you would have for a gas spreading out along a thin
tube. Ordinary diffusion gives rise to real exponential solutions, whereas the
solutions of Eq. (16.13) are complex waves.

16-2 The wave function

Now that you have some idea about how things are going to look, we want to
go back to the beginning and study the problem of describing the motion of an
electron along a line without having to consider states connected with atoms on
a lattice. We want to go back to the beginning and see what ideas we have to
use if we want to describe the motion of a free particle in space. Since we are
interested in the behavior of a particle, along a continuum, we will be dealing
with an infinite number of possible states and, as you will see, the ideas we have
developed for dealing with a finite number of states will need some technical
modifications.

We begin by letting the state vector |x〉 stand for a state in which a particle
is located precisely at the coordinate x. For every value x along the line—for
instance 1.73, or 9.67, or 10.00—there is the corresponding state. We will take
these states |x〉 as our base states and, if we include all the points on the line,
we will have a complete set for motion in one dimension. Now suppose we have a
different kind of a state, say |ψ〉, in which an electron is distributed in some way
along the line. One way of describing this state is to give all the amplitudes that
the electron will be also found in each of the base states |x〉. We must give an
infinite set of amplitudes, one for each value of x. We will write these amplitudes
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as 〈x |ψ〉. Each of these amplitudes is a complex number and since there is one
such complex number for each value of x, the amplitude 〈x |ψ〉 is indeed just a
function of x. We will also write it as C(x),

C(x) ≡ 〈x |ψ〉. (16.14)

We have already considered such amplitudes which vary in a continuous way
with the coordinates when we talked about the variations of amplitude with
time in Chapter 7. We showed there, for example, that a particle with a definite
momentum should be expected to have a particular variation of its amplitude
in space. If a particle has a definite momentum p and a corresponding definite
energy E, the amplitude to be found at any position x would look like

〈x |ψ〉 = C(x) ∝ e+ipx/~. (16.15)

This equation expresses an important general principle of quantum mechanics
which connects the base states corresponding to different positions in space to
another system of base states—all the states of definite momentum. The definite
momentum states are often more convenient than the states in x for certain
kinds of problems. Either set of base states is, of course, equally acceptable for a
description of a quantum mechanical situation. We will come back later to the
matter of the connection between them. For the moment we want to stick to our
discussion of a description in terms of the states |x〉.

Before proceeding, we want to make one small change in notation which we
hope will not be too confusing. The function C(x), defined in Eq. (16.14), will of
course have a form which depends on the particular state |ψ〉 under consideration.
We should indicate that in some way. We could, for example, specify which
function C(x) we are talking about by a subscript say, Cψ(x). Although this
would be a perfectly satisfactory notation, it is a little bit cumbersome and is
not the one you will find in most books. Most people simply omit the letter C
and use the symbol ψ to define the function

ψ(x) ≡ Cψ(x) = 〈x |ψ〉. (16.16)

Since this is the notation used by everybody else in the world, you might as
well get used to it so that you will not be frightened when you come across it
somewhere else. Remember though, that we will now be using ψ in two different
ways. In Eq. (16.14), ψ stands for a label we have given to a particular physical
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state of the electron. On the left-hand side of Eq. (16.16), on the other hand,
the symbol ψ is used to define a mathematical function of x which is equal to
the amplitude to be associated with each point x along the line. We hope it
will not be too confusing once you get accustomed to the idea. Incidentally, the
function ψ(x) is usually called “the wave function”—because it more often than
not has the form of a complex wave in its variables.

Since we have defined ψ(x) to be the amplitude that an electron in the state ψ
will be found at the location x, we would like to interpret the absolute square
of ψ to be the probability of finding an electron at the position x. Unfortunately,
the probability of finding a particle exactly at any particular point is zero. The
electron will, in general, be smeared out in a certain region of the line, and
since, in any small piece of the line, there are an infinite number of points, the
probability that it will be at any one of them cannot be a finite number. We
can only describe the probability of finding an electron in terms of a probability
distribution† which gives the relative probability of finding the electron at various
approximate locations along the line. Let’s let prob (x,∆x) stand for the chance
of finding the electron in a small interval ∆x located near x. If we go to a small
enough scale in any physical situation, the probability will be varying smoothly
from place to place, and the probability of finding the electron in any small finite
line segment ∆x will be proportional to ∆x. We can modify our definitions to
take this into account.

We can think of the amplitude 〈x |ψ〉 as representing a kind of “amplitude
density” for all the base states |x〉 in a small region. Since the probability of
finding an electron in a small interval ∆x at x should be proportional to the
interval ∆x, we choose our definition of 〈x |ψ〉 so that the following relation
holds:

prob (x,∆x) = |〈x |ψ〉|2 ∆x.
The amplitude 〈x |ψ〉 is therefore proportional to the amplitude that an electron
in the state ψ will be found in the base state x and the constant of proportionality
is chosen so that the absolute square of the amplitude 〈x |ψ〉 gives the probability
density of finding an electron in any small region. We can write, equivalently,

prob (x,∆x) = |ψ(x)|2 ∆x. (16.17)

We will now have to modify some of our earlier equations to make them
compatible with this new definition of a probability amplitude. Suppose we have

† For a discussion of probability distributions see Vol. I, Section 6-4.
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an electron in the state |ψ〉 and we want to know the amplitude for finding it in
a different state |φ〉 which may correspond to a different spread-out condition
of the electron. When we were talking about a finite set of discrete states, we
would have used Eq. (16.5). Before modifying our definition of the amplitudes
we would have written

〈φ |ψ〉 =
∑
all x
〈φ |x〉〈x |ψ〉. (16.18)

Now if both of these amplitudes are normalized in the same way as we have
described above, then a sum of all the states in a small region of x would be
equivalent to multiplying by ∆x, and the sum over all values of x simply becomes
an integral. With our modified definitions, the correct form becomes

〈φ |ψ〉 =
∫
all x
〈φ |x〉〈x |ψ〉 dx. (16.19)

The amplitude 〈x |ψ〉 is what we are now calling ψ(x) and, in a similar way,
we will choose to let the amplitude 〈x |φ〉 be represented by φ(x). Remembering
that 〈φ |x〉 is the complex conjugate of 〈x |φ〉, we can write Eq. (16.19) as

〈φ |ψ〉 =
∫
φ∗(x)ψ(x) dx. (16.20)

With our new definitions everything follows with the same formulas as before if
you always replace a summation sign by an integral over x.

We should mention one qualification to what we have been saying. Any
suitable set of base states must be complete if it is to be used for an adequate
description of what is going on. For an electron in one dimension it is not really
sufficient to specify only the base states |x〉, because for each of these states
the electron may have a spin which is either up or down. One way of getting a
complete set is to take two sets of states in x, one for up spin and the other for
down spin. We will, however, not worry about such complications for the time
being.

16-3 States of definite momentum

Suppose we have an electron in a state |ψ〉 which is described by the probability
amplitude 〈x |ψ〉 = ψ(x). We know that this represents a state in which the
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electron is spread out along the line in a certain distribution so that the probability
of finding the electron in a small interval dx at the location x is just

prob (x, dx) = |ψ(x)|2 dx.
What can we say about the momentum of this electron? We might ask what
is the probability that this electron has the momentum p? Let’s start out by
calculating the amplitude that the state |ψ〉 is in another state |mom p〉 which
we define to be a state with the definite momentum p. We can find this amplitude
by using our basic equation for the resolution of amplitudes, Eq. (16.19). In
terms of the state |mom p〉

〈mom p |ψ〉 =
∫ +∞

x=−∞
〈mom p |x〉〈x |ψ〉 dx. (16.21)

And the probability that the electron will be found with the momentum p should
be given in terms of the absolute square of this amplitude. We have again,
however, a small problem about the normalizations. In general we can only ask
about the probability of finding an electron with a momentum in a small range dp
at the momentum p. The probability that the momentum is exactly some value p
must be zero (unless the state |ψ〉 happens to be a state of definite momentum).
Only if we ask for the probability of finding the momentum in a small range dp
at the momentum p will we get a finite probability. There are several ways the
normalizations can be adjusted. We will choose one of them which we think to
be the most convenient, although that may not be apparent to you just now.

We take our normalizations so that the probability is related to the amplitude
by

prob (p, dp) = |〈mom p |ψ〉|2 dp

2π~ . (16.22)

With this definition the normalization of the amplitude 〈mom p |x〉 is determined.
The amplitude 〈mom p |x〉 is, of course, just the complex conjugate of the am-
plitude 〈x |mom p〉, which is just the one we have written down in Eq. (16.15).
With the normalization we have chosen, it turns out that the proper constant of
proportionality in front of the exponential is just 1. Namely,

〈mom p |x〉 = 〈x |mom p〉∗ = e−ipx/~. (16.23)
Equation (16.21) then becomes

〈mom p |ψ〉 =
∫ +∞

−∞
e−ipx/~〈x |ψ〉 dx. (16.24)
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This equation together with Eq. (16.22) allows us to find the momentum distri-
bution for any state |ψ〉.

Let’s look at a particular example—for instance one in which an electron is
localized in a certain region around x = 0. Suppose we take a wave function
which has the following form:

ψ(x) = Ke−x
2/4σ2

. (16.25)

The probability distribution in x for this wave function is the absolute square, or

prob (x, dx) = P (x) dx = K2e−x
2/2σ2

dx. (16.26)

The probability density function P (x) is the Gaussian curve shown in Fig. 16-1.
Most of the probability is concentrated between x = +σ and x = −σ. We say
that the “half-width” of the curve is σ. (More precisely, σ is equal to the root-
mean-square of the coordinate x for something spread out according to this
distribution.) We would normally choose the constant K so that the probability
density P (x) is not merely proportional to the probability per unit length in x of
finding the electron, but has a scale such that P (x) ∆x is equal to the probability
of finding the electron in ∆x near x. The constant K which does this can be
found by requiring that

∫ +∞
−∞ P (x) dx = 1, since there must be unit probability

that the electron is found somewhere. Here, we get that K = (2πσ2)−1/4. [We
have used the fact that

∫ +∞
−∞ e−t

2
dt =

√
π; see Vol. I, page 40-12.]

x−3σ −2σ −σ 0 σ 2σ 3σ

σP (x)

0.1

0.2

0.3

0.4

Fig. 16-1. The probability density for the wave function of Eq. (16.25).
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Now let’s find the distribution in momentum. Let’s let φ(p) stand for the
amplitude to find the electron with the momentum p,

φ(p) ≡ 〈mom p |ψ〉. (16.27)

Substituting Eq. (16.25) into Eq. (16.24) we get

φ(p) =
∫ +∞

−∞
e−ipx/~ ·Ke−x

2/4σ2
dx. (16.28)

The integral can also be rewritten as

Ke−p
2σ2/~2

∫ +∞

−∞
e−(1/4σ2)(x+2ipσ2/~)2

dx. (16.29)

We can now make the substitution u = x+ 2ipσ2/~, and the integral is∫ +∞

−∞
e−u

2/4σ2
du = 2σ

√
π. (16.30)

(The mathematicians would probably object to the way we got there, but the
result is, nevertheless, correct.)

φ(p) = (8πσ2)1/4e−p
2σ2/~2

. (16.31)

We have the interesting result that the amplitude function in p has precisely
the same mathematical form as the amplitude function in x; only the width of
the Gaussian is different. We can write this as

φ(p) = (η2/2π~2)−1/4e−p
2/4η2

, (16.32)

where the half-width η of the p-distribution function is related to the half-width σ
of the x-distribution by

η = ~
2σ . (16.33)

Our result says: if we make the width of the distribution in x very small by
making σ small, η becomes large and the distribution in p is very much spread
out. Or, conversely: if we have a narrow distribution in p, it must correspond
to a spread-out distribution in x. We can, if we like, consider η and σ to be
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some measure of the uncertainty in the localization of the momentum and of the
position of the electron in the state we are studying. If we call them ∆p and ∆x
respectively Eq. (16.33) becomes

∆p∆x = ~
2 . (16.34)

Interestingly enough, it is possible to prove that for any other form of a
distribution in x or in p, the product ∆p∆x cannot be smaller than the one we
have found here. The Gaussian distribution gives the smallest possible value for
the product of the root-mean-square widths. In general, we can say

∆p∆x ≥ ~
2 . (16.35)

This is a quantitative statement of the Heisenberg uncertainty principle, which
we have discussed qualitatively many times before. We have usually made the
approximate statement that the minimum value of the product ∆p∆x is of the
same order as ~.

16-4 Normalization of the states in x

We return now to the discussion of the modifications of our basic equations
which are required when we are dealing with a continuum of base states. When
we have a finite number of discrete states, a fundamental condition which must
be satisfied by the set of base states is

〈i | j〉 = δij . (16.36)

If a particle is in one base state, the amplitude to be in another base state is 0.
By choosing a suitable normalization, we have defined the amplitude 〈i | i〉 to
be 1. These two conditions are described by Eq. (16.36). We want now to see
how this relation must be modified when we use the base states |x〉 of a particle
on a line. If the particle is known to be in one of the base states |x〉, what is
the amplitude that it will be in another base state |x′〉? If x and x′ are two
different locations along the line, then the amplitude 〈x |x′〉 is certainly 0, so that
is consistent with Eq. (16.36). But if x and x′ are equal, the amplitude 〈x |x′〉
will not be 1, because of the same old normalization problem. To see how we
have to patch things up, we go back to Eq. (16.19), and apply this equation to
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the special case in which the state |φ〉 is just the base state |x′〉. We would have
then

〈x′ |ψ〉 =
∫
〈x′ |x〉ψ(x) dx. (16.37)

Now the amplitude 〈x |ψ〉 is just what we have been calling the function ψ(x).
Similarly the amplitude 〈x′ |ψ〉, since it refers to the same state |ψ〉, is the same
function of the variable x′, namely ψ(x′). We can, therefore, rewrite Eq. (16.37)
as

ψ(x′) =
∫
〈x′ |x〉ψ(x) dx. (16.38)

This equation must be true for any state |ψ〉 and, therefore, for any arbitrary
function ψ(x). This requirement should completely determine the nature of the
amplitude 〈x |x′〉—which is, of course, just a function that depends on x and x′.

Our problem now is to find a function f(x, x′), which when multiplied
into ψ(x), and integrated over all x gives just the quantity ψ(x′). It turns
out that there is no mathematical function which will do this! At least nothing
like what we ordinarily mean by a “function.”

Suppose we pick x′ to be the special number 0 and define the amplitude 〈0 |x〉
to be some function of x, let’s say f(x). Then Eq. (16.38) would read as follows:

ψ(0) =
∫
f(x)ψ(x) dx. (16.39)

What kind of function f(x) could possibly satisfy this equation? Since the integral
must not depend on what values ψ(x) takes for values of x other than 0, f(x)
must clearly be 0 for all values of x except 0. But if f(x) is 0 everywhere, the
integral will be 0, too, and Eq. (16.39) will not be satisfied. So we have an
impossible situation: we wish a function to be 0 everywhere but at a point, and
still to give a finite integral. Since we can’t find a function that does this, the
easiest way out is just to say that the function f(x) is defined by Eq. (16.39).
Namely, f(x) is that function which makes (16.39) correct. The function which
does this was first invented by Dirac and carries his name. We write it δ(x).
All we are saying is that the function δ(x) has the strange property that if it is
substituted for f(x) in the Eq. (16.39), the integral picks out the value that ψ(x)
takes on when x is equal 0; and, since the integral must be independent of ψ(x)
for all values of x other than 0, the function δ(x) must be 0 everywhere except
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at x = 0. Summarizing, we write

〈0 |x〉 = δ(x), (16.40)
where δ(x) is defined by

ψ(0) =
∫
δ(x)ψ(x) dx. (16.41)

Notice what happens if we use the special function “1” for the function ψ in
Eq. (16.41). Then we have the result

1 =
∫
δ(x) dx. (16.42)

That is, the function δ(x) has the property that it is 0 everywhere except at x = 0
but has a finite integral equal to unity. We must imagine that the function δ(x)
has such a fantastic infinity at one point that the total area comes out equal to
one.

One way of imagining what the Dirac δ-function is like is to think of a sequence
of rectangles—or any other peaked function you care to—which gets narrower
and narrower and higher and higher, always keeping a unit area, as sketched
in Fig. 16-2. The integral of this function from −∞ to +∞ is always 1. If you
multiply it by any function ψ(x) and integrate the product, you get something
which is approximately the value of the function at x = 0, the approximation
getting better and better as you use the narrower and narrower rectangles. You
can if you wish, imagine the δ-function in terms of this kind of limiting process.
The only important thing, however, is that the δ-function is defined so that
Eq. (16.41) is true for every possible function ψ(x). That uniquely defines the
δ-function. Its properties are then as we have described.

If we change the argument of the δ-function from x to x−x′, the corresponding
relations are

δ(x− x′) = 0, x′ 6= x,∫
δ(x− x′)ψ(x) dx = ψ(x′). (16.43)

If we use δ(x−x′) for the amplitude 〈x |x′〉 in Eq. (16.38), that equation is satisfied.
Our result then is that for our base states in x, the condition corresponding
to (16.36) is

〈x′ |x〉 = δ(x− x′). (16.44)
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Fig. 16-2. The probability density for the wave function of Eq. (16.25).

We have now completed the necessary modifications of our basic equations
which are necessary for dealing with the continuum of base states corresponding to
the points along a line. The extension to three dimensions is fairly obvious; first we
replace the coordinate x by the vector r. Then integrals over x become replaced by
integrals over x, y, and z. In other words, they become volume integrals. Finally,
the one-dimensional δ-function must be replaced by just the product of three δ-
functions, one in x, one in y, and the other in z, δ(x−x′) δ(y−y′) δ(z−z′). Putting
everything together we get the following set of equations for the amplitudes for
particle in three dimensions:

〈φ |ψ〉 =
∫
〈φ | r〉〈r |ψ〉 dV, (16.45)
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〈r |ψ〉 = ψ(r),

〈r |φ〉 = φ(r),
(16.46)

〈φ |ψ〉 =
∫
φ∗(r)ψ(r) dV, (16.47)

〈r′ | r〉 = δ(x− x′) δ(y − y′) δ(z − z′). (16.48)

What happens when there is more than one particle? We will tell you about
how to handle two particles and you will easily see what you must do if you want
to deal with a larger number. Suppose there are two particles, which we can call
particle No. 1 and particle No. 2. What shall we use for the base states? One
perfectly good set can be described by saying that particle 1 is at x1 and particle 2
is at x2, which we can write as |x1, x2〉. Notice that describing the position of only
one particle does not define a base state. Each base state must define the condition
of the entire system. You must not think that each particle moves independently as
a wave in three dimensions. Any physical state |ψ〉 can be defined by giving all of
the amplitudes 〈x1, x2 |ψ〉 to find the two particles at x1 and x2. This generalized
amplitude is therefore a function of the two sets of coordinates x1 and x2. You see
that such a function is not a wave in the sense of an oscillation that moves along in
three dimensions. Neither is it generally simply a product of two individual waves,
one for each particle. It is, in general, some kind of a wave in the six dimensions
defined by x1 and x2. If there are two particles in nature which are interacting,
there is no way of describing what happens to one of the particles by trying to
write down a wave function for it alone. The famous paradoxes that we considered
in earlier chapters—where the measurements made on one particle were claimed
to be able to tell what was going to happen to another particle, or were able to
destroy an interference—have caused people all sorts of trouble because they have
tried to think of the wave function of one particle alone, rather than the correct
wave function in the coordinates of both particles. The complete description can
be given correctly only in terms of functions of the coordinates of both particles.

16-5 The Schrödinger equation

So far we have just been worrying about how we can describe states which
may involve an electron being anywhere at all in space. Now we have to worry
about putting into our description the physics of what can happen in various
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circumstances. As before, we have to worry about how states can change with
time. If we have a state |ψ〉 which goes over into another state |ψ′〉 sometime
later, we can describe the situation for all times by making the wave function—
which is just the amplitude 〈r |ψ〉—a function of time as well as a function of
the coordinate. A particle in a given situation can then be described by giving
a time-varying wave function ψ(r, t) = ψ(x, y, z, t). This time-varying wave
function describes the evolution of successive states that occur as time develops.
This so-called “coordinate representation”—which gives the projections of the
state |ψ〉 into the base states | r〉 may not always be the most convenient one to
use—but we will consider it first.

In Chapter 8 we described how states varied in time in terms of the Hamilto-
nian Hij . We saw that the time variation of the various amplitudes was given in
terms of the matrix equation

i~
dCi
dt

=
∑
j

HijCj . (16.49)

This equation says that the time variation of each amplitude Ci is proportional
to all of the other amplitudes Cj , with the coefficients Hij .

How would we expect Eq. (16.49) to look when we are using the continuum
of base states |x〉? Let’s first remember that Eq. (16.49) can also be written as

i~
d

dt
〈i |ψ〉 =

∑
j

〈i | Ĥ | j〉〈j |ψ〉.

Now it is clear what we should do. For the x-representation we would expect

i~
∂

∂t
〈x |ψ〉 =

∫
〈x | Ĥ |x′〉〈x′ |ψ〉 dx′. (16.50)

The sum over the base states | j〉, gets replaced by an integral over x′. Since
〈x | Ĥ |x′〉 should be some function of x and x′, we can write it as H(x, x′)—which
corresponds to Hij in Eq. (16.49). Then Eq. (16.50) is the same as

i~
∂

∂t
ψ(x) =

∫
H(x, x′)ψ(x′) dx′

with (16.51)
H(x, x′) ≡ 〈x | Ĥ |x′〉.
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According to Eq. (16.51), the rate of change of ψ at x would depend on the
value of ψ at all other points x′; the factor H(x, x′) is the amplitude per unit
time that the electron will jump from x′ to x. It turns out in nature, however,
that this amplitude is zero except for points x′ very close to x. This means—as
we saw in the example of the chain of atoms at the beginning of the chapter,
Eq. (16.12)—that the right-hand side of Eq. (16.51) can be expressed completely
in terms of ψ and the derivatives of ψ with respect to x, all evaluated at the
position x.

For a particle moving freely in space with no forces, no disturbances, the
correct law of physics is∫

H(x, x′)ψ(x′) dx′ = − ~2

2m
∂2

∂x2 ψ(x).

Where did we get that from? Nowhere. It’s not possible to derive it from anything
you know. It came out of the mind of Schrödinger, invented in his struggle to find
an understanding of the experimental observations of the real world. You can
perhaps get some clue of why it should be that way by thinking of our derivation
of Eq. (16.12) which came from looking at the propagation of an electron in a
crystal.

Of course, free particles are not very exciting. What happens if we put forces
on the particle? Well, if the force of a particle can be described in terms of a
scalar potential V (x)—which means we are thinking of electric forces but not
magnetic forces—and if we stick to low energies so that we can ignore complexities
which come from relativistic motions, then the Hamiltonian which fits the real
world gives ∫

H(x, x′)ψ(x′) dx′ = − ~2

2m
∂2

∂x2 ψ(x) + V (x)ψ(x). (16.52)

Again, you can get some clue as to the origin of this equation if you go back to
the motion of an electron in a crystal, and see how the equations would have to
be modified if the energy of the electron varied slowly from one atomic site to
the other—as it might do if there were an electric field across the crystal. Then
the term E0 in Eq. (16.7) would vary slowly with position and would correspond
to the new term we have added in (16.52).

[You may be wondering why we went straight from Eq. (16.51) to Eq. (16.52)
instead of just giving you the correct function for the amplitude H(x, x′) =
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〈x | Ĥ |x′〉. We did that becauseH(x, x′) can only be written in terms of strange al-
gebraic functions, although the whole integral on the right-hand side of Eq. (16.51)
comes out in terms of things you are used to. If you are really curious, H(x, x′)
can be written in the following way:

H(x, x′) = − ~2

2m δ′′(x− x′) + V (x) δ(x− x′),

where δ′′ means the second derivative of the delta function. This rather strange
function can be replaced by a somewhat more convenient algebraic differential
operator, which is completely equivalent:

H(x, x′) =
{
− ~2

2m
∂2

∂x2 + V (x)
}
δ(x− x′).

We will not be using these forms, but will work directly with the form in
Eq. (16.52).]

If we now use the expression we have in (16.52) for the integral in (16.50) we
get the following differential equation for ψ(x) = 〈x |ψ〉:

i~
∂ψ

∂t
= − ~2

2m
∂2

∂x2 ψ(x) + V (x)ψ(x). (16.53)

It is fairly obvious what we should use instead of Eq. (16.53) if we are interested
in motion in three dimensions. The only changes are that ∂2/∂x2 gets replaced
by

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ,

and V (x) gets replaced by V (x, y, z). The amplitude ψ(x, y, z) for an electron
moving in a potential V (x, y, z) obeys the differential equation

i~
∂ψ

∂t
= − ~2

2m ∇
2ψ + V ψ. (16.54)

It is called the Schrödinger equation, and was the first quantum-mechanical
equation ever known. It was written down by Schrödinger before any of the other
quantum equations we have described in this book were discovered.

Although we have approached the subject along a completely different route,
the great historical moment marking the birth of the quantum mechanical descrip-
tion of matter occurred when Schrödinger first wrote down his equation in 1926.
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For many years the internal atomic structure of matter had been a great mystery.
No one had been able to understand what held matter together, why there was
chemical binding, and especially how it could be that atoms could be stable.
Although Bohr had been able to give a description of the internal motion of an
electron in a hydrogen atom which seemed to explain the observed spectrum of
light emitted by this atom, the reason that electrons moved in this way remained
a mystery. Schrödinger’s discovery of the proper equations of motion for electrons
on an atomic scale provided a theory from which atomic phenomena could be
calculated quantitatively, accurately, and in detail. In principle, Schrödinger’s
equation is capable of explaining all atomic phenomena except those involving
magnetism and relativity. It explains the energy levels of an atom, and all the
facts of chemical binding. This is, however, true only in principle—the math-
ematics soon becomes too complicated to solve exactly any but the simplest
problems. Only the hydrogen and helium atoms have been calculated to a high
accuracy. However, with various approximations, some fairly sloppy, many of
the facts of more complicated atoms and of the chemical binding of molecules
can be understood. We have shown you some of these approximations in earlier
chapters.

The Schrödinger equation as we have written it does not take into account any
magnetic effects. It is possible to take such effects into account in an approximate
way by adding some more terms to the equation. However, as we have seen
in Volume II, magnetism is essentially a relativistic effect, and so a correct
description of the motion of an electron in an arbitrary electromagnetic field
can only be discussed in a proper relativistic equation. The correct relativistic
equation for the motion of an electron was discovered by Dirac a year after
Schrödinger brought forth his equation, and takes on quite a different form. We
will not be able to discuss it at all here.

Before we go on to look at some of the consequences of the Schrödinger
equation, we would like to show you what it looks like for a system with a large
number of particles. We will not be making any use of the equation, but just
want to show it to you to emphasize that the wave function ψ is not simply an
ordinary wave in space, but is a function of many variables. If there are many
particles, the equation becomes

i~
∂ψ(r1, r2, r3, . . . )

∂t
=
∑
i

− ~2

2mi

{
∂2ψ

∂x2
i

+ ∂2ψ

∂y2
i

+ ∂2ψ

∂z2
i

}
+ V (r1, r2, . . . )ψ.

(16.55)
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The potential function V is what corresponds classically to the total potential
energy of all the particles. If there are no external forces acting on the particles,
the function V is simply the electrostatic energy of interaction of all the particles.
That is, if the ith particle carries the charge Ziqe, then the function V is simply†

V (r1, r2, r3, . . . ) =
∑
all

pairs

ZiZj
rij

e2. (16.56)

16-6 Quantized energy levels

In a later chapter we will look in detail at a solution of Schrödinger’s equation
for a particular example. We would like now, however, to show you how one of the
most remarkable consequence of Schrödinger’s equation comes about—namely,
the surprising fact that a differential equation involving only continuous functions
of continuous variables in space can give rise to quantum effects such as the
discrete energy levels in an atom. The essential fact to understand is how it
can be that an electron which is confined to a certain region of space by some
kind of a potential “well” must necessarily have only one or another of a certain
well-defined set of discrete energies.

Suppose we think of an electron in a one-dimensional situation in which its
potential energy varies with x in a way described by the graph in Fig. 16-3. We
will assume that this potential is static—it doesn’t vary with time. As we have
done so many times before, we would like to look for solutions corresponding to

xx1 x2

V (x)

E

Fig. 16-3. A potential well for a particle moving along x .

† We are using the convention of the earlier volumes according to which e2 ≡ q2
e/4πε0.
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states of definite energy, which means, of definite frequency. Let’s try a solution
of the form

ψ = a(x)e−iEt/~. (16.57)
If we substitute this function into the Schrödinger equation, we find that the
function a(x) must satisfy the following differential equation:

d2a(x)
dx2 = 2m

~2 [V (x)− E]a(x). (16.58)

This equation says that at each x the second derivative of a(x) with respect
to x is proportional to a(x), the coefficient of proportionality being given by the
quantity (2m/~2)(V − E). The second derivative of a(x) is the rate of change
of its slope. If the potential V is greater than the energy E of the particle, the
rate of change of the slope of a(x) will have the same sign as a(x). That means
that the curve of a(x) will be concave away from the x-axis. That is, it will have,
more or less, the character of the positive or negative exponential function, e±x.
This means that in the region to the left of x1, in Fig. 16-3, where V is greater
than the assumed energy E, the function a(x) would have to look like one or
another of the curves shown in part (a) of Fig. 16-4.

If, on the other hand, the potential function V is less than the energy E,
the second derivative of a(x) with respect to x has the opposite sign from a(x)
itself, and the curve of a(x) will always be concave toward the x-axis like one
of the pieces shown in part (b) of Fig. 16-4. The solution in such a region has,
piece-by-piece, roughly the form of a sinusoidal curve.

Now let’s see if we can construct graphically a solution for the function a(x)
which corresponds to a particle of energy Ea in the potential V shown in Fig. 16-3.
Since we are trying to describe a situation in which a particle is bound inside
the potential well, we want to look for solutions in which the wave amplitude
takes on very small values when x is way outside the potential well. We can
easily imagine a curve like the one shown in Fig. 16-5 which tends toward zero
for large negative values of x, and grows smoothly as it approaches x1. Since V
is equal to Ea at x1, the curvature of the function becomes zero at this point.
Between x1 and x2, the quantity V − Ea is always a negative number, so the
function a(x) is always concave toward the axis, and the curvature is larger the
larger the difference between Ea and V . If we continue the curve into the region
between x1 and x2, it should go more or less as shown in Fig. 16-5.

Now let’s continue this curve into the region to the right of x2. There it
curves away from the axis and takes off toward large positive values, as drawn in
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V > E
(a)

x

a(x)

V < E
(b)

x

a(x)

Fig. 16-4. Possible shapes of the wave function a(x) for V > E and
for V < E.

xx1 x2

V

Ea

x

a(x)

Fig. 16-5. A wave function for the energy Ea which goes to zero for
negative x .
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xx1 x2

a(x)

Fig. 16-6. The wave function a(x) of Fig. 16-5 continued beyond x2.

xx1 x2

V

Ea

Eb

x

a(x)

Fig. 16-7. The wave function a(x) for an energy Eb greater than Ea.
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Fig. 16-6. For the energy Ea we have chosen, the solution for a(x) gets larger and
larger with increasing x. In fact, its curvature is also increasing (if the potential
continues to stay flat). The amplitude rapidly grows to immense proportions.
What does this mean? It simply means that the particle is not “bound” in the
potential well. It is infinitely more likely to be found outside of the well, than
inside. For the solution we have manufactured, the electron is more likely to be
found at x = +∞ than anywhere else. We have failed to find a solution for a
bound particle.

Let’s try another energy, say one a little bit higher than Ea—say the energy Eb
in Fig. 16-7. If we start with the same conditions on the left, we get the solution
drawn in the lower half of Fig. 16-7. It looked at first as though it were going to
be better, but it ends up just as bad as the solution for Ea—except that now
a(x) is getting more and more negative as we go toward large values of x.

Maybe that’s the clue. Since changing the energy a little bit from Ea to Eb
causes the curve to flip from one side of the axis to the other, perhaps there is
some energy lying between Ea and Eb for which the curve will approach zero for
large values of x. There is, indeed, and we have sketched how the solution might
look in Fig. 16-8.

You should appreciate that the solution we have drawn in the figure is a very
special one. If we were to raise or lower the energy ever so slightly, the function
would go over into curves like one or the other of the two broken-line curves
shown in Fig. 16-8, and we would not have the proper conditions for a bound
particle. We have obtained a result that if a particle is to be bound in a potential
well, it can do so only if it has a very definite energy.

Does that mean that there is only one energy for a particle bound in a
potential well? No. Other energies are possible, but not energies too close to Ec.

x

x1 x2

a(x)

V > Ec V < Ec V > Ec

Fig. 16-8. A wave function for the energy Ec between Ea and Eb.
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x
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0
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V

a(x)

E0

E1

E2

E3

E4

Fig. 16-9. The function a(x) for the five lowest energy bound states.
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Notice that the wave function we have drawn in Fig. 16-8 crosses the axis four
times in the region between x1 and x2. If we were to pick an energy quite a bit
lower than Ec, we could have a solution which crosses the axis only three times,
only two times, only once, or not at all. The possible solutions are sketched in
Fig. 16-9. (There may also be other solutions corresponding to values of the
energy higher than the ones shown.) Our conclusion is that if a particle is bound
in a potential well, its energy can take on only the certain special values in a
discrete energy spectrum. You see how a differential equation can describe the
basic fact of quantum physics.

We might remark one other thing. If the energy E is above the top of the
potential well, then there are no longer any discrete solutions, and any possible
energy is permitted. Such solutions correspond to the scattering of free particles
by a potential well. We have seen an example of such solutions when we considered
the effects of impurity atoms in a crystal.
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17

Symmetry and Conservation Laws

Review: Chapter 52, Vol. I, Symmetry in Physical Laws

Reference: Angular Momentum in Quantum Mechanics: A. R. Edmonds,
Princeton University Press, 1957

17-1 Symmetry

In classical physics there are a number of quantities which are conserved—
such as momentum, energy, and angular momentum. Conservation theorems
about corresponding quantities also exist in quantum mechanics. The most
beautiful thing of quantum mechanics is that the conservation theorems can, in
a sense, be derived from something else, whereas in classical mechanics they are
practically the starting points of the laws. (There are ways in classical mechanics
to do an analogous thing to what we will do in quantum mechanics, but it can
be done only at a very advanced level.) In quantum mechanics, however, the
conservation laws are very deeply related to the principle of superposition of
amplitudes, and to the symmetry of physical systems under various changes.
This is the subject of the present chapter. Although we will apply these ideas
mostly to the conservation of angular momentum, the essential point is that the
theorems about the conservation of all kinds of quantities are—in the quantum
mechanics—related to the symmetries of the system.

We begin, therefore, by studying the question of symmetries of systems.
A very simple example is the hydrogen molecular ion—we could equally well
take the ammonia molecule—in which there are two states. For the hydrogen
molecular ion we took as our base states one in which the electron was located
near proton number 1, and another in which the electron was located near proton
number 2. The two states—which we called | 1〉 and | 2〉—are shown again in
Fig. 17-1(a). Now, so long as the two nuclei are both exactly the same, then
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(a)

p

e
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| 1〉

| 2〉

(b)

p p

e

p

e

p

P̂ | 1〉

P̂ | 2〉

P

P

Fig. 17-1. If the states | 1〉 and | 2〉 are reflected in the plane P -P ,
they go into | 2〉 and | 1〉, respectively.

there is a certain symmetry in this physical system. That is to say, if we were
to reflect the system in the plane halfway between the two protons—by which
we mean that everything on one side of the plane gets moved to the symmetric
position on the other side—we would get the situations in Fig. 17-1(b). Since
the protons are identical, the operation of reflection changes | 1〉 into | 2〉 and | 2〉
into | 1〉. We’ll call this reflection operation P̂ and write

P̂ | 1〉 = | 2〉, P̂ | 2〉 = | 1〉. (17.1)
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So our P̂ is an operator in the sense that it “does something” to a state to make
a new state. The interesting thing is that P̂ operating on any state produces
some other state of the system.

Now P̂ , like any of the other operators we have described, has matrix elements
which can be defined by the usual obvious notation. Namely,

P11 = 〈1 | P̂ | 1〉 and P12 = 〈1 | P̂ | 2〉

are the matrix elements we get if we multiply P̂ | 1〉 and P̂ | 2〉 on the left by 〈1 |.
From Eq. (17.1) they are

〈1 | P̂ | 1〉 = P11 = 〈1 | 2〉 = 0,
〈1 | P̂ | 2〉 = P12 = 〈1 | 1〉 = 1. (17.2)

In the same way we can get P21 and P22. The matrix of P̂—with respect to the
base system | 1〉 and | 2〉—is

P =
(

0 1
1 0

)
. (17.3)

We see once again that the words operator and matrix in quantum mechanics
are practically interchangeable. There are slight technical differences—like the
difference between a “numeral” and a “number”—but the distinction is something
pedantic that we don’t have to worry about. So whether P̂ defines an operation,
or is actually used to define a matrix of numbers, we will call it interchangeably
an operator or a matrix.

Now we would like to point out something. We will suppose that the physics of
the whole hydrogen molecular ion system is symmetrical. It doesn’t have to be—it
depends, for instance, on what else is near it. But if the system is symmetrical,
the following idea should certainly be true. Suppose we start at t = 0 with
the system in the state | 1〉 and find after an interval of time t that the system
turns out to be in a more complicated situation—in some linear combination of
the two base states. Remember that in Chapter 8 we used to represent “going
for a period of time” by multiplying by the operator Û . That means that the
system would after a while—say 15 seconds to be definite—be in some other
state. For example, it might be

√
2/3 parts of the state | 1〉 and i

√
1/3 parts of

the state | 2〉, and we would write

|ψ at 15 sec〉 = Û(15, 0) | 1〉 =
√

2/3 | 1〉+ i
√

1/3 | 2〉. (17.4)
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(a)
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.

| 1〉 | 2〉 | 1〉 | 2〉
AFTER TIME

t

(b)

P
R
O
B
.

| 1〉 | 2〉 | 1〉 | 2〉
AFTER TIME

t

Fig. 17-2. In a symmetric system, if a pure | 1〉 state develops as
shown in part (a), a pure | 2〉 state will develop as in part (b).

Now we ask what happens if we start the system in the symmetric state | 2〉 and
wait for 15 seconds under the same conditions? It is clear that if the world is
symmetric—as we are supposing—we should get the state symmetric to (17.4):

|ψ at 15 sec〉 = Û(15, 0) | 2〉 =
√

2/3 | 2〉+ i
√

1/3 | 1〉. (17.5)

The same ideas are sketched diagrammatically in Fig. 17-2. So if the physics of a
system is symmetrical with respect to some plane, and we work out the behavior
of a particular state, we also know the behavior of the state we would get by
reflecting the original state in the symmetry plane.

We would like to say the same things a little bit more generally—which means
a little more abstractly. Let Q̂ be any one of a number of operations that you
could perform on a system without changing the physics. For instance, for Q̂ we
might be thinking of P̂ , the operation of a reflection in the plane between the two
atoms in the hydrogen molecule. Or, in a system with two electrons, we might be
thinking of the operation of interchanging the two electrons. Another possibility
would be, in a spherically symmetric system, the operation of a rotation of the
whole system through a finite angle around some axis—which wouldn’t change
the physics. Of course, we would normally want to give each special case some
special notation for Q̂. Specifically, we will normally define the R̂y(θ) to be the
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operation “rotate the system about the y-axis by the angle θ”. By Q̂ we mean
just any one of the operators we have described or any other one—which leaves
the basic physical situation unchanged.

Let’s think of some more examples. If we have an atom with no external
magnetic field or no external electric field, and if we were to turn the coordinates
around any axis, it would be the same physical system. Again, the ammonia
molecule is symmetrical with respect to a reflection in a plane parallel to that
of the three hydrogens—so long as there is no electric field. When there is an
electric field, when we make a reflection we would have to change the electric
field also, and that changes the physical problem. But if we have no external
field, the molecule is symmetrical.

Now we consider a general situation. Suppose we start with the state |ψ1〉
and after some time or other under given physical conditions it has become the
state |ψ2〉. We can write

|ψ2〉 = Û |ψ1〉. (17.6)
[You can be thinking of Eq. (17.4).] Now imagine we perform the operation Q̂
on the whole system. The state |ψ1〉 will be transformed to a state |ψ′1〉, which
we can also write as Q̂ |ψ1〉. Also the state |ψ2〉 is changed into |ψ′2〉 = Q̂ |ψ2〉.
Now if the physics is symmetrical under Q̂ (don’t forget the if ; it is not a general
property of systems), then, waiting for the same time under the same conditions,
we should have

|ψ′2〉 = Û |ψ′1〉. (17.7)
[Like Eq. (17.5).] But we can write Q̂ |ψ1〉 for |ψ′1〉 and Q̂ |ψ2〉 for |ψ′2〉 so (17.7)
can also be written

Q̂ |ψ2〉 = ÛQ̂ |ψ1〉. (17.8)
If we now replace |ψ2〉 by Û |ψ1〉—Eq. (17.6)—we get

Q̂Û |ψ1〉 = ÛQ̂ |ψ1〉. (17.9)

It’s not hard to understand what this means. Thinking of the hydrogen ion it
says that: “making a reflection and waiting a while”—the expression on the right
of Eq. (17.9)—is the same as “waiting a while and then making a reflection”—the
expression on the left of (17.9). These should be the same so long as U doesn’t
change under the reflection.

Since (17.9) is true for any starting state |ψ1〉, it is really an equation about
the operators:

Q̂Û = ÛQ̂. (17.10)
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This is what we wanted to get—it is a mathematical statement of symmetry.
When Eq. (17.10) is true, we say that the operators Û and Q̂ commute. We can
then define “symmetry” in the following way: A physical system is symmetric
with respect to the operation Q̂ when Q̂ commutes with Û , the operation of the
passage of time. [In terms of matrices, the product of two operators is equivalent
to the matrix product, so Eq. (17.10) also holds for the matrices Q and U for a
system which is symmetric under the transformation Q.]

Incidentally, since for infinitesimal times ε we have Û = 1− iĤε/~—where Ĥ
is the usual Hamiltonian (see Chapter 8)—you can see that if (17.10) is true, it
is also true that

Q̂Ĥ = ĤQ̂. (17.11)

So (17.11) is the mathematical statement of the condition for the symmetry of a
physical situation under the operator Q̂. It defines a symmetry.

17-2 Symmetry and conservation

Before applying the result we have just found, we would like to discuss the
idea of symmetry a little more. Suppose that we have a very special situation:
after we operate on a state with Q̂, we get the same state. This is a very special
case, but let’s suppose it happens to be true for a state |ψ0〉 that |ψ′〉 = Q̂ |ψ0〉
is physically the same state as |ψ0〉. That means that |ψ′〉 is equal to |ψ0〉
except for some phase factor.† How can that happen? For instance, suppose that
we have an H+

2 ion in the state which we once called | I 〉.‡ For this state there
is equal amplitude to be in the base states | 1〉 and | 2〉. The probabilities are
shown as a bar graph in Fig. 17-3(a). If we operate on | I 〉 with the reflection
operator P̂ , it flips the state over changing | 1〉 to | 2〉 and | 2〉 to | 1〉—we get the
probabilities shown in Fig. 17-3(b). But that’s just the state | I 〉 all over again.
If we start with state | II 〉 the probabilities before and after reflection look just
the same. However, there is a difference if we look at the amplitudes. For the
state | I 〉 the amplitudes are the same after the reflection, but for the state | II 〉

† Incidentally, you can show that Q̂ is necessarily a unitary operator—which means that if
it operates on |ψ〉 to give some number times |ψ〉, the number must be of the form eiδ , where
δ is real. It’s a small point, and the proof rests on the following observation. Any operation
like a reflection or a rotation doesn’t lose any particles, so the normalization of |ψ′〉 and |ψ〉
must be the same; they can only differ by a pure imaginary phase factor.

‡ See Section 10-1. The states | I 〉 and | II 〉 are reversed in this Section relative to the earlier
discussion.
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(a)

| I〉

| 1〉 | 2〉

Prob.

0

1/2

1

(b)

P̂ | I〉

| 1〉 | 2〉

Prob.

0

1/2

1

Fig. 17-3. The state | I〉 and the state P̂ | I〉 obtained by reflecting
| I〉 in the central plane.

the amplitudes have the opposite sign. In other words,

P̂ | I 〉 = P̂

{
| 1〉+ | 2〉√

2

}
= | 2〉+ | 1〉√

2
= | I 〉,

P̂ | II 〉 = P̂

{
| 1〉 − | 2〉√

2

}
= | 2〉 − | 1〉√

2
= − | II 〉.

(17.12)

If we write P̂ |ψ0〉 = eiδ |ψ0〉, we have that eiδ = 1 for the state | I 〉 and eiδ = −1
for the state | II 〉.

Let’s look at another example. Suppose we have a RHC polarized photon
propagating in the z-direction. If we do the operation of a rotation around the
z-axis, we know that this just multiplies the amplitude by eiφ when φ is the angle
of the rotation. So for the rotation operation in this case, δ is just equal to the
angle of rotation.

Now it is clear that if it happens to be true that an operator Q̂ just changes
the phase of a state at some time, say t = 0, it is true forever. In other words, if
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the state |ψ1〉 goes over into the state |ψ2〉 after a time t, or

Û(t, 0) |ψ1〉 = |ψ2〉 (17.13)

and if the symmetry of the situation makes it so that

Q̂ |ψ1〉 = eiδ |ψ1〉, (17.14)
then it is also true that

Q̂ |ψ2〉 = eiδ |ψ2〉. (17.15)
This is clear, since

Q̂ |ψ2〉 = Q̂Û |ψ1〉 = ÛQ̂ |ψ1〉,

and if Q̂ |ψ1〉 = eiδ |ψ1〉, then

Q̂ |ψ2〉 = Ûeiδ |ψ1〉 = eiδÛ |ψ1〉 = eiδ |ψ2〉.

[The sequence of equalities follows from (17.13) and (17.10) for a symmetrical
system, from (17.14), and from the fact that a number like eiδ commutes with
an operator.]

So with certain symmetries something which is true initially is true for all
times. But isn’t that just a conservation law? Yes! It says that if you look
at the original state and by making a little computation on the side discover
that an operation which is a symmetry operation of the system produces only a
multiplication by a certain phase, then you know that the same property will
be true of the final state—the same operation multiplies the final state by the
same phase factor. This is always true even though we may not know anything
else about the inner mechanism of the universe which changes a system from
the initial to the final state. Even if we do not care to look at the details of the
machinery by which the system gets from one state to another, we can still say
that if a thing is in a state with a certain symmetry character originally, and if
the Hamiltonian for this thing is symmetrical under that symmetry operation,
then the state will have the same symmetry character for all times. That’s the
basis of all the conservation laws of quantum mechanics.

Let’s look at a special example. Let’s go back to the P̂ operator. We would
like first to modify a little our definition of P̂ . We want to take for P̂ not just a
mirror reflection, because that requires defining the plane in which we put the
mirror. There is a special kind of a reflection that doesn’t require the specification
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of a plane. Suppose we redefine the operation P̂ this way: First you reflect in a
mirror in the z-plane so that z goes to −z, x stays x, and y stays y; then you
turn the system 180◦ about the z-axis so that x is made to go to −x and y to −y.
The whole thing is called an inversion. Every point is projected through the
origin to the diametrically opposite position. All the coordinates of everything
are reversed. We will still use the symbol P̂ for this operation. It is shown in
Fig. 17-4. It is a little more convenient than a simple reflection because it doesn’t
require that you specify which coordinate plane you used for the reflection—you
need specify only the point which is at the center of symmetry.

Now let’s suppose that we have a state |ψ0〉 which under the inversion
operation goes into eiδ |ψ0〉—that is,

|ψ′0〉 = P̂ |ψ0〉 = eiδ |ψ0〉. (17.16)

Then suppose that we invert again. After two inversions we are right back where
we started from—nothing is changed at all. We must have that

P̂ |ψ′0〉 = P̂ ·P̂ |ψ0〉 = |ψ0〉.
But

P̂ ·P̂ |ψ0〉 = P̂ eiδ |ψ0〉 = eiδP̂ |ψ0〉 = (eiδ)2 |ψ0〉.

It follows that
(eiδ)2 = 1.

So if the inversion operator is a symmetry operation of a state, there are only
two possibilities for eiδ:

eiδ = ±1,
which means that

P̂ |ψ0〉 = |ψ0〉 or P̂ |ψ0〉 = − |ψ0〉. (17.17)

Classically, if a state is symmetric under an inversion, the operation gives back
the same state. In quantum mechanics, however, there are the two possibilities:
we get the same state or minus the same state. When we get the same state,
P̂ |ψ0〉 = |ψ0〉, we say that the state |ψ0〉 has even parity. When the sign is
reversed so that P̂ |ψ0〉 = − |ψ0〉, we say that the state has odd parity. (The
inversion operator P̂ is also known as the parity operator.) The state | I 〉 of the
H+

2 ion has even parity; and the state | II 〉 has odd parity—see Eq. (17.12). There
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(a)

x

y

z

r

A

(b)

x

y

z

r

−r

A′

Fig. 17-4. The operation of inversion, P̂ . Whatever is at the point A
at (x, y , z) is moved to the point A′ at (−x,−y,−z).

are, of course, states which are not symmetric under the operation P̂ ; these are
states with no definite parity. For instance, in the H+

2 system the state | I 〉 has
even parity, the state | II 〉 has odd parity, and the state | 1〉 has no definite parity.

When we speak of an operation like inversion being performed “on a physical
system” we can think about it in two ways. We can think of physically moving
whatever is at r to the inverse point at −r, or we can think of looking at
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the same system from a new frame of reference x′, y′, z′ related to the old by
x′ = −x, y′ = −y, and z′ = −z. Similarly, when we think of rotations, we can
think of rotating bodily a physical system, or of rotating the coordinate frame
with respect to which we measure the system, keeping the “system” fixed in space.
Generally, the two points of view are essentially equivalent. For rotation they
are equivalent except that rotating a system by the angle θ is like rotating the
reference frame by the negative of θ. In these lectures we have usually considered
what happens when a projection is made into a new set of axes. What you get
that way is the same as what you get if you leave the axes fixed and rotate the
system backwards by the same amount. When you do that, the signs of the angles
are reversed.†

Many of the laws of physics—but not all—are unchanged by a reflection or
an inversion of the coordinates. They are symmetric with respect to an inversion.
The laws of electrodynamics, for instance, are unchanged if we change x to −x, y
to −y, and z to −z in all the equations. The same is true for the laws of gravity,
and for the strong interactions of nuclear physics. Only the weak interactions—
responsible for β-decay—do not have this symmetry. (We discussed this in some
detail in Chapter 52, Vol. I.) We will for now leave out any consideration of
the β-decays. Then in any physical system where β-decays are not expected to
produce any appreciable effect—an example would be the emission of light by
an atom—the Hamiltonian Ĥ and the operator P̂ will commute. Under these
circumstances we have the following proposition. If a state originally has even
parity, and if you look at the physical situation at some later time, it will again
have even parity. For instance, suppose an atom about to emit a photon is in
a state known to have even parity. You look at the whole thing—including the
photon—after the emission; it will again have even parity (likewise if you start
with odd parity). This principle is called the conservation of parity. You can see
why the words “conservation of parity” and “reflection symmetry” are closely
intertwined in the quantum mechanics. Although until a few years ago it was
thought that nature always conserved parity, it is now known that this is not
true. It has been discovered to be false because the β-decay reaction does not
have the inversion symmetry which is found in the other laws of physics.

Now we can prove an interesting theorem (which is true so long as we can
disregard weak interactions): Any state of definite energy which is not degenerate

† In other books you may find formulas with different signs; they are probably using a
different definition of the angles.
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must have a definite parity. It must have either even parity or odd parity.
(Remember that we have sometimes seen systems in which several states have
the same energy—we say that such states are degenerate. Our theorem will not
apply to them.)

For a state |ψ0〉 of definite energy, we know that

Ĥ |ψ0〉 = E |ψ0〉, (17.18)

where E is just a number—the energy of the state. If we have any operator Q̂
which is a symmetry operator of the system we can prove that

Q̂ |ψ0〉 = eiδ |ψ0〉 (17.19)

so long as |ψ0〉 is a unique state of definite energy. Consider the new state |ψ′0〉
that you get from operating with Q̂. If the physics is symmetric, then |ψ′0〉 must
have the same energy as |ψ0〉. But we have taken a situation in which there is
only one state of that energy, namely |ψ0〉, so |ψ′0〉 must be the same state—it
can only differ by a phase. That’s the physical argument.

The same thing comes out of our mathematics. Our definition of symmetry
is Eq. (17.10) or Eq. (17.11) (good for any state ψ),

ĤQ̂ |ψ〉 = Q̂Ĥ |ψ〉. (17.20)

But we are considering only a state |ψ0〉 which is a definite energy state, so that
Ĥ |ψ0〉 = E |ψ0〉. Since E is just a number that floats through Q̂ if we want, we
have

Q̂Ĥ |ψ0〉 = Q̂E |ψ0〉 = EQ̂ |ψ0〉.
So

Ĥ{Q̂ |ψ0〉} = E{Q̂ |ψ0〉}. (17.21)

So |ψ′0〉 = Q̂ |ψ0〉 is also a definite energy state of Ĥ—and with the same E. But
by our hypothesis, there is only one such state; it must be that |ψ′0〉 = eiδ |ψ0〉.

What we have just proved is true for any operator Q̂ that is a symmetry
operator of the physical system. Therefore, in a situation in which we consider
only electrical forces and strong interactions—and no β-decay—so that inversion
symmetry is an allowed approximation, we have that P̂ |ψ〉 = eiδ |ψ〉. But we
have also seen that eiδ must be either +1 or −1. So any state of a definite energy
(which is not degenerate) has got either an even parity or an odd parity.
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17-3 The conservation laws

We turn now to another interesting example of an operation: a rotation. We
consider the special case of an operator that rotates an atomic system by angle φ
around the z-axis. We will call this operator† R̂z(φ). We are going to suppose
that we have a physical situation where we have no influences lined up along the
x- and y-axes. Any electric field or magnetic field is taken to be parallel to the
z-axis‡ so that there will be no change in the external conditions if we rotate
the whole physical system about the z-axis. For example, if we have an atom in
empty space and we turn the atom around the z-axis by an angle φ, we have the
same physical system.

Now then, there are special states which have the property that such an
operation produces a new state which is the original state multiplied by some
phase factor. Let us make a quick side remark to show you that when this is
true the phase change must always be proportional to the angle φ. Suppose that
you would rotate twice by the angle φ. That’s the same thing as rotating by
the angle 2φ. If a rotation by φ has the effect of multiplying the state |ψ0〉 by a
phase eiδ so that

R̂z(φ) |ψ0〉 = eiδ |ψ0〉,

two such rotations in succession would multiply the state by the factor (eiδ)2 =
ei2δ, since

R̂z(φ)R̂z(φ) |ψ0〉 = R̂z(φ)eiδ |ψ0〉 = eiδR̂z(φ) |ψ0〉 = eiδeiδ |ψ0〉.

The phase change δ must be proportional to φ.¶ We are considering then those
special states |ψ0〉 for which

R̂z(φ) |ψ0〉 = eimφ |ψ0〉, (17.22)

where m is some real number.
We also know the remarkable fact that if the system is symmetrical for

a rotation around z and if the original state happens to have the property

† Very precisely, we will define R̂z(φ) as a rotation of the physical system by −φ about the
z-axis, which is the same as rotating the coordinate frame by +φ.

‡ We can always choose z along the direction of the field provided there is only one field at
a time, and its direction doesn’t change.

¶ For a fancier proof we should make this argument for small rotations ε. Since any angle φ
is the sum of a suitable n number of these, φ = nε, R̂z(φ) = [R̂z(ε)]n and the total phase
change is n times that for the small angle ε, and is, therefore, proportional to φ.
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that (17.22) is true, then it will also have the same property later on. So this
number m is a very important one. If we know its value initially, we know its
value at the end of the game. It is a number which is conserved—m is a constant
of the motion. The reason that we pull out m is because it hasn’t anything to
do with any special angle φ, and also because it corresponds to something in
classical mechanics. In quantum mechanics we choose to call m~—for such states
as |ψ0〉—the angular momentum about the z-axis. If we do that we find that
in the limit of large systems the same quantity is equal to the z-component of
the angular momentum of classical mechanics. So if we have a state for which a
rotation about the z-axis just produces a phase factor eimφ, then we have a state
of definite angular momentum about that axis—and the angular momentum is
conserved. It is m~ now and forever. Of course, you can rotate about any axis,
and you get the conservation of angular momentum for the various axes. You see
that the conservation of angular momentum is related to the fact that when you
turn a system you get the same state with only a new phase factor.

We would like to show you how general this idea is. We will apply it to two
other conservation laws which have exact correspondence in the physical ideas
to the conservation of angular momentum. In classical physics we also have
conservation of momentum and conservation of energy, and it is interesting to
see that both of these are related in the same way to some physical symmetry.

Suppose that we have a physical system—an atom, some complicated nucleus,
or a molecule, or something—and it doesn’t make any difference if we take the
whole system and move it over to a different place. So we have a Hamiltonian
which has the property that it depends only on the internal coordinates in some
sense, and does not depend on the absolute position in space. Under those
circumstances there is a special symmetry operation we can perform which is a
translation in space. Let’s define D̂x(a) as the operation of a displacement by
the distance a along the x-axis. Then for any state we can make this operation
and get a new state. But again there can be very special states which have the
property that when you displace them by a along the x-axis you get the same
state except for a phase factor. It’s also possible to prove, just as we did above,
that when this happens, the phase must be proportional to a. So we can write
for these special states |ψ0〉

D̂x(a) |ψ0〉 = eika |ψ0〉. (17.23)

The coefficient k, when multiplied by ~, is called the x-component of the momen-
tum. And the reason it is called that is that this number is numerically equal to
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the classical momentum px when we have a large system. The general statement
is this: If the Hamiltonian is unchanged when the system is displaced, and if the
state starts with a definite momentum in the x-direction, then the momentum in
the x-direction will remain the same as time goes on. The total momentum of a
system before and after collisions—or after explosions or what not—will be the
same.

There is another operation that is quite analogous to the displacement in space:
a delay in time. Suppose that we have a physical situation where there is nothing
external that depends on time, and we start something off at a certain moment
in a given state and let it roll. Now if we were to start the same thing off again
(in another experiment) two seconds later—or/say, delayed by a time τ—and if
nothing in the external conditions depends on the absolute time, the development
would be the same and the final state would be the same as the other final state,
except that it will get there later by the time τ . Under those circumstances we
can also find special states which have the property that the development in time
has the special characteristic that the delayed state is just the old, multiplied
by a phase factor. Once more it is clear that for these special states the phase
change must be proportional to τ . We can write

D̂t(τ) |ψ0〉 = e−iωτ |ψ0〉. (17.24)

It is conventional to use the negative sign in defining ω; with this convention ω~
is the energy of the system, and it is conserved. So a system of definite energy is
one which when displaced τ in time reproduces itself multiplied by e−iωτ . (That’s
what we have said before when we defined a quantum state of definite energy, so
we’re consistent with ourselves.) It means that if a system is in a state of definite
energy, and if the Hamiltonian doesn’t depend on t, then no matter what goes
on, the system will have the same energy at all later times.

You see, therefore, the relation between the conservation laws and the sym-
metry of the world. Symmetry with respect to displacements in time implies the
conservation of energy; symmetry with respect to position in x, y, or z implies
the conservation of that component of momentum. Symmetry with respect to
rotations around the x-, y-, and z-axes implies the conservation of the x-, y-,
and z-components of angular momentum. Symmetry with respect to reflection
implies the conservation of parity. Symmetry with respect to the interchange
of two electrons implies the conservation of something we don’t have a name
for, and so on. Some of these principles have classical analogs and others do
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not. There are more conservation laws in quantum mechanics than are useful in
classical mechanics—or, at least, than are usually made use of.

In order that you will be able to read other books on quantum mechanics,
we must make a small technical aside—to describe the notation that people
use. The operation of a displacement with respect to time is, of course, just the
operation Û that we talked about before:

D̂t(τ) = Û(t+ τ, t). (17.25)

Most people like to discuss everything in terms of infinitesimal displacements in
time, or in terms of infinitesimal displacements in space, or in terms of rotations
through infinitesimal angles. Since any finite displacement or angle can be
accumulated by a succession of infinitesimal displacements or angles, it is often
easier to analyze first the infinitesimal case. The operator of an infinitesimal
displacement ∆t in time is—as we have defined it in Chapter 8—

D̂t(∆t) = 1− i

~
∆tĤ. (17.26)

Then Ĥ is analogous to the classical quantity we call energy, because if Ĥ |ψ〉
happens to be a constant times |ψ〉 namely, Ĥ |ψ〉 = E |ψ〉 then that constant
is the energy of the system.

The same thing is done for the other operations. If we make a small displace-
ment in x, say by the amount ∆x, a state |ψ〉 will, in general, go over into some
other state |ψ′〉. We can write

|ψ′〉 = D̂x(∆x) |ψ〉 =
(

1 + i

~
p̂x∆x

)
|ψ〉, (17.27)

since as ∆x goes to zero, the |ψ′〉 should become just |ψ〉 or D̂x(0) = 1, and for
small ∆x the change of D̂x(∆x) from 1 should be proportional to ∆x. Defined
this way, the operator p̂x is called the momentum operator—for the x-component,
of course.

For identical reasons, people usually write for small rotations

R̂z(∆φ) |ψ〉 =
(

1 + i

~
Ĵz∆φ

)
|ψ〉 (17.28)

and call Ĵz the operator of the z-component of angular momentum. For those
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special states for which R̂z(φ) |ψ0〉 = eimφ |ψ0〉, we can for any small angle—
say ∆φ—expand the right-hand side to first order in ∆φ and get

R̂z(∆φ) |ψ0〉 = eim∆φ |ψ0〉 = (1 + im∆φ) |ψ0〉.

Comparing this with the definition of Ĵz in Eq. (17.28), we get that

Ĵz |ψ0〉 = m~ |ψ0〉. (17.29)

In other words, if you operate with Ĵz on a state with a definite angular momentum
about the z-axis, you get m~ times the same state, where m~ is the amount
of z-component of angular momentum. It is quite analogous to operating on a
definite energy state with Ĥ to get E |ψ〉.

We would now like to make some applications of the ideas of the conservation
of angular momentum—to show you how they work. The point is that they are
really very simple. You knew before that angular momentum is conserved. The
only thing you really have to remember from this chapter is that if a state |ψ0〉
has the property that upon a rotation through an angle φ about the z-axis, it
becomes eimφ |ψ0〉; it has a z-component of angular momentum equal to m~.
That’s all we will need to do a number of interesting things.

17-4 Polarized light

First of all we would like to check on one idea. In Section 11-4 we showed
that when RHC polarized light is viewed in a frame rotated by the angle φ about
the z-axis† it gets multiplied by eiφ. Does that mean then that the photons
of light that are right circularly polarized carry an angular momentum of one
unit‡ along the z-axis? Indeed it does. It also means that if we have a beam
of light containing a large number of photons all circularly polarized the same
way—as we would have in a classical beam—it will carry angular momentum.
If the total energy carried by the beam in a certain time is W , then there are
N = W/~ω photons. Each one carries the angular momentum ~, so there is a
total angular momentum of

Jz = N~ = W

ω
. (17.30)

† Sorry! This angle is the negative of the one we used in Section 11-4.
‡ It is usually very convenient to measure angular momentum of atomic systems in units

of ~. Then you can say that a spin one-half particle has angular momentum ±1/2 with respect
to any axis. Or, in general, that the z-component of angular momentum is m. You don’t need
to repeat the ~ all the time.
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Can we prove classically that light which is right circularly polarized carries an
energy and angular momentum in proportion to W/ω? That should be a classical
proposition if everything is right. Here we have a case where we can go from
the quantum thing to the classical thing. We should see if the classical physics
checks. It will give us an idea whether we have a right to call m the angular
momentum. Remember what right circularly polarized light is, classically. It’s
described by an electric field with an oscillating x-component and an oscillating
y-component 90◦ out of phase so that the resultant electric vector E goes in a
circle—as drawn in Fig. 17-5(a). Now suppose that such light shines on a wall
which is going to absorb it—or at least some of it—and consider an atom in the
wall according to the classical physics. We have often described the motion of the
electron in the atom as a harmonic oscillator which can be driven into oscillation
by an external electric field. We’ll suppose that the atom is isotropic, so that
it can oscillate equally well in the x- or y-directions. Then in the circularly
polarized light, the x-displacement and the y-displacement are the same, but one
is 90◦ behind the other. The net result is that the electron moves in a circle, as
shown in Fig. 17-5(b). The electron is displaced at some displacement r from
its equilibrium position at the origin and goes around with some phase lag with
respect to the vector E. The relation between E and r might be as shown in
Fig. 17-5(b). As time goes on, the electric field rotates and the displacement
rotates with the same frequency, so their relative orientation stays the same. Now
let’s look at the work being done on this electron. The rate that energy is being
put into this electron is v, its velocity, times the component of qE parallel to the
velocity:

dW

dt
= qEtv. (17.31)

But look, there is angular momentum being poured into this electron, because
there is always a torque about the origin. The torque is qEtr, which must be
equal to the rate of change of angular momentum dJz/dt:

dJz
dt

= qEtr. (17.32)

Remembering that v = ωr, we have that
dJz
dW

= 1
ω
.

Therefore, if we integrate the total angular momentum which is absorbed, it
is proportional to the total energy—the constant of proportionality being 1/ω,
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Fig. 17-5. (a) The electric field E in a circularly polarized light wave.
(b) The motion of an electron being driven by the circularly polarized
light.

which agrees with Eq. (17.30). Light does carry angular momentum—1 unit
(times ~) if it is right circularly polarized along the z-axis, and −1 unit along the
z-axis if it is left circularly polarized.

Now let’s ask the following question: If light is linearly polarized in the x-
direction, what is its angular momentum? Light polarized in the x-direction can
be represented as the superposition of RHC and LHC polarized light. Therefore,
there is a certain amplitude that the angular momentum is +~ and another
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amplitude that the angular momentum is −~, so it doesn’t have a definite angular
momentum. It has an amplitude to appear with +~ and an equal amplitude
to appear with −~. The interference of these two amplitudes produces the
linear polarization, but it has equal probabilities to appear with plus or minus
one unit of angular momentum. Macroscopic measurements made on a beam
of linearly polarized light will show that it carries zero angular momentum,
because in a large number of photons there are nearly equal numbers of RHC
and LHC photons contributing opposite amounts of angular momentum—the
average angular momentum is zero. And in the classical theory you don’t find
the angular momentum unless there is some circular polarization.

We have said that any spin-one particle can have three values of Jz, namely
+1, 0,−1 (the three states we saw in the Stern-Gerlach experiment). But light
is screwy; it has only two states. It does not have the zero case. This strange
lack is related to the fact that light cannot stand still. For a particle of spin j
which is standing still, there must be the 2j + 1 possible states with values
of jz going in steps of 1 from −j to +j. But it turns out that for something of
spin j with zero mass only the states with the components +j and −j along the
direction of motion exist. For example, light does not have three states, but only
two—although a photon is still an object of spin one. How is this consistent with
our earlier proofs—based on what happens under rotations in space—that for
spin-one particles three states are necessary? For a particle at rest, rotations
can be made about any axis without changing the momentum state. Particles
with zero rest mass (like photons and neutrinos) cannot be at rest; only rotations
about the axis along the direction of motion do not change the momentum state.
Arguments about rotations around one axis only are insufficient to prove that
three states are required, given that one of them varies as eiφ under rotations by
the angle φ.†

One further side remark. For a zero rest mass particle, in general, only
one of the two spin states with respect to the line of motion (+j, −j) is really
necessary. For neutrinos—which are spin one-half particles—only the states with
the component of angular momentum opposite to the direction of motion (−~/2)
exist in nature [and only along the motion (+~/2) for antineutrinos]. When a

† We have tried to find at least a proof that the component of angular momentum along
the direction of motion must for a zero mass particle be an integral multiple of ~/2—and not
something like ~/3. Even using all sorts of properties of the Lorentz transformation and what
not, we failed. Maybe it’s not true. We’ll have to talk about it with Prof. Wigner, who knows
all about such things.
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system has inversion symmetry (so that parity is conserved, as it is for light)
both components (+j, and −j) are required.

17-5 The disintegration of the Λ0

Now we want to give an example of how we use the theorem of conservation
of angular momentum in a specifically quantum physical problem. We look at
break-up of the lambda particle (Λ0), which disintegrates into a proton and a
π− meson by a “weak” interaction:

Λ0 → p + π−.

Assume we know that the pion has spin zero, that the proton has spin one-half,
and that the Λ0 has spin one-half. We would like to solve the following problem:
Suppose that a Λ0 were to be produced in a way that caused it to be completely
polarized—by which we mean that its spin is, say “up,” with respect to some
suitably chosen z-axis—see Fig. 17-6(a). The question is, with what probability
will it disintegrate so that the proton goes off at an angle θ with respect to the
z-axis—as in Fig. 17-6(b)? In other words, what is the angular distribution of
the disintegrations? We will look at the disintegration in the coordinate system

(a)

BEFORE

z

Λ0

(b)

AFTER

z

p

vp

π− vπ−

θ

Fig. 17-6. A Λ0 with spin “up” decays into a proton and a pion (in
the CM system). What is the probability that the proton will go off at
the angle θ?
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Fig. 17-7. Two possibilities for the decay of a spin “up” Λ0 with the
proton going along the +z-axis. Only (b) conserves angular momentum.

in which the Λ0 is at rest—we will measure the angles in this rest frame; then
they can always be transformed to another frame if we want.

We begin by looking at the special circumstance in which the proton is emitted
into a small solid angle ∆Ω along the z-axis (Fig. 17-7). Before the disintegration
we have a Λ0 with its spin “up,” as in part (a) of the figure. After a short
time—for reasons unknown to this day, except that they are connected with the
weak decays—the Λ0 explodes into a proton and a pion. Suppose the proton goes
up along the +z-axis. Then, from the conservation of momentum, the pion must
go down. Since the proton is a spin one-half particle, its spin must be either “up”
or “down”—there are, in principle, the two possibilities shown in parts (b) and (c)
of the figure. The conservation of angular momentum, however, requires that the
proton have spin “up.” This is most easily seen from the following argument. A
particle moving along the z-axis cannot contribute any angular momentum about
this axis by virtue of its motion; therefore, only the spins can contribute to Jz.
The spin angular momentum about the z-axis is +~/2 before the disintegration,
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so it must also be +~/2 afterward. We can say that since the pion has no spin,
the proton spin must be “up.”

If you are worried that arguments of this kind may not be valid in quantum
mechanics, we can take a moment to show you that they are. The initial state
(before the disintegration), which we can call |Λ0, spin +z〉 has the property that if
it is rotated about the z-axis by the angle φ, the state vector gets multiplied by the
phase factor eiφ/2. (In the rotated system the state vector is eiφ/2 |Λ0, spin +z〉.)
That’s what we mean by spin “up” for a spin one-half particle. Since nature’s
behavior doesn’t depend on our choice of axes, the final state (the proton plus
pion) must have the same property. We could write the final state as, say,

|proton going +z, spin +z; pion going −z〉.

But we really do not need to specify the pion motion, since in the frame we
have chosen the pion always moves opposite the proton; we can simplify our
description of the final state to

|proton going +z, spin +z〉.

Now what happens to this state vector if we rotate the coordinates about the
z-axis by the angle φ?

Since the proton and pion are moving along the z-axis, their motion isn’t
changed by the rotation. (That’s why we picked this special case; we couldn’t
make the argument otherwise.) Also, nothing happens to the pion, because it
is spin zero. The proton, however, has spin one-half. If its spin is “up” it
will contribute a phase change of eiφ/2 in response to the rotation. (If its spin
were “down” the phase change due to the proton would be e−iφ/2.) But the
phase change with rotation before and after the excitement must be the same if
angular momentum is to be conserved. (And it will be, since there are no outside
influences in the Hamiltonian.) So the only possibility is that the proton spin
will be “up.” If the proton goes up, its spin must also be “up.”

We conclude, then, that the conservation of angular momentum permits the
process shown in part (b) of Fig. 17-7, but does not permit the process shown in
part (c). Since we know that the disintegration occurs, there is some amplitude for
process (b)—proton going up with spin “up.” We’ll let a stand for the amplitude
that the disintegration occurs in this way in any infinitesimal interval of time.†

† We are now assuming that the machinery of the quantum mechanics is sufficiently familiar
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Fig. 17-8. The decay along the z-axis for a Λ0 with spin “down.”

Now let’s see what would happen if the Λ0 spin were initially “down.” Again
we ask about the decays in which the proton goes up along the z-axis, as shown
in Fig. 17-8. You will appreciate that in this case the proton must have spin
“down” if angular momentum is conserved. Let’s say that the amplitude for such
a disintegration is b.

We can’t say anything more about the two amplitudes a and b. They depend
on the inner machinery of Λ0, and the weak decays, and nobody yet knows how to
calculate them. We’ll have to get them from experiment. But with just these two
amplitudes we can find out all we want to know about the angular distribution
of the disintegration. We only have to be careful always to define completely the
states we are talking about.

We want to know the probability that the proton will go off at the angle θ
with respect to the z-axis (into a small solid angle ∆Ω) as drawn in Fig. 17-6.
to you that we can speak about things in a physical way without taking the time to write down
all the mathematical details. In case what we are saying here is not clear to you, we have put
some of the missing details in a note at the end of the section.
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Let’s put a new z-axis in this direction and call it the z′-axis. We know how to
analyze what happens along this axis. With respect to this new axis, the Λ0 no
longer has its spin “up,” but has a certain amplitude to have its spin “up” and
another amplitude to have its spin “down.” We have already worked these out
in Chapter 6, and again in Chapter 10, Eq. (10.30). The amplitude to be spin
“up” is cos θ/2, and the amplitude to be spin “down” is† − sin θ/2. When the Λ0

(a)

z

Λ0

z

z ′

p

π−

vp

vπ−

θ
sz ′=

1
2

Amplitude a cos θ/2

(b)

z

Λ0

z

z ′

p

π−

vp

vπ−

θ
sz ′=− 12

Amplitude −b sin θ/2

Fig. 17-9. Two possible decay states for the Λ0.

† We have chosen to let z′ be in the xz-plane and use the matrix elements for Ry(θ). You
would get the same answer for any other choice.
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spin is “up” along the z′-axis it will emit a proton in the +z′-direction with the
amplitude a. So the amplitude to find an “up”-spinning proton coming out along
the z′-direction is

a cos θ2 . (17.33)

Similarly, the amplitude to find a “down”-spinning proton coming along the
positive z′-axis is

− b sin θ2 . (17.34)

The two processes that these amplitudes refer to are shown in Fig. 17-9.
Let’s now ask the following easy question. If the Λ0 has spin up along the

z-axis, what is the probability that the decay proton will go off at the angle θ?
The two spin states (“up” or “down” along z′) are distinguishable even though we
are not going to look at them. So to get the probability we square the amplitudes
and add. The probability f(θ) of finding a proton in a small solid angle ∆Ω at θ
is

f(θ) = |a|2 cos2 θ

2 + |b|2 sin2 θ

2 . (17.35)

Remembering that sin2 θ/2 = 1
2 (1− cos θ) and that cos2 θ/2 = 1

2 (1 + cos θ), we
can write f(θ) as

f(θ) =
(
|a|2 + |b|2

2

)
+
(
|a|2 − |b|2

2

)
cos θ. (17.36)

The angular distribution has the form

f(θ) = β(1 + α cos θ). (17.37)

The probability has one part that is independent of θ and one part that varies
linearly with cos θ. From measuring the angular distribution we can get α and β,
and therefore, |a| and |b|.

Now there are many other questions we can answer. Are we interested only
in protons with spin “up” along the old z-axis? Each of the terms in (17.33)
and (17.34) will give an amplitude to find a proton with spin “up” and with spin
“down” with respect to the z′-axis (+z′ and −z′). Spin “up” with respect to
the old axis |+z〉 can be expressed in terms of the base states |+z′〉 and | −z′〉.
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We can then combine the two amplitudes (17.33) and (17.34) with the proper
coefficients (cos θ/2 and − sin θ/2) to get the total amplitude(

a cos2 θ

2 + b sin2 θ

2

)
.

Its square is the probability that the proton comes out at the angle θ with its
spin the same as the Λ0 (“up” along the z-axis).

If parity were conserved, we could say one more thing. The disintegration of
Fig. 17-8 is just the reflection—in the xy-plane of the disintegration—of Fig. 17-7.†
If parity were conserved, b would have to be equal to a or to −a. Then the
coefficient α of (17.37) would be zero, and the disintegration would be equally
likely to occur in all directions.

The experimental results show, however, that there is an asymmetry in the
disintegration. The measured angular distribution does go as cos θ as we predict—
and not as cos2 θ or any other power. In fact, since the angular distribution
has this form, we can deduce from these measurements that the spin of the Λ0

is 1/2. Also, we see that parity is not conserved. In fact, the coefficient α is
found experimentally to be −0.62± 0.05, so b is about twice as large as a. The
lack of symmetry under a reflection is quite clear.

You see how much we can get from the conservation of angular momentum.
We will give some more examples in the next chapter.

Parenthetical note. By the amplitude a in this section we mean the amplitude that
the state |proton going +z, spin +z〉 is generated in an infinitesimal time dt from the
state |Λ, spin +z〉, or, in other words, that

〈proton going +z, spin +z |H |Λ, spin +z〉 = i~a, (17.38)

where H is the Hamiltonian of the world—or, at least, of whatever is responsible for
the Λ-decay. The conservation of angular momentum means that the Hamiltonian must
have the property that

〈proton going +z, spin −z |H |Λ, spin +z〉 = 0. (17.39)

By the amplitude b we mean that

〈proton going +z, spin −z |H |Λ, spin −z〉 = i~b. (17.40)

† Remembering that the spin is an axial vector and doesn’t flip over in the reflection.
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Conservation of angular momentum implies that

〈proton going +z, spin +z |H |Λ, spin −z〉 = 0. (17.41)

If the amplitudes written in (17.33) and (17.34) are not clear, we can express them
more mathematically as follows. By (17.33) we intend the amplitude that the Λ with
spin along +z will disintegrate into a proton moving along the +z′-direction with its
spin also in the +z′-direction, namely the amplitude

〈proton going +z′, spin +z′ |H |Λ, spin +z〉. (17.42)

By the general theorems of quantum mechanics, this amplitude can be written as∑
i

〈proton going +z′, spin +z′ |H |Λ, i〉〈Λ, i |Λ, spin +z〉, (17.43)

where the sum is to be taken over the base states |Λ, i〉 of the Λ-particle at rest. Since
the Λ-particle is spin one-half, there are two such base states which can be in any
reference base we wish. If we use for base states spin “up” and spin “down” with respect
to z′ (+z′, −z′), the amplitude of (17.43) is equal to the sum

〈proton going +z′, spin +z′ |H |Λ,+z′〉〈Λ,+z′ |Λ,+z〉
+ 〈proton going +z′, spin +z′ |H |Λ,−z′〉〈Λ,−z′ |Λ,+z〉. (17.44)

The first factor of the first term is a, and the first factor of the second term is zero—
from the definition of (17.38), and from (17.41), which in turn follows from angular
momentum conservation. The remaining factor 〈Λ,+z′ |Λ,+z〉 of the first term is just
the amplitude that a spin one-half particle which has spin “up” along one axis will
also have spin “up” along an axis tilted at the angle θ, which is cos θ/2—see Table 6-2.
So (17.44) is just a cos θ/2, as we wrote in (17.33). The amplitude of (17.34) follows
from the same kind of arguments for a spin “down” Λ-particle.

17-6 Summary of the rotation matrices

We would like now to bring together in one place the various things we have
learned about the rotations for particles of spin one-half and spin one—so they
will be convenient for future reference. On the next page you will find tables
of the two rotation matrices Rz(φ) and Ry(θ) for spin one-half particles, for
spin-one particles, and for photons (spin-one particles with zero rest mass). For
each spin we will give the terms of the matrix 〈j |R | i〉 for rotations about the
z-axis or the y-axis. They are, of course, exactly equivalent to the amplitudes
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like 〈+T | 0S〉 we have used in earlier chapters. We mean by Rz(φ) that the state
is projected into a new coordinate system which is rotated through the angle φ
about the z-axis—using always the right-hand rule to define the positive sense
of the rotation. By Ry(θ) we mean that the reference axes are rotated by the
angle θ about the y-axis. Knowing these two rotations, you can, of course, work
out any arbitrary rotation. As usual, we write the matrix elements so that the
state on the left is a base state of the new (rotated) frame and the state on the
right is a base state of the old (unrotated) frame. You can interpret the entries in
the tables in many ways. For instance, the entry e−iφ/2 in Table 17-1 means that
the matrix element 〈− |R | −〉 = e−iφ/2. It also means that R̂ | −〉 = e−iφ/2 | −〉,
or that 〈− | R̂ = 〈− | e−iφ/2. It’s all the same thing.

Table 17-1

Rotation matrices for spin one-half

Two states: |+〉, “up” along the z-axis, m = +1/2
| −〉, “down” along the z-axis, m = −1/2

Rz(φ) |+〉 |−〉

〈+ | e+iφ/2 0
〈− | 0 e−iφ/2

Ry(θ) |+〉 |−〉

〈+ | cos θ/2 sin θ/2
〈− | − sin θ/2 cos θ/2
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Table 17-2

Rotation matrices for spin one

Three states: |+〉, m = +1
| 0 〉, m = 0
| −〉, m = −1

Rz(φ) |+〉 | 0 〉 |−〉

〈+ | e+iφ 0 0
〈 0 | 0 1 0
〈− | 0 0 e−iφ

Ry(θ) |+〉 | 0 〉 |−〉

〈+ | 1
2 (1 + cos θ) + 1√

2
sin θ 1

2 (1− cos θ)

〈 0 | − 1√
2

sin θ cos θ + 1√
2

sin θ

〈− | 1
2 (1− cos θ) − 1√

2
sin θ 1

2 (1 + cos θ)

Table 17-3

Photons

Two states: |R〉 = 1√
2

(|x〉+ i | y〉), m = +1 (RHC polarized)

|L〉 = 1√
2

(|x〉 − i | y〉), m = −1 (LHC polarized)

Rz(φ) |R〉 |L〉

〈R | e+iφ 0
〈L | 0 e−iφ
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18

Angular Momentum

18-1 Electric dipole radiation

In the last chapter we developed the idea of the conservation of angular
momentum in quantum mechanics, and showed how it might be used to predict
the angular distribution of the proton from the disintegration of the Λ-particle. We
want now to give you a number of other, similar, illustrations of the consequences
of momentum conservation in atomic systems. Our first example is the radiation
of light from an atom. The conservation of angular momentum (among other
things) will determine the polarization and angular distribution of the emitted
photons.

Suppose we have an atom which is in an excited state of definite angular
momentum—say with a spin of one—and it makes a transition to a state of
angular momentum zero at a lower energy, emitting a photon. The problem is to
figure out the angular distribution and polarization of the photons. (This problem
is almost exactly the same as the Λ0 disintegration, except that we have spin-one
instead of spin one-half particles.) Since the upper state of the atom is spin one,
there are three possibilities for its z-component of angular momentum. The value
of m could be +1, or 0, or −1. We will take m = +1 for our example. Once you
see how it goes, you can work out the other cases. We suppose that the atom is
sitting with its angular momentum along the +z-axis—as in Fig. 18-1(a)—and
ask with what amplitude it will emit right circularly polarized light upward along
the z-axis, so that the atom ends up with zero angular momentum—as shown
in part (b) of the figure. Well, we don’t know the answer to that. But we do
know that right circularly polarized light has one unit of angular momentum
about its direction of propagation. So after the photon is emitted, the situation
would have to be as shown in Fig. 18-1(b)—the atom is left with zero angular
momentum about the z-axis, since we have assumed an atom whose lower state is
spin zero. We will let a stand for the amplitude for such an event. More precisely,
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Fig. 18-1. An atom with m = +1 emits a RHC photon along the
+z-axis.

we let a be the amplitude to emit a photon into a certain small solid angle ∆Ω,
centered on the z-axis, during a time dt. Notice that the amplitude to emit a
LHC photon in the same direction is zero. The net angular momentum about
the z-axis would be −1 for such a photon and zero for the atom for a total of −1,
which would not conserve angular momentum.

Similarly, if the spin of the atom is initially “down” (−1 along the z-axis),
it can emit only a LHC polarized photon in the direction of the +z-axis, as
shown in Fig. 18-2. We will let b stand for the amplitude for this event—meaning
again the amplitude that the photon goes into a certain solid angle ∆Ω. On the
other hand, if the atom is in the m = 0 state, it cannot emit a photon in the
+z-direction at all, because a photon can have only the angular momentum +1
or −1 along its direction of motion.

Next, we can show that b is related to a. Suppose we perform an inversion of
the situation in Fig. 18-1, which means that we should imagine what the system
would look like if we were to move each part of the system to an equivalent point
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Fig. 18-2. An atom with m = −1 emits a LHC photon along the
+z-axis.

on the opposite side of the origin. This does not mean that we should reflect the
angular momentum vectors, because they are artificial. We should, rather, invert
the actual character of the motion that would correspond to such an angular
momentum. In Fig. 18-3(a) and (b) we show what the process of Fig. 18-1 looks
like before and after an inversion with respect to the center of the atom. Notice
that the sense of rotation of the atom is unchanged.† In the inverted system of
Fig. 18-3(b) we have an atom with m = +1 emitting a LHC photon downward.

If we now rotate the system of Fig. 18-3(b) by 180◦ about the x- or y-axis, it
becomes identical to Fig. 18-2. The combination of the inversion and rotation
turns the second process into the first. Using Table 17-2, we see that a rotation
of 180◦ about the y-axis just throws an m = −1 state into an m = +1 state,

† When we change x, y, z into −x,−y,−z, you might think that all vectors get reversed.
That is true for polar vectors like displacements and velocities, but not for an axial vector like
angular momentum—or any vector which is derived from a cross product of two polar vectors.
Axial vectors have the same components after an inversion.

18-3



(a)

(b)

Fig. 18-3. If the process of (a) is transformed by an inversion through
the center of the atom, it appears as in (b).
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so the amplitude b must be equal to the amplitude a except for a possible sign
change due to the inversion. The sign change in the inversion will depend on the
parities of the initial and final state of the atom.

In atomic processes, parity is conserved, so the parity of the whole system
must be the same before and after the photon emission. What happens will
depend on whether the parities of the initial and final states of the atom are even
or odd—the angular distribution of the radiation will be different for different
cases. We will take the common case of odd parity for the initial state and even
parity for the final state; it will give what is called “electric dipole radiation.” (If
the initial and final states have the same parity we say there is “magnetic dipole
radiation,” which has the character of the radiation from an oscillating current in
a loop.) If the parity of the initial state is odd, its amplitude reverses its sign in
the inversion which takes the system from (a) to (b) of Fig. 18-3. The final state
of the atom has even parity, so its amplitude doesn’t change sign. If the reaction
is going to conserve parity, the amplitude b must be equal to a in magnitude but
of the opposite sign.

We conclude that if the amplitude is a that an m = +1 state will emit a
photon upward, then for the assumed parities of the initial and final states the
amplitude that an m = −1 state will emit a LHC photon upward is −a.†

We have all we need to know to find the amplitude for a photon to be emitted
at any angle θ with respect to the z-axis. Suppose we have an atom originally
polarized with m = +1. We can resolve this state into +1, 0, and −1 states with
respect to a new z′-axis in the direction of the photon emission. The amplitudes
for these three states are just the ones given in the lower half of Table 17-2. The
amplitude that a RHC photon is emitted in the direction θ is then a times the
amplitude to have m = +1 in that direction, namely,

a〈+ |Ry(θ) |+〉 = a

2 (1 + cos θ). (18.1)

The amplitude that a LHC photon is emitted in the same direction is −a times
the amplitude to have m = −1 in the new direction. Using Table 17-2, it is

− a〈− |Ry(θ) |+〉 = −a2 (1− cos θ). (18.2)

† Some of you may object to the argument we have just made, on the basis that the final
states we have been considering do not have a definite parity. You will find in Added Note 2 at
the end of this chapter another demonstration, which you may prefer.
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If you are interested in other polarizations you can find out the amplitude for
them from the superposition of these two amplitudes. To get the intensity of any
component as a function of angle, you must, of course, take the absolute square
of the amplitudes.

18-2 Light scattering

Let’s use these results to solve a somewhat more complicated problem—but
also one which is somewhat more real. We suppose that the same atoms are
sitting in their ground state (j = 0), and scatter an incoming beam of light. Let’s
say that the light is going initially in the +z-direction, so that we have photons
coming up to the atom from the −z-direction, as shown in Fig. 18-4(a). We can
consider the scattering of light as a two-step process: The photon is absorbed,
and then is re-emitted. If we start with a RHC photon as in Fig. 18-4(a), and
angular momentum is conserved, the atom will be in an m = +1 state after the
absorption—as shown in Fig. 18-4(b). We call the amplitude for this process c.
The atom can then emit a RHC photon in the direction θ—as in Fig. 18-4(c).
The total amplitude that a RHC photon is scattered in the direction θ is just
c times (18.1). Let’s call this scattering amplitude 〈R′ |S |R〉; we have

〈R′ |S |R〉 = ac

2 (1 + cos θ). (18.3)

(a)

z

j = 0
m = 0

(b)

z

j = 1
m = 1

(c)

z

j = 0
m = 0

θ

Fig. 18-4. The scattering of light by an atom seen as a two-step process.
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There is also an amplitude that a RHC photon will be absorbed and that a
LHC photon will be emitted. The product of the two amplitudes is the ampli-
tude 〈L′ |S |R〉 that a RHC photon is scattered as a LHC photon. Using (18.2),
we have

〈L′ |S |R〉 = −ac2 (1− cos θ). (18.4)

Now let’s ask about what happens if a LHC photon comes in. When it is
absorbed, the atom will go into an m = −1 state. By the same kind of arguments
we used in the preceding section, we can show that this amplitude must be −c.
The amplitude that an atom in the m = −1 state will emit a RHC photon at the
angle θ is a times the amplitude 〈+ |Ry(θ) | −〉, which is 1

2 (1− cos θ). So we have

〈R′ |S |L〉 = −ac2 (1− cos θ). (18.5)

Finally, the amplitude for a LHC photon to be scattered as a LHC photon is

〈L′ |S |L〉 = ac

2 (1 + cos θ). (18.6)

(There are two minus signs which cancel.)
If we make a measurement of the scattered intensity for any given combination

of circular polarizations it will be proportional to the square of one of our four
amplitudes. For instance, with an incoming beam of RHC light the intensity of
the RHC light in the scattered radiation will vary as (1 + cos θ)2.

That’s all very well, but suppose we start out with linearly polarized light.
What then? If we have x-polarized light, it can be represented as a superposition
of RHC and LHC light. We write (see Section 11-4)

|x〉 = 1√
2

(|R〉+ |L〉). (18.7)

Or, if we have y-polarized light, we would have

| y〉 = − i√
2

(|R〉 − |L〉). (18.8)

Now what do you want to know? Do you want the amplitude that an x-polarized
photon will scatter into a RHC photon at the angle θ? You can get it by the
usual rule for combining amplitudes. First, multiply (18.7) by 〈R′ |S to get

〈R′ |S |x〉 = 1√
2

(〈R′ |S |R〉+ 〈R′ |S |L〉), (18.9)
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and then use (18.3) and (18.5) for the two amplitudes. You get

〈R′ |S |x〉 = ac√
2

cos θ. (18.10)

If you wanted the amplitude that an x-photon would scatter into a LHC photon,
you would get

〈L′ |S |x〉 = ac√
2

cos θ. (18.11)

Finally, suppose you wanted to know the amplitude that an x-polarized photon
will scatter while keeping its x-polarization. What you want is 〈x′ |S |x〉. This
can be written as

〈x′ |S |x〉 = 〈x′ |R′〉〈R′ |S |x〉+ 〈x′ |L′〉〈L′ |S |x〉. (18.12)

If you then use the relations

|R′〉 = 1√
2

(|x′〉+ i | y′〉), (18.13)

|L′〉 = 1√
2

(|x′〉 − i | y′〉), (18.14)

it follows that
〈x′ |R′〉 = 1√

2
, (18.15)

〈x′ |L′〉 = 1√
2
. (18.16)

So you get that
〈x′ |S |x〉 = ac cos θ. (18.17)

The answer is that a beam of x-polarized light will be scattered at the direction θ
(in the xz-plane) with an intensity proportional to cos2 θ. If you ask about
y-polarized light, you find that

〈y′ |S |x〉 = 0. (18.18)

So the scattered light is completely polarized in the x-direction.
Now we notice something interesting. The results (18.17) and (18.18) cor-

respond exactly to the classical theory of light scattering we gave in Vol. I,
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Section 32-5, where we imagined that the electron was bound to the atom by a
linear restoring force—so that it acted like a classical oscillator. Perhaps you are
thinking: “It’s so much easier in the classical theory; if it gives the right answer
why bother with the quantum theory?” For one thing, we have considered so far
only the special—though common—case of an atom with a j = 1 excited state
and a j = 0 ground state. If the excited state had spin two, you would get a
different result. Also, there is no reason why the model of an electron attached
to a spring and driven by an oscillating electric field should work for a single
photon. But we have found that it does in fact work, and that the polarization
and intensities come out right. So in a certain sense we are bringing the whole
course around to the real truth. Whereas we have, in Vol. I, done the theory of
the index of refraction, and of light scattering, by the classical theory, we have
now shown that the quantum theory gives the same result for the most common
case. In effect we have now done the polarization of sky light, for instance, by
quantum mechanical arguments, which is the only truly legitimate way.

It should be, of course, that all the classical theories which work are supported
ultimately by legitimate quantum arguments. Naturally, those things which we
have spent a great deal of time in explaining to you were selected from just those
parts of classical physics which still maintain validity in quantum mechanics.
You’ll notice that we did not discuss in great detail any model of the atom
which has electrons going around in orbits. That’s because such a model doesn’t
give results which agree with the quantum mechanics. But the electron on a
spring—which is not, in a sense, at all the way an atom “looks”—does work, and
so we used that model for the theory of the index of refraction.

18-3 The annihilation of positronium

We would like next to take an example which is very pretty. It is quite
interesting and, although somewhat complicated, we hope not too much so. Our
example is the system called positronium, which is an “atom” made up of an
electron and a positron—a bound state of an e+ and an e−. It is like a hydrogen
atom, except that a positron replaces the proton. This object has—like the
hydrogen atom—many states. Also like the hydrogen, the ground state is split
into a “hyperfine structure” by the interaction of the magnetic moments. The
spins of the electron and positron are each one-half, and they can be either
parallel or antiparallel to any given axis. (In the ground state there is no other
angular momentum due to orbital motion.) So there are four states: three are
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the substates of a spin-one system, all with the same energy; and one is a state
of spin zero with a different energy. The energy splitting is, however, much larger
than the 1420 megacycles of hydrogen because the positron magnetic moment is
so much stronger—1000 times stronger—than the proton moment.

The most important difference, however, is that positronium cannot last
forever. The positron is the antiparticle of the electron; they can annihilate each
other. The two particles disappear completely—converting their rest energy into
radiation, which appears as γ-rays (photons). In the disintegration, two particles
with a finite rest mass go into two or more objects which have zero rest mass.†

We begin by analyzing the disintegration of the spin-zero state of the positro-
nium. It disintegrates into two γ-rays with a lifetime of about 10−10 second.
Initially, we have a positron and an electron close together and with spins an-
tiparallel, making the positronium system. After the disintegration there are two
photons going out with equal and opposite momenta (Fig. 18-5). The momenta
must be equal and opposite, because the total momentum after the disintegration

(a)

BEFORE

POSITRONIUM

e+e−

(b)

AFTER

Fig. 18-5. The two-photon annihilation of positronium.

† In the deeper understanding of the world today, we do not have an easy way to distinguish
whether the energy of a photon is less “matter” than the energy of an electron, because as you
remember all the particles behave very similarly. The only distinction is that the photon has
zero rest mass.
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must be zero, as it was before, if we are taking the case of annihilation at rest. If
the positronium is not at rest, we can ride with it, solve the problem, and then
transform everything back to the lab system. (See, we can do anything now; we
have all the tools.)

First, we note that the angular distribution is not very interesting. Since
the initial state has spin zero, it has no special axis—it is symmetric under all
rotations. The final state must then also be symmetric under all rotations. That
means that all angles for the disintegration are equally likely—the amplitude is
the same for a photon to go in any direction. Of course, once we find one of the
photons in some direction the other must be opposite.

The only remaining question, which we now want to look at, is about the
polarization of the photons. Let’s call the directions of motion of the two photons
the plus and minus z-axes. We can use any representations we want for the
polarization states of the photons; we will choose for our description right and
left circular polarization—always with respect to the directions of motion.† Right
away, we can see that if the photon going upward is RHC, then angular momentum
will be conserved if the downward going photon is also RHC. Each will carry
+1 unit of angular momentum with respect to its momentum direction, which
means plus and minus one unit about the z-axis. The total will be zero, and
the angular momentum after the disintegration will be the same as before. See
Fig. 18-6.

The same arguments show that if the upward going photon is RHC, the
downward cannot be LHC. Then the final state would have two units of angular
momentum. This is not permitted if the initial state has spin zero. Note that
such a final state is also not possible for the other positronium ground state of
spin one, because it can have a maximum of one unit of angular momentum in
any direction.

Now we want to show that two-photon annihilation is not possible at all from
the spin-one state. You might think that if we took the j = 1, m = 0 state—which
has zero angular momentum about the z-axis—it should be like the spin-zero
state, and could disintegrate into two RHC photons. Certainly, the disintegration

† Note that we always analyze the angular momentum about the direction of motion of
the particle. If we were to ask about the angular momentum about any other axis, we would
have to worry about the possibility of “orbital” angular momentum—from a p× r term. For
instance, we can’t say that the photons leave exactly from the center of the positronium. They
could leave like two things shot out from the rim of a spinning wheel. We don’t have to worry
about such possibilities when we take our axis along the direction of motion.
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z

POSITRONIUM

e+e−

j = 0
m = 0

z

RHCm = +1

RHCm = −1

Fig. 18-6. One possibility for positronium annihilation along the z-axis.

(a)

e+e−

j = 1
m = 0

(b)

e+e−

j = 1
m = 0

Fig. 18-7. For the j = 1 state of positronium, the process (a) and its
180◦ rotation about y (b) are exactly the same.
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sketched in Fig. 18-7(a) conserves angular momentum about the z-axis. But
now look what happens if we rotate this system around the y-axis by 180◦; we
get the picture shown in Fig. 18-7(b). It is exactly the same as in part (a) of
the figure. All we have done is interchange the two photons. Now photons are
Bose particles; if we interchange them, the amplitude has the same sign, so the
amplitude for the disintegration in part (b) must be the same as in part (a).
But we have assumed that the initial object is spin one. And when we rotate
a spin-one object in a state with m = 0 by 180◦ about the y-axis, its amplitudes
change sign (see Table 17-2 for θ = π). So the amplitudes for (a) and (b) in
Fig. 18-7 should have opposite signs; the spin-one state cannot disintegrate into
two photons.

When positronium is formed you would expect it to end up in the spin-zero
state 1/4 of the time and in the spin-one state (with m = −1, 0, or +1) 3/4 of
the time. So 1/4 of the time you would get two-photon annihilations. The
other 3/4 of the time there can be no two-photon annihilations. There is still
an annihilation, but it has to go with three photons. It is harder for it to do
that and the lifetime is 1000 times longer—about 10−7 second. This is what
is observed experimentally. We will not go into any more of the details of the
spin-one annihilation.

So far we have that if we only worry about angular momentum, the spin-zero
state of the positronium can go into two RHC photons. There is also another
possibility: it can go into two LHC photons as shown in Fig. 18-8. The next
question is, what is the relation between the amplitudes for these two possible
decay modes? We can find out from the conservation of parity.

To do that, however, we need to know the parity of the positronium. Now
theoretical physicists have shown in a way that is not easy to explain that the
parity of the electron and the positron—its antiparticle—must be opposite, so
that the spin-zero ground state of positronium must be odd. We will just assume
that it is odd, and since we will get agreement with experiment, we can take that
as sufficient proof.

Let’s see then what happens if we make an inversion of the process in Fig. 18-6.
When we do that, the two photons reverse directions and polarizations. The
inverted picture looks just like Fig. 18-8. Assuming that the parity of the
positronium is odd, the amplitudes for the two processes in Figs. 18-6 and 18-8
must have the opposite sign. Let’s let |R1R2〉 stand for the final state of Fig. 18-6
in which both photons are RHC, and let |L1L2〉 stand for the final state of
Fig. 18-8, in which both photons are LHC. The true final state—let’s call
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e+e−

j = 0
m = 0

LHC

LHC

Fig. 18-8. Another possible process for positronium annihilation.

it |F 〉—must be
|F 〉 = |R1R2〉 − |L1L2〉. (18.19)

Then an inversion changes the R’s into L’s and gives the state

P |F 〉 = |L1L2〉 − |R1R2〉 = − |F 〉, (18.20)

which is the negative of (18.19). So the final state |F 〉 has negative parity, which
is the same as the initial spin-zero state of the positronium. This is the only
final state that conserves both angular momentum and parity. There is some
amplitude that the disintegration into this state will occur, which we don’t need
to worry about now, however, since we are only interested in questions about the
polarization.

What does the final state of (18.19) mean physically? One thing it means
is the following: If we observe the two photons in two detectors which can be
set to count separately the RHC or LHC photons, we will always see two RHC
photons together, or two LHC photons together. That is, if you stand on one
side of the positronium and someone else stands on the opposite side, you can
measure the polarization and tell the other guy what polarization he will get.
You have a 50-50 chance of catching a RHC photon or a LHC photon; whichever
one you get, you can predict that he will get the same.

18-14



Since there is a 50-50 chance for RHC or LHC polarization, it sounds as
though it might be like linear polarization. Let’s ask what happens if we observe
the photon in counters that accept only linearly polarized light. For γ-rays it
is not as easy to measure the polarization as it is for light; there is no polarizer
which works well for such short wavelengths. But let’s imagine that there is, to
make the discussion easier. Suppose that you have a counter that only accepts
light with x-polarization, and that there is a guy on the other side that also
looks for linear polarized light with, say, y-polarization. What is the chance you
will pick up the two photons from an annihilation? What we need to ask is the
amplitude that |F 〉 will be in the state |x1y2〉. In other words, we want the
amplitude

〈x1y2 |F 〉,

which is, of course, just

〈x1y2 |R1R2〉 − 〈x1y2 |L1L2〉. (18.21)

Now although we are working with two-particle amplitudes for the two photons,
we can handle them just as we did the single particle amplitudes, since each particle
acts independently of the other. That means that the amplitude 〈x1y2 |R1R2〉 is
just the product of the two independent amplitudes 〈x1 |R1〉 and 〈y2 |R2〉. Using
Table 17-3, these two amplitudes are 1/

√
2 and i/

√
2—so

〈x1y2 |R1R2〉 = + i

2 .

Similarly, we find that

〈x1y2 |L1L2〉 = − i2 .

Subtracting these two amplitudes according to (18.21), we get that

〈x1y2 |F 〉 = +i. (18.22)

So there is a unit probability† that if you get a photon in your x-polarized
detector, the other guy will get a photon in his y-polarized detector.

† We have not normalized our amplitudes, or multiplied them by the amplitude for the
disintegration into any particular final state, but we can see that this result is correct because
we get zero probability when we look at the other alternative—see Eq. (18.23).
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Now suppose that the other guy sets his counter for x-polarization the same
as yours. He would never get a count when you got one. If you work it through,
you will find that

〈x1x2 |F 〉 = 0. (18.23)
It will, naturally, also work out that if you set your counter for y-polarization he
will get coincident counts only if he is set for x-polarization.

Now this all leads to an interesting situation. Suppose you were to set up
something like a piece of calcite which separated the photons into x-polarized and
y-polarized beams, and put a counter in each beam. Let’s call one the x-counter
and the other the y-counter. If the guy on the other side does the same thing,
you can always tell him which beam his photon is going to go into. Whenever
you and he get simultaneous counts, you can see which of your detectors caught
the photon and then tell him which of his counters had a photon. Let’s say that
in a certain disintegration you find that a photon went into your x-counter; you
can tell him that he must have had a count in his y-counter.

Now many people who learn quantum mechanics in the usual (old-fashioned)
way find this disturbing. They would like to think that once the photons are
emitted it goes along as a wave with a definite character. They would think
that since “any given photon” has some “amplitude” to be x-polarized or to be
y-polarized, there should be some chance of picking it up in either the x- or y-
counter and that this chance shouldn’t depend on what some other person finds
out about a completely different photon. They argue that “someone else making
a measurement shouldn’t be able to change the probability that I will find some-
thing.” Our quantum mechanics says, however, that by making a measurement
on photon number one, you can predict precisely what the polarization of photon
number two is going to be when it is detected. This point was never accepted
by Einstein, and he worried about it a great deal—it became known as the
“Einstein-Podolsky-Rosen paradox.” But when the situation is described as we
have done it here, there doesn’t seem to be any paradox at all; it comes out quite
naturally that what is measured in one place is correlated with what is measured
somewhere else. The argument that the result is paradoxical runs something like
this:

(1) If you have a counter which tells you whether your photon is RHC or LHC,
you can predict exactly what kind of a photon (RHC or LHC) he will find.

(2) The photons he receives must, therefore, each be purely RHC or purely
LHC, some of one kind and some of the other.
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(3) Surely you cannot alter the physical nature of his photons by changing
the kind of observation you make on your photons. No matter what
measurements you make on yours, his must still be either RHC or LHC.

(4) Now suppose he changes his apparatus to split his photons into two linearly
polarized beams with a piece of calcite so that all of his photons go either
into an x-polarized beam or into a y-polarized beam. There is absolutely
no way, according to quantum mechanics, to tell into which beam any
particular RHC photon will go. There is a 50% probability it will go into
the x-beam and a 50% probability it will go into the y-beam. And the
same goes for a LHC photon.

(5) Since each photon is RHC or LHC—according to (2) and (3)—each one
must have a 50-50 chance of going into the x-beam or the y-beam and there
is no way to predict which way it will go.

(6) Yet the theory predicts that if you see your photon go through an x-polarizer
you can predict with certainty that his photon will go into his y-polarized
beam. This is in contradiction to (5) so there is a paradox.

Nature apparently doesn’t see the “paradox,” however, because experiment
shows that the prediction in (6) is, in fact, true. We have already discussed the
key to this “paradox” in our very first lecture on quantum mechanical behavior
in Chapter 37, Vol. I.† In the argument above, steps (1), (2), (4), and (6) are
all correct, but (3), and its consequence (5), are wrong; they are not a true
description of nature. Argument (3) says that by your measurement (seeing
a RHC or a LHC photon) you can determine which of two alternative events
occurs for him (seeing a RHC or a LHC photon), and that even if you do not
make your measurement you can still say that his event will occur either by one
alternative or the other. But it was precisely the point of Chapter 37, Vol. I, to
point out right at the beginning that this is not so in Nature. Her way requires a
description in terms of interfering amplitudes, one amplitude for each alternative.
A measurement of which alternative actually occurs destroys the interference,
but if a measurement is not made you cannot still say that “one alternative or
the other is still occurring.”

If you could determine for each one of your photons whether it was RHC
and LHC, and also whether it was x-polarized (all for the same photon) there
would indeed be a paradox. But you cannot do that—it is an example of the
uncertainty principle.

† See also Chapter 1 of the present volume.
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Do you still think there is a “paradox”? Make sure that it is, in fact, a
paradox about the behavior of Nature, by setting up an imaginary experiment
for which the theory of quantum mechanics would predict inconsistent results
via two different arguments. Otherwise the “paradox” is only a conflict between
reality and your feeling of what reality “ought to be.”

Do you think that it is not a “paradox,” but that it is still very peculiar? On
that we can all agree. It is what makes physics fascinating.

18-4 Rotation matrix for any spin

By now you can see, we hope, how important the idea of the angular mo-
mentum is in understanding atomic processes. So far, we have considered only
systems with spins—or “total angular momentum”—of zero, one-half, or one.
There are, of course, atomic systems with higher angular momenta. For analyzing
such systems we would need to have tables of rotation amplitudes like those in
Section 17-6. That is, we would need the matrix of amplitudes for spin 3

2 , 2, 5
2 ,

3, etc. Although we will not work out these tables in detail, we would like to
show you how it is done, so that you can do it if you ever need to.

As we have seen earlier, any system which has the spin or “total angular
momentum” j can exist in any one of (2j + 1) states for which the z-component
of angular momentum can have any one of the discrete values in the sequence
j, j − 1, j − 2, . . . , −(j − 1), −j (all in units of ~). Calling the z-component
of angular momentum of any particular state m~, we can define a particular
angular momentum state by giving the numerical values of the two “angular
momentum quantum numbers” j and m. We can indicate such a state by the
state vector | j,m〉. In the case of a spin one-half particle, the two states are then
| 1

2 ,
1
2 〉 and |

1
2 ,−

1
2 〉; or for a spin-one system, the states would be written in this

notation as | 1,+1〉, | 1, 0〉, | 1,−1〉. A spin-zero particle has, of course, only the
one state | 0, 0〉.

Now we want to know what happens when we project the general state | j,m〉
into a representation with respect to a rotated set of axes. First, we know that j
is a number which characterizes the system, so it doesn’t change. If we rotate the
axes, all we do is get a mixture of the various m-values for the same j. In general,
there will be some amplitude that in the rotated frame the system will be in the
state | j,m′〉, where m′ gives the new z-component of angular momentum. So
what we want are all the matrix elements 〈j,m′ |R | j,m〉 for various rotations.
We already know what happens if we rotate by an angle φ about the z-axis. The
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new state is just the old one multiplied by eimφ—it still has the same m-value.
We can write this by

Rz(φ) | j,m〉 = eimφ | j,m〉. (18.24)
Or, if you prefer,

〈j,m′ |Rz(φ) | j,m〉 = δm,m′eimφ (18.25)

(where δm,m′ is 1 if m′ = m, or zero otherwise).
For a rotation about any other axis there will be a mixing of the various m-

states. We could, of course, try to work out the matrix elements for an arbitrary
rotation described by the Euler angles β, α, and γ. But it is easier to remember
that the most general such rotation can be made up of the three rotations Rz(γ),
Ry(α), Rz(β); so if we know the matrix elements for a rotation about the y-axis,
we will have all we need.

How can we find the rotation matrix for a rotation by the angle θ about the
y-axis for a particle of spin j? We can’t tell you how to do it in a basic way
(with what we have had). We did it for spin one-half by a complicated symmetry
argument. We then did it for spin one by taking the special case of a spin-one
system which was made up of two spin one-half particles. If you will go along
with us and accept the fact that in the general case the answers depend only
on the spin j, and are independent of how the inner guts of the object of spin j
are put together, we can extend the spin-one argument to an arbitrary spin. We
can, for example, cook up an artificial system of spin 3

2 out of three spin one-half
objects. We can even avoid complications by imagining that they are all distinct
particles—like a proton, an electron, and a muon. By transforming each spin
one-half object, we can see what happens to the whole system—remembering
that the three amplitudes are multiplied for the combined state. Let’s see how it
goes in this case.

Suppose we take the three spin one-half objects all with spins “up”; we can
indicate this state by |+ + +〉. If we look at this system in a frame rotated about
the z-axis by the angle φ, each plus stays a plus, but gets multiplied by eiφ/2.
We have three such factors, so

Rz(φ) |+ + +〉 = ei(3φ/2) |+ + +〉. (18.26)

Evidently the state |+ + +〉 is just what we mean by the m = + 3
2 state, or the

state | 3
2 ,+

3
2 〉.

If we now rotate this system about the y-axis, each of the spin one-half objects
will have some amplitude to be plus or to be minus, so the system will now
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be a mixture of the eight possible combinations |+ + +〉, |+ + −〉, |+ − +〉,
| − + +〉, |+ − −〉, | − + −〉, | − − +〉, or | − − −〉. It is clear, however, that
these can be broken up into four sets, each set corresponding to a particular
value of m. First, we have |+ + +〉, for which m = 3

2 . Then there are the three
states |+ + −〉, |+ − +〉, and | − + +〉—each with two plusses and one minus.
Since each spin one-half object has the same chance of coming out minus under
the rotation, the amounts of each of these three combinations should be equal.
So let’s take the combination

1√
3
{|+ + −〉+ |+ − +〉+ | − + +〉} (18.27)

with the factor 1/
√

3 put in to normalize the state. If we rotate this state about
the z-axis, we get a factor eiφ/2 for each plus, and e−iφ/2 for each minus. Each
term in (18.27) is multiplied by eiφ/2, so there is the common factor eiφ/2. This
state satisfies our idea of an m = + 1

2 state; we can conclude that

1√
3
{|+ + −〉+ |+ − +〉+ | − + +〉} = | 3

2 ,+
1
2 〉. (18.28)

Similarly, we can write

1√
3
{|+ − −〉+ | − + −〉+ | − − +〉} = | 3

2 ,−
1
2 〉, (18.29)

which corresponds to a state with m = − 1
2 . Notice that we take only the

symmetric combinations—we do not take any combinations with minus signs.
They would correspond to states of the same m but a different j. (It’s just like the
spin-one case, where we found that (1/

√
2){|+−〉+ | −+〉} was the state | 1, 0〉,

but the state (1/
√

2){|+−〉 − |−+〉} was the state | 0, 0〉.) Finally, we would
have that

| 3
2 ,−

3
2 〉 = | − − −〉. (18.30)

We summarize our four states in Table 18-1.
Now all we have to do is take each state and rotate it about the y-axis and

see how much of the other states it gives—using our known rotation matrix for
the spin one-half particles. We can proceed in exactly the same way we did for
the spin-one case in Section 12-6. (It just takes a little more algebra.) We will
follow directly the ideas of Chapter 12, so we won’t repeat all the explanations
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Table 18-1

|+ + +〉 = | 3
2 ,+

3
2 〉

1√
3
{|+ + −〉+ |+ − +〉+ | − + +〉} = | 3

2 ,+
1
2 〉

1√
3
{|+ − −〉+ | − + −〉+ | − − +〉} = | 3

2 ,−
1
2 〉

|− − −〉 = | 3
2 ,−

3
2 〉

in detail. The states in the system S will be labelled | 3
2 ,+

3
2 , S〉 = |+ + +〉,

| 3
2 ,+

1
2 , S〉 = (1/

√
3){|+ + −〉+|+ − +〉+| − + +〉}, and so on. The T -system

will be one rotated about the y-axis of S by the angle θ. States in T will be
labelled | 3

2 ,+
3
2 , T 〉, |

3
2 ,+

1
2 , T 〉, and so on. Of course, | 3

2 ,+
3
2 , T 〉 is the same

as |+′ +′ +′〉, the primes referring always to the T -system. Similarly, | 3
2 ,+

1
2 , T 〉

will be equal to (1/
√

3){|+′ +′ −′〉+ |+′ −′ +′〉+ | −′ +′ +′〉}, and so on. Each
|+′〉 state in the T -frame comes from both the |+〉 and | −〉 states in S via the
matrix elements of Table 12-4.

When we have three spin one-half particles, Eq. (12.47) gets replaced by

|+ + +〉 = a3 |+′ +′ +′〉+ a2b{|+′ +′ −′〉+ |+′ −′ +′〉+ | −′ +′ +′〉}

+ ab2{|+′ −′ −′〉+ | −′ +′ −′〉+ | −′ −′ +′〉}

+ b3 | −′ −′ −′〉. (18.31)

Using the transformation of Table 12-4, we get instead of (12.48) the equation

| 3
2 ,+

3
2 , S〉 = a3 | 3

2 ,+
3
2 , T 〉+

√
3 a2b | 3

2 ,+
1
2 , T 〉

+
√

3 ab2 | 3
2 ,−

1
2 , T 〉+ b3 | 3

2 ,−
3
2 , T 〉. (18.32)

This already gives us several of our matrix elements 〈jT | iS〉. To get the expression
for | 3

2 ,+
1
2 , S〉 we begin with the transformation of a state with two “+” and
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one “−” pieces. For instance,

|+ + −〉 = a2c |+′ +′ +′〉+ a2d |+′ +′ −′〉+ abc |+′ −′ +′〉
+ bac | −′ +′ +′〉+ abd |+′ −′ −′〉+ bad | −′ +′ −′〉

+ b2c | −′ −′ +′〉+ b2d | −′ −′ −′〉. (18.33)

Adding two similar expressions for |+ − +〉 and | − + +〉 and dividing by
√

3,
we find

| 3
2 ,+

1
2 , S〉 =

√
3 a2c | 3

2 ,+
3
2 , T 〉

+ (a2d+ 2abc) | 3
2 ,+

1
2 , T 〉

+ (2bad+ b2c) | 3
2 ,−

1
2 , T 〉

+
√

3 b2d | 3
2 ,−

3
2 , T 〉. (18.34)

Continuing the process we find all the elements 〈jT | iS〉 of the transformation
matrix as given in Table 18-2. The first column comes from Eq. (18.32); the
second from (18.34). The last two columns were worked out in the same way.

Table 18-2

Rotation matrix for a spin 3
2 particle

(The coefficients a, b, c, and d are given in Table 12-4.)

〈jT | iS〉 | 3
2 ,+

3
2 , S〉 | 3

2 ,+
1
2 , S〉 | 3

2 ,−
1
2 , S〉 | 3

2 ,−
3
2 , S〉

〈 3
2 ,+

3
2 , T | a3 √

3 a2c
√

3 ac2 c3

〈 3
2 ,+

1
2 , T |

√
3 a2b a2d+ 2abc c2b+ 2dac

√
3 c2d

〈 3
2 ,−

1
2 , T |

√
3 ab2 2bad+ b2c 2cdb+ d2a

√
3 cd2

〈 3
2 ,−

3
2 , T | b3 √

3 b2d
√

3 bd2 d3

Now suppose the T -frame were rotated with respect to S by the angle θ about
their y-axes. Then a, b, c, and d have the values [see (12.54)] a = d = cos θ/2,
and c = −b = sin θ/2. Using these values in Table 18-2 we get the forms which
correspond to the second part of Table 17-2, but now for a spin 3

2 system.
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The arguments we have just gone through are readily generalized to a system
of any spin j. The states | j,m〉 can be put together from 2j particles, each
of spin one-half. (There are j + m of them in the |+〉 state and j −m in the
| −〉 state.) Sums are taken over all the possible ways this can be done, and the
state is normalized by multiplying by a suitable constant. Those of you who are
mathematically inclined may be able to show that the following result comes
out†:

〈j,m′ |Ry(θ) | j,m〉 = [(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

×
∑
k

(−1)k+m−m′(cos θ/2)2j+m′−m−2k(sin θ/2)m−m′+2k

(m−m′ + k)!(j +m′ − k)!(j −m− k)!k! , (18.35)

where k is to go over all values which give terms ≥ 0 in all the factorials.
This is quite a messy formula, but with it you can check Table 17-2 for j = 1

and prepare tables of your own for larger j. Several special matrix elements are
of extra importance and have been given special names. For example the matrix
elements for m = m′ = 0 and integral j are known as the Legendre polynomials
and are called Pj(cos θ):

〈j, 0 |Ry(θ) | j, 0〉 = Pj(cos θ). (18.36)

The first few of these polynomials are:

P0(cos θ) = 1, (18.37)

P1(cos θ) = cos θ, (18.38)

P2(cos θ) = 1
2 (3 cos2 θ − 1), (18.39)

P3(cos θ) = 1
2 (5 cos3 θ − 3 cos θ). (18.40)

18-5 Measuring a nuclear spin

We would like to show you one example of the application of the coefficients
we have just described. It has to do with a recent, interesting experiment which
you will now be able to understand. Some physicists wanted to find out the spin
of a certain excited state of the Ne20 nucleus. To do this, they bombarded a

† If you want details, they are given in an appendix to this chapter.
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carbon target with a beam of accelerated carbon ions, and produced the desired
excited state of Ne20—called Ne20∗—in the reaction

C12 + C12 → Ne20∗ + α1,

where α1 is the α-particle, or He4. Several of the excited states of Ne20 produced
this way are unstable and disintegrate in the reaction

Ne20∗ → O16 + α2.

So experimentally there are two α-particles which come out of the reaction. We
call them α1 and α2; since they come off with different energies, they can be
distinguished from each other. Also, by picking a particular energy for α1 we
can pick out any particular excited state of the Ne20.

C12 BEAM
16 MeV

CARBON FOIL
30 µg/cm2

SILICON JUNCTION
DETECTORS

α1

α2

Fig. 18-9. Experimental arrangement for determining the spin of
certain states of Ne20.

The experiment was set up as shown in Fig. 18-9. A beam of 16-MeV carbon
ions was directed onto a thin foil of carbon. The first α-particle was counted in
a silicon diffused junction detector marked α1—set to accept α-particles of the
proper energy moving in the forward direction (with respect to the incident C12

beam). The second α-particle was picked up in the counter α2 at the angle θ
with respect to α1. The counting rate of coincidence signals from α1 and α2 were
measured as a function of the angle θ.

The idea of the experiment is the following. First, you need to know that
the spins of C12, O16, and the α-particle are all zero. If we call the direction of
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motion of the initial C12 the +z-direction, then we know that the Ne20∗ must
have zero angular momentum about the z-axis. None of the other particles has
any spin; the C12 arrives along the z-axis and the α1 leaves along the z-axis so
they can’t have any angular momentum about it. So whatever the spin j of the
Ne20∗ is, we know that it is in the state | j, 0〉. Now what will happen when the
Ne20∗ disintegrates into an O16 and the second α-particle? Well, the α-particle is
picked up in the counter α2 and to conserve momentum the O16 must go off in the
opposite direction.† About the new axis through α2, there can be no component
of angular momentum. The final state has zero angular momentum about the
new axis, so the Ne20∗ can disintegrate this way only if it has some amplitude to
have m′ equal to zero, where m′ is the quantum number of the component of
angular momentum about the new axis. In fact, the probability of observing α2
at the angle θ is just the square of the amplitude (or matrix element)

〈j, 0 |Ry(θ) | j, 0〉. (18.41)

To find the spin of the Ne20∗ state in question, the intensity of the second
α-particle was plotted as a function of angle and compared with the theoret-
ical curves for various values of j. As we said in the last section, the ampli-
tudes 〈j, 0 |Ry(θ) | j, 0〉 are just the functions Pj(cos θ). So the possible angular
distributions are curves of [Pj(cos θ)]2. The experimental results are shown in
Fig. 18-10 for two of the excited states. You can see that the angular distribution
for the 5.80-MeV state fits very well the curve for [P1(cos θ)]2, and so it must be
a spin-one state. The data for the 5.63-MeV state, on the other hand, are quite
different; they fit the curve [P3(cos θ)]2. The state has a spin of 3.

From this experiment we have been able to find out the angular momentum
of two of the excited states of Ne20∗. This information can then be used for
trying to understand what the configuration of protons and neutrons is inside
this nucleus—one more piece of information about the mysterious nuclear forces.

18-6 Composition of angular momentum

When we studied the hyperfine structure of the hydrogen atom in Chapter 12
we had to work out the internal states of a system composed of two particles—the
electron and the proton—each with a spin of one-half. We found that the four

† We can neglect the recoil given to the Ne20∗ in the first collision. Or better still, we can
calculate what it is and make a correction for it.
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Fig. 18-10. Experimental results for the angular distribution of the
α-particles from two excited states of Ne20 produced in the setup of
Fig. 18-9. [From J. A. Kuehner, Physical Review, Vol. 125, p. 1650,
1962.]

possible spin states of such a system could be put together into two groups—a
group with one energy that looked to the external world like a spin-one particle,
and one remaining state that behaved like a particle of zero spin. That is, putting
together two spin one-half particles we can form a system whose “total spin”
is one, or zero. In this section we want to discuss in more general terms the
spin states of a system which is made up of two particles of arbitrary spin. It is
another important problem about angular momentum in quantum mechanical
systems.

Let’s first rewrite the results of Chapter 12 for the hydrogen atom in a form
that will be easier to extend to the more general case. We began with two
particles which we will now call particle a (the electron) and particle b (the
proton). Particle a had the spin ja (= 1

2 ), and its z-component of angular
momentum ma could have one of several values (actually 2, namely ma = + 1

2
or ma = − 1

2 ). Similarly, the spin state of particle b is described by its spin jb
and its z-component of angular momentum mb. Various combinations of the spin
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states of the two particles could be formed. For instance, we could have particle a
with ma = 1

2 and particle b with mb = − 1
2 , to make a state | a,+ 1

2 ; b,− 1
2 〉. In

general, the combined states formed a system whose “system spin,” or “total spin,”
or “total angular momentum” J could be 1, or 0. And the system could have
a z-component of angular momentum M , which was +1, 0, or −1 when J = 1,
or 0 when J = 0. In this new language we can rewrite the formulas in (12.41)
and (12.42) as shown in Table 18-3.

Table 18-3

Composition of angular momenta for two
spin 1

2 particles (ja = 1
2 , jb = 1

2 )

| J = 1,M = +1〉 = | a,+ 1
2 ; b,+ 1

2 〉

| J = 1,M = 0〉 = 1√
2
{| a,+ 1

2 ; b,− 1
2 〉+ | a,− 1

2 ; b,+ 1
2 〉}

| J = 1,M = −1〉 = | a,− 1
2 ; b,− 1

2 〉

| J = 0,M = 0〉 = 1√
2
{| a,+ 1

2 ; b,− 1
2 〉 − | a,−

1
2 ; b,+ 1

2 〉}

In the table the left-hand column describes the compound state in terms of
its total angular momentum J and the z-component M . The right-hand column
shows how these states are made up in terms of the m-values of the two particles
a and b.

We want now to generalize this result to states made up of two objects a
and b of arbitrary spins ja and jb. We start by considering an example for
which ja = 1

2 and jb = 1, namely, the deuterium atom in which particle a is
an electron (e) and particle b is the nucleus—a deuteron (d). We have then
that ja = je = 1

2 . The deuteron is formed of one proton and one neutron
in a state whose total spin is one, so jb = jd = 1. We want to discuss the
hyperfine states of deuterium—just the way we did for hydrogen. Since the
deuteron has three possible states mb = md = +1, 0, −1, and the electron has
two, ma = me = + 1

2 , −
1
2 , there are six possible states as follows (using the
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notation | e,me;d,md〉:

| e,+ 1
2 ;d,+1〉,

| e,+ 1
2 ;d, 0〉; | e,− 1

2 ;d,+1〉,
| e,+ 1

2 ;d,−1〉; | e,− 1
2 ;d, 0〉,

| e,− 1
2 ;d,−1〉.

(18.42)

You will notice that we have grouped the states according to the values of the
sum of me and md—arranged in descending order.

Now we ask: What happens to these states if we project into a different
coordinate system? If the new system is just rotated about the z-axis by the
angle φ, then the state | e,me;d,md〉 gets multiplied by

eimeφeimdφ = ei(me+md)φ. (18.43)

(The state may be thought of as the product | e,me〉|d,md〉, and each state vector
contributes independently its own exponential factor.) The factor (18.43) is of the
form eiMφ, so the state | e,me;d,md〉 has a z-component of angular momentum
equal to

M = me +md. (18.44)

The z-component of the total angular momentum is the sum of the z-components
of angular momentum of the parts.

In the list of (18.42), therefore, the state in the top line has M = + 3
2 , the

two in the second line have M = + 1
2 , the next two have M = − 1

2 , and the last
state has M = − 3

2 . We see immediately one possibility for the spin J of the
combined state (the total angular momentum) must be 3

2 , and this will require
four states with M = + 3

2 , + 1
2 , −

1
2 , and −

3
2 .

There is only one candidate for M = + 3
2 , so we know already that

| J = 3
2 ,M = + 3

2 〉 = | e,+ 1
2 ;d,+1〉. (18.45)

But what is the state | J = 3
2 ,M = + 1

2 〉? We have two candidates in the second
line of (18.42), and, in fact, any linear combination of them would also have M =
1
2 . So, in general, we must expect to find that

| J = 3
2 ,M = + 1

2 〉 = α | e,+ 1
2 ;d, 0〉+ β | e,− 1

2 ;d,+1〉, (18.46)
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where α and β are two numbers. They are called the Clebsch-Gordan coefficients.
Our next problem is to find out what they are.

We can find out easily if we just remember that the deuteron is made up of a
neutron and a proton, and write the deuteron states out more explicitly using
the rules of Table 18-3. If we do that, the states listed in (18.42) then look as
shown in Table 18-4.

Table 18-4

Angular momentum states of a deuterium atom

M = 3
2

| e,+ 1
2 ;d,+1〉 = | e,+ 1

2 ; n,+ 1
2 ; p,+ 1

2 〉

M = 1
2

| e,+ 1
2 ; d, 0〉 = 1√

2
{| e,+ 1

2 ; n,+ 1
2 ; p,− 1

2 〉+ | e,+ 1
2 ; n,− 1

2 ; p,+ 1
2 〉}

| e,− 1
2 ;d,+1〉 = | e,− 1

2 ; n,+ 1
2 ; p,+ 1

2 〉

M = − 1
2

| e,+ 1
2 ;d,−1〉 = | e,+ 1

2 ; n,− 1
2 ; p,− 1

2 〉

| e,− 1
2 ; d, 0〉 = 1√

2
{| e,− 1

2 ; n,+ 1
2 ; p,− 1

2 〉+ | e,− 1
2 ; n,− 1

2 ; p,+ 1
2 〉}

M = − 3
2

| e,− 1
2 ;d,−1〉 = | e,− 1

2 ; n,− 1
2 ; p,− 1

2 〉

We want to form the four states of J = 3
2 , using the states in the table.

But we already know the answer, because in Table 18-1 we have states of
spin 3

2 formed from three spin one-half particles. The first state in Table 18-1
has | J = 3

2 ,M = + 3
2 〉 and it is |+ + +〉, which—in our present notation—is the

same as | e,+ 1
2 ;n,+ 1

2 ;p,+ 1
2 〉, or the first state in Table 18-4. But this state is

also the same as the first in the list of (18.42), confirming our statement in (18.45).
The second line of Table 18-1 says—changing to our present notation—that
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| J = 3
2 ,M = + 1

2 〉 = 1√
3
{| e,+ 1

2 ;n,+ 1
2 ;p,− 1

2 〉

+ | e,+ 1
2 ;n,− 1

2 ;p,+ 1
2 〉+ | e,− 1

2 ;n,+ 1
2 ;p,+ 1

2 〉}. (18.47)

The right side can evidently be put together from the two entries in the second
line of Table 18-4 by taking

√
2/3 of the first term with

√
1/3 of the second.

That is, Eq. (18.47) is equivalent to

| J = 3
2 ,M = + 1

2 〉 =
√

2/3 | e,+ 1
2 ;d, 0〉+

√
1/3 | e,− 1

2 ;d,+1〉. (18.48)

We have found our two Clebsch-Gordan coefficients α and β in Eq. (18.46):

α =
√

2/3, β =
√

1/3. (18.49)

Following the same procedure we can find that

| J = 3
2 ,M = − 1

2 〉 =
√

1/3 | e,+ 1
2 ;d,−1〉+

√
2/3 | e,− 1

2 ;d, 0〉. (18.50)

And, also, of course,

| J = 3
2 ,M = − 3

2 〉 = | e,− 1
2 ;d,−1〉. (18.51)

These are the rules for the composition of spin 1 and spin 1
2 to make a total J = 3

2 .
We summarize (18.45), (18.48), (18.50), and (18.51) in Table 18-5.

Table 18-5

The J = 3
2 states of the deuterium atom

| J = 3
2 ,M = + 3

2 〉 = | e,+ 1
2 ; d,+1〉

| J = 3
2 ,M = + 1

2 〉 =
√

2/3 | e,+ 1
2 ; d, 0〉+

√
1/3 | e,− 1

2 ; d,+1〉

| J = 3
2 ,M = − 1

2 〉 =
√

1/3 | e,+ 1
2 ; d,−1〉+

√
2/3 | e,− 1

2 ; d, 0〉

| J = 3
2 ,M = − 3

2 〉 = | e,− 1
2 ; d,−1〉

We have, however, only four states here while the system we are considering
has six possible states. Of the two states in the second line of (18.42) we have
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used only one linear combination to form | J = 3
2 ,M = + 1

2 〉. There is another
linear combination orthogonal to the one we have taken which also has M = + 1

2 ,
namely √

1/3 | e,+ 1
2 ;d, 0〉 −

√
2/3 | e,− 1

2 ;d,+1〉. (18.52)

Similarly, the two states in the third line of (18.42) can be combined to give two
orthogonal states, each with M = − 1

2 . The one orthogonal to (18.52) is√
2/3 | e,+ 1

2 ;d,−1〉 −
√

1/3 | e,− 1
2 ;d, 0〉. (18.53)

These are the two remaining states. They have M = me +md = ± 1
2 ; and must

be the two states corresponding to J = 1
2 . So we have

| J = 1
2 ,M = + 1

2 〉 =
√

1/3 | e,+ 1
2 ;d, 0〉 −

√
2/3 | e,− 1

2 ;d,+1〉,

| J = 1
2 ,M = − 1

2 〉 =
√

2/3 | e,+ 1
2 ;d,−1〉 −

√
1/3 | e,− 1

2 ;d, 0〉.
(18.54)

We can verify that these two states do indeed behave like the states of a spin
one-half object by writing out the deuterium parts in terms of the neutron and
proton states—using Table 18-4. The first state in (18.52) is√

1/6 {| e,+ 1
2 ;n,+ 1

2 ;p,− 1
2 〉+ | e,+ 1

2 ;n,− 1
2 ;p,+ 1

2 〉}

−
√

2/3 | e,− 1
2 ;n,+ 1

2 ;p,+ 1
2 〉, (18.55)

which can also be written√
1/3

[√
1/2 {| e,+ 1

2 ;n,+ 1
2 ;p,− 1

2 〉 − | e,−
1
2 ;n,+ 1

2 ;p,+ 1
2 〉}

+
√

1/2{| e,+ 1
2 ;n,− 1

2 ;p,+ 1
2 〉 − | e,−

1
2 ;n,+ 1

2 ;p,+ 1
2 〉}
]
. (18.56)

Now look at the terms in the first curly brackets, and think of the e and p taken
together. Together they form a spin-zero state (see the bottom line of Table 18-3),
and contribute no angular momentum. Only the neutron is left, so the whole of
the first curly bracket of (18.56) behaves under rotations like a neutron, namely
as a state with J = 1

2 , M = + 1
2 . Following the same reasoning, we see that in the

second curly bracket of (18.56) the electron and neutron team up to produce zero
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angular momentum, and only the proton contribution—with mp = 1
2—is left.

The terms behave like an object with J = 1
2 , M = + 1

2 . So the whole expression
of (18.56) transforms like | J = 1

2 ,M = + 1
2 〉 as it should. The M = − 1

2 state
which corresponds to (18.53) can be written down (by changing the proper + 1

2 ’s
to − 1

2 ’s) to get

√
1/3

[√
1/2 {| e,+ 1

2 ;n,− 1
2 ;p,− 1

2 〉 − | e,−
1
2 ;n,− 1

2 ;p,+ 1
2 〉}

+
√

1/2{| e,+ 1
2 ;n,− 1

2 ;p,− 1
2 〉 − | e,−

1
2 ;n,+ 1

2 ;p,− 1
2 〉}
]
. (18.57)

You can easily check that this is equal to the second line of (18.54), as it should
be if the two terms of that pair are to be the two states of a spin one-half system.
So our results are confirmed. A deuteron and an electron can exist in six spin
states, four of which act like the states of a spin 3

2 object (Table 18-5) and two
of which act like an object of spin one-half (18.54).

The results of Table 18-5 and of Eq. (18.54) were obtained by making use of
the fact that the deuteron is made up of a neutron and a proton. The truth of
the equations does not depend on that special circumstance. For any spin-one
object put together with any spin one-half object the composition laws (and the
coefficients) are the same. The set of equations in Table 18-5 means that if the
coordinates are rotated about, say, the y-axis—so that the states of the spin
one-half particle and of the spin-one particle change according to Table 17-1 and
Table 17-2—the linear combinations on the right-hand side will change in the
proper way for a spin 3

2 object. Under the same rotation the states of (18.54)
will change as the states of a spin one-half object. The results depend only on
the rotation properties (that is, the spin states) of the two original particles but
not in any way on the origins of their angular momenta. We have only made
use of this fact to work out the formulas by choosing a special case in which
one of the component parts is itself made up of two spin one-half particles in a
symmetric state. We have put all our results together in Table 18-6, changing
the notation “e” and “d” to “a” and “b” to emphasize the generality of the
conclusions.

Suppose we have the general problem of finding the states which can be
formed when two objects of arbitrary spins are combined. Say one has ja (so its
z-component ma runs over the 2ja + 1 values from −ja to +ja) and the other
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Table 18-6

Composition of a spin one-half particle (ja = 1
2 ) and a spin-one particle (jb = 1)

| J = 3
2 ,M = + 3

2 〉 = | a,+ 1
2 ; b,+1〉

| J = 3
2 ,M = + 1

2 〉 =
√

2/3 | a,+ 1
2 ; b, 0〉+

√
1/3 | a,− 1

2 ; b,+1〉

| J = 3
2 ,M = − 1

2 〉 =
√

1/3 | a,+ 1
2 ; b,−1〉+

√
2/3 | a,− 1

2 ; b, 0〉

| J = 3
2 ,M = − 3

2 〉 = | a,− 1
2 ; b,−1〉

| J = 1
2 ,M = + 1

2 〉 =
√

1/3 | a,+ 1
2 ; b, 0〉 −

√
2/3 | a,− 1

2 ; b,+1〉

| J = 1
2 ,M = − 1

2 〉 =
√

2/3 | a,+ 1
2 ; b,−1〉 −

√
1/3 | a,− 1

2 ; b, 0〉

has jb (with z-component mb running over the values from −jb to +jb). The
combined states are | a,ma; b,mb〉, and there are (2ja + 1)(2jb + 1) different ones.
Now what states of total spin J can be found?

The total z-component of angular momentum M is equal to ma +mb, and
the states can all be listed according to M [as in (18.42)]. The largest M is
unique; it corresponds to ma = ja and mb = jb, and is, therefore, just ja + jb.
That means that the largest total spin J is also equal to the sum ja + jb:

J = (M)max = ja + jb.

For the first M value smaller than (M)max, there are two states (either ma or mb

is one unit less than its maximum). They must contribute one state to the
set that goes with J = ja + jb, and the one left over will belong to a new set
with J = ja + jb − 1. The next M -value—the third from the top of the list—can
be formed in three ways. (From ma = ja − 2, mb = jb; from ma = ja − 1,
mb = jb − 1; and from ma = ja, mb = jb − 2.) Two of these belong to groups
already started above; the third tells us that states of J = ja + jb − 2 must also
be included. This argument continues until we reach a stage where in our list we
can no longer go one more step down in one of the m’s to make new states.

Let jb be the smaller of ja and jb (if they are equal take either one); then only
2jb values of J are required—going in integer steps from ja + jb down to ja − jb.
That is, when two objects of spin ja and jb are combined, the system can have a
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total angular momentum J equal to any one of the values

J =



ja + jb

ja + jb − 1
ja + jb − 2
...
|ja − jb|.

(18.58)

(By writing |ja − jb| instead of ja−jb we can avoid the extra admonition that ja ≥
jb.)

For each of these J values there are the 2J + 1 states of different M -values—
with M going from +J to −J . Each of these is formed from linear combinations
of the original states | a,ma; b,mb〉 with appropriate factors—the Clebsch-Gordan
coefficients for each particular term. We can consider that these coefficients give
the “amount” of the state | ja,ma; jb,mb〉 which appears in the state | J,M〉. So
each of the Clebsch-Gordan coefficients has, if you wish, six indices identifying its
position in the formulas like those of Tables 18-3 and 18-6. That is, calling these
coefficients C(J,M ; ja,ma; jb,mb), we could express the equality of the second
line of Table 18-6 by writing

C( 3
2 ,+

1
2 ; 1

2 ,+
1
2 ; 1, 0) =

√
2/3,

C( 3
2 ,+

1
2 ; 1

2 ,−
1
2 ; 1,+1) =

√
1/3.

We will not calculate here the coefficients for any other special cases.† You
can, however, find tables in many books. You might wish to try another special
case for yourself. The next one to do would be the composition of two spin-one
particles. We give just the final result in Table 18-7.

These laws of the composition of angular momenta are very important in
particle physics—where they have innumerable applications. Unfortunately, we
have no time to look at more examples here.

18-7 Added Note 1: Derivation of the rotation matrix‡
For those who would like to see the details, we work out here the general

rotation matrix for a system with spin (total angular momentum) j. It is really
† A large part of the work is done now that we have the general rotation matrix Eq. (18.35).
‡ The material of this appendix was originally included in the body of the lecture. We now

feel that it is unnecessary to include such a detailed treatment of the general case.
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Table 18-7

Composition of two spin-one particles (ja = 1, jb = 1)

| J = 2,M = +2〉 = | a,+1; b,+1〉

| J = 2,M = +1〉 = 1√
2
| a,+1; b, 0〉+ 1√

2
| a, 0; b,+1〉

| J = 2,M = 0〉 = 1√
6
| a,+1; b,−1〉+ 1√

6
| a,−1; b,+1〉+ 2√

6
| a, 0; b, 0〉

| J = 2,M = −1〉 = 1√
2
| a, 0; b,−1〉+ 1√

2
| a,−1; b, 0〉

| J = 2,M = −2〉 = | a,−1; b,−1〉

| J = 1,M = +1〉 = 1√
2
| a,+1; b, 0〉 − 1√

2
| a, 0; b,+1〉

| J = 1,M = 0〉 = 1√
2
| a,+1; b,−1〉 − 1√

2
| a,−1; b,+1〉

| J = 1,M = −1〉 = 1√
2
| a, 0; b,−1〉 − 1√

2
| a,−1; b, 0〉

| J = 0,M = 0〉 = 1√
3
{| a,+1; b,−1〉+ | a,−1; b,+1〉 − | a, 0; b, 0〉}

not very important to work out the general case; once you have the idea, you
can find the general results in tables in many books. On the other hand, after
coming this far you might like to see that you can indeed understand even the
very complicated formulas of quantum mechanics, such as Eq. (18.35), that come
into the description of angular momentum.

We extend the arguments of Section 18-4 to a system with spin j, which we
consider to be made up of 2j spin one-half objects. The state with m = j would
be |+ + + · · ·+〉 (with 2j plus signs). For m = j − 1, there will be 2j terms
like |+ + · · ·+ +−〉, |+ + · · ·+ −+〉, and so on. Let’s consider the general
case in which there are r plusses and s minuses—with r + s = 2j. Under a
rotation about the z-axis each of the r plusses will contribute e+iφ/2. The result
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is a phase change of (r/2− s/2)φ. You see that

m = r − s
2 . (18.59)

Just as for j = 3
2 , each state of definite m must be the linear combination with

plus signs of all the states with the same r and s—that is, states corresponding to
every possible arrangement which has r plusses and s minuses. We assume that
you can figure out that there are (r + s)!/r!s! such arrangements. To normalize
each state, we should divide the sum by the square root of this number. We can
write[

(r + s)!
r!s!

]−1/2
{|+ + + · · ·+ +︸ ︷︷ ︸

r

− − − · · · − −︸ ︷︷ ︸
s

〉

+ (all rearrangements of order)} = | j,m〉 (18.60)

with
j = r + s

2 , m = r − s
2 . (18.61)

It will help our work if we now go to still another notation. Once we have
defined the states by Eq. (18.60), the two numbers r and s define a state just as
well as j and m. It will help us keep track of things if we write

| j,m〉 = | rs〉, (18.62)

where, using the equalities of (18.61)

r = j +m, s = j −m.

Next, we would like to write Eq. (18.60) with a new special notation as

| j,m〉 = | rs〉 =
[

(r + s)!
r!s!

]+1/2
{|+〉r| −〉s}perm. (18.63)

Note that we have changed the exponent of the factor in front to plus 1
2 . We

do that because there are just N = (r + s)!/r!s! terms inside the curly brackets.
Comparing (18.63) with (18.60) it is clear that

{|+〉r| −〉s}perm
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is just a shorthand way of writing

{|+ + · · · − −〉+ all rearrangements}
N

,

where N is the number of different terms in the bracket. The reason that this
notation is convenient is that each time we make a rotation, all of the plus signs
contribute the same factor, so we get this factor to the rth power. Similarly, all
together the s minus terms contribute a factor to the sth power no matter what
the sequence of the terms is.

Now suppose we rotate our system by the angle θ about the y-axis. What we
want is Ry(θ) | rs〉. When Ry(θ) operates on each |+〉 it gives

Ry(θ) |+〉 = |+〉C + | −〉S, (18.64)

where C = cos θ/2 and S = − sin θ/2. When Ry(θ) operates on each | −〉 it gives

Ry(θ) | −〉 = | −〉C − |+〉S.

So what we want is

Ry(θ) | rs〉 =
[

(r + s)!
r!s!

]1/2
Ry(θ) {|+〉r| −〉s}perm

=
[

(r + s)!
r!s!

]1/2
{(Ry(θ) |+〉)r(Ry(θ) | −〉)s}perm

=
[

(r + s)!
r!s!

]1/2
{(|+〉C + | −〉S)r(| −〉C − |+〉S)s}perm. (18.65)

Now each binomial has to be expanded out to its appropriate power and the two
expressions multiplied together. There will be terms with |+〉 to all powers from
zero to (r + s). Let’s look at all of the terms which have |+〉 to the r′ power.
They will appear always multiplied with | −〉 to the s′ power, where s′ = 2j − r′.
Suppose we collect all such terms. For each permutation they will have some
numerical coefficient involving the factors of the binomial expansion as well as
the factors C and S. Suppose we call that factor Ar′ . Then Eq. (18.65) will look
like

Ry(θ) | rs〉 =
r+s∑
r′=0
{Ar′ |+〉r

′
| −〉s

′
}perm. (18.66)
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Now let’s say that we divide Ar′ by the factor [(r′ + s′)!/r′!s′!]1/2 and call the
quotient Br′ . Equation (18.66) is then equivalent to

Ry(θ) | rs〉 =
r+s∑
r′=0

Br′

[
(r′ + s′)!
r′!s′!

]1/2
{|+〉r

′
| −〉s

′
}perm. (18.67)

(We could just say that this equation defines Br′ by the requirement that (18.67)
gives the same expression that appears in (18.65).)

With this definition of Br′ the remaining factors on the right-hand side of
Eq. (18.67) are just the states | r′

s′〉. So we have that

Ry(θ) | rs〉 =
r+s∑
r′=0

Br′ | r
′

s′〉, (18.68)

with s′ always equal to r+ s− r′. This means, of course, that the coefficients Br′

are just the matrix elements we want, namely

〈r
′

s′ |Ry(θ) | rs〉 = Br′ . (18.69)

Now we just have to push through the algebra to find the various Br′ . Com-
paring (18.65) with (18.67)—and remembering that r′ + s′ = r + s—we see that
Br′ is just the coefficient of ar′

bs
′ in the following expression:(

r′!s′!
r!s!

)1/2
(aC + bS)r(bC − aS)s. (18.70)

It is now only a dirty job to make the expansions by the binomial theorem, and
collect the terms with the given power of a and b. If you work it all out, you find
that the coefficient of ar′

bs
′ in (18.70) is[

r′!s′!
r!s!

]1/2∑
k

(−1)kSr−r
′+2kCs+r

′−2k · r!
(r − r′ + k)!(r′ − k)! ·

s!
(s− k)!k! .

(18.71)
The sum is to be taken over all integers k which give terms of zero or greater in
the factorials. This expression is then the matrix element we wanted.

Finally, we can return to our original notation in terms of j, m, and m′ using

r = j +m, r′ = j +m′, s = j −m, s′ = j −m′.

Making these substitutions, we get Eq. (18.35) in Section 18-4.
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18-8 Added Note 2: Conservation of parity in photon emission

In Section 18-1 of this chapter we considered the emission of light by an atom
that goes from an excited state of spin 1 to a ground state of spin 0. If the excited
state has its spin up (m = +1), it can emit a RHC photon along the +z-axis or
a LHC photon along the −z-axis. Let’s call these two states of the photon |Rup〉
and |Ldn〉. Neither of these states has a definite parity. Letting P̂ be the parity
operator, P̂ |Rup〉 = |Ldn〉 and P̂ |Ldn〉 = |Rup〉.

What about our earlier proof that an atom in a state of definite energy must
have a definite parity, and our statement that parity is conserved in atomic
processes? Shouldn’t the final state in this problem (the state after the emission
of a photon) have a definite parity? It does if we consider the complete final state
which contains amplitudes for the emission of photons into all sorts of angles. In
Section 18-1 we chose to consider only a part of the complete final state.

If we wish we can look only at final states that do have a definite parity.
For example, consider a final state |ψF 〉 which has some amplitude α to be a
RHC photon going along +z and some amplitude β to be a LHC photon going
along −z. We can write

|ψF 〉 = α |Rup〉+ β |Ldn〉. (18.72)

The parity operation on this state gives

P̂ |ψF 〉 = α |Ldn〉+ β |Rup〉. (18.73)

This state will be ± |ψF 〉 if β = α or if β = −α. So a final state of even parity is

|ψ+
F 〉 = α{|Rup〉+ |Ldn〉}, (18.74)

and a state of odd parity is

|ψ−F 〉 = α{|Rup〉 − |Ldn〉}. (18.75)

Next, we wish to consider the decay of an excited state of odd parity to a
ground state of even parity. If parity is to be conserved, the final state of the
photon must have odd parity. It must be the state in (18.75). If the amplitude
to find |Rup〉 is α, the amplitude to find |Ldn〉 is −α.

Now notice what happens when we perform a rotation of 180◦ about the
y-axis. The initial excited state of the atom becomes an m = −1 state (with no
change in sign, according to Table 17-2). And the rotation of the final state gives

Ry(180◦) |ψ−F 〉 = α{|Rdn〉 − |Lup〉}. (18.76)
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Comparing this equation with (18.75), you see that for the assumed parity of the
final state, the amplitude to get a LHC photon along +z from the m = −1 initial
state is the negative of the amplitude to get a RHC photon from them = +1 initial
state. This agrees with the result we found in Section 18-1.
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19

The Hydrogen Atom and
The Periodic Table

19-1 Schrödinger’s equation for the hydrogen atom

The most dramatic success in the history of the quantum mechanics was
the understanding of the details of the spectra of some simple atoms and the
understanding of the periodicities which are found in the table of chemical
elements. In this chapter we will at last bring our quantum mechanics to the
point of this important achievement, specifically to an understanding of the
spectrum of the hydrogen atom. We will at the same time arrive at a qualitative
explanation of the mysterious properties of the chemical elements. We will do
this by studying in detail the behavior of the electron in a hydrogen atom—for
the first time making a detailed calculation of a distribution-in-space according
to the ideas we developed in Chapter 16.

For a complete description of the hydrogen atom we should describe the
motions of both the proton and the electron. It is possible to do this in quantum
mechanics in a way that is analogous to the classical idea of describing the motion
of each particle relative to the center of gravity, but we will not do so. We will
just discuss an approximation in which we consider the proton to be very heavy,
so we can think of it as fixed at the center of the atom.

We will make another approximation by forgetting that the electron has a spin
and should be described by relativistic laws of mechanics. Some small corrections
to our treatment will be required since we will be using the nonrelativistic
Schrödinger equation and will disregard magnetic effects. Small magnetic effects
occur because from the electron’s point-of-view the proton is a circulating charge
which produces a magnetic field. In this field the electron will have a different
energy with its spin up than with it down. The energy of the atom will be shifted
a little bit from what we will calculate. We will ignore this small energy shift.
Also we will imagine that the electron is just like a gyroscope moving around in
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space always keeping the same direction of spin. Since we will be considering
a free atom in space the total angular momentum will be conserved. In our
approximation we will assume that the angular momentum of the electron spin
stays constant, so all the rest of the angular momentum of the atom—what
is usually called “orbital” angular momentum—will also be conserved. To an
excellent approximation the electron moves in the hydrogen atom like a particle
without spin—the angular momentum of the motion is a constant.

With these approximations the amplitude to find the electron at different
places in space can be represented by a function of position in space and time.
We let ψ(x, y, z, t) be the amplitude to find the electron somewhere at the time t.
According to the quantum mechanics the rate of change of this amplitude with
time is given by the Hamiltonian operator working on the same function. From
Chapter 16,

i~
∂ψ

∂t
= Ĥψ, (19.1)

with

Ĥ = − ~2

2m ∇
2 + V (r). (19.2)

Here, m is the electron mass, and V (r) is the potential energy of the electron in
the electrostatic field of the proton. Taking V = 0 at large distances from the
proton we can write†

V = −e
2

r
.

The wave function ψ must then satisfy the equation

i~
∂ψ

∂t
= − ~2

2m ∇
2ψ − e2

r
ψ. (19.3)

We want to look for definite energy states, so we try to find solutions which
have the form

ψ(r, t) = e−(i/~)Etψ(r). (19.4)
The function ψ(r) must then be a solution of

− ~2

2m ∇
2ψ =

(
E + e2

r

)
ψ, (19.5)

where E is some constant—the energy of the atom.
† As usual, e2 = q2

e/4πε0.
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Fig. 19-1. The spherical polar coordinates r , θ, φ of the point P .

Since the potential energy term depends only on the radius, it turns out to
be much more convenient to solve this equation in polar coordinates rather than
rectangular coordinates. The Laplacian is defined in rectangular coordinates by

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

We want to use instead the coordinates r, θ, φ shown in Fig. 19-1. These
coordinates are related to x, y, z by

x = r sin θ cosφ; y = r sin θ sinφ; z = r cos θ.

It’s a rather tedious mess to work through the algebra, but you can eventually
show that for any function f(r) = f(r, θ, φ),

∇2f(r, θ, φ) = 1
r

∂2

∂r2 (rf) + 1
r2

{
1

sin θ
∂

∂θ

(
sin θ ∂f

∂θ

)
+ 1

sin2 θ

∂2f

∂φ2

}
. (19.6)
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So in terms of the polar coordinates, the equation which is to be satisfied
by ψ(r, θ, φ) is

1
r

∂2

∂r2 (rψ) + 1
r2

{
1

sin θ
∂

∂θ

(
sin θ ∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂φ2

}
= −2m

~2

(
E + e2

r

)
ψ.

(19.7)

19-2 Spherically symmetric solutions

Let’s first try to find some very simple function that satisfies the horrible
equation in (19.7). Although the wave function ψ will, in general, depend on
the angles θ and φ as well as on the radius r, we can see whether there might
be a special situation in which ψ does not depend on the angles. For a wave
function that doesn’t depend on the angles, none of the amplitudes will change
in any way if you rotate the coordinate system. That means that all of the
components of the angular momentum are zero. Such a ψ must correspond to
a state whose total angular momentum is zero. (Actually, it is only the orbital
angular momentum which is zero because we still have the spin of the electron,
but we are ignoring that part.) A state with zero orbital angular momentum is
called by a special name. It is called an “s-state”—you can remember “s for
spherically symmetric.”†

Now if ψ, is not going to depend on θ and φ then the entire Laplacian contains
only the first term and Eq. (19.7) becomes much simpler:

1
r

d2

dr2 (rψ) = −2m
~2

(
E + e2

r

)
ψ. (19.8)

Before you start to work on solving an equation like this, it’s a good idea to get
rid of all excess constants like e2, m, and ~, by making some scale changes. Then
the algebra will be easier. If we make the following substitutions:

r = ~2

me2 ρ, (19.9)

and

E = me4

2~2 ε, (19.10)

† Since these special names are part of the common vocabulary of atomic physics, you will
just have to learn them. We will help out by putting them together in a short “dictionary”
later in the chapter.
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then Eq. (19.8) becomes (after multiplying through by ρ)

d2(ρψ)
dρ2 = −

(
ε+ 2

ρ

)
ρψ. (19.11)

These scale changes mean that we are measuring the distance r and energy E
as multiples of “natural” atomic units. That is, ρ = r/rB, where rB = ~2/me2,
is called the “Bohr radius” and is about 0.528 angstroms. Similarly, ε = E/ER,
with ER = me4/2~2. This energy is called the “Rydberg” and is about 13.6 elec-
tron volts.

Since the product ρψ appears on both sides, it is convenient to work with it
rather than with ψ itself. Letting

ρψ = f, (19.12)

we have the more simple-looking equation

d2f

dρ2 = −
(
ε+ 2

ρ

)
f. (19.13)

Now we have to find some function f which satisfies Eq. (19.13)—in other
words, we just have to solve a differential equation. Unfortunately, there is no
very useful, general method for solving any given differential equation. You just
have to fiddle around. Our equation is not easy, but people have found that it
can be solved by the following procedure. First, you replace f , which is some
function of ρ, by a product of two functions

f(ρ) = e−αρg(ρ). (19.14)

This just means that you are factoring e−αρ out of f(ρ). You can certainly
do that for any f(ρ) at all. This just shifts our problem to finding the right
function g(ρ).

Sticking (19.14) into (19.13), we get the following equation for g:

d2g

dρ2 − 2α dg
dρ

+
(

2
ρ

+ ε+ α2
)
g = 0. (19.15)

Since we are free to choose α, let’s make

α2 = −ε, (19.16)
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and get
d2g

dρ2 − 2α dg
dρ

+ 2
ρ
g = 0. (19.17)

You may think we are no better off than we were at Eq. (19.13), but the
happy thing about our new equation is that it can be solved easily in terms of a
power series in ρ. (It is possible, in principle, to solve (19.13) that way too, but
it is much harder.) We are saying that Eq. (19.17) can be satisfied by some g(ρ)
which can be written as a series,

g(ρ) =
∞∑
k=1

akρ
k, (19.18)

in which the ak are constant coefficients. Now all we have to do is find a suitable
infinite set of coefficients! Let’s check to see that such a solution will work. The
first derivative of this g(ρ) is

dg

dρ
=
∞∑
k=1

akkρ
k−1,

and the second derivative is

d2g

dρ2 =
∞∑
k=1

akk(k − 1)ρk−2.

Using these expressions in (19.17) we have
∞∑
k=1

k(k − 1)akρk−2 −
∞∑
k=1

2αkakρk−1 +
∞∑
k=1

2akρk−1 = 0. (19.19)

It’s not obvious that we have succeeded; but we forge onward. It will all look
better if we replace the first sum by an equivalent. Since the first term of the
sum is zero, we can replace each k by k + 1 without changing anything in the
infinite series; with this change the first sum can equally well be written as

∞∑
k=1

(k + 1)kak+1ρ
k−1.
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Now we can put all the sums together to get
∞∑
k=1

[(k + 1)kak+1 − 2αkak + 2ak]ρk−1 = 0. (19.20)

This power series must vanish for all possible values of ρ. It can do that only
if the coefficient of each power of ρ is separately zero. We will have a solution for
the hydrogen atom if we can find a set ak for which

(k + 1)kak+1 − 2(αk − 1)ak = 0 (19.21)

for all k ≥ 1. That is certainly easy to arrange. Pick any a1 you like. Then
generate all of the other coefficients from

ak+1 = 2(αk − 1)
k(k + 1) ak. (19.22)

With this you will get a2, a3, a4, and so on, and each pair will certainly sat-
isfy (19.21). We get a series for g(ρ) which satisfies (19.17). With it we can make
a ψ, that satisfies Schrödinger’s equation. Notice that the solutions depend on
the assumed energy (through α), but for each value of ε, there is a corresponding
series.

We have a solution, but what does it represent physically? We can get an
idea by seeing what happens far from the proton—for large values of ρ. Out
there, the high-order terms of the series are the most important, so we should
look at what happens for large k. When k � 1, Eq. (19.22) is approximately the
same as

ak+1 = 2α
k
ak,

which means that
ak+1 ≈

(2α)k
k! . (19.23)

But these are just the coefficients of the series for e+2αρ. The function of g is a
rapidly increasing exponential. Even coupled with e−αρ to produce f(ρ)—see
Eq. (19.14)—it still gives a solution for f(ρ) which goes like eαρ for large ρ.
We have found a mathematical solution but not a physical one. It represents a
situation in which the electron is least likely to be near the proton! It is always
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more likely to be found at a very large radius ρ. A wave function for a bound
electron must go to zero for large ρ.

We have to think whether there is some way to beat the game, and there is.
Observe! If it just happened by luck that α were equal to 1/n, where n is any
positive integer, then Eq. (19.22) would make an+1 = 0. All higher terms would
also be zero. We wouldn’t have an infinite series but a finite polynomial. Any
polynomial increases more slowly than eαρ, so the term e−αρ will eventually beat
it down, and the function f will go to zero for large ρ. The only bound-state
solutions are those for which α = 1/n, with n = 1, 2, 3, 4, and so on.

Looking back to Eq. (19.16), we see that the bound-state solutions to the
spherically symmetric wave equation can exist only when

−ε = 1, 1
4 ,

1
9 ,

1
16 , . . . ,

1
n2 , . . .

The allowed energies are just these fractions times the Rydberg, ER = me4/2~2,
or the energy of the nth energy level is

En = −ER
1
n2 . (19.24)

There is, incidentally, nothing mysterious about negative numbers for the energy.
The energies are negative because when we chose to write V = −e2/r, we picked
our zero point as the energy of an electron located far from the proton. When it
is close to the proton, its energy is less, so somewhat below zero. The energy is
lowest (most negative) for n = 1, and increases toward zero with increasing n.

Before the discovery of quantum mechanics, it was known from experimental
studies of the spectrum of hydrogen that the energy levels could be described by
Eq. (19.24), where ER was found from the observations to be about 13.6 electron
volts. Bohr then devised a model which gave the same equation and predicted
that ER should be me4/2~2. But it was the first great success of the Schrödinger
theory that it could reproduce this result from a basic equation of motion for the
electron.

Now that we have solved our first atom, let’s look at the nature of the solution
we got. Pulling all the pieces together, each solution looks like this:

ψn = fn(ρ)
ρ

= e−ρ/n

ρ
gn(ρ), (19.25)
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where

gn(ρ) =
n∑
k=1

akρ
k (19.26)

and

ak+1 = 2(k/n− 1)
k(k + 1) ak. (19.27)

So long as we are mainly interested in the relative probabilities of finding the
electron at various places we can pick any number we wish for a1. We may as
well set a1 = 1. (People often choose a1 so that the wave function is “normalized,”
that is, so that the integrated probability of finding the electron anywhere in the
atom is equal to 1. We have no need to do that just now.)

For the lowest energy state, n = 1, and

ψ1(ρ) = e−ρ. (19.28)

For a hydrogen atom in its ground (lowest-energy) state, the amplitude to find
the electron at any point drops off exponentially with the distance from the
proton. It is most likely to be found right at the proton, and the characteristic
spreading distance is about one unit in ρ, or about one Bohr radius, rB .

Putting n = 2 gives the next higher level. The wave function for this state
will have two terms. It is

ψ2(ρ) =
(

1− ρ

2

)
e−ρ/2. (19.29)

The wave function for the next level is

ψ3(ρ) =
(

1− 2ρ
3 + 2

27 ρ
2
)
e−ρ/3. (19.30)

The wave functions for these first three levels are plotted in Fig. 19-2. You
can see the general trend. All of the wave functions approach zero rapidly for
large ρ after oscillating a few times. In fact, the number of “bumps” is just equal
to n—or, if you prefer, the number of zero-crossings of ψn is n− 1.

19-3 States with an angular dependence

In the states described by the ψn(r) we have found that the probability
amplitude for finding the electron is spherically symmetric—depending only on r,
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n = 1

n = 2

n = 3

Fig. 19-2. The wave functions for the first three l = 0 states of the
hydrogen atom. (The scales are chosen so that the total probabilities
are equal.)

the distance for the proton. Such states have zero orbital angular momentum.
We should now inquire about states which may have some angular dependences.

We could, if we wished, just investigate the strictly mathematical problem of
finding the functions of r, θ, and φ which satisfy the differential equation (19.7)—
putting in the additional physical conditions that the only acceptable functions
are ones which go to zero for large r. You will find this done in many books. We
are going to take a short cut by using the knowledge we already have about how
amplitudes depend on angles in space.

The hydrogen atom in any particular state is a particle with a certain “spin” j—
the quantum number of the total angular momentum. Part of this spin comes
from the electron’s intrinsic spin, and part from the electron’s motion. Since
each of these two components acts independently (to an excellent approximation)
we will again ignore the spin part and think only about the “orbital” angular
momentum. This orbital motion behaves, however, just like a spin. For example,
if the orbital quantum number is l, the z-component of angular momentum can
be l, l − 1, l − 2, . . . , −l. (We are, as usual, measuring in units of ~.) Also,
all the rotation matrices and other properties we have worked out still apply.
(From now on we will really ignore the electron’s spin; when we speak of “angular
momentum” we will mean only the orbital part.)
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Since the potential V in which the electron moves depends only on r and
not on θ or φ, the Hamiltonian is symmetric under all rotations. It follows that
the angular momentum and all its components are conserved. (This is true for
motion in any “central field”—one which depends only on r—so is not a special
feature of the Coulomb e2/r potential.)

Now let’s think of some possible state of the electron; its internal angular
structure will be characterized by the quantum number l. Depending on the
“orientation” of the total angular momentum with respect to the z-axis, the z-
component of angular momentum will be m, which is one of the 2l+1 possibilities
between +l and −l. Let’s say m = 1. With what amplitude will the electron be
found on the z-axis at some distance r? Zero. An electron on the z-axis cannot
have any orbital angular momentum around that axis. Alright, suppose m is
zero, then there can be some nonzero amplitude to find the electron at each
distance from the proton. We’ll call this amplitude Fl(r). It is the amplitude to
find the electron at the distance r up along the z-axis, when the atom is in the
state | l, 0〉, by which we mean orbital spin l and z-component m = 0.

If we know Fl(r) everything is known. For any state | l,m〉, we know the
amplitude ψl,m(r) to find the electron anywhere in the atom. How? Watch.
Suppose we have the atom in the state | l,m〉, what is the amplitude to find the
electron at the angle θ, φ and the distance r from the origin? Put a new z-axis,
say z′, at that angle (see Fig. 19-3), and ask what is the amplitude that the
electron will be at the distance r along the new axis z′? We know that it cannot
be found along z′ unless its z′-component of angular momentum, say m′, is zero.
When m′ is zero, however, the amplitude to find the electron along z′ is Fl(r).
Therefore, the result is the product of two factors. The first is the amplitude
that an atom in the state | l,m〉 along the z-axis will be in the state | l,m′ = 0〉
with respect to the z′-axis. Multiply that amplitude by Fl(r) and you have the
amplitude ψl,m(r) to find the electron at (r, θ, φ) with respect to the original axes.

Let’s write it out. We have worked out earlier the transformation matrices
for rotations. To go from the frame x, y, z to the frame x′, y′, z′ of Fig. 19-3, we
can rotate first around the z-axis by the angle φ, and then rotate about the new
y-axis (y′) by the angle θ. This combined rotation is the product

Ry(θ)Rz(φ).

The amplitude to find the state l,m′ = 0 after the rotation is

〈l, 0 |Ry(θ)Rz(φ) | l,m〉. (19.31)
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Fig. 19-3. The point (r, θ, φ) is on the z ′-axis of the x ′, y ′, z ′ coordi-
nate frame.

Our result, then, is
ψl,m(r) = 〈l, 0 |Ry(θ)Rz(φ) | l,m〉Fl(r). (19.32)

The orbital motion can have only integral values of l. (If the electron can
be found anywhere at r 6= 0, there is some amplitude to have m = 0 in that
direction. And m = 0 states exist only for integral spins.) The rotation ma-
trices for l = 1 are given in Table 17-2. For larger l you can use the general
formulas we worked out in Chapter 18. The matrices for Rz(φ) and Ry(θ)
appear separately, but you know how to combine them. For the general case
you would start with the state | l,m〉 and operate with Rz(φ) to get the new
state Rz(φ) | l,m〉 (which is just eimφ | l,m〉). Then you operate on this state
with Ry(θ) to get the state Ry(θ)Rz(φ) | l,m〉. Multiplying by 〈l, 0 | gives the
matrix element (19.31).
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The matrix elements of the rotation operation are functions of θ and φ. The
particular functions which appear in (19.31) also show up in many kinds of
problems which involve waves in spherical geometries and so has been given
a special name. Not everyone uses the same convention; but one of the most
common ones is

〈l, 0 |Ry(θ)Rz(φ) | l,m〉 ≡ a Yl,m(θ, φ). (19.33)

The functions Yl,m(θ, φ) are called the spherical harmonics, and a is just a
numerical factor which depends on the definition chosen for Yl,m. For the usual
definition,

a =
√

4π
2l + 1 . (19.34)

With this notation, the hydrogen wave functions can be written

ψl,m(r) = a Yl,m(θ, φ)Fl(r). (19.35)

The angle functions Yl,m(θ, φ) are important not only in many quantum-
mechanical problems, but also in many areas of classical physics in which the
∇2 operator appears, such as electromagnetism. As another example of their use
in quantum mechanics, consider the disintegration of an excited state of Ne20

(such as we discussed in the last chapter) which decays by emitting an α-particle
and going into O16:

Ne20∗ → O16 + He4.

Suppose that the excited state has some spin l (necessarily an integer) and that
the z-component of angular momentum is m. We might now ask the following:
given l and m, what is the amplitude that we will find the α-particle going off in
a direction which makes the angle θ with respect to the z-axis and the angle φ
with respect to the xz-plane—as shown in Fig. 19-4.

To solve this problem we make, first, the following observation. A decay in
which the α-particle goes straight up along z must come from a state with m = 0.
This is so because both O16 and the α-particle have spin zero, and because their
motion cannot have any angular momentum about the z-axis. Let’s call this
amplitude a (per unit solid angle). Then, to find the amplitude for a decay at the
arbitrary angle of Fig. 19-4, all we need to know is what amplitude the given initial
state has zero angular momentum about the decay direction. The amplitude
for the decay at θ and φ is then a times the amplitude that a state | l,m〉 with
respect to the z-axis will be in the state | l, 0〉 with respect to z′—the decay
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Fig. 19-4. The decay of an excited state of Ne20.

direction. This latter amplitude is just what we have written in (19.31). The
probability to see the α-particle at θ, φ is

P (θ, φ) = a2|〈l, 0 |Ry(θ)Rz(φ) | l,m〉|2.

As an example, consider an initial state with l = 1 and various values of m.
From Table 17-2 we know the necessary amplitudes. They are

〈1, 0 |Ry(θ)Rz(φ) | 1,+1〉 = − 1√
2

sin θeiφ,

〈1, 0 |Ry(θ)Rz(φ) | 1, 0〉 = cos θ,

〈1, 0 |Ry(θ)Rz(φ) | 1,−1〉 = 1√
2

sin θe−iφ.

(19.36)

These are the three possible angular distribution amplitudes—depending on the
m-value of the initial nucleus.

Amplitudes such as the ones in (19.36) appear so often and are sufficiently
important that they are given several names. If the angular distribution amplitude
is proportional to any one of the three functions or any linear combination of
them, we say, “The system has an orbital angular momentum of one.” Or we may
say, “The Ne20∗ emits a p-wave α-particle.” Or we say, “The α-particle is emitted
in an l = 1 state.” Because there are so many ways of saying the same thing it is
useful to have a dictionary. If you are going to understand what other physicists
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are talking about, you will just have to memorize the language. In Table 19-1 we
give a dictionary of orbital angular momentum.

Table 19-1

Dictionary of orbital angular momentum
(l = j = an integer)

Orbital
z-

component,
m

Nameangular Angular dependence Number of Orbital
momentum, of amplitudes states parity

l

0 0 1 s 1 +
+1 − 1√

2
sin θeiφ

1 0 cos θ p 3 −

−1 1√
2

sin θe−iφ



+2
√

6
4 sin2 θe2iφ 

+1
√

6
2 sin θ cos θeiφ

2 0 1
2 (3 cos2 θ − 1) d 5 +

−1 −
√

6
2 sin θ cos θe−iφ

−2
√

6
4 sin2 θe−2iφ

3 } { 〈l, 0 |Ry(θ)Rz(φ) | l,m〉} f

4 = Yl,m(θ, φ) g 2l + 1 (−1)l

5 = Pml (cos θ)eimφ h
...

...

If the orbital angular momentum is zero, then there is no change when
you rotate the coordinate system and there is no variation with angle—the
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“dependence” on angle is as a constant, say 1. This is also called an “s-state”, and
there is only one such state—as far as angular dependence is concerned. If the
orbital angular momentum is 1, then the amplitude of the angular variation may
be any one of the three functions given—depending on the value of m—or it may
be a linear combination. These are called “p-states,” and there are three of them.
If the orbital angular momentum is 2 then there are the five functions shown. Any
linear combination is called an “l = 2,” or a “d-wave” amplitude. Now you can
immediately guess what the next letter is—what should come after s, p, d? Well,
of course, f , g, h, and so on down the alphabet! The letters don’t mean anything.
(They did once mean something—they meant “sharp” lines, “principal” lines,
“diffuse” lines and “fundamental” lines of the optical spectra of atoms. But those
were in the days when people did not know where the lines came from. After
f there were no special names, so we now just continue with g, h, and so on.)

The angular functions in the table go by several names—and are sometimes
defined with slightly different conventions about the numerical factors that appear
out in front. Sometimes they are called “spherical harmonics,” and written
as Yl,m(θ, φ). Sometimes they are written Pml (cos θ)eimφ, and if m = 0, simply
as Pl(cos θ). The functions Pl(cos θ) are called the “Legendre polynomials” in
cos θ, and the functions Pml (cos θ) are called the “associated Legendre functions.”
You will find tables of these functions in many books.

Notice, incidentally, that all the functions for a given l have the property that
they have the same parity—for odd l they change sign under an inversion and
for even l they don’t change. So we can write that the parity of a state of orbital
angular momentum l is (−1)l.

As we have seen, these angular distributions may refer to a nuclear disinte-
gration or some other process, or to the distribution of the amplitude to find
an electron at some place in the hydrogen atom. For instance, if an electron is
in a p-state (l = 1) the amplitude to find it can depend on the angle in many
possible ways—but all are linear combinations of the three functions for l = 1 in
Table 19-1. Let’s take the case cos θ. That’s interesting. That means that the
amplitude is positive, say, in the upper part (θ < π/2), is negative in the lower
part (θ > π/2), and is zero when θ is 90◦. Squaring this amplitude we see that
the probability of finding the electron varies with θ as shown in Fig. 19-5—and
is independent of φ. This angular distribution is responsible for the fact that
in molecular binding the attraction of an electron in an l = 1 state for another
atom depends on direction—it is the origin of the directed valences of chemical
attraction.
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Fig. 19-5. A polar graph of cos2 θ, which is the relative probability of
finding an electron at various angles from the z-axis (for a given r) in
an atomic state with l = 1 and m = 0.

19-4 The general solution for hydrogen

In Eq. (19.35) we have written the wave functions for the hydrogen atom as

ψl,m(r) = a Yl,m(θ, φ)Fl(r). (19.37)

These wave functions must be solutions of the differential equation (19.7). Let’s
see what that means. Put (19.37) into (19.7); you get

Yl,m
r

∂2

∂r2 (rFl) + Fl
r2 sin θ

∂

∂θ

(
sin θ ∂Yl,m

∂θ

)
+ Fl

r2 sin2 θ

∂2Yl,m
∂φ2

= −2m
~2

(
E + e2

r

)
Yl,mFl. (19.38)
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Now multiply through by r2/Fl and rearrange terms. The result is

1
sin θ

∂

∂θ

(
sin θ ∂Yl,m

∂θ

)
+ 1

sin2 θ

∂2Yl,m
∂φ2

= −
[
r2

Fl

{
1
r

d2

dr2 (rFl) + 2m
~2

(
E + e2

r

)
Fl

}]
Yl,m. (19.39)

The left-hand side of this equation depends on θ and φ, but not on r. No matter
what value we choose for r, the left side doesn’t change. This must also be true
for the right-hand side. Although the quantity in the square brackets has r’s all
over the place, the whole quantity cannot depend on r, otherwise we wouldn’t
have an equation good for all r. As you can see, the bracket also does not depend
on θ or φ. It must be some constant. Its value may well depend on the l-value of
the state we are studying, since the function Fl must be the one appropriate to
that state; we’ll call the constant Kl. Equation (19.39) is therefore equivalent to
two equations:

1
sin θ

∂

∂θ

(
sin θ ∂Yl,m

∂θ

)
+ 1

sin2 θ

∂2Yl,m
∂φ2 = −KlYl,m, (19.40)

1
r

d2

dr2 (rFl) + 2m
~2

(
E + e2

r

)
Fl = Kl

Fl
r2 . (19.41)

Now look at what we’ve done. For any state described by l and m, we know
the functions Yl,m; we can use Eq. (19.40) to determine the constant Kl. Putting
Kl into Eq. (19.41) we have a differential equation for the function Fl(r). If we
can solve that equation for Fl(r), we have all of the pieces to put into (19.37) to
give ψ(r).

What is Kl? First, notice that it must be the same for all m (which go with
a particular l), so we can pick any m we want for Yl,m and plug it into (19.40)
to solve for Kl. Perhaps the easiest one to use is Yl,l. From Eq. (18.24),

Rz(φ) | l, l〉 = eilφ | l, l〉. (19.42)

The matrix element for Ry(θ) is also quite simple:

〈l, 0 |Ry(θ) | l, l〉 = b (sin θ)l, (19.43)
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where b is some number.† Combining the two, we obtain

Yl,l ∝ eilφ sinl θ. (19.44)

Putting this function into (19.40) gives

Kl = l(l + 1). (19.45)

Now that we have determined Kl, Eq. (19.41) tells us about the radial
function Fl(r). It is, of course, just the Schrödinger equation with the angular
part replaced by its equivalent KlFl/r

2. Let’s rewrite (19.41) in the form we had
in Eq. (19.8), as follows:

1
r

d2

dr2 (rFl) = −2m
~2

{
E + e2

r
− l(l + 1)~2

2mr2

}
Fl. (19.46)

A mysterious term has been added to the potential energy. Although we got this
term by some mathematical shenanigan, it has a simple physical origin. We can
give you an idea about where it comes from in terms of a semi-classical argument.
Then perhaps you will not find it quite so mysterious.

Think of a classical particle moving around some center of force. The total
energy is conserved and is the sum of the potential and kinetic energies

U = V (r) + 1
2mv

2 = constant.

In general, v can be resolved into a radial component vr and a tangential
component rθ̇; then

v2 = v2
r + (rθ̇)2.

Now the angular momentum mr2θ̇ is also conserved; say it is equal to L. We can
then write

mr2θ̇ = L, or rθ̇ = L

mr
,

† You can with some work show that this comes out of Eq. (18.35), but it is also easy to
work out from first principles following the ideas of Section 18-4. A state | l, l〉 can be made out
of 2l spin one-half particles all with spins up; while the state | l, 0〉 would have l up and l down.
Under the rotation the amplitude that an up-spin remains up is cos θ/2, and that an up-spin
goes down is − sin θ/2. We are asking for the amplitude that l up-spins stay up, while the
other l up-spins go down. The amplitude for that is (− cos θ/2 sin θ/2)l which is proportional
to sinl θ.
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and the energy is

U = 1
2mv

2
r + V (r) + L2

2mr2 .

If there were no angular momentum we would have just the first two terms. Adding
the angular momentum L does to the energy just what adding a term L2/2mr2 to
the potential energy would do. But this is almost exactly the extra term in (19.46).
The only difference is that l(l + 1)~2 appears for the angular momentum instead
of l2~2 as we might expect. But we have seen before (for example, Volume II,
Section 34-7)† that this is just the substitution that is usually required to make
a quasi-classical argument agree with a correct quantum-mechanical calculation.
We can, then, understand the new term as a “pseudo-potential” which gives
the “centrifugal force” term that appears in the equations of radial motion for a
rotating system. (See the discussion of “pseudo-forces” in Volume I, Section 12-5.)

We are now ready to solve Eq. (19.46) for Fl(r). It is very much like Eq. (19.8),
so the same technique will work again. Everything goes as before until you get
to Eq. (19.19) which will have the additional term

− l(l + 1)
∞∑
k=1

akρ
k−2. (19.47)

This term can also be written as

− l(l + 1)
{
a1

ρ
+
∞∑
k=1

ak+1ρ
k−1
}
. (19.48)

(We have taken out the first term and then shifted the running index k down
by 1.) Instead of Eq. (19.20) we have

∞∑
k=1

[{k(k + 1)− l(l + 1)}ak+1 − 2(αk − 1)ak]ρk−1

− l(l + 1)a1

ρ
= 0. (19.49)

There is only one term in ρ−1, so it must be zero. The coefficient a1 must be zero
(unless l = 0 and we have our previous solution). Each of the other terms is made

† See Appendix to this volume.
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zero by having the square bracket come out zero for every k. This condition
replaces Eq. (19.22) by

ak+1 = 2(αk − 1)
k(k + 1)− l(l + 1) ak. (19.50)

This is the only significant change from the spherically symmetric case.
As before the series must terminate if we are to have solutions which can

represent bound electrons. The series will end at k = n if αn = 1. We get
again the same condition on α, that it must be equal to 1/n, where n is some
positive integer. However, Eq. (19.50) also gives a new restriction. The index k
cannot be equal to l, the denominator becomes zero and al+1 is infinite. That
is, since a1 = 0, Eq. (19.50) implies that all successive ak are zero until we get
to al+1, which can be nonzero. This means that k must start at l + 1 and end
at n.

Our final result is that for any l there are many possible solutions which we
can call Fn,l where n ≥ l + 1. Each solution has the energy

En = −me
4

2~2

(
1
n2

)
. (19.51)

The wave function for the state of this energy with the angular quantum numbers
l and m is

ψn,l,m = a Yl,m(θ, φ)Fn,l(ρ), (19.52)
with

ρFn,l(ρ) = e−αρ
n∑

k=l+1
akρ

k. (19.53)

The coefficients ak are obtained from (19.50). We have, finally, a complete
description of the states of a hydrogen atom.

19-5 The hydrogen wave functions

Let’s review what we have discovered. The states which satisfy Schrödinger’s
equation for an electron in a Coulomb field are characterized by three quantum
numbers n, l, m, all integers. The angular distribution of the electron amplitude
can have only certain forms which we call Yl,m. They are labeled by l, the
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quantum number of total angular momentum, and m, the “magnetic” quantum
number, which can range from −l to +l. For each angular configuration, various
possible radial distributions Fn,l(r) of the electron amplitude are possible; they
are labeled by the principal quantum number n—which can range from l+1 to∞.
The energy of the state depends only on n, and increases with increasing n.

The lowest energy, or ground, state is an s-state. It has l = 0, n = 1,
and m = 0. It is a “nondegenerate” state—there is only one with this energy, and
its wave function is spherically symmetric. The amplitude to find the electron is
a maximum at the center, and falls off monotonically with increasing distance
from the center. We can visualize the electron amplitude as a blob as shown in
Fig. 19-6(a).

There are other s-states with higher energies, for n = 2, 3, 4, . . . For each
energy there is only one version (m = 0), and they are all spherically symmetric.
These states have amplitudes which alternate in sign one or more times with
increasing r. There are n− 1 spherical nodal surfaces—the places where ψ goes
through zero. The 2s-state (l = 0, n = 2), for example, will look as sketched
in Fig. 19-6(b). (The dark areas indicate regions where the amplitude is large,
and the plus and minus signs indicate the relative phases of the amplitude.) The
energy levels of the s-states are shown in the first column of Fig. 19-7.

Then there are the p-states—with l = 1. For each n, which must be 2 or
greater, there are three states of the same energy, one each for m = +1, m = 0,
and m = −1. The energy levels are as shown in Fig. 19-7. The angular depend-
ences of these states are given in Table 19-1. For instance, for m = 0, if the
amplitude is positive for θ near zero, it will be negative for θ near 180◦. There is
a nodal plane coincident with the xy-plane. For n > 2 there are also spherical
nodes. The n = 2, m = 0 amplitude is sketched in Fig. 19-6(c), and the n = 3,
m = 0 wave function is sketched in Fig. 19-6(d).

You might think that since m represents a kind of “orientation” in space,
there should be similar distributions with the peaks of amplitude along the x-axis
or along the y-axis. Are these perhaps the m = +1 and m = −1 states? No.
But since we have three states with equal energies, any linear combinations of
the three will also be stationary states of the same energy. It turns out that the
“x”-state—which corresponds to the “z”-state, or m = 0 state, of Fig. 19-6(c)—is
a linear combination of the m = +1 and m = −1 states. The corresponding
“y”-state is another combination. Specifically, we mean that

“z” = | 1, 0〉,

19-22



(a)

x

z

1s; m = 0

+

(b)

x

z

2s; m = 0

+
−

(c)

x

z

2p; m = 0

+

−

(d)

x

z

3p; m = 0

−

+

−

+

(e)

x

z

3d ; m = 0

+

−
−

+

(f)

x

z

4d ; m = 0

−

+

+ −
− +

+

−

Fig. 19-6. Rough sketches showing the general nature of some of
the hydrogen wave functions. The shaded regions show where the
amplitudes are large. The plus and minus signs show the relative sign of
the amplitude in each region.

19-23



√
E

0

−13.6 eV

` = 0 1 2 3

s p d f

n

1

2

3

4

5
6

8
10

1s

2s

3s

4s

2p

3p

4p

3d

4d 4f

And so on

Fig. 19-7. The energy level diagram for hydrogen.

“x” = −| 1,+1〉 − | 1,−1〉√
2

,

“y” = −| 1,+1〉+ | 1,−1〉
i
√

2
.

These states all look the same when referred to their particular axes.
The d-states (l = 2) have five possible values of m for each energy, the lowest

energy has n = 3. The levels go as shown in Fig. 19-7. The angular dependences
get more complicated. For instance the m = 0 states have two conical nodes, so
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the wave function reverses phase from +, to −, to + as you go around from the
north pole to the south pole. The rough form of the amplitude is sketched in
(e) and (f) of Fig. 19-6 for the m = 0 states with n = 3 and n = 4. Again, the
larger n’s have spherical nodes.

We will not try to describe any more of the possible states. You will find
the hydrogen wave functions described in more detail in many books. Two good
references are L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics,
McGraw-Hill (1935); and R. B. Leighton, Principles of Modern Physics, McGraw-
Hill (1959). You will find in them graphs of some of the functions and pictorial
representations of many states.

We would like to mention one particular feature of the wave functions for
higher l: for l > 0 the amplitudes are zero at the center. That is not surprising,
since it’s hard for an electron to have angular momentum when its radius arm
is very small. For this reason, the higher the l, the more the amplitudes are
“pushed away” from the center. If you look at the way the radial functions Fn,l(r)
vary for small r, you find from (19.53) that

Fn,l(r) ≈ rl.

Such a dependence on r means that for larger l’s you have to go farther from r = 0
before you get an appreciable amplitude. This behavior is, incidentally, deter-
mined by the centrifugal force term in the radial equation, so the same thing
will apply for any potential that varies slower than 1/r2 for small r—which most
atomic potentials do.

19-6 The periodic table

We would like now to apply the theory of the hydrogen atom in an approximate
way to get some understanding of the chemist’s periodic table of the elements.
For an element with atomic number Z there are Z electrons held together by
the electric attraction of the nucleus but with mutual repulsion of the electrons.
To get an exact solution we would have to solve Schrödinger’s equation for
Z electrons in a Coulomb field. For helium the equation is

−~
i

∂ψ

∂t
= − ~2

2m (∇2
1ψ +∇2

2ψ) +
(
−2e2

r1
− 2e2

r2
+ e2

r12

)
ψ,

where ∇2
1 is a Laplacian which operates on r1, the coordinate of one electron;

∇2
2 operates on r2; and r12 = |r1 − r2|. (We are again neglecting the spin of the

19-25



electrons.) To find the stationary states and energy levels we would have to find
solutions of the form

ψ = f(r1, r2)e−(i/~)Et.

The geometrical dependence is contained in f , which is a function of six variables—
the simultaneous positions of the two electrons. No one has found an analytic
solution, although solutions for the lowest energy states have been obtained by
numerical methods.

With 3, 4, or 5 electrons it is hopeless to try to obtain exact solutions, and it
is going too far to say that quantum mechanics has given a precise understanding
of the periodic table. It is possible, however, even with a sloppy approximation—
and some fixing—to understand, at least qualitatively, many chemical properties
which show up in the periodic table.

The chemical properties of atoms are determined primarily by their lowest
energy states. We can use the following approximate theory to find these states
and their energies. First, we neglect the electron spin, except that we adopt the
exclusion principle and say that any particular electronic state can be occupied
by only one electron. This means that any particular orbital configuration can
have up to two electrons—one with spin up, the other with spin down. Next
we disregard the details of the interactions between the electrons in our first
approximation, and say that each electron moves in a central field which is the
combined field of the nucleus and all the other electrons. For neon, which has
10 electrons, we say that one electron sees an average potential due to the nucleus
plus the other nine electrons. We imagine then that in the Schrödinger equation
for each electron we put a V (r) which is a 1/r field modified by a spherically
symmetric charge density coming from the other electrons.

In this model each electron acts like an independent particle. The angular
dependence of its wave function will be just the same as the ones we had for the
hydrogen atom. There will be s-states, p-states, and so on; and they will have
the various possible m-values. Since V (r) no longer goes as 1/r, the radial part
of the wave functions will be somewhat different, but it will be qualitatively the
same, so we will have the same radial quantum numbers, n. The energies of the
states will also be somewhat different.

H

With these ideas, let’s see what we get. The ground state of hydrogen has
l = m = 0 and n = 1; we say the electron configuration is 1s. The energy is
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−13.6 eV. This means that it takes 13.6 electron volts to pull the electron off
the atom. We call this the “ionization energy”, WI . A large ionization energy
means that it is harder to pull the electron off and, in general, that the material
is chemically less active.

He

Now take helium. Both electrons can be in the same lowest state (one spin up
and the other spin down). In this lowest state the electron moves in a potential
which is for small r like a Coulomb field for z = 2 and for large r like a Coulomb
field for z = 1. The result is a “hydrogen-like” 1s state with a somewhat lower
energy. Both electrons occupy identical 1s states (l = 0, m = 0). The observed
ionization energy (to remove one electron) is 24.6 electron volts. Since the
1s “shell” is now filled—we allow only two electrons—there is practically no
tendency for an electron to be attracted from another atom. Helium is chemically
inert.

Li

The lithium nucleus has a charge of 3. The electron states will again be
hydrogen-like, and the three electrons will occupy the lowest three energy levels.
Two will go into 1s states and the third will go into an n = 2 state. But with
l = 0 or l = 1? In hydrogen these states have the same energy, but in other
atoms they don’t, for the following reason. Remember that a 2s state has some
amplitude to be near the nucleus while the 2p state does not. That means that
a 2s electron will feel some of the triple electric charge of the Li nucleus, but
that a 2p electron will stay out where the field looks like the Coulomb field of a
single charge. The extra attraction lowers the energy of the 2s state relative to
the 2p state. The energy levels will be roughly as shown in Fig. 19-8—which you
should compare with the corresponding diagram for hydrogen in Fig. 19-7. So
the lithium atom will have two electrons in 1s states and one in a 2s. Since the
2s electron has a higher energy than a 1s electron it is relatively easily removed.
The ionization energy of lithium is only 5.4 electron volts, and it is quite active
chemically.

So you can see the patterns which develop; we have given in Table 19-2 a
list of the first 36 elements, showing the states occupied by the electrons in the
ground state of each atom. The Table gives the ionization energy for the most
loosely bound electron, and the number of electrons occupying each “shell”—by
which we mean states with the same n. Since the different l-states have different
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Fig. 19-8. Schematic energy level diagram for an atomic electron with
other electrons present. (The scale is not the same as Fig. 19-7.)

energies, each l-value corresponds to a sub-shell of 2(2l + 1) possible states (of
different m and electron spin). These all have the same energy—except for some
very small effects we are neglecting.
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Table 19-2

The electron configurations of the first 36 elements

Z Element WI(eV)
Electron Configuration

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
1 H hydrogen 13.6 1
2 He helium 24.6 2
3 Li lithium 5.4 1
4 Be beryllium 9.3 2
5 B boron 8.3 2 1
6 C carbon 11.3 FILLED 2 2 Number of electrons
7 N nitrogen 14.5 (2) 2 3 in each state
8 O oxygen 13.6 2 4
9 F fluorine 17.4 2 5

10 Ne neon 21.6 2 6
11 Na sodium 5.1 1
12 Mg magnesium 7.6 2
13 Al aluminum 6.0 2 1
14 Si silicon 8.1 —FILLED— 2 2
15 P phosphorus 10.5 2 3
16 S sulfur 10.4 (2) (8) 2 4
17 Cl chlorine 13.0 2 5
18 Ar argon 15.8 2 6
19 K potassium 4.3 1
20 Ca calcium 6.1 2
21 Sc scandium 6.5 1 2
22 Ti titanium 6.8 2 2
23 V vanadium 6.7 ——FILLED—— 3 2
24 Cr chromium 6.8 5 1
25 Mn manganese 7.4 (2) (8) (8) 5 2
26 Fe iron 7.9 6 2
27 Co cobalt 7.9 7 2
28 Ni nickel 7.6 8 2
29 Cu copper 7.7 10 1
30 Zn zinc 9.4 10 2
31 Ga gallium 6.0 2 1
32 Ge germanium 7.9 ——FILLED—— 2 2
33 As arsenic 9.8 2 3
34 Se selenium 9.7 (2) (8) (18) 2 4
35 Br bromine 11.8 2 5
36 Kr krypton 14.0 2 6
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Be

Beryllium is like lithium except that it has two electrons in the 2s state as
well as two in the filled 1s shell.

B to Ne

Boron has 5 electrons. The fifth must go into a 2p state. There are 2× 3 = 6
different 2p states, so we can keep adding electrons until we get to a total of 8.
This takes us to neon. As we add these electrons we are also increasing Z, so the
whole electron distribution gets pulled in closer and closer to the nucleus and the
energy of the 2p states goes down. By the time we get to neon the ionization
energy is up to 21.6 electron volts. Neon does not easily give up an electron.
Also there are no more low-energy slots to be filled, so it won’t try to grab an
extra electron. Neon is chemically inert. Fluorine, on the other hand, does have
an empty position where an electron can drop into a state of low energy, so it is
quite active in chemical reactions.

Na to Ar

With sodium the eleventh electron must start a new shell—going into a
3s state. The energy level of this state is much higher; the ionization energy
jumps down; and sodium is an active chemical. From sodium to argon the s and
p states with n = 3 are occupied in exactly the same sequence as for lithium
to neon. Angular configurations of the electrons in the outer unfilled shell have
the same sequence, and the progression of ionization energies is quite similar.
You can see why the chemical properties repeat with increasing atomic number.
Magnesium acts chemically much like beryllium, silicon like carbon, and chlorine
like fluorine. Argon is inert like neon.

You may have noticed that there is a slight peculiarity in the sequence of
ionization energies between lithium and neon, and a similar one between sodium
and argon. The last electron is bound to the oxygen atom somewhat less than we
might expect. And sulfur is similar. Why should that be? We can understand it
if we put in just a little bit of the effects of the interactions between individual
electrons. Think of what happens when we put the first 2p electron onto the
boron atom. It has six possibilities—three possible p-states, each with two spins.
Imagine that the electron goes with spin up into the m = 0 state, which we have
also called the “z” state because it hugs the z-axis. Now what will happen in
carbon? There are now two 2p electrons. If one of them goes into the “z” state,
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where will the second one go? It will have lower energy if it stays away from the
first electron, which it can do by going into, say, the “x” state of the 2p shell. (This
state is, remember, just a linear combination of the m = +1 and m = −1 states.)
Next, when we go to nitrogen, the three 2p electrons will have the lowest energy
of mutual repulsion if they go one each into the “x,” “y,” and “z” configurations.
For oxygen, however, the jig is up. The fourth electron must go into one of the
filled states—with opposite spin. It is strongly repelled by the electron already
in that state, so its energy will not be as low as it might otherwise be, and it is
more easily removed. That explains the break in the sequence of binding energies
which appears between nitrogen and oxygen, and between phosphorus and sulfur.

K to Zn

After argon, you would, at first, think that the new electrons would start to
fill up the 3d states. But they don’t. As we described earlier—and illustrated in
Fig. 19-8—the higher angular momentum states get pushed up in energy. By the
time we get to the 3d states they are pushed to an energy a little bit above the
energy of the 4s state. So in potassium the last electron goes into the 4s state.
After this shell is filled (with two electrons) at calcium, the 3d states begin to be
filled for scandium, titanium, and vanadium.

The energies of the 3d and 4s states are so close together that small effects
can shift the balance either way. By the time we get to put four electrons into
the 3d states, their repulsion raises the energy of the 4s state just enough that its
energy is slightly above the 3d energy, so one electron shifts over. For chromium
we don’t get a 4, 2 combination as we would have expected, but instead a 5,
1 combination. The new electron added to get manganese fills up the 4s shell
again, and the states of the 3d shell are then occupied one by one until we reach
copper.

Since the outermost shell of manganese, iron, cobalt, and nickel have the
same configurations, however, they all tend to have similar chemical properties.
(This effect is much more pronounced in the rare-earth elements which all have
the same outer shell but a progressively filling inner shell which has much less
influence on their chemical properties.)

In copper an electron is robbed from the 4s shell, finally completing the
3d shell. The energy of the 10, 1 combination is, however, so close to the 9, 2
configuration for copper that just the presence of another atom nearby can shift
the balance. For this reason the two last electrons of copper are nearly equivalent,
and copper can have a valence of either 1 or 2. (It sometimes acts as though its
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electrons were in the 9, 2 combination.) Similar things happen at other places
and account for the fact that other metals, such as iron, combine chemically with
either of two valences. By zinc, both the 3d and 4s shells are filled once and for
all.

Ga to Kr

From gallium to krypton the sequence proceeds normally again, filling the
4p shell. The outer shells, the energies, and the chemical properties repeat the
pattern of boron to neon and aluminum to argon.

Krypton, like argon and neon, is known as “noble” gas. All three are chemically
“inert.” This means only that, having filled shells of relatively low energy, there
are few situations in which there is an energy advantage for them to join in
a simple combination with other elements. Having a filled shell is not enough.
Beryllium and magnesium have filled s-shells, but the energy of these shells is
too high to lead to stability. Similarly, one would have expected another “noble”
element at nickel, if the energy of the 3d shell had been lower (or the 4s higher).
On the other hand, krypton is not completely inert; it will form a weakly-bound
compound with chlorine.

Since our sample has turned up most of the main features of the periodic
table, we stop our examination at element number 36—there are still seventy or
so more!

We would like to bring up only one more point—that we not only can
understand the valences to some extent but also can say something about the
directional properties of the chemical bonds. Take an atom like oxygen which has
four 2p electrons. The first three go into “x,” “y,” and “z” states and the fourth
will double one of these states, leaving two—say “x” and “y”—vacant. Consider
then what happens in H2O. Each of the two hydrogens are willing to share an
electron with the oxygen, helping the oxygen to fill a shell. These electrons will
tend to go into the “x” and “y” vacancies. So the water molecule should have
the two hydrogen atoms making a right angle with respect to the center of the
oxygen. The angle is actually 105◦. We can even understand why the angle
is larger than 90◦. In sharing their electrons the hydrogens end up with a net
positive charge. The electric repulsion “strains” the wave functions and pushes
the angle out to 105◦. The same situation occurs in H2S. But because the sulfur
atom is larger, the two hydrogen atoms are farther apart, there is less repulsion,
and the angle is only pushed out to about 93◦. Selenium is even larger, so in
H2Se the angle is very nearly 90◦.
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We can use the same arguments to understand the geometry of ammonia,
H3N. Nitrogen has room for three more 2p electrons, one each for the “x,” “y,”
and “z” type states. The three hydrogens should join on at right angles to each
other. The angles come out a little larger than 90◦—again from the electric
repulsion—but at least we see why the molecule of H3N is not flat. The angles
in phosphene, H3P, are close to 90◦, and in H3As are still closer. We assumed
that NH3 was not flat when we described it as a two-state system. And the
nonflatness is what makes the ammonia maser possible. Now we see that also
that shape can be understood from our quantum mechanics.

The Schrödinger equation has been one of the great triumphs of physics. By
providing the key to the underlying machinery of atomic structure it has given
an explanation for atomic spectra, for chemistry, and for the nature of matter.
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20

Operators

20-1 Operations and operators

All the things we have done so far in quantum mechanics could be handled
with ordinary algebra, although we did from time to time show you some special
ways of writing quantum-mechanical quantities and equations. We would like
now to talk some more about some interesting and useful mathematical ways
of describing quantum-mechanical things. There are many ways of approaching
the subject of quantum mechanics, and most books use a different approach
from the one we have taken. As you go on to read other books you might not
see right away the connections of what you will find in them to what we have
been doing. Although we will also be able to get a few useful results, the main
purpose of this chapter is to tell you about some of the different ways of writing
the same physics. Knowing them you should be able to understand better what
other people are saying. When people were first working out classical mechanics
they always wrote all the equations in terms of x-, y-, and z-components. Then
someone came along and pointed out that all of the writing could be made much
simpler by inventing the vector notation. It’s true that when you come down
to figuring something out you often have to convert the vectors back to their
components. But it’s generally much easier to see what’s going on when you
work with vectors and also easier to do many of the calculations. In quantum
mechanics we were able to write many things in a simpler way by using the idea
of the “state vector.” The state vector |ψ〉 has, of course, nothing to do with
geometric vectors in three dimensions but is an abstract symbol that stands for a
physical state, identified by the “label,” or “name,” ψ. The idea is useful because
the laws of quantum mechanics can be written as algebraic equations in terms of
these symbols. For instance, our fundamental law that any state can be made up
from a linear combination of base states is written as

|ψ〉 =
∑
i

Ci | i〉, (20.1)
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where the Ci are a set of ordinary (complex) numbers—the amplitudes Ci =
〈i |ψ〉—while | 1〉, | 2〉, | 3〉, and so on, stand for the base states in some base, or
representation.

If you take some physical state and do something to it—like rotating it, or
like waiting for the time ∆t—you get a different state. We say, “performing an
operation on a state produces a new state.” We can express the same idea by an
equation:

|φ〉 = Â |ψ〉. (20.2)

An operation on a state produces another state. The operator Â stands for some
particular operation. When this operation is performed on any state, say |ψ〉, it
produces some other state |φ〉.

What does Eq. (20.2) mean? We define it this way. If you multiply the
equation by 〈i | and expand |ψ〉 according to Eq. (20.1), you get

〈i |φ〉 =
∑
j

〈i | Â | j〉〈j |ψ〉. (20.3)

(The states | j〉 are from the same set as | i〉.) This is now just an algebraic
equation. The numbers 〈i |φ〉 give the amount of each base state you will find
in |φ〉, and it is given in terms of a linear superposition of the amplitudes 〈j |ψ〉
that you find |ψ〉 in each base state. The numbers 〈i | Â | j〉 are just the coefficients
which tell how much of 〈j |ψ〉 goes into each sum. The operator Â is described
numerically by the set of numbers, or “matrix,”

Aij ≡ 〈i | Â | j〉. (20.4)

So Eq. (20.2) is a high-class way of writing Eq. (20.3). Actually it is a little
more than that; something more is implied. In Eq. (20.2) we do not make any
reference to a set of base states. Equation (20.3) is an image of Eq. (20.2) in
terms of some set of base states. But, as you know, you may use any set you
wish. And this idea is implied in Eq. (20.2). The operator way of writing avoids
making any particular choice. Of course, when you want to get definite you
have to choose some set. When you make your choice, you use Eq. (20.3). So
the operator equation (20.2) is a more abstract way of writing the algebraic
equation (20.3). It’s similar to the difference between writing

c = a× b
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instead of
cx = aybz − azby,

cy = azbx − axbz,

cz = axby − aybx.

The first way is much handier. When you want results, however, you will eventually
have to give the components with respect to some set of axes. Similarly, if you
want to be able to say what you really mean by Â, you will have to be ready to
give the matrix Aij in terms of some set of base states. So long as you have in
mind some set | i〉, Eq. (20.2) means just the same as Eq. (20.3). (You should
remember also that once you know a matrix for one particular set of base states
you can always calculate the corresponding matrix that goes with any other base.
You can transform the matrix from one “representation” to another.)

The operator equation in (20.2) also allows a new way of thinking. If we
imagine some operator Â, we can use it with any state |ψ〉 to create a new
state Â |ψ〉. Sometimes a “state” we get this way may be very peculiar—it may
not represent any physical situation we are likely to encounter in nature. (For
instance, we may get a state that is not normalized to represent one electron.)
In other words, we may at times get “states” that are mathematically artificial.
Such artificial “states” may still be useful, perhaps as the mid-point of some
calculation.

We have already shown you many examples of quantum-mechanical operators.
We have had the rotation operator R̂y(θ) which takes a state |ψ〉 and produces a
new state, which is the old state as seen in a rotated coordinate system. We have
had the parity (or inversion) operator P̂ , which makes a new state by reversing
all coordinates. We have had the operators σ̂x, σ̂y, and σ̂z for spin one-half
particles.

The operator Ĵz was defined in Chapter 17 in terms of the rotation operator
for a small angle ε.

R̂z(ε) = 1 + i

~
ε Ĵz. (20.5)

This just means, of course, that

R̂z(ε) |ψ〉 = |ψ〉+ i

~
ε Ĵz |ψ〉. (20.6)

In this example, Ĵz |ψ〉 is ~/iε times the state you get if you rotate |ψ〉 by the
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small angle ε and then subtract the original state. It represents a “state” which
is the difference of two states.

One more example. We had an operator p̂x—called the momentum operator
(x-component) defined in an equation like (20.6). If D̂x(L) is the operator which
displaces a state along x by the distance L, then p̂x is defined by

D̂x(δ) = 1 + i

~
δp̂x, (20.7)

where δ is a small displacement. Displacing the state |ψ〉 along x by a small
distance δ gives a new state |ψ′〉. We are saying that this new state is the old
state plus a small new piece

i

~
δp̂x |ψ〉.

The operators we are talking about work on a state vector like |ψ〉, which
is an abstract description of a physical situation. They are quite different from
algebraic operators which work on mathematical functions. For instance, d/dx is
an “operator” that works on f(x) by changing it to a new function f ′(x) = df/dx.
Another example is the algebraic operator ∇2. You can see why the same word is
used in both cases, but you should keep in mind that the two kinds of operators
are different. A quantum-mechanical operator Â does not work on an algebraic
function, but on a state vector like |ψ〉. Both kinds of operators are used in
quantum mechanics and often in similar kinds of equations, as you will see a little
later. When you are first learning the subject it is well to keep the distinction
always in mind. Later on, when you are more familiar with the subject, you
will find that it is less important to keep any sharp distinction between the two
kinds of operators. You will, indeed, find that most books generally use the same
notation for both!

We’ll go on now and look at some useful things you can do with operators.
But first, one special remark. Suppose we have an operator Â whose matrix in
some base is Aij ≡ 〈i | Â | j〉. The amplitude that the state Â |ψ〉 is also in some
other state |φ〉 is 〈φ | Â |ψ〉. Is there some meaning to the complex conjugate of
this amplitude? You should be able to show that

〈φ | Â |ψ〉∗ = 〈ψ | Â† |φ〉, (20.8)

where Â† (read “A dagger”) is an operator whose matrix elements are

A†ij = (Aji)∗. (20.9)
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To get the i, j element of A† you go to the j, i element of Â (the indexes are
reversed) and take its complex conjugate. The amplitude that the state Â† |φ〉
is in |ψ〉 is the complex conjugate of the amplitude that Â |ψ〉 is in |φ〉. The
operator Â† is called the “Hermitian adjoint” of Â. Many important operators of
quantum mechanics have the special property that when you take the Hermitian
adjoint, you get the same operator back. If B̂ is such an operator, then

B̂† = B̂,

and it is called a “self-adjoint” or “Hermitian,” operator.

20-2 Average energies

So far we have reminded you mainly of what you already know. Now we
would like to discuss a new question. How would you find the average energy of a
system—say, an atom? If an atom is in a particular state of definite energy and
you measure the energy, you will find a certain energy E. If you keep repeating
the measurement on each one of a whole series of atoms which are all selected
to be in the same state, all the measurements will give E, and the “average” of
your measurements will, of course, be just E.

Now, however, what happens if you make the measurement on some state |ψ〉
which is not a stationary state? Since the system does not have a definite energy,
one measurement would give one energy, the same measurement on another atom
in the same state would give a different energy, and so on. What would you get
for the average of a whole series of energy measurements?

We can answer the question by projecting the state |ψ〉 onto the set of states
of definite energy. To remind you that this is a special base set, we’ll call the
states | ηi〉. Each of the states | ηi〉 has a definite energy Ei. In this representation,

|ψ〉 =
∑
i

Ci | ηi〉. (20.10)

When you make an energy measurement and get some number Ei, you have
found that the system was in the state ηi. But you may get a different number
for each measurement. Sometimes you will get E1, sometimes E2, sometimes E3,
and so on. The probability that you observe the energy E1 is just the probability
of finding the system in the state | η1〉, which is, of course, just the absolute
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square of the amplitude C1 = 〈η1 |ψ〉. The probability of finding each of the
possible energies Ei is

Pi = |Ci|2. (20.11)
How are these probabilities related to the mean value of a whole sequence of

energy measurements? Let’s imagine that we get a series of measurements like
this: E1, E7, E11, E9, E1, E10, E7, E2, E3, E9, E6, E4, and so on. We continue
for, say, a thousand measurements. When we are finished we add all the energies
and divide by one thousand. That’s what we mean by the average. There’s also
a short-cut to adding all the numbers. You can count up how many times you
get E1, say that is N1, and then count up the number of times you get E2, call
that N2, and so on. The sum of all the energies is certainly just

N1E1 +N2E2 +N3E3 + · · · =
∑
i

NiEi.

The average energy is this sum divided by the total number of measurements
which is just the sum of all the Ni’s, which we can call N ;

Eav =
∑
iNiEi
N

. (20.12)

We are almost there. What we mean by the probability of something hap-
pening is just the number of times we expect it to happen divided by the total
number of tries. The ratio Ni/N should—for large N—be very near to Pi, the
probability of finding the state | ηi〉, although it will not be exactly Pi because
of the statistical fluctuations. Let’s write the predicted (or “expected”) average
energy as 〈E〉av; then we can say that

〈E〉av =
∑
i

PiEi. (20.13)

The same arguments apply for any measurement. The average value of a measured
quantity A should be equal to

〈A〉av =
∑
i

PiAi,

where Ai are the various possible values of the observed quantity, and Pi is the
probability of getting that value.

20-6



Let’s go back to our quantum-mechanical state |ψ〉. It’s average energy is

〈E〉av =
∑
i

|Ci|2Ei =
∑
i

C∗i CiEi. (20.14)

Now watch this trickery! First, we write the sum as∑
i

〈ψ | ηi〉Ei〈ηi |ψ〉. (20.15)

Next we treat the left-hand 〈ψ | as a common “factor.” We can take this factor
out of the sum, and write it as

〈ψ |
{∑

i

| ηi〉Ei〈ηi |ψ〉
}
.

This expression has the form
〈ψ |φ〉,

where |φ〉 is some “cooked-up” state defined by

|φ〉 =
∑
i

| ηi〉Ei〈ηi |ψ〉. (20.16)

It is, in other words, the state you get if you take each base state | ηi〉 in the
amount Ei〈ηi |ψ〉.

Now remember what we mean by the states | ηi〉. They are supposed to be
the stationary states—by which we mean that for each one,

Ĥ | ηi〉 = Ei | ηi〉.

Since Ei is just a number, the right-hand side is the same as | ηi〉Ei, and the sum
in Eq. (20.16) is the same as ∑

i

Ĥ | ηi〉〈ηi |ψ〉.

Now i appears only in the famous combination that contracts to unity, so∑
i

Ĥ | ηi〉〈ηi |ψ〉 = Ĥ
∑
i

| ηi〉〈ηi |ψ〉 = Ĥ |ψ〉.

20-7



Magic! Equation (20.16) is the same as

|φ〉 = Ĥ |ψ〉. (20.17)

The average energy of the state |ψ〉 can be written very prettily as

〈E〉av = 〈ψ | Ĥ |ψ〉. (20.18)

To get the average energy you operate on |ψ〉 with Ĥ, and then multiply by 〈ψ |.
A simple result.

Our new formula for the average energy is not only pretty. It is also useful,
because now we don’t need to say anything about any particular set of base
states. We don’t even have to know all of the possible energy levels. When we go
to calculate, we’ll need to describe our state in terms of some set of base states,
but if we know the Hamiltonian matrix Hij for that set we can get the average
energy. Equation (20.18) says that for any set of base states | i〉, the average
energy can be calculated from

〈E〉av =
∑
ij

〈ψ | i〉〈i | Ĥ | j〉〈j |ψ〉, (20.19)

where the amplitudes 〈i | Ĥ | j〉 are just the elements of the matrix Hij .
Let’s check this result for the special case that the states | i〉 are the definite

energy states. For them, Ĥ | j〉 = Ej | j〉, so 〈i | Ĥ | j〉 = Ej δij and

〈E〉av =
∑
ij

〈ψ | i〉Ejδij〈j |ψ〉 =
∑
i

Ei〈ψ | i〉〈i |ψ〉,

which is right.
Equation (20.19) can, incidentally, be extended to other physical measure-

ments which you can express as an operator. For instance, L̂z is the operator of
the z-component of the angular momentum L. The average of the z-component
for the state |ψ〉 is

〈Lz〉av = 〈ψ | L̂z |ψ〉.

One way to prove it is to think of some situation in which the energy is proportional
to the angular momentum. Then all the arguments go through in the same way.
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In summary, if a physical observable A is related to a suitable quantum-
mechanical operator Â, the average value of A for the state |ψ〉 is given by

〈A〉av = 〈ψ | Â |ψ〉. (20.20)
By this we mean that

〈A〉av = 〈ψ |φ〉, (20.21)
with

|φ〉 = Â |ψ〉. (20.22)

20-3 The average energy of an atom

Suppose we want the average energy of an atom in a state described by a wave
function ψ(r); How do we find it? Let’s first think of a one-dimensional situation
with a state |ψ〉 defined by the amplitude 〈x |ψ〉 = ψ(x). We are asking for the
special case of Eq. (20.19) applied to the coordinate representation. Following
our usual procedure, we replace the states | i〉 and | j〉 by |x〉 and |x′〉, and change
the sums to integrals. We get

〈E〉av =
∫ ∫

〈ψ |x〉〈x | Ĥ |x′〉〈x′ |ψ〉 dx dx′. (20.23)

This integral can, if we wish, be written in the following way:∫
〈ψ |x〉〈x |φ〉 dx, (20.24)

with
〈x |φ〉 =

∫
〈x | Ĥ |x′〉〈x′ |ψ〉 dx′. (20.25)

The integral over x′ in (20.25) is the same one we had in Chapter 16—see
Eq. (16.50) and Eq. (16.52)—and is equal to

− ~2

2m
d2

dx2 ψ(x) + V (x)ψ(x).

We can therefore write

〈x |φ〉 =
{
− ~2

2m
d2

dx2 + V (x)
}
ψ(x). (20.26)
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Remember that 〈ψ |x〉 = 〈x |ψ〉∗ = ψ∗(x); using this equality, the average
energy in Eq. (20.23) can be written as

〈E〉av =
∫
ψ∗(x)

{
− ~2

2m
d2

dx2 + V (x)
}
ψ(x) dx. (20.27)

Given a wave function ψ(x), you can get the average energy by doing this integral.
You can begin to see how we can go back and forth from the state-vector ideas
to the wave-function ideas.

The quantity in the braces of Eq. (20.27) is an algebraic operator.† We will
write it as Ĥ

Ĥ = − ~2

2m
d2

dx2 + V (x).

With this notation Eq. (20.23) becomes

〈E〉av =
∫
ψ∗(x)Ĥψ(x) dx. (20.28)

The algebraic operator Ĥ defined here is, of course, not identical to the
quantum-mechanical operator Ĥ. The new operator works on a function of
position ψ(x) = 〈x |ψ〉 to give a new function of x, φ(x) = 〈x |φ〉; while Ĥ
operates on a state vector |ψ〉 to give another state vector |φ〉, without implying
the coordinate representation or any particular representation at all. Nor is Ĥ
strictly the same as Ĥ even in the coordinate representation. If we choose
to work in the coordinate representation, we would interpret Ĥ in terms of
a matrix 〈x | Ĥ |x′〉 which depends somehow on the two “indices” x and x′;
that is, we expect—according to Eq. (20.25)—that 〈x |φ〉 is related to all the
amplitudes 〈x |ψ〉 by an integration. On the other hand, we find that Ĥ is a
differential operator. We have already worked out in Section 16-5 the connection
between 〈x | Ĥ |x′〉 and the algebraic operator Ĥ.

We should make one qualification on our results. We have been assuming
that the amplitude ψ(x) = 〈x |ψ〉 is normalized. By this we mean that the scale
has been chosen so that ∫

|ψ(x)|2 dx = 1;

† The “operator” V (x) means “multiply by V (x).”
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so the probability of finding the electron somewhere is unity. If you should choose
to work with a ψ(x) which is not normalized you should write

〈E〉av =
∫
ψ∗(x)Ĥψ(x) dx∫
ψ∗(x)ψ(x) dx . (20.29)

It’s the same thing.
Notice the similarity in form between Eq. (20.28) and Eq. (20.18). These

two ways of writing the same result appear often when you work with the x-
representation. You can go from the first form to the second with any Â which
is a local operator, where a local operator is one which in the integral∫

〈x | Â |x′〉〈x′ |ψ〉 dx′

can be written as Âψ(x), where Â is a differential algebraic operator. There are,
however, operators for which this is not true. For them you must work with the
basic equations in (20.21) and (20.22).

You can easily extend the derivation to three dimensions. The result is that†

〈E〉av =
∫
ψ∗(r)Ĥψ(r) dV, (20.30)

with

Ĥ = − ~2

2m ∇
2 + V (r), (20.31)

and with the understanding that∫
|ψ|2 dV = 1. (20.32)

The same equations can be extended to systems with several electrons in a fairly
obvious way, but we won’t bother to write down the results.

With Eq. (20.30) we can calculate the average energy of an atomic state even
without knowing its energy levels. All we need is the wave function. It’s an
important law. We’ll tell you about one interesting application. Suppose you

† We write dV ol for the element of volume. It is, of course, just dx dy dz, and the integral
goes from −∞ to +∞ in all three coordinates.
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want to know the ground-state energy of some system—say the helium atom, but
it’s too hard to solve Schrödinger’s equation for the wave function, because there
are too many variables. Suppose, however, that you take a guess at the wave
function—pick any function you like—and calculate the average energy. That is,
you use Eq. (20.29)—generalized to three dimensions-to find what the average
energy would be if the atom were really in the state described by this wave
function. This energy will certainly be higher than the ground-state energy which
is the lowest possible energy the atom can have.† Now pick another function and
calculate its average energy. If it is lower than your first choice you are getting
closer to the true ground-state energy. If you keep on trying all sorts of artificial
states you will be able to get lower and lower energies, which come closer and
closer to the ground-state energy. If you are clever, you will try some functions
which have a few adjustable parameters. When you calculate the energy it will
be expressed in terms of these parameters. By varying the parameters to give
the lowest possible energy, you are trying out a whole class of functions at once.
Eventually you will find that it is harder and harder to get lower energies and
you will begin to be convinced that you are fairly close to the lowest possible
energy. The helium atom has been solved in just this way—not by solving a
differential equation, but by making up a special function with a lot of adjustable
parameters which are eventually chosen to give the lowest possible value for the
average energy.

20-4 The position operator

What is the average value of the position of an electron in an atom? For any
particular state |ψ〉 what is the average value of the coordinate x? We’ll work in
one dimension and let you extend the ideas to three dimensions or to systems
with more than one particle: We have a state described by ψ(x), and we keep
measuring x over and over again. What is the average? It is∫

xP (x) dx,

where P (x) dx is the probability of finding the electron in a little element dx at x.
Suppose the probability density P (x) varies with x as shown in Fig. 20-1. The

† You can also look at it this way. Any function (that is, state) you choose can be written as a
linear combination of the base states which are definite energy states. Since in this combination
there is a mixture of higher energy states in with the lowest energy state, the average energy
will be higher than the ground-state energy.
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x

P (x)

Fig. 20-1. A curve of probability density representing a localized particle.

electron is most likely to be found near the peak of the curve. The average value
of x is also somewhere near the peak. It is, in fact, just the center of gravity of
the area under the curve.

We have seen earlier that P (x) is just |ψ(x)|2 = ψ∗(x)ψ(x), so we can write
the average of x as

〈x〉av =
∫
ψ∗(x)xψ(x) dx. (20.33)

Our equation for 〈x〉av has the same form as Eq. (20.28). For the average
energy, the energy operator Ĥ appears between the two ψ’s, for the average
position there is just x. (If you wish you can consider x to be the algebraic
operator “multiply by x.”) We can carry the parallelism still further, expressing
the average position in a form which corresponds to Eq. (20.18). Suppose we
just write

〈x〉av = 〈ψ |α〉 (20.34)
with

|α〉 = x̂ |ψ〉, (20.35)

and then see if we can find the operator x̂ which generates the state |α〉, which
will make Eq. (20.34) agree with Eq. (20.33). That is, we must find a |α〉, so
that

〈ψ |α〉 = 〈x〉av =
∫
〈ψ |x〉x〈x |ψ〉 dx. (20.36)
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First, let’s expand 〈ψ |α〉 in the x-representation. It is

〈ψ |α〉 =
∫
〈ψ |x〉〈x |α〉 dx. (20.37)

Now compare the integrals in the last two equations. You see that in the
x-representation

〈x |α〉 = x〈x |ψ〉. (20.38)
Operating on |ψ〉 with x̂ to get |α〉 is equivalent to multiplying ψ(x) = 〈x |ψ〉 by x
to get α(x) = 〈x |α〉. We have a definition of x̂ in the coordinate representation.†

[We have not bothered to try to get the x-representation of the matrix of the
operator x̂. If you are ambitious you can try to show that

〈x | x̂ |x′〉 = x δ(x− x′). (20.39)

You can then work out the amusing result that

x̂ |x〉 = x |x〉. (20.40)

The operator x̂ has the interesting property that when it works on the base
states |x〉 it is equivalent to multiplying by x.]

Do you want to know the average value of x2? It is

〈x2〉av =
∫
ψ∗(x)x2ψ(x) dx. (20.41)

Or, if you prefer you can write

〈x2〉av = 〈ψ |α′〉
with

|α′〉 = x̂2 |ψ〉. (20.42)

By x̂2 we mean x̂x̂—the two operators are used one after the other. With the
second form you can calculate 〈x2〉av, using any representation (base-states) you
wish. If you want the average of xn, or of any polynomial in x, you can see how
to get it.

† Equation (20.38) does not mean that |α〉 = x |ψ〉. You cannot “factor out” the 〈x |,
because the multiplier x in front of 〈x |ψ〉 is a number which is different for each state 〈x |. It
is the value of the coordinate of the electron in the state |x〉. See Eq. (20.40).
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20-5 The momentum operator

Now we would like to calculate the mean momentum of an electron—again,
we’ll stick to one dimension. Let P (p) dp be the probability that a measurement
will give a momentum between p and p+ dp. Then

〈p〉av =
∫
pP (p) dp. (20.43)

Now we let 〈p |ψ〉 be the amplitude that the state |ψ〉 is in a definite momentum
state | p〉. This is the same amplitude we called 〈mom p |ψ〉 in Section 16-3 and
is a function of p just as 〈x |ψ〉 is a function of x. There we chose to normalize
the amplitude so that

P (p) = 1
2π~ |〈p |ψ〉|

2. (20.44)

We have, then,

〈p〉av =
∫
〈ψ | p〉p〈p |ψ〉 dp2π~ . (20.45)

The form is quite similar to what we had for 〈x〉av.
If we want, we can play exactly the same game we did with 〈x〉av. First, we

can write the integral above as∫
〈ψ | p〉〈p |β〉 dp2π~ . (20.46)

You should now recognize this equation as just the expanded form of the ampli-
tude 〈ψ |β〉—expanded in terms of the base states of definite momentum. From
Eq. (20.45) the state |β〉 is defined in the momentum representation by

〈p |β〉 = p〈p |ψ〉 (20.47)
That is, we can now write

〈p〉av = 〈ψ |β〉 (20.48)
with

|β〉 = p̂ |ψ〉, (20.49)

where the operator p̂ is defined in terms of the p-representation by Eq. (20.47).
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[Again, you can if you wish show that the matrix form of p̂ is

〈p | p̂ | p′〉 = p δ(p− p′), (20.50)
and that

p̂ | p〉 = p | p〉. (20.51)

It works out the same as for x.]
Now comes an interesting question. We can write 〈p〉av, as we have done in Eqs.

(20.45) and (20.48), and we know the meaning of the operator p̂ in the momentum
representation. But how should we interpret p̂ in the coordinate representation?
That is what we will need to know if we have some wave function ψ(x), and
we want to compute its average momentum. Let’s make clear what we mean.
If we start by saying that 〈p〉av is given by Eq. (20.48), we can expand that
equation in terms of the p-representation to get back to Eq. (20.46). If we are
given the p-description of the state—namely the amplitude 〈p |ψ〉, which is an
algebraic function of the momentum p—we can get 〈p |β〉 from Eq. (20.47) and
proceed to evaluate the integral. The question now is: What do we do if we
are given a description of the state in the x-representation, namely the wave
function ψ(x) = 〈x |ψ〉?

Well, let’s start by expanding Eq. (20.48) in the x-representation. It is

〈p〉av =
∫
〈ψ |x〉〈x |β〉 dx. (20.52)

Now, however, we need to know what the state |β〉 is in the x-representation.
If we can find it, we can carry out the integral. So our problem is to find the
function β(x) = 〈x |β〉.

We can find it in the following way. In Section 16-3 we saw how 〈p |β〉 was
related to 〈x |β〉. According to Eq. (16.24),

〈p |β〉 =
∫
e−ipx/~〈x |β〉 dx. (20.53)

If we know 〈p |β〉 we can solve this equation for 〈x |β〉. What we want, of course,
is to express the result somehow in terms of ψ(x) = 〈x |ψ〉, which we are assuming
to be known. Suppose we start with Eq. (20.47) and again use Eq. (16.24) to
write

〈p |β〉 = p〈p |ψ〉 = p

∫
e−ipx/~ψ(x) dx. (20.54)
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Since the integral is over x we can put the p inside the integral and write

〈p |β〉 =
∫
e−ipx/~pψ(x) dx. (20.55)

Compare this with (20.53). You would say that 〈x |β〉 is equal to pψ(x). No, No!
The wave function 〈x |β〉 = β(x) can depend only on x—not on p. That’s the
whole problem.

However, some ingenious fellow discovered that the integral in (20.55) could be
integrated by parts. The derivative of e−ipx/~ with respect to x is (−i/~)pe−ipx/~,
so the integral in (20.55) is equivalent to

−~
i

∫
d

dx
(e−ipx/~)ψ(x) dx.

If we integrate by parts, it becomes

−~
i

[
e−ipx/~ψ(x)

]+∞
−∞ + ~

i

∫
e−ipx/~

dψ

dx
dx.

So long as we are considering bound states, so that ψ(x) goes to zero at x = ±∞,
the bracket is zero and we have

〈p |β〉 = ~
i

∫
e−ipx/~

dψ

dx
dx. (20.56)

Now compare this result with Eq. (20.53). You see that

〈x |β〉 = ~
i

d

dx
ψ(x). (20.57)

We have the necessary piece to be able to complete Eq. (20.52). The answer is

〈p〉av =
∫
ψ∗(x) ~

i

d

dx
ψ(x) dx. (20.58)

We have found how Eq. (20.48) looks in the coordinate representation.
Now you should begin to see an interesting pattern developing. When we

asked for the average energy of the state |ψ〉 we said it was

〈E〉av = 〈ψ |φ〉, with |φ〉 = Ĥ |ψ〉.
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The same thing is written in the coordinate world as

〈E〉av =
∫
ψ∗(x)φ(x) dx with φ(x) = Ĥψ(x).

Here Ĥ is an algebraic operator which works on a function of x. When we asked
about the average value of x, we found that it could also be written

〈x〉av = 〈ψ |α〉, with |α〉 = x̂ |ψ〉.

In the coordinate world the corresponding equations are

〈x〉av =
∫
ψ∗(x)α(x) dx, with α(x) = xψ(x).

When we asked about the average value of p, we wrote

〈p〉av = 〈ψ |β〉, with |β〉 = p̂ |ψ〉.

In the coordinate world the equivalent equations were

〈p〉av =
∫
ψ∗(x)β(x) dx, with β(x) = ~

i

d

dx
ψ(x).

In each of our three examples we start with the state |ψ〉 and produce another
(hypothetical) state by a quantum-mechanical operator. In the coordinate repre-
sentation we generate the corresponding wave function by operating on the wave
function ψ(x) with an algebraic operator. There are the following one-to-one
correspondences (for one-dimensional problems):

Ĥ → Ĥ = − ~2

2m
d2

dx2 + V (x),

x̂→ x,

p̂x → P̂x = ~
i

∂

∂x
.

(20.59)

In this list, we have introduced the symbol P̂x for the algebraic operator (~/i)∂/∂x:

P̂x = ~
i

∂

∂x
, (20.60)
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and we have inserted the x subscript on P̂ to remind you that we have been
working only with the x-component of momentum.

You can easily extend the results to three dimensions. For the other compo-
nents of the momentum,

p̂y → P̂y = ~
i

∂

∂y
,

p̂z → P̂z = ~
i

∂

∂z
.

If you want, you can even think of an operator of the vector momentum and
write

p̂→ P̂ = ~
i

(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
,

where ex, ey, and ez are the unit vectors in the three directions. It looks even
more elegant if we write

p̂→ P̂ = ~
i

∇. (20.61)

Our general result is that for at least some quantum-mechanical operators,
there are corresponding algebraic operators in the coordinate representation. We
summarize our results so far—extended to three dimensions—in Table 20-1. For
each operator we have the two equivalent forms:†

|φ〉 = Â |ψ〉 (20.62)
or

φ(r) = Âψ(r). (20.63)

We will now give a few illustrations of the use of these ideas. The first one is
just to point out the relation between P̂ and Ĥ. If we use P̂x twice, we get

P̂xP̂x = −~2 ∂2

∂x2 .

This means that we can write the equality

Ĥ = 1
2m {P̂xP̂x + P̂yP̂y + P̂zP̂z}+ V (r).

† In many books the same symbol is used for Â and Â, because they both stand for the
same physics, and because it is convenient not to have to write different kinds of letters. You
can usually tell which one is intended by the context.
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Table 20-1

Physical Quantity Operator Coordinate Form

Energy Ĥ Ĥ = − ~2

2m ∇
2 + V (r)

Position x̂ x

ŷ y

ẑ z

Momentum p̂x P̂x = ~
i

∂

∂x

p̂y P̂y = ~
i

∂

∂y

p̂z P̂z = ~
i

∂

∂z

Or, using the vector notation,

Ĥ = 1
2m P̂ · P̂ + V (r). (20.64)

(In an algebraic operator, any term without the operator symbol (ˆ) means just
a straight multiplication.) This equation is nice because it’s easy to remember if
you haven’t forgotten your classical physics. Everyone knows that the energy is
(nonrelativistically) just the kinetic energy p2/2m plus the potential energy, and
Ĥ is the operator of the total energy.

This result has impressed people so much that they try to teach students all
about classical physics before quantum mechanics. (We think differently!) But
such parallels are often misleading. For one thing, when you have operators, the
order of various factors is important; but that is not true for the factors in a
classical equation.

In Chapter 17 we defined an operator p̂x in terms of the displacement opera-
tor D̂x by [see Eq. (17.27)]

|ψ′〉 = D̂x(δ) |ψ〉 =
(

1 + i

~
p̂xδ

)
|ψ〉. (20.65)
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where δ is a small displacement. We should show you that this is equivalent to
our new definition. According to what we have just worked out, this equation
should mean the same as

ψ′(x) = ψ(x) + ∂ψ

∂x
δ.

But the right-hand side is just the Taylor expansion of ψ(x+δ), which is certainly
what you get if you displace the state to the left by δ (or shift the coordinates to
the right by the same amount). Our two definitions of p̂ agree!

Let’s use this fact to show something else. Suppose we have a bunch of
particles which we label 1, 2, 3, . . . , in some complicated system. (To keep things
simple we’ll stick to one dimension.) The wave function describing the state is a
function of all the coordinates x1, x2, x3, . . . We can write it as ψ(x1, x2, x3, . . . ).
Now displace the system (to the left) by δ. The new wave function

ψ′(x1, x2, x3, . . . ) = ψ(x1 + δ, x2 + δ, x3 + δ, . . . )

can be written as

ψ′(x1, x2, x3, . . . ) = ψ(x1, x2, x3, . . . )

+
{
δ
∂ψ

∂x1
+ δ

∂ψ

∂x2
+ δ

∂ψ

∂x3
+ · · ·

}
. (20.66)

According to Eq. (20.65) the operator of the momentum of the state |ψ〉 (let’s
call it the total momentum) is equal to

P̂total = ~
i

{
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ · · ·

}
.

But this is just the same as

P̂total = P̂x1 + P̂x2 + P̂x3 + · · · . (20.67)

The operators of momentum obey the rule that the total momentum is the sum
of the momenta of all the parts. Everything holds together nicely, and many of
the things we have been saying are consistent with each other.
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20-6 Angular momentum

Let’s for fun look at another operation—the operation of orbital angular
momentum. In Chapter 17 we defined an operator Ĵz in terms of R̂z(φ), the
operator of a rotation by the angle φ about the z-axis. We consider here a
system described simply by a single wave function ψ(r), which is a function of
coordinates only, and does not take into account the fact that the electron may
have its spin either up or down. That is, we want for the moment to disregard
intrinsic angular momentum and think about only the orbital part. To keep the
distinction clear, we’ll call the orbital operator L̂z, and define it in terms of the
operator of a rotation by an infinitesimal angle ε by

R̂z(ε) |ψ〉 =
(

1 + i

~
ε L̂z

)
|ψ〉.

(Remember, this definition applies only to a state |ψ〉 which has no internal
spin variables, but depends only on the coordinates r = x, y, z.) If we look at
the state |ψ〉 in a new coordinate system, rotated about the z-axis by the small
angle ε, we see a new state

|ψ′〉 = R̂z(ε) |ψ〉.

If we choose to describe the state |ψ〉 in the coordinate representation—that
is, by its wave function ψ(r), we would expect to be able to write

ψ′(r) =
(

1 + i

~
ε L̂z

)
ψ(r). (20.68)

What is L̂z? Well, a point P at x and y in the new coordinate system (really
x′ and y′, but we will drop the primes) was formerly at x − εy and y + εx, as
you can see from Fig. 20-2. Since the amplitude for the electron to be at P isn’t
changed by the rotation of the coordinates we can write

ψ′(x, y, z) = ψ(x− εy, y + εx, z) = ψ(x, y, z)− εy ∂ψ
∂x

+ εx
∂ψ

∂y

(remembering that ε is a small angle). This means that

L̂z = ~
i

(
x
∂

∂y
− y ∂

∂x

)
. (20.69)
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Fig. 20-2. Rotation of the axes around the z-axis by the small angle ε.

That’s our answer. But notice. It is equivalent to

L̂z = xP̂y − yP̂x. (20.70)

Returning to our quantum-mechanical operators, we can write

L̂z = xp̂y − yp̂x. (20.71)

This formula is easy to remember because it looks like the familiar formula of
classical mechanics; it is the z-component of

L = r × p. (20.72)

One of the fun parts of this operator business is that many classical equations
get carried over into a quantum-mechanical form. Which ones don’t? There had
better be some that don’t come out right, because if everything did, then there
would be nothing different about quantum mechanics. There would be no new
physics. Here is one equation which is different. In classical physics

xpx − pxx = 0.

What is it in quantum mechanics?

x̂p̂x − p̂xx̂ =?
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Let’s work it out in the x-representation. So that we’ll know what we are doing
we put in some wave function ψ(x). We have

xP̂xψ(x)− P̂xxψ(x),
or

x
~
i

∂

∂x
ψ(x)− ~

i

∂

∂x
xψ(x).

Remember now that the derivatives operate on everything to the right. We get

x
~
i

∂ψ

∂x
− ~
i
ψ(x)− ~

i
x
∂ψ

∂x
= −~

i
ψ(x). (20.73)

The answer is not zero. The whole operation is equivalent simply to multiplication
by −~/i:

x̂p̂x − p̂xx̂ = −~
i
. (20.74)

If Planck’s constant were zero, the classical and quantum results would be the
same, and there would be no quantum mechanics to learn!

Incidentally, if any two operators Â and B̂, when taken together like this:

ÂB̂ − B̂Â,

do not give zero, we say that “the operators do not commute.” And an equation
such as (20.74) is called a “commutation rule.” You can see that the commutation
rule for px and y is

p̂xŷ − ŷp̂x = 0.

There is another very important commutation rule that has to do with angular
momenta. It is

L̂xL̂y − L̂yL̂x = i~L̂z. (20.75)

You can get some practice with x̂ and p̂ operators by proving it for yourself.
It is interesting to notice that operators which do not commute can also

occur in classical physics. We have already seen this when we have talked about
rotation in space. If you rotate something, such as a book, by 90◦ around x
and then 90◦ around y, you get something different from rotating first by 90◦
around y and then by 90◦ around x. It is, in fact, just this property of space
that is responsible for Eq. (20.75).
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20-7 The change of averages with time

Now we want to show you something else. How do averages change with time?
Suppose for the moment that we have an operator Â, which does not itself have
time in it in any obvious way. We mean an operator like x̂ or p̂. (We exclude
things like, say, the operator of some external potential that was being varied
with time, such as V (x, t).) Now suppose we calculate 〈A〉av, in some state |ψ〉,
which is

〈A〉av = 〈ψ | Â |ψ〉. (20.76)
How will 〈A〉av, depend on time? Why should it? One reason might be that the
operator itself depended explicitly on time—for instance, if it had to do with a
time-varying potential like V (x, t). But even if the operator does not depend on t,
say, for example, the operator Â = x̂, the corresponding average may depend on
time. Certainly the average position of a particle could be moving. How does
such a motion come out of Eq. (20.76) if Â has no time dependence? Well, the
state |ψ〉 might be changing with time. For nonstationary states we have often
shown a time dependence explicitly by writing a state as |ψ(t)〉. We want to
show that the rate of change of 〈A〉av, is given by a new operator we will call ˆ̇A.
Remember that Â is an operator, so that putting a dot over the A does not here
mean taking the time derivative, but is just a way of writing a new operator ˆ̇A
which is defined by

d

dt
〈A〉av = 〈ψ | ˆ̇A |ψ〉. (20.77)

Our problem is to find the operator ˆ̇A.
First, we know that the rate of change of a state is given by the Hamiltonian.

Specifically,
i~

d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉. (20.78)

This is just the abstract way of writing our original definition of the Hamiltonian:

i~
dCi
dt

=
∑
j

HijCj . (20.79)

If we take the complex conjugate of Eq. (20.78), it is equivalent to

− i~ d

dt
〈ψ(t) | = 〈ψ(t) | Ĥ. (20.80)
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Next, see what happens if we take the derivatives with respect to t of Eq. (20.76).
Since each ψ depends on t, we have

d

dt
〈A〉av =

(
d

dt
〈ψ |
)
Â |ψ〉+ 〈ψ | Â

(
d

dt
|ψ〉
)
. (20.81)

Finally, using the two equations in (20.78) and (20.80) to replace the derivatives,
we get

d

dt
〈A〉av = i

~
{〈ψ | ĤÂ |ψ〉 − 〈ψ | ÂĤ |ψ〉}.

This equation is the same as
d

dt
〈A〉av = i

~
〈ψ | ĤÂ− ÂĤ |ψ〉.

Comparing this equation with Eq. (20.77), you see that

ˆ̇A = i

~
(ĤÂ− ÂĤ). (20.82)

That is our interesting proposition, and it is true for any operator Â.
Incidentally, if the operator Â should itself be time dependent, we would have

had
ˆ̇A = i

~
(ĤÂ− ÂĤ) + ∂Â

∂t
. (20.83)

Let us try out Eq. (20.82) on some example to see whether it really makes
sense. For instance, what operator corresponds to ˆ̇x? We say it should be

ˆ̇x = i

~
(Ĥx̂− x̂Ĥ). (20.84)

What is this? One way to find out is to work it through in the coordinate
representation using the algebraic operator for Ĥ. In this representation the
commutator is

Ĥx− xĤ =
{
− ~2

2m
d2

dx2 + V (x)
}
x− x

{
− ~2

2m
d2

dx2 + V (x)
}
.

If you operate with this or any wave function ψ(x) and work out all of the
derivatives where you can, you end up after a little work with

−~2

m

dψ

dx
.
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But this is just the same as

−i ~
m

P̂xψ,

so we find that
Ĥx̂− x̂Ĥ = −i ~

m
p̂x (20.85)

or that
ˆ̇x = p̂x

m
. (20.86)

A pretty result. It means that if the mean value of x is changing with time the
drift of the center of gravity is the same as the mean momentum divided by m.
Exactly like classical mechanics.

Another example. What is the rate of change of the average momentum of a
state? Same game. Its operator is

ˆ̇p = i

~
(Ĥp̂− p̂Ĥ). (20.87)

Again you can work it out in the x representation. Remember that p̂ becomes d/dx,
and this means that you will be taking the derivative of the potential energy V
(in the Ĥ)—but only in the second term. It turns out that it is the only term
which does not cancel, and you find that

ĤP̂− P̂Ĥ = i~
dV

dx
or that

ˆ̇p = −dV
dx

. (20.88)

Again the classical result. The right-hand side is the force, so we have derived
Newton’s law! But remember—these are the laws for the operators which give
the average quantities. They do not describe what goes on in detail inside an
atom.

Quantum mechanics has the essential difference that p̂x̂ is not equal to x̂p̂.
They differ by a little bit—by the small number i~. But the whole wondrous
complications of interference, waves, and all, result from the little fact that
x̂p̂− p̂x̂ is not quite zero.

The history of this idea is also interesting. Within a period of a few months in
1926, Heisenberg and Schrödinger independently found correct laws to describe
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atomic mechanics. Schrödinger invented his wave function ψ(x) and found his
equation. Heisenberg, on the other hand, found that nature could be described by
classical equations, except that xp−px should be equal to i~, which he could make
happen by defining them in terms of special kinds of matrices. In our language
he was using the energy-representation, with its matrices. Both Heisenberg’s
matrix algebra and Schrödinger’s differential equation explained the hydrogen
atom. A few months later Schrödinger was able to show that the two theories
were equivalent—as we have seen here. But the two different mathematical forms
of quantum mechanics were discovered independently.

20-28



21

The Schrödinger Equation in a Classical
Context: A Seminar on Superconductivity

21-1 Schrödinger’s equation in a magnetic field

This lecture is only for entertainment. I would like to give the lecture in
a somewhat different style—just to see how it works out. It’s not a part of
the course—in the sense that it is not supposed to be a last minute effort to
teach you something new. But, rather, I imagine that I’m giving a seminar or
research report on the subject to a more advanced audience, to people who have
already been educated in quantum mechanics. The main difference between a
seminar and a regular lecture is that the seminar speaker does not carry out all
the steps, or all the algebra. He says: “If you do such and such, this is what
comes out,” instead of showing all of the details. So in this lecture I’ll describe
the ideas all the way along but just give you the results of the computations. You
should realize that you’re not supposed to understand everything immediately,
but believe (more or less) that things would come out if you went through the
steps.

All that aside, this is a subject I want to talk about. It is recent and modern
and would be a perfectly legitimate talk to give at a research seminar. My subject
is the Schrödinger equation in a classical setting—the case of superconductivity.

Ordinarily, the wave function which appears in the Schrödinger equation
applies to only one or two particles. And the wave function itself is not something
that has a classical meaning—unlike the electric field, or the vector potential,
or things of that kind. The wave function for a single particle is a “field”—in
the sense that it is a function of position—but it does not generally have a
classical significance. Nevertheless, there are some situations in which a quantum
mechanical wave function does have classical significance, and they are the ones
I would like to take up. The peculiar quantum mechanical behavior of matter
on a small scale doesn’t usually make itself felt on a large scale except in the
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standard way that it produces Newton’s laws—the laws of the so-called classical
mechanics. But there are certain situations in which the peculiarities of quantum
mechanics can come out in a special way on a large scale.

At low temperatures, when the energy of a system has been reduced very,
very low, instead of a large number of states being involved, only a very, very
small number of states near the ground state are involved. Under those circum-
stances the quantum mechanical character of that ground state can appear on a
macroscopic scale. It is the purpose of this lecture to show a connection between
quantum mechanics and large-scale effects—not the usual discussion of the way
that quantum mechanics reproduces Newtonian mechanics on the average, but a
special situation in which quantum mechanics will produce its own characteristic
effects on a large or “macroscopic” scale.

I will begin by reminding you of some of the properties of the Schrödinger
equation.† I want to describe the behavior of a particle in a magnetic field
using the Schrödinger equation, because the superconductive phenomena are
involved with magnetic fields. An external magnetic field is described by a vector
potential, and the problem is: what are the laws of quantum mechanics in a
vector potential? The principle that describes the behavior of quantum mechanics
in a vector potential is very simple. The amplitude that a particle goes from one
place to another along a certain route when there’s a field present is the same
as the amplitude that it would go along the same route when there’s no field,
multiplied by the exponential of the line integral of the vector potential, times
the electric charge divided by Planck’s constant1 (see Fig. 21-1):

〈b | a〉in A = 〈b | a〉A=0 · exp
[
iq

~

∫ b

a

A · ds
]
. (21.1)

It is a basic statement of quantum mechanics.
Now without the vector potential the Schrödinger equation of a charged

particle (nonrelativistic, no spin) is

− ~
i

∂ψ

∂t
= Ĥψ = 1

2m

(
~
i

∇
)
·
(
~
i

∇
)
ψ + qφψ, (21.2)

† I’m not really reminding you, because I haven’t shown you some of these equations before;
but remember the spirit of this seminar.

1 Volume II, Section 15-5.
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a

b

Γ

Fig. 21-1. The amplitude to go from a to b along the path Γ is
proportional to exp

[
(iq/~)

∫ b
a
A · ds

]
.

where φ is the electric potential so that qφ is the potential energy.† Equation (21.1)
is equivalent to the statement that in a magnetic field the gradients in the
Hamiltonian are replaced in each case by the gradient minus qA, so that Eq. (21.2)
becomes

− ~
i

∂ψ

∂t
= Ĥψ = 1

2m

(
~
i

∇− qA
)
·
(
~
i

∇− qA
)
ψ + qφψ, (21.3)

This is the Schrödinger equation for a particle with charge q moving in an
electromagnetic field A, φ (nonrelativistic, no spin).

To show that this is true I’d like to illustrate by a simple example in which
instead of having a continuous situation we have a line of atoms along the x-axis
with the spacing b and we have an amplitude −K for an electron to jump from
one atom to another when there is no field.‡ Now according to Eq. (21.1) if
there’s a vector potential in the x-direction Ax(x, t), the amplitude to jump will
be altered from what it was before by a factor exp[(iq/~)Axb], the exponent
being iq/~ times the vector potential integrated from one atom to the next.
For simplicity we will write (q/~)Ax ≡ f(x), since Ax, will, in general, depend
on x. If the amplitude to find the electron at the atom “n” located at x is
called C(x) ≡ Cn, then the rate of change of that amplitude is given by the
following equation:

−~
i

∂

∂t
C(x) = E0C(x)−Ke−ibf(x+b/2)C(x+ b)

−Ke+ibf(x−b/2)C(x− b). (21.4)

† Not to be confused with our earlier use of φ for a state label!
‡ K is the same quantity that was called A in the problem of a linear lattice with no magnetic

field. See Chapter 13.
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There are three pieces. First, there’s some energy E0 if the electron is located
at x. As usual, that gives the term E0C(x). Next, there is the term −KC(x+ b),
which is the amplitude for the electron to have jumped backwards one step from
atom “n+ 1,” located at x+ b. However, in doing so in a vector potential, the
phase of the amplitude must be shifted according to the rule in Eq. (21.1). If Ax
is not changing appreciably in one atomic spacing, the integral can be written as
just the value of Ax at the midpoint, times the spacing b. So (iq/~) times the
integral is just ibf(x+ b/2). Since the electron is jumping backwards, I showed
this phase shift with a minus sign. That gives the second piece. In the same
manner there’s a certain amplitude to have jumped from the other side, but this
time we need the vector potential at a distance (b/2) on the other side of x, times
the distance b. That gives the third piece. The sum gives the equation for the
amplitude to be at x in a vector potential.

Now we know that if the function C(x) is smooth enough (we take the long
wavelength limit), and if we let the atoms get closer together, Eq. (21.4) will
approach the behavior of an electron in free space. So the next step is to expand
the right-hand side of (21.4) in powers of b, assuming b is very small. For
example, if b is zero the right-hand side is just (E0 − 2K)C(x), so in the zeroth
approximation the energy is E0 − 2K. Next comes the terms in b. But because
the two exponentials have opposite signs, only even powers of b remain. So if
you make a Taylor expansion of C(x), of f(x), and of the exponentials, and then
collect the terms in b2, you get

−~
i

∂C(x)
∂t

= E0C(x)− 2KC(x)

−Kb2{C ′′(x)− 2if(x)C ′(x)− if ′(x)C(x)− f2(x)C(x)}. (21.5)

(The “primes” mean differentiation with respect to x.)
Now this horrible combination of things looks quite complicated. But mathe-

matically it’s exactly the same as

− ~
i

∂C(x)
∂t

= (E0 − 2K)C(x)−Kb2
[
∂

∂x
− if(x)

][
∂

∂x
− if(x)

]
C(x). (21.6)

The second bracket operating on C(x) gives C ′(x) plus if(x)C(x). The first
bracket operating on these two terms gives the C ′′ term and terms in the first
derivative of f(x) and the first derivative of C(x). Now remember that the
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solutions for zero magnetic field2 represent a particle with an effective mass meff
given by

Kb2 = ~2

2meff
.

If you then set E0 = −2K, and put back f(x) = (q/~)Ax, you can easily check
that Eq. (21.6) is the same as the first part of Eq. (21.3). (The origin of the
potential energy term is well known, so I haven’t bothered to include it in this
discussion.) The proposition of Eq. (21.1) that the vector potential changes all the
amplitudes by the exponential factor is the same as the rule that the momentum
operator, (~/i)∇ gets replaced by

~
i

∇− qA,

as you see in the Schrödinger equation of (21.3).

21-2 The equation of continuity for probabilities

Now I turn to a second point. An important part of the Schrödinger equation
for a single particle is the idea that the probability to find the particle at a position
is given by the absolute square of the wave function. It is also characteristic of
the quantum mechanics that probability is conserved in a local sense. When the
probability of finding the electron somewhere decreases, while the probability of
the electron being elsewhere increases (keeping the total probability unchanged),
something must be going on in between. In other words, the electron has a
continuity in the sense that if the probability decreases at one place and builds
up at another place, there must be some kind of flow between. If you put a
wall, for example, in the way, it will have an influence and the probabilities will
not be the same. So the conservation of probability alone is not the complete
statement of the conservation law, just as the conservation of energy alone is
not as deep and important as the local conservation of energy.3 If energy is
disappearing, there must be a flow of energy to correspond. In the same way, we
would like to find a “current” of probability such that if there is any change in
the probability density (the probability of being found in a unit volume), it can
be considered as coming from an inflow or an outflow due to some current. This

2 Section 13-3.
3 Volume II, Section 27-1.
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current would be a vector which could be interpreted this way—the x-component
would be the net probability per second and per unit area that a particle passes
in the x-direction across a plane parallel to the yz-plane. Passage toward +x
is considered a positive flow, and passage in the opposite direction, a negative
flow.

Is there such a current? Well, you know that the probability density P (r, t)
is given in terms of the wave function by

P (r, t) = ψ∗(r, t)ψ(r, t). (21.7)

I am asking: Is there a current J such that

∂P

∂t
= −∇ · J? (21.8)

If I take the time derivative of Eq. (21.7), I get two terms:

∂P

∂t
= ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t
. (21.9)

Now use the Schrödinger equation—Eq. (21.3)—for ∂ψ/∂t; and take the complex
conjugate of it to get ∂ψ∗/∂t—each i gets its sign reversed. You get

∂P

∂t
= − i

~

[
ψ∗ 1

2m

(
~
i

∇− qA
)
·
(
~
i

∇− qA
)
ψ + qφψ∗ψ

− ψ 1
2m

(
−~
i

∇− qA
)
·
(
−~
i

∇− qA
)
ψ∗ − qφψψ∗

]
.

(21.10)

The potential terms and a lot of other stuff cancel out. And it turns out that
what is left can indeed be written as a perfect divergence. The whole equation is
equivalent to

∂P

∂t
= −∇ ·

{
1

2m ψ∗
(
~
i

∇− qA
)
ψ + 1

2m ψ

(
−~
i

∇− qA
)
ψ∗
}
. (21.11)

It is really not as complicated as it seems. It is a symmetrical combination of ψ∗
times a certain operation on ψ, plus ψ times the complex conjugate operation
on ψ∗. It is some quantity plus its own complex conjugate, so the whole thing is
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real—as it ought to be. The operation can be remembered this way: it is just
the momentum operator P̂ minus qA. I could write the current in Eq. (21.8) as

J = 1
2

{
ψ∗
[
P̂− qA
m

]
ψ + ψ

[
P̂− qA
m

]∗
ψ∗
}
. (21.12)

There is then a current J which completes Eq. (21.8).
Equation (21.11) shows that the probability is conserved locally. If a particle

disappears from one region it cannot appear in another without something going
on in between. Imagine that the first region is surrounded by a closed surface
far enough out that there is zero probability to find the electron at the surface.
The total probability to find the electron somewhere inside the surface is the
volume integral of P . But according to Gauss’s theorem the volume integral of
the divergence J is equal to the surface integral of J . If ψ is zero at the surface,
Eq. (21.12) says that J is zero, so the total probability to find the particle inside
can’t change. Only if some of the probability approaches the boundary can
some of it leak out. We can say that it only gets out by moving through the
surface—and that is local conservation.

21-3 Two kinds of momentum

The equation for the current is rather interesting, and sometimes causes a
certain amount of worry. You would think the current would be something like
the density of particles times the velocity. The density should be something
like ψψ∗, which is o.k. And each term in Eq. (21.12) looks like the typical form
for the average-value of the operator

P̂− qA
m

, (21.13)

so maybe we should think of it as the velocity of flow. It looks as though we
have two suggestions for relations of velocity to momentum, because we would
also think that momentum divided by mass, P̂/m, should be a velocity. The two
possibilities differ by the vector potential.

It happens that these two possibilities were also discovered in classical physics,
when it was found that momentum could be defined in two ways.4 One of them is

4 See, for example, J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc.,
New York (1962), p. 408.
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called “kinematic momentum,” but for absolute clarity I will in this lecture call
it the “mv-momentum.” This is the momentum obtained by multiplying mass
by velocity. The other is a more mathematical, more abstract momentum, some
times called the “dynamical momentum,” which I’ll call “p-momentum.” The two
possibilities are

mv-momentum = mv, (21.14)

p-momentum = mv + qA. (21.15)

It turns out that in quantum mechanics with magnetic fields it is the p-momentum
which is connected to the gradient operator P̂, so it follows that (21.13) is the
operator of a velocity.

I’d like to make a brief digression to show you what this is all about—why
there must be something like Eq. (21.15) in the quantum mechanics. The wave
function changes with time according to the Schrödinger equation in Eq. (21.3).
If I would suddenly change the vector potential, the wave function wouldn’t
change at the first instant; only its rate of change changes. Now think of what
would happen in the following circumstance. Suppose I have a long solenoid, in
which I can produce a flux of magnetic field (B-field), as shown in Fig. 21-2. And
there is a charged particle sitting nearby. Suppose this flux nearly instantaneously
builds up from zero to something. I start with zero vector potential and then I
turn on a vector potential. That means that I produce suddenly a circumferential
vector potential A. You’ll remember that the line integral of A around a loop is
the same as the flux of B through the loop.5 Now what happens if I suddenly
turn on a vector potential? According to the quantum mechanical equation the
sudden change of A does not make a sudden change of ψ; the wave function is
still the same. So the gradient is also unchanged.

But remember what happens electrically when I suddenly turn on a flux.
During the short time that the flux is rising, there’s an electric field generated
whose line integral is the rate of change of the flux with time:

E = −∂A
∂t

. (21.16)

That electric field is enormous if the flux is changing rapidly, and it gives a
force on the particle. The force is the charge times the electric field, and so

5 Volume II, Chapter 14, Section 14-1.
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Fig. 21-2. The electric field outside a solenoid with an increasing
current.

during the build up of the flux the particle obtains a total impulse (that is, a
change in mv) equal to −qA. In other words, if you suddenly turn on a vector
potential at a charge, this charge immediately picks up an mv-momentum equal
to −qA. But there is something that isn’t changed immediately and that’s the
difference between mv and −qA. And so the sum p = mv + qA is something
which is not changed when you make a sudden change in the vector potential.
This quantity p is what we have called the p-momentum and is of importance in
classical mechanics in the theory of dynamics, but it also has a direct significance
in quantum mechanics. It depends on the character of the wave function, and it
is the one to be identified with the operator

P̂ = ~
i

∇.
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21-4 The meaning of the wave function

When Schrödinger first discovered his equation he discovered the conservation
law of Eq. (21.8) as a consequence of his equation. But he imagined incorrectly
that P was the electric charge density of the electron and that J was the electric
current density, so he thought that the electrons interacted with the electromag-
netic field through these charges and currents. When he solved his equations
for the hydrogen atom and calculated ψ, he wasn’t calculating the probability
of anything—there were no amplitudes at that time—the interpretation was
completely different. The atomic nucleus was stationary but there were currents
moving around; the charges P and currents J would generate electromagnetic
fields and the thing would radiate light. He soon found on doing a number of
problems that it didn’t work out quite right. It was at this point that Born
made an essential contribution to our ideas regarding quantum mechanics. It
was Born who correctly (as far as we know) interpreted the ψ of the Schrödinger
equation in terms of a probability amplitude—that very difficult idea that the
square of the amplitude is not the charge density but is only the probability per
unit volume of finding an electron there, and that when you do find the electron
some place the entire charge is there. That whole idea is due to Born.

The wave function ψ(r) for an electron in an atom does not, then, describe a
smeared-out electron with a smooth charge density. The electron is either here,
or there, or somewhere else, but wherever it is, it is a point charge. On the other
hand, think of a situation in which there are an enormous number of particles in
exactly the same state, a very large number of them with exactly the same wave
function. Then what? One of them is here and one of them is there, and the
probability of finding any one of them at a given place is proportional to ψψ∗.
But since there are so many particles, if I look in any volume dx dy dz I will
generally find a number close to ψψ∗ dx dy dz. So in a situation in which ψ is
the wave function for each of an enormous number of particles which are all in
the same state, ψψ∗ can be interpreted as the density of particles. If, under
these circumstances, each particle carries the same charge q, we can, in fact, go
further and interpret ψ∗ψ as the density of electricity. Normally, ψψ∗ is given
the dimensions of a probability density, then ψ should be multiplied by q to give
the dimensions of a charge density. For our present purposes we can put this
constant factor into ψ, and take ψψ∗ itself as the electric charge density. With
this understanding, J (the current of probability I have calculated) becomes
directly the electric current density.
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So in the situation in which we can have very many particles in exactly the
same state, there is possible a new physical interpretation of the wave functions.
The charge density and the electric current can be calculated directly from the
wave functions and the wave functions take on a physical meaning which extends
into classical, macroscopic situations.

Something similar can happen with neutral particles. When we have the
wave function of a single photon, it is the amplitude to find a photon somewhere.
Although we haven’t ever written it down there is an equation for the photon
wave function analogous to the Schrödinger equation for the electron. The photon
equation is just the same as Maxwell’s equations for the electromagnetic field,
and the wave function is the same as the vector potential A. The wave function
turns out to be just the vector potential. The quantum physics is the same thing
as the classical physics because photons are noninteracting Bose particles and
many of them can be in the same state—as you know, they like to be in the
same state. The moment that you have billions in the same state (that is, in the
same electromagnetic wave), you can measure the wave function, which is the
vector potential, directly. Of course, it worked historically the other way. The
first observations were on situations with many photons in the same state, and
so we were able to discover the correct equation for a single photon by observing
directly with our hands on a macroscopic level the nature of wave function.

Now the trouble with the electron is that you cannot put more than one in
the same state. Therefore, it was long believed that the wave function of the
Schrödinger equation would never have a macroscopic representation analogous
to the macroscopic representation of the amplitude for photons. On the other
hand, it is now realized that the phenomena of superconductivity presents us
with just this situation.

21-5 Superconductivity

As you know, very many metals become superconducting below a certain
temperature6—the temperature is different for different metals. When you reduce
the temperature sufficiently the metals conduct electricity without any resistance.
This phenomenon has been observed for a very large number of metals but not
for all, and the theory of this phenomenon has caused a great deal of difficulty. It

6 First discovered by Kamerlingh-Onnes in 1911; H. Kamerlingh-Onnes, Comm. Phys. Lab.,
Univ. Leyden, Nos. 119, 120, 122 (1911). You will find a nice up-to-date discussion of the
subject in E. A. Lynton, Superconductivity, John Wiley and Sons, Inc., New York, 1962.
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took a very long time to understand what was going on inside of superconductors,
and I will only describe enough of it for our present purposes. It turns out that
due to the interactions of the electrons with the vibrations of the atoms in the
lattice, there is a small net effective attraction between the electrons. The result
is that the electrons form together, if I may speak very qualitatively and crudely,
bound pairs.

Now you know that a single electron is a Fermi particle. But a bound pair
would act as a Bose particle, because if I exchange both electrons in a pair I
change the sign of the wave function twice, and that means that I don’t change
anything. A pair is a Bose particle.

The energy of pairing—that is, the net attraction—is very, very weak. Only a
tiny temperature is needed to throw the electrons apart by thermal agitation, and
convert them back to “normal” electrons. But when you make the temperature
sufficiently low that they have to do their very best to get into the absolutely
lowest state; then they do collect in pairs.

I don’t wish you to imagine that the pairs are really held together very
closely like a point particle. As a matter of fact, one of the great difficulties of
understanding this phenomena originally was that that is not the way things
are. The two electrons which form the pair are really spread over a considerable
distance; and the mean distance between pairs is relatively smaller than the size
of a single pair. Several pairs are occupying the same space at the same time.
Both the reason why electrons in a metal form pairs and an estimate of the
energy given up in forming a pair have been a triumph of recent times. This
fundamental point in the theory of superconductivity was first explained in the
theory of Bardeen, Cooper, and Schrieffer,7 but that is not the subject of this
seminar. We will accept, however, the idea that the electrons do, in some manner
or other, work in pairs, that we can think of these pairs as behaving more or less
like particles, and that we can therefore talk about the wave function for a “pair.”

Now the Schrödinger equation for the pair will be more or less like Eq. (21.3).
There will be one difference in that the charge q will be twice the charge of
an electron. Also, we don’t know the inertia—or effective mass—for the pair
in the crystal lattice, so we don’t know what number to put in for m. Nor
should we think that if we go to very high frequencies (or short wavelengths),
this is exactly the right form, because the kinetic energy that corresponds to very
rapidly varying wave functions may be so great as to break up the pairs. At finite

7 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

21-12



temperatures there are always a few pairs which are broken up according to the
usual Boltzmann theory. The probability that a pair is broken is proportional
to exp(−Epair/kT ). The electrons that are not bound in pairs are called “normal”
electrons and will move around in the crystal in the ordinary way. I will, however,
consider only the situation at essentially zero temperature—or, in any case, I will
disregard the complications produced by those electrons which are not in pairs.

Since electron pairs are bosons, when there are a lot of them in a given state
there is an especially large amplitude for other pairs to go to the same state. So
nearly all of the pairs will be locked down at the lowest energy in exactly the
same state—it won’t be easy to get one of them into another state. There’s more
amplitude to go into the same state than into an unoccupied state by the famous
factor

√
n, where n− 1 is the occupancy of the lowest state. So we would expect

all the pairs to be moving in the same state.
What then will our theory look like? I’ll call ψ the wave function of a pair

in the lowest energy state. However, since ψψ∗ is going to be proportional to
the charge density ρ, I can just as well write ψ as the square root of the charge
density times some phase factor:

ψ(r) = ρ1/2(r)eiθ(r), (21.17)

where ρ and θ are real functions of r. (Any complex function can, of course, be
written this way.) It’s clear what we mean when we talk about the charge density,
but what is the physical meaning of the phase θ of the wave function? Well, let’s
see what happens if we substitute ψ(r) into Eq. (21.12), and express the current
density in terms of these new variables ρ and θ. It’s just a change of variables
and I won’t go through all the algebra, but it comes out

J = ~
m

(
∇θ − q

~
A

)
ρ. (21.18)

Since both the current density and the charge density have a direct physical
meaning for the superconducting electron gas, both ρ and θ are real things. The
phase is just as observable as ρ; it is a piece of the current density J . The absolute
phase is not observable, but if the gradient of the phase is known everywhere,
the phase is known except for a constant. You can define the phase at one point,
and then the phase everywhere is determined.

Incidentally, the equation for the current can be analyzed a little nicer, when
you think that the current density J is in fact the charge density times the
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velocity of motion of the fluid of electrons, or ρv. Equation (21.18) is then
equivalent to

mv = ~∇θ − qA. (21.19)

Notice that there are two pieces in the mv-momentum; one is a contribution
from the vector potential, and the other, a contribution from the behavior of the
wave function. In other words, the quantity ~∇θ is just what we have called the
p-momentum.

21-6 The Meissner effect

Now we can describe some of the phenomena of superconductivity. First,
there is no electrical resistance. There’s no resistance because all the electrons
are collectively in the same state. In the ordinary flow of current you knock one
electron or the other out of the regular flow, gradually deteriorating the general
momentum. But here to get one electron away from what all the others are doing
is very hard because of the tendency of all Bose particles to go in the same state.
A current once started, just keeps on going forever.

It’s also easy to understand that if you have a piece of metal in the supercon-
ducting state and turn on a magnetic field which isn’t too strong (we won’t go
into the details of how strong), the magnetic field can’t penetrate the metal. If, as
you build up the magnetic field, any of it were to build up inside the metal, there
would be a rate of change of flux which would produce an electric field, and an
electric field would immediately generate a current which, by Lenz’s law, would
oppose the flux. Since all the electrons will move together, an infinitesimal electric
field will generate enough current to oppose completely any applied magnetic field.
So if you turn the field on after you’ve cooled a metal to the superconducting
state, it will be excluded.

Even more interesting is a related phenomenon discovered experimentally by
Meissner.8 If you have a piece of the metal at a high temperature (so that it
is a normal conductor) and establish a magnetic field through it, and then you
lower the temperature below the critical temperature (where the metal becomes
a superconductor), the field is expelled. In other words, it starts up its own
current—and in just the right amount to push the field out.

We can see the reason for that in the equations, and I’d like to explain how.
Suppose that we take a piece of superconducting material which is in one lump.

8 W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).
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Then in a steady situation of any kind the divergence of the current must be
zero because there’s no place for it to go. It is convenient to choose to make the
divergence of A equal to zero. (I should explain why choosing this convention
doesn’t mean any loss of generality, but I don’t want to take the time.) Taking
the divergence of Eq. (21.18), then gives that the Laplacian of θ is equal to zero.
One moment. What about the variation of ρ? I forgot to mention an important
point. There is a background of positive charge in this metal due to the atomic
ions of the lattice. If the charge density ρ is uniform there is no net charge and
no electric field. If there would be any accumulation of electrons in one region the
charge wouldn’t be neutralized and there would be a terrific repulsion pushing the
electrons apart.† So in ordinary circumstances the charge density of the electrons
in the superconductor is almost perfectly uniform—I can take ρ as a constant.
Now the only way that ∇2θ can be zero everywhere inside the lump of metal is
for θ to be a constant. And that means that there is no contribution to J from
p-momentum. Equation (21.18) then says that the current is proportional to ρ
times A. So everywhere in a lump of superconducting material the current is
necessarily proportional to the vector potential:

J = −ρ q

m
A. (21.20)

Since ρ and q have the same (negative) sign, and since ρ is a constant, I can
set −ρq/m = −(some positive constant); then

J = −(some positive constant)A. (21.21)

This equation was originally proposed by London and London9 to explain the
experimental observations of superconductivity—long before the quantum me-
chanical origin of the effect was understood.

Now we can use Eq. (21.20) in the equations of electromagnetism to solve for
the fields. The vector potential is related to the current density by

∇2A = − 1
ε0c2

J . (21.22)

† Actually if the electric field were too strong, pairs would be broken up and the “normal”
electrons created would move in to help neutralize any excess of positive charge. Still, it takes
energy to make these normal electrons, so the main point is that a nearly uniform density ρ is
highly favored energetically.

9 F. London and H. London, Proc. Roy. Soc. (London) A149, 71 (1935); Physica 2, 341
(1935).
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If I use Eq. (21.21) for J , I have

∇2A = λ2A, (21.23)

where λ2 is just a new constant;

λ2 = ρ
q

ε0mc2
. (21.24)

We can now try to solve this equation for A and see what happens in detail.
For example, in one dimension Eq. (21.23) has exponential solutions of the form
e−λx and e+λx. These solutions mean that the vector potential must decrease
exponentially as you go from the surface into the material. (It can’t increase
because there would be a blow up.) If the piece of metal is very large compared
to 1/λ, the field only penetrates to a thin layer at the surface—a layer about 1/λ
in thickness. The entire remainder of the interior is free of field, as sketched in
Fig. 21-3. This is the explanation of the Meissner effect.

How big is the distance λ? Well, remember that r0, the “electromagnetic
radius” of the electron (2.8× 10−13 cm), is given by

mc2 = q2
e

4πε0r0
.

Also, remember that q in Eq. (21.24) is twice the charge of an electron, so

q2

ε0mc2
= 8πr0

qe
.

Writing ρ as qeN , where N is the number of electrons per cubic centimeter, we
have

λ2 = 8πNr0. (21.25)
For a metal such as lead there are about 3× 1022 atoms per cm3, so if each one
contributed only one conduction electron, 1/λ would be about 2×10−6 cm. That
gives you the order of magnitude.

21-7 Flux quantization

The London equation (21.21) was proposed to account for the observed facts
of superconductivity including the Meissner effect. In recent times, however,
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Fig. 21-3. (a) A superconducting cylinder in a magnetic field; (b) the
magnetic field B as a function of r .
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there have been some even more dramatic predictions. One prediction made by
London was so peculiar that nobody paid much attention to it until recently. I
will now discuss it. This time instead of taking a single lump, suppose we take
a ring whose thickness is large compared to 1/λ, and try to see what would
happen if we started with a magnetic field through the ring, then cooled it to
the superconducting state, and afterward removed the original source of B. The
sequence of events is sketched in Fig. 21-4. In the normal state there will be a

(a)

B

(b)

B

(c)

B

Fig. 21-4. A ring in a magnetic field: (a) in the normal state; (b) in
the superconducting state; (c) after the external field is removed.
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field in the body of the ring as sketched in part (a) of the figure. When the ring
is made superconducting, the field is forced outside of the material (as we have
just seen). There will then be some flux through the hole of the ring as sketched
in part (b). If the external field is now removed, the lines of field going through
the hole are “trapped” as shown in part (c). The flux Φ through the center
can’t decrease because ∂Φ/∂t must be equal to the line integral of E around
the ring, which is zero in a superconductor. As the external field is removed a
super current starts flowing around the ring to keep the flux through the ring
a constant. (It’s the old eddy-current idea, only with zero resistance.) These
currents will, however, all flow near the surface (down to a depth 1/λ), as can
be shown by the same kind of analysis that I made for the solid block. These
currents can keep the magnetic field out of the body of the ring, and produce
the permanently trapped magnetic field as well.

Now, however, there is an essential difference, and our equations predict a
surprising effect. The argument I made above that θ must be a constant in a solid
block does not apply for a ring, as you can see from the following arguments.

Well inside the body of the ring the current density J is zero; so Eq. (21.18)
gives

~∇θ = qA. (21.26)
Now consider what we get if we take the line integral of A around a curve Γ,
which goes around the ring near the center of its cross-section so that it never
gets near the surface, as drawn in Fig. 21-5. From Eq. (21.26),

~
∮

∇θ · ds = q

∮
A · ds. (21.27)

Now you know that the line integral of A around any loop is equal to the flux

Γ

Fig. 21-5. The curve Γ inside a superconducting ring.
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of B through the loop ∮
A · ds = Φ.

Equation (21.27) then becomes∮
∇θ · ds = q

~
Φ. (21.28)

The line integral of a gradient from one point to another (say from point 1 to
point 2) is the difference of the values of the function at the two points. Namely,∫ 2

1
∇θ · ds = θ2 − θ1.

If we let the two end points 1 and 2 come together to make a closed loop you
might at first think that θ2 would equal θ1, so that the integral in Eq. (21.28)
would be zero. That would be true for a closed loop in a simply-connected piece
of superconductor, but it is not necessarily true for a ring-shaped piece. The
only physical requirement we can make is that there can be only one value of the
wave function for each point. Whatever θ does as you go around the ring, when
you get back to the starting point the θ you get must give the same value for the
wave function

ψ = √ρeiθ.
This will happen if θ changes by 2πn, where n is any integer. So if we make one
complete turn around the ring the left-hand side of Eq. (21.27) must be ~ · 2πn.
Using Eq. (21.28), I get that

2πn~ = qΦ. (21.29)
The trapped flux must always be an integer times 2π~/q! If you would think of the
ring as a classical object with an ideally perfect (that is, infinite) conductivity,
you would think that whatever flux was initially found through it would just stay
there—any amount of flux at all could be trapped. But the quantum-mechanical
theory of superconductivity says that the flux can be zero, or 2π~/q, or 4π~/q,
or 6π~/q, and so on, but no value in between. It must be a multiple of a basic
quantum mechanical unit.

London10 predicted that the flux trapped by a superconducting ring would
be quantized and said that the possible values of the flux would be given by

10 F. London, Superfluids; John Wiley and Sons, Inc., New York, 1950, Vol. I, p. 152.
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Eq. (21.29) with q equal to the electronic charge. According to London the basic
unit of flux should be 2π~/qe, which is about 4× 10−7 gauss · cm2. To visualize
such a flux, think of a tiny cylinder a tenth of a millimeter in diameter; the
magnetic field inside it when it contains this amount of flux is about one percent
of the earth’s magnetic field. It should be possible to observe such a flux by a
sensitive magnetic measurement.

In 1961 such a quantized flux was looked for and found by Deaver and
Fairbank11 at Stanford University and at about the same time by Doll and
Näbauer12 in Germany.

In the experiment of Deaver and Fairbank, a tiny cylinder of superconductor
was made by electroplating a thin layer of tin on a one-centimeter length of
No. 56 (1.3× 10−3 cm diameter) copper wire. The tin becomes superconducting
below 3.8◦K while the copper remains a normal metal. The wire was put in a
small controlled magnetic field, and the temperature reduced until the tin became
superconducting. Then the external source of field was removed. You would
expect this to generate a current by Lenz’s law so that the flux inside would not
change. The little cylinder should now have magnetic moment proportional to
the flux inside. The magnetic moment was measured by jiggling the wire up and
down (like the needle on a sewing machine, but at the rate of 100 cycles per
second) inside a pair of little coils at the ends of the tin cylinder. The induced
voltage in the coils was then a measure of the magnetic moment.

When the experiment was done by Deaver and Fairbank, they found that
the flux was quantized, but that the basic unit was only one-half as large as
London had predicted. Doll and Näbauer got the same result. At first this was
quite mysterious,† but we now understand why it should be so. According to
the Bardeen, Cooper, and Schrieffer theory of superconductivity, the q which
appears in Eq. (21.29) is the charge of a pair of electrons and so is equal to 2qe.
The basic flux unit is

Φ0 = π~
qe
≈ 2× 10−7 gauss · cm2 (21.30)

or one-half the amount predicted by London. Everything now fits together, and

† It has once been suggested by Onsager that this might happen (see Deaver and Fairbank,
Ref. 11), although no one else ever understood why.

11 B. S. Deaver, Jr., and W. M. Fairbank, Phys. Rev. Letters 7, 43 (1961).
12 R. Doll and M. Näbauer, Phys. Rev. Letters 7, 51 (1961).
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the measurements show the existence of the predicted purely quantum-mechanical
effect on a large scale.

21-8 The dynamics of superconductivity

The Meissner effect and the flux quantization are two confirmations of our
general ideas. Just for the sake of completeness I would like to show you what
the complete equations of a superconducting fluid would be from this point of
view—it is rather interesting. Up to this point I have only put the expression
for ψ into equations for charge density and current. If I put it into the complete
Schrödinger equation I get equations for ρ and θ. It should be interesting to see
what develops, because here we have a “fluid” of electron pairs with a charge
density ρ and a mysterious θ—we can try to see what kind of equations we get
for such a “fluid”! So we substitute the wave function of Eq. (21.17) into the
Schrödinger equation (21.3) and remember that ρ and θ are real functions of x, y,
z, and t. If we separate real and imaginary parts we obtain then two equations.
To write them in a shorter form I will—following Eq. (21.19)—write

~
m

∇θ − q

m
A = v. (21.31)

One of the equations I get is then

∂ρ

∂t
= −∇ · ρv. (21.32)

Since ρv is first J , this is just the continuity equation once more. The other
equation I obtain tells how θ varies; it is

~
∂θ

∂t
= −m2 v2 − qφ+ ~2

2m

{
1
√
ρ
∇2(√ρ)

}
. (21.33)

Those who are thoroughly familiar with hydrodynamics (of which I’m sure few of
you are) will recognize this as the equation of motion for an electrically charged
fluid if we identify ~θ as the “velocity potential”—except that the last term,
which should be the energy of compression of the fluid, has a rather strange
dependence on the density ρ. In any case, the equation says that the rate of
change of the quantity ~θ is given by a kinetic energy term, − 1

2mv
2, plus a

potential energy term, −qφ, with an additional term, containing the factor ~2,
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which we could call a “quantum mechanical energy.” We have seen that inside a
superconductor ρ is kept very uniform by the electrostatic forces, so this term can
almost certainly be neglected in every practical application provided we have only
one superconducting region. If we have a boundary between two superconductors
(or other circumstances in which the value of ρ may change rapidly) this term
can become important.

For those who are not so familiar with the equations of hydrodynamics, I can
rewrite Eq. (21.33) in a form that makes the physics more apparent by using
Eq. (21.31) to express θ in terms of v. Taking the gradient of the whole of
Eq. (21.33) and expressing ∇θ in terms of A and v by using (21.31), I get

∂v

∂t
= q

m

(
−∇φ− ∂A

∂t

)
−v×(∇×v)−(v ·∇)v+∇ ~2

2m2

(
1
√
ρ
∇2√ρ

)
. (21.34)

What does this equation mean? First, remember that

−∇φ− ∂A

∂t
= E. (21.35)

Next, notice that if I take the curl of Eq. (21.31), I get

∇× v = − q

m
∇×A, (21.36)

since the curl of a gradient is always zero. But ∇×A is the magnetic field B,
so the first two terms can be written as

q

m
(E + v ×B).

Finally, you should understand that ∂v/∂t stands for the rate of change of the
velocity of the fluid at a point. If you concentrate on a particular particle, its
acceleration is the total derivative of v (or, as it is sometimes called in fluid
dynamics, the “comoving acceleration”), which is related to ∂v/∂t by13

dv

dt

∣∣∣∣
comoving

= ∂v

∂t
+ (v ·∇)v. (21.37)

This extra term also appears as the third term on the right side of Eq. (21.34).
13 See Volume II, Section 40-2.
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Taking it to the left side, I can write Eq. (21.34) in the following way:

m
dv

dt

∣∣∣∣
comoving

= q(E + v ×B) + ∇ ~2

2m2

(
1
√
ρ
∇2√ρ

)
. (21.38)

We also have from Eq. (21.36) that

∇× v = − q

m
B. (21.39)

These two equations are the equations of motion of the superconducting
electron fluid. The first equation is just Newton’s law for a charged fluid in an
electromagnetic field. It says that the acceleration of each particle of the fluid
whose charge is q comes from the ordinary Lorentz force q(E + v ×B) plus an
additional force, which is the gradient of some mystical quantum mechanical
potential—a force which is not very big except at the junction between two
superconductors. The second equation says that the fluid is “ideal”—the curl
of v has zero divergence (the divergence of B is always zero). That means that
the velocity can be expressed in terms of velocity potential. Ordinarily one writes
that ∇× v = 0 for an ideal fluid, but for an ideal charged fluid in a magnetic
field, this gets modified to Eq. (21.39).

So, Schrödinger’s equation for the electron pairs in a superconductor gives us
the equations of motion of an electrically charged ideal fluid. Superconductivity
is the same as the problem of the hydrodynamics of a charged liquid. If you want
to solve any problem about superconductors you take these equations for the
fluid [or the equivalent pair, Eqs. (21.32) and (21.33)], and combine them with
Maxwell’s equations to get the fields. (The charges and currents you use to get
the fields must, of course, include the ones from the superconductor as well as
from the external sources.)

Incidentally, I believe that Eq. (21.38) is not quite correct, but ought to
have an additional term involving the density. This new term does not depend
on quantum mechanics, but comes from the ordinary energy associated with
variations of density. Just as in an ordinary fluid there should be a potential
energy density proportional to the square of the deviation of ρ from ρ0, the
undisturbed density (which is, here, also equal to the charge density of the crystal
lattice). Since there will be forces proportional to the gradient of this energy, there
should be another term in Eq. (21.38) of the form: (const) ∇(ρ−ρ0)2. This term
did not appear from the analysis because it comes from the interactions between
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particles, which I neglected in using an independent-particle approximation. It is,
however, just the force I referred to when I made the qualitative statement that
electrostatic forces would tend to keep ρ nearly constant inside a superconductor.

21-9 The Josephson junction

I would like to discuss next a very interesting situation that was noticed
by Josephson14 while analyzing what might happen at a junction between two
superconductors. Suppose we have two superconductors which are connected by
a thin layer of insulating material as in Fig. 21-6. Such an arrangement is now
called a “Josephson junction.” If the insulating layer is thick, the electrons can’t
get through; but if the layer is thin enough, there can be an appreciable quantum
mechanical amplitude for electrons to jump across. This is just another example
of the quantum-mechanical penetration of a barrier. Josephson analyzed this
situation and discovered that a number of strange phenomena should occur.

SUPERCONDUCTOR

INSULATOR

1 2

Fig. 21-6. Two superconductors separated by a thin insulator.

In order to analyze such a junction I’ll call the amplitude to find an electron on
one side, ψ1, and the amplitude to find it on the other, ψ2. In the superconducting
state the wave function, ψ1 is the common wave function of all the electrons
on one side, and ψ2 is the corresponding function on the other side. I could do
this problem for different kinds of superconductors, but let us take a very simple
situation in which the material is the same on both sides so that the junction

14 B. D. Josephson, Physics Letters 1, 251 (1962).
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is symmetrical and simple. Also, for a moment let there be no magnetic field.
Then the two amplitudes should be related in the following way:

i~
∂ψ1

∂t
= U1ψ1 +Kψ2,

i~
∂ψ2

∂t
= U2ψ2 +Kψ1.

The constant K is a characteristic of the junction. If K were zero, these two
equations would just describe the lowest energy state—with energy U—of each
superconductor. But there is coupling between the two sides by the amplitude K
that there may be leakage from one side to the other. (It is just the “flip-flop”
amplitude of a two-state system.) If the two sides are identical, U1 would equal U2
and I could just subtract them off. But now suppose that we connect the two
superconducting regions to the two terminals of a battery so that there is a
potential difference V across the junction. Then U1 − U2 = qV . I can, for
convenience, define the zero of energy to be halfway between, then the two
equations are

i~
∂ψ1

∂t
= qV

2 ψ1 +Kψ2,

i~
∂ψ2

∂t
= −qV2 ψ2 +Kψ1.

(21.40)

These are the standard equations for two quantum mechanical states coupled
together. This time, let’s analyze these equations in another way. Let’s make
the substitutions

ψ1 = √ρ1e
iθ1 ,

ψ2 = √ρ2e
iθ2 ,

(21.41)

where θ1 and θ2 are the phases on the two sides of the junction and ρ1 and ρ2 are
the density of electrons at those two points. Remember that in actual practice
ρ1 and ρ2 are almost exactly the same and are equal to ρ0, the normal density of
electrons in the superconducting material. Now if you substitute these equations
for ψ1 and ψ2 into (21.40), you get four equations by equating the real and
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imaginary parts in each case. Letting (θ2 − θ1) = δ, for short, the result is

ρ̇1 = + 2
~
K
√
ρ2ρ1 sin δ,

ρ̇2 = −2
~
K
√
ρ2ρ1 sin δ,

(21.42)

θ̇1 = −K
~

√
ρ2

ρ1
cos δ − qV

2~ ,

θ̇2 = −K
~

√
ρ1

ρ2
cos δ + qV

2~ .
(21.43)

The first two equations say that ρ̇1 = −ρ̇2. “But,” you say, “they must both be
zero if ρ1 and ρ2 are both constant and equal to ρ0.” Not quite. These equations
are not the whole story. They say what ρ̇1 and ρ̇2 would be if there were no extra
electric forces due to an unbalance between the electron fluid and the background
of positive ions. They tell how the densities would start to change, and therefore
describe the kind of current that would begin to flow. This current from side 1
to side 2 would be just ρ̇1 (or −ρ̇2), or

J = 2K
~
√
ρ1ρ2 sin δ. (21.44)

Such a current would soon charge up side 2, except that we have forgotten that
the two sides are connected by wires to the battery. The current that flows will
not charge up region 2 (or discharge region 1) because currents will flow to keep
the potential constant. These currents from the battery have not been included
in our equations. When they are included, ρ1 and ρ2 do not in fact change, but
the current across the junction is still given by Eq. (21.44).

Since ρ1 and ρ2 do remain constant and equal to ρ0, let’s set 2Kρ0/~ = J0,
and write

J = J0 sin δ. (21.45)
J0, like K, is then a number which is a characteristic of the particular junction.

The other pair of equations (21.43) tells us about θ1 and θ2 We are interested
in the difference δ = θ2 − θ1 to use Eq. (21.45); what we get is

δ̇ = θ̇2 − θ̇1 = qV

~
. (21.46)
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That means that we can write

δ(t) = δ0 + q

~

∫
V (t) dt, (21.47)

where δ0 is the value of δ at t = 0. Remember also that q is the charge of a pair,
namely, q = 2qe. In Eqs. (21.45) and (21.47) we have an important result, the
general theory of the Josephson junction.

Now what are the consequences? First, put on a dc voltage. If you put on a
dc voltage, V0, the argument of the sine becomes (δ0 + (q/~)V0t). Since ~ is a
small number (compared to ordinary voltage and times), the sine oscillates rather
rapidly and the net current is nothing. (In practice, since the temperature is not
zero, you would get a small current due to the conduction by “normal” electrons.)
On the other hand if you have zero voltage across the junction, you can get a
current! With no voltage the current can be any amount between +J0 and −J0
(depending on the value of δ0). But try to put a voltage across it and the current
goes to zero. This strange behavior has recently been observed experimentally.15

There is another way of getting a current—by applying a voltage at a very
high frequency in addition to a dc voltage. Let

V = V0 + v cosωt,

where v � V . Then δ(t) is

δ0 + q

~
V0t+ q

~
v

ω
sinωt.

Now for ∆x small,
sin (x+ ∆x) ≈ sin x+ ∆x cosx.

Using this approximation for sin δ, I get

J = J0

[
sin
(
δ0 + q

~
V0t
)

+ q

~
v

ω
sinωt cos

(
δ0 + q

~
V0t
)]
.

The first term is zero on the average, but the second term is not if

ω = q

~
V0.

15 P. W. Anderson and J. M. Rowell, Phys. Rev. Letters 10, 230 (1963).
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There should be a current if the ac voltage has just this frequency. Shapiro16
claims to have observed such a resonance effect.

If you look up papers on the subject you will find that they often write the
formula for the current as

J = J0 sin
(
δ0 + 2qe

~

∫
A · ds

)
, (21.48)

where the integral is to be taken across the junction. The reason for this is that
when there’s a vector potential across the junction the flip-flop amplitude is
modified in phase in the way that we explained earlier. If you chase that extra
phase through, it comes out as given above.

Finally, I would like to describe a very dramatic and interesting experiment
which has recently been made on the interference of the currents from each of
two junctions. In quantum mechanics we’re used to the interference between
amplitudes from two different slits. Now we’re going to do the interference
between two junctions caused by the difference in the phase of the arrival of the
currents through two different paths. In Fig. 21-7, I show two different junctions,
“a” and “b”, connected in parallel. The ends, P and Q, are connected to our
electrical instruments which measure any current flow. The external current,

SUPERCONDUCTOR

a

b

INSULATORLOOP Γ

Jtotal
P Q

Fig. 21-7. Two Josephson junctions in parallel.

16 S. Shapiro, Phys. Rev. Letters 11, 80 (1963).
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Jtotal, will be the sum of the currents through the two junctions. Let Ja and Jb
be the currents through the two junctions, and let their phases be δa and δb. Now
the phase difference of the wave functions between P and Q must be the same
whether you go on one route or the other. Along the route through junction “a”,
the phase difference between P and Q is δa plus the line integral of the vector
potential along the upper route:

∆PhaseP→Q = δa + 2qe
~

∫
upper

A · ds. (21.49)

Why? Because the phase θ is related to A by Eq. (21.26). If you integrate that
equation along some path, the left-hand side gives the phase change, which is
then just proportional to the line integral of A, as we have written here. The
phase change along the lower route can be written similarly

∆PhaseP→Q = δb + 2qe
~

∫
lower

A · ds. (21.50)

These two must be equal; and if I subtract them I get that the difference of the
deltas must be the line integral of A around the circuit:

δb − δa = 2qe
~

∮
Γ
A · ds.

Here the integral is around the closed loop Γ of Fig. 21-7 which circles through
both junctions. The integral over A is the magnetic flux Φ through the loop. So
the two δ’s are going to differ by 2qe/~ times the magnetic flux Φ which passes
between the two branches of the circuit:

δb − δa = 2qe
~

Φ. (21.51)

I can control this phase difference by changing the magnetic field on the circuit,
so I can adjust the differences in phases and see whether or not the total current
that flows through the two junctions shows any interference of the two parts.
The total current will be the sum of Ja and Jb. For convenience, I will write

δa = δ0 + qe
~

Φ, δb = δ0 −
qe
~

Φ.
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Then,
Jtotal = J0

{
sin
(
δ0 + qe

~
Φ
)

+ sin
(
δ0 −

qe
~

Φ
)}

= 2J0 sin δ0 cos qeΦ
~
. (21.52)

Now we don’t know anything about δ0, and nature can adjust that anyway
she wants depending on the circumstances. In particular, it will depend on the
external voltage we apply to the junction. No matter what we do, however, sin δ0
can never get bigger than 1. So the maximum current for any given Φ is given by

Jmax = 2J0

∣∣∣cos qe
~

Φ
∣∣∣ .

This maximum current will vary with Φ and will itself have maxima whenever

Φ = n
π~
qe
,

with n some integer. That is to say that the current takes on its maximum values
where the flux linkage has just those quantized values we found in Eq. (21.30)!

The Josephson current through a double junction was recently measured17 as
a function of the magnetic field in the area between the junctions. The results
are shown in Fig. 21-8. There is a general background of current from various
effects we have neglected, but the rapid oscillations of the current with changes
in the magnetic field are due to the interference term cos qeΦ/~ of Eq. (21.52).

One of the intriguing questions about quantum mechanics is the question
of whether the vector potential exists in a place where there’s no field.18 This
experiment I have just described has also been done with a tiny solenoid between
the two junctions so that the only significant magnetic B field is inside the
solenoid and a negligible amount is on the superconducting wires themselves.
Yet it is reported that the amount of current depends oscillatorily on the flux
of magnetic field inside that solenoid even though that field never touches the
wires—another demonstration of the “physical reality” of the vector potential.19

I don’t know what will come next. But look what can be done. First, notice
that the interference between two junctions can be used to make a sensitive

17 Jaklevic, Lambe, Silver, and Mercereau, Phys. Rev. Letters 12, 159 (1964).
18 Jaklevic, Lambe, Silver, and Mercereau, Phys. Rev. Letters 12, 274 (1964).
19 See Volume II, Chapter 15, Section 15-5.
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Fig. 21-8. A recording of the current through a pair of Josephson
junctions as a function of the magnetic field in the region between the
two junctions (see Fig. 21-7). [This recording was provided by R. C.
Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau of the Scientific
Laboratory, Ford Motor Company.]

magnetometer. If a pair of junctions is made with an enclosed area of, say, 1 mm2,
the maxima in the curve of Fig. 21-8 would be separated by 2× 10−6 gauss. It
is certainly possible to tell when you are 1/10 of the way between two peaks;
so it should be possible to use such a junction to measure magnetic fields as
small as 2 × 10−7 gauss—or to measure larger fields to such a precision. One
should be able to go even further. Suppose for example we put a set of 10 or
20 junctions close together and equally spaced. Then we can have the interference
between 10 or 20 slits and as we change the magnetic field we will get very sharp
maxima and minima. Instead of a 2-slit interference we can have a 20- or perhaps
even a 100-slit interferometer for measuring the magnetic field. Perhaps we can
predict that the measurement of magnetic fields will—by using the effects of
quantum-mechanical interference—eventually become almost as precise as the
measurement of wavelength of light.

These then are some illustrations of things that are happening in modern
times—the transistor, the laser, and now these junctions, whose ultimate practical
applications are still not known. The quantum mechanics which was discovered
in 1926 has had nearly 40 years of development, and rather suddenly it has begun
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to be exploited in many practical and real ways. We are really getting control of
nature on a very delicate and beautiful level.

I am sorry to say, gentlemen, that to participate in this adventure it is
absolutely imperative that you learn quantum mechanics as soon as possible. It
was our hope that in this course we would find a way to make comprehensible to
you at the earliest possible moment the mysteries of this part of physics.
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Feynman’s Epilogue

Well, I’ve been talking to you for two years and now I’m going to quit. In
some ways I would like to apologize, and other ways not. I hope—in fact, I know—
that two or three dozen of you have been able to follow everything with great
excitement, and have had a good time with it. But I also know that “the powers
of instruction are of very little efficacy except in those happy circumstances in
which they are practically superfluous.” So, for the two or three dozen who have
understood everything, may I say I have done nothing but shown you the things.
For the others, if I have made you hate the subject, I’m sorry. I never taught
elementary physics before, and I apologize. I just hope that I haven’t caused a
serious trouble to you, and that you do not leave this exciting business. I hope
that someone else can teach it to you in a way that doesn’t give you indigestion,
and that you will find someday that, after all, it isn’t as horrible as it looks.

Finally, may I add that the main purpose of my teaching has not been to
prepare you for some examination—it was not even to prepare you to serve
industry or the military. I wanted most to give you some appreciation of the
wonderful world and the physicist’s way of looking at it, which, I believe, is a
major part of the true culture of modern times. (There are probably professors of
other subjects who would object, but I believe that they are completely wrong.)

Perhaps you will not only have some appreciation of this culture; it is even
possible that you may want to join in the greatest adventure that the human
mind has ever begun.

Epilogue-1



Appendix

Much of the work of this volume assumes a knowledge of the subject of atomic
magnetism which is treated in Chapters 34 and 35 of Volume II. For the convenience of
those readers who may not have Volume II at hand, these two chapters are reproduced
here.

Their contents are as follows:

Chapter 34. The Magnetism of Matter
34-1 Diamagnetism and paramagnetism
34-2 Magnetic moments and angular momentum
34-3 The precession of atomic magnets
34-4 Diamagnetism
34-5 Larmor’s theorem
34-6 Classical physics gives neither diamagnetism nor paramagnetism
34-7 Angular momentum in quantum mechanics
34-8 The magnetic energy of atoms

Chapter 35. Paramagnetism and Magnetic Resonance
35-1 Quantized magnetic states
35-2 The Stern-Gerlach experiment
35-3 The Rabi molecular-beam method
35-4 The paramagnetism of bulk materials
35-5 Cooling by adiabatic demagnetization
35-6 Nuclear magnetic resonance



34

The Magnetism of Matter

Review: Section 15-1, Vol. II, “The forces on a current loop; energy of a
dipole.”

34-1 Diamagnetism and paramagnetism

In this chapter we are going to talk about the magnetic properties of materials.
The material which has the most striking magnetic properties is, of course, iron.
Similar magnetic properties are shared also by the elements nickel, cobalt, and—
at sufficiently low temperatures (below 16◦C)—by gadolinium, as well as by a
number of peculiar alloys. That kind of magnetism, called ferromagnetism, is
sufficiently striking and complicated that we will discuss it in a special chapter.
However, all ordinary substances do show some magnetic effects, although very
small ones—a thousand to a million times less than the effects in ferromagnetic
materials. Here we are going to describe ordinary magnetism, that is to say, the
magnetism of substances other than the ferromagnetic ones.

This small magnetism is of two kinds. Some materials are attracted toward
magnetic fields; others are repelled. Unlike the electrical effect in matter, which
always causes dielectrics to be attracted, there are two signs to the magnetic effect.
These two signs can be easily shown with the help of a strong electromagnet
which has one sharply pointed pole piece and one flat pole piece, as drawn in
Fig. 34-1. The magnetic field is much stronger near the pointed pole than near
the flat pole. If a small piece of material is fastened to a long string and suspended
between the poles, there will, in general, be a small force on it. This small force
can be seen by the slight displacement of the hanging material when the magnet
is turned on. The few ferromagnetic materials are attracted very strongly toward
the pointed pole; all other materials feel only a very weak force. Some are weakly
attracted to the pointed pole; and some are weakly repelled.

The effect is most easily seen with a small cylinder of bismuth, which is
repelled from the high-field region. Substances which are repelled in this way
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Fig. 34-1. A small cylinder of bismuth is weakly repelled by the sharp
pole; a piece of aluminum is attracted.

are called diamagnetic. Bismuth is one of the strongest diamagnetic materials,
but even with it, the effect is still quite weak. Diamagnetism is always very
weak. If a small piece of aluminum is suspended between the poles, there is
also a weak force, but toward the pointed pole. Substances like aluminum are
called paramagnetic. (In such an experiment, eddy-current forces arise when the
magnet is turned on and off, and these can give off strong impulses. You must be
careful to look for the net displacement after the hanging object settles down.)

We want now to describe briefly the mechanisms of these two effects. First, in
many substances the atoms have no permanent magnetic moments, or rather, all
the magnets within each atom balance out so that the net moment of the atom is
zero. The electron spins and orbital motions all exactly balance out, so that any
particular atom has no average magnetic moment. In these circumstances, when
you turn on a magnetic field little extra currents are generated inside the atom by
induction. According to Lenz’s law, these currents are in such a direction as to
oppose the increasing field. So the induced magnetic moments of the atoms are
directed opposite to the magnetic field. This is the mechanism of diamagnetism.

Then there are some substances for which the atoms do have a permanent
magnetic moment—in which the electron spins and orbits have a net circulating
current that is not zero. So besides the diamagnetic effect (which is always
present), there is also the possibility of lining up the individual atomic magnetic
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moments. In this case, the moments try to line up with the magnetic field (in
the way the permanent dipoles of a dielectric are lined up by the electric field),
and the induced magnetism tends to enhance the magnetic field. These are the
paramagnetic substances. Paramagnetism is generally fairly weak because the
lining-up forces are relatively small compared with the forces from the thermal
motions which try to derange the order. It also follows that paramagnetism is
usually sensitive to the temperature. (The paramagnetism arising from the spins
of the electrons responsible for conduction in a metal constitutes an exception.
We will not be discussing this phenomenon here.) For ordinary paramagnetism,
the lower the temperature, the stronger the effect. There is more lining-up at low
temperatures when the deranging effects of the collisions are less. Diamagnetism,
on the other hand, is more or less independent of the temperature. In any
substance with built-in magnetic moments there is a diamagnetic as well as a
paramagnetic effect, but the paramagnetic effect usually dominates.

In Chapter 11 of Vol. II we described a ferroelectric material, in which all
the electric dipoles get lined up by their own mutual electric fields. It is also
possible to imagine the magnetic analog of ferroelectricity, in which all the atomic
moments would line up and lock together. If you make calculations of how this
should happen, you will find that because the magnetic forces are so much smaller
than the electric forces, thermal motions should knock out this alignment even at
temperatures as low as a few tenths of a degree Kelvin. So it would be impossible
at room temperature to have any permanent lining up of the magnets.

On the other hand, this is exactly what does happen in iron—it does get lined
up. There is an effective force between the magnetic moments of the different
atoms of iron which is much, much greater than the direct magnetic interaction.
It is an indirect effect which can be explained only by quantum mechanics. It is
about ten thousand times stronger than the direct magnetic interaction, and is
what lines up the moments in ferromagnetic materials. We discuss this special
interaction in a later chapter.

Now that we have tried to give you a qualitative explanation of diamagnetism
and paramagnetism, we must correct ourselves and say that it is not possible to
understand the magnetic effects of materials in any honest way from the point
of view of classical physics. Such magnetic effects are a completely quantum-
mechanical phenomenon. It is, however, possible to make some phoney classical
arguments and to get some idea of what is going on. We might put it this way.
You can make some classical arguments and get guesses as to the behavior of the
material, but these arguments are not “legal” in any sense because it is absolutely
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essential that quantum mechanics be involved in every one of these magnetic
phenomena. On the other hand, there are situations, such as in a plasma or a
region of space with many free electrons, where the electrons do obey the laws
of classical mechanics. And in those circumstances, some of the theorems from
classical magnetism are worth while. Also, the classical arguments are of some
value for historical reasons. The first few times that people were able to guess at
the meaning and behavior of magnetic materials, they used classical arguments.
Finally, as we have already illustrated, classical mechanics can give us some useful
guesses as to what might happen—even though the really honest way to study
this subject would be to learn quantum mechanics first and then to understand
the magnetism in terms of quantum mechanics.

On the other hand, we don’t want to wait until we learn quantum mechanics
inside out to understand a simple thing like diamagnetism. We will have to
lean on the classical mechanics as kind of half showing what happens, realizing,
however, that the arguments are really not correct. We therefore make a series
of theorems about classical magnetism that will confuse you because they will
prove different things. Except for the last theorem, every one of them will be
wrong. Furthermore, they will all be wrong as a description of the physical world,
because quantum mechanics is left out.

34-2 Magnetic moments and angular momentum

The first theorem we want to prove from classical mechanics is the following:
If an electron is moving in a circular orbit (for example, revolving around a
nucleus under the influence of a central force), there is a definite ratio between
the magnetic moment and the angular momentum. Let’s call J the angular
momentum and µ the magnetic moment of the electron in the orbit. The
magnitude of the angular momentum is the mass of the electron times the
velocity times the radius. (See Fig. 34-2.) It is directed perpendicular to the
plane of the orbit.

J = mvr. (34.1)

(This is, of course, a nonrelativistic formula, but it is a good approximation for
atoms, because for the electrons involved v/c is generally of the order of e2/~c ≈
1/137, or about 1 percent.)

The magnetic moment of the same orbit is the current times the area. (See
Section 14-5, Vol. II.) The current is the charge per unit time which passes any
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Fig. 34-2. For any circular orbit the magnetic moment µ is q/2m times
the angular momentum J.

point on the orbit, namely, the charge q times the frequency of rotation. The
frequency is the velocity divided by the circumference of the orbit; so

I = q
v

2πr .

The area is πr2, so the magnetic moment is

µ = qvr

2 . (34.2)

It is also directed perpendicular to the plane of the orbit. So J and µ are in the
same direction:

µ = q

2m J (orbit). (34.3)

Their ratio depends neither on the velocity nor on the radius. For any particle
moving in a circular orbit the magnetic moment is equal to q/2m times the
angular momentum. For an electron, the charge is negative—we can call it −qe;
so for an electron

µ = − qe
2m J (electron orbit). (34.4)

That’s what we would expect classically and, miraculously enough, it is also
true quantum-mechanically. It’s one of those things. However, if you keep going
with the classical physics, you find other places where it gives the wrong answers,
and it is a great game to try to remember which things are right and which things
are wrong. We might as well give you immediately what is true in general in
quantum mechanics. First, Eq. (34.4) is true for orbital motion, but that’s not
the only magnetism that exists. The electron also has a spin rotation about its
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own axis (something like the earth rotating on its axis), and as a result of that
spin it has both an angular momentum and a magnetic moment. But for reasons
that are purely quantum-mechanical—there is no classical explanation—the ratio
of µ to J for the electron spin is twice as large as it is for orbital motion of the
spinning electron:

µ = −qe
m
J (electron spin). (34.5)

In any atom there are, generally speaking, several electrons and some combi-
nation of spin and orbit rotations which builds up a total angular momentum and
a total magnetic moment. Although there is no classical reason why it should be
so, it is always true in quantum mechanics that (for an isolated atom) the direc-
tion of the magnetic moment is exactly opposite to the direction of the angular
momentum. The ratio of the two is not necessarily either −qe/m or −qe/2m,
but somewhere in between, because there is a mixture of the contributions from
the orbits and the spins. We can write

µ = −g
(
qe
2m

)
J , (34.6)

where g is a factor which is characteristic of the state of the atom. It would be 1
for a pure orbital moment, or 2 for a pure spin moment, or some other number
in between for a complicated system like an atom. This formula does not, of
course, tell us very much. It says that the magnetic moment is parallel to the
angular momentum, but can have any magnitude. The form of Eq. (34.6) is
convenient, however, because g—called the “Landé g-factor”—is a dimensionless
constant whose magnitude is of the order of one. It is one of the jobs of quantum
mechanics to predict the g-factor for any particular atomic state.

You might also be interested in what happens in nuclei. In nuclei there are
protons and neutrons which may move around in some kind of orbit and at the
same time, like an electron, have an intrinsic spin. Again the magnetic moment
is parallel to the angular momentum. Only now the order of magnitude of the
ratio of the two is what you would expect for a proton going around in a circle,
with m in Eq. (34.3) equal to the proton mass. Therefore it is usual to write for
nuclei

µ = g

(
qe

2mp

)
J , (34.7)

where mp is the mass of the proton, and g—called the nuclear g-factor—is a
number near one, to be determined for each nucleus.
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Another important difference for a nucleus is that the spin magnetic moment
of the proton does not have a g-factor of 2, as the electron does. For a proton,
g = 2 · (2.79). Surprisingly enough, the neutron also has a spin magnetic moment,
and its magnetic moment relative to its angular momentum is 2 · (−1.91). The
neutron, in other words, is not exactly “neutral” in the magnetic sense. It is like
a little magnet, and it has the kind of magnetic moment that a rotating negative
charge would have.

34-3 The precession of atomic magnets

One of the consequences of having the magnetic moment proportional to
the angular momentum is that an atomic magnet placed in a magnetic field
will precess. First we will argue classically. Suppose that we have the magnetic
moment µ suspended freely in a uniform magnetic field. It will feel a torque τ ,
equal to µ×B, which tries to bring it in line with the field direction. But the
atomic magnet is a gyroscope—it has the angular momentum J . Therefore the
torque due to the magnetic field will not cause the magnet to line up. Instead, the
magnet will precess, as we saw when we analyzed a gyroscope in Chapter 20 of
Volume I. The angular momentum—and with it the magnetic moment—precesses
about an axis parallel to the magnetic field. We can find the rate of precession
by the same method we used in Chapter 20 of the first volume.

Suppose that in a small time ∆t the angular momentum changes from J
to J ′, as drawn in Fig. 34-3, staying always at the same angle θ with respect
to the direction of the magnetic field B. Let’s call ωp the angular velocity of
the precession, so that in the time ∆t the angle of precession is ωp ∆t. From
the geometry of the figure, we see that the change of angular momentum in the
time ∆t is

∆J = (J sin θ)(ωp ∆t).

So the rate of change of the angular momentum is

dJ

dt
= ωpJ sin θ, (34.8)

which must be equal to the torque:

τ = µB sin θ. (34.9)

34-7



B

ωp

θ

J

J ′ ∆J

|J| sin θ

Fig. 34-3. An object with angular momentum J and a parallel magnetic
moment µ placed in a magnetic field B precesses with the angular
velocity ωp.

The angular velocity of precession is then

ωp = µ

J
B. (34.10)

Substituting µ/J from Eq. (34.6), we see that for an atomic system

ωp = g
qeB

2m ; (34.11)

the precession frequency is proportional to B. It is handy to remember that for
an atom (or electron)

fp = ωp
2π = (1.4 megacycles/gauss)gB, (34.12)

and that for a nucleus

fp = ωp
2π = (0.76 kilocycles/gauss)gB. (34.13)

(The formulas for atoms and nuclei are different only because of the different
conventions for g for the two cases.)
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According to the classical theory, then, the electron orbits—and spins—in an
atom should precess in a magnetic field. Is it also true quantum-mechanically? It
is essentially true, but the meaning of the “precession” is different. In quantum
mechanics one cannot talk about the direction of the angular momentum in the
same sense as one does classically; nevertheless, there is a very close analogy—so
close that we continue to call it “precession.” We will discuss it later when we
talk about the quantum-mechanical point of view.

34-4 Diamagnetism

Next we want to look at diamagnetism from the classical point of view. It
can be worked out in several ways, but one of the nice ways is the following.
Suppose that we slowly turn on a magnetic field in the vicinity of an atom. As
the magnetic field changes an electric field is generated by magnetic induction.
From Faraday’s law, the line integral of E around any closed path is the rate of
change of the magnetic flux through the path. Suppose we pick a path Γ which is
a circle of radius r concentric with the center of the atom, as shown in Fig. 34-4.
The average tangential electric field E around this path is given by

E2πr = − d

dt
(Bπr2),

and there is a circulating electric field whose strength is

E = −r2
dB

dt
.

B

r

Path Γ

q
F

Fig. 34-4. The induced electric forces on the electrons in an atom.
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The induced electric field acting on an electron in the atom produces a
torque equal to −qeEr, which must equal the rate of change of the angular
momentum dJ/dt:

dJ

dt
= qer

2

2
dB

dt
. (34.14)

Integrating with respect to time from zero field, we find that the change in angular
momentum due to turning on the field is

∆J = qer
2

2 B. (34.15)

This is the extra angular momentum from the twist given to the electrons as the
field is turned on.

This added angular momentum makes an extra magnetic moment which,
because it is an orbital motion, is just −qe/2m times the angular momentum.
The induced diamagnetic moment is

∆µ = − qe
2m ∆J = −q

2
er

2

4m B. (34.16)

The minus sign (as you can see is right by using Lenz’s law) means that the
added moment is opposite to the magnetic field.

We would like to write Eq. (34.16) a little differently. The r2 which appears
is the radius from an axis through the atom parallel to B, so if B is along the
z-direction, it is x2 + y2. If we consider spherically symmetric atoms (or average
over atoms with their natural axes in all directions) the average of x2 + y2 is 2/3
of the average of the square of the true radial distance from the center point of
the atom. It is therefore usually more convenient to write Eq. (34.16) as

∆µ = − q2
e

6m 〈r
2〉avB. (34.17)

In any case, we have found an induced atomic moment proportional to the
magnetic field B and opposing it. This is diamagnetism of matter. It is this
magnetic effect that is responsible for the small force on a piece of bismuth in a
nonuniform magnetic field. (You could compute the force by working out the
energy of the induced moments in the field and seeing how the energy changes as
the material is moved into or out of the high-field region.)
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We are still left with the problem: What is the mean square radius, 〈r2〉av?
Classical mechanics cannot supply an answer. We must go back and start over
with quantum mechanics. In an atom we cannot really say where an electron is,
but only know the probability that it will be at some place. If we interpret 〈r2〉av to
mean the average of the square of the distance from the center for the probability
distribution, the diamagnetic moment given by quantum mechanics is just the
same as formula (34.17). This equation, of course, is the moment for one electron.
The total moment is given by the sum over all the electrons in the atom. The
surprising thing is that the classical argument and quantum mechanics give
the same answer, although, as we shall see, the classical argument that gives
Eq. (34.17) is not really valid in classical mechanics.

The same diamagnetic effect occurs even when an atom already has a per-
manent moment. Then the system will precess in the magnetic field. As the
whole atom precesses, it takes up an additional small angular velocity, and that
slow turning gives a small current which represents a correction to the magnetic
moment. This is just the diamagnetic effect represented in another way. But we
don’t really have to worry about that when we talk about paramagnetism. If
the diamagnetic effect is first computed, as we have done here, we don’t have
to worry about the fact that there is an extra little current from the precession.
That has already been included in the diamagnetic term.

34-5 Larmor’s theorem

We can already conclude something from our results so far. First of all, in
the classical theory the moment µ was always proportional to J , with a given
constant of proportionality for a particular atom. There wasn’t any spin of the
electrons, and the constant of proportionality was always −qe/2m; that is to
say, in Eq. (34.6) we should set g = 1. The ratio of µ to J was independent
of the internal motion of the electrons. Thus, according to the classical theory,
all systems of electrons would precess with the same angular velocity. (This is
not true in quantum mechanics.) This result is related to a theorem in classical
mechanics that we would now like to prove. Suppose we have a group of electrons
which are all held together by attraction toward a central point—as the electrons
are attracted by a nucleus. The electrons will also be interacting with each other,
and can, in general, have complicated motions. Suppose you have solved for
the motions with no magnetic field and then want to know what the motions
would be with a weak magnetic field. The theorem says that the motion with a
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weak magnetic field is always one of the no-field solutions with an added rotation,
about the axis of the field, with the angular velocity ωL = qeB/2m. (This is the
same as ωp, if g = 1.) There are, of course, many possible motions. The point is
that for every motion without the magnetic field there is a corresponding motion
in the field, which is the original motion plus a uniform rotation. This is called
Larmor’s theorem, and ωL is called the Larmor frequency.

We would like to show how the theorem can be proved, but we will let you
work out the details. Take, first, one electron in a central force field. The force on
it is just F (r), directed toward the center. If we now turn on a uniform magnetic
field, there is an additional force, qv ×B; so the total force is

F (r) + qv ×B. (34.18)

Now let’s look at the same system from a coordinate system rotating with angular
velocity ω about an axis through the center of force and parallel to B. This is
no longer an inertial system, so we have to put in the proper pseudo forces—the
centrifugal and Coriolis forces we talked about in Chapter 19 of Volume I. We
found there that in a frame rotating with angular velocity ω, there is an apparent
tangential force proportional to vr, the radial component of velocity:

Ft = −2mωvr. (34.19)

And there is an apparent radial force which is given by

Fr = mω2r + 2mωvt, (34.20)

where vt is the tangential component of the velocity, measured in the rotating
frame. (The radial component vr for rotating and inertial frames is the same.)

Now for small enough angular velocities (that is, if ωr � vt), we can neglect
the first term (centrifugal) in Eq. (34.20) in comparison with the second (Coriolis).
Then Eqs. (34.19) and (34.20) can be written together as

F = −2mω × v. (34.21)

If we now combine a rotation and a magnetic field, we must add the force in
Eq. (34.21) to that in Eq. (34.18). The total force is

F (r) + qv ×B + 2mv × ω (34.22)
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[we reverse the cross product and the sign of Eq. (34.21) to get the last term].
Looking at our result, we see that if

2mω = −qB

the two terms on the right cancel, and in the moving frame the only force is F (r).
The motion of the electron is just the same as with no magnetic field—and, of
course, no rotation. We have proved Larmor’s theorem for one electron. Since
the proof assumes a small ω, it also means that the theorem is true only for weak
magnetic fields. The only thing we could ask you to improve on is to take the
case of many electrons mutually interacting with each other, but all in the same
central field, and prove the same theorem. So no matter how complex an atom
is, if it has a central field the theorem is true. But that’s the end of the classical
mechanics, because it isn’t true in fact that the motions precess in that way. The
precession frequency ωp of Eq. (34.11) is only equal to ωL if g happens to be
equal to 1.

34-6 Classical physics gives neither diamagnetism nor paramagnetism

Now we would like to demonstrate that according to classical mechanics there
can be no diamagnetism and no paramagnetism at all. It sounds crazy—first,
we have proved that there are paramagnetism, diamagnetism, precessing orbits,
and so on, and now we are going to prove that it is all wrong. Yes!—We are
going to prove that if you follow the classical mechanics far enough, there are no
such magnetic effects—they all cancel out. If you start a classical argument in a
certain place and don’t go far enough, you can get any answer you want. But the
only legitimate and correct proof shows that there is no magnetic effect whatever.

It is a consequence of classical mechanics that if you have any kind of system—
a gas with electrons, protons, and whatever—kept in a box so that the whole thing
can’t turn, there will be no magnetic effect. It is possible to have a magnetic effect
if you have an isolated system, like a star held together by itself, which can start
rotating when you put on the magnetic field. But if you have a piece of material
that is held in place so that it can’t start spinning, then there will be no magnetic
effects. What we mean by holding down the spin is summarized this way: At a
given temperature we suppose that there is only one state of thermal equilibrium.
The theorem then says that if you turn on a magnetic field and wait for the system
to get into thermal equilibrium, there will be no paramagnetism or diamagnetism—
there will be no induced magnetic moment. Proof: According to statistical
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mechanics, the probability that a system will have any given state of motion is
proportional to e−U/kT , where U is the energy of that motion. Now what is the
energy of motion? For a particle moving in a constant magnetic field, the energy is
the ordinary potential energy plusmv2/2, with nothing additional for the magnetic
field. [You know that the forces from electromagnetic fields are q(E+v×B), and
that the rate of work F · v is just qE · v, which is not affected by the magnetic
field.] So the energy of a system, whether it is in a magnetic field or not, is always
given by the kinetic energy plus the potential energy. Since the probability of any
motion depends only on the energy—that is, on the velocity and position—it is the
same whether or not there is a magnetic field. For thermal equilibrium, therefore,
the magnetic field has no effect. If we have one system in a box, and then have
another system in a second box, this time with a magnetic field, the probability
of any particular velocity at any point in the first box is the same as in the second.
If the first box has no average circulating current (which it will not have if it is
in equilibrium with the stationary walls), there is no average magnetic moment.
Since in the second box all the motions are the same, there is no average magnetic
moment there either. Hence, if the temperature is kept constant and thermal
equilibrium is re-established after the field is turned on, there can be no magnetic
moment induced by the field—according to classical mechanics. We can only get
a satisfactory understanding of magnetic phenomena from quantum mechanics.

Unfortunately, we cannot assume that you have a thorough understanding
of quantum mechanics, so this is hardly the place to discuss the matter. On
the other hand, we don’t always have to learn something first by learning the
exact rules and then by learning how they are applied in different cases. Almost
every subject that we have taken up in this course has been treated in a different
way. In the case of electricity, we wrote the Maxwell equations on “Page One”
and then deduced all the consequences. That’s one way. But we will not now
try to begin a new “Page One,” writing the equations of quantum mechanics
and deducing everything from them. We will just have to tell you some of the
consequences of quantum mechanics, before you learn where they come from. So
here we go.

34-7 Angular momentum in quantum mechanics

We have already given you a relation between the magnetic moment and the
angular momentum. That’s pleasant. But what do the magnetic moment and
the angular momentum mean in quantum mechanics? In quantum mechanics it
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turns out to be best to define things like magnetic moments in terms of the other
concepts such as energy, in order to make sure that one knows what it means.
Now, it is easy to define a magnetic moment in terms of energy, because the
energy of a moment in a magnetic field is, in the classical theory, µ ·B. Therefore,
the following definition has been taken in quantum mechanics: If we calculate
the energy of a system in a magnetic field and we find that it is proportional
to the field strength (for small field), the coefficient is called the component of
magnetic moment in the direction of the field. (We don’t have to get so elegant
for our work now; we can still think of the magnetic moment in the ordinary, to
some extent classical, sense.)

Now we would like to discuss the idea of angular momentum in quantum
mechanics—or rather, the characteristics of what, in quantum mechanics, is
called angular momentum. You see, when you go to new kinds of laws, you
can’t just assume that each word is going to mean exactly the same thing. You
may think, say, “Oh, I know what angular momentum is. It’s that thing that
is changed by a torque.” But what’s a torque? In quantum mechanics we have
to have new definitions of old quantities. It would, therefore, be legally best to
call it by some other name such as “quantangular momentum,” or something
like that, because it is the angular momentum as defined in quantum mechanics.
But if we can find a quantity in quantum mechanics which is identical to our old
idea of angular momentum when the system becomes large enough, there is no
use in inventing an extra word. We might as well just call it angular momentum.
With that understanding, this odd thing that we are about to describe is angular
momentum. It is the thing which in a large system we recognize as angular
momentum in classical mechanics.

First, we take a system in which angular momentum is conserved, such as an
atom all by itself in empty space. Now such a thing (like the earth spinning on
its axis) could, in the ordinary sense, be spinning around any axis one wished to
choose. And for a given spin, there could be many different “states,” all of the
same energy, each “state” corresponding to a particular direction of the axis of the
angular momentum. So in the classical theory, with a given angular momentum,
there is an infinite number of possible states, all of the same energy.

It turns out in quantum mechanics, however, that several strange things
happen. First, the number of states in which such a system can exist is limited—
there is only a finite number. If the system is small, the finite number is very
small, and if the system is large, the finite number gets very, very large. Second,
we cannot describe a “state” by giving the direction of its angular momentum, but
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only by giving the component of the angular momentum along some direction—say
in the z-direction. Classically, an object with a given total angular momentum J
could have, for its z-component, any value from +J to −J . But quantum-
mechanically, the z-component of angular momentum can have only certain
discrete values. Any given system—a particular atom, or a nucleus, or anything—
with a given energy, has a characteristic number j, and its z-component of angular
momentum can only be one of the following set of values:

j~
(j − 1)~
(j − 2)~

...

−(j − 2)~
−(j − 1)~

−j~

(34.23)

The largest z-component is j times ~; the next smaller is one unit of ~ less, and
so on down to −j~. The number j is called “the spin of the system.” (Some
people call it the “total angular momentum quantum number”; but we’ll call it
the “spin.”)

You may be worried that what we are saying can only be true for some
“special” z-axis. But that is not so. For a system whose spin is j, the component
of angular momentum along any axis can have only one of the values in (34.23).
Although it is quite mysterious, we ask you just to accept it for the moment. We
will come back and discuss the point later. You may at least be pleased to hear
that the z-component goes from some number to minus the same number, so
that we at least don’t have to decide which is the plus direction of the z-axis.
(Certainly, if we said that it went from +j to minus a different amount, that
would be infinitely mysterious, because we wouldn’t have been able to define the
z-axis, pointing the other way.)

Now if the z-component of angular momentum must go down by integers
from +j to −j, then j must be an integer. No! Not quite; twice j must be an
integer. It is only the difference between +j and −j that must be an integer.
So, in general, the spin j is either an integer or a half-integer, depending on
whether 2j is even or odd. Take, for instance, a nucleus like lithium, which has a
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spin of three-halves, j = 3/2. Then the angular momentum around the z-axis, in
units of ~, is one of the following:

+3/2
+1/2
−1/2
−3/2.

There are four possible states, each of the same energy, if the nucleus is in empty
space with no external fields. If we have a system whose spin is two, then the
z-component of angular momentum has only the values, in units of ~,

2
1
0
−1
−2.

If you count how many states there are for a given j, there are (2j+1) possibilities.
In other words, if you tell me the energy and also the spin j, it turns out that
there are exactly (2j + 1) states with that energy, each state corresponding to
one of the different possible values of the z-component of the angular momentum.

We would like to add one other fact. If you pick out any atom of known j
at random and measure the z-component of the angular momentum, then you
may get any one of the possible values, and each of the values is equally likely.
All of the states are in fact single states, and each is just as good as any other.
Each one has the same “weight” in the world. (We are assuming that nothing
has been done to sort out a special sample.) This fact has, incidentally, a simple
classical analog. If you ask the same question classically: What is the likelihood
of a particular z-component of angular momentum if you take a random sample
of systems, all with the same total angular momentum?—the answer is that all
values from the maximum to the minimum are equally likely. (You can easily
work that out.) The classical result corresponds to the equal probability of the
(2j + 1) possibilities in quantum mechanics.

From what we have so far, we can get another interesting and somewhat
surprising conclusion. In certain classical calculations the quantity that appears
in the final result is the square of the magnitude of the angular momentum J—in
other words, J · J . It turns out that it is often possible to guess at the correct
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quantum-mechanical formula by using the classical calculation and the following
simple rule: Replace J2 = J · J by j(j + 1)~2. This rule is commonly used,
and usually gives the correct result, but not always. We can give the following
argument to show why you might expect this rule to work.

The scalar product J · J can be written as
J · J = J2

x + J2
y + J2

z .

Since it is a scalar, it should be the same for any orientation of the spin. Suppose
we pick samples of any given atomic system at random and make measurements
of J2

x , or J2
y , or J2

z , the average value should be the same for each. (There is no
special distinction for any one of the directions.) Therefore, the average of J · J
is just equal to three times the average of any component squared, say of J2

z ;
〈J · J〉av = 3〈J2

z 〉av.
But since J · J is the same for all orientations, its average is, of course, just its
constant value; we have

J · J = 3〈J2
z 〉av. (34.24)

If we now say that we will use the same equation for quantum mechanics,
we can easily find 〈J2

z 〉av. We just have to take the sum of the (2j + 1) possible
values of J2

z , and divide by the total number;

〈J2
z 〉av = j2 + (j − 1)2 + · · ·+ (−j + 1)2 + (−j)2

2j + 1 ~2. (34.25)

For a system with a spin of 3/2, it goes like this:

〈J2
z 〉av = (3/2)2 + (1/2)2 + (−1/2)2 + (−3/2)2

4 ~2 = 5
4 ~2.

We conclude that
J · J = 3〈J2

z 〉av = 3 5
4~

2 = 3
2 ( 3

2 + 1)~2.

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives
the general result

J · J = j(j + 1)~2. (34.26)
Although we would think classically that the largest possible value of the z-
component of J is just the magnitude of J—namely,

√
J · J—quantum mechan-

ically the maximum of Jz is always a little less than that, because j~ is always
less than

√
j(j + 1)~. The angular momentum is never “completely along the

z-direction.”
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34-8 The magnetic energy of atoms

Now we want to talk again about the magnetic moment. We have said that
in quantum mechanics the magnetic moment of a particular atomic system can
be written in terms of the angular momentum by Eq. (34.6);

µ = −g
(
qe
2m

)
J , (34.27)

where −qe and m are the charge and mass of the electron.
An atomic magnet placed in an external magnetic field will have an extra

magnetic energy which depends on the component of its magnetic moment along
the field direction. We know that

Umag = −µ ·B. (34.28)

Choosing our z-axis along the direction of B,

Umag = −µzB. (34.29)

Using Eq. (34.27), we have that

Umag = g

(
qe
2m

)
JzB.

Quantum mechanics says that Jz can have only certain values: j~, (j − 1)~,
. . . , −j~. Therefore, the magnetic energy of an atomic system is not arbitrary;
it can have only certain values. Its maximum value, for instance, is

g

(
qe
2m

)
~jB.

The quantity qe~/2m is usually given the name “the Bohr magneton” and
written µB :

µB = qe~
2m.

The possible values of the magnetic energy are

Umag = gµBB
Jz
~
,

where Jz/~ takes on the possible values j, (j − 1), (j − 2), . . . , (−j + 1), −j.
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In other words, the energy of an atomic system is changed when it is put in a
magnetic field by an amount that is proportional to the field, and proportional
to Jz. We say that the energy of an atomic system is “split into 2j+1 levels” by a
magnetic field. For instance, an atom whose energy is U0 outside a magnetic field
and whose j is 3/2, will have four possible energies when placed in a field. We
can show these energies by an energy-level diagram like that drawn in Fig. 34-5.
Any particular atom can have only one of the four possible energies in any given
field B. That is what quantum mechanics says about the behavior of an atomic
system in a magnetic field.

The simplest “atomic” system is a single electron. The spin of an electron
is 1/2, so there are two possible states: Jz = ~/2 and Jz = −~/2. For an electron,
at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the
magnetic energy can be either ±µBB. The possible energies in a magnetic field
are shown in Fig. 34-6. Speaking loosely we say that the electron either has its
spin “up” (along the field) or “down” (opposite the field).

For systems with higher spins, there are more states. We can think that the
spin is “up” or “down” or cocked at some “angle” in between, depending on the
value of Jz.

We will use these quantum mechanical results to discuss the magnetic prop-
erties of materials in the next chapter.
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Fig. 34-5. The possible magnetic energies of an atomic system with
a spin of 3/2 in a magnetic filed B.
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Fig. 34-6. The two possible energy states of an electron in a magnetic
field B.
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35

Paramagnetism and Magnetic Resonance

Review: Chapter 11, Vol. II, Inside Dielectrics

35-1 Quantized magnetic states
In the last chapter we described how in quantum mechanics the angular

momentum of a thing does not have an arbitrary direction, but its component
along a given axis can take on only certain equally spaced, discrete values. It
is a shocking and peculiar thing. You may think that perhaps we should not go
into such things until your minds are more advanced and ready to accept this
kind of an idea. Actually, your minds will never become more advanced—in the
sense of being able to accept such a thing easily. There isn’t any descriptive way
of making it intelligible that isn’t so subtle and advanced in its own form that
it is more complicated than the thing you were trying to explain. The behavior
of matter on a small scale—as we have remarked many times—is different from
anything that you are used to and is very strange indeed. As we proceed with
classical physics, it is a good idea to try to get a growing acquaintance with the
behavior of things on a small scale, at first as a kind of experience without any
deep understanding. Understanding of these matters comes very slowly, if at
all. Of course, one does get better able to know what is going to happen in a
quantum-mechanical situation—if that is what understanding means—but one
never gets a comfortable feeling that these quantum-mechanical rules are “natural.”
Of course they are, but they are not natural to our own experience at an ordinary
level. We should explain that the attitude that we are going to take with regard
to this rule about angular momentum is quite different from many of the other
things we have talked about. We are not going to try to “explain” it, but we must
at least tell you what happens; it would be dishonest to describe the magnetic
properties of materials without mentioning the fact that the classical description
of magnetism—of angular momentum and magnetic moments—is incorrect.

One of the most shocking and disturbing features about quantum mechanics
is that if you take the angular momentum along any particular axis you find that
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it is always an integer or half-integer times ~. This is so no matter which axis
you take. The subtleties involved in that curious fact—that you can take any
other axis and find that the component for it is also locked to the same set of
values—we will leave to a later chapter, when you will experience the delight of
seeing how this apparent paradox is ultimately resolved.

We will now just accept the fact that for every atomic system there is a
number j, called the spin of the system—which must be an integer or a half-
integer—and that the component of the angular momentum along any particular
axis will always have one of the following values between +j~ and −j~:

Jz = one of



j
j − 1
j − 2
...

−j + 2
−j + 1
−j


· ~. (35.1)

We have also mentioned that every simple atomic system has a magnetic
moment which has the same direction as the angular momentum. This is true
not only for atoms and nuclei but also for the fundamental particles. Each
fundamental particle has its own characteristic value of j and its magnetic
moment. (For some particles, both are zero.) What we mean by “the magnetic
moment” in this statement is that the energy of the system in a magnetic field,
say in the z-direction, can be written as −µzB for small magnetic fields. We
must have the condition that the field should not be too great, otherwise it could
disturb the internal motions of the system and the energy would not be a measure
of the magnetic moment that was there before the field was turned on. But if
the field is sufficiently weak, the field changes the energy by the amount

∆U = −µzB, (35.2)

with the understanding that in this equation we are to replace µz by

µz = g

(
q

2m

)
Jz, (35.3)

where Jz has one of the values in Eq. (35.1).
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Suppose we take a system with a spin j = 3/2. Without a magnetic field,
the system has four different possible states corresponding to the different values
of Jz, all of which have exactly the same energy. But the moment we turn on
the magnetic field, there is an additional energy of interaction which separates
these states into four slightly different energy levels. The energies of these levels
are given by a certain energy proportional to B, multiplied by ~ times 3/2, 1/2,
−1/2, and −3/2—the values of Jz. The splitting of the energy levels for atomic
systems with spins of 1/2, 1, and 3/2 are shown in the diagrams of Fig. 35-1.
(Remember that for any arrangement of electrons the magnetic moment is always
directed opposite to the angular momentum.)

(a)

U

U0 B

j = 1/2

Jz = +h̄/2

Jz = −h̄/2

(b)

U

U0 B

j = 1

Jz = +h̄

Jz = 0h̄

Jz = −h̄

(c)

U

U0 B

j = 3/2 Jz
=

+3h̄
/2

Jz = +h̄/2

Jz = −h̄/2

J
z = −3h̄/2

h̄ωp

h̄ωp

h̄ωp

Fig. 35-1. An atomic system with spin j has (2j + 1) possible energy
values in a magnetic field B. The energy splitting is proportional to B
for small fields.
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You will notice from the diagrams that the “center of gravity” of the energy
levels is the same with and without a magnetic field. Also notice that the spacings
from one level to the next are always equal for a given particle in a given magnetic
field. We are going to write the energy spacing, for a given magnetic field B,
as ~ωp—which is just a definition of ωp. Using Eqs. (35.2) and (35.3), we have

~ωp = g
q

2m ~B
or

ωp = g
q

2m B. (35.4)

The quantity g(q/2m) is just the ratio of the magnetic moment to the angular
momentum—it is a property of the particle. Equation (35.4) is the same formula
that we got in Chapter 34 for the angular velocity of precession in a magnetic field,
for a gyroscope whose angular momentum is J and whose magnetic moment is µ.

35-2 The Stern-Gerlach experiment

The fact that the angular momentum is quantized is such a surprising thing
that we will talk a little bit about it historically. It was a shock from the moment
it was discovered (although it was expected theoretically). It was first observed
in an experiment done in 1922 by Stern and Gerlach. If you wish, you can
consider the experiment of Stern-Gerlach as a direct justification for a belief in
the quantization of angular momentum. Stern and Gerlach devised an experiment
for measuring the magnetic moment of individual silver atoms. They produced a
beam of silver atoms by evaporating silver in a hot oven and letting some of them
come out through a series of small holes. This beam was directed between the
pole tips of a special magnet, as shown in Fig. 35-2. Their idea was the following.
If the silver atom has a magnetic moment µ, then in a magnetic field B it has
an energy −µzB, where z is the direction of the magnetic field. In the classical
theory, µz would be equal to the magnetic moment times the cosine of the angle
between the moment and the magnetic field, so the extra energy in the field
would be

∆U = −µB cos θ. (35.5)

Of course, as the atoms come out of the oven, their magnetic moments would
point in every possible direction, so there would be all values of θ. Now if the
magnetic field varies very rapidly with z—if there is a strong field gradient—then
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the magnetic energy will also vary with position, and there will be a force on the
magnetic moments whose direction will depend on whether cosine θ is positive
or negative. The atoms will be pulled up or down by a force proportional to the
derivative of the magnetic energy; from the principle of virtual work,

Fz = −∂U
∂z

= µ cos θ ∂B
∂z

. (35.6)

Stern and Gerlach made their magnet with a very sharp edge on one of the
pole tips in order to produce a very rapid variation of the magnetic field. The
beam of silver atoms was directed right along this sharp edge, so that the atoms
would feel a vertical force in the inhomogeneous field. A silver atom with its
magnetic moment directed horizontally would have no force on it and would go
straight past the magnet. An atom whose magnetic moment was exactly vertical
would have a force pulling it up toward the sharp edge of the magnet. An atom
whose magnetic moment was pointed downward would feel a downward push.
Thus, as they left the magnet, the atoms would be spread out according to their
vertical components of magnetic moment. In the classical theory all angles are
possible, so that when the silver atoms are collected by deposition on a glass
plate, one should expect a smear of silver along a vertical line. The height of
the line would be proportional to the magnitude of the magnetic moment. The
abject failure of classical ideas was completely revealed when Stern and Gerlach
saw what actually happened. They found on the glass plate two distinct spots.
The silver atoms had formed two beams.

That a beam of atoms whose spins would apparently be randomly oriented
gets split up into two separate beams is most miraculous. How does the magnetic
moment know that it is only allowed to take on certain components in the direction
of the magnetic field? Well, that was really the beginning of the discovery of the
quantization of angular momentum, and instead of trying to give you a theoretical
explanation, we will just say that you are stuck with the result of this experiment
just as the physicists of that day had to accept the result when the experiment
was done. It is an experimental fact that the energy of an atom in a magnetic
field takes on a series of individual values. For each of these values the energy
is proportional to the field strength. So in a region where the field varies, the
principle of virtual work tells us that the possible magnetic force on the atoms
will have a set of separate values; the force is different for each state, so the beam
of atoms is split into a small number of separate beams. From a measurement of
the deflection of the beams, one can find the strength of the magnetic moment.
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35-3 The Rabi molecular-beam method

We would now like to describe an improved apparatus for the measurement
of magnetic moments which was developed by I. I. Rabi and his collaborators.
In the Stern-Gerlach experiment the deflection of atoms is very small, and the
measurement of the magnetic moment is not very precise. Rabi’s technique
permits a fantastic precision in the measurement of the magnetic moments. The
method is based on the fact that the original energy of the atoms in a magnetic
field is split up into a finite number of energy levels. That the energy of an atom
in the magnetic field can have only certain discrete energies is really not more
surprising than the fact that atoms in general have only certain discrete energy
levels—something we mentioned often in Volume I. Why should the same thing
not hold for atoms in a magnetic field? It does. But it is the attempt to correlate
this with the idea of an oriented magnetic moment that brings out some of the
strange implications of quantum mechanics.

When an atom has two levels which differ in energy by the amount ∆U , it
can make a transition from the upper level to the lower level by emitting a light
quantum of frequency ω, where

~ω = ∆U. (35.7)

The same thing can happen with atoms in a magnetic field. Only then, the energy
differences are so small that the frequency does not correspond to light, but to
microwaves or to radiofrequencies. The transitions from the lower energy level
to an upper energy level of an atom can also take place with the absorption of
light or, in the case of atoms in a magnetic field, by the absorption of microwave
energy. Thus if we have an atom in a magnetic field, we can cause transitions
from one state to another by applying an additional electromagnetic field of the
proper frequency. In other words, if we have an atom in a strong magnetic field
and we “tickle” the atom with a weak varying electromagnetic field, there will
be a certain probability of knocking it to another level if the frequency is near
to the ω in Eq. (35.7). For an atom in a magnetic field, this frequency is just
what we have earlier called ωp and it is given in terms of the magnetic field
by Eq. (35.4). If the atom is tickled with the wrong frequency, the chance of
causing a transition is very small. Thus there is a sharp resonance at ωp in the
probability of causing a transition. By measuring the frequency of this resonance
in a known magnetic field B, we can measure the quantity g(q/2m)—and hence
the g-factor—with great precision.
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It is interesting that one comes to the same conclusion from a classical point
of view. According to the classical picture, when we place a small gyroscope
with a magnetic moment µ and an angular momentum J in an external magnetic
field, the gyroscope will precess about an axis parallel to the magnetic field.
(See Fig. 35-3.) Suppose we ask: How can we change the angle of the classical
gyroscope with respect to the field—namely, with respect to the z-axis? The
magnetic field produces a torque around a horizontal axis. Such a torque you
would think is trying to line up the magnet with the field, but it only causes
the precession. If we want to change the angle of the gyroscope with respect to
the z-axis, we must exert a torque on it about the z-axis. If we apply a torque
which goes in the same direction as the precession, the angle of the gyroscope
will change to give a smaller component of J in the z-direction. In Fig. 35-3, the
angle between J and the z-axis would increase. If we try to hinder the precession,
J moves toward the vertical.

B

ωp

J

µ

Fig. 35-3. The classical precession of an atom with the magnetic
moment µ and the angular momentum J.

For our precessing atom in a uniform magnetic field, how can we apply the
kind of torque we want? The answer is: with a weak magnetic field from the
side. You might at first think that the direction of this magnetic field would have
to rotate with the precession of the magnetic moment, so that it was always at
right angles to the moment, as indicated by the field B′ in Fig. 35-4(a). Such
a field works very well, but an alternating horizontal field is almost as good. If
we have a small horizontal field B′, which is always in the x-direction (plus or
minus) and which oscillates with the frequency ωp, then on each one-half cycle
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(a)

B

J

µ

B′

(b)

B

J

µ

B′ = b cosωpt

Fig. 35-4. The angle of precession of an atomic magnet can be
changed by a horizontal magnetic field always at right angles to µ, as
in (a), or by an oscillating field, as in (b).

the torque on the magnetic moment reverses, so that it has a cumulative effect
which is almost as effective as a rotating magnetic field. Classically, then, we
would expect the component of the magnetic moment along the z-direction to
change if we have a very weak oscillating magnetic field at a frequency which is
exactly ωp. Classically, of course, µz would change continuously, but in quantum
mechanics the z-component of the magnetic moment cannot adjust continuously.
It must jump suddenly from one value to another. We have made the comparison
between the consequences of classical mechanics and quantum mechanics to give
you some clue as to what might happen classically and how it is related to what
actually happens in quantum mechanics. You will notice, incidentally, that the
expected resonant frequency is the same in both cases.
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One additional remark: From what we have said about quantum mechanics,
there is no apparent reason why there couldn’t also be transitions at the fre-
quency 2ωp. It happens that there isn’t any analog of this in the classical case,
and also it doesn’t happen in the quantum theory either—at least not for the
particular method of inducing the transitions that we have described. With an
oscillating horizontal magnetic field, the probability that a frequency 2ωp would
cause a jump of two steps at once is zero. It is only at the frequency ωp that
transitions, either upward or downward, are likely to occur.

Now we are ready to describe Rabi’s method for measuring magnetic moments.
We will consider here only the operation for atoms with a spin of 1/2. A diagram of
the apparatus is shown in Fig. 35-5. There is an oven which gives out a stream of
neutral atoms which passes down a line of three magnets. Magnet 1 is just like the
one in Fig. 35-2, and has a field with a strong field gradient—say, with ∂Bz/∂z pos-
itive. If the atoms have a magnetic moment, they will be deflected downward
if Jz = +~/2, or upward if Jz = −~/2 (since for electrons µ is directed opposite
to J). If we consider only those atoms which can get through the slit S1, there are
two possible trajectories, as shown. Atoms with Jz = +~/2 must go along curve a
to get through the slit, and those with Jz = −~/2 must go along curve b. Atoms
which start out from the oven along other paths will not get through the slit.

Magnet 2 has a uniform field. There are no forces on the atoms in this region,
so they go straight through and enter magnet 3. Magnet 3 is just like magnet 1
but with the field inverted, so that ∂Bz/∂z has the opposite sign. The atoms
with Jz = +~/2 (we say “with spin up”), that felt a downward push in magnet 1,
get an upward push in magnet 3; they continue on the path a and go through
slit S2 to a detector. The atoms with Jz = −~/2 (“with spin down”) also have
opposite forces in magnets 1 and 3 and go along the path b, which also takes
them through slit S2 to the detector.

The detector may be made in various ways, depending on the atom being
measured. For example, for atoms of an alkali metal like sodium, the detector
can be a thin, hot tungsten wire connected to a sensitive current meter. When
sodium atoms land on the wire, they are evaporated off as Na+ ions, leaving an
electron behind. There is a current from the wire proportional to the number of
sodium atoms arriving per second.

In the gap of magnet 2 there is a set of coils that produces a small horizontal
magnetic fieldB′. The coils are driven with a current which oscillates at a variable
frequency ω. So between the poles of magnet 2 there is a strong, constant, vertical
field B0 and a weak, oscillating, horizontal field B′.
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Suppose now that the frequency ω of the oscillating field is set at ωp—the
“precession” frequency of the atoms in the field B. The alternating field will
cause some of the atoms passing by to make transitions from one Jz to the
other. An atom whose spin was initially “up” (Jz = +~/2) may be flipped “down”
(Jz = −~/2). Now this atom has the direction of its magnetic moment reversed,
so it will feel a downward force in magnet 3 and will move along the path a′,
shown in Fig. 35-5. It will no longer get through the slit S2 to the detector.
Similarly, some of the atoms whose spins were initially down (Jz = −~/2) will
have their spins flipped up (Jz = +~/2) as they pass through magnet 2. They
will then go along the path b′ and will not get to the detector.

If the oscillating field B′ has a frequency appreciably different from ωp, it
will not cause any spin flips, and the atoms will follow their undisturbed paths
to the detector. So you can see that the “precession” frequency ωp of the atoms
in the field B0 can be found by varying the frequency ω of the field B′ until a
decrease is observed in the current of atoms arriving at the detector. A decrease
in the current will occur when ω is “in resonance” with ωp. A plot of the detector
current as a function of ω might look like the one shown in Fig. 35-6. Knowing
ωp, we can obtain the g-value of the atom.

Such atomic-beam or, as they are usually called, “molecular” beam resonance
experiments are a beautiful and delicate way of measuring the magnetic properties
of atomic objects. The resonance frequency ωp can be determined with great
precision—in fact, with a greater precision than we can measure the magnetic
field B0, which we must know to find g.

ωωp

DETECTOR
CURRENT

Fig. 35-6. The current of atoms in the beam decreases when ω = ωp.
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35-4 The paramagnetism of bulk materials

We would like now to describe the phenomenon of the paramagnetism of bulk
materials. Suppose we have a substance whose atoms have permanent magnetic
moments, for example a crystal like copper sulfate. In the crystal there are copper
ions whose inner electron shells have a net angular momentum and a net magnetic
moment. So the copper ion is an object which has a permanent magnetic moment.
Let’s say just a word about which atoms have magnetic moments and which ones
don’t. Any atom, like sodium for instance, which has an odd number of electrons,
will have a magnetic moment. Sodium has one electron in its unfilled shell. This
electron gives the atom a spin and a magnetic moment. Ordinarily, however,
when compounds are formed the extra electrons in the outside shell are coupled
together with other electrons whose spin directions are exactly opposite, so that
all the angular momenta and magnetic moments of the valence electrons usually
cancel out. That’s why, in general, molecules do not have a magnetic moment.
Of course if you have a gas of sodium atoms, there is no such cancellation.† Also,
if you have what is called in chemistry a “free radical”—an object with an odd
number of valence electrons—then the bonds are not completely satisfied, and
there is a net angular momentum.

In most bulk materials there is a net magnetic moment only if there are atoms
present whose inner electron shell is not filled. Then there can be a net angular
momentum and a magnetic moment. Such atoms are found in the “transition
element” part of the periodic table—for instance, chromium, manganese, iron,
nickel, cobalt, palladium, and platinum are elements of this kind. Also, all of the
rare earth elements have unfilled inner shells and permanent magnetic moments.
There are a couple of other strange things that also happen to have magnetic
moments, such as liquid oxygen, but we will leave it to the chemistry department
to explain the reason.

Now suppose that we have a box full of atoms or molecules with permanent
moments—say a gas, or a liquid, or a crystal. We would like to know what
happens if we apply an external magnetic field. With no magnetic field, the
atoms are kicked around by the thermal motions, and the moments wind up
pointing in all directions. But when there is a magnetic field, it acts to line up
the little magnets; then there are more moments lying toward the field than away
from it. The material is “magnetized.”

† Ordinary Na vapor is mostly monatomic, although there are also some molecules of Na2.
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We define the magnetization M of a material as the net magnetic moment
per unit volume, by which we mean the vector sum of all the atomic magnetic
moments in a unit volume. If there are N atoms per unit volume and their
average moment is 〈µ〉av then M can be written as N times the average atomic
moment:

M = N〈µ〉av. (35.8)

The definition of M corresponds to the definition of the electric polarization P
of Chapter 10 in Vol. II.

The classical theory of paramagnetism is just like the theory of the dielectric
constant we showed you in Chapter 11 of Vol. II. One assumes that each of the
atoms has a magnetic moment µ, which always has the same magnitude but which
can point in any direction. In a fieldB, the magnetic energy is−µ·B = −µB cos θ,
where θ is the angle between the moment and the field. From statistical mechanics,
the relative probability of having any angle is e−energy/kT , so angles near zero
are more likely than angles near π. Proceeding exactly as we did in Section 11-3
of Vol. II, we find that for small magnetic fields M is directed parallel to B and
has the magnitude

M = Nµ2B

3kT . (35.9)

[See Eq. (11.20) in Vol. II.] This approximate formula is correct only for µB/kT
much less than one.

We find that the induced magnetization—the magnetic moment per unit
volume—is proportional to the magnetic field. This is the phenomenon of
paramagnetism. You will see that the effect is stronger at lower temperatures and
weaker at higher temperatures. When we put a field on a substance, it develops,
for small fields, a magnetic moment proportional to the field. The ratio of M
to B (for small fields) is called the magnetic susceptibility.

Now we want to look at paramagnetism from the point of view of quantum
mechanics. We take first the case of an atom with a spin of 1/2. In the absence
of a magnetic field the atoms have a certain energy, but in a magnetic field there
are two possible energies, one for each value of Jz. For Jz = +~/2, the energy is
changed by the magnetic field by the amount

∆U1 = +g
(
qe~
2m

)
· 1

2 ·B. (35.10)
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(The energy shift ∆U is positive for an atom because the electron charge is
negative.) For Jz = −~/2, the energy is changed by the amount

∆U2 = −g
(
qe~
2m

)
· 1

2 ·B. (35.11)

To save writing, let’s set

µ0 = g

(
qe~
2m

)
· 1

2 ; (35.12)

then
∆U = ±µ0B. (35.13)

The meaning of µ0 is clear: −µ0 is the z-component of the magnetic moment in
the up-spin case, and +µ0 is the z-component of the magnetic moment in the
down-spin case.

Now statistical mechanics tells us that the probability that an atom is in one
state or another is proportional to

e−(Energy of state)/kT .

With no magnetic field the two states have the same energy; so when there is
equilibrium in a magnetic field, the probabilities are proportional to

e−∆U/kT . (35.14)

The number of atoms per unit volume with spin up is

Nup = ae−µ0B/kT , (35.15)

and the number with spin down is

Ndown = ae+µ0B/kT . (35.16)

The constant a is to be determined so that

Nup +Ndown = N, (35.17)

the total number of atoms per unit volume. So we get that

a = N

e+µ0B/kT + e−µ0B/kT
. (35.18)
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What we are interested in is the average magnetic moment along the z-axis.
The atoms with spin up will contribute a moment of −µ0, and those with spin
down will have a moment of +µ0; so the average moment is

〈µ〉av = Nup(−µ0) +Ndown(+µ0)
N

. (35.19)

The magnetic moment per unit volumeM is then N〈µ〉av. Using Eqs. (35.15),
(35.16), and (35.17), we get that

M = Nµ0
e+µ0B/kT − e−µ0B/kT

e+µ0B/kT + e−µ0B/kT
. (35.20)

This is the quantum-mechanical formula for M for atoms with j = 1/2. Inciden-
tally, this formula can also be written somewhat more concisely in terms of the
hyperbolic tangent function:

M = Nµ0 tanh µ0B

kT
. (35.21)

µ0B/kT

0 1 2 3 4

M

Nµ0

Fig. 35-7. The variation of the paramagnetic magnetization with the
magnetic field strength B.

A plot of M as a function of B is given in Fig. 35-7. When B gets very large,
the hyperbolic tangent approaches 1, and M approaches the limiting value Nµ0.
So at high fields, the magnetization saturates. We can see why that is; at high
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enough fields the moments are all lined up in the same direction. In other words,
they are all in the spin-down state, and each atom contributes the moment µ0.

In most normal cases—say, for typical moments, room temperatures, and the
fields one can normally get (like 10,000 gauss)—the ratio µ0B/kT is about 0.002.
One must go to very low temperatures to see the saturation. For normal temper-
atures, we can usually replace tanh x by x, and write

M = Nµ2
0B

kT
. (35.22)

Just as we saw in the classical theory, M is proportional to B. In fact, the
formula is almost exactly the same, except that there seems to be a factor of 1/3
missing. But we still need to relate the µ0 in our quantum formula to the µ that
appears in the classical result, Eq. (35.9).

In the classical formula, what appears is µ2 = µ · µ, the square of the vector
magnetic moment, or

µ · µ =
(
g
qe
2m

)2
J · J . (35.23)

We pointed out in the last chapter that you can very likely get the right answer
from a classical calculation by replacing J · J by j(j + 1)~2. In our particular
example, we have j = 1/2, so

j(j + 1)~2 = 3
4~

2.

Substituting this for J · J in Eq. (35.23), we get

µ · µ =
(
g
qe
2m

)2 3~2

4 ,

or in terms of µ0, defined in Eq. (35.12), we get

µ · µ = 3µ2
0.

Substituting this for µ2 in the classical formula, Eq. (35.9), does indeed reproduce
the correct quantum formula, Eq. (35.22).

The quantum theory of paramagnetism is easily extended to atoms of any
spin j. The low-field magnetization is

M = Ng2 j(j + 1)
3

µ2
BB

kT
, (35.24)
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where
µB = qe~

2m (35.25)

is a combination of constants with the dimensions of a magnetic moment. Most
atoms have moments of roughly this size. It is called the Bohr magneton. The
spin magnetic moment of the electron is almost exactly one Bohr magneton.

35-5 Cooling by adiabatic demagnetization

There is a very interesting special application of paramagnetism. At very low
temperatures it is possible to line up the atomic magnets in a strong field. It
is then possible to get down to extremely low temperatures by a process called
adiabatic demagnetization. We can take a paramagnetic salt (for example, one
containing a number of rare-earth atoms like praseodymium-ammonium-nitrate),
and start by cooling it down with liquid helium to one or two degrees absolute in
a strong magnetic field. Then the factor µB/kT is larger than 1—say more like
2 or 3. Most of the spins are lined up, and the magnetization is nearly saturated.
Let’s say, to make it easy, that the field is very powerful and the temperature
is very low, so that nearly all the atoms are lined up. Then you isolate the salt
thermally (say, by removing the liquid helium and leaving a good vacuum) and
turn off the magnetic field. The temperature of the salt goes way down.

Now if you were to turn off the field suddenly, the jiggling and shaking,
of the atoms in the crystal lattice would gradually knock all the spins out of
alignment. Some of them would be up and some down. But if there is no field
(and disregarding the interactions between the atomic magnets, which will make
only a slight error), it takes no energy to turn over the atomic magnets. They
could randomize their spins without any energy change and, therefore, without
any temperature change.

Suppose, however, that while the atomic magnets are being flipped over by
the thermal motion there is still some magnetic field present. Then it requires
some work to flip them over opposite to the field—they must do work against the
field. This takes energy from the thermal motions and lowers the temperature.
So if the strong magnetic field is not removed too rapidly, the temperature of
the salt will decrease—it is cooled by the demagnetization. From the quantum-
mechanical view, when the field is strong all the atoms are in the lowest state,
because the odds against any being in the upper state are impossibly big. But as
the field is lowered, it gets more and more likely that thermal fluctuations will
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knock an atom into the upper state. When that happens, the atom absorbs the
energy ∆U = µ0B. So if the field is turned off slowly, the magnetic transitions
can take energy out of the thermal vibrations of the crystal, cooling it off. It is
possible in this way to go from a temperature of a few degrees absolute down to
a temperature of a few thousandths of a degree.

Would you like to make something even colder than that? It turns out that
Nature has provided a way. We have already mentioned that there are also
magnetic moments for the atomic nuclei. Our formulas for paramagnetism work
just as well for nuclei, except that the moments of nuclei are roughly a thousand
times smaller. [They are of the order of magnitude of q~/2mp, where mp is
the proton mass, so they are smaller by the ratio of the masses of the electron
and proton.] With such magnetic moments, even at a temperature of 2◦K, the
factor µB/kT is only a few parts in a thousand. But if we use the paramagnetic
demagnetization process to get down to a temperature of a few thousandths of
a degree, µB/kT becomes a number near 1—at these low temperatures we can
begin to saturate the nuclear moments. That is good luck, because we can then
use the adiabatic demagnetization of the nuclear magnetism to reach still lower
temperatures. Thus it is possible to do two stages of magnetic cooling. First we
use adiabatic demagnetization of paramagnetic ions to reach a few thousandths
of a degree. Then we use the cold paramagnetic salt to cool some material which
has a strong nuclear magnetism. Finally, when we remove the magnetic field
from this material, its temperature will go down to within a millionth of a degree
of absolute zero—if we have done everything very carefully.

35-6 Nuclear magnetic resonance

We have said that atomic paramagnetism is very small and that nuclear
magnetism is even a thousand times smaller. Yet it is relatively easy to observe
the nuclear magnetism by the phenomenon of “nuclear magnetic resonance.”
Suppose we take a substance like water, in which all of the electron spins are
exactly balanced so that their net magnetic moment is zero. The molecules
will still have a very, very tiny magnetic moment due to the nuclear magnetic
moment of the hydrogen nuclei. Suppose we put a small sample of water in a
magnetic field B. Since the protons (of the hydrogen) have a spin of 1/2, they
will have two possible energy states. If the water is in thermal equilibrium, there
will be slightly more protons in the lower energy states—with their moments
directed parallel to the field. There is a small net magnetic moment per unit
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volume. Since the proton moment is only about one-thousandth of an atomic
moment, the magnetization which goes as µ2—using Eq. (35.22)—is only about
one-millionth as strong as typical atomic paramagnetism. (That’s why we have
to pick a material with no atomic magnetism.) If you work it out, the difference
between the number of protons with spin up and with spin down is only one part
in 108, so the effect is indeed very small! It can still be observed, however, in the
following way.

Suppose we surround the water sample with a small coil that produces a small
horizontal oscillating magnetic field. If this field oscillates at the frequency ωp,
it will induce transitions between the two energy states—just as we described
for the Rabi experiment in Section 35-3. When a proton flips from an upper
energy state to a lower one, it will give up the energy µzB which, as we have
seen, is equal to ~ωp. If it flips from the lower energy state to the upper one, it
will absorb the energy ~ωp from the coil. Since there are slightly more protons in
the lower state than in the upper one, there will be a net absorption of energy
from the coil. Although the effect is very small, the slight energy absorption can
be seen with a sensitive electronic amplifier.

Just as in the Rabi molecular-beam experiment, the energy absorption will
be seen only when the oscillating field is in resonance, that is, when

ω = ωp = g

(
qe

2mp

)
B.

It is often more convenient to search for the resonance by varying B while keeping
ω fixed. The energy absorption will evidently appear when

B = 2mp

gqe
ω.

A typical nuclear magnetic resonance apparatus is shown in Fig. 35-8. A
high-frequency oscillator drives a small coil placed between the poles of a large
electromagnet. Two small auxiliary coils around the pole tips are driven with
a 60-cycle current so that the magnetic field is “wobbled” about its average
value by a very small amount. As an example, say that the main current of the
magnet is set to give a field of 5000 gauss, and the auxiliary coils produce a
variation of ±1 gauss about this value. If the oscillator is set at 21.2 megacycles
per second, it will then be at the proton resonance each time the field sweeps
through 5000 gauss [using Eq. (34.13) with g = 5.58 for the proton].
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Fig. 35-8. A nuclear magnetic resonance apparatus.

The circuit of the oscillator is arranged to give an additional output signal
proportional to any change in the power being absorbed from the oscillator. This
signal is fed to the vertical deflection amplifier of an oscilloscope. The horizontal
sweep of the oscilloscope is triggered once during each cycle of the field-wobbling
frequency. (More usually, the horizontal deflection is made to follow in proportion
to the wobbling field.)

Before the water sample is placed inside the high-frequency coil, the power
drawn from the oscillator is some value. (It doesn’t change with the magnetic
field.) When a small bottle of water is placed in the coil, however, a signal appears
on the oscilloscope, as shown in the figure. We see a picture of the power being
absorbed by the flipping over of the protons!

In practice, it is difficult to know how to set the main magnet to exactly
5000 gauss. What one does is to adjust the main magnet current until the
resonance signal appears on the oscilloscope. It turns out that this is now the
most convenient way to make an accurate measurement of the strength of a
magnetic field. Of course, at some time someone had to measure accurately the
magnetic field and frequency to determine the g-value of the proton. But now
that this has been done, a proton resonance apparatus like that of the figure can
be used as a “proton resonance magnetometer.”
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We should say a word about the shape of the signal. If we were to wobble
the magnetic field very slowly, we would expect to see a normal resonance curve.
The energy absorption would read a maximum when ωp arrived exactly at the
oscillator frequency. There would be some absorption at nearby frequencies
because all the protons are not in exactly the same field—and different fields
mean slightly different resonant frequencies.

One might wonder, incidentally, whether at the resonance frequency we should
see any signal at all. Shouldn’t we expect the high-frequency field to equalize the
populations of the two states—so that there should be no signal except when the
water is first put in? Not exactly, because although we are trying to equalize the
two populations, the thermal motions on their part are trying to keep the proper
ratios for the temperature T . If we sit at the resonance, the power being absorbed
by the nuclei is just what is being lost to the thermal motions. There is, however,
relatively little “thermal contact” between the proton magnetic moments and
the atomic motions. The protons are relatively isolated down in the center of the
electron distributions. So in pure water, the resonance signal is, in fact, usually
too small to be seen. To increase the absorption, it is necessary to increase the
“thermal contact.” This is usually done by adding a little iron oxide to the water.
The iron atoms are like small magnets; as they jiggle around in their thermal
dance, they make tiny jiggling magnetic fields at the protons. These varying
fields “couple” the proton magnets to the atomic vibrations and tend to establish
thermal equilibrium. It is through this “coupling” that protons in the higher
energy states can lose their energy so that they are again capable of absorbing
energy from the oscillator.

In practice the output signal of a nuclear resonance apparatus does not look
like a normal resonance curve. It is usually a more complicated signal with
oscillations—like the one drawn in the figure. Such signal shapes appear because
of the changing fields. The explanation should be given in terms of quantum
mechanics, but it can be shown that in such experiments the classical ideas of
precessing moments always give the correct answer. Classically, we would say
that when we arrive at resonance we start driving a lot of the precessing nuclear
magnets synchronously. In so doing, we make them precess together. These
nuclear magnets, all rotating together, will set up an induced emf in the oscillator
coil at the frequency ωp. But because the magnetic field is increasing with time,
the precession frequency is increasing also, and the induced voltage is soon at a
frequency a little higher than the oscillator frequency. As the induced emf goes
alternately in phase and out of phase with the oscillator, the “absorbed” power
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goes alternately positive and negative. So on the oscilloscope we see the beat
note between the proton frequency and the oscillator frequency. Because the
proton frequencies are not all identical (different protons are in slightly different
fields) and also possibly because of the disturbance from the iron oxide in the
water, the freely precessing moments soon get out of phase, and the beat signal
disappears.

These phenomena of magnetic resonance have been put to use in many ways
as tools for finding out new things about matter—especially in chemistry and
nuclear physics. It goes without saying that the numerical values of the magnetic
moments of nuclei tell us something about their structure. In chemistry, much has
been learned from the structure (or shape) of the resonances. Because of magnetic
fields produced by nearby nuclei, the exact position of a nuclear resonance is
shifted somewhat, depending on the environment in which any particular nucleus
finds itself. Measuring these shifts helps determine which atoms are near which
other ones and helps to elucidate the details of the structure of molecules. Equally
important is the electron spin resonance of free radicals. Although not present to
any very large extent in equilibrium, such radicals are often intermediate states
of chemical reactions. A measurement of an electron spin resonance is a delicate
test for the presence of free radicals and is often the key to understanding the
mechanism of certain chemical reactions.
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Dynamical (p-) momentum, 21-8
Dynamics, I-9-1 ff
Development of ∼, I-7-4
of rotation, I-18-5 f
Relativistic ∼, I-15-15 ff

E
Eddy current, II-16-11
Effect
Barkhausen ∼, II-37-19

Doppler ∼, I-17-14, I-23-18, I-34-13 ff,
I-38-11, II-42-21, 2-11, 12-15

Hall ∼, 14-12 ff
Kerr ∼, I-33-8
Meissner ∼, 21-14 ff, 21-22
Mössbauer ∼, II-42-24
Purkinje ∼, I-35-4

Effective mass, 13-12
Efficiency of an ideal engine, I-44-13 ff
Eigenstates, 11-38
Eigenvalues, 11-38
Einstein coefficients, 4-15, 9-25
Einstein-Podolsky-Rosen paradox, 18-16
Einstein’s equation of motion, II-42-30
Einstein’s field equation, II-42-29
Elastica, curves of the, II-38-25
Elastic collision, I-10-13 f
Elastic constants, II-39-9, II-39-19 ff
Elastic energy, I-4-3, I-4-11 f
Elasticity, II-38-1 ff
Elasticity tensor, II-39-6 ff
Elastic materials, II-39-1 ff
Electret, II-11-16
Electrical energy, I-4-3, I-4-12, I-10-15,

II-15-5 ff
Electrical forces, I-2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electric charge density, II-2-15, 21-10
Electric current, II-13-2 ff
in the atmosphere, II-9-4 ff

Electric current density, II-2-15
Electric dipole, II-6-2 ff
Electric dipole matrix element, 9-25
Electric field, I-2-6, I-12-11 ff, II-1-4 ff,

II-6-1 ff, II-7-1 ff
Relativity of ∼, II-13-13 ff

Electric flux, II-1-8
Electric generator, II-16-1 ff, II-22-9 ff
Electric motor, II-16-1 ff
Electric potential, II-4-6 ff
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Electric susceptibility, II-10-7
Electrodynamics, II-1-5
Electromagnetic energy, I-29-3 f
Electromagnetic field, I-2-3, I-2-7,

I-10-15 f
Electromagnetic mass, II-28-1 ff
Electromagnetic radiation, I-26-1, I-28-1 ff
Electromagnetic waves, I-2-7, II-21-1 ff
Electromagnetism, II-1-1 ff
Laws of ∼, II-1-9 ff

Electromotive force (EMF), II-16-5
Electron, I-2-6, I-37-2, I-37-7 ff, 1-1, 1-6 ff
Charge on ∼, I-12-12
Classical ∼ radius, I-32-6, II-28-5

Electron cloud, I-6-20
Electron configuration, 19-29
Electronic polarization, II-11-2 ff
Electron microscope, II-29-9 f
Electron-ray tube, I-12-15
Electron volt (unit), I-34-7
Electrostatic energy, II-8-1 ff
in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Electrostatic equations
with dielectrics, II-10-10 ff

Electrostatic field, II-5-1 ff, II-7-1 ff
Energy in the ∼, II-8-18 ff
of a grid, II-7-17 ff

Electrostatic lens, II-29-5 ff
Electrostatic potential, equations of the,

II-6-1 f
Electrostatics, II-4-1 ff, II-5-1 ff
Ellipse, I-7-2
Emission of photons, 4-13 ff
Emissivity, II-6-28
Energy, I-4-1 ff, II-22-24 ff
Activation ∼, I-3-6, I-42-12 f
Boltzmann ∼, II-36-24

Chemical ∼, I-4-3
Conservation of ∼, I-3-3, I-4-1 ff,

II-27-1 ff, II-42-24, 7-9 ff
Elastic ∼, I-4-3, I-4-11 f
Electrical ∼, I-4-3, I-4-12, I-10-15,

II-15-5 ff
Electromagnetic ∼, I-29-3 f
Electrostatic ∼, II-8-1 ff
in nuclei, II-8-12 ff
of a point charge, II-8-22 f
of charges, II-8-1 ff
of ionic crystals, II-8-8 ff

Field ∼, II-27-1 ff
Gravitational ∼, I-4-3 ff
Heat ∼, I-4-3, I-4-11 f, I-10-15
in the electrostatic field, II-8-18 ff
Kinetic ∼, I-1-13, I-2-10, I-4-3, I-4-10 f
and temperature, I-39-10 ff

Magnetic ∼, II-17-22 ff
Mass ∼, I-4-3, I-4-12
Mechanical ∼, II-15-5 ff
Nuclear ∼, I-4-3
of a condensor, II-8-4 ff
Potential ∼, I-4-7, I-13-1 ff, I-14-1 ff,

7-9 ff
Radiant ∼, I-4-3, I-4-12, I-7-20, I-10-15
Relativistic ∼, I-16-1 ff
Rotational kinetic ∼, I-19-12 ff
Rydberg ∼, 10-6, 19-5
Wall ∼, II-37-11

Energy density, II-27-3
Energy diagram, 14-2
Energy flux, II-27-3
Energy level diagram, 14-6
Energy levels, I-38-13 ff, 2-13 ff, 12-12 ff
of a harmonic oscillator, I-40-17 f

Energy theorem, I-50-13
Enthalpy, I-45-9
Entropy, I-44-19 ff, I-46-9 ff
Equation
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Clausius-Mossotti ∼, II-11-13 ff,
II-32-11

Diffusion ∼
Heat ∼,
Neutron ∼, II-12-13

Dirac ∼, I-20-11
Dispersion ∼, I-31-10
Einstein’s field ∼, II-42-29
Einstein’s ∼ of motion, II-42-30
Laplace ∼, II-7-2
Maxwell’s ∼s, I-46-12, I-47-12, II-2-1,

II-2-15, II-4-1 f, II-6-1, II-7-11,
II-8-20, II-10-11, II-13-7, II-13-13,
II-13-22, II-15-24 f, II-18-1 ff,
II-22-1 f, II-22-13 f, II-22-16,
II-22-23, II-23-6, II-23-13 f,
II-23-20 f, II-24-9, II-25-12,
II-25-15, II-25-19, II-26-3, II-26-20,
II-26-23, II-27-5, II-27-8, II-27-13,
II-27-17, II-28-1, II-32-7, II-33-2,
II-33-5 ff, II-33-12 f, II-33-16,
II-34-14, II-36-2, II-36-5, II-36-11,
II-36-26, II-38-4, II-39-14, II-42-29,
34-14

for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and
charges, II-21-1 ff

Solving ∼, II-18-17 ff
Poisson ∼, II-6-2
Saha ∼, I-42-9
Schrödinger ∼, II-15-21, II-41-20, 16-6,

16-18 ff
for the hydrogen atom, 19-1 ff
in a classical context, 21-1 ff

Wave ∼, I-47-1 ff, II-18-17 ff
Equilibrium, I-1-12

Equipotential surfaces, II-4-20 ff
Equivalent circuits, II-22-22 ff
Ethylene molecule, 15-13
Euclidean geometry, I-1-1, I-12-4, I-12-19,

I-17-4
Euler force, II-38-23
Evaporation, I-1-10, I-1-12
of a liquid, I-40-5 ff, I-42-1 ff

Excess radius, II-42-9 ff, II-42-13 ff,
II-42-29

Exchange force, II-37-3
Excited state, II-8-14, 13-15
Exciton, 13-16
Exclusion principle, 4-23 ff
Expansion
Adiabatic ∼, I-44-10
Isothermal ∼, I-44-10

Exponential atmosphere, I-40-1 ff
Eye
Compound (insect) ∼, I-36-12 ff
Human ∼, I-35-1 ff

F
Farad (unit), I-25-14, II-6-24
Faraday’s law of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Fermat’s principle, I-26-5, I-26-7, I-26-9,

I-26-11, I-26-13 ff, I-26-17 f
Fermi (unit), I-5-18
Fermi particles, 4-1 ff, 15-11
Ferrites, II-37-25 f
Ferroelectricity, II-11-17 ff
Ferromagnetic insulators, II-37-25
Ferromagnetic materials, II-37-19 ff
Ferromagnetism, II-36-1 ff, II-37-1 ff
Field, I-14-12 ff
Electric ∼, I-2-6, I-12-11 ff, II-1-4 ff,

II-6-1 ff, II-7-1 ff
Electromagnetic ∼, I-2-3, I-2-7,

I-10-15 f
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Electrostatic ∼, II-5-1 ff, II-7-1 ff
of a grid, II-7-17 ff

Flux of a vector ∼, II-3-4 ff
Gravitational ∼, I-12-13 ff, I-13-13 ff
in a cavity, II-5-17 ff
Magnetic ∼, I-12-15 ff, II-1-4 ff,

II-13-1 f, II-14-1 ff
of steady currents, II-13-6 ff

Magnetizing ∼, II-36-15
of a charged conductor, II-6-14 f
of a conductor, II-5-16 f
Relativity of electric ∼, II-13-13 ff
Relativity of magnetic ∼, II-13-13 ff
Scalar ∼, II-2-3 ff
Superposition of ∼s, I-12-15
Two-dimensional ∼s, II-7-3 ff
Vector ∼, II-1-8 f, II-2-3 ff

Field-emission microscope, II-6-27 ff
Field energy, II-27-1 ff
of a point charge, II-28-1 f

Field index, II-29-13
Field-ion microscope, II-6-27 ff
Field lines, II-4-20 ff
Field momentum, II-27-1 ff
of a moving charge, II-28-3 f

Field strength, II-1-6
Filter, II-22-30 ff
Flow
Fluid ∼, II-12-16 ff
Heat ∼, II-2-16 ff, II-12-2 ff
Irrotational ∼, II-12-16 ff, II-40-9 ff
Steady ∼, II-40-10 ff
Viscous ∼, II-41-6 ff

Fluid flow, II-12-16 ff
Flux, II-4-12 ff
Electric ∼, II-1-8
Energy ∼, II-27-3
of a vector field, II-3-4 ff

Flux quantization, 21-16 ff
Flux rule, II-17-1

Focal length
of a lens, I-27-7 ff
of a spherical surface, I-27-2 ff

Focus, I-26-11, I-27-4
Force
Centrifugal ∼, I-7-9, I-12-18, I-16-3,

I-19-13 f, I-20-14, I-43-7, I-52-5,
II-34-12, II-41-18, 19-20, 19-25,
34-12

Centripetal ∼, I-19-15 f
Components of ∼, I-9-4 ff
Conservative ∼, I-14-5 ff
Coriolis ∼, I-19-14 ff, I-20-8, I-51-13,

I-52-5, II-34-12, 34-12
Electrical ∼s, I-2-5 ff, II-1-1 ff, II-13-1
in relativistic notation, II-25-1 ff

Electromotive ∼ (EMF), II-16-5
Euler ∼, II-38-23
Exchange ∼, II-37-3
Gravitational ∼, I-2-4
Lorentz ∼, II-13-1, II-15-25
Magnetic ∼, I-12-15 ff, II-1-4, II-13-1
on a current, II-13-5 f

Molecular ∼s, I-12-9 ff
Moment of ∼, I-18-8
Nonconservative ∼, I-14-10 ff
Nuclear ∼s, I-12-20 f, II-1-2 f, II-8-12 f,

II-28-18, II-28-20 ff, 10-10 ff
Pseudo ∼, I-12-17 ff

Fortune teller, I-17-8
Foucault pendulum, I-16-3
Fourier analysis, I-25-7, I-50-3 ff, I-50-8 ff
Fourier theorem, II-7-17
Fourier transforms, I-25-7
Four-potential, II-25-15
Four-vector algebra, I-17-12 ff
Four-vectors, I-15-14 f, I-17-8 ff, II-25-1 ff
Fovea, I-35-2 f, I-35-5, I-35-18
Frequency
Angular ∼, I-21-5, I-29-4, I-29-6, I-49-4
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Larmor ∼, II-34-12, 34-12
of oscillation, I-2-7
Plasma ∼, II-7-12, II-32-18 ff

Fresnel’s reflection formulas, I-33-15
Friction, I-10-7, I-12-4 ff
Coefficient of ∼, I-12-6
Origin of ∼, I-12-9

G
Galilean relativity, I-10-5, I-10-11
Galilean transformation, I-12-18, I-15-4
Gallium, 19-32 f
Galvanometer, II-1-17, II-16-2
Gamma rays, I-2-8
Garnets, II-37-25 f
Gauss (unit), I-34-7, II-36-12
Gaussian distribution, I-6-15, 16-12, 16-14
Gauss’ law, II-4-18 f
Applications of ∼, II-5-1 ff
for field lines, II-4-21

Gauss’ theorem, II-3-8 ff, 21-7
Generator
Alternating-current ∼, II-17-11 ff
Electric ∼, II-16-1 ff, II-22-9 ff
Van de Graaff ∼, II-5-19, II-8-14

Geology and physics, I-3-12 f
Geometrical optics, I-26-2, I-27-1 ff
Gradient operator, II-2-8 ff, II-3-1
Gravitation, I-2-4, I-7-1 ff, I-12-2, II-42-1
Theory of ∼, II-42-28 ff

Gravitational acceleration, I-9-6
Gravitational constant, I-7-17
Gravitational energy, I-4-3 ff
Gravitational field, I-12-13 ff, I-13-13 ff
Gravitational force, I-2-4
Gravity, I-13-5 ff, II-42-17 ff
Acceleration of ∼, I-9-6

Greeks’ difficulties with speed, I-8-4 f
Green’s function, I-25-8
Ground state, II-8-14, 7-3

Group velocity, I-48-11 f
Guanine, I-3-9
Gyroscope, I-20-9 ff

H
Haidinger’s brush, I-36-14
Hall effect, 14-12 ff
Hamiltonian, 8-16
Hamiltonian matrix, 8-1 ff
Hamilton’s first principal function,

II-19-16
Harmonic motion, I-21-6 ff, I-23-1 ff
Harmonic oscillator, I-10-1, I-21-1 ff
Energy levels of a ∼, I-40-17 f
Forced ∼, I-21-9 ff, I-23-4 ff

Harmonics, I-50-1 ff
Heat, I-1-5, I-13-5
Specific ∼, I-40-13 ff, II-37-7
and the failure of classical physics,

I-40-16 ff
at constant volume, I-45-3

Heat conduction, II-3-10 ff
Heat diffusion equation, II-3-10 ff
Heat energy, I-4-3, I-4-11 f, I-10-15
Heat engines, I-44-1 ff
Heat flow, II-2-16 ff, II-12-2 ff
Helium, I-1-8, I-3-11 f, I-49-9 f, 19-27
Liquid ∼, 4-22 f

Helmholtz’s theorem, II-40-22 f
Henry (unit), I-25-13
Hermitian adjoint, 20-5
Hexagonal lattice, II-30-16
High-voltage breakdown, II-6-25 ff
Hooke’s law, I-12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Human eye, I-35-1 ff
Hydrodynamics, II-40-5 ff
Hydrogen, 19-26 f
Hyperfine splitting in ∼, 12-1 ff
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Hydrogen atom, 19-1 ff
Hydrogen molecular ion, 10-1 ff
Hydrogen molecule, 10-13 ff
Hydrogen wave functions, 19-21 ff
Hydrostatic pressure, II-40-1
Hydrostatics, II-40-1 ff
Hyperfine splitting in hydrogen, 12-1 ff
Hysteresis curve, II-37-10 ff
Hysteresis loop, II-36-16

I
Ideal gas law, I-39-16 ff
Identical particles, 3-16 ff, 4-1 ff
Illumination, II-12-20 ff
Image charge, II-6-17
Impedance, I-25-15 f, II-22-1 ff
Complex ∼, I-23-12
of a vacuum, I-32-3

Impure semiconductors, 14-8 ff
Incidence, angle of, I-26-6, II-33-1
Inclined plane, I-4-7
Independent particle approximation,

15-1 ff
Index
Field ∼, II-29-13
of refraction, I-31-1 ff, II-32-1 ff

Induced currents, II-16-10 ff
Inductance, I-23-10, II-16-7 ff, II-17-16 ff,

II-22-3 f
Mutual ∼, II-17-16 ff, II-22-36 f
Self-∼, II-16-8, II-17-20 ff

Induction, laws of, II-17-1 ff
Inductor, I-25-13
Inertia, I-2-4, I-7-20
Moment of ∼, I-18-12 f, I-19-1 ff
Principle of ∼, I-9-1

Infrared radiation, I-2-8, I-23-14, I-26-1
Insulator, II-1-3, II-10-1
Integral, I-8-11 ff
Line ∼, II-3-1 ff

Integral calculus, II-3-1 ff
Interference, I-28-10 ff, I-29-1 ff
and diffraction, I-30-1
Two-slit ∼, 3-8 ff

Interfering amplitudes, 5-16 ff
Interfering waves, I-37-6, 1-6
Interferometer, I-15-8
Ion, I-1-11
Ionic bonds, II-30-5
Ionic conductivity, I-43-9 ff
Ionic crystal, II-8-8 ff
Ionic polarizability, II-11-17
Ionization energy, I-42-8
of hydrogen, I-38-12, 2-12

Ionosphere, II-7-9, II-7-12, II-9-6, II-32-22
Irreversibility, I-46-9 ff
Irrotational flow, II-12-16 ff, II-40-9 ff
Isotherm, II-2-5
Isothermal atmosphere, I-40-3
Isothermal compression, I-44-10
Isothermal expansion, I-44-10
Isothermal surfaces, II-2-5
Isotopes, I-3-7, I-3-12, I-39-17

J
Johnson noise, I-41-4, I-41-14
Josephson junction, 21-25 ff
Joule (unit), I-13-5
Joule heating, I-24-3

K
Kármán vortex street, II-41-13
Kepler’s laws, I-7-2 f, I-7-5, I-7-7, I-9-1,

I-18-11
Kerr cell, I-33-8
Kerr effect, I-33-8
Kilocalorie (unit), II-8-9
Kinematic (mv-) momentum, 21-8
Kinetic energy, I-1-13, I-2-10, I-4-3,

I-4-10 f
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and temperature, I-39-10 ff
Rotational ∼, I-19-12 ff

Kinetic theory
Applications of ∼, I-42-1 ff
of gases, I-39-1 ff

Kirchhoff’s laws, I-25-16, II-22-14 ff,
II-22-27

Kronecker delta, II-31-10
Krypton, 19-32 f

L
Lagrangian, II-19-15
Lamé elastic constants, II-39-9
Lamb-Retherford measurement, II-5-14
Landé g-factor, II-34-6, 34-6
Laplace equation, II-7-2
Laplacian operator, II-2-20
Larmor frequency, II-34-12, 34-12
Larmor’s theorem, II-34-11 ff, 34-11 ff
Laser, I-5-4, I-32-9, I-42-17 f, I-50-17, 9-21
Law
Ampère’s ∼, II-13-6 ff
Applications of Gauss’ ∼, II-5-1 ff
Biot-Savart ∼, II-14-18 f, II-21-13
Boltzmann’s ∼, I-40-4 f
Boyle’s ∼, I-40-16
Coulomb’s ∼, I-28-1, I-28-3, II-1-4 f,

II-1-11, II-4-3 ff, II-4-8, II-4-12,
II-4-19, II-5-11 ff

Curie’s ∼, II-11-9
Curie-Weiss ∼, II-11-20
Faraday’s ∼ of induction, II-17-3,

II-17-6, II-18-1, II-18-15, II-18-18
Gauss’ ∼, II-4-18 f

for field lines, II-4-21
Hooke’s ∼, I-12-11, II-10-12, II-30-29,

II-31-22, II-38-1 ff, II-38-6, II-39-6,
II-39-18

Ideal gas ∼, I-39-16 ff

Kepler’s ∼s, I-7-2 f, I-7-5, I-7-7, I-9-1,
I-18-11

Kirchhoff’s ∼s, I-25-16, II-22-14 ff,
II-22-27

Lenz’s ∼, II-16-9 f, II-34-2, 34-2
Newton’s ∼s, I-2-9, I-7-10, I-7-12,

I-9-1 ff, I-10-1 f, I-10-5, I-11-3 f,
I-11-7 f, I-12-1 f, I-12-4, I-12-18,
I-12-20, I-13-1, I-14-10, I-15-1 ff,
I-15-5, I-15-16, I-16-4, I-16-13 f,
I-18-1, I-19-4, I-20-1, I-28-5, I-39-1,
I-39-3, I-39-17, I-41-2, I-46-1,
I-46-9, I-47-4 f, II-7-9, II-19-2,
II-42-1, II-42-28

in vector notation, I-11-13 ff
of reflection, I-26-3
Ohm’s ∼, I-23-9, I-25-12, I-43-11,

II-19-26, 14-12
Rayleigh’s ∼, I-41-10
Snell’s ∼, I-26-5, I-26-7, I-26-14, I-31-4,

II-33-1
Laws
of electromagnetism, II-1-9 ff
of induction, II-17-1 ff

Least action, principle of, II-19-1 ff
Least time, principle of, I-26-1 ff
Legendre functions, associated, 19-16
Legendre polynomials, 18-23, 19-16
Lens
Electrostatic ∼, II-29-5 ff
Magnetic ∼, II-29-7 ff
Quadrupole ∼, II-7-6, II-29-15 f

Lens formula, I-27-11
Lenz’s rule, II-16-9 f, II-34-2, 34-2
Liénard-Wiechert potentials, II-21-16 ff
Light, I-2-7, II-21-1 ff
Absorption of ∼, 9-23 ff
Momentum of ∼, I-34-20 ff
Polarized ∼, I-32-15
Reflection of ∼, II-33-1 ff
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Refraction of ∼, II-33-1 ff
Scattering of ∼, I-32-1 ff
Speed of ∼, I-15-1, II-18-16 f

Light cone, I-17-6
Lightning, II-9-21 ff
Light pressure, I-34-20
Light waves, I-48-1
Linear momentum
Conservation of ∼, I-4-13, I-10-1 ff

Linear systems, I-25-1 ff
Linear transformation, I-11-11
Line integral, II-3-1 ff
Line of charge, II-5-6 f
Liquid helium, 4-22 f
Lithium, 19-27 f
Lodestone, II-1-20, II-37-27
Logarithms, I-22-3
Lorentz contraction, I-15-13
Lorentz force, II-13-1, II-15-25
Lorentz formula, II-21-21 ff
Lorentz group, II-25-5
Lorentz transformation, I-15-4 f, I-17-1,

I-34-15, I-52-3, II-25-1
of fields, II-26-1 ff

Lorenz condition, II-25-15
Lorenz gauge, II-18-20, II-25-15

M
Mach number, II-41-11
Magenta, 10-21
Magnetic dipole, II-14-13 ff
Magnetic dipole moment, II-14-15
Magnetic energy, II-17-22 ff
Magnetic field, I-12-15 ff, II-1-4 ff,

II-13-1 f, II-14-1 ff
of steady currents, II-13-6 ff
Relativity of ∼, II-13-13 ff

Magnetic force, I-12-15 ff, II-1-4, II-13-1
on a current, II-13-5 f

Magnetic induction, I-12-17

Magnetic lens, II-29-7 ff
Magnetic materials, II-37-1 ff
Magnetic moments, II-34-4 ff, 11-8, 34-4 ff
Magnetic resonance, II-35-1 ff, 35-1 ff
Nuclear ∼, II-35-19 ff, 35-19 ff

Magnetic susceptibility, II-35-14, 35-14
Magnetism, I-2-7, II-34-1 ff, 34-1 ff
Dia∼, II-34-1 ff, II-34-9 ff, 34-1 ff,

34-9 ff
Ferro∼, II-36-1 ff, II-37-1 ff
Para∼, II-34-1 ff, II-35-1 ff, 34-1 ff,

35-1 ff
Magnetization currents, II-36-1 ff
Magnetizing field, II-36-15
Magnetostatics, II-4-2, II-13-1 ff
Magnetostriction, II-37-12, II-37-21
Magnification, I-27-10 f
Magnons, 15-6
Maser, I-42-17
Ammonia ∼, 9-1 ff

Mass, I-9-2, I-15-1
Center of ∼, I-18-1 ff, I-19-1 ff
Effective ∼, 13-12
Electromagnetic ∼, II-28-1 ff
Relativistic ∼, I-16-9 ff

Mass energy, I-4-3, I-4-12
Mass-energy equivalence, I-15-17 ff
Mathematics and physics, I-3-1
Matrix, 5-9
Matrix algebra, 5-24, 11-5, 20-28
Maxwell’s demon, I-46-8 f
Maxwell’s equations, I-15-3 ff, I-25-5,

I-25-8, I-46-12, I-47-12, II-2-1,
II-2-15, II-4-1 f, II-6-1, II-7-11,
II-8-20, II-10-11, II-13-7, II-13-13,
II-13-22, II-15-24 f, II-18-1 ff,
II-22-1 f, II-22-13 f, II-22-16,
II-22-23, II-23-6, II-23-13 f,
II-23-20 f, II-24-9, II-25-12,
II-25-15, II-25-19, II-26-3, II-26-20,
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II-26-23, II-27-5, II-27-8, II-27-13,
II-27-17, II-28-1, II-32-7, II-33-2,
II-33-5, II-33-7 ff, II-33-12 f,
II-33-16, II-34-14, II-36-2, II-36-5,
II-36-11, II-36-26, II-38-4, II-39-14,
II-42-29, 10-12, 21-11, 21-24, 34-14

for four-vectors, II-25-17
General solution of ∼, II-21-6 ff
in a dielectric, II-32-4 ff
Modifications of ∼, II-28-10 ff
Solutions of ∼ in free space, II-20-1 ff
Solutions of ∼ with currents and

charges, II-21-1 ff
Solving ∼, II-18-17 ff

Mean free path, I-43-4 ff
Mean square distance, I-6-9, I-41-15
Mechanical energy, II-15-5 ff
Meissner effect, 21-14 ff, 21-22
Metastable atom, I-42-17
Meter (unit), I-5-18
MeV (unit), I-2-14
Michelson-Morley experiment, I-15-5 ff,

I-15-13
Microscope
Electron ∼, II-29-9 f
Field-emission ∼, II-6-27 ff
Field-ion ∼, II-6-27 ff

Minkowski space, II-31-23
Modes, I-49-1 ff
Normal ∼, I-48-17 f

Mole (unit), I-39-17
Molecular crystal, II-30-5
Molecular diffusion, I-43-11 ff
Molecular dipole, II-11-1
Molecular forces, I-12-9 ff
Molecular motion, I-41-1
Molecule, I-1-4
Nonpolar ∼, II-11-1
Polar ∼, II-11-1, II-11-5 ff

Mössbauer effect, II-42-24

Moment
Dipole ∼, I-12-9, II-6-5
of force, I-18-8
of inertia, I-18-12 f, I-19-1 ff

Momentum, I-9-1 ff, I-38-3 ff, 2-3 ff
Angular ∼, I-18-8 ff, I-20-1, 18-1 ff,

20-22 ff
Composition of ∼, 18-25 ff
Conservation of ∼, I-4-13, I-18-11 ff,
I-20-8

of a rigid body, I-20-14
Conservation of angular ∼,
Conservation of linear ∼, I-4-13,

I-10-1 ff
Dynamical (p-) ∼, 21-8
Field ∼, II-27-1 ff
in quantum mechanics, I-10-16 f
Kinematic (mv-) ∼, 21-8
of light, I-34-20 ff
Relativistic ∼, I-10-14 ff, I-16-1 ff

Momentum operator, 20-4, 20-15 ff
Momentum spectrometer, II-29-2
Momentum spectrum, II-29-4
Monatomic gas, I-39-7 ff, I-39-11,

I-39-17 f, I-40-13 f
Monoclinic lattice, II-30-16
Motion, I-5-1 f, I-8-1 ff
Brownian ∼, I-1-16, I-6-8, I-41-1 ff,

I-46-2 f, I-46-9
Circular ∼, I-21-6 ff
Constrained ∼, I-14-4 f
Harmonic ∼, I-21-6 ff, I-23-1 ff
of charge, II-29-1 ff
Orbital ∼, II-34-5, 34-5
Parabolic ∼, I-8-17
Perpetual ∼, I-46-3
Planetary ∼, I-7-1 ff, I-9-11 ff, I-13-9

Motor, electric, II-16-1 ff
Moving charge, field momentum of,

II-28-3 f
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Muscle
Smooth ∼, I-14-3
Striated (skeletal) ∼, I-14-3

Music, I-50-2
Mutual capacitance, II-22-38
Mutual inductance, II-17-16 ff, II-22-36 f
mv-momentum, 21-8

N
Nabla operator (∇), II-2-12 ff
Negative carriers, 14-3
Neon, 19-30
Nernst heat theorem, I-44-22
Neutral K-meson, 11-21 ff
Neutral pion, 10-11
Neutron diffusion equation, II-12-13
Neutrons, I-2-6
Diffusion of ∼, II-12-12 ff

Newton (unit), I-11-10
Newton ·meter (unit), I-13-5
Newton’s laws, I-2-9, I-7-10, I-7-12,

I-9-1 ff, I-10-1 f, I-10-5, I-11-3 f,
I-11-7 f, I-12-1 f, I-12-4, I-12-18,
I-12-20, I-13-1, I-14-10, I-15-1 ff,
I-15-5, I-15-16, I-16-4, I-16-13 f,
I-18-1, I-19-4, I-20-1, I-28-5, I-39-1,
I-39-3, I-39-17, I-41-2, I-46-1,
I-46-9, I-47-4 f, II-7-9, II-19-2,
II-42-1, II-42-28

in vector notation, I-11-13 ff
Nodes, I-49-3
Noise, I-50-2
Nonconservative force, I-14-10 ff
Nonpolar molecule, II-11-1
Normal dispersion, I-31-14
Normal distribution, I-6-15, 16-12, 16-14
Normal modes, I-48-17 f
n-type semiconductor, 14-10
Nuclear cross section, I-5-15
Nuclear energy, I-4-3

Nuclear forces, I-12-20 f, II-1-2 f, II-8-12 f,
II-28-18, II-28-20 ff, 10-10 ff

Nuclear g-factor, II-34-6, 34-6
Nuclear interactions, II-8-14
Nuclear magnetic resonance, II-35-19 ff,

35-19 ff
Nucleon, 11-5
Nucleus, I-2-6, I-2-9 f, I-2-12 ff
Numerical analysis, I-9-11
Nutation, I-20-12 f

O
Oersted (unit), II-36-12
Ohm (unit), I-25-12
Ohm’s law, I-23-9, I-25-12, I-43-11,

II-19-26, 14-12
One-dimensional lattice, 13-1 ff
Operator, 8-7, 20-1 ff
Algebraic ∼, 20-4
Curl ∼, II-2-15, II-3-1
D’Alembertian ∼, II-25-13
Divergence ∼, II-2-14, II-3-1
Gradient ∼, II-2-8 ff, II-3-1
Laplacian ∼, II-2-20
Momentum ∼, 20-4, 20-15 ff
Nabla ∼ (∇), II-2-12 ff
Vector ∼, II-2-12

Optic axis, I-33-5
Optic nerve, I-35-3
Optics, I-26-1 ff
Geometrical ∼, I-26-2, I-27-1 ff

Orbital angular momentum, 19-2
Orbital motion, II-34-5, 34-5
Orientation polarization, II-11-5 ff
Oriented magnetic moment, II-35-7, 35-7
Orthorhombic lattice, II-30-17
Oscillating dipole, II-21-8 ff
Oscillation
Amplitude of ∼, I-21-6
Damped ∼, I-24-4 ff
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Frequency of ∼, I-2-7
Periodic ∼, I-9-7
Period of ∼, I-21-4
Phase of ∼, I-21-6
Plasma ∼s, II-7-9 ff

Oscillator, I-5-4
Forced harmonic ∼, I-21-9 ff, I-23-4 ff
Harmonic ∼, I-10-1, I-21-1 ff

P
Pappus, theorem of, I-19-6 f
Parabolic antenna, I-30-12 f
Parabolic motion, I-8-17
Parallel-axis theorem, I-19-9
Parallel-plate capacitor, I-14-16 f,

II-6-22 ff, II-8-5
Paramagnetism, II-34-1 ff, II-35-1 ff,

34-1 ff, 35-1 ff
Paraxial rays, I-27-3
Partial derivative, I-14-15
Particles
Bose ∼, 4-1 ff, 15-10 f
Fermi ∼, 4-1 ff, 15-11
Identical ∼, 3-16 ff, 4-1 ff
Spin-one ∼, 5-1 ff
Spin one-half ∼, 6-1 ff, 12-1 ff

Precession of ∼, 7-18 ff
Pascal’s triangle, I-6-7
Passive circuit element, II-22-9
Pauli exclusion principle, II-36-31
Pauli spin exchange operator, 12-12, 15-3
Pauli spin matrices, 11-1 ff
Pendulum, I-5-3
Coupled ∼s, I-49-10 ff

Pendulum clock, I-5-3
Periodic table, I-2-14, I-3-2, 19-25 ff
Period of oscillation, I-21-4
Permalloy, II-37-22
Permeability, II-36-18
Relative ∼, II-36-18

Perpetual motion, I-46-3
Phase of oscillation, I-21-6
Phase shift, I-21-6
Phase velocity, I-48-10, I-48-12
Photon, I-2-11, I-17-14, I-26-2, I-37-13,

1-12
Absorption of ∼s, 4-13 ff
Emission of ∼s, 4-13 ff
Polarization states of the ∼, 11-15 ff

Photosynthesis, I-3-4
Physics
Astronomy and ∼, I-3-10 ff
before 1920, I-2-4 ff
Biology and ∼, I-3-3 ff
Chemistry and ∼, I-3-1 ff
Geology and ∼, I-3-12 f
Mathematics and ∼, I-3-1
Psychology and ∼, I-3-13 f
Relationship to other sciences, I-3-1 ff

Piezoelectricity, II-11-16, II-31-23
Planck’s constant, I-4-13, I-5-19, I-17-14,

I-37-18, II-15-16, II-19-18 f,
II-28-17, 1-18, 20-24, 21-2

Plane lattice, II-30-12
Planetary motion, I-7-1 ff, I-9-11 ff, I-13-9
Plane waves, II-20-1 ff
Plasma, II-7-9
Plasma frequency, II-7-12, II-32-18 ff
Plasma oscillations, II-7-9 ff
p-momentum, 21-8
Poincaré stress, II-28-7 f
Point charge, II-1-3
Electrostatic energy of a ∼, II-8-22 f
Field energy of a ∼, II-28-1 f

Poisson equation, II-6-2
Poisson’s ratio, II-38-3, II-38-6, II-38-21
Polarization, I-33-1 ff
Circular ∼, I-33-3
Electronic ∼, II-11-2 ff
of matter, II-32-1 ff
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of scattered light, I-33-4
Orientation ∼, II-11-5 ff

Polarization charges, II-10-6 ff
Polarization vector, II-10-4 ff
Polarized light, I-32-15
Polar molecule, II-11-1, II-11-5 ff
Polar vector, I-20-6, I-52-10 ff
Positive carriers, 14-3
Potassium, 19-31 f
Potential
Four-∼, II-25-15
Quadrupole ∼, II-6-14
Vector ∼, II-14-1 ff, II-15-1 ff
of known currents, II-14-5 ff

Potential energy, I-4-7, I-13-1 ff, I-14-1 ff,
7-9 ff

Potential gradient of the atmosphere,
II-9-1 ff

Power, I-13-4
Poynting vector, II-27-9
Precession
Angle of ∼, II-34-7, 34-7
of atomic magnets, II-34-7 ff, 34-7 ff

Pressure, I-1-6
Hydrostatic ∼, II-40-1
Light ∼, I-34-20
of a gas, I-39-3 ff
Radiation ∼, I-34-20

Principal quantum number, 19-22
Principle
Exclusion ∼, 4-23 ff
of equivalence, II-42-17 ff
of inertia, I-9-1
of least action, II-19-1 ff
of superposition, II-1-5, II-4-4
of virtual work, I-4-10
Uncertainty ∼, I-2-9 f, I-6-17 ff, I-7-21,

I-37-14 f, I-37-18 ff, I-38-5,
I-38-11 f, I-38-15, 1-14, 1-17 ff, 2-5,
2-10 ff, 2-15

and stability of atoms, II-1-2, II-5-5
Probability, I-6-1 ff
Probability amplitudes, I-37-16, 1-16,

3-1 ff, 16-1 ff
Probability density, I-6-13, I-6-15, 16-9
Probability distribution, I-6-13 ff, 16-9
Propagation, in a crystal lattice, 13-1 ff
Propagation factor, II-22-31
Protons, I-2-6
Proton spin, II-8-12
Pseudo force, I-12-17 ff
Psychology and physics, I-3-13 f
p-type semiconductor, 14-10
Purkinje effect, I-35-4
Pyroelectricity, II-11-16

Q
Quadrupole lens, II-7-6, II-29-15 f
Quadrupole potential, II-6-14
Quantized magnetic states, II-35-1 ff,

35-1 ff
Quantum electrodynamics, I-2-12 f, I-2-17,

I-28-5, I-42-16
and point charges, II-28-16

Quantum mechanical resonance, 10-6
Quantum mechanics, I-2-3, I-2-9 ff,

I-6-17 ff, I-37-1 ff, I-38-1 ff, 1-1 ff,
2-1 ff, 3-1 ff

and vector potential, II-15-14 ff, 21-2 f
Momentum in ∼, I-10-16 f

Quantum numbers, 12-25

R
Rabi molecular-beam method, II-35-7 ff,

35-7 ff
Radiant energy, I-4-3, I-4-12, I-7-20,

I-10-15
Radiation
Blackbody ∼, I-41-5 ff
Bremsstrahlung, I-34-12 f
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Cherenkov ∼, I-51-3
Cosmic rays, I-2-9, II-9-4
Cosmic synchrotron ∼, I-34-10 ff
Electromagnetic ∼, I-26-1, I-28-1 ff
Gamma rays, I-2-8
Infrared ∼, I-2-8, I-23-14, I-26-1
Light, I-2-7
Relativistic effects in ∼, I-34-1 ff
Synchrotron ∼, I-34-6 ff
Ultraviolet ∼, I-2-8, I-26-1
X-rays, I-2-8, I-26-1, I-31-11, I-34-8,

I-48-10, I-48-12
Radiation damping, I-32-1 ff
Radiation pressure, I-34-20
Radiation resistance, I-32-1 ff
Radioactive clock, I-5-6 ff
Radioactive isotopes, I-3-7, I-5-8, I-52-16
Radius
Bohr ∼, I-38-12, 2-12, 19-5, 19-9
Classical electron ∼, I-32-6, II-28-5
Excess ∼, II-42-9 ff, II-42-13 ff, II-42-29

Random walk, I-6-8 ff, I-41-14 ff
Ratchet and pawl machine, I-46-1 ff
Rayleigh’s criterion, I-30-11
Rayleigh’s law, I-41-10
Rayleigh waves, II-38-16
Reactance, II-22-25 f
Reciprocity principle, I-26-9, I-30-12
Rectification, I-50-15
Rectifier, II-22-34
Reflected waves, II-33-14 ff
Reflection, I-26-3 ff
Angle of ∼, I-26-6, II-33-1
of light, II-33-1 ff
Total internal ∼, II-33-22 ff

Refraction, I-26-3 ff
Anomalous ∼, I-33-15 ff
Index of ∼, I-31-1 ff, II-32-1 ff
of light, II-33-1 ff

Relative permeability, II-36-18

Relativistic dynamics, I-15-15 ff
Relativistic energy, I-16-1 ff
Relativistic mass, I-16-9 ff
Relativistic momentum, I-10-14 ff,

I-16-1 ff
Relativity
Galilean ∼, I-10-5, I-10-11
of electric field, II-13-13 ff
of magnetic field, II-13-13 ff
Special theory of ∼, I-15-1 ff
Theory of ∼, I-7-20 f, I-17-1

Resistance, I-23-9
Resistor, I-23-9, I-41-4 f, I-41-14, II-22-7 f
Resolving power, I-27-14 f
of a diffraction grating, I-30-10 f

Resonance, I-23-1 ff
Electrical ∼, I-23-8 ff
in nature, I-23-12 ff
Quantum mechanical ∼, 10-6

Resonant cavity, II-23-11 ff
Resonant circuits, II-23-22 ff
Resonant mode, II-23-21
Resonator, cavity, II-23-1 ff
Retarded time, I-28-4
Retina, I-35-1 f
Reynolds number, II-41-8 ff
Rigid body, I-18-1, I-20-1
Angular momentum of a ∼, I-20-14
Rotation of a ∼, I-18-4 ff

Ritz combination principle, I-38-14, 2-14
Rod cells, I-35-2 ff, I-35-9, I-35-17 f,

I-36-8, I-36-10 ff, 13-16
Root-mean-square (RMS) distance, I-6-10
Rotation
in space, I-20-1 ff
in two dimensions, I-18-1 ff
of a rigid body, I-18-4 ff
of axes, I-11-4 ff
Plane ∼, I-18-1

Rotation matrix, 6-6
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Rutherford-Bohr atomic model, II-5-4
Rydberg (unit), I-38-12, 2-12
Rydberg energy, 10-6, 19-5

S
Saha equation, I-42-9
Scalar, I-11-8
Scalar field, II-2-3 ff
Scalar product, I-11-15 ff
of four-vectors, II-25-5 ff

Scattering of light, I-32-1 ff
Schrödinger equation, II-15-21, II-41-20,

16-6, 16-18 ff, 20-28
for the hydrogen atom, 19-1 ff
in a classical context, 21-1 ff

Scientific method, I-2-2
Screw dislocations, II-30-20 f
Screw jack, I-4-8
Second (unit), I-5-10
Seismograph, I-51-9
Self-inductance, II-16-8, II-17-20 ff
Semiconductor junction, 14-15 ff
Rectification at a ∼, 14-19 ff

Semiconductors, 14-1 ff
Impure ∼, 14-8 ff
n-type ∼, 14-10
p-type ∼, 14-10

Shear modulus, II-38-10
Shear waves, I-51-8, II-38-11 ff
Sheet of charge, II-5-7 ff
Side bands, I-48-7 ff
Sigma electron, 12-5
Sigma matrices, 11-3
Sigma proton, 12-6
Sigma vector, 11-7
Simultaneity, I-15-13 f
Sinusoidal waves, I-29-4 ff
Skin depth, II-32-18 ff
Slip dislocations, II-30-20
Smooth muscle, I-14-3

Snell’s law, I-26-5, I-26-7, I-26-14, I-31-4,
II-33-1

Sodium, 19-30 f
Solenoid, II-13-11
Solid-state physics, II-8-11
Sound, I-2-5, I-47-1 ff, I-50-4
Speed of ∼, I-47-12 f

Space, I-2-4, I-8-4
Curved ∼, II-42-1 ff

Space-time, I-2-9, I-17-1 ff, II-26-22
Geometry of ∼, I-17-1 ff

Special theory of relativity, I-15-1 ff
Specific heat, I-40-13 ff, II-37-7
and the failure of classical physics,

I-40-16 ff
at constant volume, I-45-3

Speed, I-8-4 ff
and velocity, I-9-3 f
Greeks’ difficulties with ∼, I-8-4 f
of light, I-15-1, II-18-16 f
of sound, I-47-12 f

Sphere of charge, II-5-10 f
Spherical aberration, I-27-13, I-36-6
of an electron microscope, II-29-10

Spherical harmonics, 19-13
Spherically symmetric solutions, 19-4 ff
Spherical waves, II-20-20 ff, II-21-4 ff
Spinel (MgAl2O4), II-37-24
Spin one-half particles, 6-1 ff, 12-1 ff
Precession of ∼, 7-18 ff

Spin-one particles, 5-1 ff
Spin orbit, II-8-13
Spin-orbit interaction, 15-25
Spin waves, 15-1 ff
Spontaneous emission, I-42-15
Spontaneous magnetization, II-36-24 ff
Standard deviation, I-6-15
States
Eigen∼, 11-38
Excited ∼, II-8-14, 13-15
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Ground ∼, 7-3
of definite energy, 13-5 ff
Stationary ∼, 7-1 ff, 11-38
Time-dependent ∼, 13-10 ff

State vector, 8-1 ff
Resolution of ∼s, 8-4 ff

Stationary states, 7-1 ff, 11-38
Statistical fluctuations, I-6-4 ff
Statistical mechanics, I-3-2, I-40-1 ff
Steady flow, II-40-10 ff
Steap leader, II-9-21
Stefan-Boltzmann constant, I-45-14
Stern-Gerlach apparatus, 5-1 ff
Stern-Gerlach experiment, II-35-4 ff,

35-4 ff
Stokes’ theorem, II-3-17 ff
Strain, II-38-3
Volume ∼, II-38-6

Strain tensor, II-31-22, II-39-1 ff
Strangeness, 11-21
Conservation of ∼, 11-21

“Strangeness” number, I-2-14
“Strange” particles, II-8-14
Streamlines, II-40-10
Stress, II-38-3
Poincaré ∼, II-28-7 f
Volume ∼, II-38-6

Stress tensor, II-31-15 ff
Striated (skeletal) muscle, I-14-3
Superconductivity, 21-1 ff
Supermalloy, II-36-18
Superposition, II-13-22 f
of fields, I-12-15
Principle of ∼, I-25-3 ff, I-28-3, I-47-11,

II-1-5, II-4-4
Surface
Equipotential ∼s, II-4-20 ff
Isothermal ∼s, II-2-5

Surface tension, II-12-8
Susceptibility

Electric ∼, II-10-7
Magnetic ∼, II-35-14, 35-14

Symmetry, I-1-8, I-11-1 f
in physical laws, I-52-1 ff

Synchrotron, I-2-8, I-15-16, II-17-9,
II-29-10, II-29-15 f, II-29-20

Synchrotron radiation, I-34-6 ff, II-17-9
Cosmic ∼, I-34-10 ff

T
Taylor expansion, II-6-14
Temperature, I-39-10 ff
Tension

Surface ∼, II-12-8
Tensor, II-26-15, II-31-1 ff

of elasticity, II-39-6 ff
of inertia, II-31-11 ff
of polarizability, II-31-1 ff
Strain ∼, II-31-22, II-39-1 ff
Stress ∼, II-31-15 ff
Transformation of ∼ components,

II-31-4 ff
Tensor algebra, 8-6
Tensor field, II-31-21
Tetragonal lattice, II-30-17
Theorem

Bernoulli’s ∼, II-40-10 ff
Fourier ∼, II-7-17
Gauss’ ∼, II-3-8 ff, 21-7
Helmholtz’s ∼, II-40-22 f
Larmor’s ∼, II-34-11 ff, 34-11 ff
Stokes’ ∼, II-3-17 ff

Theory of gravitation, II-42-28 ff
Thermal conductivity, II-2-16, II-12-3,

II-12-6
of a gas, I-43-16 f

Thermal equilibrium, I-41-5 ff
Thermal ionization, I-42-8 ff
Thermodynamics, I-39-3, I-45-1 ff,

II-37-7 ff
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Laws of ∼, I-44-1 ff
Thomson atomic model, II-5-4
Thomson scattering cross section, I-32-13
Three-body problem, I-10-1
Three-dimensional lattice, 13-12 ff
Three-dimensional waves, II-20-13 ff
Three-phase power, II-16-16
Thunderstorms, II-9-9 ff
Thymine, I-3-9
Tides, I-7-8
Time, I-2-4, I-5-1 ff, I-8-1 ff

Retarded ∼, I-28-4
Standard of ∼, I-5-9 f
Transformation of ∼, I-15-9 ff

Time-dependent states, 13-10 ff
Torque, I-18-6, I-20-1 ff
Torsion, II-38-11 ff
Total internal reflection, II-33-22 ff
Transformation

Fourier ∼, I-25-7
Galilean ∼, I-12-18, I-15-4
Linear ∼, I-11-11
Lorentz ∼, I-15-4 f, I-17-1, I-34-15,

I-52-3, II-25-1
of fields, II-26-1 ff

of time, I-15-9 ff
of velocity, I-16-5 ff

Transformer, II-16-7 ff
Transforming amplitudes, 6-1 ff
Transient response, I-21-10
Transients, I-24-1 ff

Electrical ∼, I-24-7 ff
Transistor, 14-21 ff
Translation of axes, I-11-2 ff
Transmission line, II-24-1 ff
Transmitted waves, II-33-14 ff
Travelling field, II-18-9 ff
Triclinic lattice, II-30-15
Trigonal lattice, II-30-16
Triphenyl cyclopropenyl molecule, 15-23

Twenty-one centimeter line, 12-15
Twin paradox, I-16-4 f
Two-dimensional fields, II-7-3 ff
Two-slit interference, 3-8 ff
Two-state systems, 10-1 ff, 11-1 ff

U
Ultraviolet radiation, I-2-8, I-26-1
Uncertainty principle, I-2-9 f, I-6-17 ff,

I-7-21, I-37-14 f, I-37-18 ff, I-38-5,
I-38-11 f, I-38-15, 1-14, 1-17 ff, 2-5,
2-10 ff, 2-15

and stability of atoms, II-1-2, II-5-5
Unit cell, I-38-9, 2-9
Unit matrix, 11-4
Unit vector, I-11-18, II-2-6
Unworldliness, II-25-18

V
Van de Graaff generator, II-5-19, II-8-14
Vector, I-11-1 ff

Axial ∼, I-20-6, I-52-10 ff
Components of a ∼, I-11-9
Four-∼s, I-15-14 f, I-17-8 ff, II-25-1 ff
Polar ∼, I-20-6, I-52-10 ff
Polarization ∼, II-10-4 ff
Poynting, II-27-9
State ∼, 8-1 ff
Resolution of ∼s, 8-4 ff

Unit ∼, I-11-18, II-2-6
Vector algebra, I-11-10 ff, II-2-3, II-2-13,
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