KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD - 32 SAMPLE PAPER TEST - 02 (2020-21)

(SAMPLE ANSWER)

SUBJECT: MATHEMATICS

CLASS : XII

General Instruction:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B carries **56** marks
- 2. Part-A has Objective Type Questions and Part -B has Descriptive Type Questions
- 3. Both Part A and Part B have choices.

Part – A:

- 1. It consists of two sections- I and II.
- 2. Section I comprises of 16 very short answer type questions.
- 3. Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt **any 4 out of 5 MCQs**.

Part – B:

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 questions of 3 marks each.
- 4. Section V comprises of 3 questions of 5 marks each.

PART - A

SECTION-I

Questions 1 to 16 carry 1 mark each.

1. Check whether $f(x) = \tan x$ is one-one or not on R.

We have, $f(x) = \tan x$

Since, $f(0) = \tan 0 = 0$ and $f(\pi) = \tan \pi = 0$

 $\therefore \quad f(0) = f(\pi)$

But $0 \neq \pi$

So, $f(x) = \tan x$ is not one-one.

2. Find the domain of $f(x) = \sin^{-1}(-x^2)$. The domain of $\sin^{-1} x$ is [-1, 1].

Therefore, $f(x) = \sin^{-1}(-x^2)$ is defined for all x satisfying.

$$-1 \le -x^2 \le 1 \implies 1 \ge x^2 \ge -1$$

$$\implies 0 \le x^2 \le 1 \implies x^2 \le 1 \implies x^2 - 1 \le 0$$

$$\implies (x-1)(x+1) \le 0 \implies -1 \le x \le 1$$

Hence, the domain of f(x) is [-1, 1].

3. If A is a matrix of order 3 x 3 such that |A| = 4, find $|A^{-1}|$. We have, |A| = 4

Now, $|A^{-1}| = \frac{1}{|A|} = \frac{1}{4}$

MAX. MARKS : 80

DURATION: 3 HRS

- 4. Find the value of $\cot\left(\frac{\pi}{3} 2\cot^{-1}\left(\frac{1}{\sqrt{3}}\right)\right)$ $\cot\left(\frac{\pi}{3} - 2\cot^{-1}\frac{1}{\sqrt{3}}\right) = \cot\left(\frac{\pi}{3} - 2\times\frac{\pi}{3}\right) = \cot\left(\frac{\pi}{3} - \frac{2\pi}{3}\right)$ $= \cot\left(-\frac{\pi}{3}\right) = -\cot\frac{\pi}{3} = -\frac{1}{\sqrt{3}}$
- 5. If for the matrix A, $A^3 = I$, then find the value of A^{-1} . We have, $A^3 = I$

$$\Rightarrow A^{-1}A^3 = A^{-1}I$$

$$\Rightarrow A^2 = A^{-1} \quad [\because A^{-1}A = I, A \cdot I = A]$$

$$\therefore A^{-1} = A^2$$

6. If 2A + B + X = 0, where $A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$, then find the value of matrix X. We have, 2A + B + X = 0

$$\Rightarrow X = -(2A + B) \text{Now,} 2A + B = 2 \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix} \\ = \begin{bmatrix} -2 & 4 \\ 6 & 8 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} -2 + 3 & 4 - 2 \\ 6 + 1 & 8 + 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 7 & 13 \end{bmatrix} \\ \therefore X = -(2A + B) = \begin{bmatrix} -1 & -2 \\ -7 & -13 \end{bmatrix}$$

7. Find the equation of the tangent to the curve $y = x^2 + 4x + 1$ at the point where x = 3. When x = 3, we have $y = (3^2 + 4 \times 3 + 1) = 22$

So, the point of contact is (3, 22).

Now,
$$y = x^2 + 4x + 1$$

$$\frac{dy}{dx} = 2x + 4$$

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{(3, 22)} = 2 \times 3 + 4 = 10$$

.: Equation of tangent at (3, 22)

$$y - 22 = 10 (x - 3) \implies y - 22 = 10x - 30$$

$$\Rightarrow 10x - y = 8$$
8. If $y = 7x^3 - 4x^2$, find $\frac{dy}{dx}$.
We have, $y = 7x^3 - 4x^2$
 $\therefore \frac{dy}{dx} = 7 \times 3x^2 - 4 \times 2x$
 $= 21x^2 - 8x$.
9. Evaluate: $\int \frac{dx}{x + x \log x}$

Let
$$I = \int \frac{1}{x + x \log x} dx = \int \frac{1}{x (1 + \log x)} dx$$

Let $1 + \log x = t \Rightarrow \frac{1}{x} dx = dt$
 $\therefore \qquad I = \int \frac{dt}{t} = \log t + C$
 $= \log(1 + \log x) + C$

10. If A and B are events such that P(A) = 0.3, P(B) = 0.6 and P(B/A) = 0.5, find P(A/B). We have, P(A) = 0.3, P(B) = 0.6 and P(B/A) = 0.5

∴
$$P(A \cap B) = P(A) P(B / A) = 0.3 \times 0.5 = 0.15$$

∴ $P(A / B) = \frac{P(A \cap B)}{P(B)} = \frac{0.15}{0.6} = \frac{1}{4}$

11. An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement then find the probability that both drawn balls are black.Let *E* and *F* denote respectively the events first and second ball drawn are black.

$$\therefore P(E) = \frac{10}{15}, P\left(\frac{F}{E}\right) = \frac{9}{14}$$

$$\therefore \text{ Required probability, } P(E \cap F) = P(E) \times P\left(\frac{F}{E}\right) = \frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$$

12. If $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$, then find the value of $(\vec{a} + 3\vec{b}).(2\vec{a} - \vec{b})$. We have, $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$

$$\vec{a} + 3\vec{b} = (\hat{i} + \hat{j} + 2\hat{k}) + 3(3\hat{i} + 2\hat{j} - \hat{k}) = 10\hat{i} + 7\hat{j} - \hat{k}$$

and $2\vec{a} - \vec{b} = 2(\hat{i} + \hat{j} + 2\hat{k}) - (3\hat{i} + 2\hat{j} - \hat{k}) = -\hat{i} + 0\hat{j} + 5\hat{k}$
$$\therefore (\vec{a} + 3\vec{b}) \cdot (2\vec{a} - \vec{b}) = (10\hat{i} + 7\hat{j} - \hat{k}) \cdot (-\hat{i} + 0\hat{j} + 5\hat{k}) = 10(-1) + 7(0) + (-1)(5) = -10 - 5 = -15$$

13. Find the value of λ if the vectors $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$ and $\vec{b} = \hat{j} + \lambda\hat{k}$ are perpendicular.

The given vectors are perpendicular

$$\vec{a} \cdot \vec{b} = 0$$

$$(2\hat{i} - 3\hat{j} + \hat{k}) \cdot (\hat{j} + \lambda\hat{k}) = 0 \implies 0 - 3 + \lambda = 0 \implies \lambda = 3$$

14. Write the cartesian equation of the plane whose vector equation is $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 7$.

We have, $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) = 7$

$$\Rightarrow (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} - \hat{j} + \hat{k}) = 7 \quad [\because \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}]$$

$$\Rightarrow 2x - y + z = 7.$$

15. Write the equation of line passing through the points (-1, 2, 1) and (3, 1, 4). We know that equation of line passing through two points

 (x_1, y_1, z_1) and (x_2, y_2, z_2) is

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

: Equation of line passing through (-1, 2, 1) and (3, 1, 4) is

$$\frac{x+1}{3+1} = \frac{y-2}{1-2} = \frac{z-1}{4-1} \implies \frac{x+1}{4} = \frac{y-2}{-1} = \frac{z-1}{3}$$

16. If $|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = 144$ and $|\vec{a}| = 4$, then find the value of $|\vec{b}|$.

We know that,
$$|\vec{a} \times \vec{b}| + (\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

$$\Rightarrow 144 = (4)^2 |\vec{b}|^2$$

$$\Rightarrow |\vec{b}|^2 = \frac{144}{16} = 9$$

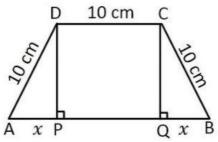
$$\therefore |\vec{b}| = 3$$

SECTION-II

Case study-based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark

17. A building has front gate has the figure as shown below:

It is in the shape of trapezium whose three sides other than base in 10 m. Height of the gate is 'h' m.



On the basis of above figure answer the following questions:

(i) The relation between a and h is

(a) $x^2 + h^2 = 10$ (b) $x^2 + h^2 = 100$ (c) $h^2 - x^2 = 10$ (d) $x^2 - h^2 = 10$ Ans: (b) $x^2 + h^2 = 100$

(ii) The are of gate A expressed as a function of x is

(a)
$$(10+x)\sqrt{100+x^2}$$

(b) $(10-x)\sqrt{100+x^2}$
(c) $(10+x)\sqrt{100-x^2}$
(d) $(10-x)\sqrt{100-x^2}$
Ans: (c) $(10+x)\sqrt{100-x^2}$

(iii) The value of x when A is maximum is (a) 5 m (b) 10 m (c) 15 m (d) 20 mAns: (a) 5 m

- (iv) The value of h when A is maximum is (a) $5\sqrt{2}$ m (b) $5\sqrt{3}$ m (c) $10\sqrt{2}$ m (d) $10\sqrt{3}$ m Ans: (b) $5\sqrt{3}$ m
- (v) Maximum value of A is (in m²) is

(a)
$$\frac{75\sqrt{3}}{2}$$
 (b) $75\sqrt{3}$ (c) $\frac{75\sqrt{3}}{4}$ (d) 75
Ans: (a) $\frac{75\sqrt{3}}{2}$

18. The probability distribution functions which shows the number of hours (X) a student study during lockdown period in a day, is given by (where C > 0)

X	0	1	2
P(X)	$3C^3$	$4C - 10C^2$	5C – 1

Prepared by: M. S. KumarSwamy, TGT(Maths)

On the basis of above information answer the following questions:

(i) The correct equation for C is (a) $3C^3 - 10C^2 + C - 2 = 0$ (c) $3C^3 - 10C^2 + 9C - 2 = 0$ Ans: (c) $3C^3 - 10C^2 + 9C - 2 = 0$		(b) $3C^3 + 10C^2 + C - 2 = 0$ (d) None of these	
(ii) The value of (a) $\frac{1}{2}$ Ans: (b) $\frac{1}{3}$		(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
(iii) $P(X < 2) =$ (a) $\frac{1}{2}$ Ans: (b) $\frac{1}{3}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
(iv) $P(X = 1) =$ (a) $\frac{2}{9}$ Ans: (a) $\frac{2}{9}$	(b) $\frac{1}{9}$	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
(v) $P(X \ge 0) =$ (a) $\frac{1}{2}$ Ans: (c) 1	(b) $\frac{1}{3}$	(c) 1	(d) 0

<u>PART B</u> <u>SECTION – III</u> Questions 19 to 28 carry 2 marks each.

19. An urn contains 5 white and 8 white black balls. Two successive drawing of three balls at a time are made such that the balls are not replaced before the second draw. Find the probability that the first draw gives 3 white balls and second draw gives 3 black balls.
Consider the following events

A = Drawing 3 white balls in first draw

B = Drawing 3 black balls in the second draw.

Required probability = $P(A \cap B) = P(A) P(B / A)$...(i)

Now,
$$P(A) = \frac{{}^{5}C_{3}}{{}^{13}C_{3}} = \frac{10}{286} = \frac{5}{143}$$

After drawing 3 white balls in first draw 10 balls are left in the bag, out of which 8 are black balls.

$$\therefore P(B \mid A) = \frac{{}^{8}C_{3}}{{}^{10}C_{3}} = \frac{56}{120} = \frac{7}{15}$$

Substituting these values in Eq. (i), we get

Required probability = $P(A \cap B) = P(A) P(B \mid A)$

$$=\frac{5}{143}\times\frac{7}{15}=\frac{7}{429}$$

20. Find X and Y, if X + Y =
$$\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and X - Y = $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$.
We have, X + Y = $\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$ and X - Y = $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$
 $\therefore (X + Y) + (X - Y) = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$
 $\Rightarrow 2X = \begin{bmatrix} 7+3 & 0+0 \\ 2+0 & 5+3 \end{bmatrix} = \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix} \Rightarrow X = \frac{1}{2} \begin{bmatrix} 10 & 0 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$
and $(X + Y) - (X - Y) = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix} + \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$
 $\Rightarrow 2Y = \begin{bmatrix} 7-3 & 0+0 \\ 2+0 & 5-3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 2 & 2 \end{bmatrix} \Rightarrow Y = \frac{1}{2} \begin{bmatrix} 4 & 0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$
Hence, $X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$

21. Examine the continuity of the function: $f(x) = \begin{cases} \frac{1}{2(x-4)}, & x \neq 4 \\ 0, & x = 4 \end{cases}$ at x = 4.

At x = 4, LHL =
$$\lim_{h \to 0} f(4-h) = \lim_{h \to 0} \frac{|4-h-4|}{2(4-h-4)}$$

= $\lim_{h \to 0} \frac{|-h|}{2(-h)} = \lim_{h \to 0} \frac{h}{-2h} = \lim_{h \to 0} \left(-\frac{1}{2}\right) = -\frac{1}{2}$
RHL = $\lim_{h \to 0} f(4+h) = \lim_{h \to 0} \frac{|4+h-4|}{2(4+h-4)}$
= $\lim_{h \to 0} \frac{|h|}{2h} = \lim_{h \to 0} \frac{h}{2h} = \lim_{h \to 0} \left(\frac{1}{2}\right) = \frac{1}{2}$

and f(4) = 0

$$LHL \neq RHL \neq f(4)$$

Hence, the given function is discontinuous at x = 4.

22. If
$$y = \frac{1}{\sqrt{a^2 - x^2}}$$
, then find $\frac{dy}{dx}$.
Given, $y = \frac{1}{\sqrt{a^2 - x^2}}$
On putting $u = a^2 - x^2$, we get $y = \frac{1}{\sqrt{u}} = u^{-1/2}$ and $u = a^2 - x^2$
 $\therefore \frac{dy}{du} = -\frac{1}{2}u^{-3/2}$ and $\frac{du}{dx} = -2x$
Now, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\frac{1}{2}u^{-3/2} \times (-2x) = -\frac{1}{2u^{3/2}} \times (-2x) = \frac{x}{(a^2 - x^2)^{3/2}}$
23. Find the value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) - 2\sec^{-1}\left(2\tan\frac{\pi}{6}\right)$.

Let
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \theta_1 \implies \sin\theta_1 = -\frac{\sqrt{3}}{2} \implies \sin\theta_1 = -\sin\frac{\pi}{3}$$

 $\implies \sin\theta_1 = \sin\left(-\frac{\pi}{3}\right) \implies \theta_1 = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$
and $\sec^{-1}\left(2\tan\frac{\pi}{6}\right) = \theta_2 \implies \sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \theta_2 \implies \sec\theta_2 = \frac{2}{\sqrt{3}}$
 $\implies \sec\theta_2 = \sec\left(\frac{\pi}{6}\right) \implies \theta_2 = \frac{\pi}{6}$
 $\implies \theta_2 = \sec^{-1}\left(2\tan\frac{\pi}{6}\right) = \frac{\pi}{6}$
 $\therefore \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) - 2\sec^{-1}\left(2\tan\frac{\pi}{6}\right) = -\frac{\pi}{3} - 2 \times \frac{\pi}{6} = -\frac{\pi}{3} - \frac{\pi}{3} = -\frac{2\pi}{3}$
24. Given $|\vec{a}| = 10, |\vec{b}| = 2$ and $\vec{a}.\vec{b} = 12$, then find $|\vec{a} \times \vec{b}|$.
We know that, $(\vec{a}.\vec{b})^2 + |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2$
 $\therefore 12^2 + |\vec{a} \times \vec{b}|^2 = (10)^2 \times (2)^2$ $[\because \vec{a} \cdot \vec{b} = 12, |\vec{a}| = 10, |\vec{b}| = 2]$
 $\implies 144 + |\vec{a} \times \vec{b}|^2 = 400 \implies |\vec{a} \times \vec{b}|^2 = 400 - 144 \implies |\vec{a} \times \vec{b}|^2 = 256 \implies |\vec{a} \times \vec{b}| = 16$
25. If $x = 10(t - \sin t), y = 12(1 - \cos t), find \frac{dy}{dx}$.
We have, $x = 10(t - \sin t)$ and $y = 12(1 - \cos t)$
 $\therefore \frac{dx}{dt} = 10(1 - \cos t)$ and $\frac{dy}{dt} = 12(\sin t)$
 $\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{12\sin t}{10(1 - \cos t)} = \frac{12 \times 2\sin(t/2)\cos(t/2)}{10 \times 2\sin^2(t/2)} = \frac{6}{5}\cot(t/2)$

26. Find the equation of the tangent to the curve $y = -5x^2 + 6x + 7$ at (1/2, 35/4). The equation of the given curve is $y = -5x^2 + 6x + 7$

$$\Rightarrow \frac{dy}{dx} = -10x + 6 \Rightarrow \left(\frac{dy}{dx}\right)_{(1/2, 35/4)} = -\frac{10}{2} + 6 = 1$$

The required equation of the tangent at (1/2, 35/4) is

$$y - \frac{35}{4} = \left(\frac{dy}{dx}\right) \left(x - \frac{1}{2}\right) \implies y - \frac{35}{4} = 1\left(x - \frac{1}{2}\right) \implies 4(x - y) + 33 = 0$$

27. Evaluate:
$$\int_{0}^{1} \frac{\tan^{-1} x}{1 + x^{2}} dx$$

We have, $l = \int_{0}^{1} \frac{\tan^{-1} x}{1 + x^{2}} dx$
Put $\tan^{-1} x = t \implies \frac{1}{1 + x^{2}} dx = dt$
Again, when $x = 0 \implies t = \tan^{-1} 0 = 0$
and when $x = 1 \implies t = \tan^{-1} 1 = \frac{\pi}{4}$
 $\therefore l = \int_{0}^{\frac{\pi}{4}} t dt = \left[\frac{t^{2}}{2}\right]_{0}^{\frac{\pi}{4}} = \frac{1}{2}\left[\left(\frac{\pi}{4}\right)^{2} - 0\right] = \frac{\pi^{2}}{32}$

28. Two vectors \vec{a} and \vec{b} , prove that the vector $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is orthogonal to the vector $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$. Let $\vec{\alpha} = |\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ and $\vec{\beta} = |\vec{a}||\vec{b}-|\vec{b}|\vec{a}$. Then, $\vec{\alpha}\cdot\vec{\beta} = \{|\vec{a}|\vec{b}+|\vec{b}|\vec{a}\}\cdot\{|\vec{a}|\vec{b}-|\vec{b}|\vec{a}\}$ $\Rightarrow \vec{\alpha}\cdot\vec{\beta} = |\vec{a}|^2(\vec{b}\cdot\vec{b})-|\vec{a}||\vec{b}|(\vec{b}\cdot\vec{a})+|\vec{b}||\vec{a}|(\vec{a}\cdot\vec{b})-|\vec{b}|^2(\vec{a}\cdot\vec{a})$ $\Rightarrow \vec{\alpha}\cdot\vec{\beta} = |\vec{a}|^2|\vec{b}|^2-|\vec{a}||\vec{b}|(\vec{a}\cdot\vec{b})+|\vec{a}||\vec{b}|(\vec{a}\cdot\vec{b})-|\vec{b}|^2|\vec{a}|^2$ $\Rightarrow \vec{\alpha}\cdot\vec{\beta} = 0$ $\therefore \vec{\alpha}$ is perpendicular (or orthogonal) to $\vec{\beta}$.

<u>SECTION – IV</u> Questions 29 to 35 carry 3 marks each.

29. Let the function $f : \mathbb{R}^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Prove that f is bijective. We have a mapping $f : \mathbb{R}^+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. To prove f is invertible.

For f to be one-one

Let $x_1, x_2 \in R^+$ be any arbitrary elements, such that $f(x_1) = f(x_2) \Rightarrow x_1^2 + 4 = x_2^2 + 4 \Rightarrow x_1^2 - x_2^2 = 0$ $\Rightarrow (x_1 - x_2)(x_1 + x_2) = 0$ $\Rightarrow x_1 - x_2 = 0 \quad [\because x_1 + x_2 \neq 0 \text{ as } x_1, x_2 \in R^+]$ $\Rightarrow x_1 = x_2$ So, *f* is one-one. For *f* to be onto Let $y \in [4, \infty)$ be any arbitrary element and let y = f(x)

Let
$$y \in [4, \infty)$$
 be any arbitrary element and let $y = r(x)$
Then, $y = x^2 + 4$
 $x^2 = y - 4$
 $x = \pm \sqrt{y - 4}$
 $\therefore x \in R^+$, therefore $x \neq -\sqrt{y - 4}$.
Now, $x = \sqrt{y - 4} \in R^+$
 $[\because 4 \le y < \infty \Rightarrow 0 \le y - 4 < \infty \Rightarrow 0 \le \sqrt{y - 4} < \infty]$
Thus, for each $y \in [4, \infty)$, there exist $x = \sqrt{y - 4} \in R^+$ such that $f(x) = y$
So, f is onto.
Hence, f is bijective.

30. Find the particular solution of differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$ for x = 1 and y = 1.

We have,
$$(3xy + y^2)dx + (x^2 + xy)dy = 0$$

$$\Rightarrow \frac{dy}{dx} = -\left(\frac{3xy + y^2}{x^2 + xy}\right) \qquad \dots (i)$$

Since, each of the functions $(3xy + y^2)$ and $(x^2 + xy)$ is a homogeneous function of degree 2, the given equation is, therefore a homogeneous differential equation.

On putting
$$y = vx$$
 and $\frac{dy}{dx} = v + x\frac{dv}{dx}$ in Eq. (i) we get
 $v + x\frac{dv}{dx} = -\left\{\frac{3v x^2 + x^2v^2}{x^2 + vx^2}\right\} \Rightarrow v + x\frac{dv}{dx} = -\left\{\frac{3v + v^2}{1 + v}\right\} \Rightarrow x\frac{dv}{dx} = -\left\{\frac{3v + v^2}{1 + v} + v\right\}$

$$\Rightarrow x\frac{dv}{dx} = -\left\{\frac{2v^2 + 4v}{v + 1}\right\} \Rightarrow (v + 1)x \, dv = -(2v^2 + 4v)dx \Rightarrow \frac{v + 1}{2v^2 + 4v} \, dv = -\frac{dx}{x}$$

[by separating variables]

$$\Rightarrow \frac{(2v+2)dv}{v^2+2v} = -4\frac{dx}{x} \Rightarrow \frac{1+v^3}{v^4}dv = -\frac{dx}{x} \text{ [by separating variables]}$$

$$\Rightarrow \left(\frac{1}{v^4} + \frac{1}{v}\right)dv = -\frac{dx}{x} \Rightarrow \frac{v^{-3}}{-3} + \log|v| = -\log|x| + C \text{ [integrating both sides]}$$

$$\Rightarrow -\frac{1}{3v^3} + \log|v| + \log|x| = C \Rightarrow -\frac{1}{3}\frac{x^3}{y^3} + \log\left|\frac{y}{x}\right| = C \Rightarrow -\frac{x^3}{3y^3} + \log|y| = C \text{ which is the required solution.}$$

31. Evaluate:
$$\int_{0}^{\pi/2} \log(\sin x) dx$$

Let $l = \int_{0}^{\pi/2} \log(\sin x) dx$...(i)
 $\therefore l = \int_{0}^{\pi/2} \log\left(\sin\left(\frac{\pi}{2} - x\right)\right) dx = \int_{0}^{\pi/2} \log(\cos x) dx$...(ii)
On adding Eqs. (i) and (ii), we get
 $2l = \int_{0}^{\pi/2} \{\log(\sin x) + \log(\cos x)\} dx = \int_{0}^{\pi/2} (\log(\sin x \cdot \cos x)) dx$
 $= \int_{0}^{\pi/2} \log\left(\frac{2\sin x \cos x}{2}\right) dx \Rightarrow 2l = \int_{0}^{\pi/2} \log(\sin 2x) dx - \int_{0}^{\pi/2} \log 2 dx$...(iii)
On putting $2x = t \Rightarrow 2dx = dt \Rightarrow dx = \frac{1}{2} dt$
When $x = 0$, then $t = 0$ and $x = \frac{\pi}{2}$, then $t = \pi$
From Eq. (iii), we get
Now, $\int_{0}^{\pi/2} \log(\sin 2x) dx = \int_{0}^{\pi} \frac{1}{2} (\log(\sin t)) dt = \frac{2}{2} \int_{0}^{\pi/2} [\log(\sin t)] dt = \int_{0}^{\pi/2} \log(\sin t) dt = l$
From Eq. (iii), we get $2l = l - \int_{0}^{\pi/2} \log 2 dx \Rightarrow l = [-\log(2)x]_{0}^{\pi/2} = -\frac{\pi}{2} \log 2$

32. Find the volume of the largest cylinder that can be inscribed in sphere of radius 'r'.

Given, r is the radius of sphere.

Let *R* be the radius, *h* be the height of cylinder and *V* be the volume of the cylinder. Then, $V = \pi R^2 h$...(i) In right angled $\triangle OAC$, we have $r^2 = R^2 + \left(\frac{h}{2}\right)^2$ $\Rightarrow R^2 = r^2 - \frac{h^2}{4}$ $\therefore V = \pi r^2 h - \frac{\pi h^3}{4}$ $\therefore \frac{dV}{dh} = \pi r^2 - \frac{3\pi h^2}{4}$

Now, $\frac{d^2 V}{dh^2} = 0 - \frac{6\pi h}{4} = \frac{-3\pi h}{2}$

For maximum or minimum value of V,

put
$$\frac{dV}{dh} = 0 \implies \pi r^2 - \frac{3\pi h^2}{4} = 0 \implies h = \frac{2}{\sqrt{3}}r$$

Now, $\left(\frac{d^2V}{dh^2}\right)_{h=\frac{2}{\sqrt{3}}r} = \frac{-3\pi}{2} \times \frac{2}{\sqrt{3}}r = -\sqrt{3}\pi r < 0$

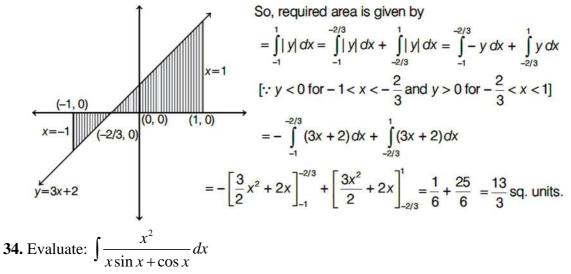
Thus, *V* is maximum when $h = \frac{2}{\sqrt{3}}r$. $\therefore R$ is calculated as

$$R^{2} = r^{2} - \frac{h^{2}}{4} \implies R^{2} = r^{2} - \frac{1}{4} \times \left(\frac{2}{\sqrt{3}}r\right)^{2} = \sqrt{\frac{2}{3}}r$$

... Maximum volume of the cylinder is given by

$$V_{\text{max}} = \pi R^2 h = \pi \left(\sqrt{\frac{2}{3}}r\right)^2 \left(\frac{2}{\sqrt{3}}r\right) = \frac{4\pi r^3}{3\sqrt{3}} \text{ cu units}$$

33. Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = 1.



Let
$$l = \int \frac{x^2}{(x \sin x + \cos x)^2} dx \Rightarrow l = \int \frac{x \cos x}{(x \sin x + \cos x)^2} \cdot x \sec x dx$$
 ...(i)
Put $x \sin x + \cos x = t \Rightarrow (x \cos x + \sin x - \sin x) dx = dt \Rightarrow x \cos x dx = dt$
 $\therefore l_1 = \int \frac{x \cos x}{(x \sin x + \cos x)^2} dx = \int \frac{dt}{t^2} = \frac{-1}{t} = \frac{-1}{x \sin x + \cos x}$ [put $t = x \sin x + \cos x$]
Now, integrating Eq. (i) by parts, we get
 $l = \int x \sec x \cdot \frac{x \cos x}{(x \sin x + \cos x)^2} dx = x \sec x \cdot \frac{(-1)}{x \sin x + \cos x} - \int (1 \cdot \sec x + x \sec x \tan x) \cdot \frac{-dx}{x \sin x + \cos x}$
 $= \frac{-x \sec x}{x \sin x + \cos x} + \int \sec x \left(1 + \frac{x \sin x}{\cos x}\right) \frac{dx}{x \sin x + \cos x}$

35. Find the point on the curve $y^2 = 2x$ which is at a minimum distance from the point (1, 4). The given equation of curve is $y^2 = 2x$ and the given point On differentiating both sides w.r.t. y, we get isQ (1, 4).

Let P(x, y) be any point on the curve.

Now, distance between points P and Q is given by

0

$$PQ = \sqrt{(1-x)^2 + (4-y)^2}$$

⇒ $PQ = \sqrt{1+x^2 - 2x + 16 + y^2 - 8y}$
 $= \sqrt{x^2 + y^2 - 2x - 8y + 17}$

On squaring both sides, we get

$$PQ^{2} = x^{2} + y^{2} - 2x - 8y + 17$$

$$\Rightarrow PQ^{2} = \left(\frac{y^{2}}{2}\right)^{2} + y^{2} - 2\left(\frac{y^{2}}{2}\right) - 8y + 17$$

$$\left[\text{given, } y^{2} = 2x \Rightarrow x = \frac{y^{2}}{2}\right]$$

$$\therefore PQ^{2} = \frac{y^{4}}{4} + y^{2} - y^{2} - 8y + 17$$

$$\Rightarrow PQ^{2} = \frac{y^{4}}{4} - 8y + 17$$

Let $PQ^{2} = Z$ Then, $Z = \frac{y^{4}}{4} - 8y + 17$

$$\frac{dZ}{dy} = \frac{4y^3}{4} - 8 = y^3 - 8$$
For maxima or minima, put $\frac{dZ}{dy} = 0$

$$\Rightarrow y^3 - 8 = 0 \Rightarrow y^3 = 8 \Rightarrow y = 2$$
Also, $\frac{d^2Z}{dy^2} = \frac{d}{dy}(y^3 - 8) = 3y^2$
On putting $y = 2$, we get $\left(\frac{d^2Z}{dy^2}\right)_{y=2} = 3(2)^2 = 12 > 0$

$$\therefore \frac{d^2Z}{dy^2} > 0$$

 $\therefore Z$ is minimum and therefore PQ is also minimum as $Z = PQ^2$.

On putting y = 2 in the given equation, i.e. $y^2 = 2x$, we get $(2)^2 = 2x$

 \Rightarrow 4=2x \Rightarrow x=2

Hence, the point which is at a minimum distance from point (1, 4) is P (2, 2).

<u>SECTION – V</u> Questions 36 to 38 carry 5 marks each.

36. Solve the LPP graphically maximize, Z = 1500(7x + 6y) subject to constraints; $x + y \le 50; 2x + y \le 80, x, y \ge 0.$

We have following LPP Maximise Z = 1500 (7x + 6y)Subject to the constraints

$x + y \le 50$	<mark>(i)</mark>
$2x + y \le 80$	<mark>(ii)</mark>

and
$$x, y \ge 0$$
 ...(iii)

Firstly, draw the graph of the line x + y = 50

x	0	50
У	50	0

Put (0, 0) in the inequality $x + y \le 50$, we get 0 + 0 ≤ 50 , which is true.

So, the half plane is towards the origin.

Secondly, draw the graph of the line 2x + y = 80

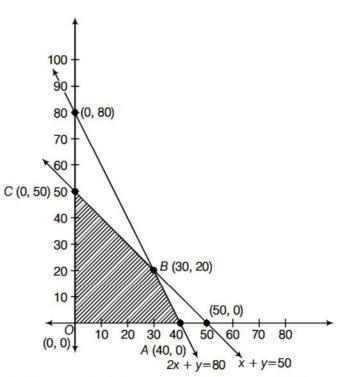
x	0	40
У	80	0

Put (0, 0) in the inequality $2x + y \le 80$, we get $2 \times 0 + 0 \le 80$

So, the half plane is towards the origin.

Since, x, $y \ge 0$ the feasible region lies in the first quadrant On solving (i) and (ii), we get *B* (30, 20).

The corner points of feasible region are O(0, 0), A(40, 0) B(30, 20) and C(0, 50).



The values of Z at these corner points are calculated as

Corner	Z = 1500(7x + 6y)	
O(0, 0)	<i>Z</i> = 0	
A(40, 0)	$Z = 1500(7 \times 40 + 6 \times 0) = 420000$	
B(30, 20)	$Z = 1500(7 \times 30 + 6 \times 20)$ = 495000 (maximum)	
C(0, 50)	$Z = 1500(7 \times 0 + 6 \times 50) = 450000$	

The maximum value of Z is 495000 at (30,20).

37. Find the equation of plane determined by points A(3, −1, 2), B(5, 2, 4), C(−1. −1, 6) and hence find the distance between plane and point P(6, 5, 9).

Given points are A(3, -1, 2), B(5, 2, 4) and C(-1, -1, 6).

Now, equation of plane passing through A, B and C is given by $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x - 3 & y + 1 & z - 2 \\ 5 - 3 & 2 + 1 & 4 - 2 \\ -1 - 3 & -1 + 1 & 6 - 2 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} x - 3 & y + 1 & z - 2 \\ 2 & 3 & 2 \\ -4 & 0 & 4 \end{vmatrix} = 0$

On expanding along R_1 , we get (x - 3)(12 - 0) - (y + 1)(8 + 8) + (z - 2)(0 + 12) = 0

$$\Rightarrow 12x - 36 - 16y - 16 + 12z - 24 = 0$$

$$\Rightarrow 12x - 16y + 12z = 76 \Rightarrow 3x - 4y + 3z = 19$$

Now, distance of the point (6, 5, 9) from the plane (i) is

$$d = \left| \frac{3(6) - 4(5) + 3(9) - 19}{\sqrt{3^2 + 4^2 + 3^2}} \right| = \left| \frac{18 - 20 + 27 - 19}{\sqrt{9 + 16 + 9}} \right| = \left| \frac{6}{\sqrt{34}} \right| = \frac{6}{\sqrt{34}}$$
 units

38. Evaluate the product AB, where $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$. Hence solve the system of linear equations x - y = 3, 2x + 3y + 4z = 17 and y + 2y = 7. $AB = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 2+4+0 & 2-2+0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$ $\therefore AB = 6I$ Given equations are x - y + 0z = 32x + 3y + 4z = 170x + y + 2z = 7These can be written as $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix} \implies AX = C \text{ where } X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, C = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$ \Rightarrow X = A⁻¹C From (i), AB = 6I \Rightarrow B = 6A⁻¹I \Rightarrow A⁻¹ = $\frac{1}{6}$ B \Rightarrow A⁻¹ = $\frac{1}{6}\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$:. From (ii) $X = \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12 \\ -6 \\ 24 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$ \therefore x = 2, y = -1, z = 4.

.....